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1 | INTRODUCTION

Numerical modelling of a river basin remains essential for both climate

and ecological studies as it provides vital information about the
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Abstract

In this study, we evaluate uncertainties propagated through different climate data
sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of
northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Fur-
ther, we perform a comprehensive sensitivity and uncertainty analysis of the VIC
model using a robust and state-of-the-art approach. The VIC model simulations uti-
lize the recently developed variogram analysis of response surfaces (VARS) technique
that requires in this application more than 6,000 model simulations for a 30-year
(1981-2010) study period. The method seeks parameter sensitivity, identifies influ-
ential parameters, and showcases streamflow sensitivity to parameter uncertainty at
seasonal and annual timescales. Results suggest that the Ensemble VIC simulations
match observed streamflow closest, whereas global reanalysis products yield high
flows (0.5-3.0 mm day™2) against observations and an overestimation (10-60%) in
seasonal and annual water balance terms. VIC parameters exhibit seasonal impor-
tance in VARS, and the choice of input data and performance metrics substantially
affect sensitivity analysis. Uncertainty propagation due to input forcing selection in
each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is
examined separately to show both time and space dimensionality in available forcing
data at seasonal and annual timescales. Reliable input forcing, the most influential
model parameters, and the uncertainty envelope in streamflow prediction are pres-
ented for the VIC model. These results, along with some specific recommendations,
are expected to assist the broader VIC modelling community and other users of

VARS and land surface schemes, to enhance their modelling applications.
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hydrological cycle and water availability for societies and ecosystems.
Although recent developments and advances have been achieved in
hydrological modelling and computational power, addressing effi-

ciently the uncertainties in hydrological simulation remains a critical
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challenge (Liu & Gupta, 2007). There is a growing need for sensitivity
and uncertainty assessments associated mainly with the model and
input forcing data sets to achieve the hydrological model's optimal
performance for decision-making. Input climate forcing for numerical
modelling, primarily precipitation and air temperature, are essential for
accurate streamflow simulations and water balance calculations (Eum,
Dibike, Prowse, & Bonsal, 2014; Fekete, Vorésmarty, Roads, &
Willmott, 2004; Reed et al., 2004; Tobin, Nicotina, Parlange, Berne, &
Rinaldo, 2011). For cold regions, these input forcing alter the phase
and magnitude of modelled variables and cascade through all hydro-
logical processes during numerical simulations, impacting the reliability
of model output (Anderson et al., 2008; Tapiador et al., 2012;
Wagener & Gupta, 2005). In Canada, however, numerous studies have
also used multiple forcing data sets to assess the performance of
hydrological simulations. For example, Sabarly, Essou, Lucas-Picher,
Poulin, and Brissette (2016) used four reanalysis products to evaluate
the terrestrial branch of the water cycle over Québec, Canada with
acceptable results for the period 1979-2008. The question of which
forcing data set is the most suitable and accurate to drive hydrological
models remains elusive and inconclusive. Steps towards answering
that question were undertaken by Pavelsky and Smith (2006) who
concluded that observations covered the trends significantly better
than two reanalysis products when they assessed the quality of four
global precipitation data sets against the discharge observations from
198 pan-Arctic rivers. The bias and uncertainty in global hydrological
modelling due to input data sets and associated overestimations or
underestimations in modelled streamflows in several river basins have
also been identified in previous studies (e.g., Doll, Kaspar, & Lehner,
2003; Gerten, Schaphoff, Haberlandt, Lucht, & Sitch, 2004; Nijssen,
Schnur, & Lettenmaier, 2001). Although there may be other uncer-
tainties (e.g., model structure, calibration, soil type, land use, etc.), this
paper focuses primarily on the uncertainties due to model parameters
and input forcing data sets, which are perhaps the most significant
source of uncertainty for any hydrological modelling study (Zhang, Li,
Huang, Wang, & Cheng, 2016).

In practice, many (from tens to hundreds) parameters in most
hydrological models lead to dimensionality issues where parameter
estimation becomes mostly nonlinear and a high-dimensional problem.
Numerous optimization algorithms are available to address these
problems (e.g., Abebe, Ogden, & Pradhan, 2010; Aster, Borchers, &
Thurber, 2013; Beven & Binley, 1992; Duan, Sorooshian, & Gupta,
1992; Hill & Tiedeman, 2007; Vrugt, Diks, Gupta, Bouten, & Ver-
straten, 2005; Vrugt, Gupta, Bouten, & Sorooshian, 2003), but it is not
often feasible or necessary to include all these parameters in the cali-
bration and sensitivity analysis (SA) process to obtain efficient optimi-
zation and sensitive parameters, respectively. For instance, over-
parameterization is another well-known problem in land surface
modelling (Van Griensven et al., 2006). At present, various SA
methods (e.g., qualitative or quantitative, local or global, and screening
or refined methods) are used widely in different fields, such as com-
plex engineering systems, physics, and social sciences (Frey & Patil,
2002; Iman & Helton, 1988). Given the extensive range of SA
methods available, users should have a clear understanding of the

methods that are appropriate for a specific application. In general, the
variable infiltration capacity (VIC) hydrological model incorporates
many parameters (some with physical significance and some statisti-
cal), which are used to calibrate the model by various methods. In
some cases, parameters with physical significance may be adjusted
interactively during calibration. Some parameters may have less influ-
ence on model output such that they could be easily ignored. One of
the objectives of this study is thus to explore the sensitivity of VIC
calibration parameters to reduce the dimensionality issue in model
optimization at different timescales and to establish their interannual
importance in the calibration and model performance.

In this study, we quantify the uncertainty propagated from avail-
able forcing data sets in their surface water balance estimations over
the lower Nelson River Basin (LNRB) in northern Manitoba, Canada.
To achieve this goal, seven input forcing data sets that are inter-
compared in our companion paper are ingested into the VIC model
over the LNRB (Lilhare, Déry, Pokorny, Stadnyk, & Koenig, 2019).
These data sets are used in various other studies over different Cana-
dian regions (Boucher & Best, 2010; Islam & Déry, 2017; Sauchyn,
Vanstone, & Perez-Valdivia, 2011; Seager et al., 2014; Woo & Thorne,
2006). To our knowledge, this is perhaps the first comprehensive
study that collectively utilizes available gridded data sets in hydrologi-
cal modelling, establishes the most suitable data sets, minimizes the
input data uncertainty by evaluating the best performing product, and
then propagates input and parameter uncertainty through the model
output. Moreover, we consider not only the total uncertainty
(i.e., total run-off) but also the apportioned uncertainty in run-off-
generating processes such as precipitation, evapotranspiration
(ET hereafter), and soil moisture at annual and seasonal timescales.
The main objectives of this study are to (a) examine uncertainty prop-
agated through various input forcing data sets in the VIC model;
(b) identify parameter sensitivity of the VIC model to streamflow; and
(c) assess streamflow sensitivity to parameter uncertainty in the VIC
model over the LNRB.

2 | STUDY AREA

In this study, the lower Nelson River, which is the downstream seg-
ment of the Nelson River system, is selected for the VIC modelling,
sensitivity, and uncertainty analyses (Figure 1). The LNRB spans an
area of ~90,500 km? and collects all water from the drainage area
upstream of the Nelson River (~970,000 km?) before discharging into
Hudson Bay. In the LNRB, the main stem river (Nelson) and its largest
tributary—the Burntwood, whose downstream segment carries diver-
ted flows from the Churchill River—have less seasonal flow variability
due to streamflow regulation and a large drainage area. Most of the
LNRB has gentle slopes, with common channelized lakes moderating
flow variability. Wetlands abound within the LNRB, store significant
volumes of water, cover large areas, and moderate streamflow
responses to rainfall and snowmelt events. Shallow soils and perma-
frost limit infiltration, groundwater storage, and groundwater flows.

To increase its hydroelectric capacity, Manitoba Hydro manages flows
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FIGURE 1 Maps of the lower
Nelson River Basin (LNRB). (a) The (b) z
Nelson River Basin, Churchill River Churchill River ;
Basin, and LNRB. (b) Major rivers and Diversion
sub-watersheds within the LNRB;
yellow triangles show the hydrometric
stations used in this study; white z
circles denote existing generating 3
stations; and the yellow circle shows a 2
future generating station (currently
under construction) by Manitoba
Hydro. A red star indicates the
Churchill River diversion, and the i
digital elevation model represents the ;
variable infiltration capacity model
domain at 0.10° resolution
Elevation (m) Legend i
l High: 343.9 @ Current Generating Station §
@ Future Generating Station
I Low: 10.6 A Hydrometric Stations
0 50 100 150 Stream Network
—_— 14 |:I Sub-watershed Boundary
100°0'0"W 98°0'0"W 96°0'0"W 94°0'0"W

in the LNRB with two major sources of streamflow regulation: the
Churchill River diversion and Lake Winnipeg regulation.

The LNRB experiences a subarctic continental climate character-
ized by moderate precipitation and humidity, cool summers, and cold
winters. The snow-free season remains brief, generally beginning in
May and ending in October. Most of the precipitation that occurs dur-
ing the summer months falls as rain, accounting nearly two-thirds of
the total annual precipitation. The most expansive land cover class in
the LNRB is temperate or subpolar needleleaf forest covering ~33%
of its total area with secondary classes being mixed forests (19%) and
temperate or subpolar shrublands (9%; North American Land Change
Monitoring System, 2010). Wetlands (bogs and fens, 21%) and open
surface water (13%) also prevail in the region. The entire region
exhibits low relief with a maximum elevation of 390 m a.s.l. and aver-
age basin slope of 0.037%. Permafrost abounds in the LNRB with the
downstream, northeastern portion underlain by continuous (between
90% to 100%) and extensive discontinuous (between 50% to 90%)
permafrost (approximately 0.8% and 9% of the LNRB, respectively),
whereas sporadic discontinuous (between 10% to 50%) and isolated
permafrost spans ~68% and 16% of the LNRB's total area, respec-
tively (Natural Resources Canada, 2010).

3 | MATERIALS AND METHODS

3.1 | Datasets

Soil parameters for the VIC model are sourced from the multi-
institution North American Land Data Assimilation System project at
0.50° resolution (Cosby, Hornberger, Clapp, & Ginn, 1984). These soil

parameters are then aggregated to the VIC model resolution (0.10°)
following Mao and Cherkauer (2009). Frost-related parameters
(e.g., bubbling pressure) are extracted from Miller and White (1998) or
set to default values (Mao & Cherkauer, 2009). Land cover data are
obtained from the Natural Resources Canada's GeoGratis-Land
Cover, and circa 2000-Vector product and vegetation parameters are
estimated by following Sheffield and Wood (2007). All land cover clas-
ses are mapped into standard VIC model vegetation classes, and the
leaf area index for each vegetation class in every grid cell is estimated
(Myneni, Ramakrishna, Nemani, & Running, 1997). Rooting depths are
obtained from Maurer, Wood, Adam, Lettenmaier, and Nijssen (2002),
whereas other vegetation parameters are taken from Nijssen
et al. (2001).

We obtain various gridded forcing data sets for further analysis:
the Australian National University spline interpolation (ANUSPLIN),
North American Regional Reanalysis (NARR), European Centre for
Medium-Range Weather Forecasts interim reanalysis (ERA-Interim),
European Union Water and Global Change (WATCH) Forcing Data
ERA-Interim (WFDEI), Global
(HydroGFD). As well, an inverse distance weighted (IDW) data set

constructed from 14 Environment and Climate Change Canada mete-

and Hydrological Forcing Data

orological stations across the LNRB using a squared IDW interpolation
technique is also used (see Table 1 for more details). These data sets
are assembled to produce the Ensemble data set from 1981 to 2010.
Our companion paper (Lilhare et al., 2019) and Text S1 provide a com-
prehensive intercomparison and additional details of these data sets.
The NARR, ERA-I, and HydroGFD daily precipitation and wind speed
are obtained from the sum and average of 3-hourly values for a 24-hr
period, respectively. To obtain daily maximum and minimum air tem-

perature (Tmax and Trin) for these products, we extract the maximum
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TABLE 1

VIC model input forcing data sets Description

IDW Inverse distance-weighted interpolated

VIC intercomparison experiments performed using different forcings (Lilhare et al., 2019)

VIC configuration

Domain: 53°-58°N, 91°-103°WResolution:

observations from 14 ECCC
meteorological stations (Gemmer,
Becker, & Jiang, 2004; Shepard, 1968)

0.10° x 0.10°Time step: DailySail layers:
3Vertical elevation band: NoNatural lakes
and frozen ground: On Calibration period:

1981-1985 (dry/cool) and 1995-1999
(wet/warm) Validation period: 1986-1994
(average) Overall simulation period:

1981-2010

ANUSPLIN The Australian National University spline
interpolation (Hopkinson et al., 2011;
Natural Resources Canada, 2014)

NARR North American Regional Reanalysis
(Mesinger et al., 2006)

ERA-I European Reanalysis-Interim (Dee et al.,
2011)

WEFDEI European Union Water and Global Change
(WATCH) Forcing Data ERA-Interim
(Weedon et al., 2014)

HydroGFD Hydrological Global Forcing Data (Berg,
Donnelly, & Gustafsson, 2018)

Ensemble Average of above mentioned six gridded

data sets

Abbreviation: VIC, variable infiltration capacity.

and minimum value for 1 day from the 3-hourly NARR, ERA-I, and
HydroGFD air temperature products. Daily wind speed is not available
for the ANUSPLIN and IDW forcing data sets. The observed wind
speeds, both upper air and near-surface values, are assimilated in the
NARR reanalysis product, and they show satisfactory correspondence
with Environment and Climate Change Canada observations
(Hundecha, St-Hilaire, Ouarda, El Adlouni, & Gachon, 2008). There-
fore, we use NARR wind speeds to run VIC in combination with the
ANUSPLIN and IDW data sets for input forcing. For the Ensemble,
daily precipitation, Tax and Tmin, are derived from the equally
weighted average of all six gridded products, whereas the daily wind
speed ensemble is calculated from four reanalysis products (NARR,
ERA-I, WFDEI, and HydroGFD) as the other two data sets (IDW and
ANUSPLIN) do not have such records. The equally weighted ensemble
approach has been used previously over global and regional domains
to evaluate changes in water balance components under historical
and projected future climate conditions (Fowler, Ekstrém,
Blenkinsop, & Smith, 2007; Fowler & Kilsby, 2007; Mishra & Lilhare,
2016; Wang, Bohn, Mahanama, Koster, & Lettenmaier, 2009).

3.2 | The VIC model

In this study, the VIC (version 4.2.d) model (Liang, Lettenmaier,
Wood, & Burges, 1994; Liang, Wood, & Lettenmaier, 1996) with more
recent modifications is used to simulate daily streamflow in full water
and energy balance mode (Bowling & Lettenmaier, 2010; Bowling
et al., 2003; Cherkauer & Lettenmaier, 1999; Table 1). The VIC model
grid cells over the LNRB comprise 41 rows and 90 columns with a 5°

range of latitudes (53°-58°N) and a 12° range of longitudes (103°-
91°W). The VIC model uses three soil layers, five soil thermal nodes
(the default value), and a constant bottom boundary temperature at a
damping depth of 10 m for our study region (Williams & Gold, 1976).
The LNRB's tiles are characterized by soil and vegetation fractions,
which are partitioned proportionally within a grid cell. For cold regions
hydrology, VIC follows the U.S. Army Corps of Engineers' empirical
snow albedo decay curve (USACE, 1956); the total precipitation is dis-
tributed based on the 0.10° grid cells, and the air temperature is
adjusted to resolve the precipitation type with a 0°C threshold to dis-
criminate rainfall/snowfall. The default single elevation band is used
whereby VIC assumes that each grid cell is flat and takes the mean
grid elevation into account for simulations over the LNRB. A finite dif-
ference algorithm for frozen soil, which tracks soil ice content and
represents permafrost, is implemented into the VIC model to improve
its modelling abilities (Cherkauer & Lettenmaier, 1999, 2003). The fro-
zen soil algorithm solves heat fluxes through the soil column using a
heat transfer equation (Cherkauer & Lettenmaier, 1999). This algo-
rithm supersedes the original soil thermal flux equations (Liang,
Wood, & Lettenmaier, 1999) in favour of a more robust numerical
technique (Cherkauer & Lettenmaier, 1999) that simulates soil tem-
peratures at five thermal nodes through the soil column. Natural lakes
and wetlands are considered in the model implementation; however,
anthropogenic structures (i.e., dams, reservoirs) and flow regulation
are not incorporated in the VIC model. The VIC model lake and wet-
lands algorithm represents the effects of hydrologically disconnected
lakes and wetlands by creating its land class that can be added to the
grid cell mosaic, in addition to the vegetation and bare soil land classes

(Bowling & Lettenmaier, 2010). It does not represent riparian systems
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that receive water from overbank flow. The energy balance of open
water in VIC builds on the work of Hostetler (1991), Hostetler and
Bartlein (1990), and Patterson and Hamblin (1988), while that of the
exposed wetland vegetation follows Cherkauer and Lettenmaier
(1999). Ten of the lower Nelson River's unregulated tributaries
(including the unregulated, upstream portion of the Burntwood River)
are selected for model calibration, evaluation, and subsequent ana-
lyses (Table 2). The routing network and other essential inputs for the
routing model (e.g., flow direction, fraction, and mask) are created at
10 km resolution for the entire LNRB using the 30 m Shuttle Radar
Topography Mission (SRTM) digital elevation model (United States
Geological Survey, 2013).

3.2.1 | Calibration and evaluation

For VIC model calibration, an optimization process using the Univer-
sity of Arizona Multi-Objective COMplex Evolution Algorithm
(MOCOM-UA) minimizes the difference between observed and simu-
lated monthly streamflow at unregulated hydrometric gauge locations
within the LNRB (Shi, Wood, & Lettenmaier, 2008; Yapo, Gupta, &
Sorooshian, 1998). Here, the training parameter set used in the sensi-
tivity and calibration processes comprises six soil parameters: bj.¢
(infiltration parameter that controls the amount of water infiltrating
into the soil with values ranging from 0 to 0.4, in fractions), Dsay (the
maximum velocity of baseflow for each grid cell ranging from O to
30 mm day™1), Ws (the fraction of maximum soil moisture where
nonlinear baseflow occurs ranging from O to 1), D2 and D3 (thickness

of the second and third soil layers, which affects the soil moisture

TABLE 2

storage capacity, ranging from 0.3 to 1.5 m), and Ds (fraction of the
Dsmax parameter at which nonlinear baseflow occurs ranging from
0 to 1). The Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe, 1970),
Kling-Gupta efficiency (KGE; Gupta, Kling, Yilmaz, & Martinez, 2009),
and Pearson's correlation (r) coefficients (for simulated vs. observed
monthly streamflows), in addition to percent bias (PBIAS), provide
metrics to summarize model performance. Separate calibration using
each forcing data set is applied to all 10 sub-basins within the LNRB
to determine the most optimized parameters against the observed
streamflow. We use a split sample approach to span the variety of rel-
atively dry/wet/warm/cool years. Years 1981-1985 (dry/cool) and
1995-1999 (wet/warm) are used for calibration, and 1986-1994
(average) forms the validation period (Table 1; Lilhare et al., 2019).
The MOCOM-UA optimizer searches a group of VIC input parameters
using the population method; it attempts to maximize the NSE coeffi-
cient between observed and simulated streamflow at each iteration.
At each trial, the multiobjective vector consisting of VIC parameters is
determined, and the population is ordered by the Pareto rank of Gold-
berg (1989). In the MOCOM-UA optimization process, the user
defines the training parameter set, and these parameters are selected
based on the calibration experience from previous studies (Islam &
Déry, 2017; Kang, Gao, Shi, Islam, & Déry, 2016; Nijssen, Lettenmaier,
Liang, Wetzel, & Wood, 1997; Shi et al., 2008).

3.3 | Experimental set-up and analysis approach

A series of different VIC model set-ups is conceived to (a) compare

the VIC model's response when forced by different gridded data sets

List of 10 selected unregulated hydrometric stations, maintained by the Water Survey of Canada and Manitoba Hydro, for the

variable infiltration capacity model calibration and evaluation with sub-watershed characteristics and mean annual discharge (Water Survey of

Canada, 2016)

Station name (gauge identification Latitude Longitude Mean sub-watershed Gauged drainage Mean annual

number) (°N) (°W) elevation (m) area (km?) discharge (m®s~%)

Burntwood River above Leaf Rapids 55.49 99.22 3024 5,810 229
(05TE002)

Footprint River above Footprint Lake 55.93 98.88 273.8 643 3.2
(05TF002)

Grass River above Standing Stone 55.74 97.01 265.0 15,400 64.6
Falls (05TD001)

Gunisao River at Jam Rapids 53.82 97.77 260.9 4,610 18.0
(05UA003)

Kettle River near Gillam (05UF004) 56.34 94.69 164.7 1,090 13.2

Limestone River near Bird (05UG001) 56.51 94.21 173.6 3,270 21.5

Odei River near Thompson 55.99 97.35 253.5 6,110 34.3
(05TG0O03)

Sapochi River near Nelson House 55.90 98.49 259.1 391 2.2
(05TG006)

Taylor River near Thompson 55.48 98.19 236.2 886 5.1
(05TG002)

Weir River above the mouth 57.02 93.45 125.8 2,190 15.6

(O5UH002)
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ENSEMBLE || ENSEMBLE-VIC |
Mean

Each forcing separately and
their ENSEMBLE mean ;
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| VARS sampling |
¥
GLUE parameter

Seasonal and annual
VARS analysis

VIC

distributions

1. Uncertainty
propagation in water

Top 10% Simulations |

Yes | Do the most sensitive parameters
have well defined distributions?

balance estimation

-
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A

100 Samples

3. Streamflow sensitivity

VIC 600 Samples per parameter| - Parameter space and sampling

to parameter uncertainty

adjustment using OLH

FIGURE 2 Schematic representation of the overall methodology adopted for the propagation, sensitivity, and uncertainty assessment in the
VIC modelling over the lower Nelson River Basin. Coloured boxes indicate various objectives of this study. ANUSPLIN, Australian National
University spline interpolation; ERA-I, European Reanalysis-Interim; GLUE, generalized likelihood uncertainty estimation; HydroGFD, Hydrological
Global Forcing Data; IDW, inverse distance weighted; NARR, North American Regional Reanalysis; OLH, orthogonal Latin hypercube; VARS,
variogram analysis of response surfaces; VIC, variable infiltration capacity; WFDEI, European Union Water and Global Change (WATCH) Forcing

Data ERA-Interim

(with each simulation referred to as a given “data set VIC” hereafter),
(b) evaluate the uncertainties propagated in the water budget estima-
tion using different input forcings, (c) assess VIC parameter sensitivity
using the variogram analysis of response surfaces (VARS) at seasonal
and annual timescales, and (d) gauge streamflow sensitivity to the VIC
model parameter uncertainty (Figure 2). The sensitivity, parameter
sampling, and uncertainty methodology are discussed in the following
subsections. Moreover, the VIC simulations driven by each forcing
data set from 1981-1985 are used to generate a VIC initial state
parameter file, to allow model spin-up time for 5 years. This dimin-
ishes simulation uncertainty in the calibration, validation, and water
balance estimation during the study period. Intercomparison of the
seven meteorological data sets from our companion paper suggests
that the Ensemble data set provides more robust historical meteoro-
logical forcing (Lilhare et al., 2019); therefore, the VIC model forced
by the Ensemble data set (i.e., Ensemble VIC) is used as a reference
calibration simulation to investigate the propagated uncertainties in

water balance estimation from different input forcing data sets.

3.3.1 | Sensitivity analysis

VARS, a model parameters SA approach, is applied to the VIC model
(Razavi & Gupta, 2016a, 2016b). The SA approach reduces the num-
ber of parameters that numerical models require to consider in the
optimization process. Moreover, the set-up is useful for high-
dimensional optimization problems and can reduce the parametriza-
tion uncertainty (Razavi, Sheikholeslami, Gupta, & Haghnegahdar,
2019). We utilize six VIC model parameters in the “star-based” sam-
pling strategy (STAR VARS), to incorporate VARS in the VIC model
and subsequent uncertainty assessment (Razavi & Gupta, 2016b).

Parameter selection is based on the optimal number of VARS

simulations and SA conducted by various VIC model users using dif-
ferent SA methods (Demaria, Nijssen, & Wagener, 2007; Kavetski,
Kuczera, & Franks, 2006; Liang & Guo, 2003; Liang, Xie, & Huang,
2003). Specifically, we evaluate the sensitivity of the Kling-Gupta cri-
terion (Gupta et al., 2009; which measures goodness-of-fit between
simulated and observed streamflows) to variations in the six VIC
model parameters across their feasible ranges. VARS determines
parameter reliability through a bootstrapping process and ranks them
based on similar parameter occurrence and relative sensitivity
(Razavi & Gupta, 2016a). The SA is performed at seasonal and annual
timescales, and if a given model parameter suffers with identifiability
issues, then it varies temporally in relative sensitivity and reliability.
We use 35 star centres (i.e., 1,925 VIC model runs for each sub-
watershed) and 0.10 variogram resolution to generate efficient and
robust estimates of the VARS sensitivity ranking (Razavi & Gupta,
2016b).

332 |
analysis

VIC parameter sampling and uncertainty

Parametric uncertainty is assessed by utilizing the Ensemble input
forcing and generalized likelihood uncertainty estimation (GLUE)
methodology using 1,925 STAR VARS samples (Beven & Binley,
1992). Model parameters are sampled from uniform prior distributions
and behavioural parameter sets and then used to generate parameter
likelihood distributions. The pseudo-likelihood function of KGE is used
to assess model performance. The less subjective selection criteria are
a common practice in the literature; thus, we use a behavioural param-
eter set, which subjectively meets the desired performance criteria
(Li & Xu, 2014; Shafii, Tolson, & Matott, 2015; Stedinger, Vogel,
Lee, & Batchelder, 2008). These methods fail to account for output
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uncertainty; therefore, we use a simple method of selecting the top
10% of the model simulations. The STAR VARS generates directional
variograms in the dimension of each parameter. This implies that once
a parameter's directional variogram is sampled for a star centre, it is
held constant until being varied for the next star centre; this creates a
high density of sampling at one parameter value per star centre. To
determine sufficient sampling towards reasonably well-defined
parameter uncertainty, we perform a visual inspection of the parame-
ter distribution. If the most sensitive parameters, determined by
VARS, show notable deviation from their uninformed priors by visual
inspection, then we assume sufficient sampling of the parameter. Fur-
ther, if the GLUE method, using 1,925 STAR VARS samples, fails to
accommodate reasonable likelihood distributions, then we additionally
perform orthogonal Latin hypercube (OLH) sampling. The OLH offers
uniform sampling and generates an additional 600 VIC parameter
samples (Gan et al., 2014).

Calibration (1981-1985, 1995-1999)

4 | RESULTS

4.1 | Intercomparison of the VIC simulations

The NSE (KGE) average scores during calibration and validation are
much higher for the NARR VIC, Ensemble VIC, ANUSPLIN VIC, and
HydroGFD VIC (NARR VIC, Ensemble VIC, HydroGFD VIC, and
WFDEI VIC) compared with other simulations (Figure 3). Despite low
(<0.5) NSE and KGE scores from the IDW VIC, ANUSPLIN VIC, ERA-I
VIC, and WFDEI VIC simulations, the correlation coefficients remain
substantially high for all sub-basins. The negative (positive) biases
from IDW VIC, ANUSPLIN VIC, and HydroGFD VIC (ERA-I VIC and
WEFDEI VIC) contribute to the lower NSE and KGE coefficients,
whereas the timing of seasonal flows resembles the observed flows in
the IDW VIC and ANUSPLIN VIC. The ERA-I VIC and WFDEI VIC sim-

ulations reveal strong positive biases for most of the sub-watersheds
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FIGURE 4 Simulated and observed daily run-off (mm day?) averaged over water years 1981-2010 for the lower Nelson River Basin's

10 unregulated sub-basins. An external routing model is used to calculate run-off for the IDW VIC, ANUSPLIN VIC, NARR VIC, ERA-I VIC, WFDEI
VIC, HydroGFD VIC, and Ensemble VIC simulations. Note that y-axis scales vary between panels. ANUSPLIN, Australian National University
spline interpolation; ERA-I, European Reanalysis-Interim; HydroGFD, Hydrological Global Forcing Data; IDW, inverse distance weighted; NARR,
North American Regional Reanalysis; WFDEI, European Union Water and Global Change (WATCH) Forcing Data ERA-Interim

due to their wet biases in the precipitation data sets (Lilhare et al.,
2019); however, they show acceptable NSE and KGE coefficients
(=0.5) for most of the sub-basins.

Comparison of simulated daily run-off against the observed

hydrometric records reveals satisfactory model performances from

the NARR VIC and Ensemble-VIC, whereas the IDW VIC and ANU-
SPLIN VIC run-off is considerably low for all sub-watersheds
(Figure 4). ANUSPLIN VIC and IDW VIC run-off shows substantial dis-
agreement with the observed hydrograph, especially in the Kettle,
Limestone, Odei, Sapochi, and Weir sub-basins, owing to the dry bias



LILHARE ET AL.

WILEY_| 2%

and undercatch issue in the precipitation data. The ERA-1 VIC and
WEFDEI VIC simulations overestimate summer and autumn run-off
and capture reasonably well winter and spring flows for all sub-water-
sheds. Simulated flows for the Burntwood, Footprint, and Taylor sub-
watersheds from all VIC simulations are comparable in magnitude
with observations, but the timing is considerably shifted (~20 days),
yielding more spring run-off and earlier decline of summer recession
flows. The NARR air temperature is warmer among all other data sets
during winter, spring, and autumn. This improves the snowmelt-driven
run-off in the NARR-VIC simulation, causing a better representation
of simulated flows for these seasons over each sub-watershed. The
Ensemble VIC and NARR VIC simulations exhibit satisfactory hydro-
graphs with 20.5 NSE and KGE scores in most of the sub-basins
(Figures 3 and 4).

4.2 | Uncertainty in the water budget estimation

The average annual precipitation and VIC-simulated water budgets,
which are important factors driving changes in total run-off, from all
input forcing and their standard deviations (SD) are estimated to find
the uncertainty in annual water budgets over the LNRB's sub-basins
(Tables 3 and S1). For 1981-2010, the Gunisao sub-watershed shows
high average annual inter-data set variability (52.7 mm year™) in pre-
cipitation that results in 61.5, 50.0, and 88.8 mm year™! SD in the
total run-off, ET, and average soil moisture, respectively. The Gunisao
(southern outlier in the study area, where air temperatures are much
warmer than other sub-basins) generates the lowest total run-off
despite the highest annual precipitation. This situation arises through
the compensating effect of the highest ET values in the LNRB and
appreciable precipitation variability that contributes to overall uncer-
tainty for this sub-basin. A somewhat similar pattern arises in the
Grass where a decrease in precipitation uncertainty yields less devia-

tion in total run-off; for example, the Grass sub-watershed exhibits

TABLE 3 Components of the

1 which

19.1 mm year™! deviation in total run-off, smallest among all sub-

26.7 mmyear " deviation in precipitation, results in
basins. The smaller Sapochi, Footprint, and Taylor (gauged are-
a <900 km?) sub-basins manifest similar inter-data set errors
(>29 mm year™Y) for annual precipitation. Further, relatively larger
sub-watersheds (i.e., Gunisao and Odei) show significant differences
in the SD, which reveal higher spatial variability from different forcing
data sets.

Area-averaged seasonal total run-off (TR) shows higher uncer-
tainty for relatively large sub-watersheds (e.g., Gunisao, Kettle, Lime-
stone, Odei, and Weir), especially in spring and summer (Figures 5 and
6b1-4). The Ensemble VIC TR (black dots) matches closely the aver-
age of the remaining VIC simulations (red bars, referred to as multi-
data VIC hereafter) for all sub-basins (Figure 6). The Ensemble VIC
captures multidata VIC spring TR closely in eight out of 10 sub-water-
sheds, whereas two others show underestimation (Figure 6b2). This
underestimation persists in summer, which could arise from the exten-
sion of calibrated parameters to the entire study period
(Figure 6b2-3). This approach may be unable to represent long-term
daily and seasonal run-off for these sub-basins. Interseasonal air tem-
perature analysis shows that due to extreme minimum air temperature
in winter, simulated multidata and Ensemble VIC TR over each sub-
watershed are low and result in less uncertainty between simulations.
The simulated error increases in early spring and persists until late
autumn, consistent with seasonal precipitation for all sub-watersheds.
For annual TR estimates, the Gunisao, Kettle, Limestone, and Weir
sub-watersheds reveal high intersimulation error, whereas relatively
smaller sub-basins show less deviation and better TR estimates from
Ensemble VIC (Figure S3).

The Gunisao and Kettle sub-basins attain 451.8 and 373.4 mm
average annual ET, respectively, which are the maximum and mini-
mum values among all other sub-basins (Table 3). Regional ET maps
from Natural Resources Canada (2016) show 350 to 450 mm aver-

age annual ET over the LNRB that satisfy the average ET estimate

PCP TR ET M
simulated water budgets in the lower SR o) ) )
Nelson River Basin's sub-watersheds, Sub-basins Mean SD Mean SD Mean SD Mean SD
with average annual values for Burntwood 502.8 29.6 97.1 238 408.7 17.5 77.4 14.0
1981-2010. The PCP based on the mean
of six forcing data sets and other terms Footprint 521.0 355 109.6 31.3 408.3 34.6 167.1 78.3
are the TR, ET, and average SM, all based Grass 508.2 26.7 92.8 19.1 412.0 214 168.8 55.6
on the mean of variable infiltration Gunisao 546.6 52.7 93.3 61.5 451.8 50.0 150.5 88.8
capacity simulations from six different Kettle 519.6 472 1486 469 3734 233 835 152
input forcing data sets. SD shows inter-
variable infiltration capacity simulations Limestone 511.6 449 132.2 48.0 380.1 234 93.1 24.2
variation in the water balance Odei 525.3 35.3 148.2 44.6 379.8 29.9 89.7 14.7
estimations Sapochi 524.5 343 109.1 28.0 417.7 36.7 94.4 18.8
Taylor 522.2 294 137.6 32,6 385.9 27.0 91.5 134
Weir 508.3 447 129.6 458 380.6 21.9 91.3 25.2
Mean 519.0 38.0 119.8 38.1 399.8 28.6 110.7 34.8

Abbreviations: ET, evapotranspiration; PCP, precipitation; SD, standard deviation; SM, soil moisture; TR,

total runoff.
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FIGURE 5 Spatial differences of seasonal total run-off (mm) for the lower Nelson River Basin's 10 unregulated sub-basins based on Ensemble
VIC (ENSEM) minus (1st row) IDW VIC, (2nd row) ANUSPLIN VIC, (3rd row) NARR VIC, (4th row) ERA-I VIC, (5th row) WFDEI VIC, and (6th row)
HydroGFD VIC simulations, water years 1981-2010, for winter, spring, summer, and autumn. ANUSPLIN, Australian National University spline
interpolation; ERA-I, European Reanalysis-Interim; HydroGFD, Hydrological Global Forcing Data; IDW, inverse distance weighted; NARR, North
American Regional Reanalysis; VIC, variable infiltration capacity; WFDEI, European Union Water and Global Change (WATCH) Forcing Data ERA-

Interim

from VIC for the study period (1981-2010). Due to cold air temper-
atures in winter, Ensemble VIC ET is lower (<3 mm) and corre-
sponds well with the average value (red bars) of other VIC
simulations for all sub-watersheds (Figure 6c1-4). It increases
through spring (~100 mm) and peaks in summer (~250 mm) with
35-mm multidata VIC simulation error, which can be attributed to a
substantial rise in air temperature and precipitation. The multidata
VIC SD shows identical values in autumn that essentially reveals less
regional variability in ET estimates (~60 mm) from all forcing data
sets over the LNRB's sub-basins. Depleted soil moisture conditions
induce basin water limitations that yield uncertainty in ET estimates
(Figure S1); for example, the largest sub-watersheds (Grass and
Gunisao) within the LNRB show higher uncertainty in ET estimates.
As the Ensemble data set assigns equal weight and each data set is

equally likely to represent the truth, then the Ensemble VIC

simulation indeed better represents the winter, spring, and autumn
ET with overestimation in summer for all sub-basins (Figures 6c1-4
and S1). For annual ET, the Gunisao and Sapochi sub-basins show
high variability within VIC simulations, but other sub-watersheds
have less intersimulation error (Figure S3).

The LNRB's water

depending on the magnitude and timing of precipitation and air

balances vary within each sub-basin

temperatures obtained from different input forcing data sets
(Table 3 and S1). For instance, long-term ERA-I VIC and WFDEI VIC
simulations show higher mean TR that results in higher soil moisture
(SM) levels for each sub-basin (Figures 5 and S2). However, Ensem-
ble VIC estimates nearly similar seasonal SM conditions as calcu-
lated by the average of the six other VIC simulations for most sub-
basins (Figure 65d1-4). Among all other seasons, the highest SM
occurs in spring followed by summer and autumn due to seasonal
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transitions and snowmelt run-off, which are more evident in rela-
tively large sub-watersheds (Burntwood, Gunisao, Grass, Limestone,
and Weir; Figure 6d1-4). These increased SM values for spring,
summer, and autumn show concomitant effects on run-off during
these seasons. Furthermore, the Footprint sub-watershed is smaller
relative to others; however, it shows considerable inter-data set var-
iation (~90 mm) in SM for all seasons. Moreover, eight out of
10 sub-basins demonstrate substantial multi-data sets uncertainty in
SM for all seasons, but mean seasonal SM is well captured by the
Ensemble VIC for these sub-watersheds. However, large uncertainty
in SM also suggests excess water availability that goes either into
the TR or ET during these seasons. The highest annual SM arises in
the Grass, Footprint, and Gunisao sub-basins with substantial inter-

data sets variation, whereas other sub-watersheds show less error

in SM simulations with nearly identical annual values (Figures S2
and S3).

4.3 | Model parameter sensitivity and uncertainty

Figure 7a-c shows results from VARS using values from the inte-
grated VARS (IVARS) between 0% and 50% of the parameter ranges
(IVARS 50), as suggested in the VARS tool manual for a single global
sensitivity metric (Razavi & Gupta, 2016a, 2016b). The hydrologically
active depth (D2) of soil for movement and storage of water is by far
the most important parameter that contributes 24-66% of the sensi-
tivity across all sub-watersheds. The next most important parameter

is bins, which accounts for approximately 8-48% of KGE sensitivity
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across all sub-watersheds. Together, these two parameters contribute
to nearly 40-88% of the KGE sensitivity. In the Grass River sub-
watershed, Ds.x, Which is the maximum velocity of baseflow for each
grid cell, also becomes important (~30%) in controlling the amount of
run-off generated at the sub-basin outlet. Note that physically inter-
linked parameters (D2 and Ds;,.,) together have almost the same sen-
sitivity ratio in the Grass River. Ds (fraction of the Ds,,.x parameter) is
the third most important parameter, and Ws, the fraction of maximum
soil moisture, is also among the more influential parameters in most of
the sub-watersheds. Seasonal sensitivity of model parameters
changes substantially; for example, in winter, Ds and Dsq.y, Which
control baseflow, become the most sensitive parameters (>25%) over
all sub-basins, whereas in spring and summer, D2 still plays a domi-
nant role in computing sub-surface flow (Figure S4a). Autumn shows
Dsmax as the most sensitive parameter because most of the water
comes from baseflow during this season.

For NSE, the D2 parameter becomes dominant by a large margin
in six out of 10 sub-basins, responsible for 28-70% of the model sen-
sitivity in these sub-watersheds (Figure 7b). This is not the case for
the other four sub-basins (Kettle, Limestone, Odei, and Weir) where
bin¢ remains the most influential factor controlling predictions of low
flows. For the Footprint and Grass, Ws is also influential (~17%). Ws
emerges as the third most important parameter in most of the sub-
basins. Seasonal sensitivity of model

parameters changes

0,5/

substantially; for example, in winter, Ds and Ds.x, Which control
baseflow, become the most sensitive parameters over all sub-basins,
whereas in spring and summer, b, and D2 play dominant roles in
establishing streamflow (Figure S4b). The b;,; parameter shows >45%
ratios of factor sensitivity in spring for most of the sub-watersheds
that reflects excess water availability for infiltration during snowmelt
seasons. Autumn shows Ds.x and D2 as the most sensitive parame-
ters because they are responsible in generating seasonal peak flows.
The total flow volume measured by PBIAS shows D2 as the most
influential parameter that determines maximum water storage in soils
and thus streamflow (Figure 7c). The ratio of sensitivity for this
parameter exceeds 50% for nine sub-basins and nears 80% in three of
them. Unlike the KGE and NSE cases, the baseflow parameters
(Ds and Dspay) are not important for PBIAS because they have no
effect on the total flow volume. Overall, for PBIAS, b;,s and D2 are
influential parameters followed by Ds,.x. This is due to the influence
of all these parameters in controlling surface and subsurface water
storages. In all sub-basins, the depth of the second soil layer is more
important than the third soil layer. This is perhaps because (a) the third
layer is much thicker than the other two layers and (b) the second
layer has a larger control on infiltration and ET. Seasonal sensitivity of
model parameters for PBIAS is similar to KGE and NSE as the sensi-
tive parameters (i.e.,, D2, bj, Ds, and Ds,.,) are responsible for

streamflow magnitudes and interlinked with each other (Figure S4c).
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Minimum and maximum values for streamflow over the LNRB's
74-274 mm year™! (Sapochi)
495-955 mm year~! (Kettle; Figure 8). Greater range is observed for

sub-watersheds are and
streamflow in relatively small sub-basins such as the Weir, Kettle, and

Footprint, as the VARS provides parameter samples within a broad
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range over small areas. This may also occur due to the combined over-
all uncertainty from other mass fluxes (i.e., ET, soil moisture, etc.). This
analysis shows a range of potential variability that the mean annual
streamflow has, which is intended to provide the reader with an esti-

mation of the model uncertainty.

4.4 | Uncertainty assessment of the VIC model
parameters using OLH

In this section, we demonstrate applicability and performance of the
OLH to identify and estimate VIC model parameters and their associ-
ated uncertainty bounds. Input forcing data and model structure are
held constant in this analysis, so that the entire uncertainty in
streamflow simulation may be attributed to VIC parameters. Uniform
distributions are obtained on the parameter ranges from OLH, and the
behavioural parameter sets are used to generate parameter likelihood
distributions. As stated earlier, we obtained 600 samples by using six
major VIC model parameters in the OLH; therefore, parameter likeli-
hood distributions derive from 600 VIC simulations (Figure 9). These
distributions illustrate two points: first, the likelihood distribution of
bins, Which is also the most sensitive parameter among others, nears
the upper boundary of the predefined parameter range. This can be
an indication of a higher b;y¢ value that is important for these sub-
basins. Second, the likelihood distribution for D2 captures only a small

space of the predefined range, whereas D3 covers almost the entire
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FIGURE 9 Average likelihood distribution of the variable infiltration capacity parameters using 600 samples generated after the orthogonal
Latin hypercube sampling over all 10 sub-watersheds of the lower Nelson River Basin. Red bars show the maximum likelihood of parameter range
to the model performance metric (Kling-Gupta efficiency) for the lower Nelson River Basin
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FIGURE 10 Streamflow prediction uncertainty associated with estimated parameters from the OLH. Top 10% (shown in blue colour) of OLH
samples, based on Kling-Gupta efficiency, used for the prediction of streamflow for all 10 sub-watersheds, water years 1981-2010. Note that y-
axis scales vary between panels. Shaded area (grey colour) shows the envelope of variable infiltration capacity runs from 600 OLH samples. OLH,
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parameter range. However, the hydrograph uncertainty bounds,
which come from the top 10% of OLH runs, associated with these
parameter ranges do not cover the expected number of observed
streamflow values (dark blue region in Figure 10). This can be argued

as a problem of over conditioning the selected relationships between

observed and modelled output (Bermudez et al., 2017). The Footprint
and Weir sub-watersheds have the widest uncertainty envelopes
whereas the Burntwood, Limestone, Odei, Sapochi, and Taylor sub-
watersheds show relatively narrow uncertainty bounds from the OLH

simulation. This may depend on watershed area, as parameter
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variation among a broad range of values over small sub-basins
(e.g., Footprint and Weir) yields greater streamflow uncertainty than
for relatively larger ones (e.g., Burntwood, Limestone, Odei, Sapochi,
and Taylor). Even though the other 90% prediction uncertainty range
(light grey region in Figure 10) captures all observations, it remains
quite wide compared with observations and reveals a notable uncer-
tainty range (0.5-1 mm day™1) in the model parameters, as other con-

ditions are static in this analysis.

5 | DISCUSSION

5.1 | Inputdata uncertainty

The underestimation in flows from the IDW VIC and ANUSPLIN VIC
simulations reflect the precipitation undercatch and dry bias in these
data sets over the LNRB (Lilhare et al., 2019). As the model resolution
and other configuration (i.e., soil type, land use, etc.) are similar for all
VIC simulations, different values of model performance metrics
exhibit uncertainty associated only with input forcing data sets. These
simulations show substantial disagreement in the run-off with
observed hydrographs, especially in the Kettle, Limestone, Odei,
Sapochi, and Weir sub-basins, owing to the dry bias and undercatch
issues in the precipitation data. Consistent with our previous findings,
the wet (warm) ERA-I and WFDEI precipitation (mean air temperature)
over the LNRB in spring, summer, and autumn induce more surface
run-off and snowmelt that overestimate simulated flows (Figure 4;
Lilhare et al., 2019). Moreover, shifts in the hydrographs may be asso-
ciated with warmer air temperatures over these sub-basins that cause
earlier snowmelt run-off. Such variation in the simulated run-off,
especially during the snowmelt period (April-July), is either due to the
uncertain amount and timing of precipitation or air temperature in
input forcing data sets (Lilhare et al., 2019).

Other sources of uncertainties in water budget estimation may
be the dry (wet) bias in precipitation that results in poor calibration
where model parameters cannot achieve optimal values due to less
(excess) water availability. Consequently, these precipitation uncer-
tainties among all sub-watersheds translate to a minimum (maxi-
mum) 14.0 (88.8) mm year™? error in the water balance estimates.
These results correspond well with those of Fekete et al. (2010)
who found that the uncertainty in precipitation forcing translates to
at least the same, or typically more substantial, uncertainty in run-
off and related water balance terms. The simulated TR uncertainty
is higher in spring and summer than fall and winter, which is mainly
due to the more substantial seasonal variation in inter-data sets pre-
cipitation and air temperature. However, there remains much uncer-
tainty in air temperature records over the LNRB from the different
forcing data sets. This uncertainty can be translated into inter-
seasonal water balance estimation through run-off and ET pro-
cesses, which are more sensitive to air temperature. The sub-basins
that are more susceptible to ET loss with relatively more surface
water coverage, that is, the Grass and Gunisao, will, therefore, have

higher uncertainty propagation from input data. This represents

both time and space dimensionality to the uncertainty and plays a
critical role in climate change studies where changes in run-off are
most important.

Given that the domain average air temperature and precipitation
differ across VIC forcings, the choice of VIC calibration and validation
periods may induce uncertainty in water balance simulations. There-
fore, calibration using different forcing data over 5-10 years may gen-
erate biases in simulated water balance conditions, as only a wet or
dry period may be captured. Intercomparison of precipitation par-
titioning across various land surface models showed that specific rep-
resentation and parameterizations for water balance components
(i.e., ET and TR) were not consistent across models (Andresen et al.,
2019). However, some models maintained similar run-off and precipi-
tation ratios throughout the simulation; in contrast, VIC showed shifts
from a run-off-dominated system to an ET-dominated system over
permafrost regions in the Northern Hemisphere north of 45°N
(Andresen et al., 2019).

5.2 | Model parameter sensitivity and uncertainty
assessment

The sensitivity of model outputs to selected parameters is justified
given the formulations of the variable infiltration and baseflow gener-
ation curve that form the foundation of the VIC architecture (Liang
et al., 1994, 1996) and as these parameters are traditionally applied in
model calibration (i.e., Elsner et al., 2010). As reported in previous
studies, sensitivity to these parameters hold in both current and
future climate scenarios (Bennett et al., 2018; Christensen &
Lettenmaier, 2007; Demaria et al., 2007). A previous effort used vari-
ous objective functions and found that b;,; and D2 were the most sen-
sitive parameters followed by the drainage parameter among 10 VIC
parameters across four American river basins of different hydro-
climates (Demaria et al., 2007). Xie and Yuan (2006) manually varied
four VIC parameters from +10% to +25% to perform SA over
12 watersheds in France, finding baseflow and soil depth related
parameters as the most sensitive one. These studies either used man-
ual analysis methods or limited objective functions at annual timescale
to examine the parameter sensitivity. In contrast, we apply a more
robust, automated, and efficient approach at seasonal and annual
timescales to determine the parameter sensitivity and its seasonal
importance over 10 subarctic watersheds. Moreover, the SA method
takes multiple objective functions into account that provide more
robust estimates of parameter sensitivity.

The high values of IVARS 50 for D2 are caused partly by the
interaction of this parameter with other model parameters (e.g., soil
profile and root depth) and its relatively large range of values. The Ds
and Dsax parameters influence baseflow, which have a higher impact
on low-flow predictions. Therefore, these parameters become impor-
tant for NSE in some sub-basins (Grass and Footprint) as they control
the timing of low flows. Moreover, in PBIAS, high values of D2 indi-
cate its considerable interaction on model responses as D2 character-

izes the seasonal soil moisture behaviour but by no means b;,s as
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being perhaps also an important parameter over the LNRB. Overall,
for PBIAS, b, and D2 are influential parameters followed by Ds,ax.
This is due to the influence of all these parameters in controlling sur-
face and subsurface water storages. In all sub-basins, D2 is more
important than D3. This is perhaps because of (a) the third layer is
much thicker than the other two layers and (b) the second layer has a
larger control on infiltration and ET.

There is general agreement between the NSE and KGE sensitiv-
ity experiments over most sub-watersheds, particularly in identifying
the most influential parameters. Nonetheless, parameter sensitivity
depends on metric choice and varies significantly according to
model performance metrics. For example, the D2 parameter is quite
important for KGE and PBIAS in most of the rivers but has slightly
less impact on NSE. This is because D2 controls baseflow and thus
the timing of flows, which is important particularly for peak flows
represented by NSE. However, flow timing is not important when
assessing total flow volume represented by PBIAS. Similarly, b, is
less important for KGE and PBIAS but more influential for NSE over
most sub-basins through its control of available infiltration capacity,
thereby influencing peak flows and soil water volumes. Moreover,
seasonality and wet or dry years may vyield different SA results,
which should be noted as a cautionary tale for using SA as a
precalibration methodology. Consequently, to better understand the
dominant controls on model behaviour, multiple criteria should be
considered.

These results reinforce the well-known conclusion that for most
effective SA results, one should select SA criteria in alignment with
the final goals of the modelling application (e.g., flood forecasting,
drought analysis, or water balance assessment). Regardless of the
metric choice, often a limited number of parameters control most of
the model response variations. This has important implications such as
minimizing the dimensionality of the optimization process
(i.e., calibration) through emphasis on a few influential parameters to
generate reliable results. Even if fixed values for these influential
parameters cannot be prescribed, any available information including
observational data may reduce parameter ranges during calibration.
This is generally true for all parameters and greatly increases the
identifiability of our modelling application, which is often overlooked.
Moreover, this also fits with the International Association of Hydro-
logical Sciences' (IAHS) 23 unsolved problems in hydrology initiatives
focused on understanding process changes, which control changing
run-off response (Bloschl et al., 2019). Moreover, using these SA
results, one can focus on specific model parameters and their value
ranges, thus diminishing computational burdens, by fixing the value of

non-essential parameters.

6 | CONCLUSION

This exercise provides valuable new insights into the internal func-
tioning of models and allows the provision of impactful recommen-
dations for improving development and application of the VIC

model. In this respect, we found that daily precipitation is more

important than air temperature for annual and seasonal water bal-
ance estimates. The choice of model performance metric signifi-
cantly affects the sensitivity assessment. Therefore, to obtain in-
depth understanding of model behaviour, SA using multiple criteria
should be adopted, which capture distinct characteristics of the
model response.

SA results can be used more effectively when aligned with the
final goals of the model application (e.g., flood forecasting and drought
monitoring). SA results depend on various factors such as hydro-
climatic conditions, model configuration, input forcing, land cover clas-
ses, initial state, vegetation parameters, and so forth, and these can
have a large impact on model behaviour. We considered a full range
of parameters that can influence their ratio of factor sensitivity if the
range changes in other applications. SA can identify aspects of the
model internal functioning that are counterintuitive and thus assist
modellers to diagnose possible model deficiencies and make recom-
mendations for end users. The calibration process identified a set of
influential parameters that assists VIC users in reducing prediction
uncertainty by providing a more robust, accurate, and less computa-
tionally intensive calibration effort. Overall, parameters for the second
soil layer depth and variable infiltration curve dominate the control of
streamflow prediction in VIC followed by the Ds and Ds,,.x parame-
ters. The VIC community may prioritize these parameters during
model calibration for similar physical and climatic environments.
Although this study focused on VARS sensitivity and OLH uncertainty
analysis, a multicriteria SA approach under various conditions may
lead to improved understanding of model structure, reductions in pre-
diction uncertainty, and more efficient parameter calibration. Potential
future work could investigate the effects of initial or boundary condi-
tions and/or other model variables such as soil moisture or ET in
model sensitivity assessments.
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