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A B S T R A C T

The feasibility of collecting various data from built-in wearable sensors has enticed

many researchers to use these devices for analyzing human activities and behaviors.

In particular, audio, video, and motion data have been utilized for automatic

dietary monitoring. In this research, we investigate the feasibility of detecting

chewing activities based on audio and inertial sensor data obtained from an ear-

worn device, eSense. We process each sensor data separately and determine the

accuracy of each sensing modality for chewing detection when using MFCC and

Spectral Centroid as features and Logistic Regression, Decision Tree, and Random

Forest as classifiers. We also measure the performance of chewing detection when

fusing features extracted from both audio and inertial sensor data. We evaluate the

chewing detection algorithm by running a pilot study inside a lab environment

on a total of 5 participants. This consists of 130 minutes of audio and inertial

measurement unit (IMU) data. The results of this study indicate that an in-ear

IMU with an accuracy of 95% outperforms audio data in detecting chewing and

fusing both modalities improves the accuracy up to 97%.
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1 I N T R O D U C T I O N

The wearable technology market has seen rapid growth, with wearable devices

seeing increased rates of acceptance [45]. Various studies have focused on collect-

ing information regarding human activities by leveraging the built-in sensors of

wearable devices. In the context of persuasive technology [16], recorded informa-

tion on human activity can provide insights into behavior and habits in order to

provide the users of the wearable devices with strategies for a healthier lifestyle.

According to Statistics Canada, one out of four Canadians aged 18 or more is

classified as obese [12]. This issue is not limited to Canada, and the prevalence of

obesity has tripled during the past decades [30]. Studies on mindful eating suggest

that higher body mass index is associated with a lower rate of mindful eating [26].

For example, the consumed meal proportion was increased by 71% as a result of

watching television while eating [40]. Consequently, various methods have been

proposed to assist with practicing mindful eating, as a method to prevent and treat

obesity and maintain a healthy weight [29].

Sound, heat, body motion, and wrist motion are all generated while eating. In

particular, tell-tale sounds are generated from the crushing of food. Several works

have successfully detected and distinguished chewing sounds from other body-

generated or environmental sounds [3][34][6]. The in-ear microphone is one of

the most popular devices used to detect chewing sounds. These microphones can
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introduction 2

capture chewing sounds as they are placed close to the users’ mouths. In addition,

body generated sounds are amplified in the ear canal. Several methods were

proven to be successful in detecting swallowing sounds by placing a microphone

near the throat [6][36]. Stain sensors, which detect muscle forces, have also been

used to capture facial muscle activity while chewing [35][14].

In this thesis, we use the eSense device [23] for the purpose of chewing detection,

inspired by the existing works conducted on chewing detection. These studies

were based on microphones placed in earbuds and also used accelerometer data

to detect the oscillatory movement of the temporalis muscle1 while engaging in a

chewing activity.

The eSense device is an ear-bud platform equipped with a 6-axis IMU (inertial

measurement unit), a microphone, and Bluetooth and BLE radios (Figure 1.1). In

this research, we investigate the performance of the eSense device and its built-in

sensors to detect chewing while performing common sedentary activities such as

eating, speaking, watching a movie, and sitting still.

Figure 1.1: eSense device and its specifications.

Our contributions in this research are as follows:

1 A fan-shaped muscle located on top of the jaw. It is one of the mastication muscles and its main
function is to move the lower jaw.



introduction 3

• Assessing if the chewing movement of the head can be distinguished from

other head-related movements while recording IMU data;

• Assessing if chewing sounds can be distinguished from speaking, watching

TV as well as silence;

• Comparing if IMU data offers better signals than audio for detecting chewing

when using the same feature extraction and classification techniques;

• Demonstrating the effect of fusing both sensors.



2 R E L AT E D W O R K

Several methods have been proposed for automatic dietary and food-intake mon-

itoring based on various sensing modalities. Some examples of these sensing

modalities include motion, audio, and video. Several approaches in the literature

have employed in-ear devices for the detection of eating. This section discusses

the chewing detection methods based on audio and motion data collected from

both in-ear and other head-worn wearable devices.

A microphone placed inside the ear canal was used by Amft et al. [3] to explore

the possibility of distinguishing between silence, speech, and chewing sounds. An

accuracy of 99% was achieved for chewing detection. The authors also measured

the intensity of chewing and speech signals when a microphone is placed in

different positions of the subjects’ head, namely, inner ear, 2 centimeters in front of

the mouth, at the cheek, 5 centimeters in front of ear canal opening, collar, and

behind the outer ear. They demonstrated that the ear canal is the best placement

for the microphone as the chewing sounds have higher intensity compared to

speech and environmental sounds in this position.

An in-ear device, equipped with a microphone and PPG sensor, was used by

Papapanagiotou et al. to detect chewing and eating events [32]. An accelerometer

was also used and, assuming the participants were not eating while engaged in

physical activity, data was analyzed to filter out these events. An accuracy of

4



related work 5

93.1% was achieved for the detection of chewing events in a semi-controlled lab

environment, from the data collected from a total of 14 subjects over a period of 60

hours.

A piezoelectric film sensor, placed below the earlobe, was used by Farooq et al. to

detect jaw motions while engaging in different daily activities [14]. Hand-to-mouth

gesture sensors were also used to detect bites, and a 3-axis accelerometer was used

to capture body movements. Data was collected in a free-living environment for 24

hours with a total of 12 participants. An accuracy of 93% was achieved by fusing

all three sensors and extracting both time- and frequency-domain features from

the collected data.

EarBit is a head-mounted wearable system that can detect eating activities in a

free-living environment [6]. It consists of two IMU devices placed behind the ear

and a proximity sensor placed inside the outer ear canal. A microphone was also

placed around the neck to detect swallowing activity. The EarBit device was tested

by a group of 10 participants over a duration of 45 hours in total, an accuracy of

93% was achieved for eating detection.

In another study, Wang et al. collected data using a single-axis accelerometer

attached to the temporalis muscle to detect chewing activities by measuring

muscle bulges [42][43]. Accelerometer data were also employed to detect chewing

frequency. In a study consisting of 10 participants and a total of 150 hours of

recording data, an accuracy of 97% was achieved for the detection of chewing

activities.

In yet another study, a 3-axis accelerometer was on the temple of eyeglasses,

aiming to detect the oscillatory movement of the temporalis muscle while chewing

[28]. Accelerometer data were recorded from 5 participants while they engaged in

chewing and non-chewing activities. An accuracy of 73.98% was achieved.
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Similar to the study from Meres et al. [28], chewing detection was studied

by Farooq et al. [15], using an accelerometer placed in the eyeglasses frame.

The SPLENDID dataset [33] was later used by Papapanagiotou et al. [31]. They

used convolutional neural networks on audio data and managed to achieve 98%

accuracy when distinguishing between chewing sounds from non-chewing sounds.

A deep learning pipeline was implemented by Gao et al. to explore the feasibility

of chewing detection using the built-in microphone of common headset devices

available on the market [19]. A 94-95% classification accuracy for chewing detection

from data collected inside the lab environment was achieved, as well as a 94.72%

accuracy for real living environment data. Multi-modal sensing based on Google

Glass, smartwatch, and in-ear microphone was used by Merk et al. [27] to detect

chewing. They achieved a precision of 92% while combining audio and motion

modalities on 72 hours of recording data over 5 participants.

Various successful methods have been proposed for chewing detection based

on head-worn devices. The result of the previous studies guided us to select

the eSense device as a platform to explore its performance in detecting chewing

activities. In-ear microphone sensor has been investigated by many other works

and has proven to be an effective modality for chewing detection. In addition,

the oscillatory movement of facial muscles was also a good indicator of chewing

activities. As a result, in addition to considering the audio data, we investigate

whether the movement of the facial muscles while chewing are reflected on the

in-ear IMU sensor of the eSense device and whether the captured IMU signals can

be distinguished from other facial and head movement activities while performing

different machine learning classification algorithms.
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Table 2.1: Comparison of related works - 1

reference sensors placement advantages limitations

Amft et al. [2] Microphone Inside an
earpad

The proposed
device re-
duces ear
occlusion.
It is viable
to be used
continuously.

The foam
cushion
could damp
signals in the
earpad sensor
so the sounds
in band 8kHz-
16kHz were
not captured.

Yang et al.
[46]

Piezoelectric Below outer
ear

The proposed
method can
get meal mass
and energy in-
take.

Limited the
long term use
as the sensor
needs to be
attached to
the skin and
is less socially
acceptable.

Liu et al. [24] Microphone Outer ear
canal

Light-weight
and com-
fortable
device that
works with
Bluetooth

Low detec-
tion rate
(80%). It uses
a camera and
can only de-
tect circular
bowls and
plates.

Gao et al. [19] Microphone Outer ear
canal

They used
off-the-shelve
earphones.
Detection
can be done
in many
earphones
available in
the market.

High power
consump-
tion due to
complicated
classification
algorithms.
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Table 2.2: Comparison of related works - 2

reference sensors placement advantages limitations

Bi et al. [8] Microphone Behind the
ear

Low power
consumption

The head-
mounted
device was
made with
a 3D printer
which can be
less socially
acceptable
due to its
large size.

Papapanagio
et al. [32]

PPG Earlobe Its design
allows it
to be com-
bined with
the already
explored
audio-based
chewing
sensors.

Physical ac-
tivities will
increase the
false positive
rate as the
sensor works
with blood
flow.

Passler et al.
[34]

Microphone In-ear and
outer ear
canal

Low compu-
tation costs

It did not con-
sider talking
when collect-
ing data.

Steimer et al.
[38]

Microphone In-ear Can be inte-
grated with
the hearing
aid, low
computation
cost

The device
does not fit
well into the
ear.

Bi et al. [9] Microphone Neck and
throat

Captures
high qual-
ity signals.
Non-invasive

The device
needs to
be attached
to the skin
around the
throat that
could inter-
rupt users’
comfort.
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Table 2.3: Comparison of related works - 3

reference sensors placement advantages limitations

Turan et al.
[41]

Microphone Neck and
throat

It has a high
detection
rate of chew
and swallow
events. It
delivers a
potential for
food intake
monitoring in
daily life.

The device
needs to
be attached
to the skin
around the
throat which
can inter-
rupt users’
comfort.

Wang et al.
[42]

Accelerometer
(single-axis)

Tempolaris
muscle

Non-invasive
and preserves
privacy

Might inter-
rupt users’
comfort. Not
socially ac-
ceptable due
to the place-
ment of the
sensor (attach
to the face).

Wang et al.
[44]

Accelerometer
(tri-axis)

Tempolaris
muscle

Non-invasive
and preserves
privacy

Might inter-
rupt users’
comfort. Not
socially ac-
ceptable due
to the place-
ment of the
sensor (attach
to the face).

Farooq et al.
[15]

Accelerometer Temple of eye-
glasses

Non-invasive
and preserves
privacy. It
does not
require direct
attachment.

Low detec-
tion rate
(F1-score of
87.9)
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Table 2.4: Comparison of related works - 4

reference sensors placement advantages limitations

Sazonov et al.
[35]

piezoelectric Below ear Non-invasive,
low power
consumption

Temperature
and vibra-
tions affects
the perfor-
mance of the
sensor.

Farooq et al.
[14]

piezoelectric Tempolaris
muscle

Non-invasive,
low power
consumption

It negatively
affected users’
comfort as
the sensor
needs to be
attached to
the face with
medical tape.

Fontana et al.
[18]

Microphone,
piezoelectric

Around the
neck

Integration of
multi-modal,
high band-
width sensor
signals and
video footage
into a single
module.

The device in-
terrupts users’
comfort as it
is attached
to the users’
neck with a
strap.

Fontana et al.
[17]

Piezoelectric,
accelerome-
ter

Around the
collar under
ear

The system
combines
low power
multi-modal
components
and can accu-
rately detect
ingestion
events.

It uses self-
reporting
for labeling
the ground
truth which
affects users’
behavior
throughout
the study.

Bi et al. [7] Microphone,
EMG

Behind the
ear and neck

Multimodal
detection of
chewing

Sensors need
to be attached
to the skin
that might in-
terrupt users’
comfort.
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Table 2.5: Comparison of related works - 5

reference sensors placement advantages limitations

Papapanagiot
et al. [31]

PPG, Mi-
crophone,
Accelerome-
ter

Earlobe and
inside outer
ear canal

Low compu-
tational costs
due to using
a PPG sen-
sor that has a
low sampling
rate.

It can be
affected by
environmen-
tal noise and
light. Very
precise po-
sitioning of
sensors are
required.

Bedri et al. [6] Microphone,
IMU, proxim-
ity

Behind the
ear, inside
outer ear,
back of the
neck, around
the collar

It can accu-
rately detect
and log food
intake as well
as fast eating
behavior.

Proper sensor
positioning is
required.



3 T H E O R E T I C A L B A C K G R O U N D

In this section, we provide an overview of the machine learning and Signal

Processing algorithms that have been used for this research. We describe what is

known as supervised classification and how it is different from unsupervised and

semi-supervised algorithms. We then move into explaining the three supervised

classification algorithms that have been used for chewing detection in this research.

Finally, we outline the concept of Feature Extraction using Signal Processing

and will explain the two Feature Extraction techniques that have been used for

this research, namely, Spectral Centroid and Mel-frequency Cepstral Coefficient

(MFCC).

3.1 machine learning models

Machine learning algorithms have three main categories, supervised, unsupervised,

and semi-supervised. In supervised learning, the machine learning model is

trained based on a set of data that had been labeled previously. Unsupervised

methods, the algorithm can discover patterns in unlabeled data. It does not require

pre-training as in supervised methods. In semi-supervised learning, the data

is partially labeled; It falls between supervised and unsupervised learning. In

addition, machine learning models fall between two categories of parametric and

12



3.1 machine learning models 13

non-parametric methods. In parametric methods, the parameters of a particular

function are estimated by training. So it has an assumption about the behavior of

the data and it estimates a finite set of parameters during the process of training.

On the other hand, non-parametric models make fewer assumptions about the

distribution of the data and the function to be estimated [10].

1. Supervised methods

Supervised machine learning algorithms have also two categories of multi-

class and binary class classifiers.

Multi-class classifier:

This method is used when the number of states is specified and the algorithm

is trained to detect the state boundary. This approach requires a diversity of

training data to cover all possible states. Examples of classifiers used for this

method include Decision Trees, Nearest Neighbour, Naïve Bayes, Gaussian

Mixture Model (GMM), and Conditional Random Field (CRF) [4].

Binary classifier:

Binary classifiers, classify data points into two categories based on the speci-

fied classification rules. These classifiers decide as to whether or not a data

point has a specific characteristic. For example, in medical applications, the

role of binary classifiers is to decide whether a patient with some symp-

toms has a certain disease [22]. In the case of this research, this method

can predict whether a person is eating at the present moment or not. Some

commonly-used classifiers for binary classifications are Support Vector Ma-

chine, Decision Trees, Random Forest, Logistic Regression, and Bayesian

Networks.
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2. Unsupervised methods

They are more flexible when dealing with an unexpected variety of data

since no pre-training is required. The likelihood ratio method, for example,

is based on the idea that two intervals that belong to the same state are

likely to have the same probability density [4]. What is common between

different unsupervised methods is that they learn and make inferences based

on previous data. In other words, they look at the past to predict the future.

3.1.1 Logistic Regression Classifiers

Logistic Regression Classifier is a parametric and binary classifier and outputs

a prediction for only two categories. It fits training data points to an s-shaped

function (Figure 3.1) known as sigmoid (Eq. 3.1) to estimate the parameters in a

way that the error is minimized.

Sigmoid(x) =
1

e−x + 1
(3.1)

By taking a minimum value of 0 and a maximum value of 1, the sigmoid function

suits the purpose of binary classification. After fitting a sigmoid function to a set

of observations and estimating the parameters, the sigmoid function gives a value

between 0 and 1 for a new observation x. So it can give a probability for whether

the new data point belongs to a category or class 1 or 2.
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Figure 3.1: Logistic Regression classifier: the sigmoid function estimated into two sets of
observations [49]

3.1.2 Decision Tree Classifiers

Decision Trees are non-parametric machine learning models the components of

which are nodes, edges, and leaves where nodes represent an attribute, edges

represent a specific value of the attribute which is connected to the edges and

leaves are the outputs. For example, in Figure 3.2 the Decision Tree predicts

whether a person is fit by splitting the attribute age into two categories less or more

than 30 years old. The next split happens for attribute exercising in the mornings

and eating a lot of pizza which both have two categories of yes or no.

The split of an attribute value is made by calculating the entropy (Eq. 3.2) within

each split region. Where pmk represents the percentages of data in the m’th region
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Figure 3.2: An example of a Decision Tree that predicts whether a person is fit [11]

that is from the k’th class. It can be shown that the value of entropy is near zero if

pmk’s are either near zero or near one.

H(X) = −
∑
k

pmk logpmk (3.2)

3.1.3 Random Forest Classifiers

Random Forest classifiers consist of multiple Decision Trees in which each tree is

trained with a random set of data points and a random set of variables. The final

prediction of Random Forest is the average or median of the prediction of Decision

Trees within the forest (Figure 3.3). Therefore, it reduces the over-fitting. Same

as decision trees, the Random Forest is a non-parametric method but they are

stronger modeling techniques compared to decision trees as they use the concept

of the wisdom of the crowds.
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Figure 3.3: An example of a Random Forest: the final output is blue as the majority of the
Decision Trees voted for blue [48]

3.2 signal processing feature extraction

Feature extraction is the process of transforming raw data into a smaller and

manageable input for processing. In this research, the raw data points are in the

form of a signal. Generally speaking, there are two types of feature extraction in

digital signal processing:

• Time-domain features: the time-domain features interpret how the signal

behaves over time. These features are easy to interpret and can be obtained

by simple methods like calculating the signals average, variance, power, zero

crossings, etc.

• Frequency-domain features: the frequency-domain features measure how the

signals behave over a range of frequencies (Figure 3.4). These features are

obtained after transforming the time-domain data into the frequency-domain

using a Discrete Fourier Transform. The mapping of fj, j = 0, . . . ,N− 1,
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into ck = 1
N

∑N−1
j=0 fje

−ijk2π/N, k = 0, . . . ,N− 1, is called the Discrete Fourier

Transform (DFT).

Figure 3.4: Representation of a signal in time and frequency-domain [5]

The frequency-domain features might be harder to interpret, however, they

provide useful information such as the pitch and the melody in an audio

signal.

In this research, we use mean, variance, and power as time-domain features.

For frequency-domain features, we use the two commonly-used signal processing

features, namely Spectral Centroid and Mel-frequency Cepstral Coefficients. In the

following section, we explain each of the methods briefly.

3.2.1 Spectral Centroid

Spectral Centroid is a measure that characterizes the center of the mass in the

power spectrum. The higher value of SC means the high-frequency constituent
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components of a signal are dominant, in other words, the more energy of the

signal is concentrated around higher frequencies. It is defined as follows, where N

is the number of bins, f and M[f] are the frequency and magnitude of frequency f,

respectively.

Centroid =

∑N
f=0 fM[f]∑N
f=0M[f]

(3.3)

3.2.2 Mel-frequency Cepstral Coefficient

Mel-frequency Cepstral Coefficient (MFCC) [25] is a widely-used feature in digital

signal processing for different tasks including, speech and speaker recognition.

In simple words, Mel-scales converts actual frequencies to what a human can

hear. The human brain can better understand the changes in frequencies when

the frequency of a sound is lower. For example, the difference between sounds

produced in 400Hz and 500Hz is easier to perceive than sounds produced by

1000Hz and 1100Hz even though the difference between both frequencies is 100Hz.

The non-linear transformation of frequencies was obtained by Volkmann and

Newmann in 1937 (Eq. 3.4) where f is the frequency.

Mel(f) = 2595× log(1+ f

700
) (3.4)

So in the MFCC feature extraction, the signal is windowed into short frames

(assuming the audio does not change in short frames), the power spectrum of

each short frames are obtained by calculating DFT, Mel spectrum is obtained by

applying Mel filter bank on the power spectrum (weighted sum of the spectrum
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and Mel filter bank 3.5) and finally, the Mel spectrum is reversed back to time-

domain using Discrete Cosine Transform.

Figure 3.5: Mel filter bank basis functions using 20 Mel filters [47]



4 P R O P O S E D M E T H O D O L O G Y F O R C H E W I N G D E T E C T I O N

We used a machine learning Pipeline [13] for chewing detection. First, we introduce

the pipeline consisting of two steps of Feature Extraction and Classification based

on solely audio data, after which we propose a pipeline for IMU data and finally

we merge two pipelines to utilize both IMU and audio data to detect chewing.

4.1 chewing detection based on audio data

This section describes the pipeline we used to detect chewing activities based

on audio data. As we pointed out previously, we record audio data with a 48

kHz sampling rate. We framed the signal into 3-seconds non-overlapping time

windows. For the feature extraction phase, we divide the 3-second time frame into

45 partitions and calculated Spectral Centroid [20] (Eq. 3.3) for each partition. We

implemented the following steps on the audio signal to extract Spectral Centroid

as a feature vector:

1. Partition the signal into short 3-second frames.

2. Calculate the Discrete Fourier Transform [37] for each 3-second frame and

obtain the Spectrum of each frame.

21
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Figure 4.1: Sample of IMU and audio signals (a): chewing pretzel (b): chewing banana (c):
speaking

3. Calculate the Spectral Centroid (Eq. 3.3) and return the 45-dimensional

feature vector representing the 3-second time windows.

The final output of the algorithm is a 45-dimensional feature vector. To demon-

strate the effectiveness of spectral centroid to distinguish chewing and non-chewing

activities, we plotted the mean and standard deviation of the 45-dimensional fea-

ture vector on a subset of audio recordings.

As Figure 4.2 shows, there is a slight overlap between two classes of chewing and

non-chewing activities although the separation is visually observable. Therefore,

we decided to use this method for feature extraction step.

As well as Spectral Centroid, we used MFCC to extract features of the audio

signals. We extracted 45 cepstral coefficients of each 3-second time window using

the MFCC algorithm. The steps of this algorithm are:

1. Partition the signal into 3-second frames.
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Figure 4.2: Visual exploratory analysis of spectral centroid of chewing and non-chewing
audio data

2. Calculate the Discrete Fourier Transform for each 3-second frame.

3. Apply Mel filter bank [39] with 45 filters on the magnitude spectrum obtained

from step 2 and extract a 45-dimensional feature vector.

4. Calculate the logarithm of the filterbanks obtained from step 3.

5. Apply the Discrete Cosine Transform [1] of the logarithm of the filter bank

obtained in step 4.

We selected a few samples of audio data and visualized the MFCC coefficients

with the aforementioned specification to get a sense of whether this feature can

be useful to detect chewing audio data from non-chewing. In other words, we
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explored the visual representation of MFCC to figure out how likely it is for

classifiers to detect and distinguish two classes of chewing and non-chewing

successfully. Figures 4.3, 4.4, and 4.5 show audio signal, MFCC coefficients, and

the normalized MFCC coefficients where the mean and variance values for each

coefficient dimensions are set to zero and one, respectively.

Figure 4.3: Visual exploratory analysis of MFCC coefficients of the audio recording while
chewing pretzel

The 2-dimensional visualization of MFCC coefficients with the x-axis repre-

senting the time and y-axis representing the coefficients did not provide a good

indication of the difference between chewing and other activities. To simplify the
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Figure 4.4: Visual exploratory analysis of MFCC coefficients of the audio recording while
speaking

visualization, we took the mean value of the MFCC coefficients over time. The

result is shown in Figure 4.6. This figure shows a clear distinctive difference be-

tween speaking and watching movies with chewing audio data. It can be seen that

chewing has a more dominant fluctuation which corresponds to each individual

crushing of food with teeth while chewing.

Figure 4.6 indicated that using MFCC is a good feature to differentiate between

chewing and non-chewing activities. Although taking the average of the coefficients
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Figure 4.5: Visual exploratory analysis of MFCC coefficients of the audio recording while
watching movie

removes a lot of information, there is enough left to distinguish the two activity

sets.

We obtain a 90-dimensional feature vector in which the first 45 elements of it

are calculated based on Spectral Centroid and the second 45 elements are MFCC

coefficients. We empirically examined MFCC and Spectral Centroid and decided

to use them as features since they had promising results. We used the obtained

90-dimensional feature vector to train three classifiers: Logistic Regression (LR),

Decision Tree (DT), and Random Forest (RF) [22]. Figure 4.7 shows this pipeline.
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Figure 4.6: The average value of MFCC coefficients corresponding to figures 4.3, 4.4, 4.5

Figure 4.7: Pipeline for chewing detection based on audio data. The pipeline consists of
feature extraction and classification.

4.2 chewing detection based on imu data

Both time and frequency-domain features were extracted from signals collected

from the IMU sensor. We set the sampling rate to 60 Hz for collected IMU data.

Time-domain features are the mean, variance, and power of each of the 6 axes of

the IMU signals over the 3-second time window (total of 6× 3 = 18 features).
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The frequency-domain features are the Spectral Centroid over the 3-second time

windows for every 6 axes of the IMU sensor, from which a total of 6 values is

obtained. To certify that spectral centroid suits the classification of chewing and

non-chewing based on IMU, we took the mean and standard deviation over 6

values. This result is shown in Figure 4.8 which the boundary between two classes

of chewing and non-chewing activities is separable.

Figure 4.8: Visual exploratory analysis of spectral centroid of chewing and non-chewing
IMU data

MFCC with 12 coefficients over the 3-second time windows was obtained over

6 axes of the IMU (total of 12× 6 = 72 features). Although MFCC was designed

for audio analysis, we tried it empirically on IMU and the result was satisfactory.

Since the sampling rate of IMU data is 60 Hz, we chose 12 coefficients; meanwhile,

for audio data, we chose a larger number of coefficients of 45. The obtained

96-dimensional feature vector was then used to train classifiers that were also used

to detect chewing by audio. These classifiers are Logistic Regression, Decision

Tree, and Random Forest. Figure 4.9 shows this pipeline.
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Figure 4.9: Pipeline for chewing detection based on IMU data. The pipeline consists of
feature extraction and classification.

4.3 chewing detection by fusing imu and audio data

To measure the performance of fusing both sensing modalities to detect chewing,

the extracted 96-dimensional feature vector from the IMU and 90-dimensional

feature vector from audio were concatenated. The obtained 186-dimensional

feature vector was fed into three classifiers namely, Logistic Regression, Decision

Tree, and Random Forest. In Section 6, we discuss the performance of all three

methods for detecting chewing based on several evaluation techniques.



5 D ATA S E T C H A R A C T E R I S T I C S A N D C O L L E C T I O N

M E T H O D

This section describes the data collection method, procedure, as well as dataset

characteristics. The collected dataset is based on common sedentary activities. We

defined common sedentary activities as the set of sedentary activities that most

individuals perform throughout the day. We did not involve activities that require

much body movements since we are concerned with detecting chewing from

head-related activities.

The eSense device transmits IMU data via BLE and audio data via Bluetooth. We

developed an android application (Figure 5.2) to collect accelerometer, gyroscope,

and audio signals from the eSense device. We set the sampling rate to 48 kHz

for audio and 60 Hz for IMU. We used a Samsung Galaxy S9 phone to record

Figure 5.1: Foods from left to right: crispiest to the softest. (a): Chips, crispy (b): Pretzels,
crispy (c): Cucumber, crispy and juicy (d): Salad, crispy and juicy (e): Banana,
soft
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data locally on the phone memory. The developed application has three main

buttons on the screen, one for connecting the mobile application to the eSense

device via Bluetooth. After connecting the device, the STARTRECORDING button

activates. Pressing this button will start recording audio data in a PCM file and

the IMU data in a CSV file in a real-time manner. After pressing this button, the

STOPRECORDING button activates and recordings can be terminated by pressing

this button.

Figure 5.2: The developed android application to record audio and IMU data from eSense.
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We recorded the participants’ videos throughout the study in order to label

the ground truth of each activity performed by them. Figure 5.3 shows the

angle of the camera for recording participants. We labeled a sequence of data

as chewing when the participant puts the food inside the mouth and initiates

chewing. To synchronize the eSense sensor recordings and video recordings, we

asked participants to nod three times while saying “recording started.”

Figure 5.3: Participant while wearing the eSense device and performing the chewing
activity

We conducted the recording experiments in the form of a pilot study at a local

university, within a lab environment with a total of 5 subjects (4 male, 1 female,

age 25-29). Participants were required to eat each of the foods mentioned in

Table 5.1 for 150 seconds. We used different types of foods with different textures

as different sounds are produced when chewing different food textures. Figure

5.1 demonstrated the foods that we used in this study. In addition, food texture

contributes to a different level of vibrations on the face, mouth, and teeth, and these

vibrations can be detected in both IMU and audio signals [21]. Figure 4.1 shows a

sample of signals over 3-second time windows, collected from IMU and audio data
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Table 5.1: The foods consumed by participants in the recording experiment - Sorted by the
level of crispiness - Top to bottom: crispiest to the softest

Eating Activities Duration

Chips 150 seconds
Pretzel 150 seconds
Cucumber 150 seconds
Salad 150 seconds
Banana 150 seconds

while chewing 2 types of foods and speaking. The participants were also required

to speak, read, drink, and watch a short movie. The duration of each activity is

mentioned in Table 5.2. The rationale behind the aforementioned activities was

to explore whether chewing sounds and motions are distinguishable from other

mouth and head-related activities as well as not having any activities. Overall,

each participant spent 13 minutes eating and 13 minutes on non-eating activities.

After finishing the recording experiment, we encountered some missing points

while recording both IMU and audio. This was due to Bluetooth disconnection

which happened every once in a while. We removed those missing values. The

expected number of data points for each set of chewing and non-chewing was 1300

data points. However, by removing the missing values, we got 820 data points for

chewing and 905 data points for non-chewing activities. The pie chart in Figure

5.4 shows the percentage of class chewing and non-chewing. The number of data

points in each class are approximately the same so we conclude that the dataset is

balanced.

We used the collected data mentioned in this step to analyze the performance of

chewing detection based on different modalities of the eSense device.
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Figure 5.4: Pie chart visualization of the proportion of two classes of chewing and non-
chewing

Table 5.2: Sedentary activities performed by the participant in the recording experiment

non-eating Activities Duration

Speaking/Reading 3 minutes
Watching a short movie 6 minutes
Drinking 2 minutes
Sitting still 2 minutes



6 E VA L UAT I O N

In order to compare the performance of each of the sensor data and each detection

algorithm mentioned in Section 4, we use 10-fold and Leave-One-Subject-Out

(LOSO) Cross-Validation [22] to calculate 4 evaluation metrics: Accuracy (Eq. 6.1),

Precision (Eq. 6.2), Recall (Eq. 6.3), and F1-score (Eq. 6.4) which are defined as

follows:

Accuracy =
TP+TN

TP + FP + TN + FN
(6.1)

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP+FN
(6.3)

F1 =
2 · precision · recall
precision+ recall

(6.4)
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6.1 evaluation of chewing detection based on audio data

Tables 6.1 and 6.2 show the result of chewing detection by feeding the audio

data into the pipeline mentioned in Section 4.1. The results represent that the

Random Forest classifier outperformed both Logistic Regression and Decision Tree

based on both 10-fold and LOSO evaluation methods. Figures 6.1 and 6.2 shows

the confusion matrix of the best classifier, Random Forest, for two methods of

evaluation, 10-fold and LOSO.

Table 6.1: Evaluation of chewing detection using 10-fold cross-validation on audio data

Method Accuracy Precision Recall F1-score

Logistic Regression 0.85 0.77 0.75 0.76

Decision Tree 0.88 0.80 0.81 0.80

Random Forest 0.94 0.85 0.95 0.90

Table 6.2: Evaluation of chewing detection using LOSO cross-validation on audio data

Method Accuracy Precision Recall F1-score

Logistic Regression 0.81 0.75 0.68 0.68

Decision Tree 0.82 0.62 0.77 0.68

Random Forest 0.91 0.74 0.94 0.82

6.2 evaluation of chewing detection based on imu data

The result of detecting chewing based on IMU data and the pipeline in Section

4.2 is presented in Tables 6.3 and 6.4. These results suggest that both Logistic
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Figure 6.1: Confusion matrix of the Random Forest classifier corresponding to Table 6.1

Regression and Random Forest perform well in detecting chewing. However, the

Decision Tree approach did not perform as well as the two other classification

algorithms. This result was predictable since the Random Forest classifier is a

collection of Decision Trees and can perform at least as good as the Decision Tree

method. We represented the confusion matrix corresponding to the Random Forest

classifier when evaluation with both 10-fold and LOSO in Figures 6.3 and 6.4.

Table 6.3: Evaluation of chewing detection using 10-fold cross-validation on IMU data

Method Accuracy Precision Recall F1-score

Logistic Regression 0.93 0.89 0.88 0.88

Decision Tree 0.89 0.82 0.83 0.82

Random Forest 0.95 0.90 0.92 0.91
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Figure 6.2: Confusion matrix of the Random Forest classifier corresponding to Table 6.2

Table 6.4: Evaluation of chewing detection using LOSO cross-validation on IMU data

Method Accuracy Precision Recall F1-score

Logistic Regression 0.94 0.90 0.91 0.90

Decision Tree 0.88 0.78 0.81 0.80

Random Forest 0.94 0.87 0.92 0.89

6.3 evaluation of chewing detection based on fusing imu and

audio data

Finally, the performance of fusing both sensing modalities of IMU and audio based

on 10-fold and LOSO Cross-Validation is summarized in Tables 6.5 and 6.6. As

the result suggests, Random Forest with an accuracy of 97% performed better

than Logistic Regression and Decision Tree. Moreover, the performance of fusing



6.3 evaluation of chewing detection based on fusing imu and audio data 39

Figure 6.3: Confusion matrix of the Random Forest classifier corresponding to Table 6.3

both modalities resulted in the highest Accuracy, Precision, Recall, and F1-score

compared to using single modalities. The confusion matrix for evaluating based on

10-fold and LOSO when detecting chewing by fusing both modalities are brought

in Figures 6.5 and 6.6.

Table 6.5: Evaluation of chewing detection using 10-fold cross-validation after fusing both
audio and IMU sensors

Method Accuracy Precision Recall F1-score

Logistic Regression 0.93 0.88 0.88 0.88

Decision Tree 0.92 0.87 0.85 0.86

Random Forest 0.97 0.94 0.96 0.95
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Figure 6.4: Confusion matrix of the Random Forest classifier corresponding to Table 6.4

Table 6.6: Evaluation of chewing detection using LOSO cross-validation after fusing both
audio and IMU sensors

Method Accuracy Precision Recall F1-score

Logistic Regression 0.95 0.89 0.93 0.91

Decision Tree 0.89 0.80 0.83 0.81

Random Forest 0.97 0.94 0.96 0.94

6.4 comparison of sensing modalities of imu and audio

Figure 6.7 and 6.8 shows the comparison between three combinations of sensing

modalities using 10-fold and LOSO evaluations. It can be seen that IMU data

outperformed audio data in detecting chewing. This can be due to the fact that

soft foods might not be well captured by the microphone since the chewing sound



6.4 comparison of sensing modalities of imu and audio 41

Figure 6.5: Confusion matrix of the Random Forest classifier corresponding to Table 6.5

for soft foods is very quiet. To infer the reason behind this result, we removed the

soft food that was used in this experiment and trained and evaluated the Random

Forest Classifier based on the three pipelines identified in Section 4. We realized

that removing soft foods improves the detection rate of audio data by 4% but does

not significantly improve the detection based on IMU data. We concluded that

in spite of higher data resolution, the microphone sensor does not perform well

for detecting chewing while the subjects are having soft foods. However, IMU

data is more robust against the texture of the food and can detect both soft and

crispy foods. The improvement of detection of chewing after removing soft foods

is shown in Figures 6.9 (10-fold evaluation) and 6.10 (LOSO evaluation).
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Figure 6.6: Confusion matrix of the Random Forest classifier corresponding to Table 6.6

Figure 6.7: 10-fold cross-validation on detection of chewing based on IMU, audio, and
combining IMU and audio. LR: Logistic Regression, DT: Decision Tree, RF =
Random Forest
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Figure 6.8: LOSO cross-validation on detection of chewing based on IMU, audio, and
combining IMU and audio. LR: Logistic Regression, DT: Decision Tree, RF =
Random Forest

Figure 6.9: 10-fold evaluation of the Random Forest classifier after removing soft foods.
As can be seen, removing soft foods improved the performance of audio data
but did not significantly improve the performance of IMU and fusing IMU and
audio
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Figure 6.10: LOSO evaluation of the Random Forest classifier after removing soft foods.
As can be seen, removing soft foods improved the performance of audio data
but did not significantly improve the performance of IMU and fusing IMU
and audio



7 F I N A L W O R D

7.1 discussion

The first and foremost result of this study is that the movement of the facial

muscles while chewing is projected in the ear canal. The built-in IMU of the eSense

earable is able to capture these movements and our proposed machine learning

approach can distinguish the chewing IMU signals from other head-related signals

collected from the eSense.

In addition to achieving a good accuracy for chewing detection, the eSense

earable is also easy to wear and does not interfere with eating or daily tasks given

its lightweight and small size. Participants did not mention any discomfort while

wearing the device and some reported that they even forgot they were wearing the

device throughout the study. Based on these feedbacks, we conclude that earables

are a good platform for automatic dietary monitoring.

Overall, the in-ear IMU data performed better for chewing detection compared

to audio data. The Random Forest classifier was more capable of distinguishing

eating from non-eating activities based on both audio and IMU data. In addition

to its higher accuracy, IMU data is advantageous over audio data given that it is

non-intrusive and preserves privacy as it records neither the subjects’ conversations

nor other individuals interacting with them. IMU data consumes less power as a

45
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result of lower sampling rates and fewer processing requirements. However, IMU

data is noisy and sensitive to movement. For example, in case a participant is both

walking and eating, more complicated signal processing techniques are required

to filter out movement signals from chewing signals.

7.2 limitations

The proposed method for chewing detection has its own limitations like any other

work.

1. As the first limitation, only Spectral Centroid and MFCC were used as the

frequency-domain features to train ML classifiers and other signal processing

feature extraction techniques have not been studied yet.

2. The second limitation of our work is the limited activities performed by the

participants, such that the data are collected while the users are performing

just one sedentary task at a time. However, in real-life scenarios, people

engage in more complicated activities during their mealtime, with watching

TV being one of the most common examples.

7.3 future works

Various approaches can be taken to improve the performance and reliability

of the chewing detection method proposed in this research. To deal with the

first limitation, we plan to implement more signal processing feature extraction

techniques and evaluate the performance based on the new features by adding

feature selection components to the proposed pipelines. To address the second
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limitation, a more comprehensive dataset can be collected to involve a wider range

of human activities to better resemble real-life human behavior.



8 C O N C L U S I O N

In this research, we investigated the feasibility of using earables as a platform for

the detection of chewing activities. We evaluated the performance of the built-in

IMU and Microphone sensors of the eSense device separately and simultaneously

based on three classifiers, namely, Logistic Regression, Decision Tree, and Random

Forest. IMU data with an accuracy of 0.94, precision of 0.87, recall of 0.92, and F1 of

0.89 outperformed audio data in detecting chewing. We demonstrated the reason

behind the better performance of IMU data is that contrary to audio data, IMU

data is robust against soft foods, and removing soft food does not significantly

improve the accuracy of chewing detection. Combining both modalities resulted in

the highest performance with an accuracy of 0.97, precision of 0.94, recall of 0.96,

and F1 of 0.94. Authors in [42] and [43] could achieve the same accuracy, however,

they leveraged a device that is attached to the face which might be less socially

acceptable than an earable. We identified a number of limitations in our study

and proposed future work to fill in the gaps. The ultimate goal of this project is to

assist individuals in mindful eating by detecting their eating activities in real-time

and providing useful feedback to prevent diet-related diseases.
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