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Abstract

The Internet core protocols are the networking protocols that the Internet is built

on, a subset of which are implemented on every device connected to the Internet. The

specifications of these protocols can span dozens of documents, making accurately

understanding and implementing them difficult. The Domain Name System is one of

the Internet’s core protocols, providing a distributed, hierarchical database primarily

intended to map between the names and addresses of hosts. Modern DNS contains a

plethora of complex and interacting features, defined across a number of documents,

evolving over the course of over thirty years. I show that a network of specially-

configured hosts implementing a subset of DNS operate as logic gates. I then describe

how such gates can communicate to form Boolean circuits. Finally, I discuss CSAT

and NP-completeness.
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Chapter 1

Overview

The Internet consists of billions of devices communicating with each other. These

devices all communicate using a handful of well-defined protocols colloquially known

as the Internet core protocols [Baker, 2009]. The details of those protocols are de-

scribed in documents called Requests For Comments (RFCs) [Bradner, 1996]. One

of the Internet’s core protocols, whose definition spans dozens of RFCs across more

than thirty years, is the Domain Name System (DNS) [RFC, 1987b].

DNS provides a queryable, distributed, hierarchical database that was designed to

allow devices on the Internet to access information about other devices, destinations,

and organizations. DNS is a critical service for the Internet, holding the information

necessary for most machines to find one another. DNS supports many different types

of records, two of which are of particular interest to us: A and CNAME [RFC, 1987b,

Section 3.2.2]. A records define a mapping between a human-readable name (i.e.,

a lookup key) in the database and an IP address [RFC, 1981] that can be used to

communicate with a device. CNAME records define an association between an alias

1



2 Chapter 1: Overview

name and a canonical name, allowing multiple names to be associated with a single

value.

Hosts that implement DNS, acting as part of the distributed, hierarchical database,

frequently need to contact other hosts to access portions of the database that the

original host does not store. There are three ways of performing lookups: iteration,

recursion, and forwarding. Iterative (zero-delegation) lookups are handled by the host

that initiated them, with the host performing additional requests as needed when par-

tial answers or references to other records are received. Recursive (single-delegation)

lookups allow the host that initiated the lookup to delegate any additional lookups

to a single host. Recursive queries received by a host willing to service them are

then treated locally as iterative lookups, with their final answers returned to the host

that initiated the lookup. Forwarding (multiple-delegation) differs from recursion by

sending additional queries as recursive instead of iterative.

In recent years there has been an effort to analyze common file formats, hard-

ware devices, and network protocols from the perspective of building so-called “weird

machines”: automata built in unexpected media [Oakley and Bratus, 2011; Shapiro

et al., 2013; Bangert et al., 2013; Chiesa et al., 2013; Veldhuizen, 2003]. By adopting

that perspective in this thesis, we will use a network of hosts implementing DNS, con-

figured in a specific manner employing CNAME records and forwarding, to construct

logic gates. These logic gates can be joined together to create Boolean circuits.

We claim that instances of the Circuit Satisifiability problem (CSAT) can be

reduced to these networks. We will describe the construction and operation of these

networks, and define a decision problem named DNS-SIM that applies to them. With



Chapter 1: Overview 3

that in place, we will show a reduction from CSAT to DNS-SIM, and conclude that

DNS-SIM is NP-complete.



Chapter 2

Theory

This chapter will briefly introduce the theoretical computer science concepts that

are the background of this thesis. For more background on computational complexity,

see Garey and Johnson [1990] or Papadimitriou [1994].

2.1 Logic Gates

Logic gates are implementations of Boolean functions. Logic gates have been

constructed in many media, and we will construct three types of gates using networks

of hosts implementing the DNS protocol: AND, OR, and NOT.

A mapping of all possible input combinations to their resulting outputs is called

a truth table.

4
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2.2 Functional Completeness

A set of Boolean operators is functionally complete if it can be used to construct

any possible truth table. Both the sets {AND,NOT} and {OR,NOT} are functionally

complete, as are {NAND} and {NOR}. We will describe how to construct each of

these five gates in Chapter 5.

2.3 Boolean Circuits

Boolean circuits are implementations of Boolean functions constructed from logic

gates. With a functionally complete set of logic gates, any Boolean function of the

form f : Bn → B of n input variables to one output can be constructed.

2.4 Turing Machines

Turing machines are abstract models of computation. These machines consist of

a current state, a segmented tape of infinite length, a read/write head placed over

a segment of tape, and a table of state transitions. Using both the current state

and the symbol under the read/write head as indexes into the state transition table,

the machine performs the described state transition. State transitions consist of a

new internal state, a symbol to be written on the tape under the read/write head,

and a left-or-right movement of the read/write head. If no transition is defined for

the machine’s internal state combined with the symbol under the read/write head,

the machine halts. A subset of states are designated as accepting states. The word

initially written on the tape is said to be accepted if the machine halts in an accepting
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state.

2.5 P-Completeness

The complexity class P contains all problems that can be solved by a deterministic

Turing machine in polynomial time. Any problem in P can be reduced to a P-complete

problem using a log-space reduction (i.e., the mapping from problem to problem can

be done with a log-space Turing machine). P-complete problems are interesting not

only for their usefulness as targets of reductions, but also as inherently sequential

problems which resist parallelization. P-complete problems are the hardest problems

in P: if a P-complete problem can be solved, e.g., in log space, then all problems in

P can be solved in log space.

2.6 NP-Completeness

The complexity class NP contains all problems with answers that can be verified

by a deterministic Turing machine in polynomial time, though those answers may be

generated by a non-deterministic Turing machine in polynomial time. All problems

within NP, including those in P, can be reduced to any NP-complete problem by

a deterministic machine in polynomial time. NP-complete problems are interesting

because methods of solving them are applicable to all other problems in NP via

reduction.
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2.7 The Circuit Satisfiability Problem

The Circuit Satisfiability Problem (CSAT) considers a Boolean circuit consisting

of a number of inputs and a single output, and asks whether there is any assignment of

inputs that results in an output of true. CSAT is NP-complete [Garey and Johnson,

1990].



Chapter 3

Protocols

This chapter will briefly introduce the networking concepts that are the back-

ground of this thesis.

3.1 The Internet Protocol

The Internet Protocol (IP) [RFC, 1981] is a stateless protocol for communication

between hosts. IP is the de facto protocol that hosts on the Internet use to commu-

nicate with one another. There are two versions of IP in common use, IPv4 and IPv6

[Deering and Hinden, 2017]. IP introduces the concept of an ‘address’ to refer to each

of the logical network interfaces attached to hosts on each side of a communication.

IPv4 provides an address space of 232 while IPv6 provides an address space of 2128.

8
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3.2 User Datagram Protocol

The User Datagram Protocol (UDP) [RFC, 1980] is a stateless protocol for com-

munication between applications. On the Internet, UDP packets are encapsulated

within IP packets for transmission between hosts. UDP introduces the concept of a

‘port’ to designate the application on each side of a communication. UDP is distin-

guished by its minimalism, omitting all other features, except for a checksum.

3.3 The Domain Name System

The Domain Name System (DNS) [RFC, 1987b] is a global, distributed, hierarchi-

cal database that contains information about hosts on the Internet. The simplest use

of DNS is to look up IP addresses by hostname. For instance, when a Web browser

navigates to https://cs.umanitoba.ca/, it queries DNS for the list of IP addresses

associated with the domain name cs.umanitoba.ca. Upon receiving a DNS response

containing one or more IP addresses, the Web browser will connect to each of those

addresses in sequence and request the associated Web page, stopping when a request

is successful. DNS runs over UDP, encouraging the former to be stateless in its main

use case.

3.4 Hosts

A host is an entity on the network that is addressable via at least one IP address,

can communicate over UDP/IP with other hosts, and implements the DNS protocol

in some capacity. Hosts may send both DNS requests and responses. Hosts contain

https://cs.umanitoba.ca/
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caches of previously-seen responses that can be used to respond to requests. Hosts

also contain zone files that store the resource records that collectively comprise the

‘database’ of DNS.

3.5 Interfaces

Interfaces are points on a host where it connects to a network. Hosts may have any

number of interfaces, and each may attach to either the same or different networks

or types of networks as the host’s other interfaces. Each interface will usually have

its own address.

In this thesis, all hosts in my constructions 5 are directly connected to other hosts,

without the use of a packet-switched network. This means that each host needs a

dedicated interface for each host with which it communicates.

3.6 Request Types

DNS is a request-response protocol, meaning a client sends a request to a server,

the server responds to the request, and the interaction is then considered complete.

Requests may be marked as either iterative or recursive. An iterative request results in

an immediate response from the receiving host, which provides the best information

it has locally available. If the information in the response is insufficient, it is the

responsibility of the requesting host to perform further queries in search of more

information.

If a request is marked as recursive, and the receiving host supports recursion, the
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host may send its own requests into the network to find the information necessary

to respond. These requests are necessary if the receiving host does not have the

requested information locally, or a response from one of its requests indicates that

the requested information is stored elsewhere in the network.

3.7 Forwarding

Recursive requests by themselves are limited by the restriction that the first host

to receive a request that is marked as recursive will only issue iterative requests to

other hosts. However, forwarding passes a request from one host to another unless

the first host can answer the question from its zone files or cache. Forwarded requests

are always marked as recursive. Forwarding is commonly used in home routers to

pass queries to ISPs instead of resolving them locally.

Recursion alone will be unsuitable for the purpose of this thesis, which will require

requests that travel through multiple hosts like electrical impulses travel through cir-

cuits. In Section 5.2 we will require that a host receiving a recursive query be capable

of generating further recursive queries, for which we need to employ forwarding.

3.8 Request Timeouts

When a host does not receive a response to a request that it issued within a period

of time, the host will forward the request to the host listed in the next FWD directive in

its configuration file. This timeout period can be configured in each host separately.

If all FWD directives in the zone file have been exhausted, the host will send a failure
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response back to the host from which it received the request it is currently trying to

resolve.

3.9 Labels

The DNS hierarchy is a tree of nodes, with each node having a label and some

data (i.e., a zone file) associated with it. Labels are alphanumeric strings that may

contain hyphens. A label may be up to 63 characters in length. The root of the tree

is represented by a zero-length string [RFC, 1987a, Section 3.1].

3.10 Names

Each node in the DNS hierarchy is named, with the names specifying the path

to the node from the tree’s root. These names are composed of labels separated by

periods. For example, the name cs.umanitoba.ca. is a sequence of four labels: cs,

umanitoba, ca, and the root. The combined length of a name’s labels must be no

longer than 255 characters [RFC, 1987b, Section 2.3.4]. Names are frequently called

host names or domain names, depending on their current usage.

Just below the root node in the DNS hierarchy are the top-level domains (TLDs),

many of which are commonly known (e.g., com., ca., wtf.). At the time of writing in

August 2019, there are 1,528 TLDs in existence, with hundreds of millions of domains

registered in com. alone. While DNS is case insensitive [RFC, 1987b, Section 2.3.3],

we will represent all domain names using lowercase for consistency.
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3.11 Zone Files

Each node in the DNS hierarchy has an associated zone file, sometimes called

a master file [RFC, 1987b, Section 5], containing resource records for nodes in the

DNS hierarchy. Each zone file contains resource records, described below, for its

node’s label and possibly the labels of its children. For example, the zone file for

umanitoba.ca. would contain a resource record for cs.umanitoba.ca.. Hosts may

contain any number of zone files for unrelated names. Hosts with information for

the same node in the DNS hierarchy may also contain different records, resulting

in requests for the same information between one requestor-responder pair giving a

different result than a different request-responder pair. Differences in responses have

two common causes: stale caches and DNS views. When a host changes a record

in its zone file for a name, it will henceforth respond with that new record, but any

hosts with the old record cached will continue to respond with the old record until

its TTL expires. DNS views are network configurations designed to give different

DNS responses to different network segments. Hosts inside an organization’s private

network may receive internal IP addresses, and have more records available, versus

hosts on the Internet.

3.12 Resource Records

Resource records are indexed by label, class, and type at a point within the DNS

hierarchy. Under those indices, a time-to-live and a value can be stored. For example,

at the kolybabi.com. node in the DNS hierarchy, the label mail has a record with
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the class IN and the type A that contains the IPv4 address 45.55.52.41 and a TTL

of 1800 seconds. We now break down what each of those attributes mean.

3.12.1 Record Classes

Although each record has a class, the only class that remains valid at the time of

writing is IN, meaning Internet [RFC, 1987b, Section 3.2.4].

3.12.2 Time To Live

Records must contain a Time To Live (TTL) field instructing hosts on the maxi-

mum length of time the received record should stay in their cache. A host’s cache is

an ephemeral set of records used for quickly answering previously-seen requests with

previously-received responses. Records are removed from the cache when they have

been stored longer than their TTL specifies.

TTLs store the number of seconds represented by unsigned 31-bit integers [Elz

and Bush, 1997, Section 8], containing values from zero, indicating that the record is

only allowed to be used for the current transaction, up to the field’s maximum value

of more than 68 years. I will omit mentioning a record’s TTL and a host’s cache

unless it affects a specific example.

3.12.3 Record Types

A DNS record’s type determines the format of the value it stores. Dozens of

records have been defined across many DNS-related RFCs, but only four record types

are relevant to this thesis.
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Address Records

An A record [RFC, 1987b, Section 3.4.1] contains an IPv4 address, indicating that

the domain name represented by the label can be accessed at the address in the data

field. Domain names may have multiple A records, each with a different address,

associated with them. Defining multiple addresses for a domain name is a common

practice for load balancing and services requiring high availability.

An AAAA record [Ksinant et al., 2003, Section 2.2] contains an IPv6 address, and

has the same properties and uses as an A record.

Nameserver Records

An NS record [RFC, 1987b, Section 3.3.11] contains a hostname, and is used by

hosts to determine where to direct their requests for information stored in the DNS

hierarchy. For example, a host can contact one of the Internet’s root DNS servers

to request the NS records for com., which may provide a name like ns1.com.. The

root servers can then be queried for the A records associated with ns1.com.. Finally,

ns1.com. can be sent requests directly to inquire about labels beneath com. in the

DNS hierarchy.

CNAME Records

CNAME records [RFC, 1987b, Section 3.3.1] provide a method of associating an

alias with its canonical name. Several domain name aliases can point to a single

canonical domain name. An alias may also point to another alias. For example,

www.cs.umanitoba.ca. (alias) does not have an A record associated with it, but
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instead has a CNAME record that references copper.cs.umanitoba.ca. (canonical).



Chapter 4

Related Work

4.1 Computational Complexity

4.1.1 Turing Machines

In 1936, Turing published his model of computation, which we now call the Turing

machine [Turing, 1936]. In the same paper, he proved that Turing machines had

undecidable properties, meaning that there are certain questions we could ask of

Turing machines that are fundamentally unanswerable. This notion of undecidability

has far-reaching implications for the definition of file formats, network protocols,

and any other input that is passed to a software or hardware interface. The reason

is that every input can be considered a program targeting its recognizer [Bratus

et al., 2014], imparting the computational power of the recognizer to the source of

the input [Sassaman et al., 2011]. If a Turing machine is necessary to recognize

or validate instances of an input format, then that format has properties that are

17
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undecidable [Sassaman et al., 2011]. Specifically, difficulties arise in determining

whether a recognizer halts on a given input and whether two different implementations

are equivalent. Both of these properties are of critical importance when handling

untrusted data.

4.1.2 Chomsky Hierarchy

Twenty years after Turing, Chomsky introduced a hierarchy to categorize ma-

chines in decreasing order of power starting from Turing machines [Chomsky, 1956].

Each level of the hierarchy is capable of emulating machines at all lower levels. The

machines comprising the hierarchy have differing properties, including fewer undecid-

able properties than Turing machines. Referring to a machine (or language) in terms

of its place on the Chomsky hierarchy—the categories being regular, context-free,

context-sensitive, or recursively-enumerable—is used to associate machines with the

well-known properties exhibited by all members of that category. Subtle variations

and sub-categories have been introduced to the hierarchy in the last fifty years, but

for my purposes I consider the bottom half of the Chomsky hierarchy (regular and

context-free languages) to be uninteresting, while the top half (context-sensitive and

recursively enumerable languages) is where interesting things become possible.

Recent efforts have been made to analyze the complexity inherent in file formats,

hardware interfaces, language features, and network protocols. Many of these analy-

ses use a composition approach [Bratus et al., 2012], which involves framing features

or operations of a subject as primitives upon which to build Turing machines. These

machines built within file formats, network protocols, and hardware interfaces are
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known as weird machines, and have been defined as “machines that recognize/gen-

erate languages on a surprisingly and/or terrifyingly high position on the Chomsky

hierarchy” [Palmer, 2016].

4.1.3 Network Protocols

The Border Gateway Protocol (BGP) is used by Internet Service Providers (ISPs)

to exchange routing information between networks. It also has the distinction of

being one of the Internet core protocols [?] as designated by the Internet Engineering

Task Force (IETF), the organization responsible for publishing the Internet’s most

important standards. BGP is known to be Turing-complete [Chiesa et al., 2013],

as it can be used to effectively construct the circuits necessary to perform arbitrary

computation. This makes BGP the only Internet core protocol with a published

computational complexity; the other protocols have no such published analyses.

Other analyses of the computational complexity inherent in network protocols

have focused on sub-components of those protocols. For example transport layer

security (TLS), which provides encryption to other network protocols, has no pub-

lished complexity analysis. However, a sub-component of TLS, ASN.1, is known to

be context-sensitive [Kaminsky et al., 2010]. Due to the lack of analyses of the com-

plexity of network protocols, the remainder of this chapter will focus on software and

hardware platforms that have been evaluated in terms of the computational complex-

ity they offer when building weird machines within them.
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4.2 Weird Machines

4.2.1 CPU Features

The memory translation and protection machinery and the associated interrupt

handling, collectively referred to as the memory management unit (MMU), provide

the basis for non-cooperative multitasking in x86 processors. A privileged process,

usually the operating system, populates several structures (page tables) and registers

to define mappings (page table entries) between physical memory and its virtual rep-

resentation in unprivileged processes. Unprivileged processes access memory through

the MMU, such that the virtual address referenced are translated to physical ad-

dresses as specified by entries in the page table. If a page table entry is invalid, the

MMU records the specifics of the memory access and passes control to an interrupt

handler. It is possible to construct a situation in which the attempt to pass control

to the interrupt handler causes another invalid page table entry to be referenced,

resulting in a chain of references and indirections. The indirections can be thought

of as state changes, while the MMU recording the specifics of the failed memory ac-

cess can be considered as a tape. Bangert et al. [2013] demonstrated that arbitrary

computation can be performed during this process, and created a compiler backend

that targets the MMU. This allows the creation of Turing complete weird machines

that run within the MMU.

Recent years have seen the introduction of many memory-protection mechanisms

in operating systems and microprocessors. One such mechanism is the ability to set

certain pages of memory as non-executable via the MMU. To circumvent this new
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security measure, return-oriented programming (ROP) was invented [Shacham, 2007].

After a vulnerability such as a stack-based buffer overflow has been exploited, and

an attacker-controlled payload has been written to the stack, that payload would

traditionally change the function’s return address to that of the payload, passing it

control of the CPU. Modern operating systems commonly instruct the MMU to make

the pages comprising the stack non-executable. Modern payloads employ ROP to

structure themselves as a series of stack frames with return addresses that target

the program’s own instructions at known locations within executable pages. These

targeted instructions, normally near the end of functions, are known as ROP gadgets.

In the same spirit as ROP, but targeting microcontrollers as opposed to micro-

processors, is interrupt-oriented programming (IOP) [Tan et al., 2014]. IOP creates

gadgets out of spans of instructions starting from the beginning of interrupt handlers,

and ending when the attacker triggers another interrupt, or at the end of a handler.

Since both ROP and IOP have access to many instructions from the program or

firmware, respectively, they can clearly be used to create a Turing machine, with the

specific gadgets varying by target.

4.2.2 File Formats

The Executable Linking Format (ELF), in which most compiled applications on

Unix platforms are stored, contains a facility for passing control to an exception-

handling mechanism known as DWARF. DWARF provides the flexibility and exten-

sibility to support the stack and register manipulation logic necessary to implement

both current and future programming languages. It does this by defining a portable
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set of operations to be performed between an exception being thrown and it being

caught by a language’s exception handler. Exception handling, when offered by a pro-

gramming language standard, is realized by the compiler which stores the language-

specific exception handling operations in the program container. While the creation

of DWARF sections in an ELF container is commonly performed by the compiler, it

is possible to craft custom DWARF sections that perform computation beyond that

necessary to implement language exception-handling semantics. Oakley and Bratus

[2011] demonstrate that Turing-complete computation is possible using DWARF by

treating its stack and register operations as a powerful bytecode that can perform

branching and arbitrary arithmetic.

Elsewhere in the ELF standard, the run-time loader (RTLD) populates a process’s

virtual memory environment prior to passing control to the executable. The RTLD

is driven by metadata in the ELF file containing the executable. That metadata can

direct the RTLD to perform operations that can be framed as addition, assignment,

and branching primitives. Shapiro et al. [2013] built a compiler that translates a

Turing-complete subset of the Brainfuck programming language [Müller, 1993] into

the primitives provided by the RTLD.

4.2.3 Programming Languages

While Brainfuck, C++, and other programming languages are Turing complete,

Veldhuizen [2003] analyzed a particular compile-time feature of C++ to prove it was

Turing complete. C++ templates are a compile-time replacement system for classes,

to effectively allow the creation of generic classes via duplication and substitution
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of class definitions. Veldhuizen [2003] provides a method for encoding a Turing ma-

chine into a set of C++ templates, demonstrating that they can emulate any Turing

machine and are therefore Turing complete.

4.3 Methodology

The analyses described in this chapter all used one of two methods to prove that

their subjects are Turing complete. The first method was to provide a method for

implementing Turing machines in the subject medium. The second method was to

indirectly implement a Turing machine by implementing another set of primitives

that are known to be Turing complete. Chiesa et al. [2013] used the second method

when building logic circuits using BGP, and I will follow their example when making

logic circuits using networks of hosts implementing DNS in Chapter 5.
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Construction

In this chapter, we show how to construct a logic circuit from a network of DNS

hosts. We will show how each gate can be constructed using DNS hosts and zone

files.

We begin with a discussion of how the DNS protocol will be used in this construc-

tion.

5.1 Protocol Assumptions

In Chapter 3, I described the aspects of the DNS protocol relevant to this thesis.

In this section, I describe the simplifications that I have made to the protocol for the

sake of brevity and clarity. These simplifications do not affect the applicability of the

results to the unsimplified form of DNS.

24
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5.1.1 Addresses

While either version of IP work with the constructions described in this chapter,

I will use IPv4 for the sake of brevity. IPv6 addresses may be used instead without

any other changes.

Wherever possible, to avoid confusion, each host’s IPv4 addresses are of the form

10.0.<host>.<interface>. These addresses are used because they exist in a range

designated for private use [Moskowitz et al., 1996, Section 3]. The address used by

the interface(s) representing a gate’s input terminal(s) is 10.1.0.1, and the address

used by the interface representing the gate’s output terminal is 10.2.0.1.

5.1.2 Synthetic Directives

In reality, hosts implementing DNS store their settings in implementation-specific

formats that may or may not be in the same files as their zone files. For the sake

of terseness, we will include a directive in our zone files that specifies the addresses

to which requests will be forwarded when they cannot be answered locally. These

directives will be of the form FWD ip-address, and will always appear at the top of

the zone file. These directives, unlike resource records, are ordered into a list when

parsed by the host’s DNS implementation.

5.1.3 Synchronization

In my construction, there are situations where we require some hosts to be delayed

in their processing to allow synchronization between different hosts in a simulation of

a logic gate. To accomplish this, we can add FWD directives that point to non-existent
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hosts to a zone file. Each such directive added to the start of a zone file will delay

the host’s response to the query it received by its configured connection timeout.

This allows us to selectively increase the processing time required at any host in the

network. By configuring the hosts in a gate using this method, we can uniformly

increase the processing time required for a gate’s output to be produced. In this

manner, we may negate the effects of network delays by making them insignificant in

comparison to the processing times.

We consider the depth of a gate within a circuit to be the number of gates between

it and the circuit’s input. We can set the timeouts for the hosts in a gate to be

proportional to the depth of the gate within its circuit.

Combining these two controls, we can ignore the asynchronous nature of dis-

tributed hosts when designing and simulating our logic gates.

5.1.4 Limited Hierarchy

While it is possible to construct my gates in the full DNS hierarchy that exists

on the Internet, it is simpler and clearer to use a reduced hierarcy. My reduced

hierarchy uses names that have exactly three labels (including the zero-length root

label). These names are of the form <boolean value>.<tld>., with the boolean

values being represented by the labels f (false) and t (true). The method of scaling

up (i.e., more possibilities per labels) and scaling out (i.e., more labels per name) is

a trivial expansion of the construction of the gates.

Several TLDs are necessary to control the routing of requests between hosts, and

to allow requests to pass between gates. A CNAME resource record cannot have the
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same name as both an alias and a canonical name, requiring the use of TLDs that

are internal to the different types of gates. For example, a zone file that tries to alias

umanitoba.ca. to umanitoba.ca. creates a self-referencing loop. The external.

TLD is used for requests travelling between gates. Because the output host of each

gate emits, and the input hosts of each gate accept, requests using the external.

TLD, connecting gates to form circuits is possible. The internal. TLD is used for

requests within a gate exclusively to avoid situations that might otherwise require

self-referential loops. Finally, the cache. TLD is used to detect when a request

received by a host implementing the deduction template (see 5.3.6) was the result of

both inputs to a gate having the same boolean value.

5.2 Processing Logic

When a DNS host receives a request, it attempts to respond with the information

that request is seeking. A request asks for the resource record associated with a name

(e.g., umanitoba.ca.) and a type (e.g., A). The host will first look locally in its zone

files and cache for the requested information. If the host fails to find the information

locally, and has been configured with forwarding directives, it will forward the request

as-is to the first host in its list of forwarding directives. If the host does not receive

a response from the host it forwarded the request to within a limited period of time,

it will forward the request to the next host in its list of FWD directives and disregard

future responses from the host associated with the previous FWD directive. If the host

receives a response from the host to which it forwarded the request, it will accept the

information. Using the new information, the host will determine whether it can now
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answer the initial request, and if so it will respond. If the new information indicates

that additional information is required, it will continue searching for the information

locally, and then via forwarding to find the answer. If the host is unable to acquire

the information necessary to answer the initial request, it will respond indicating its

failure.

The fallback logic that allows hosts to forward requests to multiple hosts is vital to

the construction of the AND and OR gates I have designed. I use a cache miss, which

appears to the requesting host as a timeout, to partly overcome the DNS protocol’s

limitation regarding evaluating previous or parallel inputs. Leveraging this fallback

logic allows my gate to act differently depending on whether two inputs are the same

(cache hit) or different (cache miss).

5.3 Zone File Templates

The zone files used by the hosts within our gates are based on templates, each of

which provides a behaviour that can be understood in the abstract. Instead of using

seconds as the unit of measurement for the TTL field of resource records, I put in a

value T that may depend on the depth of the gate, as discussed in Section 5.1.3.

Comments, written as lines beginning with #, are included in some zone files for

clarity.

5.3.1 Passthrough

Passthrough zone files exist in hosts whose primary responsibility is sending a

similar request to the next host. Delay nodes are the most common users of this
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template. The Passthrough template is of the form:

FWD ip-address

5.3.2 Mirror

Mirror zone files respond to each requested name with the same Boolean value

that was received, but a different TLD. The Mirror template is of the form:

f.domain-one. T CNAME f.domain-two.

t.domain-one. T CNAME t.domain-two.

Note that these zone files contain resource records that indicate they should be

cached for T units of time, differentiating it from the Passthrough template (see

5.3.1).

5.3.3 Negative

Negative zone files associate each requested name with the negative of the Boolean

value that was received, also with a different TLD. The Negative template is of the

form:

f.domain-one. 0 CNAME t.domain-two. # NOT f = t

t.domain-one. 0 CNAME f.domain-two. # NOT t = f

5.3.4 Switching

Switching zone files ensure that the first request is always sent to one host, but

a failure will result in a query to the second host. This behaviour supports the

Deduction templates (see 5.3.6).
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FWD ip-address-1

FWD ip-address-2

5.3.5 Translation

Translation zone files translate the external. TLD to the internal. TLD. This

behaviour supports the Deduction template by ensuring that it never receives a re-

quest for a name under external., since it must translate all names to that TLD

and you may not have a CNAME with both the alias and canonical names having the

same value.

f.external. 0 CNAME f.internal.

t.external. 0 CNAME t.internal.

5.3.6 Deduction

Deduction zone files represent the result of the binary operation performed on

the two inputs accepted by the gate. These templates must handle each of the four

possible combinations of inputs, representing each as a CNAME resource record. All

CNAME resource records must use the external. TLD since they will be used in

requests output from the gate.

Within these templates, the placeholder TLDs of domain-one and domain-two are

used to encode information about the gate’s inputs that was discovered previously in

the network, specifically whether the two inputs were the same or different. Knowing

whether the inputs were the same, represented by the TLD, and knowing the value of

one of the two inputs, represented by the leftmost label, provides all the information
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necessary to generate the output corresponding to a Boolean operator.

AND Deduction

Like the truth table of an AND gate, the AND Deduction template will only cause

its host to output a request for t.external. with one combination of inputs. See

Chapter 6 for a full explanation of the behaviour of the AND gate.

f.domain-one. 0 CNAME f.external. # t AND f = f (inputs differ)

t.domain-one. 0 CNAME f.external. # f AND t = f (inputs differ)

f.domain-two. 0 CNAME f.external. # f AND f = f (inputs match)

t.domain-two. 0 CNAME t.external. # t AND t = t (inputs match)

By changing this template slightly, we could instead create a NAND gate. The

NAND Deduction template would be:

f.domain-one. 0 CNAME t.external. # t NAND f = t (inputs differ)

t.domain-one. 0 CNAME t.external. # f NAND t = t (inputs differ)

f.domain-two. 0 CNAME t.external. # f NAND f = t (inputs match)

t.domain-two. 0 CNAME f.external. # t NAND t = f (inputs match)

OR Deduction

Like the truth table of an OR gate, the OR Deduction template will only cause

its host to output a request for f.external. with one combination of inputs. See

Chapter 6 for a full explanation of the behaviour of the OR gate.

f.domain-one. 0 CNAME t.external. # t OR f = t (inputs differ)

t.domain-one. 0 CNAME t.external. # f OR t = t (inputs differ)

f.domain-two. 0 CNAME f.external. # f OR f = f (inputs match)

t.domain-two. 0 CNAME t.external. # t OR t = t (inputs match)
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By changing this template slightly, as we did to make the NAND gate in 5.3.6,

we could instead create a NOR gate. The NOR Deduction template would be:

f.domain-one. 0 CNAME f.external. # t NOR f = f (inputs differ)

t.domain-one. 0 CNAME f.external. # f NOR t = f (inputs differ)

f.domain-two. 0 CNAME t.external. # f NOR f = t (inputs match)

t.domain-two. 0 CNAME f.external. # t NOR t = f (inputs match)

5.4 DNS Logic Gates

Logic gates are constructions that perform Boolean operations, transforming in-

puts to outputs in a consistent and stateless manner. We construct analogs of logic

gates using networks of DNS hosts. All our DNS gates are designed so that the

longest request path between any input and output host in the gate is less than or

equal to seven, regardless of their inputs. All gates, regardless of type (i.e., NOT,

AND, OR), will produce no more than seven requests between an input host and the

output host. These constant maximum request path lengths allow us to disregard the

internal behaviours of the gates, once we understand their operation, so that we may

instead focus on their inputs and outputs.

Hosts named with the pattern Di produce delays by implementing the Passthrough

template. Hosts named with the pattern Hi implement other templates, producing

more complex behaviour.

Gates have one or two inputs, named I for unary gates, and IA and IB for binary

gates, respectively. The output of a gate is always named O. All of these inputs

and outputs are hosts that are not part of the logic gate themselves, but are instead
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part of other gates. For example, the host in a NOT gate that receives input from

I is named D0 and the host that emits the result to O is named H1, so when two

NOT gates are connected the first gate’s H1 is connected to the second gate’s D0,

substituting for I and O, respectively.

5.4.1 NOT Gate

A NOT gate takes a single input and outputs its inverse. Because the NOT gate

evaluates a single input, its construction is much simpler than the other gates. Five

delay hosts are used in this gate’s construction, with each delay host introducing an

additional request into the gate’s longest request path. These extra requests in the

NOT gate result in the length of the longest request path equalling the length of the

longest request path in both the AND and the OR gates.

I D0 D1 D2 D3 D4

H0H1O

Figure 5.1: NOT Gate Schematic

Configuration

The majority of the hosts in this gate implement the Passthrough template and

exist to ensure the gate has a request path distance equal to the binary gates, but for

completeness we will include all of their configurations here.
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Host D0 D0 uses the following addresses for its interfaces:

10.1.0.1 connected to I

10.0.1.2 connected to D1

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.2.1 # to D1

Host D1 D1 uses the following addresses for its interfaces:

10.0.2.1 connected to D0

10.0.2.2 connected to D2

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.3.1 # to D2

Host D2 D2 uses the following addresses for its interfaces:

10.0.3.1 connected to D1

10.0.3.2 connected to D3

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.4.1 # to D3
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Host D3 D3 uses the following addresses for its interfaces:

10.0.4.1 connected to D2

10.0.4.2 connected to D4

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.5.1 # to D4

Host D4 D4 uses the following addresses for its interfaces:

10.0.5.1 connected to D3

10.0.5.2 connected to H0

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.6.1 # to H0

Host H0 H0 uses the following addresses for its interfaces:

10.0.6.1 connected to D4

10.0.6.2 connected to H1

This host’s zone file implements the Passthrough and Translation templates as

follows:

FWD 10.0.6.1 # to H1

f.external. 0 CNAME f.internal.

t.external. 0 CNAME t.internal.
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Host H1 H1 uses the following addresses for its interfaces:

10.0.6.1 connected to H0

10.2.0.1 connected to O

This host’s zone file implements the Negative template as follows:

FWD 10.1.0.1 # to O

f.internal. 0 CNAME t.external. # NOT f = t

t.internal. 0 CNAME f.external. # NOT t = f

5.4.2 AND Gate

An AND gate accepts two inputs and, if they are both true, emits a single output

that is true. This simple operation is complicated by the stateless nature of DNS,

combined with its inability to evaluate more than one value at a time. These problems

can be overcome by delaying the evaluation of one of the two inputs, and using DNS’s

caching behaviour to infer the value of the input that was not delayed while evaluating

the input that was.

IA

IB

H0 H1

D0 D1 H2 H3 O

Figure 5.2: AND Gate Schematic
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Configuration

Unlike the NOT gate, the AND gate uses every template previously discussed.

Host D0 D0 uses the following addresses for its interfaces:

10.1.0.1 connected to IB

10.0.1.2 connected to D1

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.2.1 # to D1

Host D1 D1 uses the following addresses for its interfaces:

10.0.2.1 connected to D0

10.0.2.2 connected to H2

This host’s zone file implements the Passthrough template as follows:

FWD 10.0.5.1 # to H2

Host H0 H0 uses the following addresses for its interfaces:

10.1.0.1 connected to IA

10.0.3.2 connected to H1

10.0.3.3 connected to H2
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This host’s zone file implements the Passthrough and Translation templates as

follows:

FWD 10.0.4.1 # to H1

f.external. 0 CNAME f.internal.

t.external. 0 CNAME t.internal.

Host H1 H1 uses the following addresses for its interfaces:

10.0.4.1 connected to H0

This host’s zone file implements the Mirror template as follows:

f.internal. T CNAME f.cache.

t.internal. T CNAME t.cache.

The resource records in the above zone file will be cached for T , and indicate that

they originated from this host.

Host H2 H2 uses the following addresses for its interfaces:

10.0.5.1 connected to D1

10.0.5.2 connected to H3

10.0.5.3 connected to H0

This host’s zone file implements the Switching and Translation templates as fol-

lows:
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FWD 10.0.3.3 # to H0

FWD 10.0.6.1 # to H3

f.external. 0 CNAME f.internal.

t.external. 0 CNAME t.internal.

Host H3 H3 uses the following addresses for its interfaces:

10.0.6.1 connected to H2

10.2.0.1 connected to O

This host’s zone file implements the AND Deduction template as follows:

FWD 10.1.0.1 # to O

f.internal. 0 CNAME f.external. # t AND f = f (inputs differ)

t.internal. 0 CNAME f.external. # f AND t = f (inputs differ)

f.cache. 0 CNAME f.external. # f AND f = f (inputs match)

t.cache. 0 CNAME t.external. # t AND t = t (inputs match)

5.4.3 OR Gate

An OR gate takes two inputs and, if either are true, produces a single output

that is true. OR gates have the same schematic, shown again in Figure 5.3 for

completeness, as AND gates. The differences between the two gates exist in the zone

files, which govern the sequence of requests/responses the hosts perform.
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IA

IB

H0 H1

D0 D1 H2 H3 O

Figure 5.3: OR Gate Schematic

Configuration

All of the addresses and zone files used in the AND gate are the same for the OR

gate, with the exception of the zone file for H3.

Host H3 This host’s zone file implements the OR Deduction template as follows:

FWD 10.1.0.1 # to O

f.internal. 0 CNAME t.external. # t OR f = t (inputs differ)

t.internal. 0 CNAME t.external. # f OR t = t (inputs differ)

f.cache. 0 CNAME f.external. # f OR f = f (inputs match)

t.cache. 0 CNAME t.external. # t OR t = t (inputs match)



Chapter 6

Results

6.1 Overview

Given a network of hosts implementing DNS, and a set of queries sent simultane-

ously into the inputs of that network, how difficult is it to determine the result? In

the previous chapter I described the behaviours, structures, and configurations used

by my logic gates. In this chapter, I will walk through their operation, processing

various inputs. By the chapter’s end, I will have demonstrated that my gates can

be used to build circuits so that my claim of a reduction of CSAT to DNS-SIM is

understandable.

The figures in this chapter illustrate the operation of my DNS logic gates. Each

arrow represents a message between hosts in the network. Single-tipped arrows in-

dicate requests, while double-tipped arrows indicate responses. The labels near the

arrows show the question (request) or partial answer (response) contained within the

message. The caption below each figure indicates the step (Sn) it describes.
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Since the NAND and NOR gates are trivial variations on the AND and OR gates,

respectively, their function can be understood by looking at the gates I cover in this

chapter, without a detailed walkthrough of their behaviour.

6.2 NOT Gate

6.2.1 Operation

While I will walk through the complete operation of the NOT gate here, as a

stepping stone to help understand the AND and OR gates, I will only walk through a

single input: t.external.. The sequence of requests within the gate does not change

when f.external. is passed as input, only the values of the final two requests are

inverted.

I D0 D1 D2 D3 D4

H0H1O

t.external.

Figure 6.1: NOT t at S0

At step S0, the initial input is coming from outside the gate. This request will be

forwarded through the remaining delay hosts through step S5.
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I D0 D1 D2 D3 D4

H0H1O

t.external.

Figure 6.2: NOT t at S1

I D0 D1 D2 D3 D4

H0H1O

t.external.

Figure 6.3: NOT t at S2

I D0 D1 D2 D3 D4

H0H1O

t.external.

Figure 6.4: NOT t at S3
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I D0 D1 D2 D3 D4

H0H1O

t.external.

Figure 6.5: NOT t at S4

I D0 D1 D2 D3 D4

H0H1O

t.external.

Figure 6.6: NOT t at S5

I D0 D1 D2 D3 D4

H0H1O
t.internal.

Figure 6.7: NOT t at S6

At step S6, the Translation zone file on H0 has translated the request’s TLD from

external. to internal.. This allows H1 to avoid having a zone file that associates
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between two Boolean values in the same TLD. DNS does not allow a CNAME to have

the same value for both the alias and the canonical name, since that would create a

self-contained loop of a name referencing itself. In the Mirror template, we use the

same boolean value as the alias and canonical name, so we must use a Translation

zone at the same time to ensure that the TLDs differ, preventing a loop.

I D0 D1 D2 D3 D4

H0H1O
f.external.

Figure 6.8: NOT t at S7

At step S7, the Negative zone file on H1 inverts the value of the request, and emits

a new request using the standard inter-gate addresses and TLD.

6.3 AND Gate

6.3.1 Operation

To understand the operation of my AND gate, it is useful to group the four possible

input permutations into two situations: inputs that match (f AND f, t AND t) and

inputs that differ (f AND t, t AND f).
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Matching Inputs

IA

IB

H0 H1

D0 D1 H2 H3 O

t.external.

t.external.

Figure 6.9: t AND t at S0

At step S0, both inputs, implemented as DNS queries, enter the gate’s network

at the same time from external sources. The input from IB will be sent through

hosts that serve only to lengthen the number of steps in its journey through the gate.

These delay hosts perform an identity function, not altering the input. These delays

are implemented by the hosts using the Passthrough template, which ensures that

no request can be answered by the data on the host, since there is none. To answer

any request, a delay host must forward the query to the first host configured in the

nameserver’s list of forwarding hosts for the requested TLD.

IA

IB

H0 H1

D0 D1 H2 H3 O

t.internal.

t.external.

Figure 6.10: t AND t at S1
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At step S1, H0, having received a request on the previous step, will now try to

answer it. H0 has an empty cache, and no zone files that contain the answer. Since it

can’t answer the question itself, lacks any resource records stored locally, and it has

not yet found the A record it seeks, H0 will forward the request to H1 as indicated by

the FWD directive.

The second input continues to be delayed.

IA

IB

H0 H1

D0 D1 H2 H3 O

t.cache.

t.external.

Figure 6.11: t AND t at S2

At step S2, H1 processes the forwarded request for the A record of t.external.,

and finds that it does not have an A resource record, but it does have a corresponding

CNAME resource record. H1 responds to H0 with the value contained in the CNAME

resource record: t.cache.. If the query was for f.external. instead, the result

would have been f.cache., since the zone file implements the Mirror template.

The second input exits the last delay host on this step, headed toward a host that

will actually put it to use.
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IA

IB

H0 H1

D0 D1 H2 H3 O

t.internal.

Figure 6.12: t AND t at S3

At step S3, H0 receives the response from H1. Seeing that the resource record in

the response has a TTL greater than zero, H0 caches the CNAME record mapping of

t.external. to t.cache., which makes it available to requests received during the

next step. H0 will then try to resolve t.cache., but will fail and the remainder of

its actions have no effect on the rest of the logic. H0 will send a second request to

H1 for the address of t.cache., which will generate a response indicating failure. H0

will then respond to IA, informing it of the mapping from t.external. to t.cache..

IA will ignore the response, because it came after it had stopped waiting for the

response. These requests and responses are not pictured because hosts can process

several requests in parallel, and including them would complicate the figures. Unused

requests and responses will not be mentioned again.

Meanwhile, H2 receives the request from D1. H2 has a Translation zone file, so it

translates the request from t.external. to t.internal.. Having no cache or zone

files with which to answer the request, H2 forwards the request to the first host in its

set of FWD directives: H0.
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IA

IB

H0 H1

D0 D1 H2 H3 O

t.cache.

Figure 6.13: t AND t at S4

At step S4, H0 receives the request from H2 and, unlike when processing the input

from IA, can answer this query from the cache since both the requests asked for the

same name. H0 responds with t.cache. and removes the entry from its cache since

it expires at the end of this step.

IA

IB

H0 H1

D0 D1 H2 H3 O

t.cache.

Figure 6.14: t AND t at S5

At step S5, H2 receives the response from H0, but still does not have the A record

it’s looking for. H2 sends a request to H0 for t.cache., again following the first FWD

directive. 1

1H2 must always forward requests to H0 first. I could include an advanced feature called con-
ditional forwarding that introduces directives used by the forwarding algorithm that map TLDs to
hosts. Not including conditional forwarding adds one step, requiring the gate to waste this request
and fall back to the secondary forwarding host, but keeps my design simpler.
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IA

IB

H0 H1

D0 D1 H2 H3 O

t.cache.

t.cache.

Figure 6.15: t AND t at S6

At step S6, H0 receives the request seeking t.cache., but does not have any

information on that name. Not only has the cached information in H0 expired, but

that information only had t.cache. as a canonical name (right-hand side of zone

file), not as a lookup key (left side of zone file). H0 must therefore forward a request

to H1 for the information, but this request is not shown since its results will not be

used by this gate.

Since H2 has not received a response from H0 within its timeout window, it for-

wards the request to the next host in its set of forwarding directives: H3.

IA

IB

H0 H1

D0 D1 H2 H3 O

(unknown)

t.external.

Figure 6.16: t AND t at S7

At step S7, H3 receives the request, and fails to find the requested A record, but
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finds a corresponding CNAME record. This CNAME record’s value, its canonical name,

represents the Boolean output of this gate: true (t.external.). The zone file on H3

causes the host to send a request to resolve the A record associated with t.external

to the host connected to the AND gate’s output terminal.

Differing Inputs

When processing differing inputs, the pattern of signals (if not the values) are

the same from S0 through S3, and so will be shown without repeating the previous

explanations.

IA

IB

H0 H1

D0 D1 H2 H3 O

f.external.

t.external.

Figure 6.17: f AND t at S0

IA

IB

H0 H1

D0 D1 H2 H3 O

f.internal.

t.external.

Figure 6.18: f AND t at S1
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IA

IB

H0 H1

D0 D1 H2 H3 O

f.cache.

t.external.

Figure 6.19: f AND t at S2

IA

IB

H0 H1

D0 D1 H2 H3 O

t.internal.

Figure 6.20: f AND t at S3

IA

IB

H0 H1

D0 D1 H2 H3 O

t.internal.

Figure 6.21: f AND t at S4

At step S4, the first difference between matching and differing inputs occurs: the

request from H2 to H0 cannot be answered locally by H0 in the case of differing
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inputs. H0, finding itself unable to answer the question it has received, forwards the

question to H1 similar to its action at S1.

IA

IB

H0 H1

D0 D1 H2 H3 O
t.external.

Figure 6.22: f AND t at S5

At step S5, after querying H0, H2 moves on to query H3. The query that it will

send to H3 uses the CNAME that was returned from the cache of H0.

IA

IB

H0 H1

D0 D1 H2 H3 O
f.external.

Figure 6.23: f AND t at S6

At step S6, H3 receives the query and notes that the rightmost label is external.,

from which it can infer that the first input was different from the second input (which

is represented by the leftmost label). H3 then chooses the final Boolean result of the

gate, f, and attaches the inter-gate label of external. to make the gate’s output

suitable for input to any other gate.
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6.4 OR Gate

6.4.1 Operation

The operation of the OR gate matches the AND gate except at S6, where the zone

file of H3 results in requests being sent to O that correspond to the output of an OR

gate rather than an AND gate.

6.5 DNS-SIM

Given a network of hosts implementing DNS, I consider some hosts to be inputs to

the network, and one host to be the output of the network. An assignment of inputs

to the network is a mapping of simultaneously-issued DNS requests to the network’s

inputs. I define DNS-SIM as the decision problem of determining whether there is

any assignment of inputs that result in a request for t.external. being output from

the network.

I have reduced CSAT to DNS-SIM. CSAT is known to be NP-complete, and

therefore DNS-SIM is NP-complete.
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Conclusions

7.1 Future Work

While we have shown that networks of DNS hosts can implement logic gates,

future research could try to produce constructions that do not rely on forwarding.

Removing the construction’s reliance on forwarding would be the logical next step,

since it is the most advanced feature in use by the design. To remove forwarding,

the construction would have to be rooted at a single host sending iterative requests

to all other hosts, creating a hub-and-spoke organization. With all requests being

issued from a single host, it might be possible to use that host’s cache as the tape

of a Turing machine. With the inclusion of memory, it may be possible to design a

construction that directly emulates a Turing machine.

Another interesting construction would be a latch or flip-flop. While such a con-

struction would likely require the use of forwarding, it may be possible to use a node’s

cache as the current state (i.e., memory) of the construction. With latches or flip-flops
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we could construct more useful circuits.

There is another promising resource record type, NAPTR [Mealling, 2002], which

may provide additional computational power. The NAPTR record allows incoming

queries to be rewritten according to a regular expression. We could attempt to im-

plement Binary Cyclic Tag (BCT) programs using NAPTR records. A zero command,

indicating the left-most bit should be deleted, could be implemented with the regex

"!.̂(.*)$!\1!". A one command, operating as a single-bit append operation of a bit

I’ll call ’x’, could be implemented as "!(̂.*)$!\1x!". If you relaxed DNS’s length

restrictions on names, and used NAPTR records to encode the BCT program, it might

be possible to implement a BCT interpreter into a network of hosts running DNS.

Implementing SKI combinator calculus may also be possible using similar methods.

7.2 Fundamental Result

DNS has a number of safety mechanisms within it to limit the amount of work

performed in the service of a single request, but when DNS hosts are configured to use

forwarding and CNAME resource records exist that require many requests to resolve,

it is possible to construct Boolean circuits. While my constructions have focused on

circuits with one or two inputs, there is nothing preventing constructing families of

circuits that perform Boolean operations on any positive number of inputs.

Having defined DNS-SIM above, and proven by reduction that it is NP-complete,

I can now say that the task of evaluating the behaviour of a network of hosts imple-

menting DNS is NP-complete.
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