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Abstract
Active balancing of a humanoid robot is a challenging task due to the complexity

of combining a walking gait, dynamic balancing, vision and high-level behaviors.

My Ph.D research focuses on the active balancing and push recovery problems that

allow inexpensive humanoid robots to balance while standing and walking, and to

compensate for external forces. In this research, I have proposed a push recovery

mechanism that employs two machine learning techniques, Reinforcement Learning

(RL) and Deep Reinforcement Learning (DRL) to learn recovery step trajectories

during push recovery using a closed-loop feedback control. I have implemented a 3D

model using the Robot Operating System (ROS) and Gazebo. To reduce wear and

tear on the real robot, I used this model for learning the recovery steps for different

impact strengths and directions. I evaluated my approach in both in the real world

and in simulation. All the real world experiments are performed by Polaris, a teen-

sized humanoid robot in the Autonomous Agent Laboratory (AALab), University of

Manitoba. The design, implementation, and evaluation of hardware, software, and

kinematic models are discussed in this document.
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Chapter 1

Introduction

1.1 Introduction

This chapter discusses the motivation for my thesis. It also introduces push recov-

ery for a humanoid robot that I developed at the AALab. This chapter also gives an

overview of the methods that I used to conquer the problems of current approaches

to push recovery of humanoid robots.

1.2 Motivation

Robots have been used for decades, but moving them from factory floors to the

everyday lives of humans is a challenging task. Traditional wheeled robots are more

stable and balanced than humanoid robots [Huang et al., 2001]. Also, they can

avoid obstacles easily and generate new paths [Shojaeipour et al., 2010]. However,

humanoid robots are closer to a human’s body shape, and as a result, they can

2
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potentially function better in a human environment. One of the main issues with

humanoid robots is balancing: humanoid robots fall easily. So, for robots to walk like

humans, a humanoid robot needs to be able to walk stably on various surfaces such

as hard terrain, artificial turf, snow, stairs, up and down slopes of varying degrees,

all while avoiding obstacles in its path. If a humanoid robot has a collision with

an object, an external force will be applied to the robot, which typically causes the

robot to fall. Falls are a common cause of injury in humans, and similarly can be

very damaging to humanoid robots.

The majority of existing walking algorithms are designed to walk on flat surfaces

at a predefined static angle to the ground and with feet parallel to it [Kim et al.,

2007]. For this reason, with every external push to a humanoid robot during its walk,

there is a very high chance that the robot will fall. To overcome this problem, many

different strategies have been introduced. Among these strategies, there are three well

known methods: 1) Centre Of Pressure (COP) [Assman et al., 2012], which uses the

ankles of the robot for balancing by changing the Centre Of Mass (COM) [Graf and

Röfer, 2012; Stephens, 2011]; 2) Centroidal Moment Pivot (CMP) [Stephens, 2007],

which uses both the ankles and hips of the robot for balancing, allowing the body to

change position and create an angular momentum by swinging the torso; and 3) the

Capture step [Missura and Behnke, 2015] approach, which handles external forces by

taking one or more extra steps in an appropriate direction.

Humans not only walk successfully over even and uneven terrain, but can recover

from the interaction of external forces such as impacts with obstacles and active

pushes. While push recovery has been demonstrated successfully in expensive robots



4 Chapter 1: Introduction

[Kuindersma et al., 2016; Feng et al., 2014; Stephens, 2011], it is more challenging

with robots that are inexpensive, with limited power in actuators and less accurate

sensing [Hosseinmemar et al., 2018]. The motivation of this work is to adopt af-

fordable robotics devices and technologies to build a humanoid robot that is able to

recover from external pushes similar to humans. Building a humanoid robot with

less expensive equipment means that all elements of software, from vision to control,

must be much more robust [Hosseinmemar et al., 2019].

In my research, I focused on push recovery and active balancing of an inexpen-

sive (approximately USD $20,000) humanoid robot named Polaris, with a height of

95 CM, by taking recovery steps after the robot receives external pushes. Polaris is

built from relatively inexpensive servo motors (when compared to modern industrial

robots), making balancing and push recovery especially challenging. For the first

stage of push recovery for Polaris, I implemented a hand-tuned closed-loop control

that could recover from 100% of light pushes and 70% of strong pushes [Hossein-

memar et al., 2018]. The objective of this research is to design and implement a fully

autonomous closed-loop push recovery control system that can mimic a human’s re-

covery actions. In order to make the system fully autonomous, I used two machine

learning techniques: Reinforcement Learning (RL) and Deep Reinforcement Learning

(DRL) [Sutton and Barto, 1998] to find different walking trajectories of one or more

steps (capture step) after an external push is applied to the robot. By using these

techniques, the robot can decide the best course of action, based on exploration and

exploitation, to control its balance from different external disturbances. I created a

very accurate 3-Dimensional model of Polaris in a simulation to learn the actions.
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1.3 Research Questions

The following are the research questions that my research will answer.

1. Is my closed-loop control going to be fast enough for inexpensive robots that

are equipped with cheaper hardware for responding to an external push?

2. Are any of my reinforcement learning and deep reinforcement learning push

recovery techniques going to be able to replace the parameters that a human

operator provides (hand-tuned) for recovery based on his/her experiences?

3. Which of the proposed approaches (RL, DRL), results in better recovery if the

surfaces, directions, and impacts are unknown to the robot (i.e. with no prior

knowledge)?

1.4 Thesis Organization

The remaining chapters of my thesis are structured as follows:

• Chapter 2: Background and Related Work–Reviews literature related to

this thesis, such as active balancing, push recovery in 3 dimensional-world, real

world and other peripheral areas such as humanoid robot walking.

• Chapter 3: Design and Implementation–Describes the approaches for

hardware, software, methods used in my research. In this chapter I also describe

the definition of all the methods that are used and proposed in my research with

their corresponding implementations from walking engine and different push re-

covery control systems to machine learning and simulation environment.
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• Chapter 4: Evaluation– I discuss the evaluation of this work. This chapter

describes experiments in simulation and in the real world, and presents the

results of those experiments.

• Chapter 5: Conclusion–This chapter discusses the main contributions and

possible future directions for research. It also answers the research questions

based on the results of the experiments.

1.5 Summary

This chapter introduced active balancing and push recovery for humanoid robots.

It also briefly discussed a few of the previous and current research areas relevant to

this Ph.D. research.



Chapter 2

Background and Related work

2.1 Introduction

Humanoid robots have similar kinematics to humans and try to mimic human

motions. Hence, in comparing this category (humanoid robots) with the other classes

such as industrial robots or wheeled robots, the humanoid group is the most challeng-

ing and complicated one. Over decades, researchers have designed and implemented

various techniques for making humanoid robots act more anthropomorphic and nat-

ural. For example, a typical humanoid robot has two arms, two legs, a head and a

torso and it locomotes on its two legs. However, there are partially humanoid robots

(these would not be humanoid robots because they only partly follow the humanoid

form.) like Robovie [Ishiguro et al., 2001], PR2 [Cousins, 2010], and Pepper [Tanaka

et al., 2015] that have two arms and camera but are not able to walk like a human,

and instead use wheels to locomote.

Figure 2.1 shows Polaris, a humanoid robot with a height of 95 CM and a weight

7
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Figure 2.1: Polaris using a normal walking gait in a simulation (matplotlib

environment) and the real world

of 6.95 Kg standing in its home posture in a simulation and in the real world. In this

position, the robot is fully balanced, and the Center of Mass (COM) of the robot is

divided equally between the robot’s feet such that the robot can walk properly on a

flat surface. Every single physical link on the robot’s body has a mass, and I projected

the COM of the whole body on the ground (red dot) between the right and left foot.

As long as the COM of the robot is in the area of the support polygon (dashed area

around the feet), the robot is balanced, and it is stable enough to do any particular

action such as standing on one foot [Takenaka et al., 2009]. However, if the COM is

outside of the support polygon the robot is not stable anymore, and this causes the

robot to fall. Such a situation may happen for two main reasons. The first reason

is that of applying direct external forces such as pushing the robot’s chest. Such a

push may come from any direction. The second reason would be stepping on uneven
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Figure 2.2: Three main anatomical planes of the human body. The three planes are:

1) the Coronal or Frontal plane that divides the body from front to back. 2) the

sagittal plane that divides the body into left and right. 3) the transverse plane that

divides the body from top to bottom [NIH, 2018]

terrain, including bumping into obstacles. To solve the stability issue of the robot,

the COP [Collins and De Luca, 1993] needs to be in the support polygon region.

One of the practical ways to address this problem is predicting the footstep from

capturing walking motions [Schmitz et al., 2011] and using a gait generator such as

capture steps [Missura and Behnke, 2013]. By adjusting the footsteps in the sagittal

or coronal plane (Figure 2.2), or both, the area of support polygon can be made large

enough to balance the robot.
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2.2 Active Balancing and Push recovery

Push recovery refers to negotiating and recovering from an abnormal status to a

normal situation when walking or standing [Stephens, 2007; Stephens and Atkeson,

2010]; this would happen when the robot is subjected to a large disturbance and

external forces. These forces apply to the robot for a short period, and they destabilise

the walking rhythm and cause the robot to fall. Generating a smooth and stable

walking path over an uneven terrain that could be an unknown surface with obstacles

is a complex task. The robot needs to adapt and generate footsteps based on the

environment and external forces.

2.2.1 Balancing Strategies For A Humanoid Robot

Over decades many solutions have been introduced to solve the balancing problem

of humanoid robots when they are subjected to considerable disturbance, external

forces and walking on uneven terrain. Among them the three common strategies

are [Stephens, 2007]: 1) Centre of Pressure, 2) Centroidal Moment Pivot, and 3)

Stepping.

2.2.1.1 Center of pressure (COP)

This approach usually is based on controlling ankles on both feet, and it is also

known as the Ankle strategy [Stephens, 2007]. This method is often used when there

is a small disturbance and can be dealt with by shifting the centre of pressure to

relocate the COM within the support polygon. Figure 2.3 (a) demonstrates COP. In

this figure, L is the height, Fx the applied force to the body in the x direction, Fz is
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(a) COP (b) CMP

Figure 2.3: Centre of pressure and Centroidal Moment Pivot [Stephens, 2007]

the ground force. The arrow next to the xCoM is the adjustment that is applied to

the ankle’s degree for shifting the COM backward.

2.2.1.2 Centroidal Moment Pivot (CMP)

The Centroidal Moment Pivot approach, also known as the hip strategy [Stephens,

2007], is shown in Figure 2.3 (b). This can be used for small and medium disturbances,

and is thus an improvement over COP. In this method, the hip servos play a significant

role in recovering from the push. In Figure 2.3 (b), θ is the angle that the hip servo

will change from the position before the force is applied. The change in the hip servo

helps to absorb most of the external force and balance the COM. Since CMP can also

modify the ankle position in the opposite direction of the external force, it subsumes

COP.

Iverach-Brereton [2015] worked on active balancing of a kid-size humanoid robot

for his master’s thesis. His primary research focus was on balancing a kid size robot

on a Bongo Board. He used three different control algorithms that were derived
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Figure 2.4: DARwIn-OP humanoid robot, on a Bongo Board [Baltes et al., 2014].

from the cart-and-pole inverted pendulum problem: Proportional Integral Derivative

(PID) control, fuzzy logic and Always-on Artificial Neural Networks. The first policy

that he applied to the controllers was Do the Shake, which allows the robot to react to

any external forces but didn’t produce any new trajectories other than the recovery.

The second approach was called Let’s Sway, which allows the robot to create a new

path to promote dynamic stability. The robot was able to recover its balance by

adjusting the ankle and hip joint to relocate the COM in the frontal plane. Figure

2.4 shows a kid size robot (DARwin) on a bongo board.

Iverach-Brereton et al. [2017] used a very similar approach to balance a small

alpine skiing humanoid robot (DARwin), actively on the snow (Figure 2.5) for the

purposes of skiing. The approach was based on Do the Shake, which was previously

discussed.
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Figure 2.5: Jennifer, skiing straight down the hills [Iverach-Brereton et al., 2017]

2.2.1.3 Stepping

This approach is the last practical strategy, which can handle small, medium,

and large disturbances in many cases [Stephens, 2007]. This involves taking another

step to relocate the COM within the support polygon area. The process of push

recovery from a significant disturbance is divided into three parts. The first is the

control interface (that is, the high-level layer), and this uses the Omni-walk (omni-

directional) [Behnke, 2006] to position the joints in a particular location on the XYZ

axes. The omni-directional walk gives the ability to the robot to walk in any direction,

and do rotations freely. In Equation 2.1, S denotes the velocity vector, and it is ∈ R3

in the three sagittal, lateral and rotational dimensions [Missura and Behnke, 2013].

The desired step parameters are denoted by S∗:

S∗ = (S∗
x, S

∗
y , S

∗
z ) ∈ R2 × [−π, π] (2.1)

S∗
x and S∗

y refer to the sagittal and lateral Cartesian coordinates of the footstep

respectively, and S∗
z is the rotation of the feet.

The second component, below the control interface, is the foot placement con-
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trol. The inputs of this stage are the desired step parameters Φ∗ (the walking gait

frequency) and S∗. However, apart from the desired step parameters, the forward

kinematics and COM of the robot play a significant role here. The distances in the x

and y planes are calculated, and a 4D COM is created, shown in Equation 2.2:

COMstate = (x, ẋ, y, ẏ) (2.2)

Here, x and y denote the location of sagittal and lateral COM areas respectively and

ẋ and ẏ denote the sagittal and lateral velocity of the COM.

The lowest level component is the Motion Generator, and in this stage, the tra-

jectory for the next step will be generated. The step length S that was given to the

second stage (foot placement control) has a direct impact on the swing amplitude.

Additionally, the walking gait frequency Φ∗ (discussed in the second phase) decides

how fast the stride will be executed.

Figure 2.6 illustrates these three families, with the COM shown as a light blue

circle, the COP shown as a red circle, and a brown arrow indicating the external

force. The yellow arrow indicates one dimension of the support polygon.

There have been various implementations within each of these families. For ex-

ample, Toyota’s running robot (130 CM high, 50 Kg) generates a new trajectory

after a push based on the position of its COM and the support foot, and successfully

recovers from pushes against the chest during hopping and running [Tajima et al.,

2009]. MABEL [Sreenath et al., 2011] also demonstrated the ability to stabilize the

walk after a push by generating a new trajectory. However, the former is a highly

expensive robot that would not compare to the comparatively low-torque servos in

Polaris, and the latter is a planar bipedal robot mounted on a boom of radius 2.25
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Figure 2.6: COP, CMP, and Step Out, using a model of Polaris (after [Stephens,

2007]).

Meters (M), and so can only walk around a fixed circle.

Yun and Goswami [2011] introduced a momentum-based stepping controller that

tested an adult-sized humanoid robot in a simulation called Locomote, a software

package based on Webots. In their solution, the simulator checks the maximum

threshold of the angles as well as the torque for each joint of the two legs. If one of its

joints passed their threshold, its step trigger function will be called and it will take a

step for fall prevention.

Lee and Goswami [2010] presented another stepping approach that was specially

for non-stationary and non-continuous grounds, also in a simulation. Their solution

was very costly computationally, because it required calculating COP, COM, and

the linear and angular momentum of the robot in real time. Since this approach is

non-continuous, it cannot be applied to a normal walking gait.

Hofmann [2006] studied humanoid robot balance control. He argued that taking
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a step for recovering from an external push is the solution for recovering from a

large disturbances by moving the COP. Missura and Behnke [2013] also studied push

recovery for a simulated humanoid robot that uses capture steps for recovering. In

their approach, the simulated robot calculates a desired Zero Moment Point (ZMP)

location for every step with respect to the COM. ZMP is a point of contact of the

robot’s foot with the ground in which the inertia is equal to zero. In other word, the

contact point does not produce any moment in the horizontal direction (zero reaction

forces) [Vukobratović and Borovac, 2004].

HRP-2 [Morisawa et al., 2010] used a hybrid theory of reactive stepping and dis-

turbance suppression. This robot could recover its walking and balance from different

pushes in various directions. HRP-2 uses disturbance suppression for small external

forces by using a feedback controller. On the other hand, for large external forces,

a feedback controller alone is not capable of controlling the balance. Hence, HRP-2

uses reactive step to obtain its balance by modifying the next steps in its walking

trajectory. To generate a path, HRP-2 uses the COM and ZMP at all times, and the

next foot step is based on the previous COM and ZMP calculation. However, the

maintenance of this method is too long, and without having any external disturbance,

it takes minimum 0.8 seconds to generate a trajectory. This is not fast enough to

recover from pushes in the real world. According to Morisawa et al. [2010], recovering

from a significant disturbance during a single support phase is very challenging, and

HRP-2 could not recover from this type of interference. Also, it is necessary for HRP-2

to know about the environment and external force in advance to have an accurate

recovery, and this method is not applicable where the environment is unknown.
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Atlas [Kuindersma et al., 2016] is another leading humanoid robot that takes

recovery steps for absorbing pushes. Atlas is hydraulically-actuated and is built by

Boston Dynamics, one of the leading robotics companies. It has a height of 188 CM

and a weight of 155 Kg. The robot has a high-voltage 3 phase power supply for the

actuators. The reaction time of Atlas is fast, since it uses a fiber-optic line with a

rate of 10 Gigabits per second (Gbps) for transmitting the instructions. As soon as a

push is applied, its motion planner generates a footstep based on its current dynamics.

According to the authors, in addition to walking and recovering from different degrees

of pushes, Atlas is also able to run and climb stairs.

2.3 Reinforcement Learning and Deep Reinforce-

ment Learning

Morimoto et al. [2004] employed reinforcement learning to teach a simulated biped

robot how to walk with changing the frequency of a simulated robot’s walk (timing

of the steps) in a two-dimensional simulation environment. The authors tested their

trained model on 1.0 degree angle and 4.0 degrees angle downward slopes. The

robot could successfully walk for 50 steps on 1.0 degree angle and 4.0 degrees angle

downward slopes. The authors set 50 steps as the successful trial. In this experiment

the slop was not a dynamic parameter and from the beginning of the trial to the end

of the trial it was set as a constant value. For example from the step one to the step

50 the slope was set as 1.0 degree angle.

Mnih et al. [2015] studied deep reinforcement learning and Q-learning using classic
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Atari 2600 games. The input of their deep neural network was the image pixels and

the score of the game in which it was training on. The output of the network was

a particular discretized action. The action-states were discretized to 18 valid actions

(e.g., up, right, left, and etc.).

Gu et al. [2017] investigated deep reinforcement learning and Q-learning in one

particular setup in both simulation and the real world. They use robotic arms with

seven motors (7 DOF) in a way that the origin of the arms were installed to fixed

table. The authors assigned different tasks in simulation to the robot. These tasks

were random-targets reaching (e.g., door handle), pushing and pulling a door, picking

and placing an object. However, these tasks and its rules were altered in the real world

because of a very low performance in the real world in comparison with simulation.

Even though the tasks were altered in such a way that it is easier to achieve, the

robots were not able to push the doors in the real world. The authors used multiple

robotic arms in the real world to perform asynchronous updates to a deep neural

network.

Kim et al. [2017] used the simulated NASA’s Valkyrie humanoid robot and em-

ployed reinforcement learning to obtain recovery steps after being hit by an external

force. Valkyrie has 135.9 KG weight and 1.83 meter height. It uses AC motors and

the price of the real robot is more than USD $2000,000. The authors applied up to

520 Newton force that is equals to 53.03 KG for for 0.1 of a second to the robot’s

body in a 3D simulation. However, this approach was not tested in the real world.

Also their approach’s computational cost remains a challenge and cannot be adopted

to low performance hardware robots.
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Kumar et al. [2018] investigated a walking mechanism for a 2D simulated bipedal

robot without the upper body with 6 DOF. The authors used reinforcement learning

and deep neural network to achieve this task. This robot has a height of 61 CM with

an approximate weight of 0.4 KG. All the environment external factors such as the

slop, terrain were constant during the whole experiment. As the result of this work,

the robot was able to walk for 10 meters without falling in the simulation.

Haarnoja et al. [2018] employed deep reinforcement learning to train Minitaur a

quadrupedal legged robot for walking. The authors investigated their approach in

both simulation and the real world. The legs were designed in such a way that the

robot is always stable. The physical design of the legs were similar to a triangle shape.

Minitaur was able to walk on different terrains, with or without obstacles. Also, it

could walk up or down a slope without any problem.

Peng et al. [2018] used deep reinforcement learning in a simulation to train dif-

ferent 3D animation characters such as human, dinosaur, and etc. The authors used

imitating reference motion capture to achieve highly dynamic motions. The animated

characters were able to walk, run, cartwheel, dance, backflip, frontflip, and etc. This

approach always needs a reference motion to guide exploration of reinforcement learn-

ing for each given task.

Gil et al. [2019] studied reinforcement learning and Q-learning for teaching a

simulated NAO humanoid robot how to stand up and walk a short distance in a

straight line. The ultimate goal of the authors was the simulated robot traverse from

point A to point B in a short period of time without falling. Same as most of the

previous related works, no changes were applied to the environment during the trials



20 Chapter 2: Background and Related work

and the environment was not dynamic. The authors used a provided simulated model

of the NAO robot in the Webots simulator. The computational cost of the proposed

approach was too high to run with the default hardware of the NAO robot. The

default CPU uses Intel Core i5 with 8 Gigabyte of RAM. Using the default hardware

took more than 2 seconds to send a new set of trajectory to the robot’s joints. 2

seconds would cause the robot to fall and the control system is not fast enough to

avoid falling. For that reason it is impossible to run it in a real robot in the real

world as well as in a simulation. To overcome this issue in the simulation the authors

used external Graphical Processor Unit (GPU) to do the computation. According

to the authors their approach failed in many different scenarios because of a very

specific walking setting that was defined for the robot, that is, walking in a straight

line (no turns and no walking towards the y-axis) on a flat floor. Altering any of the

mentioned setting would cause the robot fall.

2.3.1 Linear Inverted Pendulum Model

Kajita et al. [2001] models the human walk through the use of an inverted pendu-

lum. In this approach, mass is denoted by m, representing a single point p = [x, z0],

and z0 is the constant hip height. The stance leg would apply a force F = [Fx, Fz]
T

and then the ankle position of the stance leg is given by pankle = [xankle,0]
T . Figure

2.7 demonstrates a pendulum (only the leg on the left side of the figure is showing

the pendulum, and the right leg that is doing the swing is not).
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Figure 2.7: Simple Linear Inverted Pendulum Model (after [Kajita et al., 2010])

In the situation of dealing only with the sagittal plane, the linear inverted pendu-

lum model (Equation 2.3) can be modelled as:

ẍ = Cx (2.3)

where C denotes the gravitational constant 6.67408 × 10−11m3kg−1s−2. Given an

initial state (x0, ẋ) the set of equations (Equations 2.4–2.9):

x(t) = c1e
√
Ct + c2e

−
√
Ct (2.4)
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ẋ = c1
√
Ce

√
Ct − c2
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Ce−

√
Ct (2.5)
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C
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can find the state of x, ẋ at any time t or when COM reaches some particular position

x or the velocity ẋ. For modelling the motions in the lateral (Equation 2.10) and

sagittal (Equation 2.11) planes, the following two equations are used.

ẍ = Cx, (2.10)

ÿ = Cy, (2.11)

As was stated earlier, each axis has a one-dimensional Linear Inverted Pendulum

Model (LIPM). One controls the x axis and the other controls the y axis. Figure

2.8 demonstrates the stick diagram of the inverted pendulum. The left picture is

passing the mass over the swing pivot point, and it is during the walking gait with no

external disturbance, and it is in the sagittal walking (walking forward). Furthermore,
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the right picture demonstrates the inverted pendulum for the lateral direction (left

and right). It is very crucial that the inverted pendulum does not pass the pivot

point, and in cases that it is out of the support polygon, the robot will tip over and

fall.

Figure 2.8: Stick diagram of sagittal motion (left picture) and lateral motion ( right

picture) [Missura and Behnke, 2013]

Figure 2.9: Stick diagram of Polaris for the sagittal plane
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2.4 Lagrangian Dynamics

Lagrangian dynamics is a mathematical approach to model the dynamics of com-

plex systems. It can be used to calculate stable biped locomotion. In [Vundavilli and

Pratihar, 2011], the Lagrange-Euler equation was used to generate a dynamic bal-

anced gait for a humanoid robot with 7 Degrees Of Freedom (DOF). The Lagrangian

equation was used in [Kwek et al., 2003] for a biped robot with five links and two

DOF on each leg. The authors used a Proportional Derivative (PD) controller to

control the stability of the robot during walking in the sagittal plane. Similarly, this

approach was used in [Rodriguez-Leal et al., 2011] and [Tzafestas et al., 1997] with

biped robots with five and nine links respectively.

The Lagrangian function of movement for a humanoid robot [Tzafestas et al.,

1997] can be obtained from Equation 2.12. In this formula T denotes the kinetic

energy and U is the potential energy.

L = T − U (2.12)

The kinetic energy for this problem is demonstrated in Equation 2.13, l in this

formula denoted the length of the link.

T =
1

2
mv2 → m

2
(lθ̇)2 (2.13)

And the potential energy (Equation 2.14) is:

U = mgh (2.14)

Now we can rewrite the Lagrangian formula (Equations 2.15, 2.16):

L =
m

2
(lθ̇)2 −mg(l − lcosθ) (2.15)
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L =
m

2
(lθ̇)2 −mgl(1− cosθ) (2.16)

Now we can put this in the Euler-Lagrange equation that is demonstrated in Equation

2.17.

∂L

∂θ
− d

dt
(
∂L

∂θ̇
) = 0 (2.17)

The formula mentioned above is a situation that we have one link and one mass

and one length of the link. In cases that two or more links are connected to each

other, we can write the Lagrangian for the compound pendulum (Equations 2.18–

2.23).

L = T − U → L = T1 + T2 − U1 − U2 (2.18)

T1 =
m1l

2 ˙θ1
2

2
(2.19)

T2 =
m2

2
[l1

2.θ̇1
2
+ l2

2.θ̇2
2
+ 2l1l2θ̇1θ̇2 cos(θ1 − θ2)] (2.20)

U1 = m1gy1 = −m1gl1 cos θ1 (2.21)

U2 = m2gy2 = m2g(−l1 cos θ1 + l2 cos θ2) (2.22)
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L =
m1l

2 ˙θ1
2

2
+

m2

2
[l1

2.θ̇1
2
+ l2

2.θ̇2
2
+ 2l1l2θ̇1θ̇2 cos(θ1 − θ2)]

−(m1gy1 = −m1gl1)− (m2gy2 = m2g(−l1 cos θ1 + l2 cos θ2))

(2.23)

2.5 Summary

Many of these and other related works are examined only in simulation, or in

restricted settings such as walking in a circle while suspended from a pivoting boom.

Those that are physically implemented tend to require highly expensive platforms.

My approach is intended to function for small, medium and strong size pushes on an

inexpensive platform, which can only rely on lower-torque servos, less precise body

machining, and less accurate sensors.

In this chapter I have overviewed previous works, the next chapter details my own

approach to push recovery for inexpensive humanoid robots.
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Design and Implementation

3.1 Introduction

The main contribution of my thesis is an implemented, fully autonomous push

recovery framework that operates on varying terrain using RL and DRL. In order to

implement such a robust push recovery framework, I needed to design and implement

several individual modules. Finally I had to make sure that all the implemented

modules are able to communicate with each other so that the final product, that is

the push recovery, can prevent the robot from falling. The purpose of this chapter is

to describe the approach and implementation of my framework.

Designing and implementing a push recovery technique for a relatively inexpensive

humanoid robot is a very complex and challenging task. The three most important

steps of all push recovery approaches are as follows: first, the robot must be able

to walk freely in almost any direction (omni-directional) [Behnke, 2006] in real time.

Furthermore, the robot should have contact with the outside world (environment)

27
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and read the feedback with its sensors (e.g. accelerometer, vision). Finally, with

the gathered information about the environment and the status of the robot, it will

decide the best course of action to take for preventing a fall. As was discussed in

Section 2.2.1.3, the robot needs to take one or more steps for recovering from strong

pushes. For that reason walking is an important component of a good push recovery

framework. The walking engines in my work are used for both normal walking as

well as push recovery with stepping features. This is also true for humans, where the

walking trajectories are used in both situations. Hence, I implemented a two param-

eter walking engine based on LIPM (discussed in Section 2.3.1). To make the robot

walk, first I had to implement kinematic models (forward and inverse kinematics) of

Polaris. To insure that the mathematical model embodies in the kinematic models

was accurate without damaging the servo motors (to ensure motors go to the calcu-

lated positions for each link), I designed a three-dimensional (3D) model of Polaris

in Python with the matplotlib module. Figure 2.1 shows this model. The use of this

model was for the early stage of my implementation. Since matplotlib is a plotting

software tool and it is not an extensive simulation environment, I decided to create a

new model of Polaris that can be used in Gazebo [Gazebo, 2017]. This model is very

similar to Polaris in the real world. Examining a 3D model of Polaris in Gazebo for

push recovery experiments is more accurate and precise than using matplotlib. Also,

the simulated model in Gazebo is designed to accurately mimic the counterpart’s be-

haviour in the real world. Because of this the results in the real world and simulation

are very close [Koenig and Howard, 2004]. For that reason I upgraded the simulation

environment to Gazebo. Figure 3.16 shows the 3D model of Polaris doing a jump test
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in Gazebo.

In this chapter I describe the design and implementation of all the modules in

my framework. Section 3.2 describes the hardware and software that I used for this

research. Section 3.3 describes the mathematical process for setting a robot joint to

a particular position. In Section 3.4, I describe the walking engine, different feedback

control loops, push recovery stages, simulation, and machine learning. For machine

learning, I introduce and implement two novel push recovery methods called Rein-

forcement Learning Push Recovery (RLPR) and Deep Reinforcement Learning Push

Recovery (DRLPR) that both use stepping (Section 2.2.1.3) to absorb an external

push. These methods are used to replace a set of walking engine parameters that are

based on a human’s experience.

3.2 Building and Adapting a Robot

3.2.1 Hardware

Polaris [Ramezani et al., 2015] is 95 CM in height and 6.9 Kg in weight. The body

links (mechanics) of Polaris were designed and machined at the Amirkabir University

of Tehran (AUT), as our lab lacks fine metal machining capabilities. The links then

were shipped to the AALab and I assembled the links along with other components

of Polaris.
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3.2.1.1 Servo Motors

The robot’s kinematic structure has 20 DOF. This design uses 6 and 3 DOF for

each leg and arm, respectively. The camera of the robot is mounted on two servos that

enable Polaris to look up, down, left and right. I have used three types of Robotis servo

motors in the architecture of Polaris: MX-106 motors in the legs, MX-64 motors in

the arms and MX-28 motors in the neck. All the servos use the Transistor-Transistor

Logic (TTL) serial communication protocol with three pins that share one line for

sending and receiving data, one line for Voltage Common Collector (VCC) and one

line for the ground.

Each hip can rotate in the sagittal, frontal and transversal planes. And the two

arms support the sagittal and frontal planes. The neck servos support the sagittal and

transversal planes, and are responsible for moving the camera. Figure 3.1 illustrates

these three types of servo motors.

(a) MX-28 (b) MX-64 (c) MX-106

Figure 3.1: Three different types of servo motors that Polaris uses [Robotis, 2018a]

3.2.1.2 Computer (CPU)

When I started my research with Polaris, I used a Qute-PC 3000 Series [Quanmax,

2017] as the computation unit for it. This computer was one of the cheapest mini-pcs
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Processor type Intel® Celeron® Dual Core
Processor speed 1.1 GHz * 2

Processor architecture x86_64
Random Access Memory 2GB DDR3

Phone Jack for Line-Out IO 1 X
Phone Jack for MIC-In 1 X

USB2.0 4 X
eSATA/USB Combo connector 1 X

RJ-45, GbE port 1 X
VGA 1 X
HDMI 1 X

SATA HDD 64 GB 1 X
802.11b/g/n 1 X

Table 3.1: Specifications of the Qute-PC-3000 series

that was able to run my framework and the operating system. Figure 3.2 shows the

computer, and Table 3.1 lists its hardware specifications.

Figure 3.2: Qute-PC-3000 series

After a few years of working with this computer, I upgraded Polaris’s computer
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to a better unit which has higher computational power. The current computer that

Polaris uses is GB-BSi3H-6100, a Gigabyte Brix Mini-PC model. Figure 3.3 shows

the upgraded computer, and Table 3.2 lists its hardware specifications.

Figure 3.3: GB-BSi3H-6100 [Gigabyte, 2018]

Processor type Intel® Core i3-6100U
Processor speed 2.3 GHz

Processor architecture x86_64
Random Access Memory 4GB DDR3

Phone Jack for Line-Out IO 1 X
Phone Jack for MIC-In 1 X

USB3.0 4 X
RJ-45, GbE port 1 X

VGA 1 X
HDMI plus mini display 1 X

SSD 120 GB 1 X
802.11b/g/n 1 X

Table 3.2: Specifications of the GB-BSi3H-6100 computer that Polaris uses.
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3.2.1.3 Communication Converter

In order to overcome the problem of connecting servo motors to the computers,

in the beginning of my research, I employed a USB2Dynamixel [Robotis, 2017] board

from Robotis that uses a Universal Serial Bus (USB) port. All Polaris’s servo motors

use TTL (3 pins) network connection to communicate with the other servo motors

or the computer. Figure 3.4 shows the USB2Dynamixel hardware and Figure 3.5

illustrates its connection diagram.

Figure 3.4: USB2Dynamixel connection diagram [Robotis, 2017]

Figure 3.5: USB2Dynamixel connection diagram [Robotis, 2017]

It was very hard to stick the USB2Dynamixel to a part of Polaris’s body during
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its walking gait. This was because the body movement caused the USB2Dynamixel

to disconnect and reconnect regularly. These disconnections are also very bad for the

servo motors and for that reason I changed the USB2Dynamixel to U2D2, illustrated

in Figure 3.6.

Figure 3.6: U2D2 connection diagram [Robotis, 2018b]

3.2.1.4 Dynamixel Hub Communication Board

I designed the servo connections on Polaris in a way that each part of its body

has its own wiring. For example, each arm and leg has its own wiring connection

and all the 20 servo motors are not connected with one long cable. Therefore, there

will be four TTL wires from the arms and legs, and one from the neck. As was

stated previously, the servo motors use a U2D2 to connect to the PC. Polaris uses a

6 Port AX/MX Power Hub that is shown in Figure 3.7 to connect all the TTL cables

together. This hardware receives 5 TTL signals from servo motors and another TTL

port is connected to the U2D2 hardware(Section 3.2.1.3) that is connected to the

computer.

3.2.1.5 Inertial Measurement Unit

Polaris uses an Inertial Measurement Unit (IMU) as an input sensor for balancing,

incorporating both a gyroscope and accelerometer. At the same time as the previously
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Figure 3.7: 6 Port AX/MX Power Hub [Trossenrobotics, 2018]

explained hardware components, I upgraded the IMU device too. For the first few

years of my research, I used a CA$ 3 IMU that contains a single chip InvenSense

MPU-6050 which contains an accelerometer and a gyroscope. The MPU-6050 chip

provides 3-axis (x, y, z) for the accelerometer and 3-axis (x, y, z) for the gyroscope.

This IMU module had to be connected to a micro-controller to be able to work. An

Arduino Nano board micro-controller was used for connecting the MPU-6050 sensor

to the Qute-PC for reading the sensor feedback. Figure 3.8 shows the IMU and the

micro-controller.

One of the main issues with this IMU was the amount of noise that it generated

along the feedback reading. Also its latency for delivering the feedback to the com-

puter was high. So, I upgraded the IMU to PhidgetSpatial Precision 3/3/3 High

Resolution IMU [Phidgets, 2018]. The new IMU consists of a 3-axis accelerometer,

gyroscope and compass, and provides higher resolution readings compared to the

earlier IMU model. Figure 3.9 illustrates the final upgraded IMU.

To show the consistency and accuracy of the IMU for use in detecting external

forces, I recorded more than 2800 readings from both gyroscope and accelerometer.
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Figure 3.8: MPU-6050 IMU connected to the Arduino Nano board micro-controller

Figure 3.9: PhidgetSpatial Precision 3/3/3 High Resolution IMU [Phidgets, 2018]

I tested the rotations of the IMU for both sensors in the x, y, and z axes. I divided

the test into two main parts: 1) when the IMU is almost stationary (I held the IMU

and was trying to avoid applying any force to it). 2) when the IMU was moving

(I applied acceleration and angular velocity). In the stationary tests, both sensors



Chapter 3: Design and Implementation 37

(gyroscope and accelerometer) were tested in three different holding angles: π, π/2,

and 2π. Figure 3.10 shows the scenario of holding the IMU when it is in the three

stationary poses.

(a) Holding IMU stationary in

180 degrees

(b) Holding IMU stationary in

90 degrees

(c) Holding IMU stationary

in 360 degrees

Figure 3.10: Holding the IMU at different angles while it is stationary

For each of these angles {π, π/2, 2π}, two readings were recorded one for the

gyroscope and one for the accelerometer. Figure 3.11 shows the acceleration that

is measured by the accelerometer. As is shown clearly in this figure, there are no

significant changes in the acceleration in any of the axes. This IMU is very accurate,

and it reports all kinds of small vibrations. I tested it by measuring acceleration

based on gravity, which is 9.8 m/s2 (The standard gravity at the Earth’s surface is

1g (g)). This accelerometer can measure +-8g (that is approximately 78.453 m/s2).

Figure 3.12 demonstrates a similar test for the gyroscope while it is almost sta-

tionary. This gyroscope can measure +-2000 degrees per second (angular velocity).

Since I held the gyroscope and there is some shaking in a human hand, the gyroscope

recorded the maximum angular velocity of +-2.5 for the three axes.

I wanted to make sure that both of my IMU sensors record intense forces from
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(a) Holding IMU stationary at a 180 degree angle

(b) Holding IMU stationary at a 90 degree

angle

(c) Holding IMU stationary at a 360 degree

angle

Figure 3.11: Holding the IMU at different angles while it is stationary

time to time. For that reason, I manually move the IMU in different axes with random

speeds. Figure 3.13 illustrates different accelerations in different axes.

The test above shows consistency in the acceleration in different axes. I followed

the exact same test for the gyroscope to check its consistency and accuracy for mea-

suring the angular velocity. For this test, I rotated the IMU via the three {x, y, z}
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(a) Holding IMU stationary at a 180 degree angle

(b) Holding IMU stationary at a 90 degree

angle

(c) Holding IMU stationary at a 360 degree

angle

Figure 3.12: Holding the IMU at different angles while it is stationary

axes with random velocities. Figure 3.14 illustrates this test.

3.2.2 Software

In order to make the servo motors ready to work as a group, I had to program their

firmware individually. I connected each servo to a USB2Dynamixel, and connected
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(a) Trying to get the maximum acceleration in the X axis

(b) Trying to get the maximum acceleration in

the Y axis

(c) Trying to get the maximum acceleration in

the Z axis

Figure 3.13: Trying to get the maximum acceleration on all the axes

the USB2Dynamixel to a computer. The servos also needed power to function. So, I

connected a 3 cell battery to the servos. The programming part of the firmware was:

1) Assigning a unique identity (ID) to each servo. 2) Changing their default baud

rate ( 57142 bits per second (bps)) to 2∗106 bps. I changed the baud rate so that the

servos can send and receive instructions faster. 3) Depending on the location of each

servo on Polaris, I had to change the home position of that servo. 4) After I set the
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(a) Moving the gyroscope with random angular velocity in the X

axis

(b) Moving the gyroscope with random angular

velocity in the Y axis

(c) Moving the gyroscope with random angular

velocity in the Z axis

Figure 3.14: Moving the gyroscope with random angular velocity in all the axes

home (default) position, I place a horn set the way that the home position pin on the

servo’s gear is below the horn’s home position. Figure 3.15 shows these components

and their connections.
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Figure 3.15: Servo firmware programming setup

3.3 Kinematic Models

3.3.1 Forward Kinematics

The forward kinematics problem is related to the relationship between each joint

(servo motor) and the links and connections between them. There are a few different

calculation techniques for the joints such as revolute or rotational joints (servo motor)

and the link extension in case of prismatic or sliding joints [Tolani et al., 2000; Buss,

2004]. I have only concentrated on rotational joints, and because of that all my

calculations and equations are related to these. Rotational joints provide the robot



Chapter 3: Design and Implementation 43

a relative rotation along a single axis. In such a way, each joint has only one single

DOF and to rotate in different directions more DOFs are needed.

The primary objective of forward kinematics is to determine the cumulative effect

of all the joints’ variables. A robot with n joints has n + 1 links connected to it. I

assume that the number of joints starts from 1 to 20 - that is, the total number of

joints that Polaris uses. By the convention mentioned above, joint i connects the link

i − 1 to the link i and in all of my calculations link i − 1 is the fixed link. At any

point when the servo motor i rotates around an axis, only the link i would move and

the link i− 1 is not moving, and as a result, the location of the link i is fixed. The ith

joint is denoted by qi, and it refers to the angle of rotation in that particular joint.

qi = θ1 : joint i revolute (3.1)

For doing a precise and proper kinematic chain analysis, I have assigned a coor-

dinate frame to each link of Polaris’ body structure.

∴ oixiyizi is assigned to the link i (3.2)

For instance if the servo motor number 1 is moving, then the link 1 with the coordinate

frame of o1x1y1z1 is moving, but the link i−1 (that is, link 0) with the frame coordinate

of o0x0y0z0 is fixed and not moving. I used a Homogeneous Transformation Matrix

(HTM) denoted by A and for the link i, is denoted by Ai to identify the position and

the orientation of oixiyizi in regards to oi−1xi−1yi−1zi−1. The equation above can also

be demonstrated in a different way that acts as a function,

Ai+1 = Ai(qi) (3.3)
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The transformation matrix is denoted by T i
j where j is the last number.

T i
j = Ai+1Ai+2 ... Aj−1Aj ⇔ i < j (3.4)

While it is possible to use an arbitrary frame attached to each link and calculate

the position of the end effector for this kinematic chain, a commonly used convention

for referencing the robot’s frames is the Denavit-Hartenberg convention (D-H) [Kel-

mar and Khosla, 1990]. For each HTM, Ai is a product of four basic transformations.

D-H parameters define the motion of actuators connected by hard links. This is used

for efficient calculation of the forward kinematics and inverse kinematics. The calcu-

lation starts with the base link or the previous link. For every rotational joint on a

link, its z axis must point to the axis of rotation for that link. Moreover, each x axis

will point away from the previous joint and after this, the y axis is now constrained to

complete the right-handed coordinate frame. The important thing is that the origin

is not at the centre of the physical servo motor and there are possibilities that the

origin is in open space. So the D-H parameters are concerned about the motion links

and not the physical placement of the components. The D-H convention uses four

parameters to specify the joint-to-joint transformation. These are [Wang et al., 2014]:

• d = the depth along the previous joint’s z axis from the origin to the

common normal

• θ = the angle about the previous z axis to align its x with the new origin

• a = the distance along the rotated x axis. Also known as r, this stands for

radius of rotation about previous z axis. In my thesis I refer to it as a

• α = rotation about the new x axis to put z in its desired orientation
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In such a case there are two parallel z axes. Because we have an infinite number

of common normals, it is possible to pick any d parameters, such as the centre of the

link or the tip of the end-effector. The parameter ai refers to the link length, αi is

the link twist, di is the link offset and θi is the joint angle. Equation 3.5 illustrates

the homogeneous transformation matrix for Ai. Ai comprises a number of elementary

transformations. It comprises a rotation around the Z axis that is denoted by Rz, a

translation along the Z axis that is denoted by Transz, a translation along the X axis

that is denoted by Transx, and a rotation around the X axis that is denoted by Rx.

Ai = Rz,θiTransz,diTransx,aiRx,αi
[Watkins and Dayan, 1992] (3.5)

=



cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1





1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1



=



cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


3.3.2 Inverse Kinematics

After the robot receives a target location (xi, yi, zi) of the end effector of a kine-

matic chain, such as a foot or hand of the robot, a mathematical model of that chain
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calculates all the angles which relate to the end effector. After all the angles are cal-

culated, each servo motor goes to its position, and that will result in the end effector

being at the target location.

As was discussed in Section 3.2.1.1, each leg of Polaris consists of 6 servo motors

and each of them represent one DOF. I designed and implemented (6*2) main vari-

ables in the mathematical model of the legs. Each variable represents a joint’s angle

on Polaris’ legs. I rotated 180 degrees, all the lateral servo motors in the right leg in

comparison with the left leg. All the other components are a mirror image.

Equations 3.6 and 3.7 calculate the projection of a given x coordinate on the

ground for the left and right foot of the robot respectively. In these equations, x

is the goal target in the x-axis and y is the goal target in the y-axis. Also, dht is

desired hip transversal angle, and thdy is the distance between the origin of the robot

(bottom center of the torso) to the hip joints in y-axis.

projected_left_footx = x ∗ cos(dht)− (y − thdy) ∗ sin(dht) (3.6)

projected_right_footx = x ∗ cos(dht)− (y + thdy) ∗ sin(dht) (3.7)

Equations 3.8 and 3.9 calculate the projection of a given y coordinate on the

ground for the left and right foot of the robot respectively.

projected_left_footy = (x ∗ sin(dht) + (y − thdy) ∗ cos(dht)) + (thdy ∗ 2) (3.8)
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projected_right_footy = (x ∗ sin(dht) + (y + thdy) ∗ cos(dht))− (thdy ∗ 2) (3.9)

Equation 3.10 calculates the height of the robot for a given coordinate in the

z-axis. thdz corresponds to the distance between the origin (on torso) and the hip,

in the z-axis. hthfz corresponds to the distances between the hip transversal to hip

frontal joints in the z-axis.

projected_footz = z − (thdz + hthfz) (3.10)

Equations 3.11 and 3.12 calculate the maximum possible length of the left and

right legs based on their calculated coordinates(x,y,z), for the corresponding foot.

max_left_leg_length =
√

projected_left_footx2 + projected_left_footy2

+projected_footz2

(3.11)

max_right_leg_length =
√

projected_right_footx2 + projected_right_footy2

+projected_footz2

(3.12)

Equations 3.13 and 3.14 calculate the angles between the two links of the knee

joints for left knee and right knee, respectively.

knee_joint_left = cos−1(max_left_leg_length2 − hlk2
z − kal2z)

(−2.0 ∗ |hlkz|) ∗ |kalz|
(3.13)
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knee_joint_right = cos−1(max_right_leg_length2 − hlk2
z − kal2z)

(−2.0 ∗ |hlkz|) ∗ |kalz|
(3.14)

Equations 3.15 and 3.16 calculate the angles of the left hip frontal and right hip

frontal, respectively.

hip_joint_frontal_left = sin−1(
projected_left_footy√

projected_left_foot2y + projected_foot2z
)

(3.15)

hip_joint_frontal_right = sin−1(
projected_right_footy√

projected_right_foot2y + projected_foot2z
)

(3.16)

Equations 3.17 and 3.18 calculate the angles of the left hip lateral and right hip

lateral, respectively.

hip_joint_lateral_left = sin−1(
projected_left_footx
max_left_leg_length

)

+sin−1(
|kalz|∗sin(knee_joint_left)

max_left_leg_length
)

(3.17)

hip_joint_lateral_right = sin−1(
projected_right_footx
max_right_leg_length

)

+sin−1(
|kalz|∗sin(knee_joint_right)

max_right_leg_length
)

(3.18)

Equations 3.19 and 3.20 calculate the angles of the left ankle lateral and right
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ankle lateral, respectively.

ankle_joint_lateral_left = π − knee_joint_left− hip_joint_lateral_left

(3.19)

ankle_joint_lateral_right = π − knee_joint_right− hip_joint_lateral_right

(3.20)

Equations 3.21 and 3.22 calculate the angles of the left ankle frontal and right

ankle frontal, respectively.

ankle_joint_frontal_left = hip_joint_frontal_left (3.21)

ankle_joint_frontal_right = hip_joint_frontal_right (3.22)

3.4 Push Recovery

Push recovery for a humanoid robot is not an independent module that functions

alone. To design and implement this module, I had to first design and implement other

dependent modules such as parameterized walking engines and loop-control feedbacks

(open-loop and closed-loop). For testing the forward and inverse kinematics and the

walking engines on Polaris, I had to first test them in simulation to avoid damaging

the servos. To verify the accuracy of my first walking engine (open-loop control), I
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Figure 3.16: Polaris doing a jumping test in Gazebo

used Python with the matplotlib library. The next step was to implement a closed-

loop feedback control. In order to test the accuracy of this control system, I used a

new set of tools: Robot Operating System (ROS) 2016 and Gazebo [2017]. ROS is a

set of software libraries and tools that helps to develop robot software. Gazebo is a

physics enabled, high quality graphics simulation that is compatible with ROS.

Figure 3.16 demonstrates a model of Polaris in a Gazebo simulation during a jump-

ing test. The next step was the implementation of the gyroscope and accelerometer

to make them compatible with ROS and Gazebo.

The operating system that runs on the robot is Ubuntu Linux 16.04. I imple-

mented two different walking engines in C++ and adapted the walk to ROS. All the

modules use ROS to communicate with each other in real-time. Kinetic Kame is the

10th official ROS release, which is currently running on Polaris and is compatible with

my implementation.

3.4.1 Parametrized Walking Engine: Open-loop Control

An open-loop control is a control that does not use any sensor readings to modify

or generate a trajectory. This situation is very close to a human whose eyes and ears

are closed and who does not know if he/she is standing on the floor or lying on a bed.
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Figure 3.17: Open-loop control diagram [Lau, 2014]

In this situation, walking or recovering from a push is very difficult and everything

is based on assumptions (e.g. the robot assumes that it is walking and did not fall).

Figure 3.17 demonstrates an example of an open-loop control system for robots.

We can assume that the robot’s ankles are perpendicular to the ground at all

times. The robot then uses some predefined parameters to generate its walking or

recovery path. This approach would work only for very small external disturbances

during a walking gait. Any sudden change in the angle of the ground to the feet, or an

impact, can cause a fall, since the robot does not have any feedback. One of the main

goals of every robotic application is to make it fully autonomous [Hosseinmemar et al.,

2016]. For a better performance in push recovery, other closed-loop control systems

are discussed in Sections 3.4.2 and 3.4.3.

When using open-loop feedback control, the walk is almost the same all the time,

and it does not matter if the robot walks on an uneven terrain or on a flat surface. For

this research I designed and implemented two parameterized walking engines to test

different balancing approaches. These approaches were discussed in Section 2.2.1.

The first engine that I implemented is based on taking a minimum of two steps

(one complete cycle) at a time. That is, one left and one right step, or vice versa.

Figure 3.18 and Equation 3.23 demonstrate a test for this engine with an open-loop

control. I sent five cycles to this engine. The duration of one full cycle time for this
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test was 650000 ∗ 10−6 of a second.

(650000 ∗ 10−6) ∗ 5 = 3250000 ∗ 10−6

=
3250000 ∗ 10−6

2
= 1.62seconds

(3.23)

Figure 3.18: An open-loop control of five complete cycles on Polaris for the hip

laterals

It will take 1.62 seconds for each foot to complete the given cycles. The blue

trajectory in Figure 3.18 is the right hip lateral joint, and the green trajectory is

describing the left hip lateral joint. As shown in Figure 3.18, all the waves in blue

look the same and all the green waves look similar. The reason is that it is an open-

loop control and any significant disturbance does not have any impact on generating

trajectory.

The walking engine of Polaris is a parametrized walking engine. Five main pa-

rameters are used in the walking engine for adjusting and tuning its walk. These

parameters are: torso tilt angle, hip height, step length, step height and walking fre-
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quency. The walking frequency is calculated by f = 1
T
. Table 3.3 provides the details

of each of the walking parameters respectively. The parameter T is one full cycle

time that consists of two steps (one right step and one left step). It is measured

in microseconds. In the example below (Equation 3.24), if the robot wants to take

two steps (one left, one right) with the duration of 1000000 ∗ 10−6 microseconds (one

second), the walking frequency would be:

f =
1

1000000 ∗ 10−6
⇒ f =

1

1.0
⇒ f = 1 (3.24)

Parameters Action
Torso tilt angle Adjust the robot’s torso to the front or back based on angle

Hip height Adjust the height of the robot based on knees degrees
Step length Specify the length of each step (how long is 1 step)
Step height Specify the height of each step

Walking frequency Specify the number of steps per second

Table 3.3: General walking parameters

In Figure 3.19, a trajectory of the joints left hip lateral and right hip lateral with

the frequency of one is demonstrated.

The second walking engine that I designed and implemented is based on single step

cycle intervals. Every step can have different walking parameters, which helps the

robot to be more balanced and agile. I mainly implemented this new walking engine

for push recovery, or if Polaris needs to adapt its walk to a specific environment.

However, it can be used as the normal walking engine too.

The output of the walking engine are the positions of the two feet. The current

walking engine uses simple linear interpolation, which means the joints move in a

straight line from one key frame to another. Since the robot does not receive any real-

time sensory feedback in this control loop, it is impossible to make any corrections for
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Figure 3.19: Trajectory of the left and right hip lateral for one complete cycle. The

frequency is one.

the next step if that is necessary. Therefore, I designed a closed-loop control method,

discussed in the following section.

3.4.2 Closed-loop Control: Using CMP

A closed-loop control system is a control system that employs one or more feed-

back loops. A humanoid robot using a closed-loop control system can receive feedback

from its sensors (vision, inertia) describing changes to the environment (pushes, un-

even terrain) and correct its trajectory to adapt to these changes. A closed-loop

control system is more computationally expensive compared to an open-loop control

system, due to the enormous amount of sensory data being processed by the con-

troller. However, it is a much more robust control system because of this sensory

feedback.

Polaris employs a walking engine based on the linear inverted pendulum model

[Pratt et al., 2006; Lee and Goswami, 2007], which generates appropriate robot mo-
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Figure 3.20: Closed-loop control diagram [Lau, 2014]

tions based on a description provided by the inverse kinematics of the robot (i.e.

sets motion vectors for all servos over time). My closed-loop control mechanism sets

inputs to the walking engine, allowing it in turn to adjust the robot’s COM, dy-

namically altering this as the environment changes. As stated previously in Section

3.2.1.5, Polaris uses the sensory feedback from the IMU. Both the gyroscope and the

accelerometer in the IMU are used as the inputs to measure the control output. The

walking engine will adapt the robot’s trajectory (control output) as necessary to deal

with changes in the environment, from varying terrain to external forces.

Figure 3.20 demonstrates an example of an closed-loop control system for robots.

I describe my control approach through three phases illustrated in Figure 3.21,

showing a sample push recovery using this approach. This control approach was

accepted for publication at the IEA-AIE 2018 International conference [Hosseinmemar

et al., 2018] and was declared as the second best award winning paper among 146

accepted papers . In Stage 1 of the figure, the robot is pushed by hand at a point in

its walking gait on a concrete floor, and must recognize that it is in a falling state.

Stage 2 represents a brief window in which the robot can calculate a reaction to the

push by devising control changes based on the angular velocity and the linear velocity

of its torso. Stage 3 illustrates recovery, where these control changes alter parameters

in the robot’s walking engine, and these in turn adjust servos accordingly to prevent
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the robot from falling.

(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 3.21: Push, Reaction, and Recovery (using CMP).

In Stage 1, the closed-loop controller takes as input values from the gyroscope

and/or accelerometer, and from these must detect a falling state. In practice this can

be computationally expensive because of the range of potential values. To allow a fast

response, I discretize values. The control methodology categorizes angular velocity

in 50 degrees per second intervals, allowing a definition of constant values for light,

medium and strong pushes. This interval was chosen based on three, 5-minute robot

walk tests to find the maximum angular velocity that Polaris encountered naturally

while using different walking parameters for each test. I similarly experimented with

linear velocity thresholds by hitting the robot with a 2 Kg weight (more than a quarter

of its body weight), and defined light, medium, and strong pushes as linear velocities

of 0.9 m/s, 1.2 m/s and 1.4 m/s, respectively. Figure 3.22 shows these discretized

values.

My closed-loop control collects 1000 gyroscope and accelerometer readings per

second from the IMU, and uses these to continually check if the robot is in a falling
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Figure 3.22: IMU linear velocity discretization

state. Experiments showed that the frequency of the applied pushes were less than

1kHz. Therefore, the IMU could sense all the applied pushes during the tests and it

shows that data rate of 1000 samples per second would be more than enough for any

type of in-range push.

Based on the three thresholds for linear and angular velocities, the robot can very

quickly determine whether it is in a stable state (0 m/s > linear velocity ≤ 0.2 m/s,

with this range necessary to deal with sensor noise), or when it is in a falling state by

exceeding angular velocities or linear velocity thresholds for light, medium, or strong

pushes.

In the brief window between when a falling state is recognized and when the

fall would be irreversible (Stage 2), the robot must make an appropriate response.
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Knowing which threshold (light, medium, or strong push) has been exceeded allows for

a quick response look-up. My control approach implements CMP active balancing

(Section 2), which incorporates COM if only the ankles are moved, and similarly

discretizes potential responses to support a fast reaction.

I discretized the robot’s responses into 9 discrete action spaces. Based on these

discrete actions, my closed-loop controller produces nine outputs that are used to

alter parameters in the robot’s walking engine through modifying hip and/or ankle

positions. These are illustrated in Table 3.4. Step-x is the step length on the x-axis

of the robot frame (forward-backward). Step-y is the step length on the y-axis of

the robot frame (left-right). Step-height is the foot height from the ground of each

step. The x-offset is the offset distance of the feet from the origin/centre of the robot

(centre point of the torso) on the x-axis. Y-offset is the offset distance on the y-axis

from the centre of the torso to each foot. Z-offset is related to the height of the robot,

i.e. standing fully vs. in a crouch. Step-pace is the robot’s speed in terms of the time

it takes to take a single step (not a full walking cycle). The final two parameters are

hip-pitch and ankle-pitch for the lateral motion at the hip and ankles respectively.

Each of these walking engine parameters has minimum and maximum values, also

indicated in Table. 3.4. Any setting acts as an offset value for the current robot pose.

For example, if the robot’s torso is leaning too much to the front, the robot will fall

over. To encounter this problem, hip-pitch can be tuned to adjust the torso’s lateral

motion in order to prevent the robot from falling.

All nine of these responses have particular values based on the strength and direc-

tion of the push that has been recognized. Values can be zero, indicating no change.
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Walking Engine Parameters Threshold
Minimum Maximum

Step-x -5 cm back +5 cm front
Step-y -5 cm right +5 cm left
Step-height 1 cm 8 cm
x-offset -5 cm back +5 cm front
y-offset +4 cm +8 cm
z-offset 34 cm 44 cm
Step-pace 125,000 µs 500,000 µs
Hip-pitch -15◦ tilt back +15◦ tilt front
Ankle-pitch -10◦ tilt back +10◦ tilt front

Table 3.4: Walking engine parameters and value ranges.

For example, a light push on the right side results in detecting a fall to the left, and

modifies the step-y value by 2 CM and the step-pace value by 0.5 per second, leaving

all other values unchanged. These values and their mapping to discretized angular

and linear velocities (fall states) have been tuned over several years of robotics compe-

titions as well as testing the robot specifically under push recovery conditions. These

have proven themselves in the field to be a very fast method of adapting control to

changing conditions (e.g. carpet vs. hard surfaces) in addition to push recovery.

Once the appropriate response has been mapped, the parameters to the walking

engine are changed (Stage 3), and servos are collectively altered in the time window

that remains to correct for the disturbance. Central to all of this is making Stage 2

as short as possible, leaving time for the servos to be adjusted to recover from the

fall. Figure 3.23 illustrates a complete transition of the three stages on a concrete

surface in the Autonomous Agents Laboratory. For pushing the robot for this test, I

used my hand and based on my experience, I tried to apply a medium level push to

the robot.
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Figure 3.23: Recovering from a push (sequence starts from left)

To test my closed-loop control approach more accurately so that the amount of

force is known and not an approximate value, I tested this approach on an artificial

turf that counts as a different surface. Recovery on turf with a soft surface is a harder

task for the robot compared to a concrete surface. I also used a solid 2 Kg weight

suspended from a rope, for hitting the robot from different distances by releasing the

weight, to provide a reproducible push strength. Figure 3.24 demonstrates Polaris

employing CMP (discussed in Section 3.4.2) for push recovery with the 2 Kg weight

released from a 40 CM distance.

Figure 3.24: Releasing a 2 Kg solid weight from 40 CM distance to hit Polaris’s

torso standing on the turf (recovering sequence starts from left, using CMP)

Based on the strength and direction of the push, I discretized the states of the

robot into 14 states that can be mapped with a look-up table. Figure 3.25 shows

all the 14 states. For every direction {front, right, left, back} there are four distinct
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discrete states plus two common discrete states. The complete set of states are: 1)

Stable state: the robot is stable in this state, and this is one of the common discrete

states. 2) Light push state: ω, which represents angular velocity, is ≤ θl, where θl

denotes the maximum ω that a 2 Kg object suspended from a 1 meter rope causes

after being released from a 30 CM distance. 3) Medium push state: ω is ≤ θm, where

θm denotes the maximum ω that a 2 Kg object causes after being released from a 40

CM distance. 4) Strong push state: ω, is ≤ θs, where θs denotes the maximum ω

that a 2 Kg object causes after being released from a 50 CM distance. 5) Fall state:

the robot fell and could not recover successfully. This last state is the other common

discrete state.

3.4.3 Closed-Loop Control: Using Step-out

Even though Polaris was able to recover from many different light and medium

pushes from different directions, and on different surfaces (e.g. concrete and carpet),

Polaris was not able to recover from a strong push using the techniques described

in the previous section. To give the robot the ability to recover from even stronger

external forces, I designed and added a stepping functionality to the robot’s push

recovery module. By taking extra steps, the robot can handle the stronger external

pushes more easily, and less pressure will be applied to the servo motors during the

recovery process. Therefore, the walking engine was modified to take an individual

step (half of a complete cycle) for faster reactions to the external disturbances. This

means the robot can take only one step with either the right or left foot, not a full

walking cycle. I implemented the stepping in such a way that every step has its
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Figure 3.25: Discretization of the robot states (4 push directions * 3 push strength

= Total number of 12 discretized states)

own walking engine parameters, as shown in Table. 3.4. Based on different walking

situations, these parameters can be altered. My stepping approach is an extension

of the CMP model [Hosseinmemar et al., 2018] that was discussed in Section 3.4.2.

Similar to my CMP model, that has three stages (Stage1, Stage2, and Stage3) as

shown in Figure. 3.21.

Figure 3.26 demonstrates a successful push recovery by taking extra steps. The 2

Kg weight was released from a 50 CM distance, causing a strong push when hitting

the robot. For this experiment, to examine the robustness of my closed-loop control, I

tested the robot on a different floor. Artificial turf is one of the most difficult surfaces
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for the robot in terms of recovery. The turf’s surface is very soft and usually its

height is between 2-3 CM, based on our competition experiences. Walking on such a

surface alone makes the robot unstable. Applying pushes from different directions to

the robot with an external object can easily cause a fall.

In Figure 3.26, during Stage 1 (Push), Polaris reads the value of falling state

from its sensory feedback value from gyroscope and accelerometer. Then in Stage

2 (Reaction), Polaris maps the sensory feedback values to the discretized table, and

obtains the strength of the force. Finally, in Stage 3 (Recovery), Polaris updates its

walking engine parameters to counter the applied push, and recovers successfully.
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Figure 3.26: Push, Reaction, and Recovery (using stepping strategy, sequence starts

from left).
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3.4.3.1 IMU Simulation

In Section 3.4.2, I explained how the IMU was discretized into different states

in order to detect the push. Also, I used both angular and linear velocities to find

the direction of a push as well as its force. I used the stride based walking engine

which is based on one right and one left steps. The results of this approach were

promising if the robot knew which surface was standing on (for example, turf, carpet

or concrete) while Polaris was using the stride based walk. After I examined the

previous implementation of the IMU with the single step walking engine and unknown

surfaces, I found out that this IMU implementation would not be sufficient for my

final task. For that reason I designed and implemented a new approach for calculating

the force and its direction.

In this approach I just use the accelerometer of the IMU module. The main reason

that I did not use the gyroscope for this approach was that gyroscope was not useful

if the surface was not known. This meant I had to measure all the angular and linear

velocities on 3 different surfaces individually. Also, I previously had to let Polaris

know that it is standing on a particular surface (for example, artificial turf), then

it read the correct discretization from the gyroscope. If the robot is not informed

what surface it is standing or walking on, the problem of active balancing becomes

much harder. In my new approach, I did not let Polaris know about the surfaces at

all times (surfaces are partly unknown). This way we have a more universal solution

to the push recovery problem. I used the acceleration in the x-axis (front and back)

and y-axis (right and left) to detect pushes, measuring the magnitude and direction
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of applied force. The calculation of the magnitude of the force is given by

effective acceleration =
√

ax + ay (3.25)

where ax is the acceleration in the x axis and ay is the acceleration in the y axis.

I also calculated the angle at which the torso of Polaris was hit using

angle =
tan2−1(ax, ay)

π ∗ 180
(3.26)

To examine the accuracy of the accelerations and the angles that were calculated

based on Equations 3.25 and 3.26 in practice before running my experiments, I as-

signed 150 pushes for each discretized state - this amounted to 1800 (12 states * 150

pushes) pushes in total in the simulation. Figure 3.27 shows the top view of the

applied pushes in four different directions. The robot is at the center of this circle,

facing at 180◦ for all the trials. The maximum linear acceleration that the accelerom-

eter recorded for a push while Polaris was walking was 0.72m/s2. In total 450 pushes

were applied to 0◦ (back), 450 pushes were applied to 90◦ (right), 450 pushes were

applied to 180◦ (front), and 450 pushes were applied to 270◦ (left). In Figure 3.27,

the further the colorful circles are to the center of the white circle, the stronger the

pushes are, with a bigger circle area. This figure is based on the recorded angles

and their corresponding acceleration at the impact times. Since Polaris was walking

during every push, the recorded angles are not exactly 0◦, 90◦, 180◦, 270◦.



Chapter 3: Design and Implementation 67

Figure 3.27: Top view of the 1800 (12 states * 150 pushes) trial applied pushes to

four sides (0◦ = back, 90◦ = right, 180◦ = front, 270◦ = left) of Polaris’s torso

during its walk. Bigger circles signify stronger pushes.
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Figure 3.28: 150 pushes applied to Polaris’s back from 30 CM. Top image shows the

detected angles of the pushes. Bottom image shows the corresponding accelerations

of the pushes.

Figure 3.28 shows the readings of 150 pushes that were applied to Polaris’s back (0

degree in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 30 CM distance. The applied force is calculated based on equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.29: 150 pushes applied to Polaris’s back from 40 CM. Top image shows the

detected angles of the pushes. Bottom image shows the corresponding accelerations

of the pushes.

Figure 3.29 shows the 150 pushes that were applied to Polaris’s back (0 degree in

polar space in the simulation) with an approximate force equal to releasing the bottle

from a 40 CM distance. The applied force is calculated based on Equation 3.27. This

test was during a normal walking gait (two complete strides).
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Figure 3.30: 150 pushes applied to Polaris’s back from 50 CM. Top image shows the

detected angles of the pushes. Bottom image shows the corresponding accelerations

of the pushes.

Figure 3.30 shows the 150 pushes that were applied to Polaris’s back (0 degree in

polar space in the simulation) with an approximate force equal to releasing the bottle

from a 50 CM distance. The applied force is calculated based on Equation 3.27. This

test was during a normal walking gait (two complete strides).
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Figure 3.31: 150 pushes applied to Polaris’s right side from 30 CM. Top image

shows the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.31 shows the 150 pushes that were applied to Polaris’s right side (90

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 30 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).



72 Chapter 3: Design and Implementation

Figure 3.32: 150 pushes applied to Polaris’s right side from 40 CM. Top image

shows the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.32 shows the 150 pushes that were applied to Polaris’s right side (90

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 40 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.33: 150 pushes applied to Polaris’s right side from 50 CM. Top image

shows the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.33 shows the 150 pushes that were applied to Polaris’s right side (90

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from 50 a CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.34: 150 pushes applied to Polaris’s front side from 30 CM. Top image

shows the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.34 shows the 150 pushes that were applied to Polaris’s front side (180

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 30 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.35: 150 pushes applied to Polaris’s front side from 40 CM. Top image

shows the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.35 shows the 150 pushes that were applied to Polaris’s front side (180

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 40 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.36: 150 pushes applied to Polaris’s front side from 50 CM. Top image

shows the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.36 shows the 150 pushes that were applied to Polaris’s front side (180

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 50 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).



Chapter 3: Design and Implementation 77

Figure 3.37: 150 pushes applied to Polaris’s left side from 30 CM. Top image shows

the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.37 shows the 150 pushes that were applied to Polaris’s left side (270

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 30 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.38: 150 pushes applied to Polaris’s left side from 40 CM. Top image shows

the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.38 shows the 150 pushes that were applied to Polaris’s left side (270

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 40 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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Figure 3.39: 150 pushes applied to Polaris’s left side from 50 CM. Top image shows

the detected angles of the pushes. Bottom image shows the corresponding

accelerations of the pushes.

Figure 3.39 shows the 150 pushes that were applied to Polaris’s left side (270

degrees in polar space in the simulation) with an approximate force equal to releasing

the bottle from a 50 CM distance. The applied force is calculated based on Equation

3.27. This test was during a normal walking gait (two complete strides).
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3.4.4 Approximating the real world force in simulation

At the beginning of every push, the robot was positioned in the environment,

standing in a stable state. According to RoboCup’s rule for push recovery as a

technical challenge, the robot should be in a walking mode while it is being hit by the

external object. For that reason, every time before the robot was hit, Polaris took

two steps (one right and left). Then some fixed measured external forces that are

equal to releasing the 2 Kg weight from different distances was applied to the COM

of Polaris (the bottom of its torso) in a particular direction. In order to calculate

these forces, I used the following forumulas [Pook, 2011]:

F = m× a (3.27)

Equation 3.27 is for calculating the force. In this equation, F denotes the force, m

denotes the mass of the object being released (2 Kg), and a denotes the acceleration

of the released object. Both F and a are not known. By finding the velocity of the

object, we can then calculate the force.

V =
√

2gl(1− cosθ) (3.28)

Equation 3.28 calculates the velocity of the point mass, m. In this equation, g is

acceleration due to gravity, l is the length of the pendulum, and θ is the angle of the

pendulum. This equation is derived from the potential energy, W , and the kinetic

energy, K. Equations 3.29 and 3.30 show these two energy equations respectively.

W = mgl(1− cos θ) (3.29)
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Distance 30 cm 40 cm 50 cm
Applied Force 16 N 21 N 27 N

Table 3.5: The three calculated forces based on Equation 3.27 in which were applied

to the bottom of Polaris’s torso in the simulation.

K =
1

2
mV 2 (3.30)

To calculate θ in Equation 3.28, I used the formula sin−1( d
L
), where d is the ground

projected distance ({30, 40, 50}cm) between the robot’s torso and the bottle, and l is

the length of the rope (140 CM).

The acceleration of an object can be expressed as:

a =
∆v

∆t
(3.31)

where ∆t is an approximate time that the velocity reaches from its maximum to

0. After few trials I recorded 0.1 second as ∆t. Hence, we can rewrite Equation 3.27

as

F = m× ∆v

t
(3.32)

Table 3.5 shows the calculated forces that I applied to the bottom of the torso of

Polaris in every push.

Following impact, the robot detected the push with its IMU, and took a set of

actions (one step).
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3.4.5 Machine Learning

3.4.5.1 Software

For the machine learning part of my research I used the TensorFlow (version

1.9) [Google, 2017] framework with Python (version 2.7). I used Python as the

programming language to implement the learning and testing parts of my research.

In the following sections I am going to explain the two learning approaches that I

employed and implemented in my research.

3.4.5.2 Reinforcement Learning

Reinforcement Learning (RL) is learning what to do - how to map situations to

appropriate actions - so as to maximize a numerical reward signal [Sutton and Barto,

1998]. The learner is not told what set of actions to take in different situations, but

must instead discover which actions yield the best reward over time. These actions

are usually selected randomly in the beginning when the learner does not have enough

information about the environment, in order to gain feedback and make better choices

as time goes on [Cassandra, 1998] .

In addition to the set of actions a available for the robot to perform, RL generally

has four basic main components [Ng et al., 1999]: a policy, reward function, value

function and a model of the environment. At the very beginning, the robot has some

given knowledge of the world, but does not know anything about the policy to be

learned. The robot continually alters the environment by taking actions, and then

perceiving the results as a new state st+1 (where time t falls into discrete steps t =

0, 1, 2, 3 ...). The environment is uncertain - executing an action may not lead to



Chapter 3: Design and Implementation 83

a single successor state, but rather results in one of several possible successor states

where the probability of reaching a given successor state is governed by an unknown

probability distribution. In addition to perception, the robot also receives a numeric

reward based on its actions.

In order to learn, the robot constructs a mapping from the available states to the

available actions, and calculates the probabilities of given outcomes from selecting

each possible action for that particular state. This whole mapping is called the policy

and is denoted by π. When referring to the policy at a particular time point t during

learning, it is denoted πt and for the particular πt there will be a particular state and

action, denoted as πt(s, a), which produces the probability that the action a should

be chosen in state s [Watkins and Dayan, 1992]. The other components of RL serve

to improve the policy.

By receiving some representation of the environment state se, where e denotes the

environment, for any particular time t we have ⇒ set |∈ S and ∀st ∈ S∃at ∈ A where

at denotes an action for that st and A denotes the set of available actions [Watkins

and Dayan, 1992]. For the next step st+1 may be rewarded by a real number rt+1 ∈ ℵ

for the action that it took previously. ℵ denotes real numbers.

This type of RL is called Q-learning [Watkins and Dayan, 1992]. There are also

different mathematical models of RL such as Sarsa [Cassandra, 1998]; however, I used

the Q-learning technique as the RL mechanism in my work. Equation 3.33 shows the

components of the Q-learning formula [Watkins and Dayan, 1992] .

Q(state, action) = R(state, action) + gamma

∗Max[Q(next_state, all_possible_actions)]
(3.33)
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In this equation, gamma (γ) ranges between 0 and 1. If γ is closer to 0, we are

more interested in immediate rewards and if this number is closer to 1 we are more

interested in delayed rewards. We can then rewrite equation 3.33 as:

Q(s, a) = R(s, a) + γmax
a
′(Q(s′, a′)) [Watkins and Dayan, 1992] (3.34)

Where R(s,a) denotes the reward function, s′ denotes the next state after the action a

was taken, a denotes the action in state s and a′ denotes action in state s′. In general

the reward function can be represented in two different ways: 1) In situations where

the task is episodic (discrete state and discrete action); 2) In situations in which we

are dealing with continuous state and continuous actions. Equations 3.35 and 3.36

show these two situations respectively.

Rt = rt+1 + rt+2 + rt+3 + . . .+ rt+n [Watkins and Dayan, 1992] (3.35)

Rt = rt+1+ γrt+2+ γr2t+3+ γr3t+4 . . .+ rn−1
t+n =

n∑
k=0

γkrt+k+1[Watkins and Dayan, 1992]

(3.36)

Polaris was rewarded +100 if it was pushed and took a proper set of actions that

did not let it fall. Otherwise, -100 was given, as the punishment. Before choosing

these two arbitary numbers, I tested the learning process with +100 and -10000.

However, I did not find this set of numbers to be a good combination. Since the

robot’s learning process was in real-time (no fast forwarding in the simulation), the

procedure of every push took 10 seconds from reseting to the fall or stable state

in the simulation environment. Because of this constraint, I set the initial number

of random tries to 500 for every direction and distance. For example when Polaris
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started learning the actions for pushes from front direction and the distance of 30 CM,

it was allowed to take only 500 random sets of actions (in the given threshold: Table.

3.4) for the front direction with the distance of 30 CM. After it explored randomly for

500 times, it started to exploit from its previous exploration. Based on my previous

experiences, I chose the learning rate of 0.05 for the next step - that is, taking actions

based on the robot’s previous experience. All the discretized domains had a chance

of having 500 random actions at the very beginning of learning. However, the total

number of successful and unsuccessful actions that the robot made for each direction

and each distance was not necessarily the same.

After an action was taken by the robot, the look-up table was updated to reflect

the newly-earned reward. If the action was successful, 100 was added to the previous

reward, otherwise 100 was deducted from the previous reward. The goal is to maxi-

mize the cumulative rewards in the long run. As the look-up table is improved over

time, we must also decide when further training would not be helpful. I used a fixed

value of 10,000 iterations. To choose this number, I tested some arbitrary numbers of

iterations such as 500, 1000, 5000, and 10000, on one category of push (front 40 CM).

The results for 10000 iterations was better than others. I chose the front direction to

test, because based on my preliminary tests, recovery from the front side is harder

than other sides. Also, I chose the 40 CM distance, as an average external force.

As was discussed earlier (Section 3.4.2), the robot’s environment is discretized

into 14 discrete states (Figure. 3.25). Each of these discrete states was explained in

Section 3.4.2. By employing RL, Polaris learned how to recover from various pushes

{30, 40, 50}cm from different directions {left, right, front, back}. The final output
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of each model is a set of actions (walking engine parameters). Each learned action

corresponds to a discrete state, and Polaris selected the corresponding action when

it found itself in that discrete state.

In my approach to recover from every push, the robot takes one right and one left

step. The first step must be able to absorb the majority of the push, since it is an

initial step. If a push comes from the front or back sides, the first step will be the

right foot. Also, if the push is applied from the right side, the robot takes the right

foot as the first step. The only time that the robot takes the left step as the first step

is if it is pushed from the left side. After the first step is learned, the learning process

for the second step will begin.

The first step is considered as learned step, only if by taking it, the robot will

be in the stable state in the simulation environment. However, a learned step might

not be as good in the real world environment for various reasons. In the simulation

environment, many limitations are not considered, such as over torquing servo motors

or voltage oscillation. For example the robot might take one right step after the push

is applied and it recovers from the impact. However, there might be lots of weight

(pressure) on a single servo (that is, the right ankle servo). Even though this might

not affect the robot in the simulation, it will over torque the right ankle of Polaris in

the real world, which will cause Polaris to fall. To overcome this possible issue, the

second step will be used to reduce the pressure on the servos. Learning of the second

step is started upon completion of the learning of the first step.

In the learning process, for every attempt (push), only one parameter will be

altered at a time. This is similar to the hand-tuned approach to push recovery. Many
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times (e.g. eight out of nine times), walking engine parameters have generally good

values, and only one of them is not good. This might lead the robot to a falling

state. Let’s assume a push has been applied to the back of the robot and the bottle is

released from a 30 CM distance. The generated set of action for this push is: {step-x:

2, step-y: 0, step-height: 3, x-offset: -1, y-offset: 4, z-offset: 38, step-pace: 300000,

hip-pitch: 14, ankle-pitch: 0}. All the generated parameters except the hip-pitch, are

considered good values. When using a hip-pitch of 14, the robot leans too far forward,

and as the result it will fall (facing the ground). Since the applied force will push

the robot to the front, one of the reasonable strategies is to shift the body mass of

the robot to the back (lean backward). In order to do this, the hip-pitch value must

be reduced (for example, to 4). Changing one value at a time and comparing the

performance based on the new generated value, would eventually lead to a successful

recovery.

I implemented each model (for example, direction: front, distance: 40 CM) as

a look-up table and constructed it as a multi-dimensional numpy array [Walt et al.,

2011]. In the look-up table, all the rows refer to the discrete states and all the columns

refer to the discrete actions . After this step, I implemented Q-learning as a function

which receives the look-up table as its parameter and updates the table’s value(s) in

every iteration. In every iteration, the Q-learning function selects an action from the

9 action categories, with a value between the minimum and maximum of that action

category (Table. 3.4). Depending on the learning rate, the strategy (behaviour) of

the robot will be different. If the learning rate is high (maximum 0.99), the robot

would be interested more to the current reward as opposed to the long term future
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reward (cumulative reward). Generally, if the rate is high the outcome is not as good

as having the rate at a lower value.

Polaris learned different combinations of walking parameters that it used in push

recovery to replace the hand-tuned entries. The entries were the possible actions

of the robot (discussed in Section 3.4.2). Figure 3.40 shows the system diagram

of my adaptive closed-loop control using the RL for one step of a stride. In this

diagram a disturbance represents an external push that can be added to the closed-

loop control at anytime (before or after a set of instructions send to the motors) during

a walking step. The IMU measures a potential disturbance signal along with some

added ambience noise and send it to the controller module. After that the controller

measures the strength and the direction of the disturbance. Then using the look-up

table that was generated by RL module it matches a category that is appropriate for

the push and send an updated set of walking parameters to the motors.
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Figure 3.40: System Diagram of my adaptive closed-loop control using the RL.

3.4.5.3 Deep Reinforcement Learning (DRL)

In Section 3.4.5.2, I explained the transition of my hand-tuned approach [Hossein-

memar et al., 2018] to a fully autonomous approach that used RL to generate walking

step trajectories. However, there is room for further improvement. The choice of re-

ward function in my CM implementation was based on the simulations’ assessment.

The main issue with the reward function for this approach is that Polaris can only

distinguish between the best and worst actions. Best actions lead the robot to the

stable state. Worst actions are actions that lead the robot to a fall state. However,

some action choices for which the robot is penalized do actually have the potential

to lead the robot to a stable state, but a fall results in negative rewards and the

robot then avoids attempting those actions in the future. As a result, many possible



90 Chapter 3: Design and Implementation

step trajectories will not likely be learned. If instead, I employ Deep Reinforcement

Learning (DRL), the robot should have the ability to learn the reward value in a

different way, which may be an improvement over both human design and the RL

approach based on the simulation.

Deep learning is a machine learning technique that enables computers to learn

features or tasks from a set of data (dataset). Since the gained knowledge is based

on the computer’s experience, there is no need for a human operator to specify all

the required knowledge needed by the computer [Goodfellow et al., 2016]. DRL is

a combination of deep learning and reinforcement learning. In DRL, an approach

called Function Approximation (FA) can be used to avoid manual discretization of

a continuous state space [Boyan and Moore, 1995]. FA is a Machine Learning (ML)

approach in which the process of approximation is the process of learning. This is

well suited for estimating a value in an unknown continuous state space. If D =

{d1, d2, . . . , dn}, where D denotes a dataset, and d1 ∈ D, there will be a dn+1 /∈ D

[Šalát, 1980; Funahashi, 1989]. This means a function in a continuous space can have

some properties which cannot be found in the dataset and these must be counted

as unknown properties or unknown states (there is always a number which is not in

the dataset and it is unknown for the dataset). FA helps to overcome this type of

problem by trying to approximate functions in unknown states. In other words, FA

finds the underlying relationship between a given set of inputs and outputs (dataset).

Depending on the type of the problem, a continuous function can be approximated

using different approaches. FA methods are commonly categorized into two [Hardle

and Mammen, 1993]: Parametric Regression and Non-Parametric Regression. Linear
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Models with Ordinary Least Squares [Dismuke and Lindrooth, 2006], and Online

Approximation with Recursive Least Squares [Leung et al., 1996] are examples of

Parametric Regression. On the other hand, Interpolation and Extrapolation [Chow

and Lin, 1971], Gaussian Process Regression [Quiñonero-Candela and Rasmussen,

2005], and Artificial Neural Networks [Ferrari and Stengel, 2005] are examples of

Nonparametric Regression. Usually, it is not possible to map a continuous function’s

exact parameters to the sample dataset A. The main reason for this is if x ∈ R, where

x is a parameter in a continuous state space and belongs to a continuous function, and

R represents real numbers, there should be an infinite number of members in A, which

means R ⊆ A, which is impossible. The main goal of FA is to minimize the error

that the model produces when it is predicting the output (discovering an unknown

state). There are many different approaches to measure this error, but the common

ones are: Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error

[Chai and Draxler, 2014].

The most common function approximator in Artificial Intelligence (AI) is an Ar-

tificial Neural Network (ANN) [Ferrari and Stengel, 2005]. There are many types

of ANN to choose from in terms of their structure and usage: feed-forward [Bebis

and Georgiopoulos, 1994], recurrent [Williams and Zipser, 1989], modular [Kimoto

et al., 1990], as well as radial basis functions [Park and Sandberg, 1991]. I employed

a feed-forward ANN in my deep learning mechanism. In feed-forward ANNs, there

are no loops and the information on the network moves directly from the input layer

through a hidden layer to the output layer.

To apply this to deep learning, we introduce more than one hidden layer, producing
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a Deep Neural Network (DNN) [Hinton et al., 2012]. I designed my DNN structure

with one input layer, 20 hidden layers, and one output layer. The input layer takes

the 9 robot walking engine parameters (Section 3.4.2), and learns the reward based

on the actions taken by the robot.

Training and testing the DNN involves using both the RL and DRL components

running in tandem. I reserved the final output of the previously-trained RL compo-

nent (i.e. the finished policy using only RL), and then reset the RL to start fresh.

The RL component begins training as previously. However, instead of using the sim-

ulation to assess an action, it uses the currently learned reward function from the

DNN. I have divided the whole DNN process into three steps.

First, I need a rich dataset for training the DNN, comprised of an even mix of

good and bad action choices. The logical place to start with this would be the policy

that results from the previous RL training, i.e. the resulting look-up table.

Second, I need to use this dataset to train the DNN. For this I used supervised

learning techniques [Cunningham et al., 2008]. The network needs to learn a model

based on the sample data (my sample data consisted of 24000 data points). Every

data point in the dataset will have a label, which is the reward for that particular

action. For example, if d1 ∈ D is the first data point, it will have a corresponding

label that is l1 ∈ L. As was discussed in Section 3.4.5.2, a reward can be either

+100 or -100. I used this information to generate the corresponding labels. Based on

this, the labels 1 or 0 were assigned to each data point, where 1 represents 100 and

0 represents -100. The DNN predicts if an action will lead the robot to a fall state

or the stable state. I used a sigmoid activation function (Equation 3.37) to keep the
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output of the DNN between 0 and 1.

S(x) =
1

1 + e−x
[Han and Moraga, 1995] (3.37)

In Equation 3.37, x denotes the output of the DNN and e is Euler’s number ≈ 2.718.

The activation function will be placed after the output layer to apply the expected

adjustment to the output. Using this formula, the DNN’s output is a probability,

a real number between 0 and 1. I formulated my DNN as a binary classification

problem [LeCun et al., 2015], and for that reason I needed to measure the cost with

a classification criterion for the loss function. I used the binary-cross-entropy loss

function [Buja et al., 2005] to measure the loss during training. Equation 3.38 shows

the binary-cross-entropy function. In this equation, li corresponds to the label for di

in the dataset with the value of 0 or 1; p denotes the probability that the network

predicted and it is a real number between 0 and 1.

−(li ∗ log(p) + (1− li) ∗ log(1− p)) [Buja et al., 2005] (3.38)

The last step is to test my DNN with unseen inputs. To test this, I used the DNN

to generate reward values, and show that the RL component can be trained with this

reward function and possibly perform better in push recovery. To do this, I reset the

RL component to an untrained state, and the training process will ensue in the same

way as before, except that the chosen action will be sent to the DNN to generate a

reward value rather than using the prior reward function (using simulation). If the

output p (the probability of the action being successful) of the DNN (the output of

the network) is 0 ≥ p < 0.9, the action will be classified as a fall and a -100 reward

will be generated. However, if the output is 0.9 ≥ p ≤ 1.0, the action will be classified
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as stable and +100 will be returned as the reward value.

The resulting RL component should allow better responses to push recovery, since

the DNN is exploring a larger space than was possible with the original reward func-

tion. This also means that we should be able to repeat this process, and use the

newly-trained RL component to generate a larger dataset for training the DNN, and

possibly improve performance further. However, this is a very time consuming pro-

cess and I did not have enough time to examine it. It would be an interesting avenue

of future work.

Figure 3.41 shows the structure of my DNN showing 5 of the 20 hidden layers.

In this figure, the green layer is the input layer of the network and the parameters

{Input #1,…, Input #9} refer to the robot actions that were listed in Table 3.4. I

implemented the network with 20 hidden layers with 18 neurons in each layer. The

number of the neurons in the hidden layers are usually related to the quantity of

inputs to the network and are often double the number of inputs. However, this is

not a universal rule, and requires some tests and modifications to parameters such

as the number of neurons in the hidden layer. For choosing the number of hidden

layers, I examined the performance of the network with varying numbers of hidden

layers {2, 9, 15, 20} and neurons on each layer {9, 18}. For example, I checked

the performance of the network with 15 hidden layers, once with 9 neurons on each

layer and with 18 neurons on each hidden layer. The last layer is the output layer,

which produces a floating point number between [0,1] which is a learned reward for

an action, representing the probability that the action will result in a stable state.
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Selecting a correct set of parameters for building, training and testing a DNN

is a time consuming process. The network needs to be tested and evaluated with

different sets of parameters to check the accuracy and performance of the network.

For example, there are parameters such as learning rate (how fast the network should

learn), batch size (the number of training samples in which will be given to the network

during training), epoch (one forward pass and one backward pass for all the training

sample data), and number of hidden layers, which play an important role in every

DNN. After testing the performance of the network with many different combinations,

I chose the learning rate of 0.1, batch size of 20000, with the epoch of 10000 and 20

hidden layers.

Figure 3.42 shows the system diagram of my adaptive closed-loop control using

the RL for one step of a stride. In this diagram a disturbance represents an external

push that can be added to the closed-loop control at anytime (before or after a set

of instructions send to the motors) during a walking step. The IMU measures a

potential disturbance signal along with some added ambience noise and send it to the

controller module. After that the controller measures the strength and the direction

of the disturbance. Then using the look-up table that was generated by RL module

it matches a category that is appropriate for the push and send an updated set of

walking parameters to the motors.
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Figure 3.42: System Diagram of my adaptive closed-loop control using the DRL.

3.5 Summary

In this chapter I described my novel approach to humanoid robot push recovery

using RL and DRL. In Section 3.4.5.2 I explained how RL module uses the simulation

software for rewarding robot’s actions, and stores the actions and the rewards in a

look-up table. In Section 3.4.5.3 I discussed the architecture of my DNN and how this

network replaces the simulation software for rewarding the robot’s actions. Similar

to Section 3.4.5.2 I used a look-up table to store the actions and rewards. Also,

this chapter has described my push recovery implementation in order to support

an evaluation of my approach. The following chapter describes the experiments I

performed in both real world and simulation, to evaluate my approach against baseline
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conditions.
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Figure 3.41: Partial view (instead of 20 hidden layers, only 5 are shown) of the

architecture of the Deep Neural Network
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Evaluation

4.1 Introduction

In order to examine the effectiveness of my approach (Chapter 3), I ran various

experiments in simulation and in the real world. I compared the performance of

my approach against two baseline cases. In the first base case, the robot was not

able to use any sensor feedback (IMU) during the experiment (open-loop control

feedback). In the second base case, the robot took random actions within the given

thresholds of walking engine parameters and was able to use the IMU (closed-loop

control feedback). During the experiments, the robot did not know anything about

the environment (different surfaces). The robot was examined on concrete, carpet,

and artificial turf in the real world. In the simulation, it was examined on simulated

concrete and turf. This chapter begins with the review of my research questions

(Section 1.3). I chose to not to modify any parameters during the experiments.

This included the type of the ground that the robot was examined on during the

99
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experiments. The type of surface, and the directions and strength of the pushes were

all chosen randomly.

4.2 Review of Research Questions

Recall my research questions from Section 1.3:

1. Is my closed-loop control going to be fast enough for inexpensive robots that

are equipped with cheaper hardware for responding to an external push?

2. Are any of my reinforcement learning and deep reinforcement learning push

recovery techniques going to be able to replace the parameters that a human

operator provides (hand-tuned) for recovery based on his/her experiences?

3. Which of the proposed approaches (RL, DRL), results in better recovery if the

surfaces, directions, and impacts are unknown to the robot (i.e. with no prior

knowledge)?

4.3 Evaluation Criteria

I recorded one value throughout each trial: whether the robot recovered or did

not recover. A push recovery is considered successful if the robot did not fall after it

was hit (while walking) and took its desired recovery action.

I invalidated a trial in two conditions:

1. If the IMU stopped working before the impact time. This happened a few times

and the cause was the USB cable.
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2. If a servo motor stopped working (e.g. gear worn out)

If any of the above conditions were met, I fixed the issue and repeated the trial.

4.4 Experimental Environment

In this section I describe the experimental environments in two worlds. The

first world is in simulation and second is the real world. Every world has its own

environments and the robot was examined in those environments.

To evaluate my approach quantitatively, I set up various experimental environ-

ments to control the push force applied to the robot, based on the international

robotics competition, RoboCup 2018 push recovery technical challenge [Robocup,

2018]. This scenario is illustrated abstractly in Figure 4.1, showing the robot in the

double support phase of a walking gait (i.e., both feet on the ground). The bottle rep-

resents a 2 Kg mass (more than a quarter of Polaris’ body weight) that is connected

to a 1.5 M rope . The bottle is pulled back to a given distance and released naturally,

resulting in the mass hitting the robot at torso height, introducing a fixed external

force that can be varied depending on the distance at which the mass is released.
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Figure 4.1: Set up for push recovery challenge [Robocup, 2018]

In all of the trials that took place in real world, I followed the exact same setup.

For all the trials in simulation, I calculated the final force based on different distances

and applied it to the robot.

4.4.1 Simulation

In the simulation I generated two environments. The only differences between

the two environments are the surface the robot was walking on and the strength and

direction of the pushes applied. In the first environment, the surface is simulated

concrete, and the second environment is a simulated soccer field with artificial turf.

Every experiment consisted of 360 trials. For all 4 sides (back, right, front, left)

and 3 distances (30, 40, 50)cm, 30 pushes were applied. For every environment, I
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examined my RL and DRL approaches. In total, 2880 pushes were applied to the

robot in the simulation for all the experiments. Figure 4.2 shows the experimental

design in the simulated world.

Figure 4.2: Experimental design in simulation

4.4.2 Real World

In the real world I designed three environments. As in the simulation, the only

differences between the environments are the surface on which the robot was walking

and the strength and direction of the pushes applied. In the first environment, the

surface is concrete, while the second is a low carpet, and the last is an artificial soccer

turf. Figure 4.3 shows these three surfaces opon which the robot walked during the

experiments in the real world.
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Figure 4.3: Three different surfaces for three different real world environments.

From left to right: concrete, carpet, and artificial soccer turf.

Polaris was tested on the concrete floor in the experiments in Sections 4.7.1.1,

4.7.1.2, and 4.7.1.3; It was tested on the carpet in the experiments in Sections 4.7.2.1

and 4.7.2.2, and 4.7.2.3. Finally, Polaris was tested on the artificial turf in the exper-

iments in Sections 4.7.3.1 and 4.7.3.2, and 4.7.2.3.

Figure 4.4 shows the setup that I employed during the three experiments to apply

pushes to the robot. This particular instance is set up to test on the concrete floor.

I used red tape to mark Polaris’s feet on the floor to make sure that for every trial,

Polaris is standing on the same location.
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Figure 4.4: Experimental setup in the real world on the concrete surface for both

RL and DRL.

Figure 4.5 shows the same setup, with the carpet floor in place. Tape is similarly

used to ensure the robot is placed consistently.
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Figure 4.5: Experimental setup in the real world on the carpet surface for both RL

and DRL.

Figure 4.6 shows the same setup, with the artificial turf floor in place. Tape is

once again used to ensure the robot is placed consistently.
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Figure 4.6: Experimental setup in the real world on the artificial turf surface for

both RL and DRL.

I taped two filled, one-litre water bottles together, forming the 2 Kg weight mass

used to strike the robot and produce a push. Then I connected the massless rod (I

used ethernet cable) to the midpoint of the two water bottles. The other end of the

rod was connected to a frictionless pivot. Figure 4.7 shows the pendulum setup that

I used for all of my experiments.
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Figure 4.7: The 2 Kg mass connected to a massless rod.

Every experiment contained 36 trials. For each of the 4 sides (back, right, front,

left) and 3 distances (30, 40, 50)cm, 3 pushes were applied. For every environment,

I examined my RL and DRL approaches and compared these to a base case of the

open-loop feedback control. I did not want to risk damaging any of the servo motors

by taking a random action. In total, 324 pushes were applied to the real robot in the

real world for all the three environments. Figure 4.8 shows the experimental design

in the real world.
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Figure 4.8: Experimental design in the real world

4.5 Choosing Environments

In the real world, I designed a total of three environments, Figures 4.4, 4.5, and

4.6, identical except for the type of walking surface. I examined my push recovery

with two machine learning (RL, DRL) approaches and one base case that uses the

open-loop feedback control. This means each of the following: RL, DRL, and the

base case, had to be examined 36 times for all the directions and distances (Figure

4.8).

I implemented a function that randomly generated two values for me: 1) which

approach to take (e.g. RL, DRL, or base case)? 2) a list of surfaces based on

priority (e.g concrete, artificial turf, carpet). The main reason that I managed the

environments this way was to avoid having results affected by factors such as servo

gear wear, which would bias environments always chosen first against those always
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chosen last. For example, if this function returns {DRL,(concrete, artificial turf,

carpet)} , it means, the approach to be examined is DRL, and this approach should

be examined first on the concrete surface, second on artificial turf, and last on the

carpet. Also, instead of finishing the 36 pushes in one round in one environment,

I tested 18 pushes in one environment and moved to the next one. After all the

environments were tested 18 times, I went back to the first environment and examined

the 18 pushes that were left for all the consecutive environments. For example, if the

approach is DRL, as discussed above, 18 pushes were applied on concrete, then 18

pushes on turf, and 18 pushes on carpet. Then, again, 18 pushes on concrete, 18

pushes on turf and finally, 18 pushes on carpet. So in two rounds the total number

of 36 pushes were applied to the robot in each environment.

4.6 Choosing Push Directions and Distances

Similar to Section 4.5, I generated all the push directions and distances randomly.

This is again to avoid the bias that would result if one environment was always chosen

first and another chosen last. As shown in Figure 4.8, I examined every direction

and distance three times, resulting in a total of 36 pushes. I implemented another

function that assigned all of these 36 pushes randomly. For example, there are 3

pushes assigned to the left direction with the distance of 30 CM. Since the pushes

are randomly assigned, there is a possibility of having the first one appears to be the

5th push, and the second one 6th push, and the third left 30 CM push to be the 28th

push out of 36 pushes.



Chapter 4: Evaluation 111

4.7 Experimental Results

This section describes the experimental results of my approach in both the real

world and in simulation. The results are grouped based the surface and environment

in which the robot was examined during the experiments.

4.7.1 Environment: Real World - Concrete Surface

This section describes the results I obtained from my experiments on the concrete

surface. This involves the comparison of the results between reinforcement learning,

deep reinforcement learning, and the base case. In the following subsections, first, the

results of RL are discussed. Second, I discuss the results obtained from testing my

deep reinforcement learning approach. Third, I discuss the results of the base case.

Finally, I describe the performance of my approach versus the base case.

Figure 4.9 shows a successful recovery of a strong push (50 CM) from the left side

of Polaris on the concrete surface. This force lifted half of Polaris’s body. However,

Polaris could recover without falling.
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Figure 4.9: Push, reaction, and recovery on a concrete surface

4.7.1.1 Approach: Reinforcement Learning

In this section I discuss the results of 36 pushes (12 * 3) on the concrete surface

using my reinforcement leaning approach. All the actions were the results of the same

reward function used in the simulator.

The results of all trials related to this experiment are shown in Table 4.1. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted. Figure 4.10 shows the summarized results of

my approach using RL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage, respectively.
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Concrete surface: RL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 2 3 2 7
Right 3 3 3 9
Front 3 2 0 5
Left 3 3 2 8

Table 4.1: Results of trials for the experiment in the real world on concrete using

RL.

Figure 4.10: Experimental design in the real world

My closed-loop control mechanism using the RL approach was able to recover

from a strong majority of pushes, with an average success rate of 92% for all of the

directions at the low impact level (30 CM swing). Polaris was able to recover from

100% of pushes that were received from the Right, Front, and Left directions. Also,

it could recover from 67% of the pushes from the Back.
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At the medium impact level (40 CM swing), the recovery average results were

similar to 30 CM (92%). All the pushes from back, right, and left were recovered

successfully. 67% of the pushes that were applied to the front were recovered success-

fully.

At the strong impact level (50 CM swing), there is a more distinct difference

between the four directions. The average success rate of all directions is 58%, with

100% of the pushes from the right side, and 67% of the pushes from Back and Left

sides recovered successfully. Polaris was not able to recover from any of the pushes

that were applied to the Front side. Based on my observation, apart from a possibility

of having weaker motors on one side there is one likely reason that Polaris could not

recover as well from the pushes that were applied to the Front side. Polaris uses two

batteries to operate: a 3-cell battery to run the computer and a 4-cell battery for

the motors. Unfortunately, the design of Polaris did not include a place assigned for

mounting the batteries. For that reason, I mounted both batteries in the back side of

its torso. I tried mounting them in different locations on the body frame, however, the

best place was the back. The weight of the two batteries together is approximately

700 grams. This weight is focused (not evenly distributed) in the back and if the

applied force to the front is very strong, Polaris does not have enough time to react

before it falls.

The average success rate of recovery, based on the impact level, using the RL

approach is shown in Figure 4.11.
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Figure 4.11: Average success rate of recovery based on the three impact levels using

RL on the concrete floor.

4.7.1.2 Approach: Deep Reinforcement Learning

In this section, I discuss the results of 36 pushes (12 * 3) on the concrete surface

using my deep learning approach. All the actions were the results of using my deep

neural network as the reward function.

The results of all trials related to this experiment are shown in Table 4.2. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted . Figure 4.12 shows the summarized results of

my approach using DRL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50
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CM pushes, and total success rate by each direction in percentage form, respectively.

Concrete surface: DRL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 3 3 2 8
Right 3 3 3 9
Front 3 3 1 7
Left 2 3 2 7

Table 4.2: Results of trials for the experiment in the real world on concrete using

DRL.

Figure 4.12: Experimental design in the real world using deep reinforcement

approach on concrete

Similar to the RL (Section 4.7.1.1), my closed-loop control mechanism using the

DRL approach was able to recover from a strong majority of pushes, with an average
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success rate of 92% for all of the directions at the low impact level (30 CM swing).

Polaris was able to recover 100% of pushes that were received from the Back, Right,

and Front directions. Also, it could recover from 67% of the pushes from the Left.

At the medium impact level (40 CM swing), the recovery average results were

outstanding, with 100% recovery for all the pushes from all the directions.

At the strong impact level (50 CM swing), the average success rate of all directions

is 67%: 100% of the pushes from the Right side, and 67% of the pushes from the Back

and Left sides were recovered successfully. Polaris was also able to recover from 33%

of the pushes that were applied to the front side. As was discussed in Section 4.7.1.1,

since the weight of batteries (approximately 700 grams) is concentrated in the Back

side, recovering from the pushes that are applied to the Front side is harder than the

other sides. Also, there is a possibility of having weaker motors on one leg (the right

leg) of the robot. Since the cost of each motor is more than C $650 and each leg uses

6 motors, it was not possible for me to change 12 servos at once. Because of this there

is a possibility of having weaker motors in a leg that led the robot having a weaker

performance on a side or two sides.

The average success rate of recovery, based on the impact level, using the DRL

approach is shown in Figure 4.13



118 Chapter 4: Evaluation

Figure 4.13: Average success rate of recovery based on the three impact levels using

DRL on the concrete surface.

4.7.1.3 Approach: Base Case

In this section I discuss the results of 36 pushes (12 * 3) on the concrete surface

using the base case. As was stated earlier, as a base case Polaris used its open-loop

control feedback approach, which does not use any sensors. As a result, no specific

actions were taken apart from a constant walk which was not related to any of the

pushes.

The results of all trials related to this experiment are shown in Table 4.3. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted.

Figure 4.14 shows the summarized results of the base case approach using the
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open-loop control feedback. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns demonstrate 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage form, respectively.

Concrete surface: Base case Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 3 1 0 4
Right 3 3 3 9
Front 2 1 0 3
Left 3 0 0 3

Table 4.3: Results of trials for the experiment in the real world on concrete using

open-loop control as a base case.

Figure 4.14: Experimental design in the real world using open-loop control feedback

(IMU was disabled)
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Similar to the RL and DRL (Sections 4.7.1.1, and 4.7.1.2) approaches, the base

case was able to recover from the majority of pushes with the average success rate of

92% for all of the directions at the low impact level (30 CM swing). Polaris was able

to recover 100% of pushes that was received from Back, Right, and Left directions.

Also, it could recover from 67% of the pushes from front.

At the medium impact level (40 CM swing), the recovery average results decreased,

with 42% recovery for all the pushes from all the directions. Polaris was only able to

recover from back, right, and front with 33%, 100%, and 33%, respectively. Polaris

was not able to recover from any of the pushes that were applied to the left side.

At the strong impact level (50 CM swing), the average success rate of all directions

is 25%. 100% of the pushes from the right side, and 0% of the pushes from all the

other sides were recovered successfully.

The average success rate of recovery, based on the impact level, using the base

case approach is shown in Figure 4.15
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Figure 4.15: Average success rate of recovery based on the three impact levels using

the base case on the concrete surface.

4.7.1.4 Summary

Figures 4.16 and 4.17 show the difference between the performances of my two

approaches RL (Section 4.7.1.1) , DRL (Section 4.7.1.2), and the base case (Section

4.7.1.3). Final results show that Polaris was able to recover from all the pushes from

the right side, using all three approaches. However, there are significant differences

between my approaches and the base case in other directions. The base case performed

worst in comparison with RL and DRL.
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Figure 4.16: Comparison of my approaches vs the base case
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Figure 4.17: Comparison of my approaches vs the base case on the concrete floor

The average recovery rate of all directions and impacts for my DRL approach is

86%, followed by my RL approach with 81%. Finally the base case, with 53% of

success recovery. Figure 4.18 shows this comparison.



124 Chapter 4: Evaluation

Figure 4.18: Comparison of my approaches vs the base case

4.7.2 Environment: Real World - Carpet Surface

This section describes the results I obtained from my experiments in the real

world on the carpet surface. This involves the comparison of the results between

RL, DRL, and the base case. In the following subsections, first, the results using RL

are discussed. Second, I discuss the results obtained from testing my DRL. Third, I

discuss the results of the base case. Finally, I discuss the performance of my approach

versus the base case.

Figure 4.19 shows a successful recovery of a strong push (50 CM) on the carpet

surface. The force was applied to the back of Polaris.
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Figure 4.19: Push, reaction, recovery on the carpet

4.7.2.1 Approach: Reinforcement Learning

In this section I discuss the results of 36 pushes (12 * 3) on the carpet surface

using my RL approach. All the actions were the results of the same reward function

used in the simulator.

The results of all trials related to this experiment are shown in Table 4.4. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted . Figure 4.20 shows the summarized results

of my approach using RL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage form, respectively.
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Carpet surface: RL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 3 2 2 7
Right 3 1 3 7
Front 3 1 0 4
Left 2 1 0 3

Table 4.4: Results of trials for the experiment in the real world on carpet using RL.

Figure 4.20: Experimental design in the real world using reinforcement learning on

carpet

My closed-loop control mechanism using the RL approach was able to recover

from a majority of pushes with an average success rate of 92% for all of the directions

at the low impact level (30 CM swing). Polaris was able to recover from 100% of

pushes that were received from Back, Right, and Front directions. Also, it could

recover from 67% of pushes from the Left.
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At the medium impact level (40 CM swing), the recovery average result was 42%,

with: 67% recovery from back, and 33% recovery from right, front, and left.

At the strong impact level (50 CM swing), the average success rate of all directions

is 42%. 100% of the pushes from the right side, and 67% of the pushes from back

were recovered successfully. Polaris was not able to recover from any of the pushes

that were applied to the front and left sides.

The average success rate of recovery, based on the impact level, using the RL

approach is shown in Figure 4.21.

Figure 4.21: Average success rate of recovery based on the three impact levels using

RL on the carpet floor.

4.7.2.2 Approach: Deep Reinforcement Learning

In this section I discuss the results of 36 pushes (12 * 3) in the real world on the

carpet surface using my deep learning approach. All the actions were the results of
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using my deep neural network as the reward function.

The results of all trials related to this experiment are shown in Table 4.5. Each

case in which the robot successfully recovered from the impact resulted in 1 as a

score, otherwise no score was granted. Figure 4.22 shows the summarized results of

my approach using DRL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage form, respectively.

Carpet surface: DRL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 3 3 1 7
Right 3 2 3 8
Front 2 1 0 3
Left 2 2 0 4

Table 4.5: Results of trials for the experiment in the real world on carpet using

DRL.
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Figure 4.22: Experimental design in the real world using deep reinforcement

learning on carpet

My closed-loop control mechanism using the DRL approach was able to recover

from the average success rate of 83% for all of the directions at the low impact level

(30 CM swing). Polaris was able to recover 100% of pushes that were received from

Back and Right, and 67% from all of the pushes from Front and Left.

At the medium impact level (40 CM swing), the recovery average results was 67%,

with 100% recovery from back, 67% from Right and Left, and 33% from Front.

At the strong impact level (50 CM swing), the average success rate of all direc-

tions is 33%. 100% of the pushes from Right, and 33% from Back were recovered

successfully. Polaris was not able to recover from any of the strong pushes that were

applied to the front and left sides.

The average success rate of recovery, based on the impact level, using the DRL
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approach is shown in Figure 4.23.

Figure 4.23: Average success rate of recovery based on the three impact levels using

DRL on carpet.

4.7.2.3 Approach: Base Case

In this section I discuss the results of 36 pushes (12 * 3) in the real world on the

carpet surface using the base case.

The results of all trials related to this experiment is shown in Table 4.6. Each case

in which the robot successfully recovered from the impact resulted in 1 as a score,

otherwise no score was granted.

Figure 4.24 shows the summarized results of the base case approach using the

open-loop control feedback. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The
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blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage form, respectively.

Carpet surface: Base case Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 2 0 0 2
Right 3 3 1 7
Front 2 0 0 2
Left 3 0 0 3

Table 4.6: Results of trials for the experiment in the real world on carpet using the

base case.

Figure 4.24: Experimental design in the real world using open-loop control feedback

(IMU disabled)

The average recovery success rate using the base case is 83% for all of the directions

at the low impact level (30cm swing). Polaris was able to recover 100% of pushes that
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was received from Right and Left. For the other two directions, Back and Front, it

could recover from 67% of the pushes.

At the medium impact level (40cm swing), the recovery average results were re-

duced, with 25% recovery for all the pushes from all the directions. Polaris was only

able to recover from the Right side, but it recovered from all of the pushes in that

direction. However, the recovery rate for the Back, Front, and Left was 0%.

At the strong impact level (50cm swing), the average success rate of all directions

is 8%: with 33% of the pushes from the right side, and 0% of the pushes from all the

other sides were recovered successfully.

The average success rate of recovery, based on the impact level, using the base

case approach is shown in Figure 4.25.

Figure 4.25: Average success rate of recovery based on the three impact impact

levels using the base case on the carpet surface.
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4.7.2.4 Summary

Figures 4.26 and 4.27 show the difference between the performances of my two

approaches: RL (Section 4.7.3.1) , DRL (Section 4.7.3.2), as well as the base case

(Section 4.7.3.3). Final results show that Polaris was able to recover from most of the

pushes from the right side, using all three approaches. However, there are significant

differences between my approaches and the base case in other directions. Both of my

approaches RL and DRL performed better in comparison to the base case .

Figure 4.26: Comparison of my approaches vs the base case
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Figure 4.27: Comparison of my approaches vs the base case

The average recovery rate of all directions and impacts for my DRL approach is

61%, followed by my RL approach with 58%. Finally the base case, with 39% of

success recovery. Figure 4.28 shows this comparison.
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Figure 4.28: Comparison of my approaches vs the base case

4.7.3 Environment: Real World - Turf Surface

This section describes the results I obtained from my experiments in the real world

on the artificial turf surface. This involves the comparison of the results between RL,

DRL, and the base case. In the following subsections, first, the results using RL are

discussed. Second, I discuss the results obtained from testing my DRL approach.
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Third, I discuss the results of the base case. Finally, I describe the performance of

my approaches versus the base case, similar to the previous sections.

Figure 4.29 shows a successful recovery of a strong push (50cm). The force was

applied to the back of Polaris.

Figure 4.29: Push, reaction, recovery on artificial turf

4.7.3.1 Approach: Reinforcement Learning

In this section I discuss the results of 36 pushes (12 * 3) on the turf surface using

my RL approach. All the actions were the results of the same reward function used

in the simulator.

The results of all trials related to this experiment are shown in Table 4.7. Each

case in which the robot successfully recovered from the impact resulted in a score

of 1, otherwise no score was granted . Figure 4.30 shows the summarized results of

my approach using RL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The
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blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentages, respectively.

Turf surface: RL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 3 1 0 4
Right 3 3 2 8
Front 1 0 0 1
Left 2 1 1 4

Table 4.7: Results of trials for the experiment in the real world on turf using RL.

Figure 4.30: Experimental design in the real world using reinforcement learning on

artificial turf

My closed-loop control mechanism using the RL approach was able to recover

with an average success rate of 75% for all of the directions at the low impact level

(30cm swing). Polaris was able to recover from 100% of pushes that were received
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from the Back and Right directions. Also, it could recover from 67% of the pushes

from the Left and 37% from the Front.

At the medium impact level (40cm swing), the recovery average result was 42%,

with: 100% recovery from right, and 33% recovery from back and left. Polaris was

not able to recover from any of the pushes that were applied to the front side.

At the strong impact level (50cm swing), the average success rate of all directions

was 25%, with 67% of the pushes from the Right side, and 33% of the pushes from

Left recovered successfully. Polaris was not able to recover from any of the pushes

that were applied to the Front and Back sides.

The average success rate of recovery, based on the impact level, using the RL

approach is shown in Figure 4.31.

Figure 4.31: Average success rate of recovery based on the three impact levels using

RL on artificial turf.
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4.7.3.2 Approach: Deep Reinforcement Learning

In this section I discuss the results of 36 pushes (12 * 3) on the artificial turf

surface using my deep learning approach. All the actions were the results of using

my deep neural network as the reward function.

The results of all trials related to this experiment are shown in Table 4.8. Each

case in which the robot successfully recovered from the impact resulted in a score

of 1, otherwise no score was granted . Figure 4.32 shows the summarized results of

my approach using DRL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30cm pushes, 40cm pushes, 50cm

pushes, and total success rate by each direction in percentage, respectively.

Turf surface: DRL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 2 0 2 4
Right 3 3 2 8
Front 0 0 0 0
Left 1 2 0 3

Table 4.8: Results of trials for the experiment in the real world on artificial turf

using DRL.
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Figure 4.32: Experimental design in the real world using deep reinforcement

learning on artificial turf

My closed-loop control mechanism using the DRL approach was able to recover

from an average success rate of 50% for all of the directions at the low impact level

(30cm swing). Polaris was able to recover from 100% of pushes that were received

from the Right, 67% from all of the pushes from the Back, and 33% from the Left

side. None of the pushes from the Front side were recovered by Polaris.

At the medium impact level (40cm swing), the recovery average result was 42%,

with 100% recovery from the Right, and 67% from the Left. Polaris was not able to

recover from any of the pushes from the Back and Front.

At the strong impact level (50cm swing), the average success rate of all directions

was 33%, with 67% recovery from the pushes from the Back and Right. Polaris was

not able to recover from any of the pushes that were applied to the Front and Left
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sides.

The average success rate of recovery, based on the impact level, using the DRL

approach is shown in Figure 4.33

Figure 4.33: Average success rate of recovery based on the three impact levels using

DRL on the artificial turf surface.

4.7.3.3 Approach: Base Case

In this section I discuss the results of 36 pushes (12 * 3) in the real world on the

artificial turf surface using the base case.

The results of all trials related to this experiment are shown in Table 4.9. Each

case in which the robot successfully recovered from the impact resulted in a score of

1 being given, otherwise no score was granted.

Figure 4.34 shows the summarized results of the base case approach using the



142 Chapter 4: Evaluation

open-loop feedback control. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30cm pushes, 40cm pushes, 50cm

pushes, and total success rate by each direction in percentage form, respectively.

Turf surface: Base case Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 9

Directions

Back 1 0 0 1
Right 3 1 0 4
Front 0 0 0 0
Left 2 0 0 2

Table 4.9: Results of trials for the experiment in the real world on artificial turf

using the base case.

Figure 4.34: Experimental design in the real world using open-loop feedback control

(IMU disabled)
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The average recovery success rate using the base case is 50% for all of the directions

at the low impact level (30 CM swing). Polaris was able to recover 100% of pushes

that were received from the Right, 67% from the Left, and 33% from the Back. None

of the pushes from the Front were recovered by Polaris.

At the medium impact level (40 CM swing), the recovery average results was

reduced to 8%, with only 33% recovery from the Right side. The recovery rate for

the Back, Front, and Left was 0%.

At the strong impact level (50 CM swing), the average success rate of all directions

is 0%: Polaris was not able to recover from any of the applied pushes in any direction.

The average success rate of recovery, based on the impact level, using the base

case approach is shown in Figure 4.35.

Figure 4.35: Average success rate of recovery based on the three impact levels using

the base case on artificial turf.
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4.7.3.4 Summary

Figures 4.36 and 4.37 show the difference between the performances of my two

approaches RL (Section 4.7.3.1) , DRL (Section 4.7.3.2), and the base case (Section

4.7.3.3).

Final results show that Polaris was able to recover from 89% of the pushes from

the Right side using the RL and DRL approaches. However, the recovery rate for the

base case from the same side was 44%.

On the Back side, both RL and DRL performed equally with the total success

rate of 44%. The recovery for the base case was 11%.

When using the RL approach, Polaris was able to recover from 11% of the pushes

from the Front. Using both DRL and the base case, the success rate was 0%.

Finally, from the Left side, the RL approach led to 44%, DRL 33%, and base case

22% successful recovery rate.
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Figure 4.36: Comparison of my approaches vs the base case
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Figure 4.37: Comparison of my approaches vs the base case

The average recovery rate of all directions and impacts for the base case is 19%,

improved by my DRL approach with 42%. The best results were from RL, with 47%

successful recovery. Figure 4.38 shows this comparison.
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Figure 4.38: Comparison of my approaches vs the base case

4.7.4 Environment: Simulation - Concrete Surface

This section describes the results I obtained from my experiments in the simu-

lation on the default surface (concrete). This involves the comparison of the results

between reinforcement learning, deep reinforcement learning, and the base case. In

the following subsections, first, the results of the RL are discussed. Second, I discuss

the results obtained from testing my deep reinforcement learning approach. Third,

I discuss the results of the base case. Finally, I describe the performance of my

approach versus the base case.

Figure 4.39 shows a successful recovery from a strong push (50 CM). The force
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was applied to the front side of Polaris. Figures 4.40 - 4.42 show the entire simulation

environment during one of the trials.

Figure 4.39: Push, Reaction, and Recovery sequence in the simulation environment

on concrete



Chapter 4: Evaluation 149

Figure 4.40: Push, Reaction, and Recovery in the simulation environment on

concrete.

Figure 4.41: Push, Reaction, and Recovery in the simulation environment on

concrete.
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Figure 4.42: Push, Reaction, and Recovery in the simulation environment on

concrete.

4.7.4.1 Approach: Reinforcement Learning

In this section I discuss the results of 360 pushes (12 * 30) on the simulated

concrete surface using my reinforcement leaning approach.

The results of all trials related to this experiment are shown in Table 4.10. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted . Figure 4.43 shows the summarized results

of my approach using RL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns demonstrate 30 CM pushes, 40 CM pushes, 50

CM pushes, and the total success rate by each direction in percentages, respectively.
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Concrete surface: RL Successful
attempts

Total number of successful
attempts by directions

Distance in centimeters 30 40 50 Out of 90

Directions

Back 25 29 29 83
Right 22 25 27 74
Front 27 23 24 74
Left 22 22 27 71

Table 4.10: Results of trials for the experiment in simulation on concrete using RL.

Figure 4.43: Experimental result in simulation on simulated concrete

My closed-loop control mechanism using the RL approach was able to recover

from a large majority of pushes, with the average success rate of 80% for all of the

directions at the low impact level (30 CM swing). Polaris was able to recover 90% of

the pushes that was received from the Front, 83% from the Back, and 73% from the

Left and Right.

At the medium impact level (40 CM swing), the recovery average result was 83%
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overall, with 97% from the Back, 83% from the Right, 77% from the Front, and 73%

from the Left were recovered successfully.

At the strong impact level (50 CM swing), the average success rate of all directions

is 89%, with 97% of the pushes from the Back side, 90% of the pushes from the Right

and Left sides, and 80% from the Front side were recovered successfully.

The average success rate of recovery, based on the impact level, using the RL

approach is shown in Figure 4.44.

Figure 4.44: Average success rate of recovery based on the three impact levels using

RL on the simulated concrete floor.

4.7.4.2 Approach: Deep Reinforcement Learning

In this section I discuss the results of 360 pushes (12 * 30) in simulation on the

concrete surface using my deep reinforcement learning approach. All the actions were
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the results of using my deep neural network as the reward function.

The results of all trials related to this experiment are shown in Table 4.11. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted. Figure 4.45 shows the summarized results of

my approach using DRL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage, respectively.

Concrete surface: DRL Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 90

Directions

Back 27 28 28 83
Right 29 28 29 86
Front 24 29 28 81
Left 27 28 26 81

Table 4.11: Results of trials for the experiment in simulation on concrete using DRL.
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Figure 4.45: Experimental results in simulation on concrete

Similar to the RL approach (Section 4.7.4.1), my closed-loop control mechanism

using the DRL approach was able to recover from a strong majority of pushes, with

an average success rate of 89% for all of the directions at the low impact level (30

CM swing). Polaris was able to recover 97% of pushes that were received from the

Right, 90% from the Back and Left, and 80% from the Front.

At the medium impact level (40 CM swing), the recovery average result was 94%

recovery for all the pushes from all the directions. It recovered from 97% of the pushes

from the Front, and 93% from all the other directions.

At the strong impact level (50 CM swing), the average success rate of all directions

was 93%, with 97% of the pushes from the Right side, and 93% of the pushes from

the Back and Front sides recovered successfully. Polaris was able to recover from 87%

of the pushes that were applied to the Left side.
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The average success rate of recovery, based on the impact level, using the DRL

approach is shown in Figure 4.46.

Figure 4.46: Average success rate of recovery based on the three impact levels using

DRL on concrete.

4.7.4.3 Approach: Base Case

In this section I discuss the results of 360 pushes (12 * 30) on the simulated

concrete surface using the base case.

The results of all trials related to this experiment are shown in Table 4.12. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted.

Figure 4.47 shows the summarized results of the base case approach using closed-

loop feedback control and taking random actions in the walking engine’s parameter
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thresholds (between minimum and maximum values, see Table 3.4). In this figure, all

the pushes are grouped in four different directions (Back, Right, Front, Left). There

are four columns in each direction. The blue, orange, green, and purple columns

represent 30 CM pushes, 40 CM pushes, 50 CM pushes, and total success rate by

each direction in percentage form, respectively.

Concrete surface: Base case Successful
attempts

Total number of successful
attempts by directions

Distances in centimeter 30 40 50 Out of 90

Directions

Back 1 2 1 4
Right 2 1 6 9
Front 4 5 7 16
Left 5 1 4 10

Table 4.12: Results of trials for the experiment in simulation on concrete using the

base case.
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Figure 4.47: Experimental results in the simulation using random actions between

the threshold limits, on concrete.

The average recovery success rate using the base case is 10% for all of the directions

at the low impact level (30 CM swing). Polaris was able to recover from the Back,

Right, Front, and Left pushes, with 3%, 7%,13%, and 17% respectively.

At the medium impact level (40 CM swing), the recovery average results was 8%,

with 7% from the Back, 3% from the Right and left, and 17% from the front.

At the strong impact level (50 CM swing), the average success rate of all directions

was 15% with 3% recovery from the Back, 20% from the Right, 23% from the Front,

and 13% from the Left.

The average success rate of recovery, based on the impact level, using the base

case approach is shown in Figure 4.48.
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Figure 4.48: Average success rate of recovery based on the three impact levels using

the base case on the simulated concrete surface.

4.7.4.4 Summary

Figures 4.49 and 4.50 show the difference between the performances of my two

approaches RL (Section 4.7.4.1) , DRL (Section 4.7.4.2), and the base case (Section

4.7.4.3).

Final results show that Polaris was able to recover from 92% of the pushes from

the Back side, using the RL and DRL approaches. However, the recovery rate for the

base case from the same side was 4%.

On the Right side, by using RL, it could recover from 82% of the pushes. DRL

performed very well with a total success rate of 96%. The recovery for the base case

was 10%.
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When using the RL approach, Polaris was able to recover from 82% of the pushes

from the Front. Using the DRL approach makes the recovery results better at 90%.

For the base case, the success rate was 18%.

Finally, from the Left side, the RL approach led to 79% successful recovery, the

DRL 90%, and the base case 11% total success recovery rate.

Figure 4.49: Comparison of my approaches vs the base case
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Figure 4.50: Comparison of my approaches vs the base case

The average recovery rate of all directions and impacts for the base case is 11%,

improved by my RL approach with 84%. The best results were from DRL, with 92%

successful recovery. Figure 4.51 shows this comparison.
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Figure 4.51: Comparison of my approaches vs the base case

4.7.5 Environment: Simulation - Turf Surface

This section describes the results I obtained from my experiments in simulation

on the simulated soccer field (artificial turf). This involves the comparison of the

results between reinforcement learning, deep reinforcement learning, and the base

case. In the following subsections, first, the results of RL are discussed. Second, I

discuss the results obtained from testing my deep reinforcement learning approach.
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Third, I discuss the results of the base case. Finally, I describe the performance of

my approach versus the base case.

Figure 4.52 shows a successful recovery from a strong push (50 CM). The force

was applied to the front side of Polaris. Figures 4.53 - 4.55 show the entire simulation

environment during a trial test.

Figure 4.52: Push, Reaction, Recovery
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Figure 4.53: Push, Reaction, Recovery in the simulation environment on turf.

Figure 4.54: Push, Reaction, Recovery in the simulation environment on turf.
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Figure 4.55: Push, Reaction, Recovery in the simulation environment on turf.

4.7.5.1 Approach: Reinforcement Learning

In this section I discuss the results of 360 pushes (12 * 30) on the simulated turf

surface using my reinforcement leaning approach.

The results of all trials related to this experiment are shown in Table 4.13. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted. Figure 4.56 shows the summarized results of

my approach using RL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate over all directions in percentage form, respectively.
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Turf surface: RL Successful
attempts

Total number of successful
attempts by directions

Distance in centimeters 30 40 50 Out of 90

Directions

Back 23 25 25 73
Right 23 21 23 67
Front 26 26 26 78
Left 21 24 26 71

Table 4.13: Results of trials for the experiment in the simulation on turf using RL.

Figure 4.56: Experimental results in the simulation using reinforcement learning on

simulated turf

My closed-loop control mechanism using the RL approach was able to recover

from pushes with an average success rate of 78% for all of the directions at the low

impact level (30 CM swing). Polaris was able to recover 87% of pushes received from

the Front, 77% from the Back and Right, and 70% from the Left.

At the medium impact level (40 CM swing), the recovery average result was 80%,
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with 83% from the Back, 70% from the Right, 87% from the Front, and 80% from

the Left recovered successfully.

At the strong impact level (50 CM swing), the average success rate of all directions

is 83%, with 87% of the pushes from the front and left sides, 83% of the pushes from

the Back side, and 77% from the Right side recovered successfully.

The average success rate of recovery, based on the impact level, using RL approach

is shown in figure 4.57.

Figure 4.57: Average success rate of recovery based on the three impact levels using

RL on simulated turf.

4.7.5.2 Approach: Deep Reinforcement Learning

In this section I discuss the results of 360 pushes (12 * 30) on the simulated turf

surface using my deep learning approach. All the actions were the results of using
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my deep neural network as the reward function.

The results of all trials related to this experiment are shown in Table 4.14. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted. Figure 4.58 shows the summarized results of

my approach using DRL. In this figure, all the pushes are grouped in four different

directions (Back, Right, Front, Left). There are four columns in each direction. The

blue, orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50

CM pushes, and total success rate by each direction in percentage form, respectively.

Turf surface: DRL Successful
attempts

Total number of successful
attempts by directions

Distance in centimeters 30 40 50 Out of 90

Directions

Back 25 28 29 82
Right 30 25 28 83
Front 29 27 28 84
Left 30 27 26 83

Table 4.14: Results of trials for the experiment in simulation on turf using DRL.
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Figure 4.58: Experimental results in simulation using deep reinforcement learning

on simulated turf

Similar to RL (Section 4.7.5.1), my closed-loop control mechanism using DRL

approach was able to recover from a strong majority of pushes, with an average

success rate of 95% for all of the directions at the low impact level (30 CM swing).

Polaris was able to recover from 100% of pushes that were received from the Right

and Left, 97% from the Front, and 83% from the Back.

At the medium impact level (40 CM swing), the recovery average result was 89%

recovery for all the pushes over all directions. It recovered from 93% of the pushes

from the Back side, 90% from the Front and Left sides, and 83% from the Right side.

At the strong impact level (50 CM swing), the average success rate over all direc-

tions is 93%, with 97% of the pushes recovered from the Back, 93% from the Right

and Front sides, and 87% of the pushes from the Left side recovered.
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The average success rate of recovery, based on the impact level, using the DRL

approach is shown in Figure 4.59

Figure 4.59: Average success rate of recovery based on the three impact levels using

DRL on turf.

4.7.5.3 Approach: Base Case

In this section I discuss the results of 360 pushes (12 * 30) on the simulated turf

surface using the base case.

The results of all trials related to this experiment are shown in Table 4.15. For

each case in which the robot successfully recovered from the impact, a score of 1 was

given, otherwise no score was granted.

Figure 4.60 shows the summarized results of the base case approach using the

closed-loop feedback control and taking random actions in the walking engine’s pa-
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rameter thresholds. In this figure, all the pushes are grouped in four different direc-

tions (Back, Right, Front, Left). There are four columns in each direction. The blue,

orange, green, and purple columns represent 30 CM pushes, 40 CM pushes, 50 CM

pushes, and total success rate in each direction in percentages, respectively.

Turf surface: Base case Successful
attempts

Total number of successful
attempts by direction

Distance in centimeters 30 40 50 Out of 90

Directions

Back 1 1 2 4
Right 1 1 3 5
Front 3 5 3 11
Left 1 3 2 6

Table 4.15: Results of trials for the experiment in simulation on turf, using the base

case.

Figure 4.60: Experimental results in the simulation using random actions between

the threshold on simulated turf.
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The average recovery success rate using the base case is 5% for all of the directions

at the low impact level (30 CM swing). Polaris was able to recover from 10% of the

Front pushes, and 3% of all of the pushes that were applied to other sides.

At the medium impact level (40 CM swing), the average recovery results was 8%,

with 3% from the Back and Right, 17% from the Front and 10% from the Left.

At the strong impact level (50 CM swing), the average success rate over all direc-

tions is 8%, with 7% recovery from the Back and Left, and 10% from the Right and

Front.

The average success rate of recovery, based on the impact level, using the base

case approach is shown in Figure 4.61.

Figure 4.61: Average success rate of recovery based on the three impact levels using

the base case on a simulated turf surface.
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4.7.5.4 Summary

Figures 4.62 and 4.63 show the difference between the performances of my two

approaches RL (Section 4.7.5.1) , DRL (Section 4.7.5.2), and the base case (Section

4.7.5.3).

Final results show that Polaris was able to recover from 81% and 91% of the

pushes from the Back side, using RL and DRL approaches respectively. However, the

recovery rate for the base case from the same side was 4%.

On the Right side, by using RL, Polaris could recover 74% of the pushes. DRL

performed very well with the total success rate of 92%. The recovery for the base

case was 6%.

When using the RL approach, Polaris was able to recover from 87% of the pushes

from the Front. Using DRL makes the recovery results better, at 93%. For the base

case, the success rate was 12%.

Finally, from the Left side, the RL approach led to 79%, DRL 92%, and the base

case 7% total success recovery.
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Figure 4.62: Comparison of my approaches vs the base case
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Figure 4.63: Comparison of my approaches vs the base case

The average recovery rate over all directions and impacts for the base case was

7%, improved by my RL approach (80%). Finally DRL, with 92% successful recovery.

Figure 4.64 shows this comparison.
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Figure 4.64: Comparison of my approaches vs the base case

4.8 Summary

This chapter provided an overview of the experimental environments that I used to

evaluate my approach and implementation in both real world and simulation. Based

on the experimental results, my RL and DRL approaches performed better, by a large

margin, than the base cases for every surface in both simulation and the real world.

For the real world experiments, the results show that the best surface in which my

approaches outperformed is the concrete surface. This is due to two main reasons, 1)

all of the actions were learned on the concrete in the simulation during the learning
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process. 2) Concrete is the stiffest surface and it is easier to recover on such a surface.

The second easiest surface among the three is carpet. Finally, the hardest surface for

recovery is the artificial turf. Figures 4.65 and 4.66 compare the results of RL, DRL,

and the base case on three different surfaces based on four different directions that

the forces were applied.

Figure 4.65: Performance comparison of all approaches on all surfaces in the real

world
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Figure 4.66: Performance comparison of all approaches on all surfaces in the real

world

For the simulation experiments, the results show that the best surface on which

my approaches performed is the concrete surface, which is similar to the real world

experiment. Artificial turf is the next more difficult surface in simulation. Figures

4.67 and 4.68 compare the results of RL, DRL, and the base case on these two different

surfaces.
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Figure 4.67: Performance comparison of all approaches on all the surfaces in the

simulation environment
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Figure 4.68: Performance comparison of all approaches on all the surfaces in the

simulation environment

These experiments highlighted that my approach and implementation have ad-

vantages over the base case in both the real world and in simulation.
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Conclusion

5.1 Overview

I begin this chapter by discussing the results from Chapter 4 and how these answer

my research questions (Section 5.2). I provide an outline of the contributions of my

thesis in Section 5.3. Finally, I discuss future research directions of my research work

in Section 5.4.

5.2 Answers to Research Questions

I discussed my research questions in Section 1.3. In this section, I will review and

answer those questions based on the results described in Chapter 4.

1. Is my closed-loop control going to be fast enough for inexpensive

robots that are equipped with cheaper hardware for responding to

an external push?

180
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To answer this question, I must only refer to the results that I achieved from

the real world. Dealing with the robot in the real world is a very complex

task compared to a simulation [Hotz and Gómez, 2004]: if the robot does a

task perfectly in the virtual world, it does not necessarily mean that it will

do the same in reality. Sensor noise, servo motor jitter and voltage oscillation

(battery issues) are just a few examples of problems that are common in the real

world. This way all the factors in the real world that could affect the robot are

encountered. The results show that Polaris, a cheaper version of a humanoid

robot compared to the robots that were discussed in Chapter 2, can successfully

recover from different pushes with various impacts, including strong pushes, as

well as pushes from different directions. This demonstrates that my control

loop mechanism is responsive enough for the real world.

2. Are any of my reinforcement learning and deep reinforcement learn-

ing push recovery techniques going to be able to replace the parame-

ters that a human operator provides (hand-tuned) for recovery based

on his/her experiences?

As the results show, both reinforcement learning and deep learning performed

well enough to be a replacement to human knowledge. Through more training,

the robot is able to learn better action choices, which are more likely to lead

the robot to a successful recovery. This is very similar to the experience of an

operator whose knowledge and experience are transferred to the robot. The

more experience the operator has, the better parameters can be given to the

robot.
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3. Which of the proposed approaches (RL, DRL), results in better re-

covery if the surfaces, directions, and impacts are unknown to the

robot (i.e. with no prior knowledge)

I categorize the answer to this question into three categories: 1) real world, 2)

simulation, 3) overall, considering both real world and simulation.

In the real world, RL achieved 62% overall recovery success rate while DRL

63% (on concrete RL achieved 81%, DRL 86%. On carpet RL achieved 58%,

DRL 61%. On turf RL achieved 47%, DRL 42%).

In simulation, RL achieved 81.5% overall recovery success rate while DRL

achieved 92% (on concrete: RL 84%, DRL 92%. On turf: RL 79%. DRL

92%.).

In the real world and simulation, RL achieved 69.8% recovery success rate while

DRL achieved 74.6%. In all the categories, DRL performed better in comparison

to RL.

The results also show that in the simulation, there is not much difference between

concrete and turf in comparison with the real world. Based on my observation,

objects in the real world cannot be demonstrated identically in simulation. There

are many factors that contribute to these differences, e.g., friction and texture of the

surface (concrete, carpet, turf). I experimented by altering the friction value in the

simulation to some high and low arbitrary numbers. However, the result showed that

the differences between the frictions is not significant. For that reason, I continued

my experiments with the default surfaces that are provided with the simulation.
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5.3 Contributions

This research is concentrated on active balancing and push recovery for an inex-

pensive humanoid robot. This thesis makes a number of important contributions to

the state of the art in push recovery and active balancing:

• My main contribution is a new approach to push recovery based on learning

appropriate step responses using RL and DRL. It is important to note that this

approach is specifically intended for inexpensive humanoid robots that use more

fragile, low-torque, limited-power servos with low computational power. No

research in the literature provides a solution that recovers from small, medium,

and large disturbances for inexpensive robots. My methods were also tested in

the real world using a physical robot, as opposed to other methods examined

only in simulation or in restricted settings such as boom mounts.

• As part of my work I have developed and validated an extensive 3D model

of Polaris in Gazebo. There are no existing Gazebo models of inexpensive

humanoid robots, and only a few 3D models of expensive humanoids. This will

further future research on inexpensive humanoids in simulation. In my work I

used this model to train the RL and DRL approaches outlined in Chapter 3.

• I introduced a novel way of using RL and stepping for push recovery. This

generates the walking engine parameters and uses these for push recovery of the

humanoid robot. These parameters then will be used in the inverse kinematics

model to generate a trajectory of a step. I replaced all the hand-tuned walking

engine parameters, to support better push recovery.
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• I also introduced a new approach in DRL that learns how good or bad a chosen

action is. If the reward of an action is ≥ 90, the robot will invest in that action

and try to learn more about it. Otherwise, it does not waste time on it.

In addition, there are a number of contributions made through my implementation

choices. For example, in order to make my program compatible with many different

available hardware and software modules, I have made my walking engine and the

push recovery compatible with the ROS platform. If other researchers use ROS,

they can also add my modules easily to their programs. Other researchers would be

able to adapt my active balancing and push recovery techniques to their inexpensive

humanoid robots as long as the robot’s walking engine has the listed parameters in

Table 3.4 (these parameters are very common in every walking engine). Also, depends

on the robot’s height the range of some of these parameters (Table 3.4) needs to be

altered. For example, if the length of the lower part of the robot’s body is 25 CM,

the threshold for the z-offset needs to be altered to a range such as Minimum:18

CM, Maximum 25 CM. There might be a need to change some other threshold for

other parameters such as Step-x, Step-y. The minimum and maximum values of these

parameters can be chosen based on trial and error. Because it also depends on the

structure of the links on the robot’s body. However, if a walking engine does not have

or have extra one or more parameters (Table 3.4) these parameters can be removed

or added to the learning module respectively.
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5.4 Future Work

Although the evaluation of my research has successfully highlighted the benefit of

my approach, my research and implementation also raise a number of areas in which

improvement could be made.

As future work, I would like to improve the design of my approach by including

the direction of the walking gait (forward or backward) and simplifying it by using

symmetry between the left and right side of the robot. These two additional features

might reduce the learning process. This could be extended by employing the ZMP

method [Kajita et al., 2003] for the walking engine along with stepping, using RL and

DRL.

As future work, I would like to use the newly-trained RL component to generate

a larger dataset for training the DNN, and possibly improve performance further.

Another interesting direction of future work would be to have a deep neural net-

work that outputs walking engine parameters. This does not necessary mean that we

do not need a deep neural network for the reward function. After generating a set of

walking engine parameters, this set could be the input to a DNN and its output would

be an altered (tuned) version of the given input. Also, I would like to investigate other

types of neural networks for my framework, such as using a Long short-term memory

(LSTM) neural network [Sak et al., 2014; Hochreiter and Schmidhuber, 1997]. One

of the strengths of LSTM network is that it is well suited for classification areas.

Another interesting direction of future work would be to replace the look-up tables

that I used for RL and DRL with DNNs. Algorithms such as Deep Q-Learning (DQN)

[Mnih et al., 2015], Double Deep Q-Learning (DDQN) [Van Hasselt et al., 2016],
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Dueling Q-Learning [Wang et al., 2015], and Asynchronous Advantage Actor Critic

(A3C) [Mnih et al., 2016] would be able to replace the look-up tables. However, the

main important factor for employing any of the above algorithms is a need for powerful

Graphical Processor Units (GPUs) with a lot of Random Access Memory (RAM). For

my research since the system is designed for inexpensive humanoid robots, I did not

use any GPU nor lots of RAM. The total amount of RAM that the robot had access

to was 4GB. The robot used 4GB for the operating system, simulation software,

and the learning part. Table 3.2 lists the robot hardware specification. With this

specification it is almost impossible to replace the look-up tables. So it is essential to

have a hardware upgrade.

The Triple Jump event [Baltes et al., 2019] from HuroCup [Fira, 2019] is a new

research challenge that was introduced in 2018. This event is related to dynamic

balancing of a humanoid robot. Generating an appropriate set of steps with enough

force to lift off the ground and let the robot land carefully enough to avoid breaking

servos is a very hard task, especially for an inexpensive robot. As another line of

future work, my framework can be extended to be used for the triple jump research

and the generation of the necessary steps.

Another interesting direction for future research would be to design different 3D

models of surfaces in the simulation and let the robot learn how to walk on outdoor

surfaces. Gravel, snow, and mud, are the examples of common outdoor surfaces.

Although walking on such surfaces is very challenging for an inexpensive robot, I

believe my framework could be extended to teach the robot to perform well under such

conditions. As of now, my simulation environment does not provide many different
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models of the ground with different textures and frictions.

In my current implementation, I have assigned a relatively large range of possible

values for the nine walking engine parameters. The bigger the range is, the more time

the robot requires to explore and exploit. The main issue with this is that when using

a computer with low computational power and memory space, many of the possible

actions might not be explored with the current ranges. Another possible improvement

for the future implementation is to start the learning process with the smaller range.

As I mentioned earlier (Section 3.4.3.1), I did not let the robot know what surface

it is walking on during all the experiments.. This makes the push recovery problem

a lot harder, since a set of generated actions must be suitable for all the surfaces.

In Chapter 4, the final results show that among the three surfaces, artificial turf is

the most challenging surface for push recovery, and the total recovery percentage was

lower compared to concrete and carpet, respectively. Based on my observation, one

of the main challenges for the robot to recover on this surface is the surface thickness.

The thickness of the artificial turf surface that was used during my experiments was

4 CM to 5 CM. As was discussed in Section 3.4.2, Table 3.4, the minimum and

maximum values for the step-height are 1 CM and 8 CM, respectively. Many of the

generated steps, had the step-height between 1 CM and 5 CM. This thickness does

not allow the majority of the good actions that had the range for the step-height

between 1 CM and 5 CM, to be successful on the turf. Based on the final results, this

range of step-height was suitable for the concrete surface. Another improvement that

could be applied to my implementation is to change the possible step-height range

from 1 CM to 8 CM, to 5 CM to 8 CM. By changing the minimum value to 5 CM,
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the performance would be improved on both carpet and artificial turf surfaces.

Beyond improving technique, there is also future work applying the results from

this thesis. The Spartan race challenge [Baltes and Tu, 2019] from HuroCup [Fira,

2019], is another robotics benchmark that is designed for humanoid robots. This event

was introduced in 2017 to open a wide area of research, e.g., active balancing, push

recovery, complex motion planning. This event consists of three challenges: 1) lift

and carry 2) ladder climbing 3) rope climbing. In the lift and carry challenge, there

are uneven terrains that the robot has to traverse without falling. This challenge in

the Spartan race could be another direction of future research, and my framework

could be extended for learning the walking steps.

5.5 Conclusion

Push recovery and active balancing of humanoid robots are important ongoing

research topics in robotics. There is no perfect solution to all these problems even

on expensive equipment, and the challenges are more significant for inexpensive hu-

manoid robots that use more fragile, low-torque, limited-power servos along with low

computational power. In this Ph.D. research, I have described the design, implemen-

tation, and evaluation of a novel push recovery approach using reinforcement learning

and deep reinforcement learning [Yi et al., 2011] using stepping on an inexpensive

20-DOF humanoid robot.

To begin with, I implemented a parameterized walking engine that allows the robot

to walk. Next, I implemented a hand-tuned closed-loop control that is coupled with

the walking engine for recovering from external pushes. Meanwhile, I implemented
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the stepping approach and added this functionality to the walking engine. With this

closed-loop control, the robot was able to recover from small, medium, and large

external disturbances.

My push recovery mechanism has also been demonstrated in the field with strong

success. This mechanism for push recovery was our mechanism for entering the

RoboCup Humanoid league technical challenge push recovery event (this event varies

by year and normally has more than one challenge with scores totalled). We were

awarded first place for this challenge in 2016 and 2018, came second in 2015, and had

the highest results in the push recovery component in 2017. Recovery from unex-

pected impacts is an important part of many activities, and this approach also forms

a core within our entries to other robotic sporting events such as the 2016, 2017, and

2018 FIRA HuroCup. Also, I have designed and implemented an extended version of

my hand-tuned closed-loop control that uses machine learning techniques for making

the push recovery fully autonomous.

Finally, my push recovery closed-loop feedback control mechanism was published

in [Hosseinmemar et al., 2018] and I won the second best award among 146 accepted

papers. I have also published a follow-up journal paper for push recovery for inex-

pensive humanoid robots [Hosseinmemar et al., 2019].
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