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Abstract

Reliable and efficient communication of analog observations over a fading multiple access

channel (MAC) is important in wireless sensor networks. A sensor network can be well

modelled by a set of correlated Gaussian sources communicating to a common receiver

over a fading Gaussian MAC (GMAC). It is known that traditional separate source-channel

(SSC) coding is sub-optimal when channel state information (CSI) is not available to the

transmitters. For this case, neither the optimum performance theoretical achievable (OPTA)

nor any practical coding schemes that can outperform traditional coding, are known.

This thesis investigates the minimum mean square error (MMSE) of communicating

a pair of Gaussian sources over a bandwidth-matched GMAC with block Rayleigh fading

(BF-GMAC) in the absence of transmitter CSI. We derive several upper-bounds to the

MMSE as a function of transmitter powers, channel signal-to-noise ratio (CSNR), and the

correlation coefficient of the two sources. To derive nontrivial upper bounds which improve

on those of SSC coding and uncoded transmission, we incorporate ideas from joint source-

channel coding and hybrid digital–analog (HDA) coding to construct coding schemes for

which the achievable MMSE can be determined.

One main contribution is two new MMSE upper bounds, which appear to be the best

known characterizations of the OPTA to date. These bounds (JSC-VQ and HDA-JSC-

VQ bounds) are derived by considering a transmission scheme where optimally vector

quantized Gaussian sources are directly transmitted in analog form over the BF-GMAC.

A comparison of these bounds with the MMSE bound for traditional SSC coding shows

a gap that grows with source correlation and CSNR. Although there exists a gap even
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when the sources are uncorrelated, this gap is relatively small. It is shown that, for highly

correlated sources and low average CSNR, uncoded transmission can achieve performance

approaching the HDA-JSC-VQ bound.

The difficulty of designing a practical coding scheme based on JSC-VQ scheme is the

requirement of infinite-dimensional vector quantizers (VQ) for each Gaussian source and

the joint detection of long codewords at the receiver. We present a practical coding method

constructed by replacing the VQs by trellis coded quantizers (TCQ), which can perform

close to the JSC-VQ bound.
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Chapter 1

Introduction and Background

A well designed communication system sends information from sources to the destinations

for reliable reconstruction of the source. Figure 1.1 illustrates a communication system

which sends information to the destination over a communication channel. The source

encoder converts a sequence of source symbols into another sequence of symbols, drawn

from a finite alphabet. Source encoding is often referred to as data compression. The

data compression can be lossy or lossless. Lossless data compression is when the source

can be reproduced exactly through a decompression process. The main goal of lossless

compression is to represent the source by minimum number of symbols (say bits). The

average number of bits representing one source symbol at the output of the source encoder

is called the rate of the code. The entropy rate of the source provides a lower bound to the

rate for lossless data compression [1, 2].

Lossless data compression is only possible when the source produces discrete-valued

symbols from a finite alphabet. However, when the source produces continuous amplitude

symbols, lossless data compression is not possible as the source entropy rate is infinite,

and hence lossy compression has to be employed. The loss due to compression measured,

according to an error criterion, is called distortion. Rate-distortion theory describes the

minimum achievable average distortion for a given rate and vice versa [2–4].

This thesis is concerned with communicating continuous-amplitude sources and hence
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Channel 
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Figure 1.1: A communication system.

lossy compression. The problem of interest is communicating multiple continuous sources

to a single receiver over a common wireless channel. Such systems are referred to as multi-

ple access communication systems. We start by introducing the reader to the basic problem

of communicating information from a single source to a single receiver in Section 1.1.

In Section 1.2 multiple-access systems are introduced. In Section 1.3, the main problem

studied in this thesis is introduced, and the specific contributions are summarized.

1.1 Single Continuous Source over a Point-to-point Chan-

nel

In the system shown in Fig. 1.1, the channel encoder maps the source encoder outputs into

a sequence of channel input symbols such that the source encoder output can be “reliably”

decoded at the channel decoder. Here, by relaible decoding, we mean the ability of mak-

ing a decoding error is arbitrarily small by choosing the coding scheme appropriately. In

Shannon’s landmark paper [1], it is shown that reliable communication can be achieved

even if the channel is noisy. According to the channel capacity theorem [2], reliable com-

munication is possible when the transmission rate is less than the channel capacity, i.e., the

channel capacity provides an upper bound to the transmission rate.

Consider transmission of a source over a point-to-point noisy channel using the com-

munication model depicted in Figure 1.1. According to the source-channel transmission

theorem [1, 2], lossless transmission of a source is possible when the entropy rate of the

source is less than the channel capacity, and not possible when the rate is greater than the

2



channel capacity. The entropy rate of an analog source is infinite and the capacity of a noisy

channel is finite. Therefore, lossless transmission of an analog source is not possible over a

noisy channel. The goal in this case is to transmit the source to achieve the minimum pos-

sible distortion at a given bit rate. An unbeatable lower bound on the minimum achievable

distortion is given by [1–3]

Dopt = D(bC),

where D(.) is the distortion-rate function of the source [2–4], C is the capacity of the

channel, and b is the number of channel uses per source sample. Dopt is often referred to as

the theoretically optimal performance or the Shannon limit.

There are two broad approaches to communicating an information source: (I) Digi-

tal communication and (II) Analog communication. The communication model that is

depicted by Fig. 1.1 is based on a digital communication method which uses so called sep-

arate source-channel coding. According to Shannon’s source-channel separation theorem,

such systems can be designed to achieve the theoretically optimal performance for a broad

class of source and channels [1–3]. But, in most cases, this may require very complex

encoding and decoding algorithms involving long processing delays. In such optimal sys-

tems, the source encoder compresses the source to achieve D(bC), and the channel coder

(encoding-decoding) achieves error free communication at a transmission rate equal to the

channel capacity.

An inherent problem of digital communication based on source-channel separation is

the “threshold effect” as shown in Figure 1.2. The threshold effect can be described as fol-

lows. The channel code is designed for a particular channel signal-to-noise ratio (CSNR),

and therefore a system can be designed to achieve a certain performance when the true

CSNR is not less than the design CSNR. However, when the true CSNR falls below the de-

sign CSNR, as for example in wireless systems with fading, the performance of the system

degrades drastically. Also, the performance of systems based on the source-channel sepa-

ration principle will not improve as the true CSNR increases, as the loss due to the source

3
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Figure 1.2: An example of threshold effect in digital communication based on source-channel separation (σ2

is the source variance).

compression cannot be recovered. Furthermore, the threshold effect is more pronounced

when a system operates close to the theoretically optimum performance.

In order to reduce the threshold effect, digital systems are designed by combining

source and channel coding in to a single code. This approach is called joint source-channel

coding. Joint source-channel coding schemes attempt to mitigate the threshold effect by ex-

ploiting the channel and source characteristics jointly. Some examples for such techniques

are (a) channel optimized vector quantization (COVQ) where the quantizer for the source

is optimized to both the source and the channel [5–8]; (b) unequal error protection where

source data is protected from channel errors according to their relative importance [9]; (c)

optimal index assignments [9, 10]; (d) by using the redundancies at the source encoder

output to correct channel errors [11–14].

Both separate source-channel coding and joint source-channel coding schemes have

finite transmission rates, and hence these are called digital coding schemes. In digital
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Figure 1.3: Uncoded transmission of continuous source over additive noise channel.

systems used to transmit continuous information sources, we cannot recover the loss due

to quantization used for source encoding. Therefore, the performance of digital systems do

not improve as the CSNR increases beyond a certain value.

Another approach to transmitting an analog information source is through analog mod-

ulation (see Figure 1.3). Since analog systems do not quantize the source, the transmitter

output has a continuous valued alphabet. Therefore, analog systems have an infinite rate

at the transmitter output. As a result the quality of the received signal gradually changes

with the CSNR [15]. But all practical analog transmission systems such as those based on

amplitude modulation (AM) or frequency modulation (FM), perform substantially below

most digital systems, as it is difficult to exploit the source and channel characteristics well

using analog signal processing.

The problem of sending an analog source over a noisy channel is well studied and a

large body of literature exists. Shannon [16] discussed the issue of sending an analog source

over a noisy channel. Shannon represented the source output and the transmitter input

as “points in geometrical spaces”, and viewed encoder-decoder operations are mappings

between two spaces of different dimentionality. It was shown that when the source and

channel bandwidths are mismatched the optimal encoder and decoder mappings will be

highly nonlinear and complex.

Goblick [15] compared the mean-squared error distortion performance of various ana-

log schemes when analog data is transmitted over an additive white Gaussian noise (AWGN)
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channel. Wyner and Ziv [17] considered a problem of transmitting a discrete-time analog

data belonging to a bounded set with variety of fidelity criteria. Bounds on the minimum

achievable distortion are obtained for finite and infinite delay coding. Ziv [18] studied per-

formance and derived lower bounds of general modulation schemes for a class of distortion

functions.

So far, we discussed the problem of transmitting an analog source over channels that

do not vary with time. In many practical situations such as in wireless communication, the

channel characteristics vary with time. In this type of situations, the communication system

performance depends on the degree of knowledge that the transmitter and/or receiver has

about the channel state at a given time instant. The knowledge about the instantaneous

channel characteristics is called channel state information (CSI). In most cases, it is easier

for a receiver to acquire CSI using the signal it observes at the channel output. It is however,

more difficult for the transmitter to acquire CSI. Depending on the availability of CSI,

communication systems can be divided into two main categories:

1. Fully informed: CSI available at both receiver and transmitter.

2. Partially informed: CSI available only at the receiver or the transmitter,

The most common instance of partially informed systems is those in which CSI only avail-

able to the receiver. Such systems are also called systems with to no transmitter CSI.

An assumption that is made commonly regarding time varying channels is that the

channel transitions over all possible fading states during the transmission of a codeword.

This type of a channel is referred to as an ergodic channel. Shannon [3] proved that separate

source-channel coding can achieve the optimum performance for transmitting a source over

an ergodic channel. When CSI is not available at the transmitter, the encoding rate cannot

be varied to match the channel, which forces the transmitter to use constant rate encoding

and to distribute the instantaneous power randomly over a codeword to maintain its average

power constraint. In such scenarios, the achievable upper-bound on the transmission rate

can be severely restricted if the probability of channel undergoing low CSNR values is
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larger than that for the high CSNR values. The Shannon capacity for an ergodic channel is

given by

Cerg =

∫ ∞
0

C(τ)f(τ)dτ,

where τ is the instantaneous CSNR which is available to the decoder, C(τ) is the instanta-

neous capacity of the channel, and f(τ) is the pdf of τ . The minimum achievable distortion

can be written as

Dopt = D(bCerg).

In order to achieve the Shannon limit, the length of the transmitted codeword must be long

enough to capture the ergodic nature of the channel. As a result, the slower the channel

varies the longer codeword length required. Therefore, a channel must exhibit sufficiently

fast variation in order for us to be able to use the Shannon capacity as a basis for commu-

nication system design (see [19] for details).

When the channel varies slowly in such a manner such that the instantaneous CSNR τ

remains constant over a large number of channel symbols, the Shannon capacity may not be

suitable for designing communication systems. For example, should the randomly varying

channel realizes a CSNR equal to zero, the Shannon capacity is equal to zero. Unlike

in the case of fast varying channels, it is more meaningful to design digital systems for

slow varying channels based on the notion of outage capacity. An outage occurs when the

realized CSNR falls below a certain value say τdes, i.e, the instantaneous channel capacity

is less than the transmission rate. Consequently, a higher rate than the Shannon capacity

is possible at the expense of reliability during deep fading states that occur in fast-fading

channels [20].

The design parameter τdes determines the outage probability Pout and the transmission

rate to be used. When there is no transmitter CSI, data is transmitted at a constant rate

which is equal to the channel capacity evaluated at the design CSNR τdes. The outage

7



probability of the system is given by

Pout = Pr(τ < τdes).

Consequently, the probability of successful decoding is 1− Pout. In this case, the expected

distortion can be evaluated over the fading distribution as

Dav = D (bC(τdes)) (1− Pout) + d0Pout,

where d0 is the average source reconstruction distortion during channel outages. This result

can be interpreted as follows: either the source data is received successfully with distortion

D (C(τdes)), or the system is in outage in which case the distortion is equal to d0. The

communication system can be designed to minimize the average distortion with respect to

the design CSNR.

It is well known that direct, or uncoded, transmission of a memoryless Gaussian source

over a memoryless Gaussian channel is optimum when the distortion is measured by mean

square error and the source bandwidth is equal to the channel bandwidth (bandwidth matched)

[15, 21]. The performance degradation of uncoded transmission in bandwidth mismatched

cases can be attributed to the inefficiency due to lack of data compression. In bandwidth

mismatched case, joint source-channel (JSC) coding schemes have been developed based

on hybrid digital-analog (HDA) coding techniques to improve the performance over sep-

arate source-channel coding systems. In HDA schemes, the efficient data compression in

digital schemes are combined with graceful channel adaptation property of analog coding

schemes. In a number of previous work, it has been demonstrated that, in situations where

transmitter-side CSI is not available (such as broadcast or multicast), HDA coding schemes

can be used to design systems that perform well over a large range of CSNRs [22–25].

In [22], it is conjectured that no code is optimal simultaneously at different CSNRs

when the source and channel bandwidth are not equal. For unequal source and channel

bandwidths, [22] proposes a number of “nearly robust” JSC coding schemes based on

HDA coding techniques to improve the performance over separate source-channel cod-
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Figure 1.4: Transmission of two sources over a two-to-one MAC.

ing systems. The HDA systems proposed in [22] are designed to be optimum at a target

CSNR but improve or degrade gracefully should the true CSNR deviate from the target.

A digital code aimed at sending information from a single transmitter to many receivers

experiencing different CSNRs is called a broadcast strategy [26]. Two extreme approaches

are to send data at a rate equal to the capacity of the worst channel or to send data at a rate

equal to the capacity of the best channel. Obviously such approaches result in poor overall

performance. However, [26] shows that by distributing high-rate information across low-

rate messages, a broadcast system can improve its overall performance. An uncertain chan-

nel with finite states may be visualized as a transmitter broadcasting data to a set of virtual

receivers with different CSNRs. Therefore, fading channels without CSI at the transmitter

can be modeled as a broadcast channel. A layered broadcast strategy for Gaussian fading

channel is studied in [27]. In [27], it is shown that layered broadcast strategies enable to

implement a continuum of capacity versus outage values rather than a single pair as is in

the standard digital coding approach. In [28], a layered broadcast strategy is considered for

sending a Gaussian source over a fading Gaussian channel with a finite number of states.

In particular, [28] obtains the operating point inside the capacity region of the equivalent

broadcast channel that minimizes the expected distortion.

1.2 Multiple Sources over a Multiple Access Channel

So far we have considered point-to-point communication. Now we turn our attention to

multiple-access communication which is the main focus of this thesis. The problem of

9



sending multiple sources over a multiple-access channel (MAC) to a single receiver cap-

tures many practical communication systems. Common examples include ground stations

sending voice data to a satellite, cellular devices sending data to a cell-tower, or a network

of sensors sending observed data to a central monitoring station. A simple example in

which two information sources are transmitted to a single receiver over a MAC is illus-

trated in Figure 1.4. Slepian and Wolf [29] considered the problem of lossless compression

of two or more correlated sources separately while decompression of the sources are per-

formed jointly. The well known Slepian-Wolf theorem [29] gives necessary and sufficient

conditions for achievable rate tuples. Wyner and Ziv [30] considered lossy compression of

a source with a fidelity criterion when the decoder has side information about the source

and derived a lower bound for achievable rates for a given distortion. Berger [31] and

Tung [32] introduced multi-terminal source coding problem by considering separate com-

pression and joint decompression subject to distortion constraints. Finding the achievable

rate region in the general multi-terminal source coding problem is known to be very hard,

hence many work in the literature has mostly focused on the quadratic Gaussian case in

which the sources are jointly Gaussian and the mean-squared error is used as the distortion

measure. The work by Oohoma [33] and Wagner [34] present the complete solution to

the quadratic Gaussian two-terminal source coding problem under an individual distortion

criterion.

In the MAC case, the capacity of the channel is the closure of all rate tuples for which

the all encoded messages can be decoded with an arbitrary small probability of error. The

capacity region of the discrete Gaussian MAC with transmitter powers P1 and P2, and noise

variance N is illustrated in Figure 1.5 [2]. It is known that when there is no constraint on

the transmission delay, any rate pair (R1, R2) inside the capacity region can be achieved by

using independent Gaussian random codes at the transmitters.

One way to transmit multiple sources over a MAC is to employ a system based on

the principle of source-channel separation. However, it is well known that the separate

source-channel coding is not optimal for sending multiple sources over a MAC. Except
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for a few special network models in which sources and channels are suitably “matched”

[21, 35–39], optimally sending multiple sources over a MAC requires joint optimization

of data compression and channel coding. The problem of lossless transmission of two

finite-alphabet correlated sources over a two-to-one MAC is addressed by Cover, El Gamal

and Salehi [40]. In [40], sufficient conditions for the existence of a code which achieves

an arbitrarily small decoding error probability are presented. It has been shown that such

a code rely on direct mapping of the source symbols to channel inputs, rather than data

compression followed by channel coding. Other related work on lossless transmission of

correlated sources are [41] and [42].

In work, more directly related to the work in this thesis, Salehi [43] studied a lossy

version of the problem with two finite-alphabet sources and arbitrary distortion measures

on each source. Lapidoth and Tinguely [44] considered the problem of sending Gaussian

sources over the two-to-one Gaussian MAC with an average power constraint on each trans-

mitter. In [44], the authors focus on the bandwidth matched case and present necessary and
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sufficient conditions for the achievability of a distortion pair. Moreover, [44] introduces

a “source-channel vector-quantizer” scheme, relies on the optimal source compression by

VQ and the constructive interference created by correlated channel inputs. This scheme

plays a central role in new developments presented in Chapters 3 and 4 of this thesis.

When the channel state of a MAC is a random variable there is an instantaneous ca-

pacity region corresponding to the realized channel state. When the CSI is not available to

the transmitters, fixed transmission rates have to be used in all transmitters. The ergodic

capacity region based on the standard interpretation of the Shannon capacity is well de-

fined for a fast fading MAC with no transmitter CSI [19, chapter, p. 215]. When the MAC

is slowly varying, parallel to the point-to-point case, a common outage probability is de-

fined as the probability that the tuple of transmission rates lies outside the capacity region.

For heterogeneous networks, it is necessary to evaluate the individual outage probabilities

corresponding to each transmitter. Individual outage probabilities without transmitter CSI

are discussed in [45] for a MAC with transmitters and the receiver equipped with multi-

ple antennas. Narasimhan [46] computes the explicit individual outage rate regions for a

quasi-static fading MAC by assuming Gaussian multiple-access interference.

In [47], the digital transmission of a pair of uncorrelated Gaussian sources using sep-

arate source-channel coding over a slow-fading two-to-one MAC without the transmitter

CSI is considered. The average distortion is obtained using the individual outage regions

computed in [46], and the transmission rates that minimize the average sum MSE for the

independent Rayleigh fading are obtained numerically. A different approach for transmit-

ting sources over a the static Gaussian MAC using a CDMA like access scheme, based on

analog JSC coding techniques [21, 48, 49] is proposed in [50]. In the analog JSC coding

approach a block of source samples is directly mapped to a block of channel input symbols

using a non-linear transformation. In [50], simulation results were obtained using practi-

cal analog JSC codes optimized for point-to-point communications, and simulation results

show that the performance of these practical systems are close to the theoretical limit.
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1.3 Contribution of the Thesis

1.3.1 Objectives of this thesis

The MMSE achievable in communicating correlated Gaussian sources over a block-fading

GMAC, when CSI is not available at the transmitters, is not known. To this end, one objec-

tive of this thesis is to establish upper-abounds to the unknown MMSE by considering JSC

coding methods that accounts for channel uncertainty at the transmitters. In practical com-

munication systems with finite delays and limited encoder-decoder processing powers, an

important problem is designing practical coding schemes that mimic an effective theoreti-

cal coding principle to approach the best achievable performance. The problem of practical

code design for communicating correlated sources over MAC with no CSI at transmitters

is not addressed in the literature. To this end, another objective of this thesis is to pro-

pose a practical code, with finite coding delay and tractable computational complexity, for

correlated sources and fading MAC.

1.3.2 Contributions

• In Chapter 2, we establish several upper bounds to the unknown MMSE by consid-

ering a superposition-based HDA coding to exploits the benefits of both digital and

analog coding to counteract the channel uncertainty and to exploit source correla-

tion. The achievable MMSE of source-channel separation-based coding and uncoded

transmission are also derived and used as benchmarks.

• In Chapter 3, we derive upper bounds to the achievable MMSE by considering JSC

coding schemes that use source dependent channel codewords allowing constructive

and destructive interference between digital channel inputs. The MMSE derived for

a source-channel vector quantization scheme and an HDA extension of it provide

the best known upper bound to the achievable MMSE for communicating correlated

Gaussian source over block Rayleigh fading Gaussian MAC. The MMSE of the two
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schemes are derived by considering the three possible outage cases. Through nu-

merical performance evaluations, it is shown that, unlike in the case of fixed GMAC,

uncoded transmission is no longer optimal at low CSNRs, when there is channel

fading and CSI is not available to the transmitters.

• In Chapter 4, we propose a practical JSC coding scheme that mimics the coding

principle used in the source-channel vector quantizer scheme presented in Chapter

3. The encoder achieves source-channel coding by employing trellis coded quanti-

zation with an expanded codebook. We propose a four state joint decoder based on

the Viterbi algorithm. Simulation results show that the proposed JSC coding scheme

perform closer to the source-channel vector quantizer bound than the other alterna-

tives such as separate source-channel (SSC) coding, uncoded transmission, and HDA

coding considered in Chapter 2.
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Chapter 2

HDA Coding for Sending Information

from Gaussian Sources over BF-MAC

2.1 Introduction

One important design consideration arises that in wireless communication is the channel

uncertainty at the transmitters. In many practical systems the CSI is estimated periodically

at the transmitters by sending a burst of training data from the transmitters to the receiver.

The receiver typically communicate the estimated CSI to the transmitters via feedback

channels. Therefore, the CSI available to the transmitters can be limited by the capacity

of the feedback channels. Moreover, when such feedback channels are unavailable due to

spectrum scarcity, the transmitters have to deal with a large degree of channel uncertainty.

Due to this channel uncertainty at the transmitters, the conventional digital coding scheme

based on source-channel separation suffers from the cliff effect. On the other hand, JSC

coding schemes based on HDA techniques have the potential to have better average perfor-

mance under channel uncertainty as the performance of HDA coding changes gracefully

with the channel quality. In order to examine the aforementioned claim, we consider the

following problem of sending Gaussian sources over a slow-fading two-to-one MAC, as

shown in Fig. 2.1.
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We consider sending a pair of Gaussian sources over a block-fading Gaussian MAC.

The sources can be mutually correlated. We consider a communication model with no

CSI at the transmitters while the perfect CSI is available to the receiver. As discussed

in Chapter 1, the property of graceful improvement-degradation in HDA schemes is well

understood for the point-to-point case [22]. However, the performance of HDA coding

with random channel variations is not straightforward as the reliable transmission from the

digital encoders depends on the achievable rate region for the BF-MAC. Therefore, the

individual outage regions must be computed according to the decodability of the digital

codewords. In [46], the individual outage regions are computed for the channel coding

over block-fading Gaussian MAC when the CSI is not available to the transmitters.

The HDA technique uses optimal VQ for digital compression of the source, which will

be transmitted using a channel code. The analog information to be transmitted is the quan-

tization error obtained by subtracting the VQ source codeword from the source sequence.

The block of continuous-valued uncoded quantization error samples are transmitted over

the same channel bandwidth used by the digital transmission of the source, by power split-

ting between the uncoded (analog) and the digital transmissions. The analog channel inputs

act as additive noise to the digital codewords. The outage events of the digital codewords

are defined based on the decodability of the channel codewords for given encoder param-

eters and the current channel gains which are constant for the channel codewords in the

case of block fading. The necessary and sufficient conditions for joint decodability of the

channel codewords are used to compute individual outage regions for the channel fading

gains. We assume that the number of channel symbols transmitted per source symbol is

one (i.e., bandwidth matched).

For comparison, the performance of an alternative HDA coding scheme where the ana-

log and digital components are sent by orthogonal channel access is considered. The com-

parison of the performance of the HDA coding over the two-to-one MAC and a comparable

orthogonal MAC can be justified by the following reasons:

1. The outage events creates different levels of interference
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2. Effect of different channel uses per source symbol in digital coding

3. Sub-optimality of the uncoded transmission when the source-channel bandwidths are

mismatched

The optimum outage rates and the power splitting ratio of the above systems, that mini-

mize the average distortion, assuming the independent Rayleigh fading, are obtained using

numerical optimization techniques. The problem we consider is related to multi-user com-

munication systems with real-time traffic where it is difficult for the transmitters to obtain

the current CSI. For example, in an upstream voice communication between ground sta-

tions and a satellite, a desirable design criteria is to minimize the average distortion over

uncertain channels.

Contribution

The MMSE achievable in communicating correlated Gaussian sources over a fading GMAC

is not known. To this end, this chapter establishes several upper bounds to the unknown

MMSE by considering a coding schemes which uses superposition-based HDA transmis-

sion to combine the benefits of both digital coding and uncoded transmission. The achiev-

able MMSE of source-channel separation-based coding and uncoded transmission are also

derived an used as bench marks.

2.2 Problem Statement

The basic problem considered in Chapters 2-4 can be stated as follows. Two information

sources S1 and S2 are observed at different locations and there is no communication link

between the two locations. We wish to communicate and reproduce these two sources

at a central location, where the communication is to takes place over a wireless channel

modeled by a Gaussian MAC with Rayleigh fading. Each source is a circularly symmetric

complex-valued Gaussian variable Si ∈ C with mean zero and variance E{|Si|} = σ2
i . Let
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Figure 2.1: Communicating a pair of Gaussian sources over a two-to-one block fading Gaussian multiple-
access channel.

the covariance matrix and the pseudo-covariance matrix of (S1, S2) be [51]

KSS =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

and K̃SS = 02×2, respectively, where |ρ| < 1 . A sequence of n outputs from the source Si,

denoted by Si = (Si,1, . . . , Si,n), is assumed to be independent and identically distributed

(iid). It is assumed that source and channel bandwidths are identical, so that a sequence of

n source symbols are transmitted by n uses of the MAC. The encoder for each source Si is

therefore a mapping f (n)
i : Cn → Cn, and

Xi = f
(n)
i (Si)

is the channel codeword Xi = (Xi,1, . . . , Xi,n) and Xi,n ∈ C is channel input for Si at time

k = 1, . . . , n (the superscript in f (n)
i emphasizes the fact each encoder is a block-encoder

for n consecutive source symbols.) The transmitter for Si has an average power constraint

Pi > 0 so that

1

n

n∑
k=1

E
{
|Xi,k|2

}
≤ Pi, i = 1, 2.

Let the MAC output for channel input (X1,X2) be the sequence Y = (Y1, . . . , Yn), where

Yk ∈ C is the MAC output at time k given by

Yk = h1X1,k + h2X2,k +Wk,
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hi,k ∈ C is the gain of the channel between Si and the receiver at time k and Wk ∈ C

is complex-valued channel noise. As usual it is assumed that (h1,k, h2,k) is iid complex

Gaussian random variables with mean zero and independent real and complex parts. In

this thesis we are concerned with a MAC with block fading, i.e., h1,k and h2,k remain

constant during the transmission of a length n codeword. Therefore, henceforth we will

denote the channel gains by h1 and h2. The channel noise Wk is assumed to be circularly

symmetric Gaussian random variable with mean zero and variance N . The noise sequence

W = (W1, . . . ,Wn) is assumed to be an iid sequence.

Finally, we use a decoder which can be described by a pair of mappings φ(n)
i : Cn →

Cn, i = 1; 2, such that the decoded source sequences are given by

Ŝi = φ
(n)
i (Y).

The mean square reconstruction error of the source Si is given by

Di(h1, h2) =
1

n

n∑
i=1

E{|Si,k − Ŝi,k|2}, (2.1)

where the expected values is over the joint distribution of S1, S2 and the distributions of the

two independent variables h1 and h2. We assume the codeword length n can be made large

enough so that source codes achieving the rate-distortion bound and channel codes with

vanishingly small error probabilities can be found. In this case, the optimal (f
(n)
i , φ

(n)
i ), i =

1, 2 are those which minimize the average MMSE,

D∗ =
1

2

∫
(D1(h1, h2) +D2(h1, h2)) f(h1)f(h2)dh1dh2, (2.2)

where f(hi), i = 1, 2, is the pdf of the fading gains h1 and h2. This would be an optimal JSC

coding scheme for our set-up. However, finding the optimal JSC coding scheme for this set-

up appears to be very difficult. Therefore, our end goal is to find the MMSE achievable with

good JSC coding schemes based on HDA coding which can acheive a D lower than that

of: (1) the best separate source-channel coding scheme, and (2) the simplest JSC coding

scheme of uncoded transmission.
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2.3 Superposition-based HDA Coding for Correlated Gaus-

sian Sources and BF-GMAC

In this section we consider a conventional HDA coding scheme to establish an upper bound

to the minimum achievable MSE in communicating a pair of correlated Gaussian sources

over a two-to-one BF-GMAC. In [22], HDA coding techniques based on superposition is

considered for broadcasting a Gaussian source over a AWGN channel when the source

channel bandwidths are mismatched. In the broadcast setup a single source is communi-

cated to multiple receivers experiencing different channel SNR values.It is shown in [22]

that certain JSC coding based on HDA techniques are ‘nearly robust’ when source-channel

bandwidths are mismatched, where a coding scheme is considered robust when it is optimal

over a wide range of CSNRs. In our problem, the channel uncertainty at the transmitters

may be mitigated by considering such robust HDA coding techniques. However, since the

CSI is not available at the transmitters and the channel varies, a good coding scheme must

be matched to the distribution of the channel fading gains. Below we describe a JSC coding

system which is based on a conventional HDA technique where analog source information

is superimposed on digital codewords to describe the source to the common receiver.

The coding scheme uses a power splitting between the digital and analog parts, and

the channel inputs generated by the digital and the analog parts are superimposed and
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Figure 2.3: HDA decoder.

transmitted over the block fading two-to-one MAC. The block diagrams of the encoder and

the joint decoder are shown in Fig. 2.2 and Fig. 2.3, respectively. First, the source sequence

Si is vector-quantized using an optimal VQ, and the VQ index m = Πi(Si) is input to a

digital channel encoder which outputs the digital channel codeword X̃i = Λi(m), where

functions Πi : Cn → {0, 1, . . . , 2nRi − 1} and Λi : {0, 1, . . . , 2nRi − 1} → Cn represent

the VQ encoder and the channel encoder functions, respectively, and Ri is the encoding

rate. Analog data is generated by obtaining the sequence of VQ errors Zi = Si− S̃i, where

S̃i = Π−1
i (m) is the output of the VQ decoder Π−1

i : {0, 1, . . . , 2nRi − 1} → Cn. The

channel input sequence Xi is the addition of the channel codeword and the scaled VQ error

sequence, given by

Xi = X̃i + αiZi,

where αi =
√
ntiPi/E{‖Zi‖2}, and 0 ≤ ti ≤ 1 is the ratio between the average power

of the analog channel input and the expected average power constraint. Consequently, the

average power of the digital channel codewords is subject to the constraint 1
n

E{‖X̃i‖2} ≤

(1 − ti)Pi. The joint reconstruction of the two sources is performed in two stages: 1.

joint decoding of the digital channel codewords {X̃i}, 2. MMSE estimation of the source

sequences based on decoded source codewords and the MAC output. A function Λ−1 :

Cn → Cn × Cn is used in the receiver to jointly decode the digital codewords for both
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sources based on the channel output sequence Y, i.e.,

( ˆ̃X1,
ˆ̃X2) = Λ−1(Y),

where ( ˆ̃X1,
ˆ̃X2) is the pair of decoded digital codewords. The decoding function Λ−1

depends on the current fading gains, the transmission rates, and the power allocation ratio.

Now we describe the three scenarios according to the decodability of the digital codewords,

which we call outage events. The three outage events are:

1. Both digital codewords are successfully decoded (no outage)

2. Only one digital codeword successfully decoded (partial outage)

3. Either of the digital codewords cannot be decoded successfully (total outage)

The digital codebooks are constructed using a random code, whos symbols {X̃i,k}, i ∈

{1, 2} and k = 1, . . . , n, are iid circularly symmetric complex Gaussian random variables

X̃i,k ∈ C ∼ CN (0, (1 − ti)Pi), so that the probability of successful decoding of both

digital codewords are maximized [2, 20]. Also note that as n → ∞, the optimal VQ splits

the Gaussian source into two iid circularly symmetric complex Gaussian sequences, {S̃i,k}

and Zi,k, where i ∈ {1, 2} and k = 1, . . . , n. Therefore, the analog channel input sequences

αiZi, i = 1, 2 act as AWGN to the digital channel inputs.

Case I: Both digital codewords can be decoded successfully

For given fading gains (h1, h2), the MAC between the digital channel inputs and the chan-

nel output can be seen as an AWGN MAC, i.e.,

Yk = h1X̃1,k + h2X̃2,k + (h1α1Z1,k + h2α2Z2,k +Wk), k = 1, . . . , n. (2.3)

The two channel input sequences {h1X̃1,k} and {h2X̃2,k} of the AWGN MAC given by

(2.3) are subject to the average power constraints γ1(1 − t1)P1 and γ2(1 − t2)P2, respec-

tively, where γi = |hi|2, i = 1, 2. The two input sequences are corrupted by AWGN with
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Figure 2.4: (γ1, γ2) pair regions corresponding to outage events in HDA coding of uncorrelated sources.
τ = 1−t2

1−t1

average power γ1t1P1 +γ2t2P2 +2Re{h1h
∗
2}ρZ
√
t1t2P1P2 +N , where ρZ is the correlation

coefficient between the VQ error symbols Z1,k and Z2,k. Therefore the successful decoding

of both codewords are determined by the achievable rate region of the AWGN MAC [2],

and the necessary and sufficient conditions for this case given by the conditions

(I) : R1 < I(X̃1;Y |X̃2)

=
1

2
log
(

1 +
γ1(1− t1)µ1

γ1t1µ1 + γ2t2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
(2.4)

(II) : R2 < I(X̃2;Y |X̃1)

=
1

2
log
(

1 +
γ2(1− t2)µ2

γ1t1µ1 + γ2t2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
(2.5)

(III) : R1 +R2 <
1

2
I(X̃1, X̃2;Y )

=
1

2
log
(

1 +
γ1(1− t1)µ1 + γ2(1− t2)µ2

γ1t1µ1 + γ2t2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
(2.6)
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where µi = Pi/N and I(.; .) denotes the mutual information (for clarity we have dropped

the time-index k), and ρZ is given by

ρz =
1
n
〈Z1,Z2〉
σz1σz2

,

where

σ2
zi

= 2−2Riσ2, i ∈ {1, 2}.

At the For given encoder parameters (R1, t1) and (R2, t2), the individual outage regions for

digital coding over γ1 and γ2, for uncorrelated sources, are illustrated in Fig. 2.4. In Fig.

2.4, the “no-outage” region, denoted by Hh
no, is the region indicated by 1©. For correlated

sources, the outage regions cannot be described explicitly in terms of the fading powers γ1

and γ1 due the interference term 2Re{h1h
∗
2}ρz
√
t1t2µ1µ2.

In this case the sources are estimated based on the recovered source codewords S̃1 and

S̃2, and the residual MAC output sequence

Ỹk = Yk − (h1X̃1,k + h2X̃2,k)

= h1α1Z1,k + h2α2Z2,k +Wk, k = 1, . . . , n.

Since {S̃1,1, . . . , S̃1,n}, {S̃2,1, . . . , S̃2,n}, and {Ỹ1, . . . , Ỹn} are iid sequences which are

jointly Gaussian, the optimal MMSE estimator is linear, and the estimate of the source

sequence Si is given by

Ŝi,k = qi,1S̃1,k + qi,2S̃1,k + qi,3Ỹk, k = 1, . . . , n,

where qi,1, qi,2 and qi,3 are the coefficients of the linear estimator, which can be found by

solving 
k11 k12 k13

k21 k22 k23

k31 k32 k33


︸ ︷︷ ︸

K


qi,1

qi,2

qi,3


︸ ︷︷ ︸

qi

=


ci1

ci2

ci3


︸ ︷︷ ︸

ci

,
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where

K =


1
n
E‖S̃1‖2 1

n
E〈S̃2, S̃1〉 1

n
E〈Ỹ, S̃1〉

1
n
E〈S̃1, S̃2〉 1

n
E‖S̃1‖2 1

n
E〈Ỹ, S̃2〉

1
n
E〈S̃1, Ỹ〉 1

n
E〈S̃2, Ỹ〉 1

n
E‖Ỹ‖2


and

ci =


1
n
E〈Si, S̃1〉

1
n
E〈Si, S̃2〉

1
n
E〈Si,Y〉

 .
For optimal VQ of Gaussian sources, K, c1 and c2 can be verified to have the following

values [44]:

k11 = σ2(1− 2−2R1)

k12 = k∗21 = σ2(1− 2−2R1)(1− 2−2R2)

k13 = k∗31 = α2h2ρ2−2R2k11

k22 = σ2(1− 2−2R2)

k23 = k∗32 = α1h1ρ2−2R1k11

k33 = γ1t1P1 + γ2t2P2 + 2Re{h1h
∗
2}ρz

√
t1t2P1P2 +N

c11 = k11

c12 = ρk22

c13 = (α1h
∗
12−2R1 + α2h

∗
2ρ2−2R2)σ2

c21 = ρk22

c22 = k22

c23 = (α1h
∗
1ρ2−2R1 + α2h

∗
22−2R2)σ2

Then the optimal MMSE estimator qi is given by

qi = K−1ci, i = 1, 2.
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The MSE of the optimal estimator reconstructing the source Si is

Dh
no1

(h1, h2) = σ2 − q∗i,1ci1 − q∗i,2ci2 − q∗i,3ci3.

The average MMSE for given (R1, R2, t1, t2) can be found by evaluating

Dh
no(R1, R2, t1, t2) =

∫
Hhno

Dh
no1

(h1, h2) +Dh
no2

(h1, h2)

2
f(h1)f(h2)dh.

Case II: Only one codeword can be decoded successfully

Lets consider the case in which only the codeword X̃1 can be decoded correctly. A suf-

ficient condition for decoding X̃1 can be obtained by simply considering codeword X̃2 as

Gaussian interference. When a necessary condition for correct decoding of codeword X̃2

given codeword X̃1 correctly decoded is false, it provides a sufficient condition to say code-

word X̃2 cannot be decoded correctly. Following those argument we can write necessary

and sufficient conditions to this case as

(I) : R1 < (X1;Y )

=
1

2
log
(

1 +
γ1(1− t1)µ1

γ1t1µ1 + γ2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
(2.7)

(II) : R2 > I(X2;Y |X1)

=
1

2
log
(

1 +
γ2(1− t2)µ2

γ1t1µ1 + γ2t2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
. (2.8)

This “partial outage” region H(2)h
po , for uncorrelated source, is indicated by 2© in Fig. 2.4.

The region indicated by 3© is the partial outage region H(1)h
po where only Codeword 2 can

be decoded successfully.

Upon decoding X̃1, the residual sequence Ỹ is obtained by computing Y − h1X̃1,

which is given by

Ỹk = h1α1Z1,k + h2(X̃2,k + α2Z2,k) +Wk, k = 1, . . . , n.
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The optimal estimate of the source sequence is

Ŝi,k = qi,1S̃1,k + qi,2Ỹk, k = 1, . . . , n.

The linear estimator qi,1 and qi,2 can be found by solvingk11 k12

k21 k22


︸ ︷︷ ︸

K

qi,1
qi,2


︸ ︷︷ ︸

qi

=

ci1
ci2


︸ ︷︷ ︸

ci

,

where

K =

 1
n
E‖S̃1‖2 1

n
E〈Ỹ, S̃1〉

1
n
E〈S̃1, Ỹ〉 1

n
E‖Ỹ‖2

 ,
and

ci =

 1
n
E〈Si, S̃1〉

1
n
E〈Si,Y〉

 .
K, c1 and c2 can be verified to have the following values:

k11 = σ2(1− 2−2R1)

k12 = k∗21 = α2h2ρ2−2R2(1− 2−2R1)σ2

k22 = γ1t1P1 + γ2P2 + 2Re{h1h
∗
2}ρz

√
t1t2P1P2 +N

c11 = k11

c12 = (α1h
∗
12−2R1 + α2h

∗
2ρ2−2R2)σ2

c21 = ρσ2(1− 2−2R1)

c22 = (α1h
∗
1ρ2−2R1 + α2h

∗
22−2R2)σ2

The optimal MMSE estimator qi is given by qi = K−1ci, i = 1, 2. The MSE of the

optimal estimator reconstructing the source Si is

D(2)h
poi

(h1, h2) = σ2 − q∗i,1ci1 − q∗i,2ci2.
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The average MMSE for given (R1, R2, t1, t2) can be found by evaluating

D(2)h(R1, R2, t1, t2) =

∫
H(1)h

po

Dh
no1

(h1, h2) +Dh
no2

(h1, h2)

2
f(h1)f(h2)dh.

Similarly, the average MSE D(1)h(R1, R2, t1, t2) corresponding to the case where only

codeword 2 can be decoded can be calculated.

Case III: Either of the codewords can not be decoded successfully

A “total-outage” of the digital transmission occurs when neither of the digital codewords

can be decoded correctly in the given channel state. The rate region for this scenario can be

obtained by excluding the union of the three rate regions in the no-outage and the partial-

outage cases. Then it follows that the necessary and sufficient conditions for the total-

outage are

(I) : R1 > I(X̃1;Y )

=
1

2
log
(

1 +
γ1(1− t1)µ1

γ1t1µ1 + γ2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
(2.9)

(II) : R2 > I(X̃2;Y )

=
1

2
log
(

1 +
γ2(1− t2)µ2

γ1µ1 + γ2t2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
(2.10)

(III) : R1 +R2 > I(X̃1, X̃2;Y )

=
1

2
log
(

1 +
γ1(1− t1)µ1 + γ2(1− t2)µ2

γ1t1µ1 + γ2t2µ2 + 2Re{h1h∗2}ρz
√
t1t2µ1µ2 + 1

)
.

(2.11)

The total-outage region Hh
to, for uncorrelated sources, is indicated by 4© in Fig. 2.4. The

optimal estimate of the source sequence is computed based on the MAC output Y

Ŝi,k = qiYk, k = 1, . . . , n.
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The optimal MSE estimate of source Si is given by

Ŝi,k = qiYk, k = 1, . . . , n,

where qi is the optimal estimator, given by

q1 =
1
n
E〈S1,Y〉
1
n
‖Y2‖

=
(α1h

∗
12−2R1 + α2h

∗
2ρ2−2R2)σ2

γ1P1 + γ2P2 + 2Re{h1h∗2}ρz
√
t1t2P1P2 +N

q2 =
1
n
E〈S2,Y〉
1
n
‖Y2‖

=
(α1h

∗
1ρ2−2R1 + α2h

∗
22−2R2)σ2

γ1P1 + γ2P2 + 2Re{h1h∗2}ρz
√
t1t2P1P2 +N

.

The corresponding MSE values of the optimal estimators are

Dh
to1

(h1, h2) = σ2 − |(α1h
∗
12−2R1 + α2h

∗
2ρ2−2R2)σ2|2

γ1P1 + γ2P2 + 2Re{h1h∗2}ρz
√
t1t2P1P2 +N

Dh
to2

(h1, h2) = σ2 − |(α1h
∗
1ρ2−2R1 + α2h

∗
22−2R2)σ2|2

γ1P1 + γ2P2 + 2Re{h1h∗2}ρz
√
t1t2P1P2 +N

.

The average MMSE for given (R1, R2, t1, t2) can be found by evaluating

Dh
to(R1, R2, t1, t2) =

∫
Hhto

Dh
o1

(h1, h2) +Dh
o2

(h1, h2)

2
f(h1)f(h2)dh.

The optimal encoder parameters (R1, R2, t1, t2) and the achievable average MMSE is found

by solving

DHDA = min
R1,R2,t1,t2

Dh
no(R1, R2, t1, t2) +D(1)h(R1, R2, t1, t2)

+D(2)h(R1, R2, t1, t2) +Dh
o (R1, R2, t1, t2). (2.12)

The solution to the above optimization problem can be numerically evaluated using a global

optimization tool. This gives us a computable upper bound to the MMSE achievable in

communicating correlated Gaussian sources over a BF-GMAC.

In Sections 2.4-2.7 to follow, we derive the MMSE of several other coding schemes

which can be used as benchmarks for the upper bound we established above.
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2.4 HDA Coding over Orthogonal MAC

In the HDA coding in section 2.3 channel inputs to the two-to-one MAC, analog data from

both transmitters interfere the digital coding, and therefore the additional interference due

to the analog data reduces the effective channel capacity. Furthermore, when a codeword

is in outage, the non decodable codeword acts as interference to the analog data. Another

useful benchmark can be derived by considering a simple HDA scheme where analog and

digital components in a non-interfering manner by orthogonalizing the BF-GMAC. How-

ever the disadvantage of this scheme is the number of channel uses available for sending a

source sample decreases.

The two-to-one MAC is used as two point-to-point channels by splitting the number

of channel uses between the two transmitters. Assume that the transmitter i (i ∈ {1, 2})

transmits ni channel symbols over n channel access time-shared between the two transmit-

ters, i.e., n = n1 + n2. In the digital part of the encoder optimal VQ at rate riRi is applied

to the source block Si ∈ Cn, where ri = ni/n. The VQ output Ii ∈ {1, 2, . . . , 2niRi} is

mapped to digital channel codeword X̃i ∈ Cni . In the analog part, VQ error vector Zi is

obtained and split into two blocks, i.e., Zi = (Z
(1)
i ,Z

(2)
i ), where S

(1)
i ∈ Cn1 and Z

(2)
i ∈ Cn2

are blocks with length n1 and n2, respectively. Transmitter i transmits the Z
(i)
i superim-

posed with the digital codeword. At the joint decoder, the digital codeword is recovered

if it can be decoded error-free (no-outage). Then the VQ error sequence is estimated from

the channel output, after canceling the interference due to the digital codeword. The cor-

responding part of the source sequence is reconstructed by adding the VQ error sequence

to the decoded digital codeword. Now we explain the computation of the average MSE by

considering outage events for the digital codewords.

The necessary and sufficient condition for the successful decodability of each digital

codeword is given by the channel capacity of the AWGN channel, i.e.,

Ri <
1

2
log

(
1 +

µi
ri

(1− ti)γi
µi
ri
tiγi + 1

)
.
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Given rate Ri, power allocation ratio ti and bandwidth ratio ri, decoding can be done

successfully, if and only if γi > γ̄i, where γ̄i is given by

γ̄i =
ri
µi

(
22Ri

1− ti22Ri

)
.

We can now obtain the average distortion as shown below.

Case I: The codeword can be decoded successfully

Consider when γi > γ̄i, i.e., when the codeword can be successfully decoded. Source block

S
(i)
i of source Si is reconstructed as follows.

Ŝi,k = S̃i,k + Ẑi,k,∀Si,k ∈ S
(i)
i .

The end-end-end MSE in reconstructing S
(i)
i is given by

D
(ortho)
noi,i

(γ) =
1

ti
µi
ri
γi + 1

σ2
Zo,i,

where σ2
Zo,i

= 2−2r1R1σ2. The end-to-end MSE in reconstructing S
(j)
i , j 6= i is simply

D
(ortho)
no2 (γ) = σ2

Zo,i
. The average MSE for this case can be evaluated as

D
(ortho)
no,i (Ri, ti, ri) =

∫ ∞
γ̄

1

2

(
D

(ortho)
noi,i

(γ) +D
(ortho)
noj ,i

(γ)
)
f(γi)dγ, i ∈ {1, 2}, j 6= i,

where f(γi) is the pdf of the fading gain power.

Case II: The codeword can not be decoded successfully

Consider when γi < γ̄i, i.e., when the codeword cannot be successfully decoded. Source

block S
(i)
i of source Si is reconstructed as

Ŝi,k = Ẑi,k, ∀Si,k 6∈ S
(i)
i ,
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and the resulting MSE in reconstructing S
(i)
i is given by

D
(ortho)
oi,i

(γ) =
(
1− 2−2riRi

)
σ2 +

(1− ti)µiri γi + 1
µi
ri
γi + 1

σ2
Zo,i.

The end-to-end MSE in reconstructing S
(j)
i , j 6= i is simply the source variance, i.e.,

D
(ortho)
oj ,i

(γ) = σ2. Therefore the average MSE, when the digital transmission is in outage,

is

D
(ortho)
o,i (Ri, ti, ri) =

∫ γ̄

0

1

2

(
D

(ortho)
oi,i

(γ) +D
(ortho)
oj ,i

(γ)
)
f(γ)dγi i ∈ {1, 2}, j 6= i.

The minimum achievable MSE cab be obtained by minimizing the overall MSE with re-

spect to the transmission rate Ri, power allocation ratio ti and the channel splitting ration

ri, i.e.,

D(ortho) = min
R1,R2,t1,t2,r1,r2

2∑
i=1

D
(ortho)
no,i (Ri, ti, ri) +D

(ortho)
o,i (Ri, ti, ri).

2.5 Separate Source-Channel Coding

As a benchmark we now consider the source-channel separation (SCS) approach which

ignores any correlation between GMAC inputs. In [47], the rate pairs corresponding to

different outage events for digital channel codes over BF-MAC are computed. The cor-

responding outage regions can be obtained by letting ti = 0, i = 1, 2 in the HDA coding

described in Section 2.3. The (γ1, γ2) regions corresponding to the outage events in separate

source-channel (SSC) coding is depicted in Fig. 2.5. The average distortion of reconstruct-

ing S1 and S2 in each outage scenario is calculated as follows.

Case I: Both codewords can be decoded correctly

The corresponding necessary and sufficient conditions can be obtained by simply letting

ti = 0, i = 1, 2 in (2.4)-(2.6). The probability of no-outage (Pno) can be calculated by
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Figure 2.5: Individual outage regions for conventional source-channel separation coding.

evaluating the following integral

Pno
∆
=

∫
Hno

f(γ1, γ2)dγ1dγ2,

whereHdno denote the no-outage region which is indicated by 1© in Figure 2.5. An explicit

expression for the probability of no-outage for the case of Rayleigh fading can be computed

as follows:

Pno =

∫ ∞
1
µ2

(22R2−1)

∫ ∞
22R2
µ1

(22R1−1)

e−(γ1+γ2)dγ1γ2+

∫ 22R2
µ1

(22R1−1)

1
µ1

(22R2−1)

∫ ∞
1
µ2

(22(R1+R2)−1−µ1γ1)

e−(γ1+γ2)dγ1γ2

= e
− 22R2

µ1
(22R1−1)

+

∫ 22R2
µ1

(22R1−1)

1
µ1

(22R2−1)

e
−(1−µ1

µ2
)γ1e

− 1
µ2

(22(R1+R2)−1)
dγ1

= e
− 1
µ2

(22(R1+R2)−1)

{
e
− (µ2−µ1)2

2R1(2
2R2−1)

µ22 − e−
(µ2−µ1)(2

2R1−1)
µ1µ2

}
+
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e
−(22R2−1)( 1

µ2
+ 22R1

µ1
)
. (2.13)

The average reconstruction distortion given that both channel codewords are decoded cor-

rectly is

Dno =
(2−2R1 + 2−2R2)σ2

2
.

Case II: Only one codeword can be decoded correctly

Consider channel codeword X1 can be decoded correctly while channel codeword X2 can-

not be decoded correctly. Necessary and sufficient conditions for this case can be obtained

by letting ti = 0, i = 1, 2, in (2.7) and (2.8). Then the probability of no-outage (P (1)
po ) can

be calculated by evaluating the following integral

P (1)
po

∆
=

∫
H(1)

po

f(γ1, γ2)dγ1dγ2,

where H(1)
po denote the partial-outage region which is indicated by 2© in Figure 2.5. The

probability of this outage scenario (P
(1)
no ) can be computed as follows:

P (1)
no =

∫ 1
µ2

(22R2−1)

0

∫ ∞
1
µ1

(22R1−1)(µ2γ2+1)

e−(γ1+γ2)dγ1dγ2

= e
1
µ1

(22R1−1)

∫ 1
µ2

(22R2−1)

0

e
(
µ2
µ1

(22R1−1)−1)γ2dγ2

= e
− 2R1(2

2R2−1)
µ1

{
1− e−

(22R1−1)
µ2

}
.

Since X1 can be decoded correctly while X2 cannot be decoded correctly, the average

distortion of reconstructing S1 and S2 are equal to 2−2R1σ2 and σ2, respectively. Therefore,

the average distortion in this case (D
(1)
no ) is given by

D(1)
no =

(1 + 2−2R1)σ2

2
.
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Similarly, the probability of partial-outage, when only the channel codeword X2 can be

decoded correctly (P (1)
po ), can be found by calculating the integral

P (1)
po

∆
=

∫
H(1)

po

f(γ1, γ2)dγ1dγ2,

where H(2)
po denote the partial-outage region which is indicated by 3© in Figure 2.5. The

probability of this outage scenario (P
(2)
no ) can be computed as follows:

P (2)
no =

∫ 1
µ1

(22R1−1)

0

∫ ∞
1
µ2

(22R2−1)(µ1γ1+1)

e−(γ1+γ2)dγ2dγ1

= e
1
µ2

(22R2−1)

∫ 1
µ1

(22R1−1)

0

e
(
µ1
µ2

(22R2−1)−1)γ1dγ1

P (2)
no = e

− 2R2(2
2R1−1)
µ2

{
1− e−

(22R2−1)
µ1

}
.

The average distortion in this case (D
(2)
no ) is given by

D(2)
no =

(1 + 2−2R2)σ2

2
.

Case III: Neither of the codewords can be decoded successfully

The corresponding necessary and sufficient conditions for this case can be obtained by

letting ti = 0, i = 1, 2 in (2.9)-(2.11). Since the three outage scenarios are mutually

exclusive, the probability of total-outage (Pno) can be computed from

Pto = 1− (Pno + P (1)
po + P (2)

po ).

The average reconstruction distortion in this case (Dto) is equal to the source variance, i.e.,

Dto = σ2.

Therefore, the average reconstruction distortion over the fading distribution is

DSSC(R1, R2) = PnoDno + P (1)
po D

(1)
po + P (2)

po D
(2)
po + PtoDto.

The optimal transmitter rates (R0
1, R

0
2) and the corresponding minimum achievable MSE is

35



found by solving the minimization problem:

DSSC(R0
1, R

0
2) = min

R1,R2

DSSC(R1, R2). (2.14)

The problem stated in (2.14) can be solved numerically using a global optimization tool.

2.6 Distributed VQ Combined with Channel Coding

In Section 2.5, we described a SSC coding scheme as a benchmark for our problem. In

this section, we describe source-channel separation approach which can achieve a lower

MMSE. The distortion pairs that are achievable for sending correlated sources over the

fixed GMAC by combining the optimal distributed VQ coding with the optimal channel

coding is discussed in [44]. In our problem setup, we can approach source-channel separa-

tion through two coding strategies. First, by combining the distributed VQ of the sources

with the channel coding over the block-fading MAC. The other strategy is to simply to

ignore source correlation and encode the sources independently using an optimal VQ fol-

lowed by channel coding. This was the approach used in Section 2.5. Note that, for given

source-channel coding rates, while the achievable distortion region due to optimal dis-

tributed VQ is a lower bound to the achievable distortion region due to non-distributed VQ,

the optimal distributed VQ requires both VQ indexes to be recovered at the receiver. How-

ever, the source reconstruction in non-distributed VQ is performed independently. There-

fore, the average performance of the source-channel separation coding with distributed

source VQ which takes advantage of source correlation is not necessarily superior to the av-

erage performance of the source-channel separation coding with non-distributed VQ which

ignores source correlation. Below, we determine the minimum achievable MMSE of dis-

tributed VQ-based SSC scheme. Assuming that channel codewords are decoded error free,

the achievable distortion regions for given coding rates R1 and R2 can be deduced from

the rate-distortion region of the distributed source coding problem for a bivariate Gaussian

source [33]. Below, we use this result to determine the average MSE of the SSC coding
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scheme over the BF-GMAC.

For given coding rates R1 > 0 and R2 > 0, a distortion-pair (D1, D2) is achievable, if

and only if

(D1, D2) ∈ D1(R1, R2) ∩ D2(R1, R2) ∩ Dprod(R1, R2)

where

D1(R1, R2) =
{
D1 : D1 ≥ ∆1 andD1 ≤ σ2

}
D2(R1, R2) =

{
D2 : D2 ≥ ∆1 andD2 ≤ σ2

}
Dprod(R1, R2) = {(D1, D2) : D1D2 ≥ ∆12} ,

with

∆1 = σ22−2R1(1− ρ2(1− 2−2R2))

∆2 = σ22−2R2(1− ρ2(1− 2−2R1))

∆12 = σ4
[
(1− ρ2)2−2(R1+R2) + ρ22−4(R1+R2)

]
.

The problem is to find the minimum (D1 + D2) subject to the above constraints for the

achievable distortion region for given (R1, R2) and ρ. Let D1 +D2 = δs, where δs > 0, is

a line connecting (δs, 0) and (0, δs) on the (D1, D2) plane. Note that for given Di, i = 1, 2,

the corresponding achievable minimum Dj, j 6= i lies on the boundary of the achievable

distortion region. Therefore the achievable MMSE is found when at least one of the above

constraint is satisfied with equality. This will result in three different scenarios to be con-

sidered to determine the MMSE for given rate-pair, as illustrated in Figure 2.6.

Case I:

Assume line D1 + D2 = ds just touches the curve defined by D1D2 = ∆12 while the

point at which they satisfies the other two constraints (see Figure 2.6 (b)). Since D1D2 =

∆12, ∆12 > 0, is symmetrical about the line D1 = D2, line D1 + D2 = ds just touches
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Figure 2.6: Distortion pairs achievable in distributed VQ of two correlated Gaussian sources at a fixed rate
pair (R1, R2).

D1D2 = ∆12 when D1 = D2. Therefore, the minimum distortion is given by

D∗ =
√

∆12.

Case II:

Assume, when line D1 + D2 = δs just touches the curve defined by D1D2 = ∆12 while

the point at which the distortion pair satisfies the constraint defined by D2(R1, R2) (i.e.,

D2 ≥ ∆2), it does not satisfy the constraint defined by D1(R1, R2) (i.e., D1 < ∆1). In this
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case, in order to find the achievable MMSE (D1 + D2)/2, δs must be increased until line

D1 +D2 = δs touches the intersection of curveD1D2 = ∆12 and lineD1 = ∆1 (see Figure

2.6 (a)). The achievable D1 and D2, so that D1 +D2 is minimized, is given by

D∗1 = ∆1

D∗2 =
∆12

∆1

.

The resulting MMSE is D∗ = (D∗1 +D∗2)/2.

Case III:

The remaining case is when line D1 + D2 = δs just touches the curve defined by D1D2 =

∆12 while the point at which they touch satisfies the constraint defined by D1(R1, R2) (i.e.,

D1 ≥ ∆1 ), it does not satisfy the constraint defined by D2(R1, R2) (i.e., D2 ≤ ∆2). In

order to find the achievable MMSE (D1 + D2)/2, δs should be further increased until line

D1 +D2 = δs touches the intersection of curveD1D2 = ∆12 and lineD2 = ∆2 (see Figure

2.6 (c)). The achievable D1 and D2, so that D1 +D2 is minimized, is given by

D∗2 = ∆2

D∗1 =
∆12

∆2

.

The resulting MMSE is D∗ = (D∗1 +D∗2)/2.

Finding the optimum encoding rates

Recall that the above MSE is computed assuming both channel codewords are correctly

decoded at the receiver. Therefore with transmitters transmit at ratesR1 andR2 with correct

decoding, the achievable MMSE (D∗) is determined by one the above three cases. Let

Dno.dV Q is the distortion corresponding to the no-outage case. Then, the average distortion

is given by

Dmin(R1, R2) = Dno.dV QPno + σ2(1− Pno),

where Pno is the probability of decoding both codewords correctly (for given R1 and R2),

which is given by (2.13). The minimum average distortion and the optimum encoding rates
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are computed by minimizing Dmin(R1, R2) with respect to R1 and R2. It is difficult to

establish the convexity of this minimization problem. Therefore, we use numerical opti-

mization to find the optimum transmission rates and the corresponding MMSE.

2.7 Uncoded Transmission

In the relation to sending correlated Gaussian sources over fixed GMAC, [44] proves that

the uncoded transmission is optimal when the transmitter powers, noise variance, and the

correlation coefficient satisfy a certain condition. In particular, in the symmetrical case,

for given source correlation the uncoded transmission is optimal below a certain power-to-

noise ratio value. However, when the channel varies, such optimality is unlikely. Below,

we determine the minimum achievable MMSE of this scheme for the BF-GMAC.

At each transmitter, the channel input symbols are generated by scaling the source

symbols so that the average power constraint of the channel input sequence is satisfied with

equality. That is

Xi,k =

√
Pi
σ2
Si,k, k ∈ {1, 2, . . . , n}.

Based on the resulting channel output Yk, the decoder then compute the MMSE estimate

Ŝi,k of the source symbol Si,k. That is

Ŝi,k = E[Si,k|Yk], k ∈ {1, 2, . . . , n}.

Note that, since the channel output Yk and the source symbol Si,k are jointly Gaussian, the

MMSE estimator is linear. Then the MMSE estimate of Si,k can be written as

Ŝi,k = AiYk, k ∈ {1, 2, . . . , n},

where Ai ∈ C denotes the linear MMSE estimator of Si,k, and can be found evaluating

Ai =
E[Si,kY

∗
k ]

E[|Yk|2]
, k ∈ {1, 2, . . . , n},
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where Y ∗k is the complex conjugate of the Yk. Note that Ai is constant over one block of

transmission since the fading gains remain unchanged during the transmission, and Si,k and

Yk are iid. sequence of random symbols. The corresponding MMSE error is given by

Di(γ1, γ2) = E[|Si,k|2]− |E[Si,kY
∗
k ]|2

E[|Yk|2]
, k ∈ {1, 2, . . . , n}.

The MMSE in estimating S1,k is evaluated as

D1(γ1, γ2) = σ2 − σ2 γ1P1 + ρ2γ2P2 + 2ρRe{h1h
∗
2}
√
P1P2

γ1P1 + γ2P2 + 2ρRe{h1h∗2}
√
P1P2 +N

= σ2 (1− ρ2)γ2P2 +N

γ1P1 + γ2P2 + 2ρRe{h1h∗2}
√
P1P2 +N

.

Similarly, the MMSE in estimating S2,k can be computed, and is given by

D2(γ1, γ2) = σ2 (1− ρ2)γ1P1 +N

γ1P1 + γ2P2 + 2ρRe{h1h∗2}
√
P1P2 +N

The average expected distortion (D) can be computed by evaluating

D =

∫
(γ1,γ2)∈R+×R+

D1(γ1, γ2) +D2(γ1, γ2)

2
f(γ1, γ2)dγ1dγ2.

We can further simplify this expression for the special case P1 = P2, and ρ = 0. For this

case, given that fading follows the Rayleigh distribution, we can obtain

DU = σ2e
1
µ

[(
1 +

1

µ

)
e−

1
µ − 1

µ2
E1

(
1

µ

)]
,

where µ = P1/N(= P2/N), where E1 (x) is the exponential integral defined by

E1 (x) =

∫ ∞
x

e−t

t
dt, x > 0.

2.8 Numerical Results and Discussion

In this section, we compare the MMSE upper bound derived in Section 2.3 using superposition-

based HDA coding with other bench mark bounds. The MMSE is evaluated over the inde-

pendent Rayleigh fading MAC with E{γi} = 1, i ∈ {1, 2}. We use a global optimization
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Figure 2.7: Performance comparison for sending uncorrelated sources over Rayleigh BF-MAC.

tool in Matlab to to evaluate all MMSE bounds. Fig. 2.7 shows the performance of the

HDA coding, the SSC coding, and the uncoded schemes, for sending uncorrelated (ρ = 0)

Gaussian sources over both the two-to-one MAC (MAC) and the orthogonal MAC (ortho.).

The performance of the uncoded transmission is significantly better compared to separation-

based approach for a range of low P/N values (1-3). However, as the P/N increases the

performance of the uncoded scheme levels off as P/N → ∞. In uncoded transmission,

the channel inputs by one transmitter act as independent noise to the other transmitter. In

the symmetric (P1 = P2) case the average distortion of the uncoded scheme approaches

σ2/2. The HDA scheme outperforms both the uncoded scheme and the separation-based

approach after some P/N value. Below this P/N value, the HDA scheme operates as an

uncoded scheme, i.e., t = 1. As P/N increases, the performance of the HDA scheme

and the performance of the separation-based approach converge as the uncoded approach

42



is significantly outperformed by the separation-based approach. A similar observation can

be made regarding the orthogonal MAC case as well.

The performance of the HDA scheme based on orthogonal channel access HDA (ortho.)

is slightly better than the HDA (MAC) in the P/N range of 5 − 10. This is due to the

fact that in the two-to-one MAC case, when P/N is low, the probability of either of the

transmitters being in outage is higher than the probability of one transmitter being in outage

in the orthogonal MAC case. Therefore, there is a higher level of noise for the analog

transmission in the two-to-one MAC. However, the HDA (MAC) scheme outperforms the

HDA (ortho.) scheme as P/N increases. For instance, at P/N = 20, D/σ2 values of

the HDA (MAC) and the HDA (ortho.) schemes are 0.3859 and 0.3948, respectively. The

no-outage region of the HDA (MAC) scheme becomes relatively dominant for larger P/N

values. The performance of HDA coding as a function CSNR for correlated sources will

be discussed in Chapter 3.

Fig. 2.8 compares the performance of various coding schemes for different values of

the source correlation coefficient ρ. As can be observed, at P/N = 10 dB, the SCS based

coding schemes are inferior to HDA coding and the uncoded transmission. This is due

to the fact that digital channel code experiences outages more frequently, in which case

decoder cannot estimate the source sequences. At lower ρ values SSC coding which ig-

nores the source correlation shows a slightly lower MSE compared to SSC coding with

distributed VQ. This may be attributed to the fact that distributed VQ requires both chan-

nel codewords to reconstruct each source. In Fig.2.9, a similar performance comparison

is presented for P/N = 30 dB. At high CSNR values SSC coding with distributed VQ

achieves a lower MSE compared to the uncoded transmission for up to ρ = 0.9. This is due

to the obvious fact that the digital code is in no-outage with high probability. However, as

ρ→ 1 the uncoded transmission causes negligible interference between the channel inputs,

and therefore becomes optimal. In both CSNR values 10 dB and 30 dB, the HDA coding

shows superior performance over the other coding schemes for different ρ values. This is

due to the fact that HDA coding can be matched to the fading distribution and the source
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Figure 2.8: MSE vs ρ at P/N = 10 dB.

correlation by optimizing the encoder parameters.

2.9 Conclusion

The best performance achievable in communicating correlated Gaussian sources over a

BF-GMAC is an open problem. In this chapter several upper bounds to the minimum

achievable MMSE have been obtained and compared. The lowest MMSE bound is found

by considering an HDA coding scheme, which we refer to as HDA (MAC). In this case,

by computing the individual outage regions of digital coding, we were able to compute

the average MSE and optimize the encoder to find an achievable bound for communicating

Gaussian sources over BF-MAC. Through numerical result we have shown that the HDA

(MAC) scheme can outperform the source-channel separation approach and the uncoded
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scheme as P/N increases. The SSC coding (SCS) shows inferior performance at low to

moderate CSNR. Furthermore, We have compared the performance of the HDA coding

with orthogonal channel access. The numerical results show that the HDA (MAC) scheme

outperforms HDA (ortho.) scheme at moderate to high P/N values, which indicates the

advantage of sharing the bandwidth of the MAC between the transmitters when the proba-

bility of the outage events are low.
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Chapter 3

Source Dependent Channel Coding for

Correlated Sources and BF-GMAC

3.1 Introduction

In this chapter, we study distortion versus average CSNR performance of communication

of two correlated Gaussian sources over two-to-one block-fading MAC, using JSC coding

schemes with source dependent channel codewords. In [44], a lower bound for achievable

MMSE is derived for communicating correlated Gaussian sources over a fixed GMAC with

source-channel bandwidth matched. In [44], authors present a JSC coding scheme that per-

forms close to the MSE lower bound in the symmetric case. One of the key contributing

factors to the performance enhancement of the JSC scheme in [44] is the enhanced capacity

region due to the correlated channel codewords, generated by mapping VQ source code-

words directly to channel inputs. The fundamental difference between the problem studied

in this chapter and that in [44] is the outages in the channel code due to fading in the

channel. A decoder outage occurs when a channel codeword cannot be decoded error-free.

Since the channel codes can be seen as noisy source sequences, even during an outage the

channel codewords carries some information about the source, and therefore can be used

to reconstruct the sources to some accuracy. As the fading gains are unknown at the trans-
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mitters, a pair of fixed rates have to be used through out the transmission. However, when

random channel fading gains drops below a certain value fixed-rate channel codes can be-

come undecodable. Therefore, the decodabitiy of the channel codewords depends on the

particular realization of the fading gain observed during the transmission of the codewords.

There can be different decoder outage scenarios in a two-input GMAC: both codewords

decodable, only one of the codewords decodable, or both codewords undecodable. The key

challenge in our problem setup is computing the average MMSE under different outage

scenarios at the receiver.

Contribution

• The source-channel vector quantization scheme and an HDA extension of it provide

the best known lower bounds for the MMSE of transmitting correlated Gaussian

sources of a GMAC with no fading [44]. In this chapter we derive the MMSE lower

bounds of these schemes for BF-GMAC with no CSI at the transmitters, by consid-

ering three possible cases of decoder outage.

• Through numerical performance evaluations, it is shown that, unlike in the case of

non-fading GMAC as considered in [44], uncoded transmission is no longer optimal

at low CSNRs, when there is channel fading and CSI is not available to the trans-

mitters. In particular, it is shown that JSC coding which combines both coded and

uncoded source components can outperform uncoded transmission at low CSNRs.

3.2 JSC Coding Based on Vector Quantization

A simple yet effective coding scheme which can be used to communicate a pair of Gaus-

sian sources to a common receiver over a non-fading MAC is presented in [44]. In this

scheme, each source is quantized by a rate-distortion optimal vector quantizer [2] and the

real-valued quantized vectors are directly transmitted over the GMAC, without any further
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channel coding. Since the correlated sources will produce correlated vector quantizer out-

puts, this JSC scheme produces correlated channel codewords at the GMAC inputs, and is

able to exploit the correlation between the sources to improve the effective channel “ca-

pacity” . Also, when one of the codewords is decoded correctly, the effective CSNR of

the other codeword increases due to the correlation between the codewords. In case where

only one codeword can be decoded, the correlation between the channel output and the

transmitted codewords may be used to increase the effective CSNR.

This chapter investigates the best achievable performance of a source-channel vector

quantization (JSC-VQ) scheme [44] for a GMAC with Rayleigh fading and no transmitter-

side CSI. This scheme is illustrated in Fig. 3.1. As in HDA coding, the achievable MMSE

is determined by three possible outage conditions at the decoder. However, the advantage

here is that, even when none of the codewords can be decoded correctly some estimates of

the two sources can still be obtained from the observed channel output.

The JSC-VQ encoder i vector-quantizes the source sequences Si using a rate Ri code-

book, scales the resulting codeword Uo
i to satisfy its average power constraint Pi, and

transmits the scales codeword Xi = βiU
o
i over the BF-MAC, where

βi =

√
Pi

σ2(1− 2−2Ri)
, i = 1, 2. (3.1)

Note that, since VQ source codewords are mapped to the channel codewords, correlated

source sequence generates maximally correlated channel inputs X1,k and X2,k, and hence

the advantage of this scheme. The estimation of the source sequence is done in two steps.

First, upon observing the resulting channel output Y, the decoder uses the same VQ code-

books used by the encoders to jointly detect the transmitted codewords (Uo
1,U

o
2), by con-

sidering their correlation or the asymptotic angle (detection-step). Note that (S1,S2,U
o
1,U

o
2,Y)

are asymptotically jointly Gaussian and hence the optimal (MMSE) estimator is linear. Let

the codeword pair found in the detection-step be (Û1, Û2). In general, the estimated source
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sequences are given by

Ŝi = γi,1Û1 + γi,2Û2 + γi,3Y, i = 1, 2,

where coefficients γi,1, γi,2 and γi,3 of the optimal linear estimator are to be determined. For

given encoder parameters (R1, R2, β1, β2), it is not guaranteed that (Û1, Û2) = (Uo
1,U

o
2) at

the current channel state (h1, h2), hence γi,1, γi,2 and γi,3 will depend on the state (outage-

event) of the decoder. We next consider the all possible outage events to determine the

MMSE.

kU ,1


kU ,2

kS ,1

kS ,2

kW

kS ,1


kS ,2


kU ,2


kU ,1

kY1h

2h





1

2

Figure 3.1: Vector-quantized source sequences are transmitted over slow fading MAC.

3.2.1 Both codewords can be decoded correctly

The set of all rate-pairs for which both codewords can be decoded correctly are given by

the following Lemma.

Lemma 3.1. For given (P1, P2), (h1, h2), (β1, β2) and ρ, both source-channel VQ code-

words can be detected with an arbitrarily small error probability, if (R1, R2) satisfy

R1 <
1

2
log2

(
|h1|2P1(1− ρ̃2) +N

N(1− ρ̃2)

)
R2 <

1

2
log2

(
|h2|2P2(1− ρ̃2) +N

N(1− ρ̃2)

)
R1 +R2 <

1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

N(1− ρ̃2)

)
(3.2)

49



and where

ρ̃ = ρ
√

(1− 2−2R1)((1− 2−2R2). (3.3)

Proof. See Appendix A.

As both VQ source codewords are recovered (with high probability), the joint decoder

calculates MMSE estimates Ŝi, i ∈ {1, 2}, of the source sequences Si based on the linear

combinations of Uo
1 and Uo

2, i.e.,

Ŝi = γi,1U
o
1 + γi,2U

o
2

When the transmission rates (R1, R2) are in the no-outage region for given channel

fading gains (h1, h2), the minimum distortion pairs are given by [44, Theorem IV.4]

D
(no)
1 (h1, h2) = σ22−2R1 .

1− ρ2(1− 2−2R2)

1− ρ̃2

D
(no)
2 (h1, h2) = σ22−2R2 .

1− ρ2(1− 2−2R1)

1− ρ̃2
.

3.2.2 Only one codeword can be decoded correctly

Consider the case where the codeword Uo
1 can be decoded correctly while the codeword

Uo
2 cannot be correctly decoded. For this partial-outage case, the set of all rate-pairs for

which only codeword Uo
1 can be correctly decoded given by the following theorem.

Theorem 3.2. For given (P1, P2), (h1, h2), (β1, β2) and ρ, the codeword Uo
1 is decodable

and Uo
2 is undecodable if and only if

R1 <
1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N

)
(3.4)

R2 >
1

2
log2

(
|h2|2P2(1− ρ̃2) +N

N(1− ρ̃2)

)
. (3.5)

Proof. See Appendix A.
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The MMSE estimates, based on Uo
1 and Y, for the source sequences are given by

Ŝi = γi,1U
o
1 + γi,3Y, i ∈ {1, 2}.

The linear estimator coefficients (γi,1, γi,3), and the corresponding MMSE D
(po1)
i (h1, h2)

can be deduced by letting αi = 0, i = {1, 2} in the MMSE derivation in Section 3.3.2.

The set of all rate-pairs for which the codeword Uo
2 and Uo

1 is undecodable is given by

the following lemma.

Lemma 3.3. For given (P1, P2), (h1, h2), (β1, β2) and ρ, the codeword Uo
2 is decodable

and Uo
1 is undecodable if and only if

R2 <
1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N

)
(3.6)

R1 >
1

2
log2

(
|h1|2P1(1− ρ̃2) +N

N(1− ρ̃2)

)
. (3.7)

Proof. Follows from the previous Lemma.

The MMSE estimates, based on Uo
2 and Y, for the source sequences are given by

Ŝi = γi,2Û2 + γi,3Y, i ∈ {1, 2}.

The linear estimator coefficients (γi,2, γi,3), and the corresponding MMSE D
(po2)
i (h1, h2)

can be deduced from the corresponding MMSE in Section 3.3.2.

3.2.3 Neither of the codewords can be decoded correctly

The set of all rate-pairs for which neither of the codewords can be decoded is given by the

following lemma.

Lemma 3.4. For given (P1, P2), (h1, h2), (β1, β2) and ρ, neither of the codewords can be
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decoded if

R1 >
1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N

)
R2 >

1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h1|2P1(1− ρ̃2) +N

)
R1 +R2 >

1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

N(1− ρ̃2)

)
.

Proof. Follows from (3.2), (3.4) and (3.6) in the previous theorem and the two lemmas.

The MMSE estimate, based on Y, for the source sequences are given by

Ŝi = γi,3Y, i ∈ {1, 2}.

The MMSE distortion D(to)
i (h1, h2) can be deduced by letting αi = 0, i = {1, 2} in the

MMSE derivation in Section 3.3.3.

The optimization problem is to determine the optimum fixed rate-pair at the transmitter

which minimizes the average MSE distortion over the fading distribution, i.e.,

DJSC-VQ = min
R1,R2

1

2

2∑
i=1

(∫
Hno

Dno
i (h1, h2)f(h1)f(h2)dh1dh2

+

∫
H(1)
po

Dpo1
i (h1, h2)f(h1)f(h2)dh1dh2 +

∫
H(2)
po

Dpo2
i (h1, h2)f(h1)f(h2)dh1dh2

+

∫
Hto

Dto
i (h1, h2)f(h1)f(h2)dh1dh2

)
.

Since it is difficult to determine the boundaries of the outage regions with respect to the

channel fading gains, we are unable to find an explicit expression for the average MMSE.

Therefore, we use a numerical optimization algorithm along with Monte-Carlo simulation

to find the best achievable average MMSE.

3.2.4 Decodability of the JSC-VQ codewords with source correlation

It has been shown that the capacity of a MAC channel can be increased with correlated

channel inputs [40, 44]. This may be attributed to two factors. First is that the increased
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Figure 3.2: Decodability of the JSC-VQ codewrods with source correlation (low correlation), ρ = 0.1 and
P/N = 20dB

effective signal power (constructive interference) due to the correlation between the chan-

nel inputs. Second is that given one codeword and the channel output the other codeword

has a reduced uncertainty region, which allows encoders to transmit more codewords with

no decoder error at the receiver (with high probability). However, when the MAC expe-

riences fading, the codeword must be matched to the fading gains to create constructive

interference in order to increase the effective capacity. If the CSI is not available to the

encoders, correlated codewords can create destructive interference at the channel output.

The strength of the received signal is determined by

E{|h1X1,k + h2X2,k|2} = |h1|2E{|X1,k|2}+ |h2|2E{|X2,k|2}+ 2Re{h1h
∗
2}E{X1,kX

∗
2,k}

= |h1|2E{|X1,k|2}+ |h2|2E{|X2,k|2}

+ 2Re{h1h
∗
2}ρX

√
E{|X1,k|2}E{|X2,k|2}, k = 1, . . . , n (3.8)

53



|| 2h
(c) 

|| 1h

No-outage event

Only codeword-1 is decodable

Only codeword-2 is decodable

Total outage event

|| 1h

|| 2h

Figure 3.3: Decodability of the JSC-VQ codewrods with source correlation (high correlation), ρ = 0.9 and
P/N = 20dB

where ρX is the correlation between the channel inputs. In equation (3.8), the term

2Re{h1h
∗
2}ρX

√
E{|X1,k|2}E{|X2,k|2} determines the effect of the correlation to the re-

ceived signal quality. If Re{h1h
∗
2} > 0, the channel inputs creates constructive interference,

otherwise they will interfere destructively degrading the received channel quality. However,

since the CSI is available to the receiver, the asymptotic angels between the codewords can

be used to improve the decodability of the codewords. Figure 3.2 illustrates the decodability

of the JSC-VQ codewords with the amplitude values of the channel fading gains (|h1|, |h2|),

at a low source correlation (ρ = 0.1). Figure 3.3 and Figure 3.4 show the decodability of

the JSC-VQ codewords at high source correlation values (ρ = 0.9 and ρ = 0.98). It can

be observed that at ρ = 0.1 the region of total-outage event is larger than that at ρ = 0.9.

However, at high source correlations, there is overlap of the region of total-outage event

and the other decodability regions. At a very high source correlation ρ = 0.98, the region
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Figure 3.4: Decodability of the JSC-VQ codewrods with source correlation (very high correlation), ρ = 0.98
and P/N = 20dB

of no-outage event and the two regions of only a single codeword is decodable are further

increased. However, the region of total-outage event overlaps with the other decodable

regions. It can be observed that the overlap of the no-outage event is more likely when

|h1| ≈ |h2|. Now we can argue that the overall decodability of the JSC-VQ codewords is

improved with the source correlation, while the decoder may experience outages at high

CSNR instants.

3.3 A Superposition Approach: The HDA coding scheme

As the transmitters experience a range of CSNR values during the transmission, a system

which send both coded and uncoded source information by superposition can be better

matched to the fading distribution to achieve a lower average MMSE. The JSC scheme

55



analyzed in this section shares power between the coded and the uncoded transmission of

the source sequence. This coding strategy is previously proposed in [44] for sending real-

valued correlated Gaussian source sequences over a non fading GMAC. In the fixed channel

problem in [44], the performance improvement over the JSC-VQ is mainly attributed to the

optimality of uncoded transmission in the lower CSNR region. However when sending

the sources over a varying channel with fixed transmitter parameters (due to CSI not being

available at the transmitters), the superposition of uncoded transmission further contributed

to a performance improvement as the received SNR of uncoded transmission gradually

changes with the power of fading gains. To optimize the average performance of the coding

scheme over the fading distribution of the BF-MAC, we compute the individual outage

scenarios for each transmitter.

A description of the superimposed scheme is given below. The channel input sequence

Xi generated by transmitter i, i ∈ {1, 2}, is a linear combination of the source sequence Si

and its rate Ri vector quantized version Uo
i . That is

Xi = αiSi + βiU
o
i ,

where uoi is obtained as in the previous VQ scheme. The coefficient αi and βi are chosen so

that the sequence Xi satisfies the average power constraint and the average MSE distortion

over the fading distribution is minimized. When the optimum coefficients are computed

the above two conditions are satisfied when αi and βi are bounded as follows

αi ∈

[
0,

√
Pi
σ2

]
, βi =

√
Pi − α2

iσ
22−2Ri

σ2(1− 2−2Ri)
− αi.

At the receiver, the joint decoder first evaluate the decodability of the codewords. The

decodability of the codewords depends on encoder parameters Ri, αi, and βi, and the CSI

h1 and h2. We describe different outage scenarios below.
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3.3.1 Both codewords decoded correctly

When the decoder decides the codewords can be decoded with arbitrarily small probability

of error, it makes a guess (Û1, Û2) for the transmitted VQ sequences from the channel

output sequence Y = h1X1 + h2X2 + Z. Then decoder computes the estimates Ŝ1 and Ŝ2

of the source sequences S1 and S2 as

Ŝi = γi,1Û1 + γi,2Û2 + γi,3Y, i ∈ {1, 2},

where the coefficients γi,j are chosen such that Ŝi = E[Si|Y, Û1, Û2]. To determine ex-

plicit expressions for γi,j , the first derivative of MSE 1
n

E
[
‖Si − Ŝi‖2

]
w.r.t. γij is computed

and equated the null-vector. This results in the following system of equations:
1
n
E‖U1‖2 1

n
E〈U2,U1〉 1

n
E〈Y,U1〉

1
n
E〈U1,U2〉 1

n
E‖U2‖2 1

n
E〈Y,U2〉

1
n
E〈U1,Y〉 1

n
E〈U2,Y〉 1

n
E‖Y‖2



γi,1

γi,2

γi,3

 =


1
n
E〈Si,U1〉

1
n
E〈Si,U2〉

1
n
E〈Si,Y〉

 .
For simplicity, lets define

K ,


k11 k12 k13

k21 k22 k23

k31 k32 k33

 =


1
n
E‖U1‖2 1

n
E〈U2,U1〉 1

n
E〈Y,U1〉

1
n
E〈U1,U2〉 1

n
E‖U2‖2 1

n
E〈Y,U2〉

1
n
E〈U1,Y〉 1

n
E〈U2,Y〉 1

n
E‖Y‖2


and

ci ,


ci1

ci2

ci3

 =


1
n
E〈Si,U1〉

1
n
E〈Si,U2〉

1
n
E〈Si,Y〉

 ,
where

k11 = σ2(1− 2−2R1)

k12 = k21 = σ2(1− 2−2R1)(1− 2−2R2)

k13 = k∗31 = (h1α1 + h1β1 + h2α2ρ)k11 + h2β2k12

k22 = σ2(1− 2−2R2)
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k23 = k∗32 = (h2α2 + h2β2 + h1α1ρ)k11 + h1β1k12

k33 = α2
1|h1|2σ2 + 2α1β1|h1|2k11 + 2α1α2Re{h∗1h2}ρσ2 + 2α1β2Re{h∗1h2}ρk22

+ β2
1 |h1|2k11 + 2β1α2Re{h∗1h2}ρk11 + 2β1β2Re{h∗1h2}k12 + 2α2β2|h2|2k22

+ α2
2|h2|2σ2 + β2

2 |h2|2k22 +N.

The coefficients γi,j are then given by
γi,1

γi,2

γi,3

 = K−1


ci1

ci2

ci3

 , i ∈ {1, 2},

where

c11 = k11

c12 = ρk22

c13 = (α1h
∗
1 + α2h

∗
2ρ)σ2 + h∗1β1k11 + β2h

∗
2k22

c21 = ρk11

c22 = k22

c23 = (α2h
∗
2 + α1h

∗
1ρ)σ2 + β1h

∗
1k11 + β2h

∗
2k22.

The distortion pairs achieved for given (h1, h2) when both codewords decoded correctly is

given by

D
(no)
i (h1, h2) = σ2 − γ∗i,1ci1 − γ∗i,2ci2 − γ∗i,3ci3, i ∈ {1, 2}.

The rate region for which both codewords can be decoded is given by the following

lemma.

Lemma 3.5. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2) and ρ, the VQ codeword pair

(Uo
1,U

o
1) can be decoded with arbitrarily small probability of error whenever (R1, R2)
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satisfies

R1 <
1

2
log2

(
|β′1|2k11(1− ρ̃2) +N ′

N ′(1− ρ̃2)

)
R2 <

1

2
log2

(
|β′2|2k22(1− ρ̃2) +N ′

N ′(1− ρ̃2)

)
R1 +R2 <

1

2
log2

(
|β′1|2k11 + |β′2|2k22 + 2Re{β′1(β′2)∗}ρ̃

√
k11k22) +N ′

N ′(1− ρ̃2)

)
for some α1, α2, β1 and β2 satisfying the power constraint and where

N ′ = |h1|2α2
1ν1 + |h2|2α2

2ν2 + 2Re{h1
∗h2}α1α2ν3 +N, (3.9)

where the expressions ν1, ν1, and ν3 given in equation set following (45) in [44] is used

here. with

β′1 = h1α1(1− a1ρ̃) + h1β1 + h2α2a2

β′2 = h2α2(1− a2ρ̃) + h2β2 + h1α1a1,

where a1, a2, η1 and η1 are given in (48-50) in [44].

3.3.2 Only one codeword can be decoded correctly

Consider the case when codeword-1 can be decoded correctly while codeword-2 cannot be

correctly decoded. Rate pairs for this outage event is given by the following lemma.

Lemma 3.6. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2) and ρ, the necessary and suffi-

cient conditions that only codeword Uo
1 but not Uo

2 is correctly decodable are

R1 <
1

2
log2

(
|β′1|2k11 + |β′2|2k22 + 2Re{β′1(β′2)∗}ρ̃

√
k11k22) +N ′

|β′2|2k22(1− ρ̃2) +N ′

)
R2 >

1

2
log2

(
|β′2|2k22(1− ρ̃2) +N ′

N ′(1− ρ̃2)

)
.

The MMSE estimates for the source sequences are given by

Ŝi = γi,1Û1 + γi,3Y, i ∈ {1, 2},
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where the linear estimator coefficients are given byγi1
γi3

 = K−1
1

ci1
ci3

 , i ∈ {1, 2},

where

K1 =

k11 k13

k31 k33

 .
The MMSE of this estimator is given by

D
(po1)
i (h1, h2) = σ2 − γ∗i,1ci1 − γ∗i,3ci3, i ∈ {1, 2}.

The rate pairs for which codeword-2 can be decoded correctly codeword-1 cannot be de-

coded correctly is given by the following lemma.

Lemma 3.7. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2) and ρ, the necessary and suffi-

cient conditions that only codeword Uo
2 but not Uo

1 is correctly decodable are

R2 <
1

2
log2

(
|β′1|2k11 + |β′2|2k22 + 2Re{β′1(β′2)∗}ρ̃

√
k11k22) +N ′

|β′2|2k11(1− ρ̃2) +N ′

)
R1 >

1

2
log2

(
|β′1|2k11(1− ρ̃2) +N ′

N ′(1− ρ̃2)

)
.

The MMSE estimates for the source sequences are given by

Ŝi = γi,2Û2 + γi,3Y, i ∈ {1, 2},

where the linear estimator coefficients are given byγi2
γi3

 = K−1
2

ci2
ci3

 , i ∈ {1, 2},

where

K2 =

k22 k23

k32 k33
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and the MMSE of this estimator is given by

D
(po2)
i (h1, h2) = σ2 − γ∗i,2ci2 − γ∗i,3ci3, i ∈ {1, 2}.

3.3.3 Neither of the codewords can be decoded correctly

In this case the rate-pair does not satisfy any of the conditions in the above scenarios, and

neither of the codewords can be decoded reliably. The rate pairs for the total-outage events

is given by the following lemma.

Lemma 3.8. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2) and ρ, neither Uo
1 nor Uo

2 is

correctly decodable if

R1 >
1

2
log2

(
|β′1|2k11 + |β′2|2k22 + 2Re{β′1(β′2)∗}ρ̃

√
k11k22) +N ′

|β′2|2k22(1− ρ̃2) +N ′

)
R2 >

1

2
log2

(
|β′1|2k11 + |β′2|2k22 + 2Re{β′1(β′2)∗}ρ̃

√
k11k22) +N ′

|β′1|2k11(1− ρ̃2) +N ′

)
R1 +R2 >

1

2
log2

(
|β′1|2k11 + |β′2|2k22 + 2Re{β′1(β′2)∗}ρ̃

√
k11k22) +N ′

N ′(1− ρ̃2)

)
.

The MMSE estimate for the source sequences are given by

Ŝi = γi,3Y, i ∈ {1, 2}.

(3.10)

The MMSE is given by

D
(to)
i (h1, h2) = σ2 − γ∗i,3ci3, i ∈ {1, 2}.

where the linear estimator coefficient is given by

γi3 =
ci3
ki3
, i ∈ {1, 2}.

Lemmas 3.5, 3.6, 3.7 and 3.8 can be proven by combining the arguments used in the proof

of [44, Lemma F.1] and the proofs of Theorem 3.2 and Lemma 3.1 given in Appendix A.

As in the proof of [44, Lemma F.1], we choose β′1, β′2 and N ′ such that the MAC input
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output relationship Y = β′1U
o
1 + β′1U

o
1 + W′ satisfies the properties needed to analyze the

JSC-VQ scheme. Here W′ is the independent interference to the VQ codewords Uo
1 and

Uo
2, and β′1, β′2 and N ′ are functions of the fading gains h1 and h2.

The optimization problem is to determine the optimum fixed rate-pair (R1, R2) and the

coefficient αi and βi, i ∈ {1, 2} which minimizes the average MMSE distortion over the

fading distribution, i.e.,

DJSC-VQ-HDA = min
R1,R2,α1,α2

1

2

2∑
i=1

(∫
Hno

Dno
i (h1, h2)f(h1)f(h2)dh1dh2

+

∫
H(1)
po

Dpo1
i (h1, h2)f(h1)f(h2)dh1dh2 +

∫
H(2)
po

Dpo2
i (h1, h2)f(h1)f(h2)dh1dh2

+

∫
Hto

Dto
i (h1, h2)f(h1)f(h2)dh1dh2

)
.

Since evaluating the boundaries of the outage regions with respect to the channel fading

gains is not mathematically feasible, we use Monte Carlo simulation methods to compute

the average MMSE for givenR1, R2, αi and, βi. The convexity of the optimization problem

is not known. Therefore, a global optimization tool is used to find the achievable average

MMSE.

3.4 Numerical Results and Discussion

In this section we present a set of numerical results to analyze the performance of the JSC-

VQ scheme and the HDA scheme which combines coded and uncoded transmission of the

source (JSC-VQ-HDA). In [44], the numerical results are presented which demonstrate the

superior performance of the JSC-VQ-HDA scheme in communicating correlated Gaussian

sources over fixed (non-fading) GMAC. In our experiment setup we consider communi-

cation of correlated Gaussian sources over Rayleigh BF-GMAC. The fading coefficients

(h1, h2) are assumed to be independent normally distributed random variables with zero-

mean and unit variance. The average MSE is computed over 10,000 channel realizations.

We assume that the transmitter powers are equal to 1 (P1 = P2 = 1).
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Figure 3.5: Performance comparison of different coding scheme assuming uncorrelated sources.

3.4.1 Sending uncorrelated Gaussian sources over BF-MAC

In order to compare the performance of the JSC-VQ scheme against the bounds derived

in Chapter 2, we first consider sending uncorrelated source over the BF-MAC. Fig. 3.5

compares the MMSE achieved over a range of P/N values. It can be observed that JSC-VQ

scheme is superior to the HDA schemes which use source-channel separation in the digital

part. This performance difference is due to the fact that the JSC-VQ scheme the digital

codewords are constructed using the source VQ sequences, and therefore the receiver can

estimate a source sequences even when the corresponding digital transmitter is in outage.

3.4.2 Sending Correlated Gaussian Sources Over Fading MAC

In the performance analyzes of the communication of correlated Gaussian sources, we con-

sider the same fading GMAC and the transmitters with equal powers. In order to evaluate
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Figure 3.6: Performance of different coding schemes sending correlated sources (ρ = 0.9).

the performance of the proposed JSC-VQ and JSC-VQ-HDA schemes we use Monte Carlo

simulation techniques due to the high complexity in determining the boundaries of the indi-

vidual outage regions. In particular, we use Monte Carlo simulation techniques to compute

the MSE distortion average over the fading distribution. Fig. 3.6 shows the performance of

JSC-VQ-HDA, JSC-VQ, the SCS based (with distributed VQ), and uncoded transmission

over the BF-MAC P/N .

The performance of the uncoded transmission is significantly better compared to the

SCS coding scheme for a range of low P/N values. However, as the P/N increases

the performance of the uncoded scheme deteriorates, i.e., the performance of the uncoded

scheme levels off as P/N → ∞. In the uncoded transmission, a part of the correlated

inputs by one transmitter act as independent noise to the other transmitter. Note that one

channel input can be written as a function of other channel inputX2 = aX1 +W , whereW
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Figure 3.7: D/σ2 vs ρ (P/N = 10 dB).

is independent noise. In the symmetric case the average distortion of the uncoded scheme

approaches σ2(1− ρ)/2. The HDA scheme outperforms both the uncoded scheme and the

separation-based approach after some P/N value. Below a certain P/N value the HDA

scheme simply operates as an uncoded scheme by letting Ri → ∞. The direct VQ trans-

mission performs as close to the HDA scheme for low P/N values. This is mainly due

to the fact that both system operates nearly as the uncoded system. However, as P/N in-

creases, the probability of correctly decoding the codewords increases which amounts to

performance improvement. However, the HDA system outperforms the direct VQ trans-

mission as P/N further increases. This can be attributed to the fact that receiver signal

quality of analog coding gradually increases with the channel gains.

The performance curves of the coding systems against the correlation coefficient (ρ)

are shown in Fig. 3.7 and Fig. 3.8 for P/N values 10 dB and 30 dB, respectively. In Fig.
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Figure 3.8: D/σ2 vs ρ (P/N = 30 dB).

3.7, for P/N = 10 dB, the HDA scheme clearly outperforms both direct VQ, the uncoded

scheme and the separation based coding scheme for the range 0 < ρ < 0.6. However as ρ

increases the performance curves of the HDA scheme, the direct VQ transmission and the

uncoded transmission converge to equal performance. In Fig. 3.7, for P/N = 30 dB, the

HDA scheme and the direct VQ transmission show equal performance over all ρ values.

This is due to that at very high CSNR values, both scheme can achieve almost zero outage

probability in decoding source-channel codewords with a sufficiently high encoding rate.

However, the coding scheme based on source-channel separation is significantly inferior to

the direct VQ codeword transmission. This is due to that the direct VQ codeword trans-

mission is able to improve the effective channel capacity by letting channel inputs to be

correlated.
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Chapter 4

Practical Joint Source-Channel Coding

Based on Trellis Coded Quantization for

Correlated Sources and BF-GMAC

4.1 Introduction

In chapter 2, we discussed implementations of two JSC coding schemes for BF-GMAC

and Gaussian sources where the generation of the channel codes are dependent on the joint

pdf of the sources. In contrast to channel coding based on source-channel separation, the

JSC-VQ scheme which sends an optimally vector quantized source sequence directly over

the MAC generates channel input symbols with the maximum mutual dependency. The de-

coding of the codewords is based on measuring the Euclidean distance from superimposed

typical channel codewords to the received waveform, subject to the typical angle between

the channel codewords pairs. In Sec.3.2, we argued that, when averaged over the chan-

nel fading distribution, the rate regions for individual decodability of the JSC-VQ scheme,

compared to that of separation based coding, are enlarged, as a result of the mutual cor-

relation between the sources. This can be attributed two factors. First, the constructive

interference created by the correlated channel symbols, when the fading gains (h1, h2) sat-
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isfy the condition Re{h1, h
∗
2} > 0, and second the knowledge of typical angle between

the transmitted codewords reduces the area containing one codeword respect to the other

codeword on the surface of the hypersphere, which in return reduces the uncertainty in

decoding.

Motivated by the superior performance of the JSC-VQ coding scheme, in this chapter

we propose a practical code design to send Gaussian sources over BF-GMAC when CSI

is not available at the transmitters. The proposed coding scheme is designed to mimic the

principle behind the JSC-VQ scheme (see Fig. 4.1). The key challenges arise in designing

such a practical coding scheme are:

1. Developing a finite block encoder that mimics a rate-distortion optimal VQ (which

requires an infinite block encoder)

2. The joint detection of the VQ codewords from the MAC output, with a tractable

computational complexity.

In designing the coding strategy, the encoder structure must lead to a codeword construction

that enables the joint detection of the codewords considering their joint probability distri-

bution. The practical VQ approaches, such as tree searched VQ [52, 53] or structured VQ

based on lattices [54] do not lend themselves to computationally feasible joint detection.

On the other hand, trellis coded quantization (TCQ) proposed in [55] generates a structured

codebook which leads to a computationally feasible joint decoding structure. TCQ is one

of the best known practical realizations of VQ and is capable of achieving average distor-

tion within 1 to 2 dB of the distortion-rate function of a Gaussian source [55]. Therefore,

we argue that the use of TCQ to generate source-channel codewords may achieve perfor-

mance very close to the theoretical bound derived in Chapter 3. The main contribution of

this chapter is a joint-detection algorithm that can decode TCQ source-channel codewords

according to various decoder outage scenarios as discussed in Section 3.2.

Practical JSC code designs proposed in the literature, in general, consider a fixed MAC,

i.e., CSI is assumed known at the transmitters. For example, Murugan et al. [56] propose a
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low complexity cooperative source-channel coding scheme based on the use of low-density

generator matrix codes. In [57], a practical design approach is presented for sending cor-

related binary sources over GMAC using systematic irregular low-density parity check

(LDPC) codes, where the LDPC code is optimized for the joint source probabilities. Multi-

terminal (MT) source coding problem is closely related our problem in the high CSNR

regime (lossless channel). In [58], a practical MT code design is proposed based on sepa-

rating encoding into analog and digital parts, where TCQ is employed for compression of

the analog part and LDPC codes are employed for distributed compression (Slepian-Wolf

coding [29]) of the digital part.
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Figure 4.1: Source-channel TCVQ code over BF-GMAC.

4.2 A Practical Approach to Low Complexity JSC Cod-

ing: Trellis Encoding and Joint Sequential Detection

A novel approach to implementing a JSC coding scheme for GMAC, which is capable

achieving performance close to the theoretical bound in Chapter 3 is described in the fol-

lowing sections. The functional block diagram of this scheme is depicted in Fig. 4.1. The

encoder’s function is to approximate a sequence of Gaussian source symbols by a source-

channel codeword with the minimum possible MSE. What makes TCQ ideal for this is the

fact that computational complexity of encoding a sequence grows linearly rather than expo-

nentially with the sequence length. At the common receiver the transmitted codewords are

detected first, and then the source components are linearly estimated based on the decoded
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codewords, as done in the JSC-VQ scheme considered to obtain the theoretical bound. An

important feature of TCQ is the use of a structured codebook with an expanded set of quan-

tization levels. The structured codebook enables the optimal joint detection at the common

receiver, of quantized sequences from two TCQs, with a computational complexity only

linear in the sequence length. Furthermore, an expanded codebook can be efficiently used

for quantization with a reduced nominal encoding rate by using the Ungerboek’s set par-

titioning technique [59]. TCQ employs a deterministic codebook, and therefore inherits

computationally simple encoding structure. In [60], the TCQ technique in [55] is gener-

alized to use VQ at trellis transitions. The generalized VQ based source compression is

called trellis-coded vector quantization (TCVQ). TCVQ enables the use of fractional rates

at the transmitter which the standard fixed rate TCQ does not allow. The fractional rates

allow the encoders to operate at rates closer to the optimum rate that achieves the mini-

mum distortion. We will refer to JSC coding schemes proposed in this chapter as joint

source-channel TCQ (JSC-TCQ) or joint source-channel TCVQ (JSC-TCVQ).

4.3 Trellis Coded Quantization

This section summarizes the basics of TCQ. More details can be found in [60]. The main

idea behind TCQ is to encode a sequence of samples using a trellis of a finite state machine,

where the branches of the trellis are assigned scalar codebooks, and a source sample is

quantized at each transition. This enables quantization of a long vector of source samples

using a sequence of scalar quantization decisions, yet achieve performance close to optimal

VQ. In order to determine the next state, current source sample is quantized by each of the

M quantizer codebooks assigned to M branches leaving the state, and the corresponding

MSE value is computed. The expanded codebook is found using the Lloyd-Max algorithm

[61], and the expanded codebook is divided into sub codebooks and distributed over the

trellis branches to achieve the desired reduced encoding rate. The encoder uses the Viterbi

algorithm [62] to find the sequence of branches through the trellis which corresponds to
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the minimum MSE of quantizing a sequence of given L samples. In TCQ, the use of scalar

quantization restricts encoding rate to integer values. This limitation is overcome by using

TCVQ where vector codebooks, rather than scalar codebooks, are used in trellis branches.

In quantizing a sequence of L samples, TCVQ employs l dimensional VQ at each trellis

transition, and the Viterbi algorithm to search over L/l transitions.

Other than achieving better rate-distortion performance and realizing fractional coding

rates, the use of TCVQ in the proposed JSC coding scheme can have another objective. In

the JSC-TCQ scheme, a TCQ is used at each input of the GMAC to quantize a sequence of

Gaussian samples into a sequence of continuous-valued channel symbols which are trans-

mitted (after scaling to meet the power constraint) over the channel. This is suitable for

real-valued baseband channels (e.g. phase shift-keying (PSK)). On the other hand, when

more general complex baseband transmission is required, (e.g. quadrature amplitude mod-

ulation (QAM)), JSC-TCVQ based on 2-dimensional TCVQ (l = 2) can be used to map

complex Gaussian source symbols to complex channel symbols.

In the next section we describe in detail the proposed JSC-TCVQ scheme. This includes

JSC-TCQ as a special case.

4.4 JSC-TCVQ System Implementation

In the communication system depicted in Fig. 4.1, Si, i ∈ {1, 2}, is a sequence of L-

dimensional Gaussian source symbols and Ui is the corresponding sequence of TCVQ

output symbols. We use the following TCVQ structure for encoding of the source sequence.

Consider a TCVQ used to encode a Gaussian sequence. Let R be the encoding rate

(bits/symbol) of the TCQ, L the length of a source sequence being encoded, l a positive

integer such that L/l is an integer, and M a positive integer. Also the product RL (number

of bits per source sequence) is assumed to be an integer. Now consider an N -state trellis

with 2M branches entering and leaving each trellis state. It is assumed that a l dimensional

vector of reproduction symbols are produced at each trellis transition, and therefore each

71



branch may be uniquely labeled by a subset of l dimensional reproduction source symbols.

Consequently, M/l bits/symbol are required to uniquely specify a sequence of branches

through the trellis. There are L/l consecutive branches in the trellis that correspond to a

sequence of L source samples. We use the Viterbi algorithm to find the optimum sequence

of reproduction symbols Ui, i = 1, . . . , L/l that minimizes the MSE, for a given trellis,

branch labeling and a set of reproduction symbols.

Now consider TCVQs at each input of the two-input GMAC. Let the rate of the TCVQ

used on source i be Ri bits/sample, i = 1, 2. For Ri > 0, R̃i ≥ 0,M ≥ 1, L ≥ l and

RiL and R̃iL integers satisfying RiL ≥ M , form a codebook, say Ci, of 2(Ri+R̃i)L vector

codewords. Note that codebook Ci of TCVQ i has 2R̃iL times as many codewords than

the number of codewords in the equivalent L-dimensional VQ seen by the length L input

sequence. Let Ki = R̃il + M and partition the codebook, into 2K subsets, denoted as

C̃i,1, C̃i,2 . . . , C̃i,2K . Each subset has 2Ril−M reconstruction vectors. For notational conve-

nience we will drop source index i in the rest of the description of the encoding process.

An N -state trellis with 2M branches entering and leaving each state, where each branch

is labeled with one of the subsets, C̃k. In order to optimize the encoding process, all code-

words in the codebook C are expected to be assigned to at least one branch. Therefore,

there must be N ≥ 2R̃l trellis states. The choice of the trellis and the branch labeling

plays an important role in achieving good encoder performance. The details of such TCVQ

design aspects are outlined in [60]. Next we describe the encoding of source sequence

S (= Si, i = 1, 2), using the above TCVQ. Let the source sequence S ≡
(
S1,S2, . . . ,SL/l

)
and the TCVQ output be U ≡

(
U1,U2, . . . ,UL/l

)
, i.e., both source and TCVQ output

sequences are written as an augmentation of “sub-vectors” of dimension l. Given an initial

state of the trellis, M bits specify a sub set C̃k that is chosen for encoding during a trellis

transition which produces a sub codeword Ui of dimension l. Therefore, M bits/sub-vector

specify a unique sequence of branches, and thus a unique sequence of subset codebooks.

The remainingRl−M bits/sub-vector specify a unique codeword chosen from each subset,

so that the transmission rate of the encoder is RL bits/source-sequence. The encoding is
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done in two steps as follows:

1. Let the branch metric for a branch labeled with subset C̃i be the distortion found in

step (1).

2. Use the Viterbi algorithm to find the path with the minimum distortion through the

trellis.

3. At the i-th trellis transition, for each input sub-vector, Si, i ∈ {1, 2, . . . , L/l}, find

the closest codeword in each subset C̃i assigned to any branch leaving the current

state and corresponding distortion (squared error).

Fig 4.2 depicts the Ungerboeck’s four-state amplitude modulation trellis with a scalar quan-

tizer codebook of nominal rate R = 2 and codebook expansion rate R̃ = 1.

Recall from Chapter 3 that the input and output of an optimal VQ for a Gaussian source

are asymptotically jointly Gaussian. This is a requirement for achieving the JSC-VQ bound.

In order to verify if this requirement is (at least approximately) met by a TCQ, we have

determined the histogram estimate of the pdf of the TCQ output by encoding Gaussian

sequences of length L = 500, which is shown Fig. 4.3. It appears that, provided L is

sufficiently large, TCQ output is approximately Gaussian as well.

The TCVQ codeword Ui, generated after L/l trellis state transitions, is transmitted

over the fading GMAC, as shown in Fig. 4.1. The resulting sequence of L channel output

symbols is given by

Y = h1β1U1 + h2β2U2 + W.

The reconstruction method of recovering the source symbols is described next.

Motivated by JSC-VQ used in Section 3.2 to derive the theoretical performance bound,

JSC-TCVQ also uses two stage decoding scheme. In the first stage the TCVQ codewords

are jointly detected to minimize the probability of error. TCVQ codewords and the channel

output sequence are used to estimate the source sequences S1 and S2. In the following

section, we describe the joint detection algorithm. Given the joint distribution of (S1,S2)
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Figure 4.2: Ungerboeck’s four-state amplitude modulation trellis with codebook partitioned for 2 bits/sample
TCQ

Figure 4.3: The approximated pdf of the TCQ output codeword symbols. (R = 4 with a codebook expansion
factor of 2)

and the channel output the optimal detector is the maximum a posteriori (MAP) detector.

We will also consider an alternative maximum likelihood (ML) detector which has a much

lower complexity than the joint MAP detector. While the MAP detection uses the joint
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distribution of the source-channel codewords, the ML detection only uses the marginal

distributions which results in a performance loss.

4.4.1 MAP Detector

We assume that the sets of all possible rate pairs (R1, R2) for which various decoder outage

events occur (decodability regions for rates) in JSC-TCVQ are the same as those of the

JSC-VQ scheme in Section 3.2. With the knowledge of the channel gains (h1, h2) at the

receiver, the joint detector determines the decodability of the source-channel codewords.

The decodability of the codewords can be classified into three scenarios, i.e., 1) Reliable

decoding of both codewords, 2) Only one of the codewords can be decoded reliably, and 3)

Neither of the codewords can be decoded reliably. The decoded codewords and the received

MAC output sequence are used as the input to the linear estimator whose coefficients are

also the same those in the JSC-VQ scheme. The decoder operation according to each

decodability scenario is outlined below.

Both codewords can be decoded

In the case both codewords can be decoded, the MAP detection of U1 an U2 is given by

(uo1,u
o
2) = argmax

u1,u2

f (u1,u2|y)

= argmax
u1,u2

f (y|u1,u2)P (u1,u2)

f (y)
. (4.1)

Using the fact that f (y) is a constant for given y, and the expressions for pdf f (y|u1,u2),

(4.1) can be simplified as

(uo1,u
o
2) = argmin

u1,u2

‖y − (h1u1 + h2u2)‖2

2N
− log (P (u1,u2)) .

The joint probability distribution P (u1,u2) may be computed by Monte-Carlo simulations.

The joint detection of u1 and u2 is done by considering the “joint trellis” consisting

of all the possible combinations of legitimate branch sequences followed by the TCQ trel-
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Figure 4.4: Construction of the joint trellis.

lises used for encoding the two source components. The joint trellis has N2 states and

M2 branches entering and leaving each state (see Fig. 4.4). Let i and j be the indices for

branches in trellis 1 and trellis 2, respectively, and tuple (i, j) is the index for the corre-

sponding branch in the joint trellis. Each branch of the joint trellis is assigned a subset C̃i,j ,

where C̃i,j is the cartesian product C̃i × C̃j . Given the initial conidtions of the two encoder

trellises, the branch metric used at the n-th trellis transition is given by

λi =
1

N
Re


il∑

m=1+(i−1)l

y∗m(h1u1m + h2u2m)

− 1

2N

il∑
m=1+(i−1)l

|h1u1m + h2u2m|2−

il∑
m=1+(i−1)l

log (P (u1,m, u2,m)) (4.2)

However, numerically estimating P (u1,m, u2,m) for all possible transmission rates can be

computationally intensive. Therefore we make the reasonable assumption that the joint

distribution of the TCVQ output symbols is equal to the joint distribution of the VQ output

symbols. Consequently, we assume that U1,U2 and Y are circularly symmetric Gaussian

random vectors. Then, the covariance matrix between vectors U1 and U2 can be approxi-
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mated by the covariance matrix cov(U1,k, U2,k) = E
(
[U1,kU2,k][U1,kU2,k]

H
)

resulting from

the optimal VQ of the source vectors S1 and S2, i.e.,

cov(U1,k, U2,k) =

 σ̃2
1 ρ̃σ̃1σ̃2

ρ̃σ̃1σ̃2 σ̃2
2

 ,
where σ̃1 = σ

√
1− 2−2R1 , σ̃2 = σ

√
1− 2−2R2 , and ρ̃ = ρ

√
(1− 2−2R1)(1− 2−2R2). Now

by substituting for P (u1,m,u2,m) in (4.2) we get

λi = Re

 1

N

il∑
m=1+(i−1)l

y∗m(h1u1m + h2u2m)

− 1

2N

il∑
m=1+(i−1)l

|h1u1m + h2u2m|2

+
1

2

il∑
m=1+(i−1)l

[u1,m u2,m]∗ [cov(u1,m, u2,m)]−1 [u1,m u2,m]T .

The implementation of the joint detection of u1 and u2 using the joint trellis defined above

is summarized in Algorithm 1.

The estimated source sequence is then given by the linear estimator

ŝi = γi,1u
o
1 + γi,2u

o
2,

where [γi,1, γi,2]T is the coefficients of the MMSE linear estimator derived in Section 3.2.

Only one codeword can be decoded

If the joint decoder determines only one codeword is decodable for given fading gains

(h1, h2), the detection of the decodable codeword Ui is given by

uoi = argmax
ui
f (ui|y) , i = 1, 2.

For clarity of explanation, let i = 1. Then the decoding of u1 can be written

uo1 = argmax
u1

f (u1|y)

= argmax
u1

f (y|u1)P (u1). (4.3)
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Algorithm 1: The joint detection algorithm when both codewords are decodable.
Input: BF-MAC output sequence of length L: y = {y1,y2, . . . ,yL/l},
Subsets of the expanded codebook C̃i at trellis ν ∈ {1, 2}:

{
C̃ν,1, C̃ν,2, . . . , C̃ν,J

}
Incoming branches/states at state i ∈ {1, 2, . . . , N}: Sin(i) = {si1, si2, . . . , siM}
Subset assigned to branch sim at state i ∈ {1, 2, . . . , N}: C̃(i)

m ,m = 1, 2, . . . ,M
(index j ∈ {1, 2, . . . , N} is used to indicate a state from other trellis respectively)

1 t = 0
2 Total path metric Λt

a(i, j) =∞,∀(i, j) and (i, j) 6= (0, 0) and Λt
a(0, 0) = 0

3 vec U t
ν(i, j)← {an empty array} - to store detected channel symbols

4 for t = 1 to L/l do
5 yt ←

[
y(t−1)l+1, . . . , ytl

]
6 for (i, j) ∈ {1, . . . N} × {1, . . . N} do
7 for (C̃

(i)
m1 , C̃

(j)
m2) ∈

{
C̃

(i)
1 , . . . , C̃

(i)
M

}
×
{
C̃

(j)
1 ), . . . , C̃

(j)
M

}
do

8 s1 = Sin(m1)
9 s2 = Sin(m2)

10 [λo, temp u1(s1, s2), temp u2(s1, s2)]← Compute λ (4.2)
∀(u1,u2) ∈ C̃(i)

m1 × C̃
(j)
m2 , return minimum λ, and corresponding u1

and u2

11 Λtemp
a (s1, s2)← Λt−1

a (s1, s2) + λo

12 end
13 (so1, s

o
2)← (s1, s2) corresponding to the minimum value in Λtemp

a (s1, s2)
14 uo1 = temp u1(so1, s

o
2)

15 uo2 = temp u2(so1, s
o
2)

16 vec U t
1(i, j)←

{
vec U t−1

1 (so1, s
o
2), uo1

}
- updating detected sequence

17 vec U t
2(i, j)←

{
vec U t−1

2 (so1, s
o
2), uo2

}
18 Λt

a(s1, s2)← Λtemp
a (so1, s

o
2)

19 end
20 end
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Since only u1 is decodable, uo1 that minimizes the error probability is searched over trellis-1

using the Viterbi algorithm. The path metric for the MAP detection is found by evaluating

(4.3). By using the fact that u1, u2 and y are iid sequences, (4.3) can be written as

uo1 = argmax
u1

∑
u2

L∏
m=1

f (ym|u1m, u2m)P (u1m|u2m)P (u2m), (4.4)

where the conditional pdf f (ym|u1m, u2m) is Gaussian with mean zero and varianceN ; and

the pmfs P (u1m|u2m) and P (u2m) may be numerically estimated by Monte-Carlo simula-

tions. In order to reduce the computational burden at the decoder, we make the assumption

that the joint pdf of the optimal VQ output symbols equal to the joint distribution of the

TCVQ output symbols. Then (4.4) can be written as

uo1 = argmax
u1

∫ L∏
m=1

f (ym|u1m, u2m) f(u1m|u2m)f(u2m)du2m

= argmax
u1

L∏
m=1

f(u1m)

∫
f (ym|u1m, u2m) f(u2m|u1m)du2m. (4.5)

Here f(u1m) = CN (0, σ̃2
1) and f(u2m|u1m) = CN

(
ρ̃ σ̃2
σ̃1
u1m, σ̃

2
2|1

)
where σ̃2

2|1 = σ̃2
2(1 −

ρ̃2). By substituting for pdfs, it can be shown that (4.5) is equivalent to

uo1 = argmin
u1

L∑
m=1

|ym − β1h1u1m|2

N
+

(
1

σ̃2
1

+
ρ̃2

σ̃2
1(1− ρ̃2)

)
|u1m|2 − ν1m, (4.6)

where

ν1m =
|(ym − β1h1u1m)h∗2β2σ̃

2
2|1 + ρ̃ σ̃2

σ̃1
u1mN |2

β2
2 |h2|2σ̃2

2|1 +N
.

From (4.6), the branch metric λ(1)
i corresponding to i-th transition can be written as

λ
(1)
i =

il∑
m=1+(i−1)l

|ym − β1h1u1m|2

N
+

(
1

σ̃2
1

+
ρ̃2

σ̃2
1(1− ρ̃2)

)
|u1m|2 − ν1m, (4.7)

The detection of u1 is summarized in Algorithm 2. The estimated source sequence Si
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Algorithm 2: The detection algorithm when only u1 is decodable.
Input: BF-MAC output sequence of length L: y = {y1,y2, . . . ,yL/l},
Subsets of the expanded codebook C̃1 at trellis 1:

{
C̃1,1, C̃1,2, . . . , C̃1,J

}
Incoming branches/states at state i ∈ {1, 2, . . . , N}: Sin(i) = {si1, si2, . . . , siM}
Subset assigned to branch sim at state i ∈ {1, 2, . . . , N}: C̃(i)

m ,m = 1, 2, . . . ,M
1 t = 0
2 Total path metric Λt

a(i) =∞, ∀i and i 6= 0 and Λt
a(0) = 0

3 vec U t
1(i)← {an empty array} - to store detected channel symbols

4 for t = 1 to L/l do
5 yt ←

[
y(t−1)l+1, . . . , ytl

]
6 for i ∈ {1, . . . N} do
7 for C̃(i)

m1 ∈
{
C̃

(i)
1 , . . . , C̃

(i)
M

}
do

8 s1 = Sin(m1)

9 [λo, temp u1(s1), temp u2(s1)]← Compute λ (4.14) ∀u1 ∈ C̃(i)
m1 ,

return minimum λ, and corresponding u1

10 Λtemp
a (s1)← Λt−1

a (s1) + λo

11 end
12 so1 ← s1 corresponding to the minimum value in Λtemp

a (s1)
13 uo1 = temp u1(so1, s

o
2)

14 vec U t
1(i, j)←

{
vec U t−1

1 (so1, s
o
2), uo1

}
- updating detected sequence

15 Λt
a(s1)← Λtemp

a (so1)

16 end
17 end

80



is then given by the linear estimator

ŝi = γi,1u
o
1 + γi,3y i ∈ {1, 2}.

Similarly we can derive the branch metric for the case when only codeword u2 is decod-

able. Then, using the Viterbi algorithm, the codeword that maximizes P (u2|y) is found

searching the trellis 2.

When neither of the codewords are decodable, the source sequences are linearly esti-

mated using the channel output sequence y, i.e.,

ŝi = γi,3y i ∈ {1, 2}.

4.4.2 ML Detector

As a bench mark, we evaluate the performance of the JSC-TCVQ with ML detection crite-

rion at the joint detector. ML detection maximizes the probability of the received sequence

y given the channel codewords u1,u2. The path metricλi for ML detection is computed

below.

Both codewords can be decoded

The detected sequence can be written as

(uo1,u
o
2) = argmax

u1,u2

f (y|u1,u2) , (4.8)

where f (y|u1,u2) is pdf of y given codewords u1 and u2. Since the conditional pdf is

Gaussian, hence (4.8) can be written as

(uo1,u
o
2) = argmin

u1,u2

‖y − (h1u1 + h2u2)‖2

= argmin
u1,u2

‖y‖2 − 2Re {〈y, h1u1 + h2u2〉}+ ‖h1u1 + h2u2‖2

= argmax
u1,u2

2Re {〈y, h1u1 + h2u2〉} − ‖h1u1 + h2u2‖2.
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For ML detection, the joint trellis’s branch metric is given by

λi = Re


il∑

m=1+(i−1)l

y∗m(h1u1m + h2u2m)

− 1

2

il∑
m=1+(i−1)l

|h1u1m + h2u2m|2. (4.9)

Only one codeword can be decoded

the detection of the decodable codeword Ui is given by

uoi = argmax
ui
f (y|ui) , i = 1, 2.

For clarity of explanation, let i = 1. Then the decoding of u1 can be written

uo1 = argmax
u1

f (y|u1) . (4.10)

The path metric for the ML detection, in this decoder state, is found by evaluating (4.10).

By using the fact that u1, u2 and y are iid sequences, (4.3) can be written as

uo1 = argmax
u1

∑
u2

L∏
m=1

f (ym|u1m, u2m)P (u2m|u1m). (4.11)

Assuming that the joint distribution of the TCVQ output symbols is equal to the joint pdf

of the optimal VQ output symbols, (4.11) can be written as

uo1 = argmax
u1

L∏
m=1

∫
f (ym|u1m, u2m) f(u2m|u1m)du2m. (4.12)

By substituting for pdfs, it can be shown that (4.12) is equivalent to

uo1 = argmin
u1

L∑
m=1

|ym − β1h1u1m|2

N
+

ρ̃2

σ̃2
1(1− ρ̃2)

|u1m|2 − ν1m, (4.13)

where

ν1m =
|(ym − β1h1u1m)h∗2β2σ̃

2
2|1 + ρ̃ σ̃2

σ̃1
u1mN |2

β2
2 |h2|2σ̃2

2|1 +N
.
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From (4.13), the branch metric λ(1)
i corresponding to i-th transition can be written as

λ
(1)
i =

il∑
m=1+(i−1)l

|ym − β1h1u1m|2

N
+

(
1

σ̃2
1

+
ρ̃2

σ̃2
1(1− ρ̃2)

)
|u1m|2 − ν1m, (4.14)

Similarly we can derive the branch metric for the case when only codeword u2 is decodable.

The detection of the TCVQ channel codewords and estimation of the source sequences

are done similar to the reconstruction process in the MAP detection.

4.5 Numerical Results

In this section we present a set of numerical results to analyze the performance of the pro-

posed practical JSC-TCQ/TCVQ coding scheme. Even though the superior performance

of source compression using TCQ and TCVQ has been established in literature, the per-

formance of a joint source-channel code, based on trellis-coded quantization over a MAC

is not known. The performance of the proposed code relies on the strength of the channel

code implemented and the source estimation. The four scenarios for the decodability of the

received channel codes are determined as described in Section 4.4.1. The JSC-TCQ/TCVQ

encoders have been designed so that their rates are approximately equal to the optimal VQs

in the ideal JSC-VQ for the same source correlation and the channel distribution.

In this experimental setup, we consider sending a pair of Gaussian sources, each with

a unit variance (σ2 = 1). The source components are assumed to be correlated with corre-

lation coefficient 0 < ρ < 1 (ρ = 0.9 is assumed, unless mentioned otherwise). The ini-

tial expanded codebook for TCQ is generated using the generalized Lloyd algorithm [61].

The length of the input source sequence is L = 500 symbols. The fading coefficients

are assumed to be independent and normally distributed random variables with zero-mean

and unit variance (Rayleigh fading). We assume that the transmitter powers are equal to 1

(Pi = 1, i ∈ {1, 2}). The average distortion is obtained over 1000 channel realizations. The

joint decoder, after determining the outage scenario for given fading gains, is implemented

for the MAP detection of the codewords (ML detection is employed for comparison). The
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Figure 4.5: Performance of JSC-TCQ and JSC-TCQ (N=64), for correlated sources with ρ = 0.9 and non-
fading GMAC.

JSC coding scheme is optimized over the transmission rate, subject to Rl ∈ Z+. Here l is

the dimension of the branch VQ used in TCVQ. For example, if 2-dimensional VQ is used

the rates can only be integer multiples of 0.5 bits/sample. In [44], JSC-VQ is used to ob-

tain a theoretical upper bound for the performance achievable in communicating correlated

Gaussian sources over a GMAC with no-fading has been presented. We can compare the

performance achievable with practical JSC-TCVQ for this case, by setting h1 = h2 = 1.

Fig. 4.5 compares the performance of TCVQ with the JSC-VQ bound in [44]. It inter-

esting to note that both JSC-TCQ and JSC-TCVQ are able to achieve lower MMSE than

even the theoretical lower bound of SSC coding, unless the P/N ratio is very high (> 26

dB). This suggests that no practical SSC coding scheme, which use finite block coding, is

unlikely to outperform JC-TCQ/TCVQ in reality. The performance gap between JSC-TCQ

and JSC-TCVQ seen here can be obviously attributed to the superior performance of VQ

over scalar quantization, and to the fact that TCVQ allows to chose fractional rates in the

design optimization procedure, where as with JSC-TCQ an integer approximation has to
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be made, see Tables 4.1 and 4.2. These tables also show the average MSE of at the stages

of the two stage decoder. Clearly the linear estimation based on prior knowledge of source

correlation (second stage) improves on the joint sequence detection (first stage).

Table 4.1: Quantization rates and average MSEs of two stage decoding in JSC-TCQ used in Fig. 4.5.

P/N(dB) Rate (bits/sample) Average MSE
JSC-VQ

(theoretical)
JSC-TCQ Detection Estimation

10 10 10 0.0843 0.0774
12 1.85 2 0.0672 0.0617
14 1.92 2 0.0545 0.0500
16 2.12 2 0.0446 0.0409
18 2.24 2 0.0368 0.0338
20 2.48 2 0.0304 0.0279
22 2.61 3 0.0248 0.0228
24 2.91 3 0.0204 0.0187
26 3.17 3 0.0169 0.0156
28 3.23 3 0.0142 0.0130
30 3.41 4 0.0119 0.0109

Table 4.2: Quantization rates and average MSEs of two stage decoding in JSC-TCVQ used in Fig. 4.5.

P/N(dB) Rate (bits/sample) Average MSE
JSC-VQ

(theoretical)
JSC-TCVQ Detection Estimation

10 10 10 0.0827 0.0766
12 1.85 2 0.0657 0.0609
14 1.92 2 0.0524 0.0485
16 2.12 2 0.0423 0.0392
18 2.24 2.5 0.0343 0.0318
20 2.48 2.5 0.0275 0.0255
22 2.61 2.5 0.0221 0.0205
24 2.91 3 0.0182 0.0169
26 3.17 3 0.0150 0.0139
28 3.23 3.5 0.0130 0.0120
30 3.41 3.5 0.0114 0.0106

In the following experiments we consider the communication over block-fading MAC,

and the average MSE given by (2.2). Recall that our main assumption is that, the transmit-

ters are unaware of the fading gain values, but they use the knowledge of pdf of the fading
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Figure 4.6: Performance of JSC-TCQ and JSC-TCVQ (N=64), for correlated Gaussian sources (ρ = 0.9)
and BF-GMAC.

gains to optimize the transmitter parameter. The fading gains h1 and h2 are assumed to be

independent Gaussian random variables with zero mean and unit variance. The common

receiver has the perfect knowledge of the fading gains. Fig. 4.6, shows the average perfor-

mance of JSC-TCQ and JSC-TCVQ against several theoretically achievable performance

bounds. The performance curve of the JSC-TCVQ lies closer to the theoretical performance

bound of JSC-VQ over the range 10-30 dB P/N range. It can be noticed that for low P/N

the JSC-VQ performance bound coincide with the performance of the uncoded scheme.

For these P/N values both JSC-VQ and JSC-TCVQ operate as the uncoded scheme by

using very high transmission rates (total outage scenario). Table 4.3 and Table 4.4, list the

optimum encoding rates and the average distortions at the two decoding stages.

Fig. 4.7 shows the effectiveness of the codebook expansion in JSC-TCVQ while the

nominal transmission rate is kept unchanged. As can be seen, the JSC-TCVQ with code-

book expansion rate R̃ = 1 outperforms the JSC-TCVQ coding with codebook expansion

rate R̃ = 0.5 . This result indicates that the joint detection is not affected by increasing the
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Table 4.3: Quantization rates and average MSEs of two stage decoding in JSC-TCQ used in Fig. 4.6.

P/N(dB) Rate (bits/sample) Average MSE
JSC-VQ

(theoretical)
JSC-TCQ Detection Estimation

10 10 10 0.1127 0.1039
12 10 10 0.0952 0.0878
14 10 10 0.0835 0.0770
16 10 10 0.0758 0.0698
18 2.10 2 0.0720 0.0663
20 2.23 2 0.0621 0.0572
22 2.43 2 0.0525 0.0484
24 2.71 3 0.0446 0.0411
26 2.95 3 0.0383 0.0353
28 3.15 3 0.0330 0.0304
30 3.39 4 0.0287 0.0264

Table 4.4: Quantization rates and average MSEs of two stage decoding in JSC-TCVQ used in Fig. 4.6.

P/N(dB) Rate (bits/sample) Average MSE
JSC-VQ

(theoretical)
JSC-TCVQ Detection Estimation

10 10 10 0.1143 0.1039
12 10 10 0.0966 0.0878
14 10 10 0.0847 0.0770
16 10 10 0.0768 0.0698
18 2.10 2 0.0710 0.0645
20 2.23 2.5 0.0608 0.0552
22 2.43 2.5 0.0509 0.0463
24 2.71 3 0.0427 0.0388
26 2.95 3 0.0366 0.0332
28 3.15 3.5 0.0313 0.0284
30 3.39 3.5 0.0262 0.0238
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Figure 4.7: Performance comparison of JSC-TCVQ (N=32) with different deferent codebook expansion
rates, for correlated sources (ρ = 0.9) and BF-GMAC.

effective encoder rate corresponding to the expanded codebook.

Fig. 4.8 shows performance of JSC-TCVQ with different number of states N . As

expected the average MSE decrease with the number of states. However the MSE value

seems to levels off as N increases. This can be attributed to the leveling off of the perfor-

mance of TCVQ source compression [60]. As N increases, effectively there are more VQ

codewords to encode a source sequence; however since these codewords are generated as

a combinatorial sequence of a finite alphabet, the effectiveness of increasing the trellis size

seems to vanish after some N value.

Fig. 4.9 shows a performance comparison between MAP detection and ML detection

at the joint decoder for different source correlation values. The numerical results show

that the performance gap between MAP and ML detection widens as ρ increases. This is

obviously because the ML detection ignores the correlation between the source-channel

codewords, whereas MAP detection uses the joint conditional distribution of the source-

channel codewords given the MAC output.
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Figure 4.8: Performance of JSC-TCVQ with number of trellis states (N), for correlated sources (ρ = 0.9)
and BF-GMAC with P/N = 30 dB.
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Figure 4.9: Performance comparison between MAP detection and ML detection (P/N =30 dB).
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Figure 4.10: Performance comparison of JSC-TCVQ with complex baseband communication.

To demonstrate the application of JSC-TCVQ for communication over complex base-

band GMAC, L 2-dimensional source symbols are transmitted using L complex channel

symbols. As can be seen in Fig. 4.10 the MSE comparison between different schemes are

similar to that observed for the communication over real Gaussian MAC. Also it can be

noticed that the MSE curves corresponding to JSC-TCVQ transmission over the complex

channel and the real-valued channels are very close. This is due to the fact that in the

complex transmission, both the real-valued channel and the imaginary channel share the

transmitter power, and each of the channels has an AWGN component with noise power

(variance) N/2, and therefore each channel has the same P/N average CSNR value. How-

ever, in the real-valued transmission system, the channel has noise power N . Since the

complex transmission has 3 dB less noise per symbol transmitted, the MSE for the real

transmission at a certain CSNR is comparable to the MSE for the complex transmission at

CSNR − 3dB.
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4.6 Conclusion

The practical JSC coding scheme proposed in this Chapter has drawn inspiration from the

superior performance of TCQ/TCVQ in a source compression and the implications of the

theoretical performance bound of the JSC-VQ coding scheme presented in Chapter 3. The

structured source codeword construction in TCQ/TCVQ allows us to implement a joint

channel-codeword detection algorithm with low computational complexity. The numerical

results have shown that the JSC-TCVQ code can perform closer to the JSC-VQ bound than

other alternatives such as SSC coding, uncoded transmission, and HDA coding. In fact,

JSC-TQ can outperform the best achievable performance bounds for these schemes most

of the time. From the numerical results, we can argue that JSC-TCVQ scheme employs a

“good” joint channel code for the given source correlation and the channel fading distri-

bution, and two stage decoding can be effectively used to match the encoder parameters

to the inevitable outage scenarios to mtitigate the effect of the channel uncertainity at the

transmitters.
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Chapter 5

Conclusions and Future Work

In this thesis we have investigated the problem of communicating correlated Gaussian

sources over a BF-GMAC when there is no CSI at the transmitters. For this problem,

neither the theoretical bounds of achievable performance nor practical coding methods that

can at least perform close to theoretical limits in a provable manner are known. The re-

search presented in this thesis is an attempt to answer these questions. The thesis has made

important contributions in terms of both establishing upper bounds to achievable perfor-

mance and proposing a practically realizable coding scheme that can achieve performance

close to the best known bound. The main conclusions of this thesis area s follows.

5.1 Conclusions

• In Chapter 2, an upper bound to achievable MMSE has been derived by consider-

ing a HDA coding scheme. For comparison, the achievable MMSEs of conventional

source-channel separation-based coding and simple uncoded transmission have also

been derived and used as benchmarks. Furthermore, we have considered the com-

munication over an orthogonal MAC where the channel symbols are transmitted by

splitting the channel bandwidth so that there is no interference between the chan-

nel inputs. The achievable MMSEs are computed by considering all decoder outage
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scenarios of the digital code and optimizing the encoder parameters to minimize

the MSE averaged over the fading distribution. Through numerical results we have

shown that the HDA coding scheme can outperform the source-channel separation

approach and the uncoded scheme as P/N (CSNR) increases. Interestingly, HDA

coding over the orthogonal MAC shows slightly lower MMSE for P/N values from

5 - 10. This shows the effect of interference due to outages in the digital code at

lower CSNR values. However, HDA (MAC) coding scheme shows lower MSE for

CSNR > 12 dB.

• In Chapter 3, upper bounds to the achievable MMSE have been derived by consid-

ering JSC coding schemes that use source dependent channel codewords. Unlike

the channel codes that ignore the correlation between the source to be transmitted

over a MAC, a source dependent channel code can create constructive or destruc-

tive interference between digital channel inputs in an optimal manner and improve

the performance. The main contribution here is the study of a joint source-channel

vector quantizer (JSC-VQ) scheme which is designed to maximize the mutual de-

pendency between the channel inputs. One key problem we solved is that deriving

the necessary and sufficient conditions for various scenarios for correct decodablity

of transmitted codewords. These scenarios arise due to the fact that, in the absence

of CSI, the transmitters are forced to use fixed-rate coding. Motivated by previous

work in the literature, an HDA extension of the JSC-VQ scheme has also been con-

sidered. While the established bounds have no close-form expressions, they can be

numerically evaluated. Our numerical results show that unlike in the case of non-

fading GMAC as considered in [44], uncoded transmission is no longer optimal at

low CSNRs, when there is channel fading and CSI is not available to the transmit-

ters. In particular, the HDA version of the JSC-VQ scheme can outperform uncoded

transmission at low CSNRs.

• In Chapter 4, a practical JSC coding scheme that mimics the coding principle used in
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the JSC-VQ scheme used to establish the bounds in Chapter 3 has been developed.

The problem with the JSC-VQ scheme is that it relies on infinite-dimensional VQ for

JSC coding. In order to practically implement a coding scheme that can come close

to the JSC-VQ bound, we used trellis coded quantization (TCQ) with an expanded

codebook in place of infinite dimensional VQs. It is well known that TCQ can out-

perform high-dimensional VQs (such as lattice VQ) at a much lower computational

complexity. More importantly, TCQ provides a path to tractable decoding of the very

long codewords required to approach JSC-VQ bound. The problem of joint detection

of the TCQ codewords was solved by developing a four state joint decoder based on

the Viterbi algorithm. Simulation results show that the proposed JSC coding scheme

perform closer to the JSC-VQ bound than the other alternatives such as SSC coding,

uncoded transmission, and conventional HDA coding. We conclude that the pro-

posed JSC-TCVQ scheme is the best known practical transmission scheme to date

for communicating correlated sources over a BF-MAC when CSI is not available to

the transmitters.

5.2 Future Work

• In the conventional SSC coding of correlated sources in Chapter 2, distributed VQ

is employed with channel coding to minimize MSE. Since the source correlation is

fully exploited in the distributed VQ stage, both channel codewords must be decoded

to estimate the sources. However, when transmitting over a BF-MAC with no trans-

mitter CSI the probability of only a single codeword is decoded increases with the

transmission rates. In this partial outage case, the recovered VQ index cannot be used

to recover any source information. In order to optimize the SSC coding to decoder

outages, a possible solution is to develop a source compression scheme such that the

source correlation is at least partially exploited.

• Situations where a partial CSI is available to transmitters arise in practical commu-
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nication systems. Examples of partial CSI are uncertain CSI, where uncertainty may

be induced by channel estimation or prediction errors, and limited CSI which may

appear with quantized feedback. Designing a JSC code that takes errors in CSI esti-

mation in to account can draw inspirations from the work presented in Chapter 2 and

3. Unlike in our problem, where fading (CSI) distribution remains fixed, in partial

CSI case, the distribution of the estimated CSI will vary over time. Therefore vari-

ation of the channel distribution over successive code blocks, and the uncertainty of

the CSI during one code block must be considered to optimize the coding scheme.
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Appendix A

Proof of Lemma 3.1 and Theorem 3.2

We start by summarizing the proof of [44, Theorem IV.4]. The code construction, encoding,

and decoding in the JSC-VQ scheme as follows. Let ε > 0 be a fixed constant and rates

R1 and R2 be fixed. The VQ codebook Ci ⊂ Cn, i = 1, 2, is generated by independently

drawing 2nRi vectors of length n from the the surface of the origin-centered sphere of radius

ri =
√
nσ2(1− 2−2Ri) in Cn. The encoder for source i uses Ci and vector quantizes the

source sequences si to generate a codeword uoi ∈ Ci. The code vector then scaled to meet

the power constraint and transmitted over the GMAC without any further encoding. Crucial

to the proof given in [44] is the geometric view of the VQ encoder. To this end, consider

the cosine angle between any pair of non-zero vectors w and v is defined by

cos(w,v) =
Re{〈w,v〉}
‖w‖‖v‖

.

Let the F(si, Ci) be all ui ∈ Ci for which cos(si,ui) is between
√

1− 2−2Ri(1 ± ε). The

VQ encoder for source si into the codeword uoi as follows. If F(si, Ci) = ∅ then set uoi = 0.

Otherwise, uoi is the code vector ui ∈ F(si, Ci) with the smallest |cos(si,ui)−
√

1− 2−2Ri|.

The channel input is then formed as xi = βiu
o
i , where βi is given by (3.1). Upon reception

of the GMAC output y due to both transmitters, the receiver derives the source estimate

(̂s1, ŝ2) in two steps. First, the receiver obtains a guess (û1, û2) for the channel input

codeword pair (uo1,u
o
2) by finding the jointly typical pair (u1,u2) ∈ C1 × C2 such that
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β1u1 +β2u2 has the smallest Euclidean distance to the channel output y. A jointly typical-

pair is defined as (u1,u2) for which ρ̃ − cos(u1,u2) ≤ 7ε, where ε > 0 and ρ̃ is given by

(3.3), which is the correlation between the transmitted VQ codewords (uo1,u
o
2). Note that,

guessing the channel inputs based on the output y in this case is akin to channel decoding

in SSC coding, but the use of the correlation ρ̃ to define a jointly typical set amounts to JSC

decoding. In the second step, the source estimates are obtained by computing the MMSE

linear estimates of the source sequences, given y and the already decoded VQ codewords

(û1, û2).

Given the channel output y, let EÛ be the error event that there exists a jointly-typical

codeword pair (û1, û2) 6= (u1,u2) for which

‖y − (β1û1 + β1û1)‖ ≤ ‖y − (β1u
o
1 + β1u

o
1)‖.

It can be shown that, for sufficiently large n, the probability of joint decoding error Pr(EÛ)→

0 as n→∞ if the rates (R1, R2) satisfy the constraints [44, Lemma D.1]

R1 <
1

2
log2

(
P1(1− ρ̃2) +N

N(1− ρ̃2)

)
(A.1)

R2 <
1

2
log2

(
P2(1− ρ̃2) +N

N(1− ρ̃2)

)
(A.2)

R1 +R2 <
1

2
log2

(
P1 + P2 + 2ρ̃

√
P1P2 +N

N(1− ρ̃2)

)
. (A.3)

A.1 Proof of Lemma 3.1

Consider the decoder JSC-VQ in a system where the GMAC exhibits block fading hi for

transmitted codeword βiuoi . The channel output is given by y = β1u
o
1 + β1u

o
1 + w, where

uoi ∈ Cn, hi ∈ C, i = 1, 2, and w ∈ Cn. The set of (R1, R2) pairs for which both VQ

codewords are decodable can be obtained straightforwardly by replacing uo1 and uo2 by

their scaled versions in the proof of [44, Lemma D.1].
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A.2 Proof of Theorem 3.2

We give proof to that when rate pair (R1, R2) ∈ Rpo
i , defined by (3.5), the codeword uoi

can be recovered with arbitrarily small probability of decoding error, while the codeword

uoj cannot be recovered reliably at the receiver. In the proof, for clarity, we will consider

the case of codeword uo1 can be recovered (i.e., i = 1). To this end, we first introduce an

error event related to a decoding error at the receiver. This error event occurs if the decoder

attempts to decode u1 without knowing the decodability of u2. This event is denoted by

Eo
Û1

consists of all tuples (s1, s2, C1, C2, z) for which there exists pair (ũ1, ũ2) so that ũ1 6=

uo1 in C1 and u2 ∈ C2, and this error event precisely defined by

E∗
Û1

=

{
(s1, s2, C1, C2, z) : ∃ũ1 ∈ C1\{uo1} and∃ũ2 ∈ C2 s.t.

|ρ̃− cos](ũ1, ũ2)|≤ 7ε and ||y − (h1β1ũ1 + h2β2ũ2)||2≤ ||y − (h1β1u
o
1 + h2β2u

o
2)||2

}
(A.4)

Note that a decoding error occurs only if (s1, s2, C1, C2, z) ∈ Eo
Û1

. The main results of this

section is given by the following Lemma.

Lemma A.1. For every δ > 0 and 0.3 > ε > 0, there exists an n′4(δ, ε) ∈ N such that for

all n > n′4(δ, ε)

Pr[Eo
Û1

] < 9δ, wheneverR1 ∈ R1(ε),

where

R1(ε) =

{
R1 <

1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N
− ξ15ε

)}
To prove Lemma A.1, as in [44], we define three auxiliary events related to source

sequences, encoder output sequences, and channel error sequences. The first auxiliary error

event ES corresponds to an atypical source output sequence. In [44], ES is given in (83),

and we will use the same definition except that the source sequence are on n-dimensional
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complex plain, i.e., (s1, s2) ∈ Cn × Cn. The second auxiliary event ES corresponds to an

atypical additive noise sequences, and is given by (84) in [44] where z ∈ Cn. The third

auxiliary event EX and is given by the union of three events given by (85)-(87) in [44]. To

prove Lemma A.1 we now start with the decomposition

Pr[Eo
Û1

] = Pr[Eo
Û1
∩ EcS ∩ EcX ∩ EcZ] + Pr[Eo

Û1
|ES ∪ EX ∪ EZ]Pr[ES ∪ EX ∪ EZ]

≤ Pr[Eo
Û1
∩ EcS ∩ EcX ∩ EcZ] + Pr[ES] + Pr[EX] + Pr[EZ], (A.5)

where we have used the shorthand notation Pr[Eν ] for Pr[(S1,S2, C1, C2,Z) ∈ Eν ], where

Ecν denotes the complement of Eν . Lemma A.1 now follows from upper bounding the

probability terms on the RHS of (A.5).

Lemma A.2. For every δ > 0 and ε > 0 there exists an n′1(δ, ε) ∈ N) such that for all

n > n′1(δ, ε) ∈ N)

Pr[ES] < δ.

Proof. See [44, Lemma D.2].

Lemma A.3. For every δ > 0 and ε > 0 there exists an n′3(δ, ε) ∈ N) such that for all

n > n′3(δ, ε) ∈ N)

Pr[EZ] < δ.

Proof. See [44, Lemma D.3].

Lemma A.4. For every δ > 0 and 0.3 > ε > 0 there exists an n′3(δ, ε) ∈ N) such that for

all n > n′3(δ, ε) ∈ N)

Pr[EX] < 6δ.

Proof. See [44, Lemma D.4].

Lemma A.5. For every δ > 0 and every ε > 0 there exists some n′′4(δ, ε) ∈ N the following
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condition holds true

Pr[E∗
Û1
∩ EcS ∩ EcX ∩ EcZ] ≤ δ, if

R1 <
1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N
− ξ15ε

)
(A.6)

where ξ15 is a positive constant determined by P1, P2, h1, h2 and N .

We now start with a lemma that will be used to prove (A.6).

Lemma A.6. Let ϕj ∈ [0, π] be the angle between y and u1(j), and let the set EÛ∗′1 be

defined as

E∗′
Û1
≡

{
(s1, s1, C1, C2, z) : ∃u1(j) ∈ C1\{uo1} and u2(l) ∈ C2 s.t.

cosϕj ≥

√
|h1|2P1 + Re{h1h∗2}ρ̃

√
P1P2 − ξ′′ε√

|h1|2P1(|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}ρ̃
√
P1P2 +N) + ξ2ε

and cos(u1(j), u2(l)) ≥ ρ̃− 7ε

}
(A.7)

and where ξ′′ and ξ5 depend only on P1, P2, and N . Then, for every sufficiently small ε > 0(
E∗
Û1
∩ EcZ ∩ EcS ∩ EcX

)
⊆
(
E∗′
Û1
∩ EcZ ∩ EcS ∩ EcX

)
and, in particular

Pr
[
E∗
Û1
∩ EcZ ∩ EcS ∩ EcX

]
≤ Pr

[
E∗′
Û1
∩ EcZ ∩ EcS ∩ EcX

]
Proof. We note that the error event E∗

Û1
to occur, there must exist codewords u1(j) ∈

C1\{uo1} , and codeword u2(l) ∈ C2 (decodability is unknown) such that

|ρ̃− cos](ũ1, ũ2)|≤ 7ε (A.8)

and

||y − (h1β1ũ1 + h2β2ũ2)||2≤ ||y − (h1β1u
o
1 + h2β2u

o
2)||2. (A.9)
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We state a sequence of statement related to Condition (A.8) and Condition (A.8). A) For

every (s1, s2, C1, C2, z) ∈ EX ∩ EZ, the following implication holds.(
||y − (h1β1ũ1 + h2β2ũ2)||2 ≤ ||y − (h1β1u

o
1 + h2β2u

o
2)||2)

)
(A.10)

⇒
(

(Re〈y, β1h1u1(j)〉 ≥ n(|h1|2P1 + Re{h1h2
∗}ρ̃
√
P1P2 − ξ13ε)

)
,

where ξ13 only depends on P1, P2, h1, h2 and z.

We start by rewriting the LHS of (A.7) as

Re(〈y, β1h1u1(j) + β2h2u2(l)〉)

≥ ||h1β1u
o
1 + h2β2u

o
2||2+Re(〈z, h1β1u

o
1 + h2β2u

o
2〉)

+
1

2

{
||h1β1u1(j) + h2β2u2(l)||2−||h1β1u

o
1 + h2β2u

o
2||2
}

≥ ||h1β1u
o
1 + h2β2u

o
2||2−n(h1

√
P1Nε+ h2

√
P2Nε)

+ Re(〈h1β1u1(j), h2β2u2(l)〉)− Re(〈h1β1u
o
1, h2β2u

o
2〉)

≥ ||h1β1u
o
1 + h2β2u

o
2||2−nξ1ε+ nRe{h1h

∗
2}
{
ρ̃
√
P1P2(1− 7ε)− ρ̃

√
P1P2(1 + 7ε)

}
≥ ||h1β1u

o
1 + h2β2u

o
2||2−nξ2ε (A.11)

By rewriting RHS of the above inequality (A.11)

Re{〈h1β1u
o
1 + h2β2u

o
2, β1h1u1(j) + β2h2u2(l)〉}

≥ ||h1β1u
o
1 + h2β2u

o
2||2−Re{〈z, β1h1u1(j) + β2h2u2(l)〉} − nξ2ε

≥ ||h1β1u
o
1 + h2β2u

o
2||2−(h1

√
P1Nε+ h2

√
P2Nε)− nξ2ε

≥ ||h1β1u
o
1 + h2β2u

o
2||2−nξ3ε (A.12)

Fig. A.12 illustrates an example of vectors h1β1u1(j), h2β2u2(j) and in the complex vector

space Cn. Let angles φ, θ and γ are defined as φ = ^(h1β1u1(j), h1β1u
o
1 + h2β2u

o
2),

θ = ^(h1β1u1(j) + h2β2u2(j), h1β1u
o
1 + h2β2u

o
2) and γ = ^(h1β1u1(j), h1β1u1(j) +
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Figure A.1: The definition of asymptotic angles.

h2β2u2(j)). The respective cosine values of φ, θ and γ are given by

cosφ =
Re{〈h1β1u

o
1 + h2β2u

o
2, β1h1u1(j)〉}

||h1β1uo1 + h2β2uo2||.||β1h1u1(j||

cos θ =
Re{〈h1β1u

o
1 + h2β2u

o
2, β1h1u1(j) + β2h2u2(l)〉}

||h1β1uo1 + h2β2uo2||.||β1h1u1(j) + β2h2u2(l)||

cos γ =
Re{〈β1h1u1(j), β1h1u1(j) + β2h2u2(l)〉}
||β1h1u1(j)||.||β1h1u1(j) + β2h2u2(l)||

Recalling that ||βiui||=
√
nPi, i ∈ {1, 2}, ||βiuoi ||=

√
nPi, |ρ̃− cos^(u1(j),u2(l))|< 7ε|

and |ρ̃− cos^(uo1,u
o
2)|< 7ε|, it can be shown that

|‖h1β1u
o
1 + h2β2u

o
2‖2 − ‖h1β1u1(j) + h2β2u2(l)‖2| ≤ nξ4ε (A.13)

(A.14)

By substituting the following can be written

cos θ ≥ ‖h1β1u
o
1 + h2β2u

o
2‖2 − nξ3ε

‖h1β1uo1 + h2β2uo2‖
√
‖h1β1uo1 + h2β2uo2‖+ nξ4ε

≥ 1− ξ5ε√
1 + ξ6ε

. (A.15)

For ε→ 0 choose ξ7, s.t., 1√
1+ξ6ε

> 1− ξ7ε. Then, it follows that

cos θ ≥ (1− ξ5ε)(1− ξ7ε)

≥ 1− ξ8ε (A.16)

With φ ≤ γ + θ (equality holds true when vectors h1β1u1(j), h1β1u1(j) + h2β2u2(l) and

h1β1u
o
1 + h2β2u

o
2 are on the same plane). Note that 0 ≤ γ ≤ π and 0 ≤ θ < π

2
, and then it
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follows

cosφ ≥ cos(γ + θ)

= cos γ cos θ − sin γ sin θ

= cos γ cos θ − sin γ
√

1− cos2 θ

≥ cos γ(1− ξ8ε)− sin γ
√
ξ8ε. (A.17)

As ε → 0 let (cos γξ8ε − sin γ
√
ξ8ε) → ξ9ε, where ξ9 is only a function of P1, P2, h1, h2

and N . Now (A.17) can be written as

cosφ ≥ cos γ − ξ9ε. (A.18)

By revisiting the definition of φ and γ, (A.18) can be rewritten as

Re{〈h1β1u1(j), h1β1u
o
1 + h2β2u

o
2)〉}

‖h1β1u1(j)‖‖h1β1uo1 + h2β2uo2‖
≥ Re{〈h1β1u1(j), h1β1u1(j) + h2β2u2(l))〉}

‖h1β1u1(j)‖‖h1β1u1(j) + h2β2u2(l)‖
− ξ9ε

(A.19)

Recalling that |‖h1β1u
o
1 + h2β2u

o
2‖2 − ‖h1β1u1(j) + h2β2u2(l)‖2| ≤ nξ4ε, (A.20) can be

written as

Re{〈h1β1u1(j), h1β1u
o
1 + h2β2u

o
2}〉 ≥ Re{〈h1β1u1(j), h1β1u1(j) + h2β2u2(l)}〉 − nξ10ε

≥ n
(
P1 + Re{h1h

∗
2}ρ̃
√
P1P2(1− 7ε)

)
− nξ10ε

= n
(
P1 + Re{h1h

∗
2}ρ̃
√
P1P2

)
− nξ11ε. (A.20)

Since z ∈ Ez, Re{〈z, h1β1u1(j)〉} ≥ −n|h1|
√
P1Nε, we can write the real component of

the inner product between received signal vector y and h1β1u1(j) as follows

Re{〈h1β1u1(j),y〉} = Re{〈h1β1u1(j), h1β1u
o
1 + h2β2u

o
2〉}+ Re{〈h1β1u1(j), z〉}

≥ n
(
P1 + Re{h1h

∗
2}ρ̃
√
P1P2

)
− nξ11ε− n|h1|

√
P1Nε

= n
(
P1 + Re{h1h

∗
2}ρ̃
√
P1P2

)
− nξ12ε. (A.21)
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B) For every (s1, s2, C1, C2, z) ∈ EcX ∩ EcZ, the following statement is true

‖y‖2 ≤ n(|h1|2P1 + |h2|2P2 + 2Re{h1h
∗
2}ρ̃
√
P1P2 +N + ξ13ε) (A.22)

where ξ13 is only a function of P1, P2, h1 and h2. The proof is straight forward. C) For

every (s1, s2, C1, C2, z) ∈ EcX, the following hold true

‖h1β1u1(j)‖ ≤ |h1|
√
nP1. (A.23)

This is due to the average power constraint. D) For every (s1, s2, C1, C2, z) ∈ EcX ∩ EcZ, the

following implication holds

|ρ̃− cos^(h1u1(j), h1u2(l))| < 7ε and

‖y − (β1h1u1(j) + β2h2u2(l))‖2 ≤ ‖y − (β1h1u
o
1 + β2h2u

o
2)‖2 ⇒

cos^(y, h1β1u1(j)) ≥ ∆(ε) (A.24)

where

∆(ε) ≡

√
|h1|2P1 + Re{h1h∗2}ρ̃

√
P1P2 − ξ′′ε√

|h1|2P1(|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}ρ̃
√
P1P2 +N) + ξ′′2 ε

(A.25)

The Statement D follows by rewriting the cos^(y, h1β1u1(j)) as

cos^(y, h1β1u1(j)) =
Re{〈y, h1β1u1(j)〉}
‖y‖‖h1β1u1(j)‖

(A.26)

and then lower bounding 〈Re{y, h1β1u1(j)〉} using A) and upper bounding ‖y‖ and ‖h1β1u1(j)‖

using B) and C), respectively. The Lemma now follows by D)(
E∗
Û1
∩ EcZ ∩ ES ∩ EX

)
⊆
(
E∗′
Û1
∩ EcZ ∩ ES ∩ EX

)
and, therefore

Pr
[
E∗
Û1
|EcZ ∩ ES ∩ EX

]
≤ Pr

[
E∗′
Û1
|EcZ ∩ ES ∩ EX

]
(A.27)
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The following lemma will also be used for the proof of (A.6).

Lemma A.7. For every ∆ ∈ (0, 1], let the set G be given by

G = {(s1, s2, C1, C2, z) : ∃u1(j)\{uo1}. s.t. cos^(y, h1β1u1(j)) ≥ ∆}

Then (
R1 < −

1

2
(1−∆2)

)
⇒
(
limn→∞Pr[G|EcX1

] = 0, ε > 0
)

Proof. The proof will simply follows from [44, Lemma D.7] by letting

w(s1, s2, C1, C2, z)
∆
=

y

h1β1

, (A.28)

in [44, Identity (92)]. Note that [44, Lemma D.7] is true for any fixed vector w(s1, s2, C1, C2, z).

The proof of [44, Lemma D.7] is based on the argument that the conditional probability of

u1(j) lies inside the polar cap surface of half-angle = arccos∆ for all u1(j) 6= uo1 condi-

tional on uo1 approaches 0 as n→∞, if

R1 < −
1

2
(1−∆2).

Therefore, [44, Lemma D.7] holds true irrespective of w(s1, s2, C1, C2, z) vector.

Proof of Lemma A.5. We start the proof of (A.6) by writing

Pr
[
E∗
Û1
∩ EcZ ∩ EcS ∩ EcX

] a)

≤ Pr
[
E∗′
Û1
∩ EcZ ∩ EcS ∩ EcX

] b)

≤ Pr
[
E∗′
Û1
| EcX1

]
where a) follows by Lemma A.6 and b) follows because EcX ∈ EcX1

. We can complete the

proof of (A.6) by combining (A.29) with Lemma A.7. This gives that for every δ > 0 and

every ε > 0 there exists some n′4(δ, ε) we have Pr
[
E∗
Û1
∩ EcZ ∩ EcS ∩ EcX

]
< δ whenever

R1 < −
1

2
log2

(
|h2|2P2(1− ρ̃2) +N

|h1|2P1 + |h2|2P2 + 2Re{h1h2
∗}ρ̃
√
P1P2 +N

+ ξ14ε

)
≤ 1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N
− ξ15ε

)
(A.29)

where ξ15 is a positive constant determined by P1, P2, h1, h2 and N .
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Now we can prove Lemma A.1 by recalling A.5.

Proof Lemma A.1.

Pr[Eo
Û1

] ≤ Pr[Eo
Û1
∩ EcS ∩ EcX ∩ EcZ] + Pr[ES] + Pr[EX] + Pr[EZ] (A.30)

≤ Pr[Eo
Û1
| EcS ∩ EcX ∩ EcZ] + Pr[ES] + Pr[EX] + Pr[EZ] (A.31)

≤ Pr[Eo
Û1
| EcX1

] + Pr[ES] + Pr[EX] + Pr[EZ] (A.32)

Now by combining Lemma A.2, Lemma A.3, Lemma A.4 and Lemma A.7, we have that

for every δ > 0 and 0.3 > ε > 0, there exists an n′4(δ, ε) ∈ N such that for all n > n′4(δ, ε)

we have Pr[EZ] < 9δ whenever

R1 <
1

2
log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h2

∗}ρ̃
√
P1P2 +N

|h2|2P2(1− ρ̃2) +N
− ξ15ε

)
. (A.33)

We have completed the main part of the Theorem 3.2, that is if R1 ∈ R1(ε) codeword 1

can be recovered regardless of the decodability of codeword 2. Now we consider decoding

codeword 2 given that codeword 1 is decoded. To this end, we introduce the error event

related to decoding of codeword 2 when codeword 1 is correctly recovered. This error

event is denoted by EÛ2
and consists of all tuples (s1, s2, C1, C2, z) for which there exists

ũ2 6= uo2 in C2 and ũ1 = uo1 in C1, which is precisely defined by

EÛ2
=

{
(s1, s1, C1, C2, z) : ∃ũ2 ∈ C2\{uo2} s.t.

|ρ̃− cos](uo1, ũ2)|≤ 7ε and ||y − (h1β1u
o
1 + h2β2ũ2)||2≤ ||y − (h1β1u

o
1 + h2β2u

o
2)||2

}
(A.34)

Now we state the following lemma to complete the proof of Theorem 3.2

Lemma A.8.

R2 >
1

2
log2

(
|h2|2P2(1− ρ̃2) +N

N(1− ρ̃2)

)
, (A.35)
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then Pr[EÛ2
] cannot be made arbitrarily small.

Proof. By decomposing the error event EÛ2
we can write

Pr[EÛ2
] = Pr[EÛ2

∩ EcS ∩ EcX ∩ EcZ] + Pr[Eo
Û1
|ES ∪ EX ∪ EZ]Pr[ES ∪ EX ∪ EZ]

≤ Pr[EÛ2
∩ EcS ∩ EcX ∩ EcZ] + Pr[ES] + Pr[EX] + Pr[EZ] (A.36)

From [44, Condition (90) in Lemma D.5] it follows that if

R2 >
1

2
log2

(
|h2|2P2(1− ρ̃2) +N

N(1− ρ̃2)

)
. (A.37)

then the term Pr[EÛ2
∩ EcS ∩ EcX ∩ EcZ] cannot be made arbitrarily small.

The proof of Theorem 3.2 follows by combining Lemma A.1 and Lemma A.8.
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