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ABSTRACT 

This research investigates the feasibility of using a commercially available 

portable weigh-in-motion (WIM) system to improve the spatial representation of 

axle load data from trucks operating on secondary highways. The research 

evaluated the validity of axle load data collected from three on-road installations 

next to comparison load data sources, as well as considering the validity of raw 

and post-processed data.  

Analysis revealed that portable WIM data cannot achieve the accuracy standard 

required of ASTM E1318 type II WIM data, but proper installation, calibration, 

and post-processing can allow portable WIM to have 95% of loads within 36% 

of comparison loads for GVW, within 57% for tandem axles, within 87% for 

tridem axles, and within 63% for individual axles.  

Additionally, aggregation and post-processing of the data can allow selected 

vehicle statistics, such as fully loaded vehicles or GVW distributions, to achieve 

higher accuracies, potentially allowing for various indirect applications of the 

data.  



 

ii 

 

ACKNOWLEDGEMENTS 

First, I’d like to thank my advisor, Dr. Jonathan Regehr, P.Eng, for inviting me to 

join the team at UMTIG, fuelling my interest in transportation engineering, and 

giving me opportunities to conduct and present interesting work. Your guidance 

has been invaluable; I couldn’t have asked for a better advisor. 

I’d also like to extend my thanks to Giuseppe, Karalee, Abby, Karen, and the rest 

of the UMTIG family. I’ve enjoyed our roundabouts, conference trips, ITE events, 

and long days assembling MHTIS reports together; thanks for your support and 

friendship.  

I will further thank all those whose support made this project, and my degree, 

possible. This includes financial support from the Natural Sciences Engineering 

Research Council of Canada and the International Society for Weigh-In-Motion 

and assistance with data collection from Manitoba Infrastructure. Special thanks 

to Kevin Gavin and Bofei Sun at Traffic Engineering, as well as Tim Brown and 

the personnel at Motor Carrier Enforcement. Additional thanks to Roy Czinku at 

International Road Dynamics for sharing from your extensive knowledge of WIM. 

Last, I’d like to thank my family. Thanks to my parents, who have supported my 

engineering education, in addition to everything else, since day one. Finally, 

thank you to my wife, Rebecca, for your love, patience, feigned interest in my 

work, and encouragement. You’re the best.  



 

iii 

 

Contents 

1 INTRODUCTION .............................................................................................. 1 

1.1 Purpose ..................................................................................................... 1 

1.2 Background and Need .............................................................................. 1 

1.3 Objectives and Scope ............................................................................... 4 

1.4 Approach ................................................................................................... 6 

1.5 Thesis Organization .................................................................................. 7 

1.6 Terminology .............................................................................................. 8 

2 Environmental Scan ....................................................................................... 11 

2.1 Collection and Use of Axle Load Data ................................................... 11 

2.2 Issues with Weigh-In-Motion Systems ................................................... 16 

2.3 Existing Sources of Axle Load Data in Canada ..................................... 19 

2.4 Methods for Gathering Spatially Representative Axle Load Data ......... 25 

2.4.1 Portable Weigh-In-Motion ............................................................... 26 

2.4.2 Bridge Weigh-In-Motion .................................................................. 30 

2.4.3 On-board Weighing ......................................................................... 34 

2.4.4 Vehicle Reidentification ................................................................... 37 

2.4.5 Axle Load Modelling ........................................................................ 39 

2.5 Summary ................................................................................................. 43 

3 Research Methodology .................................................................................. 46 

3.1 Data Sources .......................................................................................... 46 

3.1.1 Portable WIM System Design ......................................................... 46 

3.1.2 WIM Data in Manitoba ..................................................................... 51 

3.1.3 Static Weigh Scale Data in Manitoba ............................................. 53 

3.2 Data Collection ....................................................................................... 54 

3.2.1 Installations at Permanent WIM Station 99 .................................... 55 

3.2.2 Installation at Headingley Static Weigh Scale ................................ 57 

3.2.3 WIM System Calibration.................................................................. 59 

3.3 Data Preparation ..................................................................................... 61 

3.3.1 Vehicle Pairing Procedure .............................................................. 61 

3.3.2 Preliminary Data Quality Assessments .......................................... 63 

3.4 Portable WIM Data Quality Assessment Methods................................. 64 

3.4.1 Erroneous Vehicle Records ............................................................ 67 



 

iv 

 

3.4.2 Calibration Drift ................................................................................ 67 

3.4.3 Temperature and Speed Sensitivity ............................................... 69 

3.4.4 Per-Vehicle Data Validity ................................................................ 72 

3.4.5 Aggregated Validity ......................................................................... 76 

4 Analysis .......................................................................................................... 79 

4.1 Erroneous Vehicle Records Results (Analysis 1) .................................. 79 

4.1.1 Percentage of Erroneous Records ................................................. 79 

4.1.2 Percentage of Successfully Paired Records .................................. 81 

4.2 Calibration Drift Results (Analysis 2) ..................................................... 83 

4.2.1 Duration of Calibration Drift Trend .................................................. 85 

4.2.2 Selection of Explanatory Variable ................................................... 89 

4.3 Temperature and Speed Sensitivity Results (Analysis 3) ..................... 91 

4.3.1 Temperature Sensitivity Analysis .................................................... 91 

4.3.2 Vehicle Speed Sensitivity Results ................................................ 103 

4.4 Per-Vehicle Data Validity Results (Analysis 4) .................................... 111 

4.4.1 Overall Validity of Axle Loads ....................................................... 113 

4.4.2 Accuracy of Axle Loads During Calibration Drift .......................... 130 

4.5 Aggregated Data Validity Results (Analysis 5) .................................... 134 

4.5.1 Comparison of Distribution Means................................................ 135 

4.5.2 Comparison of Distribution Confidence Intervals ......................... 137 

4.5.3 T-Test Results ............................................................................... 139 

4.5.4 Loading Separated Temperature Corrected Results ................... 143 

4.6 Discussion ............................................................................................. 147 

4.6.1 Qualitative Observations ............................................................... 147 

4.6.2 Implications for a Portable WIM Data Collection Program ........... 149 

5 Conclusions and Recommendations ........................................................... 157 

5.1 Summary of Key Findings .................................................................... 157 

5.2 Summary of Key Recommendations ................................................... 160 

5.3 Opportunities for Future Portable Wim Research................................ 161 

6 References ................................................................................................... 163 

Appendix A: Vehicle Pairing Procedures ............................................................ 178 

Appendix B: Permanent WIM Station 99 Data Evaluation ................................. 187 

Appendix C: Post-Processing Calibration Procedure and Evaluation ............... 193 



 

v 

 

Appendix D: Vehicle Configuration Selection Algorithms .................................. 197 

Appendix E: Regression Equations .................................................................... 198 

Appendix F: Load Error Percentiles in Time ....................................................... 199 

Appendix G: Data Correction Procedures .......................................................... 204 

 

  



 

vi 

 

List of Figures 

Figure 1 – Portable WIM trailer ............................................................................. 49 

Figure 2 - Portable WIM system configuration ..................................................... 50 

Figure 3 - Portable WIM sensor pocket tape installation ..................................... 51 

Figure 4 - Map of Manitoba WIM stations and static weigh scales ...................... 52 

Figure 5 - Map of portable WIM installation at permanent WIM station 99 ......... 56 

Figure 6 - Map of portable WIM installation at Headingley static weigh scale .... 58 

Figure 7 – Overview of portable WIM system analyses ....................................... 65 

Figure 8 - Conceptual visualization of sources of WIM error ............................... 70 

Figure 9 - Example of a Gaussian mixture model applied over a gross vehicle 
mass (GVM) distribution ........................................................................................ 77 

Figure 10 - Scatterplot of daily error code rates during portable WIM installations 
1 and 2 ................................................................................................................... 81 

Figure 11 - Percentage of successfully paired vehicle records by axle count for 
portable WIM installations 1 and 2 ........................................................................ 82 

Figure 12 - Calibration drift of front axle loads of selected configurations during 
first portable WIM installation at WIM station 99 .................................................. 84 

Figure 13 - Example scatterplots for analysis of calibration drift trend ................ 86 

Figure 14 – Scatterplot of R squared values of time elapsed vs portable WIM 
front axle load and front axle load percent error during portable WIM installation 1
 ............................................................................................................................... 88 

Figure 15 - Temperature measurements from WIM systems during portable WIM 
installations at WIM station 99 .............................................................................. 93 

Figure 16 - Scatterplot of residuals of temperature regression model for first 12 
days of portable WIM installation 1 ....................................................................... 99 

Figure 17 - Values from individual day temperature regression equations during 
first installation at WIM station 99 ....................................................................... 101 



 

vii 

 

Figure 18 - Scatterplots of parameters of regression equations of speed versus 
axle group load errors and speed versus axle group loads ............................... 110 

Figure 19 - Histograms of errors of uncorrected GVWs of trucks from all portable 
WIM datasets ....................................................................................................... 114 

Figure 20 - Histograms of errors of temperature corrected GVWs of trucks from 
all portable WIM datasets .................................................................................... 115 

Figure 21 - Histograms of errors of autocalibrated GVWs of trucks from 3 
portable WIM datasets ........................................................................................ 116 

Figure 22 - Histograms of errors of uncorrected axle group loads of trucks from 
all portable WIM datasets .................................................................................... 121 

Figure 23 - Histograms of errors of temperature corrected axle group loads of 
trucks from all portable WIM datasets ................................................................ 122 

Figure 24 - Histograms of errors of autocalibrated axle group loads of trucks from 
3 portable WIM datasets ..................................................................................... 123 

Figure 25 - Histograms of errors of uncorrected axle loads of trucks from 2 
portable WIM datasets ........................................................................................ 127 

Figure 26 - Histograms of errors of temperature corrected axle loads of trucks 
from 2 portable WIM datasets ............................................................................. 128 

Figure 27 - Histograms of errors of autocalibrated axle loads of trucks from 2 
portable WIM datasets ........................................................................................ 128 

Figure 28 - Daily measurements of ASTM type II compliance during portable 
WIM installations 1 and 2 .................................................................................... 132 

Figure 29 - Percent error of means of portable WIM loading scenarios during 
portable WIM Installation 1 .................................................................................. 136 

Figure 30 - Percent of 95% CI overlap portable WIM loading scenarios during 
portable WIM Installation 1 .................................................................................. 138 

Figure 31 - Histograms of errors of temperature corrected GVW, axle groups, 
and axles of selected configurations during Installation 1.................................. 144 

Figure 32 - WIM station 99 vehicle pairing procedure algorithm ....................... 179 

Figure 33 - Example of logical sequencing vehicle record pairing method ....... 183 

Figure 34 - Static weigh scale vehicle pairing algorithm .................................... 184 



 

viii 

 

Figure 35 - Screenshot from camera installed at portable WIM system with 
accompanying information .................................................................................. 185 

Figure 36 – Percent error of WIM station 99 weight percentiles as compared to 
static weigh scale data ........................................................................................ 191 

Figure 37 - Relationship of axle load measurements to percent error in portable 
WIM post-processing calibration ......................................................................... 195 

Figure 38 - Key percentiles of portable WIM GVW percent errors over 
installations 1 and 2 ............................................................................................. 200 

Figure 39 - Key percentiles of portable WIM tandem axle load percent errors over 
installations 1 and 2 ............................................................................................. 201 

Figure 40 - Key percentiles of portable WIM individual axle load percent errors 
over installations 1 and 2 .................................................................................... 202 

  



 

ix 

 

 

List of Tables 

Table 1 – WIM Accuracy Standards ..................................................................... 17 

Table 2 – Sources of axle load data in Canada ................................................... 20 

Table 3 – Recent studies of portable WIM ........................................................... 28 

Table 4 – Focus of studies of BWIM technology .................................................. 32 

Table 5 - Portable WIM System Components ...................................................... 47 

Table 6 - Portable WIM installations summary ..................................................... 54 

Table 7 - Truck configurations used in specific analyses ..................................... 68 

Table 8 - Error code summary for portable WIM Installations 1 and 2 ................ 80 

Table 9 - Results of multicollinearity analysis of candidate explanatory variables 
for calibration drift .................................................................................................. 89 

Table 10 - Results of regression analyses of front axle loads and front axle load 
percent errors on candidate explanatory variables .............................................. 90 

Table 11 - Results of regression analysis of 3 temperature data sources against 
select front axle loads ............................................................................................ 95 

Table 12 - Results of regression analysis of temperature against select front axle 
loads from WIM station 99 .................................................................................... 96 

Table 13 - Results of regression analysis of temperature against select portable 
WIM front axle loads and front axle load percent errors ...................................... 98 

Table 14 - Results of regression analysis of speed against select front axle loads 
from WIM station 99 ............................................................................................ 103 

Table 15 - Results of regression analysis of speed against select portable WIM 
front axle loads and front axle accuracies .......................................................... 105 

Table 16 - Results of regression analysis of vehicle speed on non-front axle load 
errors of selected vehicle configurations ............................................................ 107 

Table 17 - Summary statistics of portable WIM GVW percent errors ................ 118 



 

x 

 

Table 18 - Summary statistics of portable WIM axle group load percent errors 125 

Table 19 - Summary statistics of portable WIM axle load percent errors .......... 129 

Table 20 - Results of T-tests comparing portable WIM GVW loading scenarios to 
comparison data .................................................................................................. 140 

Table 21 - Results of T-tests comparing portable WIM front axle load spectra to 
comparison data .................................................................................................. 141 

Table 22 - Results of T-tests comparing portable WIM axle group loading 
scenarios to comparison data ............................................................................. 142 

Table 23 - Key statistics of selected configuration axle load errors for 
temperature correction procedures during Installation 1 .................................... 146 

Table 24 - Photographs of portable WIM sensors at beginning and end of each 
installation ............................................................................................................ 148 

Table 25 – Priority values of the Expected Datetimes List................................. 181 

Table 26 – P-values from T-tests comparing weeks of WIM station 99 axle load 
data over the portable WIM installation .............................................................. 189 

Table 27 - Post-Processing calibration factors for each day of portable WIM 
installation ............................................................................................................ 196 

Table 28 - Vehicle configuration selection algorithm axle spacing ranges ........ 197 

Table 29 - Regression equations of speed and axle group loads for selected 
vehicle configurations .......................................................................................... 198 



 

1 

 

1 INTRODUCTION 

1.1 PURPOSE 

This research investigates the feasibility of using a portable weigh-in-motion 

(WIM) system to achieve greater spatial coverage of axle load data from trucks 

on secondary highways. The portable WIM system tested consists of 

commercially available components. In this investigation, the system’s data is 

evaluated according to its accuracy, precision, and potential for increased data 

quality through various post-processing methods and analyses. By determining 

the system’s capabilities in these areas, this research evaluates the feasibility of 

collecting load data that is useful for design and other applications and gives 

recommendations for a potential portable WIM data collection program. 

1.2 BACKGROUND AND NEED 

Professionals require vehicle axle load data for a variety of engineering and 

planning applications, including design and analysis of highway structures and 

freight planning studies. To be useful for these applications, this load data must 

be sufficient in four principal data quality dimensions: 

1. Data Validity: The data must be both precise and accurate. 

2. Temporal Coverage: The data must be representative of the patterns of 

vehicle loads in time. 

3. Spatial Coverage: The data must be representative of the geographic 

areas under analysis. 
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4. Data Availability: It must be possible to collect the data for a reasonable 

level of effort and financial investment (Wood, 2017). 

The only technology that sufficiently meets these criteria, particularly the 

requirement of data availability, is weigh-in-motion (WIM). High-speed WIM 

systems, which are capable of obtaining axle loads as vehicles pass over them at 

highway speeds, are able to achieve excellent temporal coverage and 

acceptable data validity. However, given their high costs and requirements for 

regular calibration, WIM stations can only be installed at a limited number of 

locations in any jurisdiction, limiting the spatial coverage of the data (Zhang, 

Haas and Tighe, 2007; Refai, Othman and Tafish, 2014). 

While vehicle load data is useful for a variety of applications, the current state of 

the practice in the application of axle load data is defined with specific regard to 

the use of axle load data for highway design in the Mechanistic Empirical 

Pavement Design Guide (MEPDG).  The MEPDG, developed by the American 

Association of State Highway Transportation Officials (AASHTO), is a tool for 

improving the design and analysis of pavement structures. The MEPDG requires 

load data to be input to the analysis in the form of axle load spectra (ALS) for 

each axle type, which can only be obtained from WIM sensors (AASHTO, 2015).  

Due to the difficulties with achieving sufficient spatial coverage of axle load data 

using WIM systems, the MEPDG specifies three possible levels of data quality 

for any given highway segment: 
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• Level 1: Data is available from a nearby WIM site, 

• Level 2: Data is available from a WIM site on a similar segment in the 

same region, and 

• Level 3: No site specific data is available; default loading values included 

in the MEPDG software are used (AASHTO, 2015). 

Level 1 data is not available in most locations, and level 2 and 3 data cannot 

always be accepted as valid, particularly in regions outside of the United States, 

where the MEPDG’s default values, which are based on typical traffic patterns in 

the United States, may not apply (Swan et al., 2008). Because of this, various 

technologies for improving the spatial coverage of axle load data have been and 

are being developed. These technologies include portable WIM systems (Refai, 

Othman and Tafish, 2014; Petersen, 2015), bridge WIM (BWIM) systems (Lydon 

et al., 2016), on-board weighing (OBW) systems (Labarrere, 2018b), and vehicle 

signature matching (Jeng and Chu, 2015). Additionally, due to patterns in the 

trucking industry, truck loading characteristics can be correlated spatially and 

temporally to factors such as road regulations, patterns of industry, and climatic 

variables (Haider et al., 2011; Reimer and Regehr, 2013), and efforts have been 

made to model truck axle loads based on these variables. This approach would 

allow more accurate application of level 2 and 3 data over areas for which the 

variables are known. 

In order to generate more level 1 data, some agencies have used portable WIM 

systems as a way of collecting data over a wider spatial coverage. However, due 
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to a number of issues that stem from the portability of the systems, portable WIM 

systems have not been able to generate data of similar validity to that of 

permanent WIM systems (Selezneva and Von Quintus, 2014). Several state 

DOTs have performed research into how to improve portable WIM performance 

throughout the 2010s (Refai, Othman and Tafish, 2014; Petersen, 2015; Faruk et 

al., 2016). Five state DOTs have taken an additional approach to the data validity 

issues of portable WIM by applying portable WIM data indirectly to design. This 

approach typically involves using portable WIM data from a site to select a 

representative axle load spectra from a predetermined list (Selezneva and Von 

Quintus, 2014). To do this, the individual vehicle records are not considered to be 

correct; rather, only certain parameters of the data are taken to be accurate and 

used to match the portable WIM load spectra to load spectra from the 

predetermined list. 

Though some efforts have been made to improve the spatial coverage of axle 

load data, many jurisdictions still have inadequate coverage. Furthermore, the 

MEPDG’s default axle load values are based on the context of the United States 

and are less applicable in other countries due to differences in road regulations, 

distribution of truck classifications, and climate. These areas stand to benefit 

most from the validation and application of a portable WIM system. 

1.3  OBJECTIVES AND SCOPE 

The objectives of this research are as follows: 
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1. Determine if a commercially available portable WIM system is capable of 

obtaining axle load data of sufficient validity to be used directly for 

engineering and planning applications in Canada. 

2. Determine if a commercially available portable WIM system is capable of 

obtaining axle load data that can be applied indirectly to engineering and 

planning applications in Canada. 

3. Generate recommendations for installations of a portable WIM system. 

The scope of this research was constrained to the following: 

• This research examines the performance of only a single portable WIM 

system consisting of components selected by Manitoba Infrastructure. 

• This research only analyzes the data collected from 3 portable WIM 

installations. All three of these installations were performed in southern 

Manitoba. 

• This research does not consider the data requirements of inputs to 

pavement design other than the accuracies outlined in ASTM E1318: 

Standard Specification for Highway Weigh-In-Motion (WIM) Systems with 

User Requirements and Test Methods. 

• This research is not intended to provide all the necessary information for 

the implementation of a portable WIM data collection program. It is 

intended only to discuss best installation practices, examine the data 

collection capabilities of a portable WIM system, and give those 
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recommendations about the formation of a data collection program that 

can be inferred directly from these capabilities. 

1.4 APPROACH  

This research examines the capabilities of a portable WIM system consisting of 

commercially available components. To do so, the accuracy of the portable WIM 

system is calculated in reference to two other sources of axle load data: 1) a 

permanent piezo-quartz WIM system, and 2) a static truck weigh scale. The 

portable WIM system is installed alongside each of these sources so that 

individual truck records may be paired between the data sources in order to 

compare the axle loads. 

The analysis of the axle loads is done by calculating the accuracies of the 

portable WIM system’s axle load data as compared to axle load data from both a 

static weigh scale and a permanent WIM system. The static weigh scale’s axle 

load data are considered ‘ground truth’—that is, data that is as accurate to the 

true axle loads as is possible to obtain, while the permanent WIM system’s data 

is included due to its high-quality axle load data at an greater sample size. The 

accuracy standards as stated in ASTM E1318 are considered as a benchmark. 

The analysis considers the validity of the portable WIM data on both a per-

vehicle and aggregated basis. The per-vehicle analysis examines the accuracies 

of individual vehicles axles, axle groups, and gross vehicle weights (GVWs), 

while the aggregated data analysis examines the relative parameters of axle load 

spectra between the portable WIM and comparison datasets.  
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To determine the maximum validity that can be achieved by the portable WIM 

system, the datasets are examined in the state they are collected in, as well as 

after two post-processing methods. One of these corrects for any relevant effects 

from temperature and vehicle speed, while the other is an autocalibration 

procedure that continuously corrects the data based on pre-set values. 

1.5 THESIS ORGANIZATION 

This thesis is organized into five chapters: 

Chapter 2 – Environmental Scan: This chapter presents background information 

on the need for obtaining axle load data over a wider spatial representation than 

is currently available in Canada. It then evaluates several methods of obtaining 

axle load data over that wider spatial representation and includes a detailed 

discussion of past studies and implementation of portable WIM. 

Chapter 3 – Research Methodology: This chapter provides a detailed description 

of the portable WIM system used to conduct the research, the methods and 

locations of its installation, and methods of data analysis that were applied.   

Chapter 4 – Analysis: This chapter presents the results of the data analyses and 

evaluates the validity of the collected portable WIM data on both a per-vehicle 

and aggregated basis. 

Chapter 5 – Conclusions and Recommendations: This chapter presents the 

conclusions drawn from this research, including recommendations for a potential 

portable WIM data collection. 
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1.6 TERMINOLOGY 

Accuracy – The degree of agreement between a measured value and an 

accepted reference value. 

Autocalibration – A method of calibrating a WIM system wherein the applied 

calibration factor is continuously updated based on the factor required to match a 

selection of the measured axle loads to an accepted reference value. 

Autocalibration is applied in this research as a post-processing method. 

Automatic Vehicle Classifier (AVC) – A type of permanent count station that 

provides vehicle classification on the basis of axle spacing, but does not provide 

axle load data. 

Axle Group – A defined group of adjacent axles. Includes steering axles, single 

axles, tandem axles, and tridem axles. 

Axle Load – The sum of all tire loads of the wheels on an axle. 

Axle Load Spectra (ALS) – A method of representing axle load data using 

histograms of loads of single, tandem, and tridem axles and GVWs, often 

separated by vehicle configuration. A primary input for mechanistic-empirical 

design. 

Bridge Weigh-in-Motion (BWIM) – A WIM system that calculates vehicle axle 

loads by instrumenting a bridge with sensors to measure deflection of the 

structure. 
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Calibration – The adjustment of a WIM system’s settings to produce valid loads. 

Typically done using a test truck of known axle loads to generate a calibration 

factor and dynamic compensation factor. 

Calibration factor – The factor generated by a calibration process that is applied 

to all axles to correct the measured values to the actual values. 

Data Quality – The measure of how well data represents actual conditions and 

can be reasonably obtained. Includes validity, temporal coverage, spatial 

coverage, and data availability. 

Dynamic Compensation Factor – The factor generated by a calibration process 

that is applied only to all front axles to correct for dynamic effects on the front 

axle. 

Front Axle – A vehicle’s articulated steering axle; almost always a single axle 

group. 

Gaussian Mixture Model (GMM) – An analysis method wherein an uneven 

distribution is separated into a specified number of ‘mixing components’, with 

each component having the form of a gaussian (normal) distribution. 

Gross Vehicle Weight (GVW) – The combined loads of all tires on all axles of a 

vehicle. 

Individual Axle – One axle, either in an axle group by itself or as part of a 

tandem or tridem axle group. 
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Post-Processing Calibration – A calibration procedure developed for this 

research wherein a physical test truck is replaced with paired vehicle records 

from the nearby static weigh scale. 

Mechanistic-Empirical (ME) – A pavement design approach involving 

calculation of pavement responses (mechanistic) and predicting incremental 

damage over time (empirical). Uses axle load spectra as inputs. 

Precision – The consistency, or stability, of a set of results. 

Selected Configurations – For the purposes of this research, 3-S2, 3-S3, 3-S3-

S2, and 3-S2-4 vehicles, which are isolated for specific analysis. 

Tandem Axle Group – An axle group consisting of two axles. Also referred to as 

a ‘tandem axle’. 

Tridem Axle Group – An axle group consisting of three axles. Also referred to 

as a ‘tridem axle’ 

Validity – A measure of data quality that indicates a value was measured as it 

was intended to be. Validity includes elements of both accuracy and precision. 

Weigh-in-Motion (WIM) – The process of estimating a vehicle’s axle loads, axle 

group loads, and gross vehicle weight by measuring and analyzing dynamic tire 

forces. 
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2 ENVIRONMENTAL SCAN 

This chapter discusses weigh-in-motion (WIM) technology, including its 

applications and common issues with the quality of WIM data. The chapter 

includes a summary of the current state of axle load data collection in Canada, 

including both WIM and other sources. The chapter closes with a review of 

research into methods of obtaining axle load data for broader spatial 

representation. 

2.1 COLLECTION AND USE OF AXLE LOAD DATA 

WIM systems have been used around the world for several decades to collect 

detailed axle load data for a variety of applications. Most WIM systems are 

permanent, meaning that they are installed in the road at a particular location, 

allowing high quality data to be collected, but only at a single point in a highway 

network (van Loo and Znidaric, 2019). All permanent, in-road WIM systems all 

share several common major components: 

• Scales or sensors installed in the roadway which measure the loads of 

passing vehicles, 

• An electronic control system equipped with an algorithm that converts the 

signal from the sensors to axle load measurements, and 

• Support equipment including power sources and communication devices 

to transmit the load measurements off-site. 
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A variety of sensor technologies can be employed in these WIM systems. The 

FHWA identifies five primary WIM sensor technologies (U.S. Department of 

Transportation, 2018a): 

• Piezoelectric sensors consist of a copper strand encased in a piezoelectric 

polymer material, all enclosed in a flexible brass sheath. Piezoelectric 

sensors measure axle loads by generating a voltage charge proportional 

to the pressure applied on the sensor, which is then translated into a load 

measurement. Piezoelectric sensors are sensitive to temperature 

changes, which can change the loads measured by the sensors. 

• Piezo-quartz sensors are strip sensors that function much the same as 

piezoelectric sensors but use quartz crystal technology to translate vertical 

force into an electric charge. Piezo-quartz sensors are less sensitive to 

temperature changes than piezoelectric sensors and typically produce 

more accurate results. 

• Bending plates are wide sensors (typically 50 cm wide) that have strain 

gauges mounted to a semi-rigid plate’s underside to measure the bend in 

the plate as a vehicle passes over the sensor and translate that bend to 

an axle load. They are one of the most accurate WIM sensor technologies 

available. 

• Load cells are wide plate sensors (typically 90 cm wide) that have two 

transducer sensors underneath the right and left sides of the rigid plate. 

Loads on the sensor surface are transferred to the transducers which 
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generate an electric signal that can be translated into a load 

measurement. Load cells are the most accurate WIM sensor technology, 

but also the most expensive and so are used only in selective 

applications.  

• Strain gauge strip sensors are strip sensors that use strain gauges directly 

to generate electric charges to translate to axle loads, rather than 

mounting them on a plate as in the bending plate sensor. Strain gauge 

strip sensors are roughly comparable with piezo-quartz sensors in the 

accuracy of load measurements that they offer. 

Axle load data collected by WIM systems can be used for a variety of 

applications. The following list of applications is not comprehensive, but 

provides an overview of some of the primary areas where WIM data is used. 

• Pavement design is a common application for axle load data. By providing 

axle load data at known points, axle loads on new roads or at locations of 

road improvements can be predicted, and thus the road can be designed 

to avoid premature failure and increased maintenance costs while 

avoiding overdesign (Turochy, Timm and Tisdale, 2005). The two primary 

accepted methods of doing this are the ESAL method, wherein all vehicle 

weights are converted to an equivalent number of standardized single 

axles (U.S. Department of Transportation, 2018a), and the mechanistic-

empirical approach described in the Mechanistic-Empirical Pavement 

Design Guide (MEPDG) (Haider et al., 2011; Nassiri, Bayat and Kilburn, 
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2014), which is a software-assisted iterative approach that combines a 

variety of factors to predict a pavement’s response to a particular loading. 

The M-E approach requires axle load spectra separated by axle group 

type (single, tandem, tridem) as inputs (AASHTO, 2015). 

• Bridge design also requires axle load data. Data collected from WIM 

systems can be used to calibrate design codes that govern bridge design 

to ensure both the cost-effectiveness and safety of the final designs (Van 

de Lindt et al., 2002; Chotickai and Bowman, 2006; Helmi, Bakht and 

Mufti, 2014). Long-span bridges in particular require precise inputs to 

ensure safe designs and so benefit from high-quality axle load data (van 

Loo and Znidaric, 2019). Furthermore, bridge weigh-in-motion (BWIM), 

which measures axle loads by instrumenting a bridge with various types of 

sensors, has more recently contributed to bridge design and evaluation 

efforts (Cantero and González, 2015; Lydon et al., 2016). 

• A third use for axle load data is for freight planning studies. These studies 

examine the movement of goods with the goal of developing policy and 

regulations relating to freight and generating recommendations for 

investment in road and rail infrastructure (Krisztin, 2017). These studies 

typically examine the movement of freight on key highway corridors or 

between regions; in them, vehicle load data can be used to estimate 

freight volumes (Koniditsiotis, Buckmaster and Fraser, 1995). Therefore, 

policy decisions based on these studies are better informed when axle 
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load data is available in more locations and at higher quality (van Loo and 

Znidaric, 2019). 

• The final use of axle load data and WIM systems discussed here is in the 

enforcement of vehicle weight regulations. Enforcement is important to 

maintaining and managing a highway network, and WIM systems are 

often used to assist with these tasks. WIM systems can be used in two 

ways here: direct and indirect enforcement. Direct enforcement allows a 

citation issued to a driver or company based only on the load 

measurements from a WIM system (Richardson et al., 2014). This allows 

complete temporal coverage of an enforcement location. However, direct 

enforcement from WIM has only been used in a limited capacity due to the 

requirement for the system to be certified to meet stringent accuracy 

standards (Jacob and Cottineau, 2016). More common is indirect 

enforcement from WIM, wherein vehicles pass a WIM system before 

coming to a static weigh scale, which is the typical technology for 

enforcement. The WIM system is able to identify only those vehicles that 

are near or over gross vehicle and/or axle load limits, and can be 

connected to a system to then instruct these drivers to report to the scale 

for an accurate and precise weight measurement and possible citation 

(Žnidarič, Kalin and Kreslin, 2018). 
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2.2 ISSUES WITH WEIGH-IN-MOTION SYSTEMS 

When using data collected from WIM systems, there are a number of different 

issues that may cause the data to be inaccurate or otherwise unreliable. As WIM 

sensors measure weight dynamically, axle load data collected from WIM systems 

are never completely accurate as compared to static scale load measurements, 

and their error can only be reduced through careful calibration. The primary 

standard for WIM accuracy in North America is ASTM E1318 (ASTM 

International, 2009); the primary European standard is COST 323 (Jacob, 

O’Brien and Jehaes, 2002). The standards’ required accuracies for axle loads, 

axle group loads, and GVW are summarized in Table 1. Both standards also 

state required accuracies for axle groups and individual axles, which require 

higher accuracies than GVW for the same application and class. 
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Table 1 – WIM Accuracy Standards 

Application 

ASTM E1318 COST 323 

Class 

Allowed Error 

Class 

Allowed Error 

GVW 
Axle 

Group 
Axle 
Load 

GVW 
Axle 

Group 

Single 
Axle 
Load 

Axle 
within 
Group 

Direct 
enforcement 

Type 
IV* 

±1100 
kg 

±500 
kg 

±200 
kg 

A ±5% ±7% ±8% ±10% 

  B+ ±7% ±10% ±11% ±14% 

Indirect 
enforcement 

Type III ±6% ±10% ±15% 
B ±10% ±13% ±15% ±20% 

C ±15% ±15% ±20% ±25% 

Infrastructure 
design 

Type I ±10% ±15% ±20% B ±10% ±13% ±15% ±20% 

Type II ±15% ±20% ±30% C ±15% ±15% ±20% ±25% 

Statistics 
Type I ±10% ±15% ±20%   D+ ±20% ±23% ±25% ±30% 

Type II ±15% ±20% ±30% D ±25% ±28% ±30% ±35% 

Rough 
Statistics 

 
N/A 

N/A N/A N/A E >25% >28% >30% >35% 

* ASTM WIM type IV has not yet been approved for use in the United States, and 

is a specification for low speed (3-16 km/h) WIM for direct enforcement. The 

allowed error is specified in load, with the tolerances applying if the axle is 

greater than 5400 kg, the axle group is greater than 11 300 kg, or the GVW is 

greater than 27 200 kg. 

To fall within a type defined by ASTM E1318, 95% of results must be within the 

stated tolerance. COST 323 does not define a strict percentage of results that 

must be within the stated tolerances, but rather allows a user to set this 

percentage based on the specific requirements of the site and data. Both 

standards prescribe a method for calibrating the systems. In this method, a test 

truck of known weight is to be driven over the sensors a minimum number of 
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times to ensure that the weight measured by the WIM system matches the 

truck’s known weight. An uncalibrated site will not be able to achieve acceptable 

accuracy and will not deliver meaningful data. 

Even with proper calibration, a WIM system may be unable to achieve 

acceptable accuracy due to several factors in the site. A WIM site’s accuracy can 

be affected by pavement type, smoothness, and condition, longitudinal and 

lateral alignment of the road, and traffic composition and characteristics. If one or 

more of these factors creates issues for the WIM system, a given site may never 

be able to reach acceptable accuracy. Additionally, an improperly installed WIM 

system will also experience issues, necessitating proper installation by qualified 

personnel (U.S. Department of Transportation, 2018b). Furthermore, to ensure 

ongoing accuracy of a WIM system, regular calibration must take place using the 

test truck method, as a WIM site will drift in its calibration due to environmental 

factors. An annual calibration is recommended by the United States’ Federal 

Highway Administration (U.S. Department of Transportation, 2018c); 

independent research in Canada has shown this to be an appropriate calibration 

schedule (Wood, 2017). 

An additional issue with WIM systems is that of temperature sensitivity. 

Piezoelectric WIM sensors, which are used by many jurisdictions, will generally 

give axle load measurements that get larger as pavement temperature increases 

(Gajda et al., 2013). Some WIM equipment manufacturers correct for this effect 

by applying automatic temperature-based correction factors to WIM data when 



 

19 

 

temperature is recorded at a WIM site; while this can improve the accuracy of the 

system’s output, better accuracies can be achieved by developing site-specific 

temperature correction factors (Burnos and Gajda, 2016; Wood, 2017). 

A final issue with WIM systems is that of cost and logistics. WIM units are 

expensive to install and maintain, and so jurisdictions are typically limited in 

terms of the number of systems they can deploy (Hallenbeck and Weinblatt, 

2004). This sometimes leads to the absence of representative load data for 

certain geographic areas or highways. To deal with this, the MEPDG specified a 

method of assigning data to any given highway segment, resulting in three 

possible levels of data quality for a given highway location: 

• Level 1: Data is available from nearby WIM sites, 

• Level 2: Data can be applied from a WIM site on a similar segment in the 

same region, and 

• Level 3: No site specific data is available so default loading values 

included in the MEPDG software must be used (AASHTO, 2015). 

This system is an imperfect solution to the problem of spatial representation, but 

is recognized as an industry standard approach. 

2.3 EXISTING SOURCES OF AXLE LOAD DATA IN CANADA 

Canada consists of ten provinces and three territories, all but one of which collect 

axle load data in some capacity. These sources of load data, as are described in 

publicly available sources, are summarized in Table 2. In addition, the number of 
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weigh scale locations listed by Allstays in 2020 are included (Allstays LLC, 2020). 

Allstays is a crowdsourced online resource that includes data for those in the 

trucking industry. This data is generally close to the officially reported numbers of 

weigh scales but does differ in some provinces; this can be attributed to the fact 

that some of the official sources are dated, and that Allstays sometimes lists 

multiple weigh scales at a single location due to directionality. Sources of official 

information are described below Table 2. A value of N/A indicates that no publicly 

available information was available. 

Table 2 – Sources of axle load data in Canada 

Jurisdiction 
WIM 
Sites 

Static Weigh Scale Stations Static Weigh 
Scale Mobile 

Units Official 
Sources 

Allstays 

British Columbia 8 22 14 ≥1 

Alberta 6 17 18 24 

Saskatchewan 15 10 12 ≥1 

Manitoba 7 14 8 ≥1 

Ontario 4 32 46 N/A 

Quebec 19 ≥1 19 N/A 

New Brunswick 4 4 7 N/A 

Prince Edward Island 5 2 3 1 

Nova Scotia ≥3 5 2 ≥1 

Newfoundland and 
Labrador 

4 4 8 N/A 

Yukon N/A 4 N/A N/A 

Northwest Territories 1 2 N/A N/A 

Nunavut N/A 0 N/A 0 
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As of 2019, the province of Alberta collected load data from 7 permanent WIM 

sites covering a total of 24 lanes of traffic (Poapst, 2020). The sites each have a 

calibration verification performed every two months (Transportation Modelling 

and Analysis Section, 2014). In addition, as of 2019 the province operates 17 

manned static weigh scale stations and 24 unmanned static weigh scales mobile 

units that are used for vehicle weight regulation enforcement, rather than for data 

collection (Government of Alberta, 2020). 

The province of British Columbia, as part of its traffic data program, has 5 WIM 

sites listed on its GIS application out of a total of 120 permanent traffic count 

stations. The GIS application provides traffic data up until 2019, however the 

WIM sites provide data only up to 2013, or earlier for some sites (Government of 

British Columbia, 2019). The province operates a further 3 WIM sites as part of 

its commercial vehicle inspection program; these sites weigh vehicles as part of a 

pre-screening for more detailed vehicle inspections (Government of British 

Columbia, no date). A further 22 sites are equipped with static weigh scales, and 

an unspecified number of mobile units assist with vehicle weigh regulation 

enforcement (B.C. Ministry of Transportation and Infrastructure, no date). 

The province of Manitoba operates 6 WIM sites as part of its traffic monitoring 

program, however not all of these sites monitor all lanes of the highway. Over all 

6 sites, a total of 11 lanes have WIM sensors installed. Three of these WIM sites 

are equipped with piezoelectric sensors and three are equipped with piezoquartz 

sensors (Sun, 2020); all are calibrated approximately annually (Wood, 2017). In 
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addition to traffic monitoring with WIM, the province operates 14 permanent static 

weigh scale sites and 5 temporary static weigh scale sites for vehicle weight 

regulation enforcement (Manitoba Infrastructure, 2017).  

The province of New Brunswick operates 4 WIM sites; these sites are primarily 

used for pre-screening commercial vehicles at inspection stations, which are 

located near each of the WIM sites (New Brunswick Department of 

Transportation and Infrastructure, no date). The data from these sites is also 

stored for later use in engineering applications (Hanson, Klashinsky and 

McGibney, 2010). 

The province of Newfoundland and Labrador had 4 WIM sites installed to be 

used for pre-screening of commercial vehicles at inspection stations in 2007 

(Hanson, Klashinsky and McGibney, 2010) and used them for this purpose until 

2013 when the use for pre-screening stopped and the systems were used only to 

collect vehicle load and speed data (Fitzpatrick, 2016). This resulted in the 

province’s Department of Transportation and Works ending the contract for the 

use of the WIM systems in 2015 (Auditor General of Newfoundland and 

Labrador, 2012). 

The Northwest Territories  have one WIM site that is used both for enforcement 

of heavy vehicle tolls and for planning purposes (Thom, 2020), and had 2 static 

weigh scales for vehicle weight enforcement as of 2015 (Northwest Territories 

Department of Infrastructure, 2017). 
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The province of Nova Scotia uses WIM systems as part of its traffic count 

program. It has 36 permanent count stations, some of which are WIM systems 

using piezo-electric sensors, but does not provide a precise number of WIM 

stations in use (Nova Scotia Department of Transportation and Infrastructure 

Renewal, 2017). The province does have three WIM stations used as a pre-

screening tool for vehicle weight enforcement (Hanson, Klashinsky and 

McGibney, 2010); these stations are in addition to 5 static weigh scale stations 

and an unspecified number of mobile scale units (Province of Nova Scotia, 

2013). 

The territory of Nunavut does not currently employ any static weigh scales for 

vehicle monitoring or enforcement (Saskatchewan Highway Traffic Board, 2019); 

no sources report any use of WIM in the territory. 

The province of Ontario uses WIM at 4 truck inspection stations, where sensors 

are used to pre-screen trucks as they enter the station for inspection. WIM data 

is not used for vehicle data collection on provincial highways (Sureshan, 2020) 

as WIM data from the province has historically not been accurate (Swan et al., 

2008). The primary source of commercial vehicle load data in the province is 

from an annual Commercial Vehicle Survey (CVS), which is taken at over 200 

locations across the province approximately every 5 years since 1967 (Ontario 

Ministry of Transportation, 2012). Vehicle weight regulation enforcement is 

performed at 32 static weigh scale locations (Government of Ontario, 2020); 

there is no reported use of mobile scale units. 
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The province of Prince Edward Island operated 5 WIM stations for vehicle load 

data collection as of 2010. At that point, vehicle weight enforcement was 

performed at two static weigh scale stations and one mobile scale unit (Prince 

Edward Island Department for Transportation and Infrastructure Renewal, 2009); 

in 2011, one of the static scales had a WIM station installed for pre-screening of 

commercial vehicles at a static weigh scale station (Evans and Klashinsky, 

2012). 

The province of Quebec operates 19 WIM stations as of 2019. These stations 

use piezoelectric sensors and collect vehicle load data for use in road design 

(Laplante, 2020). Static weigh scale and mobile scale numbers for the province 

are not reported. 

The province of Saskatchewan operated a total of 15 WIM stations in 2016; 

these are used for vehicle load data collection (Traffic Services Saskatchewan 

Ministry of Highways and Infrastructure, 2016). Additionally, the province has 

performed several trials with a portable WIM system from 2012-2015 in an effort 

to substitute its existing program of low-speed WIM surveys with a program of 

high-speed portable WIM surveys. This system used piezo-quartz sensors 

installed with a pocket tape enclosure on the road surface. The system has not 

been verified for accuracy and as such there is no formal plan to substitute the 

portable WIM system for the low-speed surveys (Jaworski, 2018). It currently has 

10 static weigh scale locations and an unspecified number of mobile scale units 

that it uses to enforce vehicle weight regulations (Government of Saskatchewan, 
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2020). The province is targeting 900 mobile weight checks in the 2019-20 fiscal 

year (Saskatchewan Ministry of Highways and Infrastructure, 2019). 

The territory of Yukon has no reported use of WIM systems, though the 

government is scheduled to acquire and install one between 2026 and 2028 

(Task Force on Vehicle Weights and Dimensions Policy, 2019). The territory 

currently operates four static weigh scale stations for vehicle weight restriction 

enforcement, with no reported mobile scale units (Government of Yukon, 2020). 

Overall, the thirteen provinces and territories in Canada have disparate 

approaches to the collection of axle load data, which has led to widely varying 

levels of axle load data spatial coverage. While some provinces have higher 

levels of WIM and static scale coverage, many provinces have extensive 

highway network with relatively low coverage from WIM systems, resulting in axle 

load data that is frequently inadequate for planning and design purposes. 

2.4 METHODS FOR GATHERING SPATIALLY REPRESENTATIVE 
AXLE LOAD DATA  

Due to their cost and the logistical issues that come with maintaining a network of 

WIM systems, many jurisdictions do not have extensive networks of WIM 

systems. This creates a need to find a method of gathering axle load data over a 

broader geographic area. This section presents a literature review of research 

into methods of doing this; five methods are described and compared here: 

portable WIM, bridge WIM, on-board weighing, vehicle reidentification, and axle 

load modelling. 



 

26 

 

2.4.1 Portable Weigh-In-Motion 

Portable WIM is a technology that operates in much the same manner as 

permanently installed WIM. A portable WIM installation consists of sensors 

installed on top of the roadway that record the axle loads of trucks that pass over 

them at highway speed, allowing axle load data for every vehicle that passes the 

sensor to be collected (Kwon, 2012). A portable WIM system, like a permanent 

WIM system, consists of three main components—a sensor, a controller, and 

support equipment for supplying power and transmitting data (Refai, Othman and 

Tafish, 2014). Often, the equipment used for portable WIM installations is the 

same as that used in permanent WIM applications, though the full range of 

options that is afforded to permanent WIM is not available for portable use due to 

the size and/or installation requirements for the equipment (Hallenbeck and 

Weinblatt, 2004; Stephens et al., 2017). The sensors are attached to the surface 

of the pavement, creating visible, raised sensors which are typically installed for 

between one day and one month to gather axle load data (Kwon, 2012; Refai, 

Othman and Tafish, 2014; Petersen, 2015). A high-speed portable WIM system 

can cost from $12,000 - $25,000 USD, making its low cost relative to permanent 

WIM a point of appeal (Texas A&M Transportation Institute, 2015). 

Portable WIM has been used for monitoring vehicle axle loads as early as 2004, 

when the National Cooperative Highway Research Program reported it as a 

desired method of collecting axle load data on highways in the United States, 

stating a preference for a combination of permanent and portable installations. 

However, the portable WIM technology required a lengthy calibration procedure 
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for each installation, which increased its cost to the point of making its use 

impractical in many cases. Furthermore, the sensors were frequently less 

accurate than permanent WIM sensors due to the inability to calibrate them as 

often as they required. These issues led to many states choosing to substitute 

low-speed WIM or semi-permanent installations for portable WIM traffic 

monitoring (Hallenbeck and Weinblatt, 2004). More recently, the state of 

Montana discussed various portable WIM technologies as a potential part of its 

traffic monitoring strategy, as it currently makes extensive use of portable 

automatic traffic recorder (ATR) and automatic vehicle classifier (AVC) 

technology. However, portable WIM is not currently used in the state due to its 

low accuracy and high labor costs (Stephens et al., 2017). The state of Georgia 

used portable WIM as an additional source of axle load data in the 2000s, 

collecting 107 portable WIM samples at 56 unique locations between 2002 and 

2012. An analysis of these samples concluded that the data collected from 

portable WIM provided quality insight to traffic loading patterns, but should not be 

considered to be accurate enough to be a MEPDG level 1 data input for 

pavement design (Selezneva and Von Quintus, 2014).  

Since 2012, various jurisdictions in North America have expressed a renewed 

interest in portable WIM and performed studies to determine the accuracy and 

practicality of portable WIM technology. These studies are summarized in Table 

3. The two studies from Minnesota (Kwon, 2012 and Peterson, 2015) are 
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connected; the 2015 study is a field evaluation of the system that was developed 

in the 2012 study.  

Table 3 – Recent studies of portable WIM 

 Kwon Refai et al. Jaworski Peterson Faruk et al. 

Year 2012 2014 2015 2015 2016 

Location Minnesota Oklahoma 
Saskatchewa
n 

Minnesota Texas 

WIM 
Controller 

Custom-built 
unit 

IRD iSINC 
Lite 

IRD TCC 540 
Custom-built 
unit 

TRS portable 
WIM 

Sensor type Roadtrax BL Roadtrax BL Roadtrax BL Roadtrax BL Roadtrax BL 

Sensor 
Setup 

Conveyor 
belt weigh 
pad 

Metal sheet 
loading pads 

Pocket tape 
enclosure 

Conveyor 
belt weigh 
pad 

Pocket tape 
enclosure 

Test Truck 
Used 

Yes Yes Yes Yes Yes 

Comparison 
with 
Permanent 
WIM 

Yes Yes No Yes No 

GVW 
Accuracy  

3.88% 
(NRMSE) 

29.05% 
(NRMSE) 

- 3.94-8.14% - 

Temperature 
Consideratio
n 

Yes Yes No No Yes 

Preferred 
Deployment 
Duration 

Unstated 4 days Unstated 2 days 7 days 

Reference (Kwon, 2012) 
(Refai, 
Othman and 
Tafish, 2014) 

(Jaworski, 
2018) 

(Petersen, 
2015) 

(Faruk et al., 
2016) 

Each of these five studies used Roadtrax BL sensors, a piezoelectric technology 

often installed in the road as part of a permanent WIM system. These sensors 

were installed either using ‘pocket tape’, which is a product designed to allow the 

sensor to be attached to the road without leaving any adhesive on the sensor 

itself, or with custom solutions using high-strength materials like rubber conveyor 
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belts or sheet metal to protect the sensor from the impact of traffic and thus 

decrease sensor wear. All five studies calibrated the sensors before installation 

with a test truck of known weight and axle spacings, and three of them installed 

the sensors alongside permanent WIM sensors in order to compare the accuracy 

of the portable unit to the baseline values of the permanent WIM. The error in 

these three studies was not reported uniformly; two studies reported vehicle 

accuracy using normalized root mean square error (NRMSE), while Petersen 

(2015) reported average percent error by vehicle class, providing a range of 

GVW accuracies. 

The five studies considered different aspects of portable WIM technology. Three 

of the studies considered the effect of pavement temperature on the sensor’s 

axle load measurements, though Kwon (2012) concluded that temperature has 

no significant effect on the axle load measurements and Refai et al. (2014) 

concluded that temperature has a strong correlation to the portable WIM’s axle 

load measurements. Additionally, Kwon (2012) examined the effect of vehicle 

speed on the load measurements, concluding that higher vehicle speed resulted 

in higher load values due to the dynamic effects of the bump created by the 

sensor. Peterson (2015) extensively examined the difficulties of installing the 

sensors in a real-world environment, such as problems with installation and 

removal of the sensors and wear on the sensors by vehicles. Refai et al. (2014) 

noted that due to the installation method, which is relatively exposed to traffic, 

vehicle pressure can cause the sensor to vibrate within its enclosure, creating 



 

30 

 

signal noise that must be filtered out. The studies also had various recommended 

durations of sensor deployment based on the observed wear on the sensors and 

degradation of data quality over time; these durations ranged from two to seven 

days. 

Once developed, a portable WIM system will require an appropriate sampling 

program in order to most effectively gather spatially representative axle load 

data. This review found no studies examining a portable WIM sampling program. 

2.4.2 Bridge Weigh-In-Motion 

Bridge weigh-in-motion (Bridge WIM, or BWIM), is a WIM technology that 

calculates vehicle axle loads by instrumenting a bridge with sensors to measure 

deflection of the structure. A typical BWIM system consists of a number of strain 

gauges or fiber optic sensors attached to the underside and supports of a bridge 

and an axle detection system installed on the pavement approaching the bridge. 

A processing algorithm is required to determine when a vehicle is present from 

the axle detections and use that information to translate the strains experienced 

by the bridge into axle loads. The axle detection system has typically used 

pneumatic tubes or tape switches to detect axles. The benefits of BWIM sensors 

include ease of installation, as they can be installed without interrupting traffic 

flow, portability,  cost-effectiveness, and accuracy (Yu, Cai and Deng, 2016)). 

BWIM sensors are currently used in many countries around the world, including 

Australia, Japan, various European countries, the United States (Richardson et 

al., 2014; Labarrere, 2018a), and Canada (Lydon et al., 2016). Development of 
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the necessary technology for a functioning BWIM system has been ongoing 

since the 1970s (Koniditsiotis, Buckmaster and Fraser, 1995; Richardson et al., 

2014; Yu, Cai and Deng, 2016), with the earliest development occurring in 

Australia, where BWIM development was driven by three desired applications: 1) 

infrastructure design and management, 2) trade and regulation, and 3) vehicle 

weight restriction enforcement (Koniditsiotis, Buckmaster and Fraser, 1995). This 

contrasts experience in other jurisdictions, which focused their development of 

the same technologies on vehicle weight restriction enforcement and bridge 

monitoring (Cantero and González, 2015; Lydon et al., 2016; Yu, Cai and Deng, 

2016). Despite the efforts invested into development for enforcement, modern 

BWIM systems are only accurate enough for indirect enforcement of weight 

regulations, as they are typically unable to achieve a GVW accuracy within +-5% 

(Lydon et al., 2016), which is required for direct enforcement. When properly 

calibrated, BWIM systems can be accurate to within 7% of static scale GVW, but 

typically achieve a lower accuracy, with some installations unable to achieve 

accuracies within 25% of static scale GVW (Richardson et al., 2014). 

Many studies have been conducted in the 2010s investigating improvements to 

various aspects of BWIM technology. These studies primarily focus on issues 

with the specific technologies that are used as part of the system with a view to 

developing hardware or software with new capabilities and/or accuracy. The 

focuses of these studies are summarized in Table 4. 
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Table 4 – Focus of studies of BWIM technology 

Technological Improvement References 

Improved accuracy of BWIM systems 
(Lydon et al., 2016; Kalyankar and 
Uddin, 2017; Obrien et al., 2018; 
Žnidarič, Kalin and Kreslin, 2018) 

Discovery of better locations on the bridge structure 
to install sensors 

(Zolghadri et al., 2016; Kalyankar and 
Uddin, 2017) 

New bridge sensor technologies 
(Lydon et al., 2016; Sekiya, Kubota 
and Miki, 2018) 

New and/or improved processing algorithms 

(Zhao et al., 2014; Ieng, 2015; Lydon 
et al., 2016; Zolghadri et al., 2016; 
Žnidarič, Kalin and Kreslin, 2018; 
Algohi, Mufti and Bakht, 2020) 

New strategies for axle detection 
(Lydon et al., 2016; Žnidarič, Kalin and 
Kreslin, 2018) 

These studies generally presented BWIM as a technology that justifies use for a 

variety of applications in its current form, but has enough accuracy issues to 

warrant further research into a variety of methods of improving the technology. It 

is also notable that no BWIM system has yet been able to solve the problem of 

how to accurately detect and weigh individual vehicles when multiple vehicles are 

on the bridge at once, which is frequently required (Yu, Cai and Deng, 2016; 

Sekiya, Kubota and Miki, 2018). Furthermore, due to the many possible 

combinations of sensor types, sensor installation methods, axle detection 

technologies, and processing algorithms, no one BWIM system configuration is 

presented as superior to the others, and none appears likely to become an 

industry standard in the near future. 

In addition to the studies concerning improvements to the BWIM system, there 

are some studies that do not seek to develop the technology further, but instead 

examine what can be achieved with the existing technology. Cantero and 
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Gonzalez (2015) sought to characterize the structural integrity of a given bridge 

by comparing the load measurements of a nearby pavement-based WIM system 

to a bridge WIM system, and concluded that this method is a valid indicator of the 

structural integrity of the bridge. Lydon et al. (2016) discussed a study which 

used BWIM data to develop live load factors for bridge design in Alabama, 

determining that the BWIM loads provided more accurate factors than the 

previous values. Faraz et al. (2017) were able to identify errors in bridge fatigue 

evaluation using a BWIM system and therefore were able to improve the fatigue 

estimate for the bridge that was instrumented. 

One paper in particular warrants closer examination. While BWIM is a useful 

technology for gaining vehicle load data due in part to its portability, that 

portability raises the question of where to install it and for how long. The only 

report examining this issue is from Ireland (Enright, Leahy and O’Brien, 2012), 

which examined possible data collection strategies for a fully functioning BWIM 

system. Three strategies were examined: two focusing on randomized 

application of the system for 1 week periods across different networks of defined 

road segments, and one focusing on targeted application of the system at known 

truck origins and destinations. The study emphasized BWIM’s potential use for 

direct enforcement of overweight vehicles, and so reported its results as percent 

likelihood of recording any one overweight truck. The study determined that the 

likelihood was between 12.1% and 23.7%, with the randomized approaches 

performing better than the targeted approach. The report notes that a system of 
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reinstallation every week would create high operating costs for the system but 

would provide data for a wide range of locations thus, in theory, making the 

benefits worth the costs. The methodologies examined here could also be 

applied to portable WIM technology, which has no studies of this kind dedicated 

to its implementation. 

2.4.3 On-board Weighing 

On-board weighing is a method of obtaining truck weights wherein the sensors to 

measure the vehicle’s axle loads are installed on individual trucks, rather than in 

or on the roadway. This allows the axle load data to be continuously recorded 

and transmitted to a database that stores the load measurements and 

corresponding locations (Labarrere, 2018b). If used across a sufficient number of 

trucks that cover a desired geographic area, these individual point 

measurements could be collected in a database of load measurements with 

corresponding locations, grouped by location, and used to assemble sets of axle 

load data for any given location on the road network. No system such as this has 

been implemented yet, but on-board weighing technology has been developed 

and used to enforce weight regulations (Labarrere, 2018b). 

On-board weighing systems are currently used for vehicle weight restriction 

enforcement in Australia, but are not used elsewhere in any notable capacity. 

The systems used are ‘static’ on-board weighing systems, which only measure 

axle loads when the vehicle is stationary (Todts et al., 2013). Using a dynamic 

system, which can take continuous load measurements while the vehicle is in 
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motion, is considered incapable of measuring axle loads at the accuracy required 

without increasing the cost by 5-10 times (Labarrere, 2018b). Recently, costs for 

an on-board weighing unit have come down due to advances in the technology 

and ranged from $800 to $15 000 per installation in 2015 (Texas A&M 

Transportation Institute, 2015). Furthermore, wider implementation of on-board 

weighing for enforcement is restricted by legal issues, as they can only be used 

to enforce weight regulations if legislation allows (Todts et al., 2013). 

In addition to the problem of accuracy, significant issues must be overcome with 

respect to the use of on-board weighing. Because the equipment is installed on 

privately own trucks instead of publicly owned roads as in a traditional WIM 

system, work must be done to garner cooperation from carriers before the 

systems can be deployed (Texas A&M Transportation Institute, 2015). This 

proves to be a greater issue when the goal of the program is to provide accurate 

axle load data for specific locations on the road network, necessitating significant 

penetration of the technology into an area’s truck fleet. 

One model for the potential implementation of a wide scale program of on-board 

load data collection is the United States’ National Corridors Analysis and Speed 

Tool (N-CAST). Developed since 2002, N-CAST characterizes the performance 

of the national truck fleet of the United States by combining travel data from 

many individual trucks to produce a GIS map of truck performance 

characteristics across 75% of the nation’s heavy truck network. This data is a 

useful tool for carriers and transportation planners; however, due to the manner 
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in which the data is collected, there are limitations to its use. N-CAST reports 

average spot speeds and percentage of trucks by time of day for each segment 

on its network, but cannot report traffic volumes as the fleet used to generate it 

was only a sampling of the total truck fleet (American Transportation Research 

Institute, 2012). Furthermore, it does not report any vehicle load data. Truck 

volume data will be needed to accurately predict the structural impacts of trucks 

on infrastructure, and so a database of axle load data generated by on-board 

weighing must have data from the entire truck fleet if it is to be truly accurate. 

To achieve complete penetration of a given trucking fleet, it would be useful to 

capitalize on synergies with the digital tachograph, or electronic logging device 

(ELD) (Todts et al., 2013), which measures and records location and hours spent 

driving and is currently mandatory in Europe (European Commision, 2018) and is 

in the process of becoming mandatory in Canada (Sanderson, 2018) and the 

United States (Federal Motor Carrier Safety Administration, 2018). Additionally, 

further synergies might be generated with Intelligent Transportation Systems 

(ITS) technologies that assist with commercial vehicle inspection and 

enforcement such as Drivewyze (Drivewyze, 2020) or British Columbia’s 

Weigh2GoBC program (Government of British Columbia, no date). These similar 

programs allow vehicles to bypass weigh scales and inspection stations if they 

have been previously confirmed to be in compliance by communicating between 

a smartphone in the truck and a receiver in the weigh scale or inspection station. 

The inclusion of axle load data in these systems is a logical next step, though 
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there has been no plan to implement them with any kind of on-board weighing 

system yet. 

2.4.4 Vehicle Reidentification 

Vehicle reidentification is a method of traffic monitoring that has been developed 

to measure a variety of traffic parameters but has only been recently integrated 

with the collection of axle load data. The principle of the technology is that an 

individual vehicle can be identified by a sensor and assigned a unique signature 

that can be reidentified at a later point and time, with the vehicle then being 

known to have traveled the path between the two points in the intervening time 

(Sun et al., 1999). The advantage of this technology is that it can provide 

individual vehicle-level travel information while maintaining anonymity, and thus 

does not require cooperation from carrier companies (Cetin et al., 2011). In 

theory, when combined with a known weight of a vehicle obtained from a WIM 

system, a reidentification system would be able to match a vehicle’s known 

weight to its route between two identification points, and with enough 

measurements would be able to generate an axle load spectra at a number of 

points along a route (Hyun, Tok and Ritchie, 2017). 

This technology was first contemplated in 1999, when researchers sought to 

reidentify a vehicle signature using inductive loops in order to calculate vehicle 

travel times on highways (Sun et al., 1999). In 2005, this was developed further 

by applying an algorithm to the reidentification procedure in order to identify 
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traffic level of service (LOS) from the vehicle travel times (Oh, Tok and Ritchie, 

2005). 

Further research into vehicle reidentification technology using inductive loop 

signatures investigated the possibility of identifying a vehicle’s FHWA vehicle 

class from its inductive signature to improve the reidentification algorithm (Jeng 

and Ritchie, 2008; Jeng, Chu and Hernandez, 2013), and, more recently, to 

improve the algorithm by correcting for different signal conditioning within the 

inductive loop (Marszalek and Duda, 2018). 

The first integration of WIM technology to vehicle reidentification technology 

came in 2011, when Cetin et. al. examined factors affecting the reidentification of 

trucks using only WIM data, noting that sensor accuracy and truck volumes had a 

significant effect on the system’s accuracy (Cetin et al., 2011). These 

researchers additionally examined the reidentification model and determined that 

trucks can be reidentified with 91% accuracy when using only WIM systems 

(Cetin, Monsere and Nichols, 2011). This research then led to the development 

of a new vehicle reidentification model and a method of analyzing WIM accuracy 

using vehicle reidentification algorithms (Cetin, Nichols and Chou, 2014). 

The next improvements in vehicle reidentification technology came when Jeng 

and Chu (2015) developed a vehicle reidentification method that uses both WIM 

sensors and inductive loops to obtain a more complete vehicle signature to allow 

for greater accuracy in reidentification. Their method used the loops to identify a 

vehicle signature, and the axle loads and configuration from the WIM sensor to 
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provide a check on this signature. An improvement to this method came when 

Hyun et. al. (2017) tested several algorithms that better integrated the WIM and 

inductive loop data to provide a more accurate reidentification method. Overall, 

vehicle reidentification as a method of vehicle load data collection is still in 

development, but has made significant advances in recent years.  

2.4.5 Axle Load Modelling 

Axle load modelling is a method of characterizing vehicle loads that seeks to 

achieve greater spatial representation in axle load data by applying previously 

gathered data on vehicle load patterns in a more comprehensive way, rather than 

gathering more data. This method relies on the fact that the volume and loads of 

trucks that travel a given section of road are influenced by that road’s 

surrounding land use and industry, weight regulations, and climate, as well as 

how those variables vary in time and space. This method seeks to use data 

about how each of these variables influences the axle load spectra at a given 

point to estimate axle load spectra at that point. 

There are two basic approaches to axle load modelling: 

1. Generate axle load spectra at a location based purely on a model of 

factors that correlate to patterns in axle load spectra. 

2. Apply axle load spectra from road segments that are most similar across 

all correlating factors. 
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The first of these approaches, axle load spectra generatation, has not been 

performed using vehicle loads, but insight to this approach can be gained by 

examining the 4-stage freight model. The 4-stage freight model is a tool for 

estimating transportation demand from freight, wherein a region’s demographic, 

economic, and spatial characteristics are linearly regressed on freight volumes to 

provide a framework for estimating changes to transportation activity. The first 

stage of the process, trip generation, is described by Kulpa in a review of existing 

methods of regional freight trip generation. The author notes that a multiple 

regression model is capable of correlating variables such as employment in 

various industries and number of companies in a given industry to number of 

truck trips, which have individual trips sorted into the categories of ‘light’ and 

‘heavy’ (Kulpa, 2014). There has been some research into methods of improving 

this step of the process. A study from Austria (Krisztin, 2017) examines a few 

shortcomings of the existing model, notably that they do not take spatial 

dependencies between nearby regions into effect, and that the relationships of 

some variables are nonlinear, which does not fit the standard linear model. 

Alternatively, research by Dybing and Dakota (2017) focuses on trips related to 

the agriculture industry, and notes that to accurately forecast the number of trips 

generated by this industry, data on acreage and production rates must be 

obtained. However, these data are typically generated from estimates rather than 

actual data, and so must be first verified in a detailed analysis. Overall, the 4-

stage freight model provides a theoretical basis for axle load modelling, but the 
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focus on the overall activity of a region, rather than trips on individual roads, 

decreases the benefit to a future load-based model. 

The second approach, where axle load spectra from known locations are applied 

to similar roads, has been applied in some instances to vehicle loads, and in 

others to only truck volumes or classifications. This most often occurs in the 

application of traffic inputs for the MEPDG. The existence of three levels of data 

as specified by the MEPDG creates a need to use higher-quality data to inform 

truck traffic characteristics where only lower-quality data is available. There are 

several similar, but distinct, approaches to this. 

Regehr and Reimer (2013) used a methodological framework for developing 

system-wide estimates of truck travel on rural highways in Manitoba wherein 

pattern groups of truck class distribution are created from MEPDG data level 1 

sites, and have sites of lower data quality assigned to these groups. The 

assigning process takes into account whether a route is affected by the forestry 

or agricultural industry, but provides no detail as to the degree of the influence 

and considers no other factors or industries. A strategy similar to this was 

implemented in Montana (Stephens et al., 2017), where it was proposed to 

create pattern groups of axle load spectra based on areas that have similar land 

use and industries or based on functional classification. The study found that 

grouping based on industry is impractical due to its subjectivity, and that the 

grouping scheme using functional classification is best due to its objectivity and 

ease of implementation. It proposed a final grouping scheme that uses 
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distinctions between commercial and non-commercial vehicles, interstate and 

non-interstate roads, and urban and rural land uses. 

Haider et al. (2011) and Nassiri et al. (2014) also conducted studies that used 

this general approach in determining traffic inputs for Michigan and Alberta, 

respectively. Haider’s method was to determine the most appropriate vehicle 

load input when MEPDG level 1 data is unavailable for a site. Nassiri’s method 

examined the difference between the MEPDG level 3 default axle load spectra 

and axle load spectra reported by six permanent WIM sites across the province. 

The studies found that axle load spectra generated as state/province-wide values 

were more accurate than the default values provided by the MEPDG due to the 

unique mix of local industry, regulations, and climate.  

Turochy et al. (2005) reached the same conclusion, which sought to determine 

axle load modelling’s value to pavement design in Alabama. Focusing on 

temporal variation and variation by direction, they found that there were 

statistically significant differences in truck axle load spectra between different 

regions of the state, but that the implications of these differences on pavement 

design were minimal, resulting in a recommendation to use statewide default 

values for axle load spectra where MEPDG class 1 data was unavailable. 

Overall, no efforts have been made to generate axle load spectra at a location 

based purely on any combination of location-based correlating factors as is done 

with truck traffic volumes in freight traffic demand modelling, while some efforts 

have been made to apply axle load data to sites that have none from sites with 
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similar characteristics. Significant further development of axle load modelling 

methods will be required before it can be implemented on a wide scale. 

2.5 SUMMARY 

Axle load data is important for a variety of applications, including design of 

pavements and bridges, freight planning studies, and vehicle weight restriction 

enforcement. WIM systems are the best method of collecting axle load data for 

these applications, and a variety of WIM sensor technologies are currently used, 

with the various sensor types each having advantages and disadvantages 

regarding accuracy, sensitivity to temperature, and durability.  

While excellent at collecting axle load data, WIM systems all have issues that 

must be considered when using them. As they measure vehicles dynamically, 

WIM sensors are prone to a degree of inaccuracy which can be partially 

mitigated through regular calibration of the systems and consideration of the 

impact of temperature on WIM measurements, which is often significant. 

Standards organizations have set minimum accuracy requirements for axle load 

data which vary by application. Furthermore, as WIM sensors are installed at 

single locations, WIM data is frequently unavailable at locations where it would 

be desired, and other data must be applied, though it is not always spatially 

representative of the desired location. The MEPDG’s three level system is 

recognized as an industry standard approach to this process.  

Eleven of 13 of Canada’s provinces and territories currently report use of WIM 

systems. WIM sites in Canada are used for several applications, including 
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general data collection for engineering and planning applications, pre-screening 

for vehicle weight restriction enforcement, and more specific applications such as 

the administration of bridge tolls. WIM coverage varies widely between 

jurisdictions, from 19 WIM stations in Quebec to just 1 in the Northwest 

Territories. 

As many jurisdictions suffer from inadequate spatial representation in their axle 

load data, various methods of improving the spatial representation of axle load 

data have been developed. Five of these methods were explored; the methods 

were in different stages of development, with each having unique research 

needs.  

Axle load modelling and on-board weighing are both in the early stages of 

development and cannot be implemented for load data collection until significant 

research needs are met. Axle load modelling requires further studies into 

appropriate methodologies, while on-board weighing requires more development 

of the weighing technology as well as legal work done to achieve sufficient 

penetration of the technology into the truck fleet.  

Vehicle reidentification also has significant needs. While recent progress has 

demonstrated that the technology can be used to gather useful data, the lack of 

implementation outside of research contexts and absence of an accepted 

deployment methodology indicates that this technology is not yet ready for 

implementation in a load data collection program.  
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Bridge WIM and portable WIM both have been deployed in limited capacity in 

jurisdictions’ vehicle load data collection programs. An abundance of research 

into bridge WIM shows that it is capable of gathering spatially representative axle 

load data, but still suffers from issues with multiple vehicle detection and overall 

accuracy. Furthermore, the wide variety of BWIM technologies leaves a greater 

number of research needs in the technology’s development. Alternatively, 

portable WIM, though it has been deployed less frequently than BWIM, has had 

consistency in the technology used that creates a clear path forward for the 

technology’s development. Furthermore, the similarity of the technology to 

existing permanent WIM systems will aid in near future implementation. Further 

research into methods of gathering and applying vehicle load data from portable 

WIM systems would benefit jurisdictions seeking to gather more spatially 

representative axle load data in the near future.  
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3 RESEARCH METHODOLOGY 

This chapter presents the methodology developed and applied in this research, 

including (1) the sources of both portable WIM data and comparison data used, 

(2) the data collection processes, (3) the method by which portable WIM records 

were paired with comparison data records and initially assessed for data quality, 

and (4) the analyses in which the portable WIM system’s accuracy, precision, 

and potential for increased data quality through various post-processing methods 

and analyses will be evaluated. 

3.1 DATA SOURCES 

To evaluate the capabilities of the portable WIM system, this research compares 

it to two existing sources of vehicle load data: (1) permanent WIM stations and 

(2) static weigh scales.  

3.1.1 Portable WIM System Design 

In order to provide the most accurate assessment of the feasibility of using 

portable WIM to collect useful vehicle load data, the portable WIM system used 

in this research was designed to be as similar as possible to one that would be 

used in an actual data collection program. For this reason, the selection of 

components was done with the two goals of (1) optimum system performance 

and (2) cost minimization. The system that resulted from this selection process 

used components that were recommended for use in portable WIM applications 

both by past studies of portable WIM and by the equipment supplier, and 

whenever possible used components that were already in Manitoba 
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Infrastructure’s (MI’s) stock due to their use in MI’s current permanent WIM data 

collection program. Table 5 lists the components selected for use in the study. 

Table 5 - Portable WIM System Components 

Component Model 
Number 
Required 

Expected Lifetime 

WIM controller IRD iSINC Lite 1 >20 years 

WIM sensors 
Piezoelectric Roadtrax BL (12’ 

length) 
2 

Unknown for 
portable application 

Power supply 80W Solar panels 2 >20 years 

Installation 
materials 

Pocket tape 1 roll (60’) Single use 

Reinforcing tape 1 roll (60’) Single use 

Metal strapping 48’ 
>6 weeks of 
installation 

Temperature probe IRD temperature sensor 1 Unknown 

The rationale for selecting each of these particular components follows: 

• WIM controller: The iSINC Lite WIM controller from International Road 

Dynamics (IRD) is the current WIM controller being installed at new 

permanent WIM sites in Manitoba and was used in one previous portable 

WIM study. 

• WIM sensors: The piezoelectric Roadtrax BL sensors were used in all of 

the previous portable WIM studies discussed in chapter 2.  

• Power supply: A solar power supply allowed greater flexibility in 

installation location as compared to a grid-based power supply, which will 

be necessary for any future implementation of a portable WIM sampling 

program.  
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• Installation materials: Pocket tape is a low-cost attachment method, and 

was previously used in the portable WIM study in Texas in 2016. 

Reinforcement from additional tape and metal strapping was added due to 

previous studies’ issues with longevity of the sensors, as well as 

precedent for a similar heavily reinforced system used in the two studies in 

Minnesota in 2012 and 2015.  

• Temperature sensor: The IRD temperature sensor was already in MI’s 

stock. 

The equipment was installed on a trailer as seen in Figure 1. The WIM controller 

was housed in a cabinet attached to the trailer for security. The temperature 

sensor, which is typically installed in the pavement at a permanent WIM site, was 

left open to the air on the trailer. The solar panels were also mounted to the 

trailer. 
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Figure 1 – Portable WIM trailer 

When the system was installed, the trailer was parked on the side of the highway 

as far from the traveled lane as possible. Connections between the sensors and 

the trailer were configured as seen in Figure 2. This configuration follows the 

installation guidelines outlined in the Federal Highway Administration’s Weigh-In-

Motion Pocket Guide Part 2 (Federal Highway Administration, 2018). 
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Figure 2 - Portable WIM system configuration 

The tape installation was designed to be both durable and easy to install. Pocket 

tape, which encloses the sensor between two layers of tape approximately 15 

centimeters wide and has an adhesive underside, was used to hold the sensors 

in place. In addition to this, a second, thicker layer of protective tape 

approximately 20 centimeters wide was installed over the pocket tape to provide 

additional protection for the sensors. Finally, to prevent lifting of the tape, metal 

strapping was installed over the leading and trailing edges of the tape using 

concrete screws placed approximately 15 centimeters apart. Figure 3 shows the 

pocket tape installation. 
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Figure 3 - Portable WIM sensor pocket tape installation 

3.1.2 WIM Data in Manitoba 

Manitoba currently operates six permanent WIM sites; three of these are 

equipped with piezoelectric sensors and three sites are equipped with higher-

quality piezo-quartz sensors. Figure 4 shows the locations of these sites, along 

with Manitoba’s static weigh scale stations. 
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Figure 4 - Map of Manitoba WIM stations and static weigh scales 

The six permanent WIM sites have two WIM sensors installed per lane in one to 

four lanes of traffic. For those sites where WIM sensors are not present in all 

lanes, automatic vehicle classifiers (AVCs) are installed in the remaining lanes. 

The data collected at these sites is used to support pavement design projects 

and research in Manitoba and is also submitted to the FHWA in support of the 

Long-Term Pavement Performance (LTPP) program. To correct for the effects of 

long-term calibration drift, the sites are calibrated approximately once per year. 

However, despite this calibration, the piezoelectric sensors are known to provide 

axle load measurements that are heavily influenced by temperature, and 

additionally are occasionally out of service due to equipment malfunctions 

(Wood, 2017). Due to these shortcomings, Manitoba Infrastructure has 

implemented a program of gradually phasing out piezoelectric WIM sensors and 

replacing them with more reliable piezo-quartz sensors. In 2019, this program 
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resulted in the replacement of the sensors at two sites with piezo-quartz, 

resulting in a total of three sites with piezo-quartz sensors. 

3.1.3 Static Weigh Scale Data in Manitoba 

Manitoba Infrastructure operates three primary static weigh scales for vehicle 

weight enforcement; Figure 4 shows the locations of these scales. As static scale 

axle load measurements can be used to issue citations to drivers and carriers, 

they must be accurate to within 200 kg for a single axle load. To this end, load 

cell weighing devices are used, and the scales are calibrated once every two 

years. Scale measurements are transmitted from the scale to a display inside the 

scale building that is visible to the enforcement officer on duty. Trucks are 

typically instructed to slowly roll over the scales, with the enforcement officer 

checking each axle group against the legal limit for that group type. While this is 

happening, the axle group load measurements can fluctuate due to the truck’s 

movement; only when an infraction is deemed probable is the driver instructed to 

stop with each axle group on the scale until the fluctuations stop. This occurs for 

less than 1% of the trucks surveyed. Furthermore, it is only in these cases that a 

load measurement is recorded by the officer for issuing a citation; if no citation is 

required, the loads are not recorded.  

The University of Manitoba Transport Information Group (UMTIG) has conducted 

regular ‘weigh scale surveys’ at each of the three scales approximately every 2-3 

years. During these surveys, a researcher stationed inside the scale building 

manually recorded the loads of each vehicle axle group as it passed over the 
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scale in addition to the configuration, body type, lift axles, and if necessary, 

identifying visual characteristics of each vehicle. As most trucks do not come to a 

complete stop for each axle group, the researcher must choose a ‘best’ value for 

each axle group based on the fluctuating load measurement display. Despite 

this, the data collected from UMTIG’s weigh scale surveys has been shown to be 

sufficiently accurate to be considered ‘ground truth’ data (Wood, 2017). This 

research utilized data from these static weigh scale surveys. 

3.2 DATA COLLECTION 

For this research, the portable WIM system was installed three times, each time 

near to a comparison data source. These installations all took place in 2019. The 

portable WIM unit was installed twice at permanent WIM station 99 (piezo-quartz) 

and once at the Headingley static weigh scale. Table 6 provides basic 

information about all three installations. 

Table 6 - Portable WIM installations summary 

 Installation 1 Installation 2 Installation 3 

Location WIM Station 99 WIM Station 99 
Headingley Static 

Weigh Scale 

Start Date June 27, 2019 July 17, 2019 October 16, 2019 

End Date July 15, 2019 July 31, 2019 October 28, 2019 

Duration (Days) 19 15 13 

Sensor lane coverage Full Half Half 

Initial calibration 
performed 

Yes No No 
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3.2.1 Installations at Permanent WIM Station 99 

The first and second installations of the portable WIM system occurred near 

Manitoba Infrastructure’s permanent WIM station 99 located on CentrePort 

Canada Way (PTH 190) in Winnipeg, Manitoba. During the installation, WIM 

station 99 was used as the comparison dataset with which to evaluate the 

portable WIM system. 

 CentrePort Canada way is a 4-lane divided highway with a concrete surface 

oriented in the east-west direction with a speed limit of 90 km/h. The speed limit 

decreases to 70 km/h in the westbound direction near the Perimeter Highway 

(PTH 101) approximately 900 meters west of WIM station 99. WIM station 99 is 

equipped with piezo-quartz WIM sensors in the westbound drive lane and AVCs 

in the other 3 lanes. This location was selected for the first two installations due 

to the relative accuracy of the piezo-quartz WIM sensors and the station’s 

convenient location inside Winnipeg. 

Figure 5 shows the installation location of the portable sensors in relation to 

CentrePort Canada Way and WIM station 99. The portable WIM system was 

installed in the westbound drive lane approximately 50 meters west of WIM 

station 99 in order to capture the same vehicles as the permanent WIM system. 

The portable WIM system was located downstream from the permanent WIM due 

to the possibility of the raised portable sensors creating dynamic effects in 

passing vehicles that could influence the permanent WIM load measurements if 

they were taken downstream from the portable WIM. A 50 meter separation 
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between the WIM systems ensured that the portable WIM did not interfere with 

the operation of the permanent WIM, while allowing vehicle timestamps to be 

virtually identical for vehicle record pairing. 

 

Figure 5 - Map of portable WIM installation at permanent WIM station 99 

Calibration of both the portable WIM system and WIM station 99 was performed 

at the beginning of Installation 1 at WIM station 99. Installation 2 at WIM station 

99 was performed shortly after the first to provide two key points of comparison: 

(1) whether reducing the lane coverage of the sensor to half would provide more 

accurate axle load measurements by eliminating signal noise, and (2) whether 

the elimination of a calibration at the beginning of Installation 2 could be 

compensated for by post-processing of the data. While Installation 2 covered 

only half the lane with the sensor, the sensor was the same 12-ft sensor that was 

used for Installation 1. 
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During both installations, the system was visually inspected every 2 to 4 days to 

monitor the physical wear on the sensors. No significant visible damage to the 

sensors was observed during these inspections. 

3.2.2 Installation at Headingley Static Weigh Scale 

The third installation of the portable WIM system occurred at the static weigh 

scale located in Headingley, Manitoba. This scale was chosen due to its 

convenient location near Winnipeg, Manitoba; the scale is located less than 1 

kilometer to the west of the town of Headingley on the Trans-Canada Highway 

(PTH 1), which at this location is a 4-lane divided highway. The scale is located 

in the highway’s median, with lanes located on either side to allow both 

eastbound and westbound trucks to exit from the highway’s passing lane to the 

lane leading to the weigh scale. In both directions, there is a sign instructing ‘All 

Trucks Report When Lights Flashing’ with lights connected to the scale mounted 

to the sign. In the westbound direction, this sign is located approximately 350 

meters upstream from the scale. In the eastbound direction, this sign is located 

approximately 1.4 kilometers upstream from the scale. At the location of the 

scale, the speed limit is 70 km/h; however, immediately to the west of the scale 

the speeds are 100 km/h eastbound and 110 km/h westbound. 

Figure 6 shows the installation location of the portable sensors in relation to the 

Headingley static weigh scale. The portable WIM system was installed in the 

eastbound drive lane of the Trans-Canada Highway approximately 2.0 kilometers 

west of the static weigh scale. This location was chosen as it allows trucks to 
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pass the portable WIM system at full highway speed, as they would in an actual 

deployment of the portable WIM system. Locating the portable WIM system 2.0 

kilometers west of the scale ensures that most vehicles are still in the drive lane 

when they pass the portable WIM system, allowing axle load measurements to 

be taken. Furthermore, the eastbound direction was necessary as construction 

work closed the westbound scale lane during the time of the installation. 

 

Figure 6 - Map of portable WIM installation at Headingley static weigh scale 

As described in section 3.1.3, axle load measurements are not automatically 

recorded for most vehicles passing through the static weigh scale. This 

necessitates a researcher to manually record axle load measurements as 

vehicles pass through the scale. To allow these measurements to be matched to 

vehicles recorded by the portable WIM system, time stamps are automatically 

generated in the vehicle recording spreadsheet. Additionally, identifying 

information including axle configuration, body type and a visual characteristic of 
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the truck were included with each vehicle record. A Miovision traffic recording 

camera was installed to record traffic passing the portable WIM system with 

timestamps to allow for matching visually and by relative timestamp. 

Installation 3 at the Headingley weigh scale remained in place from October 16 to 

28, 2019, though equipment malfunctions resulted in all data from October 16 

and all data from the afternoon of October 24 onward being unusable. During the 

installation, 3 to 6 hours of data from the Headingley weigh scale was manually 

recorded every weekday, as the scale was closed on weekends. This resulted in 

useful data being recorded on 6 days during the 13 day installation. 

3.2.3 WIM System Calibration 

To ensure the accuracy of its axle load measurements, a WIM system requires 

regular calibration. The calibration procedure used by Manitoba Infrastructure for 

its permanent WIM stations, which was used once for this research for both 

permanent and portable WIM systems, follows the method described in ASTM 

E1318 (ASTM International, 2009). This consisted of driving a fully loaded five-

axle tractor semitrailer (3-S2) truck of known weight (the ‘test truck’) over the 

sensors at typical highway speed 10 to 15 times, after which the WIM controller 

was programmed with two factors – the calibration factor (Fcalibration) and the 

dynamic compensation factor (Fdynamic). These factors, calculated and applied 

individually for each WIM sensor, adjust the raw load measurements to match 

the actual weight of the test truck as closely as possible. Equation 1 and 
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Equation 2 show how these calibration factors are applied to the front axle load 

and to all other axle loads, respectively. 

Equation 1 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑𝐹𝑟𝑜𝑛𝑡𝐴𝑥𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑅𝑎𝑤𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ∗ 𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

Equation 2 

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑𝑁𝑜𝑛𝐹𝑟𝑜𝑛𝑡𝐴𝑥𝑙𝑒𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑅𝑎𝑤𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ∗ 𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛  

Fcalibration and Fdynamic were calculated using the sums of the relevant axle group 

loads from the WIM system and the static scale. Equation 3 and Equation 4 show 

this calculation for n passes of the WIM system. As a FHWA class 9 vehicle has 

3 axle groups, they will here be described as Front (single axle), Drive (tandem 

axle group), and Rear tandem (tandem axle group). 

Equation 3 

𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑛 ∗ (𝐿𝑜𝑎𝑑𝐷𝑟𝑖𝑣𝑒𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑐𝑎𝑙𝑒 + 𝐿𝑜𝑎𝑑𝑅𝑒𝑎𝑟𝑇𝑎𝑛𝑑𝑒𝑚𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑐𝑎𝑙𝑒)

(∑ 𝐿𝑜𝑎𝑑𝐷𝑟𝑖𝑣𝑒𝑊𝐼𝑀
𝑛
𝑝𝑎𝑠𝑠=1 + ∑ 𝐿𝑜𝑎𝑑𝑅𝑒𝑎𝑟𝑇𝑎𝑛𝑑𝑒𝑚𝑊𝐼𝑀

𝑛
𝑝𝑎𝑠𝑠=1 )

 

Equation 4 

𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
𝑛 ∗ 𝐿𝑜𝑎𝑑𝐹𝑟𝑜𝑛𝑡𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑐𝑎𝑙𝑒

(∑ 𝐿𝑜𝑎𝑑𝐹𝑟𝑜𝑛𝑡𝑊𝐼𝑀
𝑛
𝑝𝑎𝑠𝑠=1 ) ∗  𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

 

Both the portable WIM unit and permanent WIM station 99 required this 

calibration at the beginning of Installation 1; for cost efficiency, a single test truck 

performed passes of both sets of sensors at the same time, allowing 

simultaneous calibration of the two systems. 
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3.3 DATA PREPARATION 

This section details how the portable WIM data was processed and checked 

before analyses of its quality were performed. The two primary steps in this 

process were the vehicle pairing procedure and the three preliminary data 

assessments. 

3.3.1 Vehicle Pairing Procedure 

To assess the per-vehicle validity of the portable WIM axle load measurements, 

the individual vehicle records generated by the portable WIM system and the 

comparison datasets needed to be paired. The two sources of comparison data – 

the Headingley weigh scale and WIM station 99 – have several key differences, 

and two different vehicle pairing methods were required. 

WIM Station 99 Vehicle Pairing Procedure 

The two portable WIM installations at WIM station 99 each had two datasets that 

required pairing: (1) the per-vehicle records from the portable WIM system, and 

(2) the per-vehicle records from WIM station 99. The pairing process was done 

by matching the vehicle record timestamps between these two datasets, and was 

done entirely automatically. A detailed description of this vehicle pairing 

procedure is provided in Appendix A. 

This method successfully paired 60380 of 69580 (87%) portable WIM records for 

the Installation 1, and 23304 of 59442 (39%) portable WIM records for 

Installation 2. The difference in the percentage of successfully paired records can 
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be attributed to erroneous vehicle records. During Installation 1, 4% of records 

had an error code, while during Installation 2, 28% of records had an error code. 

These error codes indicate that a vehicle did not pass over the two sensors as 

planned, and can therefore be likely attributed to the half-lane coverage of the 

sensors during Installation 2. This is further discussed in section 4.1. 

Headingley Weigh Scale Vehicle Pairing Procedure 

Portable WIM Installation 3 at the Headingley weigh scale yielded 3 sources of 

data: (1) the per-vehicle records from the portable WIM system, (2) the manually 

entered per-vehicle records from the Headingley weigh scale, and (3) the video 

taken of vehicles passing the portable WIM system. This pairing process was 

done by first manually recording vehicle timestamps from the video of vehicle 

passing the portable WIM system and visually matching the vehicles on video to 

the weigh scale records, then automatically pairing these timestamps to the 

portable WIM records. A detailed description of this vehicle pairing procedure is 

provided in Appendix A. 

This method successfully paired 877 of 1852 Installation 3 static scale vehicle 

records to the portable WIM system (47%). The primary reason for not matching 

records was that they were traveling at least partially in the passing lane as they 

passed the portable WIM system, resulting in no record or an error record being 

recorded. 
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3.3.2 Preliminary Data Quality Assessments 

Before the portable WIM system’s feasibility and data quality could be evaluated, 

two preliminary data quality assessments needed to be performed to assess the 

validity of the datasets that would be compared. These assessments served to 

validate datasets and procedures which are used in the assessment of the 

portable WIM’s data quality, but are not a direct assessment of the portable 

WIM’s data. 

Station 99 Data Quality Assessment 

The first data quality assessment was of the permanent WIM station 99 data. As 

WIM data is always specified to have a certain degree of inaccuracy as 

compared to static scale data, this assessment evaluated whether the WIM data 

from station 99 was:  

1) Self-consistent, i.e. not subject to excessive calibration drift, and  

2) Sufficiently accurate to static scale data. 

The assessment reveals that the WIM data from station 99: 

1) Did not experience excessive amounts of calibration drift, and 

2) Was typically accurate to within 7% of static scale data. 

This assessment is presented in detail in Appendix B. 

 

 



 

64 

 

Post-Processing Calibration Feasibility Assessment 

The second data quality assessment was of the post-processing calibration 

procedure. This procedure was required as there was no data captured 

comparing calibrated portable WIM system data to static weigh scale data. The 

post-processing calibration used a selection of records from the static weigh 

scale data to calibrate the portable WIM system, allowing it then to drift from that 

calibration as it would with a real calibration. This assessment determined that 

the post-processing calibration procedure was valid so long as the vehicle 

records used in it were taken only from the beginning of the portable WIM system 

installation. 

This assessment is presented in detail in Appendix C. 

3.4 PORTABLE WIM DATA QUALITY ASSESSMENT METHODS 

An evaluation of the portable WIM system’s capabilities must consider its 

accuracy, precision, and potential for improved accuracy and precision through 

post-processing methods and analyses. In order to adequately evaluate the 

system in each of these areas, a series of five analyses are conducted on the 

available datasets. Figure 7 provides an overview of the order of these analyses. 

In this figure, arrows indicate that some analyses must be done prior to others as 
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their findings impact the processes used in the subsequent analyses. 

 

Figure 7 – Overview of portable WIM system analyses 

The five analyses are described in more detail as follows: 

Analysis 1 investigates the rate of erroneous portable WIM records during each 

installation, as well as the rate of successful vehicle pairing. 

Analysis 2 investigates the tendency of the portable WIM axle loads to change 

over time as environmental factors cause the system to drift from an initially 

calibrated state. The analysis seeks to determine the best explanatory variable 

for the system’s calibration drift, which will be used to separate the data into 

temporal bins for future analyses.  

Analysis 2: 
Calibration Drift 

Analysis 3a: 
Temperature Sensitivity 

Analysis 3b: Speed 
Sensitivity 

Analysis 4: Per-Vehicle 
Data Validity 

Analysis 5: Aggregated 
Data Validity 

Analysis 1: Error Codes 



 

66 

 

Analysis 3 determines the impact of two measurable variables on the portable 

WIM data: temperature and speed. The analysis investigates whether these 

variables have a significant impact on the portable WIM axle load measurements, 

the nature of those impacts, and how that impact changes as the calibration of a 

portable WIM system drifts during an installation. 

Analysis 4 determines the per-vehicle validity of the portable WIM data. It 

considers both calibrated and uncalibrated data, data adjusted for impacts from 

temperature and speed, and data that is autocalibrated throughout the 

installation. Accuracies measured here are compared to the standards set in 

ASTM E1318 to determine their sufficiency for various applications. Sensor 

coverage recommendations also inform the findings from this analysis. 

Analysis 5 determines the aggregated validity of the portable WIM data. In this 

analysis, the axle load spectra in the data bins of the portable WIM system are 

reduced to several parameters, which are then tested in comparison to data from 

WIM station 99. This analysis considers both calibrated and uncalibrated data, 

data adjusted for impacts from temperature and speed, and data that is 

autocalibrated throughout the installation. Sensor coverage recommendations 

also inform the findings from this analysis. 

Each of these analyses uses data from one or more of the 3 portable WIM 

installations outlined in Table 6 and described in sections 3.2.1 and 3.2.2. 
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3.4.1 Erroneous Vehicle Records 

This analysis examines the differences in the rate of erroneous vehicle records 

between the three installations. During the three portable WIM installations, when 

a vehicle is not properly registered by the sensors, an error record is generated, 

indicating that a vehicle passed the sensors but not recording its axle loads. The 

WIM software used generates various error codes for various ways that a vehicle 

may not register properly in the sensors; the relative rates of these error codes 

may have implications for recommendations for best installation practices. 

Additionally, the relative rates of successful vehicle pairing are also analyzed for 

differences between the installations, as the rate of successful pairing by vehicle 

axle count can explain how erroneous records affect different types of vehicles. 

3.4.2 Calibration Drift 

WIM systems are known to drift in calibration over time, and so analyses of a 

portable WIM system’s validity must consider the time elapsed since the 

calibration. This analysis investigates the portable WIM system’s calibration drift, 

using a combination of correlation and regression analysis to determine which 

variable best explains the observed calibration drift over the course of the 

portable WIM’s installation. Three variables are considered: 

1) Time elapsed since calibration, 

2) Number of vehicles passing over sensors since calibration, and 

3) Number of trucks passing over sensors since calibration. 
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Regression analysis was used to determine the best explanatory variable; the 

strength of the correlation between each of the variables and the front axle loads 

of 3-S2, 3-S3, 3-S3-S2, and 3-S2-4 vehicles is used as the basis for selecting 

one variable as the best option; Appendix D displays the algorithm used to 

identify these vehicle configurations. Table 7 displays these configurations with 

their FHWA classifications and schematics. 

Table 7 - Truck configurations used in specific analyses 

Configuration 
FHWA 

Classification 
Schematic 

3-S2 (5-axle tractor 
semitrailer) 

Class 9 

 

3-S3 (6-axle tractor 
semitrailer) 

Class 10 

 

3-S3-S2 (8-Axle B-
Train) 

Class 13 

 

3-S2-4 (Turnpike 
Double) 

Class 13 

 

The correlation analysis considers only the front axles of these configurations—

referred to as the ‘selected’ configurations—as previous research has shown the 

first three of these configurations’ front axle loads to be very consistent in 

Manitoba, and therefore appropriate for isolating the effects of individual factors 

(Tan, 2002). 3-S2-4 vehicles have been included as they are particularly 

common at the two portable WIM installation sites used in this research, and 

typically have front axle loading similar to 3-S2s. 
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The outcomes of this analysis are twofold: first, further analyses consider the 

impact of time and calibration drift in their results, and so must separate the data 

into bins to consider this impact. The selected explanatory variable is used as the 

basis for the separation of these bins. Second, the explanatory variable selected 

as the best is considered when making a recommendation about the optimal 

duration of a portable WIM installation. 

As WIM data changes most significantly immediately following a calibration, only 

data from Installation 1 is used in this analysis, as that installation had a 

calibration performed at the beginning and had a sufficient sample sizes for its 

data bins. 

3.4.3 Temperature and Speed Sensitivity 

All WIM systems have issues with error in their data; this error is introduced to 

the data in several ways. Errors can be considered to be either ‘systematic’, 

where a trend to values that are consistently high or low is present, ‘random’, 

where no trend is present, or a combination of the two. Figure 8 provides a 

conceptual visualization of how the sources of error in WIM measurements are 
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added to the data. 

 

Figure 8 - Conceptual visualization of sources of WIM error 

It is not possible to remove all error from the WIM data so as to reveal the real 

vehicle loads, as there is random error inherent in the dynamic weighing process 

and from environmental effects that are not measured. However, corrections to 

the data based on the measured temperature and vehicle speed could eliminate 

these sources of systematic error, and therefore improve the quality of the WIM 

data. This analysis investigates the effects of temperature and vehicle speed on 

the portable WIM axle load data. The analysis seeks first to determine if 

adjustments to the axle loads based on either or both of these variables will 

make a significant difference in the validity of the portable WIM system’s data, 

and second, if so, what the nature of those adjustments should be. 

Real vehicle loads 

• No error is present 

• All variability is due to actual 
variations of vehicle loads 

 

Error due to dynamic weighing process 

• A combination of systematic and random error 

• Systematic error can be reduced through 
calibration of the WIM system 

 

Error due to temperature 

• Systematic error, as 
seen in permanent WIM 

Error due to vehicle speed 

• If present, systematic 
error 

Error due to other environmental effects 

• Random error, with potential 
systematic components 
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Only front axle weights of the four selected truck configurations (see section 

3.4.2) were considered in order to use their consistent load values to isolate the 

effects of the two variables. Regression analysis of these front axle weights and 

the variables are used to reveal if a statistically significant relationship exists 

between the axle loads and other variables. If a relationship does exist between 

the axle loads and one or both of the variables, the relevant regression equation 

is used to generate correction factors that can be applied to reduce or eliminate 

the impact that the relevant variable(s) has on the load measurements. In a 

potential case where speed is a predictor of axle loads, separate regression 

equations are constructed for each configuration’s axle groups to examine how 

speed affects the different axle groups separately, as it is possible that dynamic 

effects are systematically experienced differently for the different axle groups of 

individual vehicles. 

If a relationship between either of these variables and the portable WIM axle 

loads exists for an entire installation, it is likely that this relationship changes as 

the portable WIM system’s calibration drifts. To examine whether this is the case, 

the root mean square error (RMSE) of each day of data is calculated using the 

regression equation from the relevant variable and the actual data, and the 

resulting values are examined for trends. The change of these relationships as 

the system’s calibration drifted is further examined by binning the data and 

calculating separate regression equations for each bin, then comparing the 

resulting equation parameters.  
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This analysis uses data from all three portable WIM installations, but the 

examination of the relationships between temperature and/or speed and the 

calibration drift only uses data from Installation 1. 

3.4.4 Per-Vehicle Data Validity 

This analysis investigates the validity of the portable WIM data on a per-vehicle 

basis; the validities of individual vehicle axles, axle groups, and gross vehicle 

weights (GVWs) are examined. Historically, portable WIM data has not achieved 

per-vehicle accuracies sufficient for direct application to design and planning 

applications according to the standards set in ASTM E1318 (see Table 1). This 

analysis considered four portable WIM datasets from three portable WIM 

installations: 

1. Calibrated, WIM-Compared Data 

This dataset, collected from portable WIM Installation 1 (at WIM station 

99), has a large sample size and had a calibration performed on the 

portable WIM system at the beginning of the installation. A simultaneous 

calibration was performed on WIM station 99 at the beginning of this 

dataset’s collection, ensuring the validity of the comparison WIM data. 

This is described further in Appendix B. 

2. Uncalibrated, WIM-Compared Data 

This dataset, collected from portable WIM Installation 2 (at WIM station 

99), has a large sample size and had no calibration performed on the 
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portable WIM unit, though the calibration performed on WIM station 99 

was determined to have resulted in valid comparison data in Appendix B. 

3. Calibrated, Static-Scale Compared Data 

This dataset, collected from portable WIM Installation 3 (at the Headingley 

weigh scale), has a small sample size and has the post-processed 

calibration procedure performed on it (see Appendix C). 

4. Uncalibrated, Static-Scale Compared Data 

This dataset, collected from portable WIM Installation 3 (at the Headingley 

weigh scale), has a small sample size and has no calibration performed 

on it. 

In order to achieve the highest quality data and thereby demonstrate the 

maximum capability of the portable WIM system, statistics were calculated for the 

portable WIM data for three data processing methods:  

1. Uncorrected Data 

Uncorrected data has not been processed beyond any initial calibration 

that has been performed; therefore, this analysis considers data as it is 

typically considered coming from a permanent WIM station. All 4 datasets 

are considered in their uncorrected form. 

2. Corrected Data 

In this analysis, ‘corrected data’ refers to data that has been adjusted to 

compensate for the effects of temperature and/or speed using the 
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regression models developed in section 4.3 . All 4 datasets are considered 

in their corrected form. 

3. Autocalibrated Data 

Autocalibration is a procedure wherein WIM data records the loads of a 

sample of specific vehicles (for example, FHWA class 9 vehicles), then 

checks those loads against reference values, generating an adjustment 

factor to make the average sample value equal to the reference value. 

The adjustment factor is then applied to vehicles until the next check, at 

which point the factor is re-calculated (Burnos and Gajda, 2020). Though 

there are issues regarding validation of autocalibration systems, it can be 

a useful tool for improving WIM load measurement accuracy at high truck 

volume sites (Selezneva and Wolf, 2017; U.S. Department of 

Transportation, 2018a). As autocalibration removes the need for physical 

calibration, datasets 1 and 2 are analyzed as a single WIM-compared 

autocalibrated dataset and dataset 4 is analyzed as the only static scale-

compared autocalibrated dataset. 

This analysis compares the quality of the data between the four installation 

datasets and the three processing methods. These comparisons are made 

through histograms of percent error and several key statistics calculated on the 

accuracies of each vehicle: 

• The mean error serves as an overall indicator of the data’s accuracy. A 

mean of 0% is the best possible indicator of accurate data. 
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• The median error is more resistant to outliers than the mean. A median of 

0% is the best possible indicator of accurate data.  

• The standard deviation of errors indicates how precise the data is; in 

theory, it is unaffected by initial calibration. A standard deviation of 0% 

indicates perfectly precise data. 

• The percent of records in compliance with the ASTM type II accuracy 

standard provides a more applicable measure of data accuracy. Type II is 

used as it has the largest accuracy tolerance of the ASTM specified WIM 

data types. Compliance of 100% indicates perfectly accurate data. 

• A statistic labelled ‘95% of Results Within’ provides a general look at the 

data quality, considering both accuracy and precision. As the ASTM 

standard specifies that 95% of results are within the specified percent 

error range, this statistic states the percent error tolerance that 95% of 

portable WIM records are within. For example, ‘95% of Results Within’ of 

50% indicates that 95% of records have percent error within 50%.  

The percent error histograms and key statistics are calculated for GVW, axle 

group loads, and individual axles separately. The GVW and individual axle 

analyses are conducted on all vehicles with three or more axles, which focuses 

the analysis on trucks, though this method does include some non-truck vehicles. 

The axle group analyses are conducted on the four selected classes described in 

Table 7 on page 68 to ensure that axle groups are grouped correctly. 
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Additionally, this analysis considers how the per-vehicle accuracy changes over 

the course of installations 1 and 2 by calculating some of the above statistics 

daily, rather than for the installation as a whole. 

3.4.5 Aggregated Validity 

This analysis investigates the validity of the portable WIM data in aggregate; this 

analysis considers whether aggregating data into several vehicle loading 

scenarios may result in random errors cancelling each other out and some 

systematic errors being isolated to individual loading scenarios, thus producing a 

more valid representation of axle loads than the per-vehicle data. This 

aggregated data may then be appropriate for indirect application to engineering 

and planning applications. This indirect application would examine specific 

parameters of loading scenario axle load spectra, rather than individual vehicle 

records. This is to overcome the historical inability of portable WIM systems to 

achieve individual vehicle accuracies at, or even near, the standards set in ASTM 

E1318 (see Table 1). 

The specific parameters of each axle load spectra were calculated using 

Gaussian Mixture Models (GMMs), which separate uneven distributions into a 

specified number of ‘mixing components’, with each component having the form 

of a Gaussian (normal) distribution. This approach to axle load spectra analysis 

was developed by Regehr et. al. (2020). Figure 9 presents a graphical 

representation of this process as developed in research by Regehr et. al. (2020) 

(used with permission). 
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Figure 9 - Example of a Gaussian mixture model applied over a gross vehicle mass (GVM) distribution 

GMMs were applied to axle load distributions that were derived from the front, 

tandem, and tridem axle groups as well as GVW of each of the four selected 

vehicle configurations. Models of the front axle load distributions used a single 

mixing component, while models of all other axle group loads and GVW used 

three mixing components to represent unloaded, partially loaded, and fully 

loaded vehicles. These models were done for the same four portable WIM 

datasets for each of the same three data processing methods as the analysis of 

per-vehicle accuracy (see section 3.4.4).  

After calculating the GMMs for the portable WIM and comparison datasets, each 

individual normal distribution are compared in three ways: 

1. The percent difference of the distributions’ means are compared. 

Gaussian Mixture Model Example 
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2. The percent overlap of the distributions’ 95% confidence intervals are 

compared. 

3. t-Tests of the normal distributions determine whether the portable and 

comparison datasets are statistically significantly different. It is expected 

that most or all of the distributions will be significantly different, as even a 

small systematic error would indicate significant difference for a sample of 

sufficient size. 

By comparing the distributions in these three ways, this analysis seeks both to 

determine the general level of data quality in the same way as the analysis of 

per-vehicle accuracy and to discover any ways that using axle load data in this 

form may be particularly suited to any potential application. Additionally, this 

analysis has the potential to reveal aspects of the data validity that the per-

vehicle analysis does not; any aspects of the accuracy that can be further 

explored using insights from the GMM process and analysis will be done so in 

this analysis.  
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4 ANALYSIS 

This chapter presents the results of the analyses performed on the portable WIM 

data and evaluates the quality of the data against the relevant standards. 

4.1 ERRONEOUS VEHICLE RECORDS RESULTS (ANALYSIS 1) 

This section presents the results of the analysis of the rates of erroneous vehicle 

records and successful vehicle pairing. In this analysis, the relative rates of 

erroneous vehicle records are compared between all the three installations; due 

to Installation 3 undergoing a separate vehicle pairing procedure, the rates of 

successful vehicle pairing are only be compared between installations 1 and 2. 

This analysis examines whether these statistics highlight any differences 

between the full lane sensor installation (Installation 1) and the half lane sensor 

installation (Installation 2), as well as whether they have any implications for 

recommended installation practices. 

4.1.1 Percentage of Erroneous Records 

During the portable WIM installations, not all WIM records were successfully 

recorded. The WIM software assigned erroneous records a number of error 

codes. Table 8 summarizes the rate and type of these error codes for the three 

portable WIM installations. 
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Table 8 - Error code summary for portable WIM Installations 1 and 2 

Error Code 

Percentage of Records 

Meaning Installation 1 
(Full Lane 
Sensor) 

Installation 2 
(Half Lane 

Sensor) 

Installation 3 
(Half Lane 

Sensor) 

0 95.91% 71.70% 96.40% No error 

5 0.00% 0.01% 0.00% Vehicle too fast to record 

6 0.39% 0.00% 2.44% Unequal axle count on all sensors 

9 0.03% 0.26% 0.01% Maximum axle count exceeded 

10 0.00% 0.00% 0.00% Zero axles detected 

11 0.31% 6.59% 1.14% Only one axle detected 

12 3.36% 21.44% 3.16% Vehicle too slow to record 

Total 
Errors 

4.09% 28.30% 3.60%  

Table 8 shows that Installation 2 had a higher rate of erroneous records than 

either Installation 1 or Installation 3. For all three installations, most erroneous 

records were a result of the vehicle being too slow to record, though a significant 

number of records during Installation 2 were erroneous due to only one axle 

being detected. While a number of variables separate Installation 3 from 

Installations 1 and 2, such as location, vehicle pairing method, and presence of 

the static weigh scale, which caused many trucks to change lanes at or near the 

portable WIM system, the error rates during Installation 3 are similar enough to 

those of Installation 1 to show that the sensor lane coverage was not likely the 

cause of the increased error rates. 
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To investigate the cause of the increased error rates during Installation 2, the 

rate of each error code for each day of both Installation 1 and Installation 2 are 

calculated. Installation 3 is omitted due to its separation in time from the other 

two installations and short duration. Figure 10 shows a graph of daily error code 

rates for both installations. 

 

Figure 10 - Scatterplot of daily error code rates during portable WIM installations 1 and 2 

Figure 10 shows that the increased rate of error codes, especially codes 11 and 

12, persists in approximately equal magnitude through all of Installation 2 with 

the exception of the first day of the installation, which shows an approximately 

equal rate of errors to Installation 1, which is consistent for its entire duration. 

This indicates that something may have happened to the installation after the first 

day of Installation 2 to cause the increased rate of error codes. 

4.1.2 Percentage of Successfully Paired Records 

Erroneous vehicle records have their data rejected and thus have 0 axle loads 

recorded. This prevents the erroneous records from being assigned to vehicles of 
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a particular class or axle count. However, as this means that erroneous vehicle 

records could not be paired during the vehicle pairing process, the proportion of 

vehicles recorded in the comparison data that were able to be successfully 

paired to the portable WIM data can show how the erroneous records occurred 

for vehicles of each axle count. Figure 11 displays a graph of the percentage of 

vehicles recorded at WIM station 99 that were successfully paired to the portable 

WIM data for installations 1 and 2 for each axle count. Due to the different 

vehicle pairing procedure used, Installation 3 is not included. 

 

Figure 11 - Percentage of successfully paired vehicle records by axle count for portable WIM 
installations 1 and 2 

 

This graph shows that while both installations had a relatively high rate of 

successful pairings for 2 axle vehicles, a lower percentage of vehicles with 3 or 

more axles were paired during Installation 2. This indicates that the increased 
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rate of error codes had a strong impact on the truck data that a portable WIM 

installation would consider most valuable. 

4.2 CALIBRATION DRIFT RESULTS (ANALYSIS 2) 

This section presents the results of the analysis of the portable WIM’s calibration 

drift during the installation at permanent WIM station 99 from June 27 to July 15, 

2019 (Installation 1). 

To provide a baseline context, the scatterplot in Figure 12 illustrates the front 

axle loads of 3-S2, 3-S3, 3-S3-S2, and 3-S2-4 vehicles (referred to as the 

‘selected’ configurations) over the course of the installation. The calibration drift 

is seen in a non-horizontal trend in the portable WIM front axle loads over the 

course of the installation. In comparison, the front axle loads of the same 

vehicles as recorded by WIM station 99 exhibit no such trend. 
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Figure 12 - Calibration drift of front axle loads of selected configurations during first portable WIM 
installation at WIM station 99 

Several important observations about the front axle loads can be made from 

Figure 12: 

1. The portable WIM front axle loads fluctuate regularly over the course of a 

day, likely due to changes in temperature, while the WIM station 99 loads 

do not. 

2. The portable WIM front axle loads exhibit a downward trend over the first 

half of the installation, while the WIM station 99 loads do not. 

3. The downward trend in portable WIM front axle loads does not appear to 

be consistent over the course of the installation. 
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4.2.1 Duration of Calibration Drift Trend 

The third observation from Figure 12 is significant to this analysis as the goal is 

to determine what variable best explains the change in portable WIM calibration. 

To do this, the analysis must determine over what period the portable WIM’s 

calibration drift trend was consistent, so that this consistent relationship can be 

compared to the candidate variables. To examine this, the selected front axle 

load data is divided into 24-hour periods, and correlation analyses are conducted 

on datasets that each include all records from the beginning of the installation to 

the end of one 12-hour period. Sample sizes for these correlation analyses 

ranged from 447 to 10331.  

Figure 13 shows the scatterplots that were the basis of the correlation analysis of 

the front axle load samples that were taken for the first 1, 5, and 10 days. These 

scatterplots illustrate that as long as the calibration drift trend is consistent, a 

greater number of vehicle records will result in the daily cyclical pattern having 

less influence on the overall trend, the overall calibration drift trend having 

greater influence on the overall trend, and the R2 value being higher due to a 

better fit for a linear trendline. 
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Figure 13 - Example scatterplots for analysis of calibration drift trend 
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The scatterplots in Figure 13 display the data behind the correlation analysis of 

the front axle loads. However, two correlations are calculated for each dataset: 

1. Time elapsed vs. portable WIM front axle load, and 

2. Time elapsed vs. portable WIM front axle percent error as compared to 

WIM station 99. 

These two analyses are expected to be similar, as WIM station 99 showed no 

signs of drift from the calibration that was performed at the beginning of the 

installation. Therefore, while the front axle load correlation accounts for all 

variability in the loads, including variability of the actual loads, the percent error 

calculations correct for the variability in the actual loads, and the correlation of 

the front axle percent error accounts for only variability due to one or more 

sources of error.  

The R2 values from these correlation analyses are plotted with the expectation 

being that after some initial instability, similar correlations will be observed for the 

duration of the initial calibration drift trend, after which the R2 values will drop and 

a second trend would take its place at the lower R2 values. R2 values are 

expected to be low, as the variability in the front axle loads and front axle load 

errors is primarily due to a combination of WIM errors and variability in the actual 

loads, with only a small portion of the variability being due to the calibration drift. 

However, any R2 values of non-negligible magnitude indicate that the correlation 



 

88 

 

does explain some portion of the variability in the front axle loads or errors. 

Therefore, this analysis is not primarily concerned with the absolute magnitude of 

the R2 values but with their relative magnitude, specifically how the value 

changes as the time bins get longer. Figure 14 shows the plot of R2 values. 

  

Figure 14 – Scatterplot of R squared values of time elapsed vs portable WIM front axle load and front 
axle load percent error during portable WIM installation 1 

These results show that, after some initial instability, R2 values for both front axle 

loads and percent errors stabilize for the samples taken of 7 days to 12 days, 

after which there is a decrease in correlation of 55% for the load measurements 

and 56% for the percent error measurements from day 12 to 13. The correlation 

values for samples of 13 days long or longer are consistent for both load and 

percent error measurements. This indicates that the calibration drift relationship 

is consistent for the first 12 days of the installation, after which the daily change 
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in calibration becomes less consistent and the calibration drift no longer explains 

as large a portion of the variability in the front axle loads and errors. 

Based on these findings, the rest of the analyses considering the effects of the 

calibration drift will only reference data from the first 12 days of the installation. 

4.2.2 Selection of Explanatory Variable 

This analysis considered three variables as possible explanations for the 

calibration drift: 

1) Time elapsed since calibration, 

2) Number of vehicles passing over sensors since calibration, and 

3) Number of trucks passing over sensors since calibration. 

To explain the calibration drift, regression models of these variables are 

compared by their strength. However, first, to determine whether models with 

more than one of these variables should be considered, a multicollinearity 

analysis is conducted on the three. Sample sizes for this analysis were all 6657. 

Table 9 displays the results of this analysis. 

Table 9 - Results of multicollinearity analysis of candidate explanatory variables for calibration drift 

 Time Elapsed Vehicles Passed Trucks Passed 

Time Elapsed 1   

Vehicles Passed 0.9922346 1  

Trucks Passed 0.9882845 0.9990901 1 
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These results show extremely high multicollinearity (>0.98) for all 3 variable 

pairs; therefore the analysis will only consider single-variable models. It is 

expected that the three single-variable models would have similar R2 values; that 

is, they will all predict the same proportion of the variability in the selected front 

axle loads. To confirm this, the three regression equations are calculated and 

their R2 values compared. As in the investigation into the duration of a consistent 

calibration drift trend, both the front axle loads and the front axle percent errors of 

the selected classes are used to construct the equations. Linear least-squares 

regression models are used as a linear trend can be visually observed in the 

scatterplot in Figure 12. Sample sizes are 6657 for all analyses, as all three use 

the first 12 days of data from the installation. Table 10 presents the results of the 

regression analyses. 

Table 10 - Results of regression analyses of front axle loads and front axle load percent errors on 
candidate explanatory variables 

Variable Y Variable Regression Equation R2 
P-value of F 

Statistic 

Time 
Elapsed 

Load Y = -67.372*X + 4317.2 0.155 <0.001 

Percent Error Y = -0.011506*X – 0.20660 0.0937 <0.001 

Vehicles 
Passed 

Load Y = -0.0173106*X + 4296.5 0.150 <0.001 

Percent Error Y = -0.00000297*X – 0.20978 0.0917 <0.001 

Trucks 
Passed 

Load Y = -0.071425*X + 4296.7 0.152 <0.001 

Percent Error Y = -0.0000122*X – 0.21022 0.0915 <0.001 

These results show that: 
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1. The regression models are able to explain a greater percentage of the 

variability in the front axle loads (~15%) than of the front axle percent 

errors (~9%).  

2. All parameters of all equations have a statistically significant F statistic, 

which measures the overall significance of the regression model (p-value 

<0.05), indicating that despite the low predictive power of the models, the 

predictions the models can make are valid. 

3. As expected, there are no significant differences between the R2 values of 

the three candidate explanatory variables for both the front axle load and 

front axle percent error regression models. 

As none of the variables are demonstrably superior to the others, the time 

elapsed since the calibration is used as the explanatory variable for the 

calibration drift in all further analyses.  

4.3 TEMPERATURE AND SPEED SENSITIVITY RESULTS (ANALYSIS 
3) 

This section presents the results of the analysis of the relationships between the 

temperature and speed and the WIM axle load measurements. All 3 portable 

WIM installations were considered. 

4.3.1 Temperature Sensitivity Analysis 

Selection of Temperature Dataset 

During both portable WIM installations at WIM station 99, two sources of 

temperature data were collected: temperature from an in-pavement sensor at 



 

92 

 

WIM station 99, and temperature from a sensor left open to the air on the 

portable WIM unit. These two sensor installation methods were expected to 

record different temperature values, as they are recording different parameters: 

pavement temperature and air temperature, respectively. While the open-air 

sensor was easier to install, if the in-pavement sensor provides sufficiently higher 

quality temperature data, future portable WIM installations could install the 

temperature sensor in-pavement. Therefore, this section assesses the relative 

quality of the in-pavement and open-air temperature measurements. 

The scatterplot in Figure 15 displays the temporal temperature patterns as 

measured by both temperature data sources during both portable WIM 

installations at WIM station 99.  
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Figure 15 - Temperature measurements from WIM systems during portable WIM installations at WIM 
station 99 

The scatterplot in Figure 15 reveals two characteristics of the WIM temperature 

data:  

1) The in-pavement and open-air temperature sensors record different 

measurements, and 

2) The open-air sensor temperature data exhibits a significantly different 

temperature pattern during the second portable WIM installation, 

despite the in-pavement sensor temperature data exhibiting consistent 

patterns. 

As the daily high and low ambient and in-pavement temperatures were 

approximately the same, the most probable explanation for the second 

characteristic is that the portable WIM sensor was placed differently during the 
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second installation, making it more susceptible to heating and cooling throughout 

the day. However, as the exact placement of the sensor was not documented, 

this cannot be confirmed. Regardless, the two open-air sensor installations are 

individually assessed.  

The temperature data that is considered ‘best’ in this assessment is the data that 

predicted the greatest proportion of the changes in front axle load 

measurements, as the greater this predictive power was, the more effective the 

temperature data would be for correcting errors in the axle load measurements. 

Quadratic least-squares regression analysis is used to determine the relative 

predictive power of each temperature data source. A quadratic model is used to 

ensure a better fit to potential non-linear relationships and therefore have greater 

predictive power. To most effectively isolate the effects of temperature, only the 

front axles from the four selected vehicle configurations are used in the 

regression analysis, as past research has shown them to be relatively consistent. 

The regressions in section 4.2 examine how well temperature and speed 

influence the observed variability in front axle loads. Since these loads still vary, 

despite have general consistency, the R2 values of the regression models are 

expected to be low, as temperature and speed are expected to be poor 

predictors of the actual loads when other sources of variability are not considered 

(see Figure 8 on page 70 for a conceptual illustration of the sources of variability 

in WIM front axle loads). However, any non-zero R2 values in a statistically 

significant regression model show that these parameters impose some error in 
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the axle load measurements beyond the other sources of variability. 

Consequently, corrections for parameters that meet these criteria are expected to 

improve the accuracy of the axle load measurements. Table 11 shows the results 

of the regression analysis. 

Table 11 - Results of regression analysis of 3 temperature data sources against select front axle loads 

Temperature 
Data Source 

Regression Equation R2 n 
P-value 

of F 
statistic 

Open Air 
(Installation 1)  

Y = 1.1437*T2 – 102.35*T + 5649.6 0.2066 10417 0 

Open Air 
(Installation 2) 

Y = -0.39745*T2 + 8.4843*T + 2330.7 0.1945 848 <0.001 

In-Pavement 
(Both 

Installations) 
Y = 0.65236*T2 – 73.056*T + 5273.7 0.0972 11265 0 

Table 11 shows that the temperature data from the two open air installations 

have approximately R2 values and therefore have equal predictive power. 

Additionally, both open air temperature datasets have approximately double the 

predictive power of the in-pavement temperature data. This indicates that while 

the specific placement of the temperature sensor during a portable WIM 

installation affects the temperature measurements, it does not affect the 

temperature dataset’s ability to predict, and therefore correct for, variations in the 

portable WIM’s axle load measurements. Due to these findings, the temperature 

measurements from the portable WIM unit are used in all further analyses. 

Comparison Dataset Temperature Influence 

To determine the nature of the relationship between axle load and temperature, 

regression analyses are performed, revealing what effect the temperature has on 
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both the front axle loads and front axle percent error. However, as the front axle 

percent error is calculated with reference to the axle loads as measured by the 

comparison datasets (WIM station 99 and the Headingley static weigh scale), this 

regression analysis first determines to what degree the temperature influences 

the axle loads in the comparison datasets. If the axle load variability in the 

comparison datasets can be predicted by temperature to the same extent as the 

portable WIM system axle load variability, the percent error calculations will 

effectively cancel out the temperature effect between the two datasets, and will 

not support meaningful conclusions about the temperature relationship. 

Only the front axle loads of the four selected vehicle configurations were 

considered. Table 12 displays the results of the regression analysis. 

Table 12 - Results of regression analysis of temperature against select front axle loads from WIM station 
99 

Installation Regression Equation R2 n 
P-value of F 

statistic 

1 
Y = 0.66785*T2 – 32.434*T + 

5807.8 
0.00229 10417 <0.001 

2 
Y = 0.20970*T2 – 16.124*T + 

5632.9 
0.00460 848 0.14 

3 
Y = 1.0081T2 – 16.640*T + 

5209.5 
0.000361 551 0.91 

 

The low R2 values (<0.01) for all 3 installations and lack of model significance (p-

value>0.05) for installations 2 and 3 indicate that the temperature cannot be used 

to predict the variability of the front axle loads in the comparison datasets in any 

consequential way. Therefore, predictions of the portable WIM load percent error 
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with reference to the comparison datasets effectively isolate the temperature 

effect on only the loads from the portable WIM. 

Nature of Axle Load-Temperature Relationship 

To determine the nature of the relationship between axle load and temperature, 

quadratic least-squares regression analyses are used to determine what portion 

of the variability in the selected front axle loads can be accounted for by 

temperature. To ensure that the variability that is being accounted for is variability 

due to changes in temperature, rather than the natural variability in these front 

axle loads, regression analyses of the portable WIM’s front axle load percent 

error as compared to the comparison datasets are also performed. Higher R2 

values in these models will lead to more effective front axle load corrections. 

Additionally, percent error-based models with R2 values close to the R2 values of 

the corresponding load-based models indicates that the variability being 

explained is, only that caused by temperature, rather than other sources of error. 

Table 13 shows the results of the regression analyses. 
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Table 13 - Results of regression analysis of temperature against select portable WIM front axle loads 
and front axle load percent errors 

Installation Y Variable Regression Equation R2 n 
Significance 
of F Statistic 

1 

Load 
Y = 1.1437*T2 – 102.35*T + 

5649.6 
0.207 10417 <0.001 

Percent  
Error 

Y = 0.0001149*T2 – 
0.014213*T + 0.00001149 

0.146 10417 <0.001 

2 

Load 
Y = -0.39745*T2 – 8.4847*T + 

2331.0 
0.194 848 <0.001 

Percent 
 Error 

Y = -0.0000967*T2 – 
0.0032690*T -0.58919 

0.136 848 <0.001 

3 

Load 
Y = -2.0175*T2 – 4.1178*T + -

3734.3 
0.045 551 <0.001 

Percent  
Error 

Y = -0.0005724*T2 – 
0.0021581*T - 0.28381 

0.048 551 <0.001 

These results show that temperature accounts for a non-negligible portion of the 

variability in the selected portable WIM front axle loads, though less for the 

portable WIM during Installation 3. All the predictive models are significant. 

Furthermore, as the regression models using the front axle percent error have 

similar predictive power to the front axle load regression models, corrections 

based on these models are expected to improve the accuracy of the portable 

WIM axle load measurements. 

Effect of Calibration Drift on Temperature Relationship 

Now that it has been established that there is a statistically significant 

relationship between temperature and the selected front axle loads, it must be 

determined whether the nature of the relationship changes as the calibration 

drifts. To analyze this, the first installation at WIM station 99 is examined, as it 

was initially calibrated and has a measurable calibration drift. 
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First, a regression model is calculated using only the first 12 days of data from 

installation 1, as this is the period over which the calibration drift trend is 

determined to be consistent in analysis 1. Figure 16 displays a scatterplot of the 

residuals of this regression model throughout the first 12 days of installation 1; 

this plot allows the relationship between temperature and front axle load to be 

visually assessed for changes during this period. 

 

Figure 16 - Scatterplot of residuals of temperature regression model for first 12 days of portable WIM 
installation 1 

The scatterplot in Figure 16 shows a cyclic pattern in the residuals corresponding 

to the daily fluctuations in load value caused by variations in temperature. This 

pattern can be ignored as the daily pattern is known to not fit the linear 

regression, and this analysis is concerned only with the approximate average 

residual for each day.  
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From Figure 16, it can be seen that the first 4 days of the installation have a 

different temperature-front axle load relationship than days 5 through 11. To 

further investigate the first 4 days of the installation, quadratic regression 

equations for the relationship between temperature and front axle load are 

calculated for each of the 12 days individually. The graphs in Figure 17 display 

how the coefficients and intercepts of the individual day’s regression equations 

change over time. 
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Figure 17 - Values from individual day temperature regression equations during first 

installation at WIM station 99 
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The regression equation values in Figure 17 show relatively consistent values 

with the exception of the 12th day, which is a clear outlier for all three equation 

parameters. Notably, the first 4 days of installation have similar equation 

parameter values to those from days 5 to 11, which indicates that while days 1 

through 4 were a poorer fit for the regression model using the entire installation’s 

data, the best possible regression equations for those days have similar 

coefficients and intercept to those generated by days 5 through 11. While it is 

unclear why the model for day 12 is such a clear outlier, the scatterplot in Figure 

16 shows that this day had similar residuals to days 5 to 11 for the regression 

model containing all 12 days of data, indicating that it is fit approximately equally 

well to the all-days regression model as these days. Therefore, the outlier on day 

12 will be ignored. 

These results indicate that the single regression model for the entire installation 

cannot be substantially improved upon by time-separated regression models and 

that therefore the calibration drift does not have a significant impact on the 

temperature-front axle load relationship. Due to these findings, a single 

regression equation for temperature correction will be applied for the entire 

installation. 
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4.3.2 Vehicle Speed Sensitivity Results 

Comparison Dataset Speed Influence 

To determine the nature of the relationship between axle load and speed, 

regression analyses are performed using vehicle speed to predict both the front 

axle loads and front axle percent error. However, as the front axle accuracy is 

calculated with reference to the axle loads as measured by the comparison 

datasets (WIM station 99 and the Headingley weigh scale), this regression 

analysis first determines to what degree vehicle speed influences the comparison 

data from WIM station 99. If the axle load variability in the comparison datasets 

can be predicted by speed to the same extent as the portable WIM system axle 

load variability, the percent error calculations would effectively cancel out the 

effect of speed, and would not support meaningful conclusions about the speed 

relationship. 

Only the front axle loads of the four selected vehicle configurations are 

considered in the analysis, and the installation at the Headingley weigh scale 

(Installation 3) is disregarded, as speed is not measured at a static scale. Table 

14 displays the results of the regression analysis. 

Table 14 - Results of regression analysis of speed against select front axle loads from WIM station 99 

Installation Regression Equation R2 n 
P-value of F 

statistic 

1 
Y = -0.25969*T2 – 43.565*T + 

3627.1 
0.00324 10417 <0.001 

2 
Y = 0.036978*T2 – 7.4957*T + 

5738.2 
0.000510 848 0.81 
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The low R2 values here (<0.01) and insignificance of the second installation’s 

model indicate that the speed cannot be used to predict the variability of the front 

axle loads as measured at WIM station 99 in any consequential way. Therefore, 

the predictions from this analysis of the portable WIM load accuracy compared to 

WIM station 99 effectively isolate the effect of speed only on the loads from the 

portable WIM. 

Nature of Axle Load-Speed Relationship 

To determine the nature of the relationship between axle load and speed, 

quadratic least-squares regression analyses are used to determine what portion 

of the variability in the selected front axle loads can be accounted for by speed. 

To ensure that the variability that was being accounted for was variability due to 

changes in speed, rather than the natural variability in these front axle loads, 

regression analyses of the portable WIM’s front axle load percent error as 

compared to the comparison datasets was also performed. Higher R2 values in 

these models will lead to more effective front axle load corrections. Additionally, 

percent error-based models with R2 values close to the R2 values of the 

corresponding load-based models indicates that the variability being explained is, 

in fact, only that caused by speed. Table 15 shows the results of the regression 

analyses. 
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Table 15 - Results of regression analysis of speed against select portable WIM front axle loads and front 
axle accuracies 

Installation Y Variable Regression Equation R2 n 
P-value of 
F statistic 

1 

Load 
Y = -0.093167*S2 – 
24.063*S + 2463.93 

0.0114 10417 0 

Percent 
Error 

Y = 0.000016537*S2 – 
0.0011533*S -0.31376 

0.0109 10417 0 

2 

Load 
Y = -0.11182*S2 + 
25.571*S + 796.7 

0.0146 848 0.002 

Percent 
Error 

Y = -0.00002641*S2 – 
0.0058888*S -0.90330 

0.0146 848 0.002 

3 

Load 
Y = -0.31985*S2 + 
58.515*S – 938.01 

0.0046 543 0.29 

Percent 
Error 

Y = -0.0000404*S2 + 
0.0074516*S – 0.64231 

0.002 543 0.61 

These results show that speed does not have a substantial impact on the front 

axle load measurements taken during any of the three installations. This 

indicates that corrections based on only the speed-front axle load relationship will 

not substantially improve the accuracy of the portable WIM load measurements. 

However, any effect of speed on the axle loads would be due to dynamic effects 

that may affect certain parts of a vehicle differently, so examination of the effect 

of speed on other axle groups is warranted. 

Axle Load-Speed Relationship for Non-Front Axles 

If vehicle speed has any meaningful effect on the portable WIM axle loads, it is 

due to dynamic effects introduced by the bump created by the sensors. These 

dynamic effects may affect certain parts of a vehicle differently. To investigate 

this, regression models are created that predicted the variability in the axle group 
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load error from the vehicle’s speed for each axle group of the four selected 

vehicle configurations. These models consider axle group load error rather than 

the axle group loads themselves as these axle groups are known to be highly 

variable, and the axle load error values have the effect of reducing this variability. 

These models are created using only data from the first installation, which 

ensures that each model had as large a sample size as possible, thus giving 

each model the highest possible chance of achieving statistical significance. Both 

quadratic and linear models are created, as the nature of the speed-axle load is 

not known. Table 16 presents the results of these models. The models 

themselves are presented in Appendix E; this table presents the R2 values of the 

F statistic and the coefficients (C). In the quadratic models, C1 is the coefficient 

of speed2 and C2 is the coefficient of speed. 
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Table 16 - Results of regression analysis of vehicle speed on non-front axle load errors of selected 
vehicle configurations 

Configuration 
Axle 

Group 
n 

Quadratic Linear 

R2 
P-

value 
of F 

P-value 
of C1, 

C2 
R2 

P-
value 
of F 

P-
value 
of C 

3-S2 

Single 
(Front) 

6611 

0.011 <0.001 
0.151, 
0.440 

0.011 <0.001 <0.001 

Tandem 
(Drive) 

0.057 0 
0.004, 
0.192 

0.056 <0.001 <0.001 

Tandem 
(Trailer) 

0.056 0 
<0.001, 
0.059 

0.054 <0.001 <0.001 

3-S3 

Single 
(Front) 

1726 

0.015 <0.001 
0.731, 
0.928 

0.014 <0.001 <0.001 

Tandem 
(Drive) 

0.051 0 
0.100, 
0.411 

0.050 <0.001 <0.001 

Tridem 
(Trailer) 

0.085 0 
0.002, 
0.049 

0.080 <0.001 <0.001 

3-S3-S2 

Single 
(Front) 

427 

0.053 <0.001 
0.138, 
0.297 

0.049 <0.001 <0.001 

Tandem 
(Drive) 

0.15 <0.001 
0.011, 
0.077 

0.14 <0.001 <0.001 

Tridem 
(Trailer 1) 

0.16 <0.001 
0.014, 
0.101 

0.15 <0.001 <0.001 

Tandem 
(Trailer 2) 

0.15 <0.001 
0.057, 
0.270 

0.14 <0.001 <0.001 

3-S2-4 

Single 
(Front) 

1653 

0.005 0.013 
0.351, 
0.275 

0.004 0.005 0.005 

Tandem 
(Drive) 

0.058 0 
<0.001, 
<0.001 

0.055 <0.001 <0.001 

Tandem 
(Trailer 1) 

0.034 <0.001 
<0.001,
<0.001 

0.030 <0.001 <0.001 

Tandem 
(Front of 
Trailer 2) 

0.035 <0.001 
<0.017, 
0.050 

0.014 <0.001 <0.001 

Tandem 
(Rear of 
Trailer 2) 

0.123 <0.001 
0.012, 
0.052 

0.113 <0.001 <0.001 
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These results reveal several facts about the speed-axle load relationship during 

the first installation. 

1. All models are significant according to the F statistic. 

2. The linear regression models are able to predict a similar proportion of the 

variability in the axle group load errors as the quadratic models, but have 

all significant regression coefficients, while not all the quadratic models do. 

This indicates that the linear models are a better fit for the speed-axle 

group load error relationships. 

3. None of the individual configuration’s front axle load models, apart from 

the 3-S3-S2 model, are able to predict more than 2% of the variability in 

the front axle load error. This confirms the results of the regression models 

calculated for all selected configurations combined as displayed in Table 

15. 

4. All but two of the models for non-front axle group loads are able to predict 

more than 5% of the variability in the axle group load errors (for both 

quadratic and linear models). 

As these results show a non-trivial relationship between vehicle speed and axle 

load error, appropriate corrections for speed are expected to improve the 

accuracy of the portable WIM axle load measurements. However, in a 

deployment outside of the testing phase, a comparison dataset will be 

unavailable, so corrections to the axle load measurements must be made on the 

basis of regression of the axle loads themselves. Furthermore, many regression 
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equations have been calculated for the various configurations and axle groups, 

and they must be compared to determine if the axle load-speed relationship is 

consistent enough between the various axle groups to use as the basis for 

corrections. Figure 18 illustrates the regression coefficients and intercepts for 

regression of vehicle speed against (1) axle group load error and (2) axle group 

load for each of the four selected configurations.  
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Figure 18 - Scatterplots of parameters of regression equations of speed versus axle group load errors 
and speed versus axle group loads 

These graphs show that the regression equations of the axle group load percent 

errors and the axle group loads are fundamentally different. For a given 

configuration and axle group, the equation parameters for the axle group load 

percent error regression and the axle group load regression will not necessarily 

be proportional; the equations will not even necessarily slope in the same 

direction. This can be seen most clearly in the coefficients of the equations for 3-
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percent errors, while having negative coefficients for non-front axle groups. 

Furthermore, the relationship between the axle group load equation parameters 

of the 4 selected classes is not always constant; for example, the coefficients of 

3-S3 axle groups trend downwards from front to back, while 3-S2-4 axle groups 

trend upwards and 3-S2 axle groups exhibit a different downward trend. 

Additionally, 5 out of 11 regression models for non-front axle group loads do not 

even have a statistically significant F statistic (that is, P<0.05), and while the front 

axle group load models for both axle group load error and axle group load are all 

significant, none of them can describe more than 2% of the variability in the front 

axle loads. This means that while corrections would likely improve the accuracy 

of the data if they were based on the error of the axle group loads, the variability 

of the axle-load speed relationship between the various configurations and the 

differences between the regression models of axle group load error and axle 

group load make this infeasible. While correction factors based on the front axle 

loads would account for 1 to 2% of the variability in those loads, this is not 

guaranteed to improve the accuracy of subsequent axle group load 

measurements and at best would provide marginal benefits to the accuracy of 

the load measurements. Therefore, no corrections based on speed will be 

applied. 

4.4 PER-VEHICLE DATA VALIDITY RESULTS (ANALYSIS 4) 

This section presents the results of the analysis of the portable WIM data’s 

validity on a per-vehicle basis. In this analysis, all statistics were calculated on a 

per-vehicle basis for single axle loads, axle group loads, and GVWs. This 
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analysis assesses the data’s accuracy as outlined in ASTM E1318: Standard 

Specification for Highway Weigh-In-Motion (WIM) Systems with User 

Requirements and Test Methods. ASTM E1318 outlines data accuracy 

requirements for various data applications, which are summarized in Table 1 on 

page 17 and are referenced as target values for the WIM accuracies calculated 

here.  

The analysis is performed on all four installation datasets, which are installations 

1 through 3 and the data from Installation 3 that has been calibrated with the 

post-processing calibration method. Each dataset had its GVWs, axle group 

loads, and tandem and tridem axle groups analyzed in three forms: 

1. Uncorrected. 

2. Temperature corrected based on regression models of the effect of 

temperature on front axle loads of the 4 selected vehicle configurations. 

The details of this correction process are described in Appendix G. 

3. Autocalibrated with a post-processing autocalibration procedure. The 

autocalibration procedure was only applied to the Installation 3 dataset 

with no post-processing calibration applied, as the effects of the post-

processing calibration procedure would be eliminated by the 

autocalibration. The details of this calibration process are described in 

Appendix G. 
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The autocalibration and temperature correction procedures have not been 

combined at any point, as the effects of the temperature correction would be 

largely eliminated by subsequent application of the autocalibration. 

In all tables in this analysis, the labels C and UC will refer to datasets that were 

initially calibrated and uncalibrated, respectively. 

4.4.1 Overall Validity of Axle Loads 

This analysis applies the ASTM E1318 standards for the GVW, axle groups, and 

individual axles. All percent error histograms are presented with data binned by 

groups of 5%. 

GVW 

Figure 19, Figure 20, and Figure 21 display histograms of the percent errors of 

the GVWs of the four portable WIM datasets in their uncorrected, corrected, and 

autocalibrated forms, respectively.  
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Figure 19 - Histograms of errors of uncorrected GVWs of trucks from all portable WIM datasets 
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Figure 20 - Histograms of errors of temperature corrected GVWs of trucks from all portable WIM 
datasets 
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Figure 21 - Histograms of errors of autocalibrated GVWs of trucks from 3 portable WIM datasets 
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a substantially higher sample size than the other installations and, as a result, a 

more defined pattern in their distribution. 

To better examine the portable WIM datasets in relation to one another, several 

key statistics were calculated for each GVW distribution. These are mean, 

median, standard deviation, ASTM type II compliance and ‘95% of results within’. 

These are described in greater detail in section 3.4.4.Table 17 presents these 

statistics for each dataset’s GVW measurements for each of the 3 processing 

methods. 
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Table 17 - Summary statistics of portable WIM GVW percent errors 

Statistic Installation 
Uncorrected 

Value 

Temperature 
Corrected 

Value 

Autocalibrated 
Value 

Mean 

Installation 1 (C) -6.0% 26.8% 27.7% 

Installation 2 (UC) -41.6% 41.1% 39.1% 

Installation 3 (UC) -13.6% 44.5% -10.2% 

Installation 3 (C) 20.1% 42.0% - 

Median 

Installation 1 (C) -9.1% 22.7% 23.8% 

Installation 2 (UC) -46.9% 29.4% 25.1% 

Installation 3 (UC) -17.0% 32.4% -14.4% 

Installation 3 (C) 15.1% 29.2% - 

Standard 
Deviation 

Installation 1 (C) 21.7% 29.0% 28.6% 

Installation 2 (UC) 38.2% 96.1% 98.7% 

Installation 3 (UC) 18.2% 26.2% 25.3% 

Installation 3 (C) 25.3% 26.1% - 

ASTM Type II 
Compliance 

(15%) 

Installation 1 (C) 50.7% 37.0% 35.5% 

Installation 2 (UC) 5.8% 23.8% 26.7% 

Installation 3 (UC) 40.2% 37.2% 40.7% 

Installation 3 (C) 47.8% 40.4% - 

95% of 
Results 
Within 

Installation 1 (C) 36% 73% 71% 

Installation 2 (UC) 74% 139% 140% 

Installation 3 (UC) 35% 67% 36% 

Installation 3 (C) 62% 66% - 
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These statistics reveal several key features of the GVW data: 

1. For the uncorrected data, the calibrated Installation 1 dataset had the 

smallest mean percent error (-6.0%) and median percent error (-9.1%). In 

contrast, the uncalibrated Installation 2 dataset had the largest mean 

percent error (-41.6%) and median percent error (-46.9%). 

2. Installation 2 had a low percentage of GVW measurements in ASTM 

compliance for all processing methods (5.8% to 26.7%), while all other 

installations had between 35.5% and 50.9% of GVW measurements in 

ASTM compliance for all processing methods. 

3. Uncalibrated datasets required tolerances of 35% to 140% to include 

95% of GVW measurements for all processing methods, while initially 

calibrated datasets required tolerances of 36% to 71% to capture 95% 

of GVW measurements for all processing methods. In particular, 

Installation 2 required higher tolerances to include 95% of measurements 

than the other installations. 

4. For the ASTM compliance and the ‘95% of results within’ statistics, the 

temperature correction process, relative to the uncorrected data, improved 

1 of 8 statistics, had a negligible effect on 2 of 8 statistics, and made 7 of 8 

statistics worse.  

5. For the ASTM compliance and the ‘95% of results within’ statistics, the 

autocalibration process, relative to the uncorrected data, improved 1 of 6 
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statistics, had a negligible effect on 2 of 6 statistics, and made the data 

worse for 3 of 6 statistics. 

6. Installation 2 had the highest standard deviation for uncorrected data at 

approximately 39%, while the other 3 datasets had standard deviations 

between 18% and 26%. 

7. Both the temperature correction procedure and the autocalibration 

procedure increased the standard deviation of the errors for all 

installations. 

Axle Groups 

Figure 22, Figure 23, and Figure 24 display histograms of the percent errors of 

the axle groups of the four portable WIM datasets in their uncorrected, corrected, 

and autocalibrated forms, respectively. To ensure that axle groups are calculated 

correctly, only axle groups of the four selected configurations are displayed. 

Tridem and tandem axle groups are displayed separately. Single (front) axle 

loads are not displayed as they are included in the analysis of individual axle 

loads. 
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Figure 22 - Histograms of errors of uncorrected axle group loads of trucks from all portable WIM 
datasets 
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Figure 23 - Histograms of errors of temperature corrected axle group loads of trucks from all portable 
WIM datasets 
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Figure 24 - Histograms of errors of autocalibrated axle group loads of trucks from 3 portable WIM 
datasets 

These figures show that, similar to the GVW percent error histograms, all of the 
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histograms have tails that are long and flat, appearing in some of the tridem axle 

distributions to be a two-regime distribution, where to the right of the positive 

skewed curve there is a flat section. This is likely due to the smaller sample sizes 

for tridem axle groups and the tendency for these distributions to be positively 

skewed. Distribution peaks are approximately equal for tandem and tridem axles 

histograms for each dataset. Datasets from installations 1, 2, and 3 

(uncalibrated) all have peaks between -20% and -50% for uncorrected data; the 

uncorrected, calibrated installation 3 dataset had a peak around 0%. For the 

temperature corrected and autocalibrated datasets, the peaks are at and above 

0% for installations 1 and 2, respectively; the temperature corrected Installation 3 

datasets have peaks at 0% and the autocalibrated Installation 3 dataset has a 

peak below 0%. The locations of the peaks of the graphs are all approximately 

equal to the peaks observed in the corresponding GVW distributions. 

Table 18 presents the same summary statistics as Table 17 – median, ASTM 

compliance, and ‘95% of results within’. ASTM compliance is 20% when 

considering axle group loads. These statistics were calculated for each dataset’s 

selected axle group load measurements for each of the 3 processing methods, 

with tandem and tridem axle groups calculated separately. 
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Table 18 - Summary statistics of portable WIM axle group load percent errors 

Statistic 
Installa- 

tion 

Uncorrected Value 
Temperature 

Corrected Value 
Autocalibrated 

Value 

Tandem Tridem Tandem Tridem Tandem Tridem 

Mean 

1 (C) 0.7% 17.3% 35.5% 57.2% 35.9% 59.4% 

2 (UC) -32.8% -25.4% 60.0% 75.4% 56.4% 76.0% 

3 (UC) -8.5% 3.6% 32.5% 44.5% -4.8% 5.6% 

3 (C) 26.4% 43.0% 34.1% 42.0% - - 

Median 

1 (C) -7.2% 9.3% 24.6% 47.3% 24.3% 50.7% 

2 (UC) -41.6% -31.1% -39.3% 60.4% 35.7% 63.9% 

3 (UC) -15.3% -13.0% 31.8% 26.7% -29.0% -42.5% 

3 (C) 16.9% 20.0% 28.7% 24.2% - - 

Standard 
Deviation 

1 (C) 32.9% 42.2% 44.4% 56.4% 44.5% 56.6% 

2 (UC) 39.6% 30.9% 94.5% 71.7% 92.0% 75.0% 

3 (UC) 25.9% 37.2% 37.7% 54.5% 29.3% 39.3% 

3 (C) 35.8% 51.3% 37.2% 53.7% - - 

ASTM  
Type II 
Comp- 
liance 

(20%) 

1 (C) 55.2% 38.0% 43.7% 31.6% 44.3% 31.4% 

2 (UC) 15.5% 23.4% 23.0% 17.7% 26.1% 17.1% 

3 (UC) 45.1% 31.1% 43.7% 40.8% 19.0% 13.6% 

3 (C) 50.6% 47.1% 46.2% 43.7% - - 

95% of 
Results 
Within 

1 (C) 57% 87% 110% 150% 111% 155% 

2 (UC) 78% 66% 192% 206% 218% 194% 

3 (UC) 51% 103% 105% 206% 154% 202% 

3 (C) 95% 180% 100% 196% - - 

 

These summary statistics reveal several key features of the axle group load data: 
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1. For the uncorrected data, initially calibrated datasets (Installation 1 and 

Installation 3 calibrated) had mean percent errors from 0.7% to 43.0% and 

median percent errors from -7.2% to 20.0%, while uncalibrated datasets 

(Installation 2 and Installation 3 uncalibrated) had mean percent errors 

from -32.8% to 3.6% and median percent errors from -41.6% to -13.0%. 

2. Installation 2 had a low percentage of axle group load measurements in 

ASTM compliance for all processing methods (15.5% to 26.1%), while 

Installation 1 had the highest average ASTM compliance across all 

processing methods, with compliance between 31.4% and 55.2%. 

3. For the ASTM compliance and the ‘95% of results within’ statistics, the 

temperature correction process, relative to the uncorrected data, improved 

2 of 16 statistics, had negligible effects on 4 of 16 statistics, and made 10 

of 16 statistics worse. 

4. For the ASTM compliance and the ‘95% of results within’ statistics, the 

autocalibration process, relative to the uncorrected data, improved 1 of 12 

statistics and made 11 of 12 statistics worse. 

5. Similar to the GVW data, Installation 3 (UC) had the lowest standard 

deviations, and Installation 2 had the highest standard deviations for all 

but one axle group-processing method combination. 

6. As in the GVW data, both the temperature correction process and the 

autocalibration process increased the standard deviation for all 

installations for both tandem and tridem axles. 
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Individual Axle Loads 

Figure 25, Figure 26, and Figure 27 display histograms of the percent errors of 

the individual axle loads of the two  portable WIM datasets collected at WIM 

station 99 (installations 1 and 2) in their uncorrected, temperature corrected, and 

autocalibrated forms, respectively. As the comparison data collected at the 

Headingley static weigh scale was only collected by axle group, individual axle 

accuracies cannot be calculated and only the data from WIM station 99 is 

analyzed. 

 

Figure 25 - Histograms of errors of uncorrected axle loads of trucks from 2 portable WIM datasets 
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Figure 26 - Histograms of errors of temperature corrected axle loads of trucks from 2 portable WIM 
datasets 

 

 

Figure 27 - Histograms of errors of autocalibrated axle loads of trucks from 2 portable WIM datasets 

These figures show that, similar to the GVW and axle group load percent error 

histograms, all of the axle group load percent error histograms have single-peak, 

positively skewed distributions, with relatively consistent amounts of skewness. 

Datasets from installations 1 and 2 have peaks approximately at -30% and -60% 

for the uncorrected datasets. For the temperature corrected and autocalibrated 
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datasets, the peaks are approximately at 0% for both installations. The locations 

of the peaks of the graphs are all similar to the peaks observed in the 

corresponding GVW distributions. 

Table 19 presents the same summary statistics as Table 17 – median, ASTM 

compliance, and ‘95% of results within’. ASTM compliance is 30% for single 

axles. These statistics were calculated for the installation 1 and 2 datasets’ 

selected axle load measurements for each of the three processing methods. 

Table 19 - Summary statistics of portable WIM axle load percent errors 

Statistic Installation 
Uncorrected 

Value 

Temperature 
Corrected 

Value 

Autocalibrated 
Value 

Mean 
Installation 1 (C) -0.7% 33.8% 34.4% 

Installation 2 (UC) -35.6% 55.0% 52.7% 

Median 

Installation 1 (C) -10.4% 20.3% 20.4% 

Installation 2 (UC) -46.0% 29.4% 26.6% 

Standard 
Deviation 

Installation 1 (C) 54.7% 71.8% 70.9% 

Installation 2 (UC) 106.9% 280.3% 278.2% 

ASTM Type II 
Compliance 

(30%) 

Installation 1 (C) 71.4% 59.0% 58.6% 

Installation 2 (UC) 22.8% 43.9% 46.4% 

95% of 
Results 
Within 

Installation 1 (C) 64% 118% 119% 

Installation 2 (UC) 78% 194% 193% 

These summary statistics reveal several key features of the individual axle load 

data: 



 

130 

 

1. The Installation 1 datasets performed better in all three processing 

methods for all five statistics than the corresponding Installation 2 

datasets. The Installation 1 datasets had means and medians closer to 

0%, lower standard deviations, higher percentage of results within 30% 

error, and lower tolerance range for 95% of results. 

2. Both temperature correction and autocalibration had the effect of 

increasing the portable WIM loads, and resulted in median percent errors 

of 20% to 30% compared to -10% and -46% in uncorrected data. 

3. Both temperature correction and autocalibration performance were erratic, 

but they typically resulted in similar values; both processing methods 

improved Installation 2’s ASTM compliance, but made Installation 1’s 

compliance worse, and made ‘95% of results within’ worse for both 

installations. 

4. Standard deviations were higher than in the GVW and axle group load 

data. 

5. As in the previous data, both the temperature correction process and the 

autocalibration process had the effect of increasing the standard 

deviations. 

4.4.2 Accuracy of Axle Loads During Calibration Drift 

In addition to analyzing the accuracy of the portable WIM measurements during 

an entire installation, an analysis examining accuracy trends as the calibration of 

the system drifts was conducted to inform recommendations about duration of 
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installation and calibration practices. To examine these trends with reference to 

the ASTM standards, the percentage of GVW, tandem axle loads measurements 

that fall within the ASTM type II standards for each day of each installation were 

calculated. These calculations also sought to clarify if the increased rate of 

erroneous records during Installation 2 had any effect on the validity of the load 

data. Figure 28 displays graphs of the daily measurements of ASTM type II 

compliance for GVW, tandem axle group loads, and individual axle loads during 

installations 1 and 2. For each load category, both installations are displayed on 

a single graph chronologically. 
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Figure 28 - Daily measurements of ASTM type II compliance during portable WIM installations 1 and 2 
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These graphs reveal that: 

1. In addition to not meeting the ASTM type II accuracy standards for the 

installations as a whole, the first two portable WIM installations did not 

meet the ASTM type II accuracy standards on any day of the installation 

for any processing method.  

2. There was a downward trend in the compliance during both of the 

installations for the uncorrected data; the temperature corrected data 

trended upwards, and the autocalibrated data, as expected, did not trend 

significantly throughout either installation.  

3. For uncorrected GVW and tandem axle group loads, compliance on the 

first day of Installation 2 was approximately representative of Installation 2 

as a whole. As this was the day of the installation that had fewer 

erroneous records than the rest of the installation, this indicated that the 

error rate had no consequential effect on the load accuracy.  

4. The second portable WIM installation yielded data that was less accurate 

than the first. The decrease in accuracy was seen not just through the 

steady decrease in accuracy over time, but immediately at the beginning 

of the second installation. 

5. Both the temperature correction process and the autocalibration process 

decreased the accuracy of the portable WIM load data during the first 

installation but improved it during the second, making the difference in 
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accuracy between Installation 1 and Installation 2 less than in the 

uncorrected data. 

To provide a more detailed look at the accuracy of the portable WIM system over 

the course of installations 1 and 2, key error percentiles were calculated and 

graphed. Appendix F displays and provides commentary on these graphs. 

4.5 AGGREGATED DATA VALIDITY RESULTS (ANALYSIS 5) 

This section presents the results of the analysis of the portable WIM data’s 

validity on an aggregated basis. The analysis of aggregated data looks at axle 

load spectra for front, tandem, and tridem axles as well as GVW spectra. These 

spectra are considered separately for each of the four selected vehicle 

configurations during each of the four portable WIM datasets (derived from the 

three portable WIM installations) as noted in the analysis of per-vehicle accuracy 

(see section 4.4). All three of the data processing methods used in the per-

vehicle accuracy analysis are considered: uncorrected, temperature corrected, 

and autocalibrated. As in the analysis of per-vehicle accuracy, the autocalibration 

and temperature correction procedures were not be combined at any point, as 

the effects of the temperature correction would be largely eliminated by 

subsequent application of the autocalibration. 

Each of the load spectra noted above was subjected to a Gaussian Mixture 

Model (GMM), which separated the spectra into three normal distributions, each 

representing one of three possible loading scenarios: unloaded, partially loaded, 

and fully loaded. Due to the low variability regardless of loading scenario, front 
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axles were modeled with a single normal distribution, and because the models 

perform best when using large sample sizes, only the first installation’s data was 

considered in the analysis. Additionally, only vehicles that were paired and 

considered in the analysis of per-vehicle accuracy were considered in order to 

best demonstrate how the aggregated accuracy method is able to perform 

compared to the per-vehicle accuracy method. 

This analysis first considered the distribution means, to gain a general picture of 

the models’ accuracy, then considered the models’ confidence intervals, and 

finally used statistical t-tests to determine if the models were statistically similar 

to the comparison data. 

4.5.1 Comparison of Distribution Means 

Figure 29 presents graphs of the percent error of the means of the normal 

distributions of the portable WIM GVW, front axle, tandem axle, and tridem axle 

measurements, respectively, as compared to data from WIM station 99 during 

the first installation. These comparisons are made for uncorrected, temperature 

corrected, and autocalibrated data. 
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Figure 29 - Percent error of means of portable WIM loading scenarios during portable WIM Installation 
1 
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 The graphs of the percent error of the means reveal several notable 

observations about the aggregated portable WIM data:  

1. Front axle percent errors were lower for the temperature corrected and 

autocalibrated data (~5%) than for the uncorrected data (~30%) 

2. For GVWs, and tandem/tridem axle groups, temperature corrected and 

autocalibrated data generally had higher errors for unloaded and partially 

loaded distributions, and lower errors for fully loaded distributions.  

3. Unloaded vehicles more often had positive percent errors (portable WIM 

values higher), and partially loaded and fully loaded more often had 

negative percent errors (portable WIM values lower). 

4. No GVW or axle group loading scenario distributions had error of their 

mean lower than the lowest mean per-vehicle error for that axle group or 

GVW as reported in Section 4.4. 

4.5.2 Comparison of Distribution Confidence Intervals 

Figure 30 presents graphs of the percent of the portable WIM normal distribution 

95% confidence intervals that overlaps with the WIM station 99 normal 

distribution 95% confidence intervals for each loading scenario for GVWs, front 

axles, tandem axles, and tridem axles, respectively. These comparisons are 

made for uncorrected, temperature corrected, and autocalibrated data. The 

percent overlap is calculated such that a portable WIM confidence interval fully 

contained by the comparison confidence interval has a 100% overlap, while one 

wholly outside the comparison confidence interval will have a 0% overlap. 
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Figure 30 - Percent of 95% CI overlap portable WIM loading scenarios during portable WIM Installation 
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The graphs of the percent overlap of the 95% confidence intervals reveal several 

notable observations about the aggregated portable WIM data: 

1. For GVW, tandem axle groups, and tridem axle groups, uncorrected data 

had higher percent overlap for unloaded distributions than the other 

processing methods, but for GVW and tridem axles, temperature 

corrected and autocalibrated data had higher percent overlap for fully 

loaded distributions than the uncorrected data. Partially loaded 

distributions had no processing method that revealed consistently higher 

percent overlap. 

2. For front axles, temperature corrected and autocalibrated data had higher 

percent overlap than uncorrected data; autocalibrated data had slightly 

higher percent overlap than temperature corrected data. 

3. There were no systematic trends differentiating the percent overlap of the 

different vehicle configurations. 

4.5.3 t-Test Results 

Table 20 presents the p-values resulting from statistical t-tests comparing the 

loading scenario normal distributions of GVWs for uncorrected, temperature 

corrected, and autocalibrated portable WIM records, respectively, to records from 

WIM station 99 during the first installation. P-values greater than 0.05, which 

indicate that there is insufficient evidence to state that the portable and 

comparison distributions are statistically different, are highlighted.  
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Table 20 - Results of t-tests comparing portable WIM GVW loading scenarios to comparison data 

Processing Method Configuration 
P-value 

Unloaded Partially Loaded Fully Loaded 

Uncorrected 

3-S2 0.00 0.00 0.00 

3-S2-4 0.00 0.00 0.00 

3-S3 0.00 0.00 0.00 

3-S3-S2 0.00 0.00 0.00 

Temperature 
Corrected 

3-S2 0.00 0.00 0.49 

3-S2-4 0.00 0.00 0.59 

3-S3 0.00 0.00 0.69 

3-S3-S2 0.00 0.00 0.94 

Autocalibrated 

3-S2 0.00 0.00 0.45 

3-S2-4 0.00 0.00 0.00 

3-S3 0.00 0.00 0.73 

3-S3-S2 0.00 0.00 0.93 

These results reveal that: 

1. No distributions were statistically similar for uncorrected data. 

2. For temperature corrected and autocalibrated data, the fully loaded 

distributions were more likely to be statistically similar than the unloaded 

or partially loaded distributions. 

3. Both the temperature corrected and autocalibrated data had a majority of 

t-test results indicate statistically similar distributions. 

Table 21 presents the results of statistical t-tests comparing the loading scenario 

normal distributions of front axles for uncorrected, temperature corrected, and 
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autocalibrated portable WIM records, respectively, to records from WIM station 

99 during the first installation.  

Table 21 - Results of t-tests comparing portable WIM front axle load spectra to comparison data 

Processing Method Configuration P-value 

Uncorrected 

3-S2 0.00 

3-S2-4 0.00 

3-S3 0.00 

3-S3-S2 0.00 

Temperature corrected 

3-S2 0.00 

3-S2-4 0.00 

3-S3 0.00 

3-S3-S2 0.00 

Autocalibrated 

3-S2 0.00 

3-S2-4 0.00 

3-S3 0.00 

3-S3-S2 0.00 

These results reveal that all portable WIM front axle load distributions were 

statistically different than those generated from WIM station 99, regardless of the 

processing method or configuration. 

Table 22 presents the results of statistical t-tests comparing the loading scenario 

normal distributions of tandem and tridem axles for uncorrected, temperature 

corrected, and autocalibrated portable WIM records, respectively, to records from 

WIM station 99 during the first installation.  
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Table 22 - Results of t-tests comparing portable WIM axle group loading scenarios to comparison data 

Processing Method 
Config-

uration 

Unloaded Partially Loaded Fully Loaded 

Tandem Tridem Tandem Tridem Tandem Tridem 

Uncorrected 

3-S2 0.00 - 0.90 - 0.47 - 

3-S2-4 0.00 - 0.00 - 0.11 - 

3-S3 0.00 0.00 0.00 0.00 0.77 0.06 

3-S3-S2 0.00 0.00 0.00 0.00 0.00 0.00 

Temperature Corrected 

3-S2 0.00 - 0.00 - 0.30 - 

3-S2-4 0.00 - 0.00 - 0.09 - 

3-S3 0.00 0.00 0.00 0.00 0.00 0.34 

3-S3-S2 0.00 0.00 0.00 0.00 0.88 0.86 

Autocalibrated 

3-S2 0.00 - 0.00 - 0.34 - 

3-S2-4 0.00 - 0.00 - 0.10 - 

3-S3 0.00 0.00 0.00 0.00 0.96 0.31 

3-S3-S2 0.00 0.00 0.00 0.00 0.97 0.97 

These results do not contradict any of the findings from the analysis of the 

difference in the means or the overlap of the confidence intervals, and 

additionally reveal the following: 

1. For all processing methods, as in the GVW results, the fully loaded 

distributions were more likely to be statistically the same than the 

unloaded or partially loaded distributions. Most test results of fully loaded 

distributions were found to be statistically similar. 

2. All three processing methods performed similarly, with uncorrected, 

temperature-corrected, and autocalibrated data returning 5, 5, and 6 
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statistically similar test results, respectively. Only uncorrected data 

returned statistically similar results for partially loaded vehicles. 

4.5.4 Loading Separated Temperature Corrected Results 

The analysis of the GMM-aggregated data reveals that when applying either the 

temperature correction process or the autocalibration process, fully loaded 

vehicle GVW and axle group distributions often have statistically similar results, 

but have much higher error than front axle load distributions, which have means 

of under 5% error. This suggests that per-vehicle accuracy is different under 

different loading scenarios, and that correction made on the basis of front axle 

loads may not result in appropriate corrections to other axles. To investigate 

these findings, an updated temperature correction procedure was been 

developed that applies separate temperature correction factors generated from 

GVWs, rather than front axle loads, to unloaded and fully loaded vehicles. The 

details of this correction procedure, along with the other correction procedures, 

are found in Appendix G.  

Figure 31 displays histograms of the per-vehicle errors from Installation 1 with 

both the initial and loading separated temperature correction procedures applied. 

As the loading separated temperature correction process requires separation of 

unloaded and fully loaded vehicles, only the selected configurations were 

processed and are included in the results in this section, including Figure 31. 
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Figure 31 - Histograms of errors of temperature corrected GVW, axle groups, and axles of selected 
configurations during Installation 1 

Installation 1 Selected Configuration Load Errors 
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Figure 31 shows that the selected axle percent error histograms for the initial 

temperature corrected data have the same single-peak, positively skewed 

distributions that their corresponding histograms for all trucks did, but that the 

load separated temperature corrected data has virtually no skewness. The initial 

temperature corrected data have peaks at approximately 0% error, and the load 

separated temperature corrected data have peaks at approximately 10% error. 

Table 23 further examines these differences, and additionally compares these 

datasets to uncorrected data for selected configurations, through the display of 

key statistics. 
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Table 23 - Key statistics of selected configuration axle load errors for temperature correction 
procedures during Installation 1 

Statistic Axle Group 
Uncorrected 

Value 

Load Separated 
Temperature 

Corrected Value 

Initial 
Temperature 

Corrected 
Value 

Mean 

GVWs -7.0% 19.0% 25.3% 

Tandem Axles 0.7% 28.4% 35.5% 

Tridem Axles 17.3% 42.0% 57.2% 

Individual Axles -2.3% 23.9% 31.3% 

Median 

GVWs -10.5% 15.5% 20.6% 

Tandem Axles -7.2% 21.0% 24.6% 

Tridem Axles 9.3% 33.4% 47.3% 

Individual Axles 11.6% 17.2% 18.6% 

Standard 
Deviation 

GVWs 20.8% 26.6% 27.7% 

Tandem Axles 32.9% 41.6% 44.4% 

Tridem Axles 42.2% 44.7% 56.4% 

Individual Axles 36.9% 46.2% 49.5% 

ASTM Type 
II 

Compliance 

GVWs (15%) 48.3% 44.7% 40.3% 

Tandem Axles (20%) 55.2% 45.7% 43.7% 

Tridem Axles (20%) 38.0% 32.0% 31.6% 

Individual Axles (30%) 72.3% 64.5% 60.9% 

95% of 
Results 
Within 

GVWs 36% 61% 71% 

Tandem Axles 57% 92% 110% 

Tridem Axles 87% 116% 150% 

Individual Axles 61% 91% 114% 

These statistics reveal several key observations about the temperature correction 

procedures: 



 

147 

 

1. Both temperature correction procedures shifted the dataset means and 

medians positively; the uncorrected data had negative or near-zero means 

and medians, while the temperature corrected data had positive means 

and medians. 

2. Both temperature correction procedures had poorer results than the 

uncorrected data for standard deviation, ASTM type II compliance, and 

‘95% of results within’, but by small margins (e.g., ASTM compliance is 

3.6% to 11.4% lower). 

3. The load separated temperature corrected data had better results than the 

initial temperature corrected data for standard deviation, ASTM type II 

compliance, and ‘95% of results within’, but by small to insignificant 

margins (e.g., ASTM compliance is 0.4%-4.4% higher). 

4.6 DISCUSSION 

4.6.1 Qualitative Observations 

During all three installations, the portable WIM unit was observed periodically to 

inspect physical wear on the sensors. Table 24 shows pictures from near the 

beginning and the end of each installation, noting the total traffic volume that 

each installation experienced, including during calibration. The ‘Late Photograph’ 

column does not show photos taken after the volume stated has passed, only 

one taken near the end of the installation. 
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Table 24 - Photographs of portable WIM sensors at beginning and end of each installation 

Installation Early Photograph Late Photograph 

1 

 

June 27, 2019 (Installation Day 1) 

 

 

July 15, 2019 (Installation Day 19) 

Total Traffic Volume: 70030 

2 

 

July 17, 2019 (Installation Day 1) 

 

 

July 27, 2019 (Installation Day 11) 

Total Traffic Volume: 59457 

3 

 

October 18, 2019 (Installation Day 3)  

 

 

October 23, 2019 (Installation Day 8) 

Total Traffic Volume: 42504 
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These photographs show that over the course of all three installations, very little 

visible physical damage occurred to the sensors; the effects were primarily seen 

in a small amount of bunching of the pocket tape and protective tape layers at 

the leading edge of the sensors (left side in all pictures), and a small amount of 

pulling up in some of the installation screws. This confirms that the installation 

method used was effective in securing the sensors in the long term, though the 

comparative accuracy of a different installation method is unknown. 

4.6.2 Implications for a Portable WIM Data Collection Program 

The objectives of this research were to evaluate the feasibility of using a portable 

WIM data collection program to collect useful axle load data and to inform how to 

most effectively conduct such a program. To do this, recommendations have 

been developed surrounding installation practices, data processing procedures, 

and how the data can be applied most effectively. 

The analysis of erroneous vehicle records (section 4.1) revealed that for the one 

installation (Installation 2) that had an increased rate of erroneous vehicle 

records, the most common error codes were those for ‘vehicle too slow’ and ‘only 

one axle detected’. These indicate that one of the two sensors may have been 

intermittently malfunctioning during the collection of these records, resulting in 

vehicles that missed recording one or more axles. This may indicate equipment 

damage, but for the fact that the subsequent Installation 3 recorded a low rate of 

error codes, as in Installation 1. This suggests that the intermittent malfunction 

was possibly the result of improper installation (e.g., improperly connected 
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wires). Regardless of the cause, the observation serves to highlight the 

importance of taking proper care during installation. This is especially important 

when noting that the analysis also found that erroneous vehicle records were 

most likely to affect vehicles with three or more axles, which are typically the 

vehicles of most interest to WIM data analysts. 

The error codes did not indicate any difference between a full and half lane 

installation, so a recommendation for sensor lane coverage cannot be made on 

that basis. However, the analysis of the daily error percentiles and ASTM 

compliance (section 4.4.2) provided some insight into the differences based on 

accuracy. When comparing Installation 1 and Installation 2, which were identical 

except for the sensor lane coverage and conduct of an initial calibration for 

Installation 1, the daily accuracies of the half-lane sensor coverage Installation 2 

(0 to 7% ASTM compliance for uncorrected GVWs) were consistently lower for 

uncorrected data than those of the full lane sensor coverage Installation 1 (40% 

to 58% ASTM compliance for uncorrected GVWs). This could be attributable 

either to the re-installation without re-calibration, which may have changed the 

way the axle loads were felt by the sensors in small, but consequential, ways, or 

the sensor lane coverage. The sensor lane coverage might have had decreased 

accuracy because half lane coverage does not account for any left to right 

imbalances in the measured vehicles, and the cross-slopes of the highways 

would likely lead to systematic imbalances in the vehicles. 
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The standard deviations of error calculated for each installation showed no clear 

bias as to whether full or half lane sensor coverage provided more precise 

results. Installation 2 (half lane) consistently had the highest standard deviation, 

while Installation 1 and Installation 3 uncalibrated (full and half lane, 

respectively), had approximately equal standard deviations. Based on these 

findings, full lane sensor coverage is recommended for future portable WIM 

installations that use 12-foot sensors; further research is needed to determine if 

using 6-foot sensors would provide increased accuracy or precision. 

The analysis of the calibration drift revealed that the calibration drift relationship 

during Installation 1 remained consistent for 12 days. Additionally, analysis of the 

daily ASTM compliance during Installations 1 and 2 showed a pattern of 

decreasing compliance over the duration of both installations. Therefore, 

regardless of whether an initial calibration is performed, shorter installations will 

generally yield higher accuracy data. However, in order to capture any weekly 

loading patterns and avoid bias to higher- or lower-load days, installations should 

have durations covering intervals of 7 days. A 7-day installation will allow a full 

week of data to be collected while staying within the period of consistent 

calibration drift and is recommended for these reasons. 

The analysis of the per-vehicle data validity revealed that the portable WIM 

system was unable to achieve the accuracies required for ASTM type II WIM 

data for any installation or processing method. This suggests that portable WIM 

data is not accurate enough to be applied directly to design applications. 
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However, the differences between installations and processing methods revealed 

how a reasonable level of data quality could be achieved.  

The per-vehicle data validity analysis revealed that an initial calibration generally 

improves data validity. When considering uncorrected data, Installation 2, which 

had no calibration, performed the worst in almost all statistics for GVW, axle 

group loads, and individual axle loads, while Installation 1, which was initially 

calibrated, performed the best. The difference in accuracy was further illustrated 

in the daily measure of ASTM compliance, which showed a gradual decline in 

accuracy during both installations, with a sharp drop in accuracy from the end of 

Installation 1 to the beginning of Installation 2. Though by smaller margins, the 

calibrated dataset from Installation 3 also had higher accuracy than the 

uncalibrated dataset from Installation 3, which confirms that an initial calibration 

improves the accuracy of the load data. It is, however, notable that for the two 

datasets from Installation 3, the calibrated dataset had higher standard 

deviations, indicating a loss of precision that comes with the increase in 

accuracy. This loss of precision was also reflected in greater values for ‘95% of 

results within’ for the calibrated Installation 3 dataset. An additional important 

observation is that both temperature correction and autocalibration reduced the 

improvement in accuracy gained from the initial calibration to the point of 

eliminating it in many datasets; however, percent error histograms showed that 

initially calibrated datasets still often had peaks closer to 0% than uncalibrated 

datasets, so calibration for these datasets can still be said to have benefits. Due 
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to these findings, an initial calibration is recommended for all portable WIM 

installations to ensure load data of maximum accuracy. 

The analysis of the benefits of post-processing the data revealed that the two 

processes examined in the per-vehicle analysis, temperature correction and 

autocalibration, did not increase the validity of the data as measured by the 

ASTM compliance and ‘95% of results within’, except in the case of Installation 2, 

which had low validity both before and after processing. In every dataset tested, 

both processing methods increased the standard deviation. However, 

observation of the percent error histograms revealed that the processed data, 

particularly the temperature corrected data, typically had peaks closer to 0% 

error. Therefore, it can be seen that the post processing was able to correct a 

portion of the data to within a small margin of error, but pushed an equally large 

portion of the data further out of compliance. 

This effect was further explored in the analysis of the loading separated 

temperature correction process, which, though it was unable to achieve ASTM 

type II accuracy standards for the selected loads on which it was performed, did 

improve on the initial temperature correction process in all statistics, and showed 

that the positive skewness seen in all other error histograms can be corrected. 

While all the processing methods tested in this research failed to improve upon 

the uncorrected data set’s accuracy and precision, the load-separated 

temperature correction process showed that more sophisticated data correction 

can lead to improved accuracy. This suggests that further research may be able 



 

154 

 

to develop correction processes that can improve significantly on the validity of 

the uncorrected data. 

Overall, Installation 1, which was the only initially calibrated, full-lane installation 

performed, had ASTM type II compliance of between 38.0% and 71.4% for 

uncorrected data for the GVW, axle groups, and individual axles. As these 

compliance rates indicate that the portable WIM is unable to achieve ASTM type 

II accuracy under any conditions, they beg the question of what standard they 

are able to achieve. The calculation of the ‘95% of results within’ statistic 

indicates that the Installation 1 uncorrected data falls within error tolerances 2 to 

3 times the magnitude of the ASTM type II standard for GVW (30 to 45%), 

tandem axles (40 to 60%), and individual axles (60 to 90%), though tridem 

axles fall within an error tolerance 4.5 times the ASTM type II standard (90%). As 

tolerances 2-3 times the ASTM type II standard represent a significant lower 

accuracy than the standard demands, research into the accuracy standard 

required for various indirect applications of load data would further indicate how 

useful the per-vehicle data truly is.  

The analysis of aggregated data validity revealed that during Installation 1, the 

percent errors of GVW distribution means for uncorrected data were between -

31% and 27%; these values were generally larger than the difference in the per-

vehicle mean GVW error, indicating no overall accuracy benefit due to the 

aggregation.  
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The aggregated data analysis was not as conclusive as the per-vehicle analysis 

with regard to which data processing method was the best option. While the 

distribution comparisons for tandem and tridem axles were erratic even within a 

single processing method, those for GVW and front axles showed greater 

consistency and revealed some key trends in the data. The analysis of the 

difference in GMM distribution means and 95% confidence interval overlaps 

showed that for the three loading scenarios (empty, partially loaded, fully loaded), 

uncorrected data had the lowest mean difference and highest confidence interval 

overlap across the three scenarios. Temperature corrected and autocalibrated 

data often had very low error of distribution means and high confidence interval 

overlaps for fully loaded vehicles, performing better than the uncorrected data. 

This resulted in 9 of 10 t-tests of temperature corrected, fully loaded vehicle 

distributions and 9 of 10 t-tests for autocalibrated, fully loaded distributions noting 

statistically similar distributions. Additionally, the percent difference of distribution 

means was lower for front axles of temperature corrected and autocalibrated 

data than uncorrected data. This can be attributed to both procedures’ use of 

only front axle load data to calibrate the system.  As the temperature correction 

has a stronger theoretical basis, temperature correction is recommended over 

autocalibration for examining fully loaded vehicle distributions, though 

development and application of more sophisticated correction procedures, such 

as was done with the loading separated temperature correction procedure, may 

prove beneficial in the future. 
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The specific areas of increased accuracy in the aggregated data could support 

specific indirect applications of the axle load data. For example, the high 

accuracy noted for processed, fully loaded vehicle distributions could allow for a 

selection of data to be highly useful for freight planning purposes. Alternatively, 

as the GVW and front axle loads for uncorrected data showed significant, but 

consistent errors, these could form the basis for a procedure to select a 

representative axle load spectrum from a predefined list, as has been done in 

other jurisdictions. These efforts would require more research and development, 

but the aggregated data validity analysis showed that this approach can lead to 

more insights than simple per-vehicle analysis.  
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5 CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the key findings and recommendations from the research 

and presents opportunities for future research in portable WIM systems. 

5.1 SUMMARY OF KEY FINDINGS 

This research investigated many aspects of the data collected from the portable 

WIM system, developed and applied several data processing methods, and used 

those investigations and processing methods to contribute new knowledge about 

the validity of portable WIM data. The key findings from this research follow: 

• Error codes were recorded for 4% of Installation 1 portable WIM records, 

28% of Installation 2 records, and 4% of Installation 3 records. The codes 

recorded indicated that the sensor was functioning only intermittently, and 

that the errors may have resulted from installation issues. Analysis of 

successfully paired vehicles by axle count revealed that the erroneous 

records were more likely to occur for vehicles with three or more axles. 

• A measurable calibration drift was found to occur for the duration of 

Installation 1, which was initially calibrated. The measured trend was 

found to be consistent for the first 12 days of the installation. Investigation 

into the best explanation for the drift found no significant differences 

between time, number of vehicles passed, and number of trucks passed 

as the explanatory variable. 
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• Analysis of the effect of temperature on the measured axle loads found 

that an open-air temperature sensor was better able to predict the front 

axle loads of the portable WIM system than an in-pavement sensor. The 

relationship between temperature and selected front axle loads was found 

to be statistically significant and remained consistent as the calibration of 

the portable WIM system drifted. Corrections to the load values based on 

the measured temperature were applied to the loads, but were found to 

not change the portable WIM values by significant amounts. 

• Analysis of the effect of vehicle speed on the measured front axle loads 

found that speed had a statistically significant effect on non-front axle load 

accuracies for selected vehicle. However, these effects were not 

significant in their impact on the loads and were inconsistent across 

different configurations and axle groups, resulting in an inability to 

construct correction factors on the basis of vehicle speed. 

• Analysis of the per-vehicle data validity found that initial calibration was a 

strong factor in increasing the accuracy of the portable WIM loads. 

Temperature correction and autocalibration were found to either decrease 

both accuracy and precision or provide no improvement. 

• Analysis of the first two portable WIM installations found a significant drop 

in ASTM compliance between the end of Installation 1 and the beginning 

of Installation 2, indicating that half lane sensor coverage provides less 

accuracy than full lane sensor coverage when 12-foot sensors are used 

for both installation methods. 
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• Analysis of the aggregated data validity separated the portable WIM data 

into normal distributions for each loading scenario (empty, partially-loaded, 

fully-loaded) and found that front axle and GVW generally had consistent 

percent differences in distribution means and percent overlap of the 

distributions’ 95% confidence intervals. This indicated potential usefulness 

for several indirect applications, but no accuracy gained beyond that seen 

in the per-vehicle validity analysis. Tandem and tridem axle groups were 

inconsistent and not recommended for use. Uncorrected data was the 

most consistent across all three GVW loading scenarios, but post-

processed data showed consistently high accuracy for fully loaded 

vehicles, with most statistical t-tests indicating that the portable WIM’s fully 

loaded, temperature corrected or autocalibrated distributions were not 

statistically different than those from the comparison dataset. 

• Application of the findings of the aggregated data validity analysis in the 

loading separated temperature correction procedure resulted in per-

vehicle data that was not as accurate or precise as the uncorrected data, 

but was measurably improved from the initial temperature correction 

procedure, and provided the only non-skewed error histograms. 

• Analysis of the per-vehicle data revealed that even the dataset with the 

most accurate data is unable to meet the accuracy required of ASTM type 

II WIM data. With the processing and calibration used in this research, 

error tolerances 2 to 3 times higher than those specified by ASTM type II 

would be required to allow most load categories to meet this standard. 
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5.2 SUMMARY OF KEY RECOMMENDATIONS 

The key recommendations arising from this research follow: 

• Portable WIM installations should be installed carefully and checked to 

ensure that all parts of the system are operating as expected. 

• If 12-foot sensors are the only sensors available, portable WIM 

installations should install sensors to cover a full lane of traffic. 

• Portable WIM installations should be initially calibrated using a test truck. 

• When seeking to use portable WIM data on a per-vehicle basis, the data 

should not be post-processed with any of the methods tested in this 

research unless no calibration is conducted at the beginning of the 

installation. 

• Any temperature correction should be based on temperature 

measurements taken by a probe that is left open to the air, rather than 

installed in the pavement. 

• The GMM-based aggregated data approach can be used to gain insights 

about specific loading scenarios for GVWs, but should not be considered 

to be more accurate overall than per-vehicle data. When seeking to use 

GMM analysis to examine fully loaded vehicle GVWs, temperature 

correction should be applied.  

• Portable WIM installations (initially calibrated) should be installed for 7 

days (1 week) to ensure sufficient data of the highest possible accuracy. 
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• Practitioners seeking to utilize portable WIM data should be mindful of the 

accuracy and precision of the data, and the follow-on implications for 

various applications.  

5.3 OPPORTUNITIES FOR FUTURE PORTABLE WIM RESEARCH 

This research has identified the following opportunities for future research into 

portable WIM systems: 

• This research analyzed three installations of the portable WIM system. 

Performing this research again with a greater number of installations, with 

attention paid to various installation practices and recorded variables, 

would serve to clarify and expand upon the findings presented in this 

research in three ways. First, by installing the portable WIM at sites with 

varying traffic volumes and classification distributions, the multicollinearity 

seen between the calibration drift explanatory variables could be 

eliminated to better explore the difference in explanatory power between 

the variables. Second, by gathering more data, the relationship between 

speed and axle loads could be better explained. If a consistent 

relationship was found, correction factors based on speed could be 

calculated, applied, and analyzed. Third, a greater number of installations 

would serve to reinforce and/or clarify the findings of the efficacy of the 

GMM-based aggregated data approach. 

• This research found that both temperature correction and autocalibration 

decreased both accuracy and precision, but adjusted the peaks of the 
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error histograms to be closer to 0% error. Moreover, the loading separated 

temperature correction procedure was able to improve on the initial 

temperature correction procedure’s results. Future research could explore 

additional alternative versions of these correction procedures to fully 

realize their benefits and minimize the issues they create. 

• This research found that portable WIM data is unable to achieve ASTM 

type II accuracy standards. Research into the level of accuracy required 

for freight planning analyses and other indirect applications could reveal to 

what degree portable WIM data are able to fulfill the data requirements of 

these applications. 

• The data validity analyses suggest a possible use case of the portable 

WIM data for indirect applications or to support high-level freight 

transportation planning efforts. Future research could determine what level 

of data quality is necessary to apply portable WIM data in this way, as well 

as how to best apply portable WIM data in these applications.  
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APPENDIX A: VEHICLE PAIRING PROCEDURES 

To assess the per-vehicle validity of the portable WIM axle load measurements, 

the individual vehicle records generated by the portable WIM system and the 

comparison datasets needed to be paired. The two sources of comparison data – 

the Headingley weigh scale and WIM station 99 – have several key differences, 

and two different vehicle pairing methods were required. 

WIM Station 99 Vehicle Pairing Procedure 

The 2 portable WIM installations at WIM station 99 each had 2 datasets that 

required pairing: (1) the per-vehicle records from the portable WIM system, and 

(2) the per-vehicle records from WIM station 99. The pairing process was done 

primarily by matching the vehicle record timestamps; Figure 32 provides a 

flowchart of the steps in the vehicle pairing process. The steps referenced in 

Figure 32 are described in detail after the figure. 
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Figure 32 - WIM station 99 vehicle pairing procedure algorithm 

The steps listed in Figure 32 are described below.  
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1. The fields Year, Month, Day, Hour, Minute, and Second were combined 

into a single Datetime field for both the portable and permanent WIM 

datasets. Due to different date settings, Datetime was not an exact match 

between the two datasets. To calculate the difference in Datetime, two 

uncommon truck classes were isolated using the automatically calculated 

Class field. These two classes (class 15 and class 4) had low sample 

sizes in Installation 1 so they could be easily manually paired, ensuring 

that the difference in Datetime between the portable and permanent 

datasets was approximately equal in all pairs. 11 of the 12 class 15 

records were paired, giving a consistent difference in Datetime 

(DatetimeDifference). DatetimeDifference was found to change part of the 

way through Installation 1 as the clock settings were re-set to be more 

accurate; the two values of DatetimeDifference were used to pair 103 of 

the 110 class 4 records. The paired class 4 record set was of sufficient 

size to change in the datetime difference for each day of installation within 

a pair of records, or ‘drift’ (DatetimeDifference). These variables were used to 

create Equation 5, which predicts the permanent WIM Datetime value for 

each portable WIM vehicle record. 

Equation 5 

𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 = ∆𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 𝐷𝑎𝑦𝑠𝐸𝑙𝑎𝑝𝑠𝑒𝑑 + 𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒𝑃𝑜𝑟𝑡𝑎𝑏𝑙𝑒 + 𝐷𝑎𝑡𝑒𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

2. Create a tentative match for each portable WIM vehicle record based on 

its Datetime value and number of axles. Each record had a value of 
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Datetimepermanent calculated using Equation 5 to serve as a starting point 

when looking for a matching permanent WIM Datetime.  

3. Create a list of additional potential permanent WIM Datetime values (the 

Expected Datetimes List) to consider to account for small variations from 

the expected value. This list of potential permanent WIM Datetime values 

was given an order of priority; Table 25 shows these assigned priorities. 

Table 25 – Priority values of the Expected Datetimes List 

Priority Expected Permanent WIM Datetime Value 

1 Datetimepermanent  

2 Datetimepermanent + 1 second 

3 Datetimepermanent - 1 second 

4 Datetimepermanent + 2 seconds 

5 Datetimepermanent - 2 seconds 

6 Datetimepermanent + 3 seconds 

7 Datetimepermanent - 3 seconds 

8 Datetimepermanent + 4 seconds 

9 Datetimepermanent - 4 seconds 

10 Datetimepermanent + 5 seconds 

11 Datetimepermanent - 5 seconds 

4. Consider each item in the Expected Datetimes List in order of priority, as a 

potential match value for a permanent WIM Datetime. Any permanent 

WIM Datetime that matched one of the predicted values from the list was 

considered a potential match and was added to the Potential Matches List.  

5. Starting with the highest priority value item in the Potential Matches List, 

compare the number of axles between the potentially matched records. 
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The first match that had an equal number of axles for the portable WIM 

and permanent WIM records was the tentative vehicle record match. 

6. Fix those situations where multiple portable WIM vehicle records were 

initially paired to a single permanent WIM vehicle record by re-assigning 

them to permanent records based on ‘logical sequencing’. The logical 

sequencing method ignores the vehicle Datetime values and uses the 

order in which the portable and permanent records are listed in to make a 

match. If the number of consecutive portable vehicle records that matched 

with a single permanent WIM vehicle record is equal to the number of 

permanent WIM vehicle records between successful matches (matches 

with only one portable WIM vehicle record matched with the permanent 

WIM vehicle record), the portable WIM vehicle records that matched to the 

single permanent WIM vehicle record are re-assigned to the permanent 

WIM vehicle records between successful matches, maintaining the order 

of the permanent WIM records. Figure 33 displays an example of this 

process. 
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Figure 33 - Example of logical sequencing vehicle record pairing method 

7. Re-check all records that were re-matched with the logical sequencing 

method to ensure that the new permanent WIM record fell within +/- 5 

seconds of Datetimepermanent and that the number of axles of the two 

records were equal. If either of these conditions is not met, the match is 

discarded and no match is used. 

Headingley Weigh Scale Vehicle Pairing Procedure 

Portable WIM Installation 3 at the Headingley weigh scale yielded 3 sources of 

data: (1) the per-vehicle records from the portable WIM system, (2) the manually 

entered per-vehicle records from the Headingley weigh scale, and (3) the video 
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taken of vehicles passing the portable WIM system. Figure 34 displays a 

flowchart of the steps in the vehicle pairing process. The steps referenced in the 

figure are described in detail after the figure. 

 

Figure 34 - Static weigh scale vehicle pairing algorithm 

The steps listed in Figure 34 are described below. 
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done manually; the vehicles in the video were identified by axle 

configuration, body type, and visual characteristics, combined with the 

knowledge that the timestamp on the static scale data would be between 4 

and 8 minutes behind the timestamp on the video. Figure 35 gives an 

example video frame with the descriptive information that was used to 

identify the pictured vehicle. 

 

Figure 35 - Screenshot from camera installed at portable WIM system with accompanying information 

2. Calculate the expected Datetimeportable for each static scale record. To do 

this, the video timestamps for each vehicle record from the static scale 

were combined with the dates they were recorded on to create Datetime 

values for each static scale record. Then, the first several of these 

Datetimes were matched with portable WIM records that had the same 

Description 

Configuration 

Blue cab 

3-S3 

Body Type Flat deck 
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number of axles, ensuring that the difference in timestamp was consistent 

between these pairs. This established the DatetimeDifference for the 

installation. The short duration of the test meant that the drift in Datetime 

difference was not significant enough to require calculation. 

3. Create a list of additional potential portable WIM Datetime values (the 

Expected Datetimes List) whose consideration would account for small 

variations from the expected value. This list of potential portable WIM 

Datetime values was given an order of priority as in step 3 of the WIM 

station 99 pairing procedure; Table 25 shows these assigned priorities. 

4. Consider each item in the Expected Datetimes List, in order of priority, as 

a potential match value for a permanent WIM Datetime. Any permanent 

WIM Datetime that matched one of the predicted values from the list was 

considered a potential match, and was added to the Potential Matches 

List.  

5. Starting with the highest priority value item in the Potential Matches List, 

compare the number of axles between the potentially matched records. 

The first match that had an equal number of axles for the portable WIM 

and permanent WIM records was the tentative vehicle record match. 

There were no instances of multiple records from either dataset pairing to a 

single record from the other, so the logical sequencing method was not required 

for this process. 
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APPENDIX B: PERMANENT WIM STATION 99 DATA 
EVALUATION 

The first preliminary data quality assessment was of the permanent WIM station 

99 data. WIM data is always specified to have accuracy only within a certain 

range (ASTM International, 2009), so a degree of inaccuracy and imprecision 

was expected. Therefore, while the in-road piezo-quartz sensors of WIM station 

99 provide higher quality data than the portable WIM system, the permanent 

WIM system cannot be considered to be a source of ground truth data in the 

same way the static weigh scale can. Here, ground truth data refers to data 

collected from the most accurate source available, which in the case of axle load 

data refers to data collected from a static weigh scale. This assessment 

determined the validity of the permanent WIM station data by comparing the five 

weeks of permanent WIM data during the portable WIM installations to each 

other, then comparing the permanent WIM data to the static scale data. 

To calculate the precision of the WIM station 99 data over the relevant period 

(the five weeks of the portable WIM system installations), the four selected 

vehicle configurations were considered: 3-S2, 3-S3, 3-S3-S2, and 3-S2-4 

vehicles. These four configurations are FHWA class 9, 10, 13, and 15 

respectively, but as each of these classes includes configurations other than the 

four listed, the selection algorithm described in Appendix D was used to select 

only the correct configurations. These configurations were selected because they 

are among the most common configurations found in southern Manitoba, which 

means both that it is important to weigh these configurations in particular 
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accurately, and that sufficient sample sizes of all four configurations can be found 

for statistical purposes. 

To evaluate the precision over time of the selected configurations, statistical t-

tests were used to compare the load distribution of each configuration’s axle 

groups and GVW in the first week of portable WIM installation, which was also 

the first week after station 99’s calibration, to each of the other 4 weeks of the 

portable WIM system installations. Table 26 shows the p-value of each of these t-

tests, with those t-tests that failed to reject the null hypothesis at a p-value of 

0.05 highlighted. These highlighted p-values are the tests that show statistically 

similar axle group load or GVW distributions, while unhighlighted cells show 

statistical differences. 
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Table 26 – P-values from t-tests comparing weeks of WIM station 99 axle load data over the portable 
WIM installation 

Configuration Axle Group 
2 Weeks Post-

Calibration 
3 Weeks Post-

Calibration 
4 Weeks Post-

Calibration 
5 Weeks Post-

Calibration 

3-S2 

Single 0.0297 0.0700 0.331 0.836 

Tandems 0.00535 0.0215 0.196 0.427 

GVW 0.0310 0.0757 0.384 0.576 

3-S3 

Single 0.0429 0.119 0.491 0.133 

Tandem 0.632 0.00345 0.444 0.879 

Tridem 0.867 0.0363 0.735 0.758 

GVW 0.869 0.0109 0.880 0.734 

3-S3-S2 

Single 0.755 0.998 0.769 0.836 

Tandems 0.0828 0.000768 0.00214 0.000736 

Tridem 0.134 0.0124 0.0295 0.00211 

GVW 0.165 0.0117 0.0259 0.00289 

3-S2-4 

Single 0.148 0.719 0.116 0.0218 

Tandems 0.467 0.426 0.0263 0.00345 

GVW 0.645 0.580 0.0882 0.0225 

These results show the station 99 axle load measurements to be largely self-

consistent in time. Of the 56 t-tests conducted, 35 (63%) failed to find statistically 

significant differences between the datasets, and in any one week, at least 7 out 

of 14 tests failed to find differences. Those tests that did find statistically 

significant differences in the data that could be attributed to one of three 

explanations:  

1) The vehicles that passed WIM station 99 in that week had significantly 

different axle loads than the first week of the portable WIM installation, 
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2) The WIM sensors shifted in their calibration and recorded different axle 

loads despite the axle loads truly being similar, 

3) The t-test results are displaying Type I error, where a null hypothesis that 

is correct is rejected due to the specific samples that were used. 

The only one of these explanations that would indicate that the WIM station 99 

data is not an appropriate comparison dataset is explanation 2. However, the 

lack of a clear trend toward greater differences in the datasets indicates that this 

is not likely the explanation. Therefore, the WIM station 99 data can be said to be 

sufficiently self-consistent to use as a comparison dataset for the portable WIM 

system. 

To determine the accuracy of the WIM station 99 data, percentiles from 0.05 to 

0.95 in increments of 0.05 were calculated for each axle group’s weight for each 

configuration for both WIM station 99 and the Headingley weigh scale. With the 

Headingley weigh scale percentiles taken as the real values, the percent error of 

each the WIM station 99 percentiles was calculated. Calculating the error of each 

percentile between the two data sources allows the analysis to identify the 

magnitude of any systematic differences between the two data source’s weight 

measurements to be identified. Figure 36 displays graphs of these percent error 

values; these graphs show how the error of the permanent WIM load values 

changes for different load magnitudes 
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Figure 36 – Percent error of WIM station 99 weight percentiles as compared to static weigh scale data  
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These graphs show that the single (front) axles of trucks are measured 

approximately 7% higher at WIM station 99 that at the static weigh scale, but that 

other axle groups and GVWs have percentile errors of up to 26% in 3-S3 

vehicles, 70% in 3-S3-S2 vehicles, and 16% in 3-S2-4 vehicles. The fact that this 

is seen most pronounced in 3-S3-S2 vehicles, specifically in the tridem axle 

group, and at higher loads of the 3-S3 vehicles, indicates that these differences 

are not solely attributable to issues with the WIM’s accuracy, but also indicate 

that the vehicle samples captured at the two locations have different loading 

scenarios (i.e. a higher percentage of loaded vs. unloaded vehicles), causing 

inaccuracy in those configurations that typically carry heavier loads. Due to the 

consistently low values of the single (front) axle load error, as well as the 

relatively low error values of the other axle groups and GVW of 3-S2 vehicles, 

which have the largest sample size of the four configurations, the weight data 

from WIM station 99 will be said to be valid as a comparison dataset for the 

portable WIM system.  
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APPENDIX C: POST-PROCESSING CALIBRATION 
PROCEDURE AND EVALUATION 

One of the primary data limitations of the research was the inability to capture 

data comparing the calibrated portable WIM system measurements to static 

weigh scale data. To compensate for this, a post-processing calibration 

procedure was devised which would allow the uncalibrated portable WIM data 

collected at the static weigh scale to be calibrated using a limited number of 

static weigh scale records, after which the calibration would be complete and the 

portable WIM system allowed to drift in its calibration as it would in a real 

calibration scenario. This process is an entirely separate procedure from 

autocalibration, which is described in 3.4.4. 

The post-processing calibration procedure is similar to the calibration procedure 

described in section 3.2.3. Equation 6 and Equation 7 generated the values for 

Fcalibration and Fdynamic in the post-processing calibration. These equations were 

derived from Equation 3 and Equation 4 in section 3.2.3, but instead of a single 

static scale load, they use the paired static scale loads from the manual data 

collection at the Headingley weigh scale. 

Equation 6 

𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 =
(∑ 𝐿𝑜𝑎𝑑𝐷𝑟𝑖𝑣𝑒,   𝑆𝑡𝑎𝑡𝑖𝑐 𝑆𝑐𝑎𝑙𝑒

𝑛
𝑟𝑒𝑐𝑜𝑟𝑑=1 + ∑ 𝐿𝑜𝑎𝑑𝑅𝑒𝑎𝑟 𝑡𝑎𝑛𝑑𝑒𝑚,   𝑆𝑡𝑎𝑡𝑖𝑐 𝑆𝑐𝑎𝑙𝑒

𝑛
𝑟𝑒𝑐𝑜𝑟𝑑=1 )

(∑ 𝐿𝑜𝑎𝑑𝐷𝑟𝑖𝑣𝑒,   𝑊𝐼𝑀
𝑛
𝑟𝑒𝑐𝑜𝑟𝑑=1 + ∑ 𝐿𝑜𝑎𝑑𝑅𝑒𝑎𝑟 𝑡𝑎𝑛𝑑𝑒𝑚,   𝑊𝐼𝑀

𝑛
𝑟𝑒𝑐𝑜𝑟𝑑=1 )

 

Equation 7 

𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
(∑ 𝐿𝑜𝑎𝑑𝑆𝑡𝑒𝑒𝑟,   𝑊𝐼𝑀

10
𝑟𝑒𝑐𝑜𝑟𝑑=1 )

(∑ 𝐿𝑜𝑎𝑑𝑆𝑡𝑒𝑒𝑟,   𝑊𝐼𝑀
10
𝑟𝑒𝑐𝑜𝑟𝑑=1 ) ∗  𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
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These factors were calculated and applied once each for the entire system, 

instead of calculating them separately for each WIM sensor. To imitate the actual 

calibration procedure as closely as possible, only successfully paired 3-S2 

vehicles that were loaded to >=35000 kg as determined by the static scale and 

were traveling >=80 km/h as measured by the portable WIM system were used 

for calibration; 59 records met this criteria. 

As the post-processing calibration uses multiple unique ‘test truck’ records from 

the static scale data instead of a single test truck, it was possible that the post-

processing calibration would not accurately represent a real calibration. The two 

issues here were: 

1) Vehicles of multiple weights were used in the post-processing 

calibration, and 

2) The vehicles that were used were recorded over an entire week 

instead of on a single day. 

To ensure that no inaccuracy in the calibration was introduced by the multiple 

vehicle weights, the accuracy of the uncalibrated WIM measurement of each 

vehicle’s steering and combined tandem axles was calculated; Figure 37 displays 

the scatterplots of these accuracies.  
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Figure 37 - Relationship of axle load measurements to percent error in portable WIM post-processing 
calibration 

The scatterplots in Figure 37 show that that there is an approximately equal 

range of percent error values at all axle load measurement values for both the 

front axles and the combined tandem axle groups. This indicates that the 

generated calibration factors will be approximately the same for any vehicle 

weight. The low R2 values of the linear trendlines (<0.2 for both graphs) support 

this finding. 

y = -8E-05x + 0.1546
R² = 0.163

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

4000 4500 5000 5500 6000 6500

Fr
o

n
t 

A
xl

e 
P

er
ce

n
t 

Er
ro

r

Axle Load (kg)

Front Axles Load/Accuracy Relationship

y = -6E-06x - 0.0784
R² = 0.028

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

29000 30000 31000 32000 33000 34000 35000

N
o

n
-F

ro
n

t 
A

xl
es

 P
er

ce
n

t 
Er

ro
r

Sum of Axle Groups Load (kg)

Combined Tandem Axles Load/Accuracy Relationship



 

196 

 

To ensure that no inaccuracy in the calibration was introduced by the passage of 

time between the axle load measurements, the measurements were grouped by 

day of installation, and each group was used to generate the calibration factors. 

Table 27 compares these calibration factors. 

Table 27 - Post-Processing calibration factors for each day of portable WIM installation 

Date 
Number of Qualifying 

Measurements 
Fcalibration Fdynamic 

Oct. 17 8 1.398 1.043 

Oct. 18 13 1.402 1.048 

Oct. 21 10 1.396 1.060 

Oct. 22 10 1.382 1.008 

Oct. 23 18 1.367 1.006 

 

To determine if the generated calibration factors from this process were affected 

by the passing of time, the R2 values for the correlation of both Fcalibration and 

Fdynamic to the date were generated. Fcalibration had an R2 value of 0.71, indicating a 

strong relationship, while Fdynamic had an R2 value of 0.41, indicating a moderate 

relationship. As these relationships are non-trivial, the passage of time can be 

said to have a statistically significant impact on the calibration factors, despite the 

fact that the values of Fcalibration and Fdynamic do not change by a significant amount 

(<0.05 for both). Due to this, the calibration factors generated from vehicles 

recorded on October 17 at the beginning of the installation were used in the post-

processing calibration procedure as performed on the third installation portable 

WIM dataset.  
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APPENDIX D: VEHICLE CONFIGURATION 
SELECTION ALGORITHMS 

Four vehicle configurations of interest were selected using the following 

algorithms. The algorithms selected vehicles on the basis of axle spacings. Each 

axle spacing has required minimum and maximum values, with several 

exceptions that had only a minimum value or were unrestricted. A vehicle was 

only considered to be of the listed configuration if it had the correct number of 

axles and all of its axle spacings fell within the ranges specified by the 

algorithms. The axle spacings used were based on the requirements of the 

Manitoba Vehicle Weights and Dimensions Guide (Manitoba Infrastructure Motor 

Carrier Division, 2017). Table 28 displays the spacing ranges required by the 

algorithms. 

Table 28 - Vehicle configuration selection algorithm axle spacing ranges 

Configuration 
 Axle Spacing (cm) 

 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 

3-S2 
Max 615 185 1240 185     

Min 300 100 500 100     

3-S3 
Max 615 185 1240 185 185    

Min 300 100 550 120 120    

3-S3-S2 
Max 615 185 - 165 165 - 185  

Min 300 100 550 120 120 550 100  

3-S2-4 
Max 615 185 - 185 - 185 - 185 

Min 300 100 500 100 - 100 500 100 
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APPENDIX E: REGRESSION EQUATIONS 

This appendix displays the regression equations calculated to analyze the 

relationship between vehicle speed and the various non-front axle loads and axle 

load errors for several selected vehicle configurations in section 4.3.2. Table 29 

displays the regression equations with the R2 values, sample sizes, and 

significances. 

Table 29 - Regression equations of speed and axle group loads for selected vehicle configurations 

Configuration Axle Group Regression Equation R2 n 
P-value of 
F statistic 

3-S2 

Tandem 
(Drive) 

Y = -0.98849*S2 + 
164.31*S + 22357.8 

0.00043 6561 <0.001 

Tandem 
(Trailer) 

Y = -0.85585*S2 + 
148.38*S + 1937.1 

0.0018 6561 0.0026 

3-S3 

Tandem 
(Drive) 

Y = -0.74844*S2 + 
124.15*S + 3854.4 

0.015 1592 0.33 

Tridem 
(Trailer) 

Y = -0.52084*S2 + 
79.083*S + 8042.1 

0.00098 1592 0.46 

3-S3-S2 

Tandem 
(Drive) 

Y = -2.7676*S2 + 
417.89*S – 5583.6 

0.064 416 <0.001 

Tridem 
(Trailer 1) 

Y = -4.2925*S2 + 
665.53*S – 12573.4 

0.047 416 <0.001 

Tandem 
(Trailer 2) 

Y = -3.3477*S2 + 
517.29*S – 11319.8 

0.051 416 <0.001 

3-S2-4 

Tandem 
(Drive) 

Y = -1.3903*S2 + 
248.45*S – 688.27 

0.012 1631 <0.001 

Tandem 
(Trailer 1) 

Y = -1.0335*S2 + 
197.65*S + 161.96 

0.0091 1631 <0.001 

Tandem 
(Front of 
Trailer 2) 

Y = 0.40864*S2 + 
72.824*S + 4673.3 

0.00079 1631 0.53 

Tandem 
(Rear of 
Trailer 2) 

Y = -0.58839*S2 + 
126.04*S + 1597.4 

0.017 1631 <0.001 
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APPENDIX F: LOAD ERROR PERCENTILES IN TIME 

During the per-vehicle analysis (section 4.4), the daily ASTM compliance over 

the course of Installations 1 and 2 is calculated and graphed. To provide a more 

detailed look at the trends of the data during these installations, key percentiles 

(5%, 25%, 50%, 75%, and 95%) of the load measurement percent errors were 

calculated for each day of installations 1 and 2 for each of the three processing 

methods. Time was used as the measure of the calibration drift due to the 

findings of the calibration drift analysis (section 4.2). These percentiles were 

calculated for GVW, tandem axle loads, and single axle loads. Tridem axle loads 

were not included due to their much smaller sample size. Figure 38, Figure 39, 

and Figure 40 display scatterplots of the GVW, tandem axle group loads, and 

individual axle loads percentile values, respectively. For each axle group 

type/GVW and processing method combination, both installations are displayed 

on a single graph by date. Additionally, on some of the autocalibrated graphs, the 

95% percentile load error is not displayed due to the scale of the graph. This was 

left in place to allow a consistent y-axis that effectively displayed most of the data 

points. A graph of this type of an ideal portable WIM installation would have a 

median at 0% error, with the other percentiles tightly clustered about 0%. Figure 

38, Figure 39, and Figure 40 display the scatterplots of key eror percentiles. 
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Figure 38 - Key percentiles of portable WIM GVW percent errors over installations 1 and 2 
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Figure 39 - Key percentiles of portable WIM tandem axle load percent errors over installations 1 and 2 
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Figure 40 - Key percentiles of portable WIM individual axle load percent errors over installations 1 and 2 
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These figures reveal several key facts about the way the portable WIM load 

percent errors changed over the course of installations 1 and 2, many of which 

corroborate the same findings from the ASTM compliance data: 

1. For uncorrected data, the data is best calibrated at the beginning of 

installation 1 (median nearest to 0% error with other percentiles tightly 

clustered about 0%). 

2. For uncorrected data, the dataset as a whole (all 5 measured percentiles) 

trends steadily downwards during the first half of each installation and 

does not trend significantly during the second half of each installation. This 

trend was explored in greater detail for installation 1 in section 4.2.1. 

3. For all 3 data processing methods, the initial error percentiles of 

installation 2 are substantially different than the final error percentiles of 

installation 1. 

4. The day-to-day consistency is much stronger during installation 1 than 

installation 2; this is true mainly for the 95th percentile of all datasets. 

5. The autocalibrated datasets do not show any sign of trending either up or 

down during either installation, as would be expected due to the constant 

re-calibration. 

6. GVW measurements generally have a lower percent error range than 

tandem axle groups or individual axles, i.e. the 5th and 95th percentiles are 

closer together for GVW data.  
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APPENDIX G: DATA CORRECTION PROCEDURES 

This appendix provides step-by step descriptions of the three data correction 

procedures that were performed on the portable WIM data: the initial temperature 

correction procedure, the autocalibration procedure, and the loading separated 

temperature correction procedure. 

Initial Temperature Correction Procedure 

1. Generate a quadratic regression equation by regressing the front axle 

loads of the four selected vehicle configurations (3-S2, 3-S3, 3-S3-S2, 3-

S2-4) on temperature. 

2. Use the regression equation to calculate the expected selected 

configuration front axle loads at each temperature. 

3. Calculate the average selected configuration front axle load from the most 

recent dataset collected at the nearest source of static weigh scale data. 

For this research, the static weigh scale data collected during Installation 3 

is the dataset used, and the average front axle load is 5170 kg. This is the 

target front axle load. 

4. Calculate temperature correction factors by dividing the target front axle 

load by the expected selected configuration at each temperature value. 

5. Apply the temperature correction factors by multiplying all axle loads in a 

record by that record’s corresponding temperature correction factor. 

Autocalibration Procedure 
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1. Calculate the average 3-S2 front axle load from the most recent dataset 

collected at the nearest source of static weigh scale data. For this 

research, the static weigh scale data collected during Installation 3 is the 

dataset used, and the average front axle load is 5180 kg. This is the target 

front axle load. 

2. Separate out the dataset to be autocalibrated into bins each consisting of 

groups of 50 3-S2 records and the records between them. 

3. Calculate the average 3-S2 front axle load for each bin. 

4. Calculate autocalibration factors for each bin by dividing the target front 

axle load by the average 3-S2 front axle load for each bin. 

5. Apply the autocalibration factors by multiplying all records in each bin by 

the autocalibration factor. 

Loading Separated Temperature Correction Procedure 

1. Apply a two-component gaussian mixture model to 3-S2 GVWs from the 

most recent dataset collected at the nearest source of static weigh scale 

data; this model will separate the data into two distributions representing 

unloaded and fully loaded vehicles. For this research, the static weigh 

scale data collected during Installation 3 is the dataset used, and the 

mean GVWs for unloaded and fully loaded vehicles are 17700 kg and 

32860 kg, respectively. These means are the target GVWs. 

2. Separate out all 3-S2 vehicles from the dataset to be temperature 

corrected and define a cutoff point between vehicles considered to be 
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unloaded and fully loaded. The cutoff point can be defined by visually 

inspecting a histogram of the 3-S2 GVW values and placing the cutoff 

point at the lowest point between the two peaks of a bimodal distribution. 

3. Generate two quadratic regression equations by regressing the unloaded 

and loaded 3-S2 GVWs from the dataset to be temperature corrected on 

temperature. 

4. Use the regression equations to calculate the expected 3-S2 GVWs at 

each temperature. 

5. Calculate temperature correction factors by dividing the target unloaded 

and fully loaded GVWs by the expected unloaded and fully loaded 3-S2 

GVWs at each temperature value. 

6. Separate out the four configurations of interest from the dataset to be 

temperature corrected and define cutoff points between vehicles 

considered to be unloaded and fully loaded for each configuration 

separately. 

6. Apply the temperature correction factors for unloaded and loaded vehicles 

to the unloaded and loaded vehicles of each configuration separately by 

multiplying all axle loads in a record by that record’s corresponding 

temperature correction factor. 

7. Combine the temperature corrected records of the four configurations 

back into a single dataset. 
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