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Abstract

We address the problem of anomaly detection in videos. The goal is to identify

unusual behaviors automatically by learning exclusively from normal videos. Most

existing approaches are usually data-hungry and have limited generalization abilities.

They usually need to be trained on a large number of videos from a target scene

to achieve good results in that scene. In this thesis, we propose a novel few-shot

scene-adaptive anomaly detection problem to address the limitations of previous ap-

proaches. Our goal is to learn to detect anomalies in a previously unseen scene with

only a few frames. A reliable solution for this new problem will have huge potential

in real-world applications since it is expensive to collect a massive amount of data for

each target scene. We propose a meta-learning based approach for solving this new

problem; extensive experimental results demonstrate the effectiveness of our proposed

method.
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Chapter 1

Introduction

1.1 General Introduction

Recently, anomaly detection is becoming an essential problem in video surveil-

lance. Given a video, the goal is to identify frames where abnormal events happen.

This is a very challenging problem since the definition of “anomaly” is ambiguous

– any event that does not conform to “normal” behaviours can be considered an

anomaly. As a result, we cannot solve this problem via a standard classification

framework since it is impossible to collect training data that covers all possible ab-

normal events.

A lot of prior work (e.g. Hasan et al. [2016]; Masci et al. [2011]; Sabokrou et al.

[2016]; Chalapathy et al. [2017]; Sabokrou et al. [2018]; Abati et al. [2019]) in anomaly

detection uses feature reconstruction. These approaches learn a model to reconstruct

the normal training data and use the reconstruction error to identify anomalies. How-

ever, it has been observed that the reconstruction errors of normal and abnormal

1



2 Chapter 1: Introduction

Figure 1.1: An example of our proposed video anomaly detection method. Our
method uses a future frame prediction framework. Given several observed frames in
a video, our model predicts the future frame. If the future frame is an anomaly, the
predicted future frame is likely to be very different from the actual future frame. This
prediction error allows us to detect the anomaly in a video.

events are often similar and are not very discriminative for the anomaly detection

task. To address the limitation of feature reconstruction approaches, the work in

Liu et al. [2018] proposes a future frame prediction framework for anomaly detection.

This method learns a model that takes a sequence of consecutive frames as the input

and predicts the next frame. The difference between the predicted frame and the

actual frame at the next time step is used to indicate the probability of an anomaly.

In this work, we follow this future frame prediction framework and propose two novel

architectures. We propose to combine sequential modelling with generative models to
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Figure 1.2: An overview of our proposed problem setting. During training (1st row),
we have access to videos collected from M different camera scenes. From such training
data, we use a meta-learning method to obtain a model fθ with parameters θ. Given
a target scene (2nd row), we have access to a small number of frames from this
target scene. Our goal is to produce a new model fθ′ where the model parameters
θ′ are specifically adapted to this scene. Then we can use fθ′(·) to perform anomaly
detection on the remaining videos from this target scene.

build models that can be trained end-to-end. Although sequential generative models

have been previously proposed for speech recognition and music generation (Mogren

[2016]; Chung et al. [2015]) they have not been applied in anomaly detection. An ex-

ample of our proposed video anomaly detection method is showed in Fig 1.1. Given

several consecutive frames, our model learns to predict the next future frame. For

normal frames, our method is able to predict the next frame reasonably well. When



4 Chapter 1: Introduction

there is anomaly in the future frame, the prediction is often distorted and blurry. By

comparing the predicted future frame with the actual future frame, our system can

detect suspicious behaviours or events (in this case, the man is throwing his bag up

and down) are detected in a video frame. In the rest of this thesis, we will use the

two terms future frame prediction model and anomaly detection model interchange-

ably since the latter can be directly derived from the former.

However, future frame prediction models also have some limitations. They implic-

itly assumes that the future prediction model learned from the training videos can be

directly used in unseen test videos. This is a reasonable assumption if training and

testing videos are from the same scene (e.g. captured by the same camera). In the

experiment section, we will demonstrate that if we learn a future frame prediction

model from videos captured from one scene and directly use the model in a completely

different scene, the performance will drop. Of course, one possible way of alleviat-

ing this problem is to train the future frame prediction model using videos collected

from diverse scenes. Then the learned model will likely generalize to videos from

new scenes. However, this approach is also not ideal. In order to learn a model that

can generalize well to diverse scenes, the model requires a large capacity. In many

real-world applications, the anomaly detection system is often deployed on edge de-

vices with limited computing powers. Thus, even if we can train a huge model that

generalizes well to different scenes, we may not be able to deploy this model.

Our work is motivated by the following key observation. In real-world anomaly

detection applications, we usually consider one particular scene for testing since the

surveillance cameras are normally installed at a fixed location. As long as a model
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works well in this particular scene, it does not matter at all whether the same model

works on images from other scenes. In other words, we would like to have a model

specifically adapted to the scene where the model is deployed. In this thesis, we pro-

pose a novel problem called the few-shot scene-adaptive anomaly detection illustrated

in Fig. 1.2. During training, we assume that we have access to videos collected from

multiple scenes. During testing, the model is given a few frames in a video from a

new target scene. Note that the learning algorithm does not see any images from the

target scene during training. Our goal is to produce a future frame prediction model

specifically adapted to this target scene using these few frames. We believe this new

problem setting is closer to real-world applications. If we have a reliable solution to

this problem, we only need a few frames from a target camera to produce an anomaly

detection model that is specifically adapted to this camera. In this thesis, we propose

a meta-learning based approach to this problem. During training, we learn a model

that can quickly adapt to a new scene by using only a few frames from it. This is

accomplished by learning from a set of tasks, where each task mimics the few-shot

scene-adaptive anomaly detection scenario using videos from an available scene.

The contributions of this thesis are manifold:

• We introduce a new problem called few-shot scene-adaptive anomaly detection,

which is closer to the real-world deployment of anomaly detection systems.

• We propose a novel meta-learning based algorithm for solving this problem.

• We propose two novel anomaly detection backbone architectures using the idea

of sequential generative modelling which showed superior performance over

state-of-the-art methods.
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• We demonstrate that our proposed approaches significantly outperforms alter-

native methods on several datasets.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 discuss relevant literature

in anomaly detection in surveillance videos. Chapter 3 lays out the required back-

ground and our problem setting for few-shot scene-adaptive anomaly detection for

the thesis. Chapter 4 describes our algorithm to solve our proposed problem and two

novel backbone architectures using future frame prediction. Dataset and evaluation

methods are addressed in Chapter 5. Experimental results are discussed in Chapter 6.

Conclusions of the thesis are presented in Chapter 7.



Chapter 2

Related Work

2.1 Anomaly Detection with Hand-crafted Features

Early work in video anomaly detection uses hand-crafted features. Tung et al.

[2011]; Wu et al. [2010] use trajectory features to represent normal behaviours. How-

ever, these methods can not be applied to crowded scenes. To address this limitation,

low-level features such as histogram of oriented gradient and histogram of oriented

flows are also applied (Dalal and Triggs [2005]; Dalal et al. [2006]) for human detec-

tion. Zhao et al. [2011]; Lu et al. [2013]; Cong et al. [2011] represent each scene by

a dictionary of temporal and spatial information. These approaches have low per-

formance due to the fact that the dictionary does not ensure the capacity of normal

events and cannot classify anomaly correspondingly. Statistical-based models have

also been proposed. For example, Kim and Grauman [2009] proposes an approach

based on a mixture of probabilistic PCA (MPPCA) with optical flow pattern. Gaus-

sian mixture model (Mahadevan et al. [2010]) has also been applied for anomaly

7
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detection.

2.2 Anomaly Detection with Deep Learning

In order to address the limitation of hand-crafted features in anomaly detection,

there has been recent work that explores the use of deep learning approaches. They

can be roughly categorized as either reconstruction-based or prediction-based meth-

ods. Reconstruction-based methods train a deep learning model to reconstruct the

frames in a video and use the reconstruction error to differentiate the normal and

abnormal events. Examples of reconstruction models include convolutional auto-

encoders (Masci et al. [2011]; Hasan et al. [2016]; Sabokrou et al. [2016]; Chalapathy

et al. [2017]; Gong et al. [2019]), latent autoregressive models(Abati et al. [2019]), deep

adversarial training (Sabokrou et al. [2018]), etc. Prediction-based detection meth-

ods define anomalies as anything that does not conform to the prediction of a deep

learning model. Sequential models like Convolutional LSTM (ConvLSTM) (Xingjian

et al. [2015]) have been widely used for future frame prediction and utilized to the

task of anomaly detection (Luo et al. [2017a]; Medel and Savakis [2016]). Popular

generative networks like generative adversarial networks (GANs) (Goodfellow et al.

[2014]) and variational autoencoders (VAEs) (Kingma and Welling [2013]) are also

applied in prediction-based anomaly detection. Liu et al. (Liu et al. [2018]) propose a

conditional GAN based model with a low level optical flow (Dosovitskiy et al. [2015])

feature. Moreover, Gong et al. [2019] apply optical flow prediction constraint on a

reconstruction based model.
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2.3 Few-Shot and Meta Learning

To mimic the fast and flexible learning ability of humans, few-shot learning aims

at adapting quickly to a new task with only a few training samples (Lake et al.

[2015]). In particular, meta learning (also known as learning to learn) has been

shown to be an effective solution to the few-shot learning problem. The research

in meta-learning can be categorized into three common approaches: metric-based

(Koch et al. [2015]; Vinyals et al. [2016]; Sung et al. [2018]), model-based (Santoro

et al. [2016]; Munkhdalai and Yu [2017]) and optimization-based approaches (Ravi

and Larochelle [2016]; Finn et al. [2017]). Metric-based approaches typically apply

Siamese (Koch et al. [2015]), matching (Vinyals et al. [2016]), relation (Sung et al.

[2018]) or prototypical networks (Snell et al. [2017]) for learning a metric or distance

function over data points. Model-based approaches are devised for fast learning from

the model architecture perspective (Santoro et al. [2016]; Munkhdalai and Yu [2017]),

where rapid parameter updating during training steps is usually achieved by the

architecture itself. Lastly, optimization-based approaches modify the optimization

algorithm for quick adaptation (Ravi and Larochelle [2016]; Finn et al. [2017]). These

methods can quickly adapt to a new task through the meta-update scheme among

multiple tasks during parameter optimization. However, most of the approaches above

are designed for simple tasks like image classification. In our proposed work, we follow

a similar optimization-based meta-learning approach proposed in Finn et al. [2017]

and apply it to the much more challenging task of anomaly detection. To the best

of our knowledge, we are the first to cast anomaly detection as meta-learning from

multiple scenes.



Chapter 3

Background and Problem Setup

3.1 Variational Autoencoder

Variational autoencoder (VAE) [Kingma and Welling, 2013] has been shown to be

effective in reconstructing complex distributions for non-sequential data. Given an

input x, VAE applies an encoder (also known as inference model) qθ(z|x) to generate

the latent variable z that captures the variation in x. It uses a decoder pφ(x|z) to

approximate the observation given the latent variable. The inference model repre-

sents the approximate posterior using the mean µ and variance σ2 calculated by a

neural network qθ(z|x) ∼ N (µx, σ
2
x), where µx and σ2

x are outputs of some neural

networks that take x as the input. A prior p(z) is chosen to be a simple Gaussian

distribution. With the constraints of distribution on latent variables, the complete

objective function can be described as below:

L(x|θ, φ) = −KL(qθ(z|x)||p(z)) + Eqθ(z|x)[logpφ(x|z)] (3.1)

10
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where KL(qθ(z|x)||p(z)) is the Kullback-Leibler divergence [Hershey and Olsen, 2007]

between the prior and the posterior.

3.2 Variational Recurrent Neural Network

VAE is a generative model. It cannot directly be used to model sequential data.

For the problem of anomaly detection, our data are inherently sequential since we

need to consider the information in several consecutive frames in order to predict the

next frame. Variational Recurrent Neural Network (VRNN) [Chung et al., 2015] is an

extension of vanilla VAE. It combines VAE with a recurrent neural network in order

to model sequential data. Since this approach shares the same inspiration with our

Conv-VRNN approach, we will explain the technical details in the next section.

3.3 Conditional Generative Adversarial Network

Conditional GAN [Isola et al., 2017] was first proposed for image translation. Here

we use it for anomaly detection. It consists of a generator G which tries to reconstruct

the input and a discriminator D which aims at discriminating the output of the

generator and the target image. Both G and D are trained jointly following a two-

player min-max game [Mirza and Osindero, 2014]. Through this training scheme, the

network can learn the distribution of regular data and output a poor reconstruction

on anomalies in testing data. The detection of abnormal frames can be implemented

using the reconstruction error or the output score of the discriminator.



12 Chapter 3: Background and Problem Setup

3.4 Problem Setup

Following Liu et al. [2018], we consider anomaly detection using the framework

of future frame prediction. For completeness, we first briefly summarize the future

frame prediction based framework for anomaly detection as defined in Liu et al. [2018].

Then we describe our problem setup of few-shot scene-adaptive anomaly detection.

3.4.1 Future Frame Prediction for Anomaly Detection

We follow the work of Liu et al. [2018] and define anomaly detection in videos as

a future frame prediction problem. Given t consecutive frames I1, I2, ..., It in a video,

the goal is to learn a model fθ(x1:t) with parameters θ that takes these t frames

as its input and predicts the next frame at time t + 1. We use Ît+1 to denote the

predicted frame at time t + 1. The anomaly detection at time t + 1 is determined

by the difference between the prediction frame Ît+1 and the actual frame It+1. If this

difference is larger than a threshold, the frame It+1 is considered an anomaly.

During training, the goal is to learn the future frame prediction model fθ(·) from a

collection of normal videos. Note that the training data only contains normal videos

since it is usually difficult to collect training data with abnormal events for real-world

applications.

3.4.2 Few-Shot Scene-Adaptive Anomaly Detection

The standard future frame prediction setting for anomaly detection described

above has some limitations that make it difficult to apply in real-world scenarios. It

implicitly assumes that the prediction model fθ(·) learned from the training videos
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can generalize well on test videos. In practical applications, it is unrealistic to collect

training videos from the target scene where the system will be deployed. In most

cases, training and test videos will come from different scenes. The prediction model

fθ(·) can easily overfit to the particular training scene and will not generalize to a

different scene during testing. We will empirically demonstrate this in the experiment

section.

In this thesis, we introduce a new problem setup that is closer to real-world ap-

plications. This setup is motivated by two crucial observations. First of all, in most

anomaly detection applications, the test images come from a particular scene cap-

tured by the same camera. In this case, we only need the learned model to perform

well on this particular scene. Second, although it is unrealistic to collect a large num-

ber of videos from the target scene, it is reasonable to assume that we will have access

to a small number of images from the target scene. For example, when a surveillance

camera is installed, there is often a calibration process. We can easily collect a few

images from the target environment during this calibration process.

Motivated by these observations, we propose a problem setup called few-shot

scene-adaptive anomaly detection. During training, we have access to videos col-

lected from different scenes. During testing, the videos will come from a target scene

that never appears during training. Our model will learn to adapt to this target from

only a few initial frames and the adapted model is expected to work well in the target

scene.



Chapter 4

Our Approach

We propose to learn few-shot scene-adaptive anomaly detection models using a

meta-learning framework, in particular, the MAML algorithm Finn et al. [2017] for

meta-learning. Figure 4.1 shows an overview of the proposed approach. The meta-

learning framework consists of a meta-training phase and a meta-testing phase. Dur-

ing meta-training, we have access to videos collected from multiple scenes. The

goal of meta-training is learning to quickly adapt to a new scene based on a few

frames from it. During this phase, the model is trained from a large number of few-

shot scene-adaptive anomaly detection tasks constructed using the videos available

in meta-training, where each task corresponds to a particular scene. In each task,

our method learns to adapt a pre-trained future frame prediction model using a few

frames from the corresponding scene. The learning procedure (meta-learner) is de-

signed in a way such that the adapted model will work well on other frames from the

same scene. Through this meta-training process, the model will learn to effectively

perform few-shot adaptation for a new scene. During meta-testing, given a few frames

14
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Figure 4.1: An overview of our proposed approach. Our approach involves two phases:
(a) meta-training and (b) meta-testing. In each iteration of the meta-training (a),
we first sample a batch of N scenes S1, S2, ..., SN . We then construct a task Ti =
{Dtr

i , D
val
i } for each scene Si with a training set Dtr

i and a validation set Dval
i . Dtr

i is
used for inner update through gradient descent to obtain the updated parameters θ′i
for each task. Then Dval

i is used to measure the performance of θ′i. An outer update
procedure is used to update the model parameters θ by taking into account of all the
sampled tasks. In meta-testing (b), given a new scene Snew, we use only a few frames
to get the adapted parameters θ′ for this specific scene. The adapted model is used
for anomaly detection in other frames from this scene.

from a new target scene, the meta-learner is used to adapt a pre-trained model to

this scene. Afterwards, the adapted model is expected to work well on other frames

from this target scene.

Our proposed meta-learning framework can be used in conjunction with any future

frame prediction model as the backbone architecture. In Sec. 4.1, we first introduce

the meta-learning approach for scene-adaptive anomaly detection in a general way
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that is independent of the particular choice of the backbone architecture. In Sec. 4.2,

we then describe the details of the proposed backbone architectures used in this thesis.

4.1 MAML for Scene-Adaptive Anomaly Detec-

tion

Our goal of few-shot scene-adaptive anomaly detection is to learn a model that

can quickly adapt to a new scene using only a few examples from this scene. To

accomplish this, the model is trained during a meta-training phase using a set of

tasks where it learns to quickly adapt to a new task using only a few samples from

the task. The key to applying meta-learning for our application is how to construct

these tasks for the meta-training. Intuitively, we should construct these tasks so that

they mimic the situation during testing.

4.1.1 Tasks in Meta-learning

We construct the tasks for meta-training as follows. Let us consider a future

frame prediction model fθ(I1:t) → Ît+1 that maps t observed frames I1, I2, ..., It to

the predicted frame Ît+1 at t+ 1. We have access to M scenes during meta-training,

denoted as S1, S2, ..., SM . For a given scene Si, we can construct a corresponding task

Ti = (Dtri ,Dvali ), where Dtri and Dvali are the training and the validation sets in the

task Ti. We first split videos from Si into many overlapping consecutive segments of

length t+ 1. Let us consider a segment (I1, I2, ..., It, It+1). We then consider the first

t frames as the input x and the last frame as the output y, i.e. x = (I1, I2, ..., It) and
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y = It+1. This will form an input/output pair (x, y). The future frame prediction

model can be equivalently written as fθ : x→ y. In the training set Dtri , we randomly

sample K input/output pairs from Ti to learn future frame prediction model, i.e.

Dtr = {(x1, y1), (x2, y2), ..., (xK , yK)}. Note that to match the testing scheme, we

make sure that all the samples in Dtr come from the same video. We also randomly

sample K input/output pairs (excluding those in Dtri ) to form the test data Dvali .

4.1.2 Meta-Training

Let us consider a pre-trained future frame prediction model fθ : x → y with

parameters θ. Following MAML Finn et al. [2017], we adapt to a task Ti by defining

a loss function on the training set Dtri of this task and use one gradient update to

change the parameters from θ to θ′i:

θ′i = θ − α5θ LTi(fθ;Dtri ), where (4.1a)

LTi(fθ;Dtri ) =
∑

(xj ,yj)∈Dtri

L(fθ(xj), yj) (4.1b)

where α is the step size. Here L(fθ(xj), yj) measures the difference between the

predicted frame fθ(xj) and the actual future frame yj. We will describe the details

of L(·) in Sec. 4.2. The updated parameters θ′ are specifically adapted to the task

Ti. Intuitively we would like θ′ to perform on the validation set Dvali of this task. We

measure the performance of θ′ on Dvali as:

LTi(fθ′ ;Dvali ) =
∑

(xj ,yj)∈Dvali

L(fθ′(xj), yj) (4.2)

The goal of meta-training is to learn the initial model parameters θ, so that the

scene-adapted parameters θ′ obtained via Eq. 4.1 will minimize the loss in Eq. 4.2
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across all tasks. Formally, the objective of meta-learning is defined as:

min
θ

M∑
i=1

LTi(fθ′ ;Dvali ) (4.3)

The loss in Eq. 4.3 involves summing over all tasks during meta-training. In practice,

we sample a mini-batch of tasks in each iteration. Algorithm 1 summarizes the entire

learning algorithm.

Algorithm 1: Meta-training for few-shot scene-adaptive anomaly detection

Input: Hyper-parameters α, β

Initialize θ with a pre-trained model fθ(·);

while not done do

Sample a batch of scenes {Si}Ni=1;

for each Si do

Construct Ti = (Dtri ,Dvali ) from Si;

Evaluate 5θLTi(fθ;Dtri ) in Eq. 4.1;

Compute scene-adaptative parameters θ′i = θ − α5θ LTi(fθ;Dtri );

end

Update θ ← θ − β
∑N

i=15θLTi(fθ′i ;D
val
i ) using each Dvali and LTi in

Eq. 4.2;

end

4.1.3 Meta-Testing

After meta-training, we obtain the learned model parameters θ. During meta-

testing, we are given a new target scene Snew. We simply use Eq. 4.1 to obtained
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Figure 4.2: An overview of our backbone architecture. Our anomaly detection model
consists of a Sequential Image Generator G(·) and a Discriminator D(·). Given an
image sequence I1, I2, ..., It as the input, G(·) outputs a prediction Ît+1 of the next
frame. A prediction loss is computed between Ît+1 and the actual frame It+1 for
parameter updating. D(·) takes both Ît+1 and It+1 as its input to classify which one
is real and which one is fake. These two networks are trained adversarially to obtain
a good G(·) that is able to fool D(·).

the adapted parameters θ′ based on K examples in Snew. Then we apply θ′ on the

remaining frames in the Snew to measure the performance. We use the first several

frames of one video in Snew for adaptation and use the remaining frames for testing.

This is similar to real-world settings where it is only possible to obtain the first several

frames for a new camera.

4.2 Backbone Architecture

Our few-shot scene-adaptive anomaly detection method can be used with any fu-

ture frame prediction model as its backbone architecture. In this thesis, we propose

two novel future frame prediction models using the idea of sequential generative mod-

els for anomaly detection. These two variants uses either GAN or VRNN as backbone

architecture. We call them r-GAN and Conv-VRNN. We discuss the details of the

two models below.
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4.2.1 r-GAN

This backbone architecture is based on the model in Liu et al. [2018]. The model

in Liu et al. [2018] is built on a conditional GAN architecture with a modified U-Net

Ronneberger et al. [2015]. Additionally, Liu et al. [2018] uses a Flownet Dosovitskiy

et al. [2015] to capture temporal information of an image sequence. To build an end-

to-end model, we remove the Flownet and instead learn the spatial-temporal feature

of an image sequence using a ConvLSTM module. We call our model r-GAN. Our

proposed model consists of two major parts: a sequential image generator and a

discriminator. Fig 4.2 shows an overview of r-GAN.

Generator

We apply the same modified U-Net with Liu et al. [2018] as the backbone of our

generator G(·). Given an image sequence I1, ..., It (note that we choose t = 3 in our

case), we pass each image IT (T = 1, 2, ..., t) to the U-net to generate a prediction

ÎT+1. A ConvLSTM module then takes ÎT+1 and the last hidden state hT as input

and generate the current hidden state hT+1:

hT+1 = fConvLSTM(hT , ÎT+1) (4.4)

The hidden state in the ConvLSTM module is used to remember the previous infor-

mation of an image sequence.

To learn parameters in this module, we combine the least absolute deviation (L1

loss) Pollard [1991], multi-scale structural similarity measurement (Lssm loss) Wang

et al. [2003] and gradient difference (Lgdl loss) Mathieu et al. [2016] to define a loss

that measures the quality of the predicted frame.These three loss functions can be
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defined as follows:

(1) L1 loss between ground-truth and prediction is the summation of the absolute

value between every pixel of the two images.

(2)We use multi-scale SSIM to represent the structural difference. MSSSIM is a multi-

scale version of SSIM, which performs better on video sequences.

(3) Gradient difference is widely used for measuring the performance of a prediction.

Gradient difference loss considers the intensities difference between neighbour pixels.

Overall, given the predicted frame Ît+1 and the ground-truth It+1, the complete loss

function is defined as:

L(Ît+1, It+1) = L1(Ît+1, It+1) + Lmsssim(Ît+1, It+1) + Lgdl(Ît+1, It+1) (4.5)

Discriminator

The goal of the discriminator is to differentiate the output of the generator and

the ground-truth. Our discriminator in this network targets at classifying IT+1 as 1

and ÎT+1 as 0. More specifically, we optimize our discriminator D(·) according to the

objective function below:

LDadv(Ît+1, It+1) =
1

2
LMSE(D(Ît+1), 0) +

1

2
LMSE(D(It+1), 1) (4.6)

where LMSE is the Mean Square Error loss function.

Anomaly Detection

Given an input sequence of frames I1, ..., It during testing, we use our model

to predict the next frame Ît+1 in the future. This predicted future frame Ît+1 is
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compared with the ground-truth future frame It+1 by calculating L(Ît+1, It+1) (see

Eq. 4.5). Same as Liu et al. [2018], after calculating the overall spatial loss of each

testing video, we normalize the losses to get a score S(t) in the range of [0, 1] for each

frame in the video by:

S(t) =
L(Ît+1, It+1)−minL(Ît+1, It+1)

maxL(Ît+1, It+1)−minL(Ît+1, It+1)
(4.7)

We then use S(t) as the score indicating how likely a particular frame is an anomaly.

Note that all of our variants share the same evaluation metrics.

4.2.2 Conv-VRNN

This model extend VAE to model image sequences for anomaly detection and use

the idea of Variational Recurrent Neural Network (VRNN) Chung et al. [2015] and

build a Conv-VRNN model for future frame prediction. An overview of our proposed

model is shown in Figure 4.3. Let IT ∈ RH×W×3 be the input image at time T ,

where H ×W is the spatial dimension of the image. We define h(T ) ∈ RH×W×3 to

be the hidden state of a ConvLSTM at time step T . Note that we choose the spatial

dimension of hT to match the image size. Our method consists of four components

at each time step T :

Prior Distribution in VAE

This module takes the hidden state hT−1 from the previous time step as the

input. It then generates a distribution on the latent variable in VAE. We first extract

a feature vector from hT−1. Since hT−1 ∈ RH×W×3 is a 3D tensor and can be treated

as a image, we can use a standard convolutional neural network (CNN) to extract
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Figure 4.3: An overview of our proposed Conv-VRNN model at one time-step of a
sequence. Our model requires 4 steps to process the input: (a) calculating the prior
distribution in VAE; (b) encoder for posterior distribution and latent variable; (c)
recurrence module for sequence modelling; (d) decoder for prediction.

the feature from hT−1. We denote this feature as ϕh(hT−1) ∈ RH′×W ′×F , where

H ′ ×W ′ and F correspond to the spatial dimension and the channel dimension of

the CNN feature map. Here we set H ′ ×W ′ × F = 16× 16× 32. We then apply two

different fully connected layers on ϕh(hT−1) to produce two vectors corresponding to

the mean and the variance of a Gaussian distribution in VAE, denoted by µ1(T ) and
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σ1(T ). In our implementation, the dimension of µ1(T ) and σ1(T ) is set to be 20, i.e.

µ1(T ), σ1(T ) ∈ R20. We then use µ1(T ) and σl(T ) to define a Gaussian distribution

for the prior distribution on the latent variable in VAE as follows:

c(T ) ∼ N
(
µ1(T ), diag

(
σ1(T )2

))
(4.8)

where diag(·) creates a diagonal matrix from a vector and c(t) represent the prior

distribution on the latent variable.

Encoder

The module takes the hidden state hT−1 of previous time step T −1 and the frame

IT at current time T as the input. It then produces a vector of the latent variable in

VAE. We first concatenate IT and hT−1 along their channel dimensions, then apply a

CNN to extract a feature map. Again, we apply two different fully connected layers

on this feature map to produce µ2(T ) and σ2(T ). Similarly, the dimension of µ2(T )

and σ2(T ) to be 20. We then define the posterior of the latent variable z(T ) in VAE

as:

qθ (z(T )|concat (IT , hT−1))

∼ N
(
µ2(T ), diag

(
σ2(T )2

)) (4.9)

where z(T ) ∈ R20. To measure the distribution loss between Eq. 4.8 and Eq. 4.9 at

time step t, we can use the KL-divergence metric KL (qθ (z (T ) |xT , hT−1) ||c (T )).

Recurrence

To capture the temporal information among frames in a video, we use a Con-

vLSTM to represent the recurrent relationship among frames. From the current
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input image IT , we apply a CNN to extract a feature map which we denote as

ϕx(IT ) ∈ RH′×W ′×F . To match the dimension of this feature, we also resize the

latent variable z(T ) (recall z(T ) ∈ R20) as follows. We first use fully connected layers

to map z(t) to a high-dimensional space R1024, then reshape to a 3D tensor of dimen-

sion H ′×W ′×F = 16× 16× 32. We use zr(T ) ∈ RH′×W ′×F to denote this reshaped

tensor. We concatenate the input feature ϕx(IT ) with the zr(T ) along the channel

dimension and use it as the input to ConvLSTM at time T :

h (t) = fConvLSTM (concat (ϕx(IT ), zr (T )) , hT−1) (4.10)

Decoder

This module takes the resized hidden state zr(T ) as its input and produces a

predicted frame ÎT+1 for the next time-step. Note that the dimensions of zr(T ) match

those of the extracted feature of previous hidden state ϕh(hT−1). We concatenate

zr(T ) and ϕh(hT−1) along the channel dimension. The result is used as the input

of this decoder module. The decoder is implemented as a deconvolutional nerual

network that generates the predicted frame ÎT+1 ∈ RH×W×3. We take the output of

the last time-step of the decoder Ît+1 as our prediction.

Model Learning

Overall, given the last time-step output of the decoder Ît+1 and the groundtruth

It+1, we use the prediction loss defined in 4.5. In conclusion, we define the complete

objective function of Conv-VRNN as:

L =
t∑

T=1

(−KL(qθ(z(T )|IT , hT−1)||c(T ))) + L(Ît+1, It+1). (4.11)
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Datasets and Experimental Setup

5.1 Datasets

Datasets for Standard Anomaly Detection: This thesis propose two novel se-

quential generative models for anomaly detection. To test the performance of the two

models, we apply experiments on four standard anomaly detection datasets: UCSD

Pedestrian 1 (Mahadevan et al. [2010]), UCSD Pedestrian 2 (Ped 2)(Mahadevan et al.

[2010]), CUHK Avenue (Lu et al. [2013]) and ShanghaiTech(Luo et al. [2017b]). Ad-

ditionally, we apply our model to another challenging task of fall detection.UR fall

(Kwolek and Kepski [2014]) dataset is used for this experiment. We describe these

datasets in detail in the next module.

Datasets for Few-shot Scene-adaptive Anomaly Detection: This thesis ad-

dresses a new problem. In particular, the problem setup requires training videos from

multiple scenes and test videos from different scenes. There are no existing datasets

that we can directly use for this problem setup. Instead, we repurpose several avail-

26
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Figure 5.1: Example frames from the datasets used for meta-training. The first row
shows examples of different scenes from the Shanghai Tech dataset. The second row
shows examples of different scenes from the UCF crime dataset.

Ped1 Ped2 Avenue UR Fall

Figure 5.2: Example frames from datasets used in meta-testing. The first row shows
examples of normal frames for four datasets, and the second row shows the abnormal
frames. Note that training videos only contain normal frames. Videos with abnormal
frames are only used for testing.

able datasets.

• Shanghai Tech (Luo et al. [2017b]): This dataset contains 437 videos collected

from 13 scenes. The training videos only contain normal events, while the test

videos may contain anomalies. In the standard split in Luo et al. [2017b], both

training and test sets contain videos from these 13 scenes. This split does not fit

our problem setup where test scenes should be distinct from those in training. In

our experiment, we propose a new train/test split more suitable for our problem.
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We also perform cross-dataset testing where we use the original Shanghai Tech

dataset during meta-training and other datasets for meta-testing.

• UCF crime (Sultani et al. [2018]): This dataset contains normal and crime

videos collected from a large number of real-world surveillance cameras where

each video comes from a different scene. Since this dataset does not come with

ground-truth frame-level annotations, we cannot use it for testing since we do

not have the ground-truth to calculate the evaluation metrics. Therefore, we

only use the 950 normal videos from this dataset for meta-training, then test the

model on other datasets. This dataset is much more challenging than Shanghai

Tech when being used for meta-training, since the scenes are diverse and very

dissimilar to our test sets. Our insight is that if our model can adapt to a target

dataset by meta-training on UCF crime, our model can be trained with similar

surveillance videos.

• UCSD Pedestrian 1 (Mahadevan et al. [2010]), UCSD Pedestrian 2 (Ped 2)(Ma-

hadevan et al. [2010]), and CUHK Avenue (Lu et al. [2013]): Each of these

datasets contains videos from only one scene but different times. They contain

36, 12 and 21 test videos, respectively, including a total number of 99 abnormal

events such as moving bicycles, vehicles, people throwing things, wandering and

running. We use the model trained from Shanghai Tech or UCF crime datasets

and test on these datasets.

• UR fall (Kwolek and Kepski [2014]): This dataset contains 70 depth videos

collected with a Microsoft Kinect camera in a nursing home. Each frame is
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represented as a 1-channel grayscale image capturing the depth information. In

our case, we convert each frame to an RGB image by duplicating the grayscale

value among 3 color channels for every pixel. This dataset is originally collected

for research in fall detection. We follow previous work in Nogas et al. [2018]

which considers a person falling as the anomaly. Again, we use this dataset for

testing. Since this dataset is drastically different from other anomaly detection

datasets, good performance on this dataset will be very strong evidence of the

generalization power of our approach.

Figure 5.1 and Figure 5.2 show some example frames from the datasets we used in

meta-training and meta-testing.

5.2 Evaluation Metrics

Following prior work Liu et al. [2018]; Luo et al. [2017a]; Mahadevan et al. [2010],

we evaluate the performance using the area under the ROC curve (AUC). The ROC

curve is obtained by varying the threshold for the anomaly score for each frame-wise

prediction.

5.3 Implementation Details

We implement our model in PyTorch. We use a fixed learning rate of 0.0001

for pre-training. We fix the hyperparameters α and β in meta-learning at 0.0001.

During meta-training, we select the batch size of task/scenes in each epoch to be 5

on ShanghaiTech, and 10 on UCF crime.
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5.4 Baselines

To the best of our knowledge, this is the first work on the scene-adaptive anomaly

detection problem. Therefore, there is no prior work that we can directly compare

with. Nevertheless, we define the following baselines for comparison.

Pre-trained: This baseline learns the model from videos available during training,

then directly applies the model in testing without any adaptation.

Fine-tuned: This baseline first learns a pre-trained model. Then it adapts to the

target scene using the standard fine-tuning technique on the few frames from the

target scene.
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Experimental Results

In this section, we show our experimental results on our backbone architecture

and our experiment on few-shot scene-adaptive anomaly detection.

6.1 Backbone Architectures

6.1.1 Conv-VRNN vs r-GAN

We first perform an experiment as a sanity check to show that our proposed

backbone architecture is comparable to the state-of-the-art. Note that this sanity

check uses the standard training/test setup (training set and testing set are provided

by the original datasets), and our model can be directly compared with other existing

methods. Table 6.1 shows the comparisons among our proposed architecture (r-GAN

and Conv-VRNN),and other methods when using the standard anomaly detection

training/test setup on several anomaly detection datasets, in which r-GAN shows

superior performance over all its component. Table 6.2 shows the comparison on the

31
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Category Method Ped1 Ped2 CUHK ST

Feature
Kim and Grauman [2009] 59.0 69.3 - -

Del Giorno et al. [2016] - - 78.3 -

Reconstruction

Hasan et al. [2016] 75.0 85.0 80.0 60.9

Tudor Ionescu et al. [2017] 68.4 82.2 80.6 -

Abati et al. [2019] - 95.4 - 72.5

Luo et al. [2017a] 75.5 88.1 77.0 -

Gong et al. [2019] - 94.1 83.3 71.2

Prediction

Luo et al. [2017b] - 92.2 81.7 68.0

Liu et al. [2018] 83.1 95.4 84.9 72.8

Morais et al. [2019] - - - 73.4

Ours
Conv-VRNN 86.3 96.1 85.8 77.6

r-GAN 86.3 96.2 85.8 77.9

Table 6.1: Comparison of anomaly detection performance among our backbone ar-
chitecture (r-GAN and Conv-VRNN), and existing state-of-the-art in the standard
setup (i.e. without scene adaptation). We report AUC (%) of different methods on
UCSD Ped1 (Ped1), UCSD Ped2 (Ped2), CUHK Avenue (CUHK) and Shanghai Tech
(ST) datasets. We use the same train/test split as prior work on each dataset. Our
proposed backbone architecture r-GAN outperforms the existing state-of-the-art on
almost all datasets.

fall detection dataset. We can see that our backbone architecture r-GAN outperforms

Conv-VRNN and the existing state-of-the-art methods on almost all the datasets. As

a result, we use r-GAN as our backbone architecture to test our few-shot scene-

adaptive anomaly detection algorithm in this thesis.
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Method AUC (%)

DAE(Masci et al. [2011]) 75.0

CAE(Masci et al. [2011]) 76.0

CLSTMAE (Nogas et al. [2019]) 82.0

DSTCAE (Nogas et al. [2018]) 89.0

Conv-VRNN(ours) 89.7

r-GAN (ours) 90.6

Table 6.2: Comparison of anomaly detection in terms of AUC (%) of different methods
on the UR fall detection dataset. This dataset contains depth images. We simply treat
those as RGB images. Our proposed backbone architecture r-GAN is state-of-the-art
among all the methods.

Ped 1 Ped 2 Avenue

Conv-VAE 82.42% 89.18% 81.82%

Conv-VRNN 86.26% 96.06% 85.48%

Table 6.3: Comparision of Conv-VAEs versus Conv-VRNN in terms of AUC on three
datasets.

6.1.2 Analysis on Conv-VRNN

Although Conv-VRNN can not outperform r-GAN on bekchmark datasets, we

found out that this end-to-end model still outperforms other state-of-the-art meth-

ods. To gain further insight of Conv-VRNN, we perform several ablation studies

below. Fig 6.1 also shows some qualitative examples of anomaly detection in videos

using Conv-VRNN.

(1) Conv-VAE vs Conv-VRNN: In order to analyze the effect of incorporating

temporal information, we implement a variant of our model without RNN. We call this
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Ped1 Ped2

Avenue

Figure 6.1: Examples of anomaly detection on three datasets using Conv-VRNN. We
plot the anomaly score of our model and the ground-truth anomaly score. Again, the
bounding boxes are for visualization purpose.

variant Conv-VAE. Conv-VAE uses the encoder module to encode a latent variable

and uses the decoder module for prediction. We have experimented with Conv-VAE

that takes either one input frame or four frames to predict the next frame. The results

are shown in Table 6.3. We can see that Conv-VRNN outperforms Conv-VAE. This

demonstrates the importance of capturing the temporal information using RNN for
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L1 3 3 3

Lmsssim 7 3 3

Lgdl 7 7 3

AUC 80.29% 83.34% 86.26%

Table 6.4: Evaluation of different combinations of various loss terms in the objective
functions in our Conv-VRNN network on the Ped1 dataset. The results show that
the combination of all loss terms gives the best performance.

Ped1 Ped2 Avenue

Figure 6.2: ROC curves of our Conv-VRNN method, Conv-VAE (w/o optical flow)
and Conv-VAE (with optical flow) on three datasets.

anomaly detection.

(2) Analysis on Losses: As we mentioned in Sec 4, we apply three different

losses for prediction. The analysis of the impact of the losses can be visualized in

Table 6.4. We choose three combinations of objective functions for evaluation: con-

straint only on intensity (L1), constraint on intensity and structure (L1 + Lmsssim),

constraint on intensity, structure and gradient (L1 + Lmsssim + Lgdl). The results

demonstrate that the appearance information is better captured by the model with

more constraints.
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Ped1 Ped2 Avenue

Conv-VAE(w/o optical flow) 80.15% 88.13% 80.92%

Conv-VAE(with optical flow) 81.36% 89.52% 82.23%

Conv-VRNN 86.26% 96.06% 85.78%

Table 6.5: Comparison between our Conv-VRNN model with different VAE-based
models (with or without optical flow features). Our proposed Conv-VRNN outper-
forms Conv-VAE (with optical flow) even if our model does not use optical flow
features.

Methods K = 1 K = 5 K = 10

Pre-trained 70.11 70.11 70.11

Fine-tuned 71.61 70.47 71.59

Ours 74.51 75.28 77.36

Table 6.6: Comparison of K-shot scene-adaptive anomaly detection on the Shanghai
Tech dataset. We use 6 scenes for training and the remaining 7 scenes for testing.
We report results in terms of AUC (%) for K = 1, 5, 10. The proposed approach
outperforms two baselines.

(3) Sequential Model vs Optical Flow: Our Conv-VRNN uses a RNN module

to capture the temporal information in a video. An alternative way of capturing

temporal information is to use optical flow features. We have implemented a Conv-

VAE model with such constraint. Following Liu et al. [2018], we apply the pretrained

Flownet (Dosovitskiy et al. [2015]) to estimate the optical flow, and use the returned

loss of the Flownet as a motion constraint of the network only in training time.

Table 6.5, Figure 6.2 show that although adding optical flow in our implementation

of Conv-VAE improves the performance compared with Conv-VAE applied on only
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Target Methods 1-shot (K=1) 5-shot (K=5) 10-shot (K=10)

UCSD Ped 1 Pre-trained 73.1 73.1 73.1

Fine-tuned 76.99 77.85 78.23

Ours 80.6 81.42 82.38

UCSD Ped 2 Pre-trained 81.95 81.95 81.95

Fine-tuned 85.64 89.66 91.11

Ours 91.19 91.8 92.8

CUHK Avenue Pre-trained 71.43 71.43 71.43

Fine-tuned 75.43 76.52 77.77

Ours 76.58 77.1 78.79

UR Fall Pre-trained 64.08 64.08 64.08

Fine-tuned 64.48 64.75 62.89

Ours 75.51 78.7 83.24

Table 6.7: Comparison of K-shot (K = 1, 5, 10) scene-adaptive anomaly detection
under the cross-dataset testing setting. We report results in terms of AUC (%)
using the Shanghai Tech dataset for meta-training. We compare our results with
two baseline methods. Our results demonstrate the effectiveness of our method on
few-shot scene-adaptive anomaly detection.

raw frames, our proposed Conv-VRNN approach still performs better even if we do

not use optical flow features. This demonstrates that it is more effective to design

the generative model to directly capture the temporal information instead of relying

on low-level optical flow features.



38 Chapter 6: Experimental Results

Target Methods 1-shot (K=1) 5-shot (K=5) 10-shot (K=10)

UCSD Ped 1 Pre-trained 66.87 66.87 66.87

Fine-tuned 71.7 74.52 74.68

Ours 78.44 81.43 81.62

UCSD Ped 2 Pre-trained 62.53 62.53 62.53

Fine-tuned 65.58 72.63 78.32

Ours 83.08 86.41 90.21

CUHK Avenue Pre-trained 64.32 64.32 64.32

Fine-tuned 66.7 67.12 70.61

Ours 72.62 74.68 79.02

UR Fall Pre-trained 50.87 50.87 50.87

Fine-tuned 57.02 58.08 62.82

Ours 74.59 79.08 81.85

Table 6.8: Comparison of K-shot (K = 1, 5, 10) scene-adaptive anomaly detection
under the cross-dataset testing setting. We report results in terms of AUC (%) using
the UCF crime dataset for meta-training. We compare our results with two baseline
methods. Our results demonstrate the effectiveness of our method on few-shot scene-
adaptive anomaly detection.

6.2 Few-shot Scene-adaptive Anomaly Detection

We use r-GAN as backbone network and demonstrate the effectiveness of our al-

gorithm in this section.
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Target Methods K=1 K=5 K=10

Ped1 Fine-tuned 76.99 77.85 78.23

Ours (N = 1) 79.94 80.44 78.88

Ours (N = 5) 80.6 81.42 82.38

Ped2 Fine-tuned 85.64 89.66 91.11

Ours (N = 1) 90.73 91.5 91.11

Ours (N = 5) 91.19 91.8 92.8

CUHK Fine-tuned 75.43 76.52 77.77

Ours (N = 1) 76.05 76.53 77.31

Ours (N = 5) 76.58 77.1 78.79

Table 6.9: Ablation study for using different number of sampled tasks (N = 1 or N =
5) during each epoch of meta-training. The results show that even the performance of
training with one task is better than fine-tuning. However, a larger number of tasks
is able to train an improved model.

6.2.1 Results on Shanghai Tech

In this experiment, we use Shanghai Tech for both training and testing. In the

train/test split used in Liu et al. [2018], both training and test sets contain videos

from the same set of 13 scenes. This split does not fit our problem. Instead, we

propose a split where the training set contains videos of 6 scenes from the original

training set, and the test set contains videos of the remaining 7 scenes from the

original test set. This will allow us to demonstrate the generalization ability of the

proposed meta-learning approach. Table 6.6 shows the average AUC score over our

test split of this dataset (7 scenes). Our model outperforms the two baselines.
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Figure 6.3: Qualitative results on three benchmark datasets using a pre-trained
model on the Shanghai Tech dataset. Different columns represent results on dif-
ferent datasets. Each row shows few-shot scene-adaptive anomaly detection results
with different numbers of training samples K. The red bounding boxes showing the
abnormal event localization are for visualization purposes. They are not the outputs
of our model which only predicts an anomaly score at the frame level.

6.2.2 Cross-dataset Testing

To demonstrate the generalization power of our approach, we also perform cross-

dataset testing. In this experiment, we use either Shanghai Tech (the original training

set) or UCF crime for meta-training, then use the other datasets (UCSD Ped1, UCSD

Ped2, CUHK Avenue and UR Fall) for meta-testing. We present our cross-dataset

testing results in Table 6.7 for Shanghai Tech and 6.8 for UCF crime. Compared

with Table 6.6, the improvement of our approach over the baselines in Table 6.7 and

Table 6.8 is even more significant (e.g. more than 20% in some cases). It is particularly

exciting that our model can successfully adapt to the UR Fall dataset, considering

this dataset contains depth images and scenes that are drastically different from those

used during meta-training.
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6.2.3 Ablation Study

In this study, we show the effect of the batch size (i.e. the number of sampled

scenes) during the meta-training process. For this study, we train r-GAN on the

Shanghai Tech dataset and test on Ped 1, Ped 2 and CUHK. We experiment with

sampling either one (N = 1) or five (N = 5) tasks in each epoch during meta-training.

Table 6.9 shows the comparison. Overall, using our approach with N = 1 performs

better than simple fine-tuning, but not as good as N = 5. One explanation is that

by having access to multiple scenes in one epoch, the model is less likely to overfit to

any specific scene.

6.2.4 Qualitative Results

Figure 6.3 shows qualitative examples of detected anomalies. We visualize the

anomaly scores on the frames in a video. We compare our method with the baselines

in one graph for different values of K and different datasets.
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Conclusion

We investigate the problem of anomaly detection using surveillance videos by

introducing a new problem called few-shot scene-adaptive anomaly detection based

on a future frame prediction framework. Given a few frames captured from a new

scene, our goal is to produce an anomaly detection model specifically adapted to this

scene. We believe this new problem setup is closer to the real-world deployment of

anomaly detection systems. Also, we purpose a meta-learning based approach to this

problem. During training, we have access to videos from multiple scenes. We use these

videos to construct a collection of tasks, where each task is a few-shot scene-adaptive

anomaly detection task. Our model learns to effectively adapt to a new task with

only a few frames from the corresponding scene. To demonstrate the effectiveness of

our algorithm, we propose two novel state-of-the-art backbone architectures and use

the one with better performance for examination. Experimental results show that

our proposed approach significantly outperforms other alternative methods.
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