

Time Efficient and Novel Ways of Analyzing High-dimensional Multi-omics

Datasets: Parallel Computing and Multi-view Learning

by

Rayhan Shikder

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg

Copyright © 2019 by Rayhan Shikder

 2

Abstract

Omics data (e.g., genomics, proteomics, microbiomics etc.) are generally very high-

dimensional. Due to the advancements in high-throughput sequencing technologies, this type

of data is rapidly increasing in number and require enhanced computational power to make

sense. On the other hand, an integrated analysis of these omics data has the potential to reveal

a comprehensive picture of any biological phenomenon than analyzing them separately (one

omics data at a time).

In the first part of this thesis, I focused on developing time-efficient CPU-based parallel

computing methods for computing longest common subsequence (LCS) of DNA sequence

data. I developed shared, distributed, and hybrid memory algorithms for calculating the LCS

between two DNA sequences and compared their performances. The shared memory

implementation with OpenMP has been found to outperform others with an absolute speedup

of 2 times than the best sequential LCS algorithm and a relative speedup of 7.

 Multi-omics (multi-view) datasets measured on the same individuals are comprised of

high-dimensional omics data, where different types of data from different views might have

strong associations. Studying these associations is of paramount interest to biologists.

Furthermore, these associations along with the view-specific omics data have the potential to

improve the predictive power of the overall datasets. Recently, deep neural networks have

received increased attention due to their ability to deal with high-dimensional data and keep

the inherent relationships among and within the data views. Therefore, in the second part of

this thesis, I focused on studying deep neural network (DNN)-based methods for integrating

and analyzing a special type of multi-omics data consisting of gene expression and

microbiome abundance data. At first, I performed a comprehensive comparison study of

some existing correlation-based integration techniques (regularized canonical correlation

analysis (RCC), deep canonical correlation analysis (DCCA), sparse canonical correlation

 3

analysis (SCCA), etc.). The SCCA has been found to provide better correlation scores along

with good classification performance than others. After that, I worked on improving the deep

canonical correlation analysis by incorporating the class label information. I provided a new

framework along with two new supervised versions of the deep canonical correlation analysis

(namely DCCA S1, and DCCA S2). From the experimental results, I found that the new

supervised versions provide better total correlation scores than the original DCCA method.

Finally, I developed new DNN based methods for classifying multi-omics data. These

methods are found to provide better or at-least similar results than the existing classical

classification algorithms (e.g., support vector machine, random forest, etc.).

 In summary, this thesis has two main contributions in the field of computer science and

bioinformatics. First, the development of new CPU-based improved parallel algorithms for

finding the LCS of DNA sequence data. Second, the thorough investigation of the existing

canonical correlation analysis (CCA)-based multi-view learning methods for analyzing multi-

omics data along with developing new multi-view learning frameworks and supervised DNN-

based multi-view learning techniques.

 4

Acknowledgements

At first, I would like to express my sincere gratitude to my supervisor Dr. Pingzhao

Hu for providing continuous support and valuable guidelines throughout this two-year of my

master’s degree at the University of Manitoba. His thoughtful instructions and mentoring

helped me extend my comfort zones and contributed to my overall academic growth. I am

also grateful to my co-supervisor Dr. Pourang Irani for mentoring me in different steps of my

thesis. He was always there when I needed any help.

I would also like to extend my gratitude to my advising committee members Dr.

Carson Kai-Sang Leung, and Dr. Bob McLeod for their valuable time, and patience in

reviewing my thesis work.

I would specially thank Dr. Parimala Thulasiraman for guiding me in designing the

parallel algorithms of this thesis. I would also thank Dr. Hui Jiang for mentoring me in one of

my projects (DNN Y model) related to this thesis during my internship at York University.

Special thanks to all my friends and colleagues at The Hu Lab: Md. Mohaiminul

Islam, Jiyaing You, Dr. Svetlana Frenkel, Nikta Feizi, Qian Liu, Shuo Jia, Yong Won Jin,

and Sujun Huang. Their friendly chit-chats in the break times and thoughtful insights not

only helped me to enjoy this journey but also kept me motivated throughout the whole

process.

Thanks to all the faculty members and staffs from the Computer Science department,

and the Biochemistry and Medical Genetics department who helped me in various steps of

my degree.

Finally, I would like to dedicate this thesis to my parents whose invaluable sacrifice,

love, and support have made it possible for me to reach all the milestones I have achieved so

far.

 5

Publications

Shikder, R., Thulasiraman, P., Irani, P., & Hu, P. (2019). An OpenMP-based tool for finding

longest common subsequence in bioinformatics. BMC research notes, 12(1), 220.

Shikder, R., Irani, P., & Hu, P. (2019, May). Genome-Wide Canonical Correlation Analysis-

Based Computational Methods for Mining Information from Microbiome and Gene

Expression Data. In Canadian Conference on Artificial Intelligence (pp. 511-517). Springer,

Cham.

 6

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION.. 12

1.1 Background and Literature Review ... 12

1.1.1 Omics and Multi-omics Data ... 12

1.1.2 Parallel Computing .. 13

1.1.3 Multi-view Learning Using Multi-omics Data .. 13

1.2 Motivation ... 15

1.3 Research Objectives ... 18

CHAPTER 2: CPU-BASED PARALLEL ALGORITHMS FOR FINDING LCS USING

OMICS DATA .. 19

2.1 Introduction .. 20

2.2 Preliminaries .. 20

2.2.1 Row-wise Independent Algorithm (version 1) .. 23

2.2.2 Row-wise Independent Algorithm (Version 2)... 25

2.3 Methodology ... 26

2.3.1 PCAM Formulation ... 27

2.3.2 MPI-based Approach ... 28

2.3.3 OpenMP-based Approach .. 28

2.3.4 Hybrid MPI-OpenMP-based Approach ... 29

2.4 Results & Discussion .. 30

2.4.1 Data Sets and Specifications of the Computer ... 30

2.4.2 Comparison among Different Approaches .. 32

2.4.3 Comparison between the Two Versions of the Algorithm in OpenMP Approach .. 33

2.5 Availability and Documentation of Tool .. 34

2.5.1 Requirements of the Installation .. 34

2.5.2 How to Run? .. 35

2.6 Conclusion & Future Directions ... 37

CHAPTER 3: CORRELATION ANALYSIS, CLASSIFICATION, AND

VISUALIZATION OF DISEASE-BASED MULTI-OMICS DATA 38

3.1 Introduction .. 38

3.2 Review of CCA Approaches .. 39

3.2.1 Introduction .. 40

3.2.2 Preliminaries .. 42

 7

3.2.3 Experiments and Results .. 46

3.2.4 Conclusion ... 51

3.3 Classification of Multi-omics Data Using Supervised Deep Canonical Correlation

Analysis ... 52

3.3.1 Introduction .. 52

3.3.2 Methodology .. 53

3.3.3 Results and Discussion .. 56

3.3.4 Conclusion ... 61

3.4 Classification of Multi-omics Data Using Classic Machine Learning and Deep

Neural Network Models .. 62

3.4.1 Methodology .. 62

3.4.2 Results and Discussion .. 64

3.4.3 Conclusion ... 70

3.5 Visualization of the multi-view omics data .. 71

3.6 Conclusion and Future Directions .. 76

CHAPTER 4: CONCLUSION, LIMITATIONS, AND FUTURE DIRECTIONS 77

REFERENCES ... 79

 8

List of Figures

Figure 2.1: Relative speedup and execution times of different scheduling strategies. 32

Figure 2.2: Execution times for different implementations and versions of the LCS algorithm

with real and simulated data.. .. 33

Figure 2.3: Snapshot of a sample input file. ... 36

Figure 2.4: Snapshot of a sample output file. ... 37

Figure 3.1: Schematic diagram of the DCCA method. ... 44

Figure 3.2: Total correlation scores for different canonical correlation approaches 49

Figure 3.3: Proposed supervised deep learning framework for multi-view learning. 54

Figure 3.4: Schematic diagram of the version 1 of the supervised DCCA model (DCCA S1).

.. 55

Figure 3.5: Schematic Diagram version 2 of the supervised DCCA model (DCCA S2). 56

Figure 3.6: Total correlation scores from supervised version of the DCCA. 58

Figure 3.7: Integration of the two views of data using a deep neural network-based

architecture. .. 63

Figure 3.8: DNN flat model .. 64

Figure 3.9: t-SNE visualization using all the features from both microbiome and gene

expression views .. 72

Figure 3.10: t-SNE visualizations using f2 (see Table 3.3) features selected by lasso. 73

Figure 3.11: t-SNE visualizations using correlated features from DCCA, DCCA S1, and

DCCA S2. .. 74

Figure 3.12: t-SNE visualizations of the features of DCCA S1 and DCCA S2 from the last

fully connected layer. ... 75

 9

List of Tables

Table 2.1: Information of real DNA sequence data set collected from NCBI [64]. 31

Table 2.2: Summary of our parallel LCS tool. .. 34

Table 3.1: Summary of the dataset.. 47

Table 3.2: Binary class classification results using SVM on the output projections from

different CCA methods. ... 50

Table 3.3: Different number of selected features from Lasso models. 57

Table 3.4: Multi-class classification performance comparisons ... 60

Table 3.5: Binary class classification performance comparisons. .. 61

Table 3.6: Overall accuracies of multi-class classifications using SVM.. 65

Table 3.7: Overall accuracies of multi-class classifications using RF. 66

Table 3.8: Binary classification (NP vs. all others) using SVM.. ... 66

Table 3.9: Binary classification (NP vs. all others) using RF. .. 67

Table 3.10: Performance of multi-class classifications. ... 69

Table 3.11: Performance of binary classification results. ... 70

 10

List of Abbreviations

DNA: Deoxyribonucleic Acid

RNA: Ribonucleic Acid

mRNA: Messenger RNA

rRNA: Ribosomal RNA

SNV: Single-Nucleotide Variant

CNV: Copy Number Variation

CPU: Central Processing Unit

GPU: Graphics Processing Unit

LCS: Longest Common Subsequence

MPI: Message Passing Interface

OpenMP: Open Multi-Processing

CUDA: Compute Unified Device Architecture

PCAM: Partition, Communication, Agglomeration, and Mapping

UCR: University of California Riverside

NCBI: National Centre for Biotechnology Information

CCA: Canonical Correlation Analysis

DCCA: Deep CCA

RCC: Regularized CCA

SCCA: Sparse CCA

SCCA(S): Supervised SCCA

KCCA: Kernel CCA

GSCCA: Group Sparse CCA

DNN: Deep Neural Network

DCCA S1: Supervised DCCA Version 1

 11

DCCA S2: Supervised DCCA Version 2

LDA: Linear Discriminant Analysis

SVM: Support Vector Machine

RF: Random Forest

PCA: Principal Component Analysis

OTU: Operational Taxonomic Unit

IBD: Inflammatory Bowel Disease

t-SNE: T-Stochastic Neighbor Embedding

FAP: Familial Adenomatous Polyposis

NP: No Pouchitis

AP: Acute Pouchitis

CDL: Crohn’s Disease-Like Inflammation

PMA: Penalized Multivariate Analysis

ROC: Receiver Operating Characteristics

AUC: Area Under Curve

 ReLU: Rectified Linear Unit.

 12

Chapter 1: Introduction

1.1 Background and Literature Review

1.1.1 Omics and Multi-omics Data

Large scale studies focusing on the measurement of different characteristics of family of

cellular molecules (e.g., genes, proteins, metabolites etc.) are known as omics studies and end

with a suffix of -omics, such as genomics, proteomics, metabolomics etc. For instance,

proteomics is a type of omics study where the composition, structure, and activity of proteins

are studied in large scale. Studies (genomics, transcriptomics, proteomics) related to the

central dogma (from DNA to mRNA to protein) in biology are mainly considered as part of

the omics study. With the advancement of technologies, and computational powers, some

other areas of biomedical science have started to become the part of omics level study [1].

Such fields are epigenomics, metabolomics, microbiomics etc.

 Data arising from different parts of these omics studies are known as omics data. For

example, DNA sequence data (strings of nucleotides: A, T, C, G), gene expression levels,

mutation information are omics data originated from genomics. In proteomics, 3D structure

of protein, protein-protein interactions, amino acid sequences are the omics data too. Multiple

such omics data of the same individuals are aggregately referred to as multi-omics data.

Omics data generated and analyzed in an isolated manner fail to provide a comprehensive

picture of the situation compared to an integrated study of the multi-omics data.

In this thesis, I have mainly focused on multi-omics data consisting of gene

expression and microbiome abundance counts. Gene expression data consists of continuous

values and represents the level of expression for a particular gene. The protein coding regions

of a human genome is only 2% of the whole genome and encodes around 20,000 genes (3

 13

billion DNA base pairs) [2, 3]. The genomics data used in this thesis consists of gene

expression from these genes. I also worked on another omics data consisting of microbiome

abundance profiles. This data is generated by sequencing microbial genomes using high-

throughput sequencing technologies (amplicon sequencing or 16S rRNA sequencing) and

then counting the sequences of different taxa of microbial community [4]. Therefore, the data

represents the number of sequences for a particular taxon in a sample.

1.1.2 Parallel Computing

The volume of data captured in a regular basis for different purposes by different

technologies are increasing in an overwhelming rate and are commonly known as big data.

Massive amount of computational power is required to make sense of this huge amount of

data. The doubling of number of transistors in a single integrated circuit in every two years

(Moore’s law [5]) has led to a substantial growth in computational power of computers. In

addition to this growth in computation power, a new paradigm of computing, parallel

computing, has emerged where many calculations or process executions can be performed

simultaneously [6]. Parallel computing coupled with the growth in computational power has

made the impossible task of making sense of big data possible. Here, in this thesis, I will

work on a specific branch of parallel computing focused on CPU based parallelism.

1.1.3 Multi-view Learning Using Multi-omics Data

In a setting where multiple views of the same individuals are available, multi-view learning

methods aim to integrate them in a manner which maximizes the outcome of the learning

problem of interest. As multi-view data is commonly observed in various situations, and

analyzing them using multi-view learning approaches has been found to be effective, various

multi-view learning methods have been developed. Based on the taxonomy provided by Zhao

 14

et al. [7] these methods fall into three groups: 1) co-training type algorithms, 2) co-

regularization type algorithms, and 3) margin-consistency type algorithms.

Originally proposed by Blum and Mitchell [8], co-training is one of the first methods of

multi-view learning for semi-supervised settings. This method, at first, focuses on training

multiple classifiers on multiple views separately using labeled data. After that, it tunes the

classifiers by making predictions on the unlabeled data using all the classifiers separately

with a goal to maximize the consensus of predictions among them. Examples of co-training

type algorithms include co-EM [9], co-EMT [10], co-testing [11], Bayesian co-training [12],

co-clustering [13] etc.

Co-regularization-based algorithms use different approaches to augment regularization

to the objective function to make multiple views consistent with each other [7]. The

approaches to augment regularization may be categorized as early and late regularizations. In

the early regularization approach, the original data is usually projected in a new space in an

unsupervised or supervised manner, and then the projection is used for downstream analyses

(classification, clustering etc.). The methods for unsupervised projection mainly include

correlation-based algorithms where the features in the newly transformed space are

constrained to be as similar as possible. Examples of this type include canonical correlation

analysis (CCA) [14–16], kernel CCA [17, 18], Bayesian CCA [19], Tensor CCA [20] etc.

Recently, several deep neural network-based models have been developed to achieve

unsupervised projection. Deep canonical correlation analysis (DCCA) [21], split

autoencoders (SplitAE) [22] are two classic examples of this type. Whereas the above

correlation-based approaches only consider the similarity among the transformed features, by

exploiting the original class information, the supervised method of projection considers the

dissimilarity among the views as well. Discriminative CCA [23–25], multi-view fisher

 15

discriminant analysis [26], and multi-view linear discriminate analysis (LDA) [27] are

examples of this type. On the other hand, in the late regularization approach, instead of

adding regularization to the features, the classifiers or regressors are regularized to make their

outputs as similar as possible. SVM-2K (a combination of kernel CCA and Support Vector

Machine (SVM)) [28], multi-view twin SVMs [29] are some examples of the late

regularization approach.

Finally, the margin consistency type algorithms aim to find the hyperplanes which have

a consistent margin with the sample data points among views. Examples include multi-view

maximum entropy discrimination (MVMED) [30], soft margin consistency-based multi-view

MED [31], and consensus and complementarity-based MED (MED-2C) [32] etc.

1.2 Motivation

DNA sequence data consisting of nucleotide base pairs (adenine, thymine, guanine, cytosine)

is a kind of omics data which represents the sequence of base pairs in a genome of a

particular organism. The sequence data is the blueprint of life as it contains the information

of genes which determines biological features of an organism. Studying the differences or

similarities among DNA sequences of different organisms allows us to understand the

relationships among those organisms, and may answer many important biological questions.

However, for most of the organisms (e.g., human) the sequence data is very large in size. For

instance, the human genome consists of 3 billion nucleotide base pairs. This large amount of

data incurs challenges in their analysis. Parallel computing of this type of omics data can

provide significant ease in the computation. Hence, in the first part of this thesis, I have

focused on developing parallel computing solutions for a special type of comparative analysis

of DNA sequences.

 16

In the second part of this thesis, I developed new computational techniques for

integrating and making sense of multi-view (e.g., multi-omics) data. Datasets comprised of

multiple feature sets from multiple sources (also known as “views”) measured on the same

individuals or subjects are known as multi-view data. Examples may include publication data

comprised of texts and citation information, video data comprised of images and audio

signals, multi-omics data comprising of genomes, metabolomes, microbiomes etc. Learning

objective function of interest (e.g., clustering, classification etc.) from these types of datasets

using only single view will not be able to capture all the available information. A

straightforward solution is to directly concatenate features from multiple views into a single

view and then learn from that, which may provide somewhat better performance than the

former approach. However, this approach has several drawbacks. First, multiple views of the

datasets may contain different statistical properties, and concatenating them in a

straightforward manner may prevent recognizing and exploiting the individual properties of

each view [7, 33, 34]. Second, features from different views could be of disparate data

structures (e.g., vectors, graphs, trees etc.), which adds challenges to the straightforward

merging of them [33]. Finally, straightforward concatenation will lead to a higher number of

dimensions in the resulting feature space, which may induce over-fitting given a limited

number of training samples [7]. To address these issues, a new paradigm named multi-view

learning has been developed, which aims to exploit relationships among and within the views

to provide better learning performance than single view methods while discovering patterns

from the multi-view data [35, 36].

In my thesis, I am interested in multi-view data originating from bioinformatics field.

To be specific, my work is focused on multi-view learning using multi-omics data comprised

of gene expressions and microbiome abundance profiles. Multi-omics data have some

fundamental differences in characteristics compared to other multi-view data (e.g., image,

 17

audio, web pages etc.), as the number of features in multi-omics data is very large with

respect to the number of samples. For instance, in one of our used datasets, both the gene

expression and the microbiome views consist of hundreds to thousands of features making

the datasets very high dimensional in nature but commonly there is a relatively small number

of samples. In most of the cases, combining host gene expression data with microbiome

abundance data results in a unique representation where the number of features (e.g., tens of

thousands) are very large compared to the number of available samples (e.g., hundreds). This

increased number of features incur the curse of dimensionality problem while analysing the

data [37]. These enormous number of features provide new challenges for using most of the

mathematical and statistical evaluation methods [38]. With such high dimensional data, it is

often the case that a subset of the dimensions represent irrelevant information. Therefore,

prior to learning any objective functions of interest, these datasets need to be reduced to a

lower dimensional subspace using useful feature selection and/or dimension reduction

methods. However, one should keep in mind the multi-view nature of the datasets too, as the

reduced latent or feature space should retain the original information from individual views

as well as the relationship among the views. There exist a number of dimension reduction

techniques: principal component analysis (PCA), correlation-based approaches (e.g.,

canonical correlation analysis, regularized canonical correlation analysis etc.) [16], multi-

dimensional scaling, deep learning approaches (e.g., Autoencoders) [39, 40], tensor

decomposition-based methods [41, 42] etc.

The role of human microbiome in human health has been found to be significant.

Human microbiome has influence in different important functions such as: digestion, immune

system etc. The alterations in the microbiome community composition has been found to be

associated with several diseases such as: psoriasis, acne, inflammatory bowel disease, Crohn

disease etc. [4, 43, 44]. Analysis of microbiome abundance data has some special challenges

 18

due to its sparsity and compositional nature [4]. As this is count data one has to deal with

skewed distribution, and over-dispersion. Besides, the counts of different operational

taxonomic units (OTU) are highly variable which requires some preprocessing steps before

analyzing. The total count per sample is usually constrained by the maximum read count limit

of the specific DNA sequencer used. This makes the count information highly relative to each

other which needs to be considered while analyzing this type of data.

1.3 Research Objectives

The objective of my thesis is two-fold. First, to investigate and develop novel and time-

efficient ways of analyzing high-dimensional omics datasets using parallel computing

techniques. Second, to develop novel framework for multi-view learning of multi-omics data.

Correlation-based approaches for feature learning and dimension reduction are mainly

considered. Furthermore, I also explore answers of some novel biological questions.

 19

Chapter 2: CPU-based Parallel Algorithms for Finding LCS Using

Omics Data

Finding the longest common subsequence (LCS) among sequences in a time-efficient way is

a non-trivial problem. It has significant demand in many sectors specifically in the field of

bioinformatics for finding DNA sequence alignment and pattern discovery. Here, I propose

new CPU-based parallel implementations, which can provide significant advantages in terms

of execution times, monetary cost, and pervasiveness in finding LCS of DNA sequences in a

setting where Graphics Processing Units (GPUs) are not available. For general use, I also

made the OpenMP-based tool publicly available for the end-users. In this study, I developed

novel parallel versions of the LCS algorithm on message passing interface (MPI), OpenMP,

and hybrid MPI-OpenMP platforms. The experimental results with both simulated and real

DNA sequence data show that the OpenMP implementation provides at least two-times

absolute speedup than the best sequential version of the algorithm and a relative speedup of

almost 7. I provided a detailed comparison among the implementations on different platforms

and different versions of the algorithm in terms of execution times. I also showed that

removing branch conditions negatively affects the performance of the CPU-based parallel

algorithm on OpenMP platform.

 20

2.1 Introduction

Finding the Longest Common Subsequence (LCS) is a classic problem in the field of

computer algorithms and has diversified application domains. A subsequence of a string is

another string which can be derived from the original string by deleting none or few

characters (contiguous or non-contiguous) from the original string. A longest common

subsequence of two given strings is a string which is the longest string that is a subsequence

of both the strings. The sequential version of the LCS algorithm using “equal-unequal”

comparisons takes Ω(mn) time, where m and n represent the length of the two sequences

being compared [45, 46]. It is necessary to mention that the problem of finding the LCS of

more than two strings is NP-Complete [47, 48].

LCS has various applications in multiple fields including DNA sequence alignment in

bioinformatics [49–51], speech and image recognition [52, 53], file comparison, optimization

of database query, etc. [54]. In the field of bioinformatics, pattern discovery helps to discover

common patterns among DNA sequences of interest which might suggest that they have

biological relation among themselves (e.g., similar biological functions) [55]. In discovering

patterns between sequences, LCS plays an important role to find the longest common region

between two sequences. Although a praiseworthy amount of efforts have been made in the

task of pattern discovery, with the increase of sequence lengths, algorithms seemingly face

performance bottlenecks [56]. Furthermore, with the advent of next-generation sequencing

technologies, sequence data is increasing rapidly [57], which demands algorithms with

minimum possible execution time. Parallel algorithms can play a vital role in this regard.

 21

 Out of the parallel solutions of the LCS problem, anti-diagonal [58] and bit-parallel

[59] algorithms are few of the firsts and noteworthy attempts. Recently, with the rise of

Graphics Processing Unit (GPU)- based accelerators, several Compute Unified Device

Architecture (CUDA)-based GPU targeted solutions to the LCS problem have been proposed.

Yang et al. [60] are one of the firsts to propose an improved row-wise independent parallel

version of the LCS algorithm by changing the data dependency used by a dynamic

programming approach and using unique memory-access properties of GPUs. More recently,

Li et al. [61] have proposed a parallel formulation of the anti-diagonal approach to the LCS

algorithm using a GPU-based model. Although these GPU-based models offer faster

execution times, not many computers (compared to CPUs) are equipped with GPUs. In such

cases, to achieve performance improvement, CPU-based (e.g., MPI, OpenMP) parallel LCS

algorithms are still greatly demanded. However, to the best of our knowledge, there is no

such publicly available CPU-based tool for the end-users. I addressed this gap by developing

a new OpenMP-based tool for the end-users by improving the row-wise independent version

[60] of the LCS algorithm. Moreover, I also developed two other CPU-based parallel

implementations (MPI, hybrid MPI-OpenMP) of the algorithm and provided a detailed

benchmarking of all these implementations on simulated and real DNA sequence data, which

was absent for this version of the LCS algorithm. The main contributions of this study are

listed below.

1. A new OpenMP-based publicly available tool for finding the length of LCS of DNA

sequences for the end-users.

 22

2. A detailed benchmarking of the newly developed CPU-based parallel algorithms

using different performance metrics on both simulated and real DNA sequence data,

where I found that our OpenMP-based algorithm provides at-least 2 times absolute

speedup (compared to the best sequential version) and 7 times relative speedup

(compared to using only 1 thread).

3. A comparison of the newly developed OpenMP-based LCS algorithm with and

without branch conditions.

2.2 Preliminaries

Given two sequence strings 𝐴[1,2, … , 𝑚] and 𝐵[1,2, … , 𝑛], the LCS of the two strings can be

found by calculating the LCS of all possible prefix strings of 𝐴 and 𝐵. The LCS of a prefix

pair 𝐴[1,2, … , 𝑖] and 𝐵[1,2, … , 𝑗] can be calculated using the previously calculated prefix

pairs with the following recurrence relation:

𝑅[𝑖, 𝑗] = {

0
𝑅[𝑖 − 1, 𝑗 − 1] + 1

max(𝑅[𝑖 − 1, 𝑗], 𝑅[𝑖, 𝑗 − 1])

𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑖𝑓 𝐴[𝑖] = 𝐵[𝑗]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.1)

Here, 𝑅 is a score table consisting of the lengths of the LCS of all the possible prefixes of the

two strings. The LCS of 𝐴 and 𝐵 can be found in the cell 𝑅[𝑚, 𝑛] of table R. While

calculating the length of LCS, the case with 𝐴[𝑖] = 𝐵[𝑗] resembles a dominant match which

is an essential part in solving the problem [45]. From equation 2.1, we can see that the value

of a cell 𝑅[𝑖, 𝑗] in the scoring table R depends on 𝑅[𝑖 − 1, 𝑗 − 1], 𝑅[𝑖, 𝑗 − 1] and 𝑅[𝑖 − 1, 𝑗] .

 23

 Algorithm 1: Classic Algorithm of LCS

Input: Sequence Strings 𝐴[1,2, … , 𝑚] and 𝐵[1,2, … , 𝑛]

Output: Length of LCS

1: for i=1 to m do

2: for j=1 to n do

3: calculate R[i,j] using equation 2.1

2.2.1 Row-wise Independent Algorithm (version 1)

Yang et al. [46] has devised a row-wise independent parallel algorithm by removing

dependency among the cells of the same row. They have modified equation 2.1 so that the

value of a cell in a particular row depends only on the previous row. The modified equation is

as follows:

𝑅[𝑖, 𝑗] = {

0
𝑅[𝑖 − 1, 𝑗 − 1] + 1

max(𝑅[𝑖 − 1, 𝑗], 𝑅[𝑖 − 1, 𝑗 − 𝑘 − 1] + 1)

max(𝑅[𝑖 − 1, 𝑗], 0)

𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑖𝑓 𝐴[𝑖] = 𝐵[𝑗]

𝑖𝑓 𝐴 = 𝐵[𝑗 − 𝑘]

𝑖𝑓 𝑗 − 𝑘 = 0

 (2.2)

Here, 𝑘 denotes the number of steps required to find either a match such as A[i] = B[j −

k] or j − k = 0.Yang et al. [46] has divided their algorithm into two steps. First, they

calculated the values of j − k for every 𝑖 and stored these values in another table named P.

The equation to calculate the value of 𝑃 is given below.

 24

𝑃[𝑖, 𝑗] = {

0
𝑗 − 1

P[𝑖, 𝑗 − 1]

𝑖𝑓 𝑗 = 0

𝑖𝑓 𝐵[𝑗 − 1] = 𝐶[𝑖]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.3)

Here, C is the string comprised of the unique characters of string A and string B. After that

the value of score table 𝑅 were calculated using the following updated equation.

𝑅[𝑖, 𝑗] = {

0
𝑅[𝑖 − 1, 𝑗 − 1] + 1

max(𝑅[𝑖 − 1, 𝑗], 0)

max(𝑅[𝑖 − 1, 𝑗], 𝑅[𝑖 − 1, 𝑃[𝑐, 𝑗] − 1] + 1)

𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑖𝑓 𝐴[𝑖] = 𝐵[𝑗]

𝑖𝑓 𝑃[𝑐, 𝑗] = 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.4)

Here, c denotes the index of character A[i-1] in string C.

 Algorithm 2: Row-wise independent Algorithm (version 1)

Input: Sequence Strings 𝐴[1,2, … , 𝑚] and 𝐵[1,2, … , 𝑛], unique character string 𝐶[1,2, … , 𝑙]

Output: Length of LCS

1: for i=1 to l do

2: for j=1 to n do

3: calculate P[i,j] using equation (2.3)

4:

5: for i=1 to m do

6: for j=1 to n do

7: calculate R[i,j] using equation (2.4)

 25

2.2.2 Row-wise Independent Algorithm (Version 2)

Looking into equation 2.4, we can see that there are few branching conditions associated with

it. As branching can hamper the performance of parallel algorithms, Yang et al. [46] further

modified the calculation of P matrix using the following equation to reduce branching

conditions.

𝑃[𝑖, 𝑗] = {

0
𝑗

P[𝑖, 𝑗 − 1]

𝑖𝑓 𝑗 = 0

𝑖𝑓 𝐵[𝑗 − 1] = 𝐶[𝑖]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.5)

Then equation 2.4 can be rewritten as follows with one branching condition reduced.

𝑅[𝑖, 𝑗] = {

0
max(𝑅[𝑖 − 1, 𝑗], 0)

max (R[i − 1, j], R[𝑖 − 1, 𝑃[𝑐, 𝑗] − 1] + 1)

𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑖𝑓 𝑃[𝑐, 𝑗] = 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.6)

From the two versions of row-wise independent algorithms, we can see that the calculation of

values of table P only depends on the same row. In contrast, the calculation of the values of

score table R depends on the previous row only. Upon observing the equations of the row-

wise independent algorithms. we can see that the rows of the P table can be calculated in

parallel. Furthermore, for a given row of the R score table, all the elements can be calculated

in parallel.

 26

 Algorithm 3: Row-wise independent Algorithm (version 2)

Input: Sequence Strings 𝐴[1,2, … , 𝑚] and 𝐵[1,2, … , 𝑛], unique character string 𝐶[1,2, … , 𝑙]

Output: Length of LCS

1: for i=1 to l do

2: for j=1 to n do

3: calculate P[i,j] using equation (2.5)

4:

5: for i=1 to m do

6: for j=1 to n do

7: t = the sign bit of (0 - P[c,j])

8: s = the sign bit of (0 – (R[i-1,j] – t . R[i-1, P[c,j] – 1))

9: R[i,j] = R[i-1,j] + t . (s ⊕ 1)

2.3 Methodology

I have developed the row-wise independent algorithms using MPI, OpenMP, and

hybrid MPI-OpenMP platforms. Here, I will talk about the PCAM (Partition,

Communication, Agglomeration, and Mapping) formulation of our solution for distributed

memory machines. Then I will provide our solution approaches for all the three platforms

subsequently.

 27

2.3.1 PCAM Formulation

The algorithm involves two steps. First, it calculates the table of P. Finally, it calculates the

score table R using the values of P, and previous row values of R. Here, I will discuss parallel

formulation of the second step involving calculation of the score table R. The first step can

also be parallelized in a similar fashion with some minor adjustments. The PCAM

formulation of the second step of the implementation is discussed below.

2.3.1.1 Partitioning

Observing equation 2.4, we see that a task can be defined as the calculation of a single cell of

the score table R. While calculating a single cell (𝑅[𝑖, 𝑗]) of table R, the value of 𝑅[𝑖 − 1, 𝑗 −

1], 𝑅[𝑖 − 1, 𝑗], and 𝑃[𝑖, 𝑗] are required. However, I plan to calculate the rows one after

another. I will calculate the first row at first, then move on to the second row and so on. In

addition, the value of table P will be already calculated in the first step of the algorithm.

Hence, one task will consist of calculation of 𝑅[𝑖, 𝑗], and three values (𝑅[𝑖 − 1, 𝑗 − 1], 𝑅[𝑖 −

1, 𝑗], and 𝑃[𝑖, 𝑗]. Therefore, we can define a 2D task matrix T, where task T[i,j] will calculate

the value of R[i,j].

2.3.1.2 Communication

Here, the values of R[i-1,j-1] and R[i-1,j] will be calculated by tasks T[i-1,j-1] and T[i-1,j].

Hence, task T[i,j] will have to communicate with tasks T[i-1,j-1] and T[i-1,j] for calculating

the value of R[i,j].

2.3.1.3 Agglomeration & Mapping

Cells of the same row of the score table don't have any dependency between them. Therefore,

we can calculate their values in a parallel fashion. If we have p processes and n be the

 28

number of columns in the score table, then we can assign n/p tasks into a single process. We

can map the processes with processors in a one-to-one fashion.

2.3.2 MPI-based Approach

For the calculation of the P table, each row can be calculated in a parallel way. Therefore, in

our implementation, I have scattered the P table to all the processes in the beginning. After

calculating the corresponding chunk values, process number zero gathers the partial results

from all the other processes.

For the calculation of score table R, elements in each row can be calculated in

parallel. In the beginning, process number zero scatters the values of a row to all the

processes. After that process number zero gathers and broadcasts these results. This scatter

and gather operations need to be done for every row. Hence, the communication and

synchronization overheads are expected to be higher for the MPI implementation approach

(code provided in Additional file 1).

Instead of scattering the row values, I have tried broadcasting at first. However, it

took extra time due to the increase in communication data size. Therefore, to reduce

communication bandwidth I have used scatter. I have also used 16-bit MPI_SHORT instead

of 32-bit MPI_INT to further reduce the communication data size.

2.3.3 OpenMP-based Approach

In the distributed memory implementation, we saw that the number of scatter and gather is

too high (equal to the length of sequence string A). A shared memory implementation can

mitigate these communication and synchronization overheads. Therefore, I have also

developed the algorithm using OpenMP platform.

 29

In case of the OpenMP implementation (provided in Additional file 2) of the score

table R, the outer loop can’t be calculated in parallel, as every row depends on its' previous

rows. Therefore, I have parallelized the inner loop only. Work-sharing construct #pragma

omp parallel for (an OpenMP directive for sharing iterations of a loop among the available

threads) was used for this purpose. In addition, the values of t and s needs to be private for all

the threads. Otherwise, the result will be erroneous. I have tried different scheduling

strategies for sharing works among the threads. The comparison among these scheduling

strategies will be discussed in the Results section.

The calculation of the P table was also shared among threads. This time, the outer

loop was parallelized using #pragma omp parallel for construct, as every row is

independent of each other.

2.3.4 Hybrid MPI-OpenMP-based Approach

After experimenting with a different number of processes from MPI version, I have selected

the optimum number of processes that provides better execution time. Similarly, from the

observation of experimental results of OpenMP implementation approach, I have selected the

optimum number of the threads. Then I implemented the algorithm using hybrid MPI-

OpenMP platform with the selected parameters.

In the MPI implementation, every row was first scattered among processes. Then each

process calculated their chunks. In the hybrid implementation, this chunk calculation was

further shared among threads using #pragma omp parallel for.

 30

2.4 Results & Discussion

2.4.1 Data Sets and Specifications of the Computer

I used two different data sets for the experiments. First one is a simulated DNA sequence

data, collected from University of California Riverside's (UCR) random DNA sequence

generator [47]. The lengths of the different pairs of sequences are between 128 base pairs to

32,768 base pairs. The second data set consists of 8 virus genome sequence pairs and two

entire chromosome genome sequence pairs of two eukaryotes, collected from the website of

National Center for Biotechnology Information (NCBI) [48]. The selected sequence lengths

vary from 359 base pairs to 32,276 base pairs for the viruses, and from 15,05,371 base pairs

to 1,61,99,981 base pairs for the eukaryotes. Table 2.1 represents the selected virus and

eukaryote pairs and their sequence lengths.

 31

Table 2.1: Information of real DNA sequence data set collected from NCBI [48]. “bp” stands for

the number base pairs.

Virus A Virus B

1 Potato spindle tuber viroid (360 bp) Tomato apical stunt viroid (359 bp)

2 Rottboellia yellow mottle virus (4194

bp)

Carrot mottle virus (4193 bp)

3 Rehmannia mosaic virus (6395 bp) Tobacco mosaic virus (6395 bp)

4 Potato virus A (9588 bp) Soybean mosaic virus N (9585 bp)

5 Chicken megrivirus (9566 bp) Chicken picornavirus 4 (9564 bp)

6 Microbacterium phage VitulaEligans

(17534 bp)

Rhizoctonia cerealis alphaendornavirus 1

(17486 bp)

7 Lucheng Rn rat coronavirus (28763

bp)

Helicobacter phage Pt1918U (28760 bp)

8 Lactococcus phage ASCC368 (32276

bp)

Uncultured Mediterranean phage

uvMED (32133 bp)

9 Athene Cunicularia (Chromosome 25,

1505370 bp)

Bombus Terrestris (Chromosome LG

B18, 3078061 bp)

10 Athene Cunicularia (Chromosome 25,

1505370 bp)

Bombus Terrestris (Chromosome LG

B01, 16199981 bp)

All the experiments were run on University of Manitoba's on-campus cluster

computing system (Mercury machine). The cluster consists of four fully connected

computing nodes with 2-gigabit ethernet lines between every pair of nodes. Each node

consists of two 14-core Intel Xeon E5-2680 v4 2.40GHz CPUs with 128GB of RAM. Having

a total of 28 cores inside, with the help of hyper-threading, each node is capable of running

twice as many hardware threads (56 threads) at a time.

 32

2.4.2 Comparison among Different Approaches

For the MPI approach, I tuned for the number of processes and found that using 4 process

gives better relative speedup. For the OpenMP approach, I tuned for the number of threads

and the scheduling strategy (static, dynamic, and guided). I found that using 16 threads and a

static scheduling of work sharing among the threads provided 7 times relative speedup (see

Figure 2.1 (a) and Figure 2.1 (b). Finally, for the hybrid MPI-OpenMP approach, I used 4

processes (or nodes) and 16 threads.

Figure 2.1: Relative speedup and execution times of different scheduling strategies. (a) Relative

speedup with different number of threads. (b) Execution times (in seconds) for different scheduling

strategies and chunk sizes. Number of threads was 16. Sequence lengths were set to 32768 for both

cases.

For the comparison purpose, I experimented with a varying number of sequence

lengths. Figure 2.2(a), illustrates the execution times for different implementations where we

can see that our OpenMP implementation outperforms all the other approaches and is almost

2 times faster than the best sequential version. However, the MPI approach provides poor

results due to the increased amount of communication and synchronization overhead caused

by 𝑚 scatter and gather operations (blocking in nature). The hybrid MPI-OpenMP approach

performs the worst. As in the hybrid approach, the number of scatter and gather operations is

the same as the MPI approach, and it also adds synchronization overheads of the OpenMP,

 33

this implementation provides the worst result. Therefore, distributed memory implementation

is discouraged for the LCS algorithm. In order to validate our results, I also experimented

with the real-world DNA sequence data (see Table 2.1). From Figure 2.2 (a), we can see that

even for the real world data the OpenMP implementation is having at-least 2 times speedup

from the best sequential version. For longer DNA sequences (SP 9, SP 10 in Figure 2.2 (b),

the OpenMP speedups are even higher, whereas the MPI and the hybrid implementations

took more than a week to complete.

Figure 2.2: Execution times for different implementations and versions of the LCS algorithm with

real and simulated data. (a) Execution times for different implementations with varying sequence

lengths for the simulated dataset. (b) Execution times for different implementations with different

DNA sequences of real world DNA sequence pairs. Here “SP” stands for sequence pairs from Table

1. The primary y-axis (execution times in seconds) describes the timing of sequence pairs SP 1 to SP

8, the secondary y-axis (execution times in hours) describes the timings of SP 9 and SP 10. Points

marked by cross signs denote that those experiments took more than 7 days to complete. (c)

Execution times for different lengths of sequence strings from sequential implementation of the two

versions of the row-wise independent algorithm.

2.4.3 Comparison between the Two Versions of the Algorithm in OpenMP Approach

In the above experiments, I used version 2 of the row-wise independent algorithm. In order to

compare the execution times of the two versions (version 1 and version 2), I also developed

the version 1. Figure 2.2 (c) illustrates the execution times for the two versions with varying

 34

sequence sizes and 1 thread only where we can see that version 1 performs relatively better

than version 2 of the algorithm. Although version 2 has removed branching conditions, it has

added more computations which might be the reason for its relatively bad execution times.

Furthermore, CPU architectures are much better at branch predictions than GPUs. Therefore,

the second version of the row-wise independent parallel algorithm performed well on GPUs

[46] but not on CPUs.

2.5 Availability and Documentation of Tool

The CPU-based parallel LCS tool has been made public and is available in github. Table 2.2

contains a brief summary of the tool with version requirements, license, and online links.

Table 2.2: Summary of our parallel LCS tool.

Project Name LCS Row Parallel (CPU)

Project Home Page https://github.com/RayhanShikder/lcs_parallel/

Operating Systems Platform Independent

Programming Language C

Other Requirements gcc 4.8.5 or later, OpenMPI version 1.10.7 or

later, OpenMP version 3.1 or later.

License MIT License

Any restrictions to use by non-academics None

2.5.1 Requirements of the Installation

The tool is developed on OpenMP. Therefore, a working version of OpenMP is required for

the tool to work. The gcc compilers usually come with built-in support for OpenMP.

However, for Mac OS you may need to change some configurations to make OpenMP

working.

https://github.com/RayhanShikder/lcs_parallel/

 35

2.5.1.1 Mac OS X

While running the make command of this tool in your Mac, if you face fatal error: ‘omp.h’

file not found error, that means the version of clang in your PC doesn’t support OpenMP. If

you do not see any error, you are good to go. If you get the error, you may have to reinstall

the gcc using brew reinstall gcc. Then you have to link to the installed path by modifying

your $PATH variable. Or you can forcefully create the symbolic links (if asked) while

reinstalling gcc. To do so, run brew link --overwrite gcc.

Now to use OpenMP you have to specify the proper gcc compiler (e.g., gcc, or gcc-7,

or gcc-8), which supports OpenMP. In the makefile inside the Tool directory, please change

the CC value (name of the compiler) to the specific name of the compiler (e.g., gcc, or gcc-7,

or gcc-8). One can find the details from [49].

2.5.1.2 Linux, Windows

The gcc compilers in Linux come with built-in support for OpenMP. So, you do not need to

do anything there. For Windows you may need to install a suitable version of gcc to

use OpenMP. You can look at this reference [50].

2.5.2 How to Run?

At first, clone or download this repository. Then go to the Tool directory and

run make command from Terminal/Command Prompt. This will create an executable file

named find_lcs.

2.5.2.1 Prepare the Input

At first get the sequence files (e.g., FASTA) to compare from a convenient source (e.g., [47,

48]). Make sure the files consist of only nucleotide bases (A, T, C, or G). Therefore, you may

 36

need to remove the description lines (lines started with a ‘>’), and any other characters

(newline character, whitespaces etc.) from the file.

After collecting the sequence files and removing unnecessary characters from it, create the

input text file in the following manner.

1. Put the sequence lengths (as integer value) of the two sequences in two lines.

2. Then put the sequence length of unique characters (4) in the third line.

3. After that, put the sequence strings in three consecutive lines. The first two lines are for

the sequences to compare, and the third lines will be for the unique characters (in this

case ATCG).

Figure 2.3 is an example of a small input file where the first sequence consists of 16 base

pairs, and the second sequence consists of 15 base pairs.

Figure 2.3: Snapshot of a sample input file.

2.5.2.2 Execution

Now to get the LCS of two sequences, find the path to your desired data file. Then, run the

following command

./find_lcs dumm_input.txt > output.txt.

This will use the dummy_input.txt file as your input and write the output in output.txt file.

Note that this will use the maximum number of threads available in your PC.

 37

2.5.2.3 Understanding the Output

After the completion of the execution, one can find the output of in the output.txt file (see

Figure 2.4). The output consists of three parts. The first part provides a summary of the input

sequences. The second part provides the number of threads, LCS length, percentage of match

between the two sequences, and the total time taken (in seconds) for the program. Following

is the output file by using the ../data/simulated/11.txt file as input and using 4 threads for

parallelization.

Figure 2.4: Snapshot of a sample output file.

Please note that, with the increase of sequence lengths and number of threads, the timings of

the parallel program improve significantly. A video tutorial on how to use this tool can be

found in [51].

2.6 Conclusion & Future Directions

As I found that the version of the row-wise independent algorithm with branching performs

better than the other version, I will investigate this version in more detail. My study

investigated parallelization of the row-wise independent version of the LCS algorithm only,

as it provided ease in parallelization using the MPI, and OpenMP frameworks. However, in

future I will also investigate other versions of the algorithm with the goal of finding better

parallelization.

 38

Chapter 3: Correlation Analysis, Classification, and Visualization of

Disease-based Multi-omics Data

3.1 Introduction

In a real-world scenario, an individual sample or entity can be represented from different

viewpoints. For instance, a single object can have multiple representations consisting of

images captured from different angles using multiple cameras. Or, a video can be thought as

a combination of image frames, and audio signals. The different representations are termed as

views and this type of datasets are commonly referred to as multi-view datasets. Analyzing

such datasets in an aggregated way reveals more information than treating the individual

views separately. This special type of treating multi-view datasets is known as multi-view

learning. CCA-based approaches are one of the most popular and effective ways of multi-

view learning methods. CCA-based approaches learn a shared representation from multiple

views by maximizing the correlation among them. Most of the CCA-based approaches are

unsupervised (e.g., regularized canonical correlation analysis (RCC) [68–70], sparse

canonical correlation analysis (SCCA) [71–73], etc.). A DNN-based CCA approach, deep

canonical correlation analysis (DCCA) [21], has recently received significant attention in the

research community for its ability to capture non-linear behaviors and better correlation

scores. However, in these unsupervised approaches, the label information (if any) remains

unused. Considering the label information in correlation-based analyses have the potential to

provide correlated features with more predictive power.

In the field of bioinformatics, multi-view datasets mainly consist of omics data (e.g.,

genomics, proteomics, microbiomes, etc.), and are known as multi-omics datasets. Multi-

omics datasets have some unique properties of themselves and sometimes require special

type of considerations while doing analysis. Here, first I have explored and benchmarked the

 39

existing CCA-based approaches for multi-view learning on a special type of multi-omics

dataset consisting of gene expression and microbiome views from the patients with related

inflammatory bowel diseases (IBD). Then, I focused on a special type of unsupervised CCA

approach known as Deep Canonical Correlation Analysis (DCCA) [21] and developed new

supervised versions of this approach. I have also proposed a new general framework for

multi-view analysis of high-dimensional multi-omics datasets using this new supervised

version of the DCCA. Along with the correlation analysis, I have also investigated better

ways of classification of the multi-omics datasets and developed new DNN-based

classification models. Finally, in order to get more insights, I have visualized the datasets at

different steps of the analyses. In section 3.2, I present the benchmarking analyses. In section

3.3, my new approaches for supervised DCCA are presented. Then in sections 3.4, and 3.5, I

discuss the DNN-based new classification approaches and related visualization. section 3.6

provides concluding remarks and potential future research directions.

3.2 Review of CCA Approaches

Multi-omics datasets are very high-dimensional and have a relatively fewer number of

samples compared to the number of features. CCA-based methods are commonly used for

reducing the dimensions of such high-dimensional multi-view (multi-omics) datasets to

analyze the associations among the features from different views and to make them suitable

for downstream analyses (classification, clustering, etc.). However, most of the CCA

approaches suffer from lack of interpretability and result in poor performance in the

downstream analyses. Besides, there is no well-explored comparison study for CCA methods

with application to multi-omics datasets (especially microbiome and gene expression

datasets). In this study, I address this gap by providing a detail comparison study of four

popular CCA approaches: regularized canonical correlation analysis (RCC), deep canonical

 40

correlation analysis (DCCA), sparse canonical correlation analysis (SCCA), and supervised

SCCA using a multi-omics dataset consisting of microbiome and gene expression profiles of

IBD. I evaluated the methods in terms of the total correlation score, and the classification

performance. From the experimental results, I found that the SCCA method provides

reasonable correlation scores in the reduced space, enables interpretability, and also provides

the best classification performance among the four methods.

3.2.1 Introduction

Multi-omics data (or multi-view) consists of data from various omics sources (e.g.,

genomics, transcriptomics, proteomics, etc.) but measured on the same individuals. While

analyzing a single omics data at a time may provide associations of the omics features (e.g.,

genes, genetic variants, etc.) with the disease of interest, it has several limitations. The

identified features, in most of the cases, are only capable of explaining a small amount of the

heritable component of the disease [74]. Furthermore, complex diseases generally involve a

multitude of factors originating from multiple omics sources and environments and the

interactions among the factors as well. Integrated study of the omics data has the potential to

reveal more information about the diseases as it may tell us about the individual associations,

interactions among the factors and the flow of information from the cause of diseases to

consequences [74, 75].

Most of the omics datasets are very high dimensional. For instance, microbiome

datasets generally consist of a few hundreds to thousands of operational taxonomic units.

Likewise, genomics datasets comprise of thousands of genes. In these cases, combining the

omics datasets usually results in an exclusive representation with a very large number of

features (e.g., tens of thousands). However the number of available samples is relatively very

small (e.g., hundreds). These bigger number of features cause the curse of dimensionality

problem in the data analysis step [37]. Again, this large number of features also create

 41

challenges in applying most of the mathematical and statistical methods [38]. Moreover, a

large subset of these features may represent redundant and irrelevant information. Therefore,

before learning any objective functions, the feature sets need to be reduced to lower-

dimensional subspace (may consist of either the original features or their projections).

Most often, researchers want to investigate the relationships between two or more

omics datasets of interest. CCA-based approaches, which find the linear combinations of

features from two datasets and try to maximize the correlation between them, are common

ways to find such relationships [14]. Besides, canonical correlations also reduce the

dimensionality of the original high-dimensional omics datasets making it suitable for fusion

[76] and downstream predictive analysis [36]. The original version of the canonical

correlation analysis has been extended in several ways to make it suitable for different types

of applications. In a setting, where the numbers of features are larger than the number of

samples, the basic version of the CCA is not effective. To deal with this situation, regularized

versions of the canonical correlation analysis (regularized canonical correlation analysis or

RCCA) have been developed [68–70]. To incorporate non-linear combinations of the features

while calculating the correlations, kernel canonical correlation analysis (KCCA) methods

have been developed too [17, 18, 77]. Recently, a deep neural network-based parametric non-

linear version of the CCA (named as deep canonical correlation analysis (DCCA)) has been

proposed whose mapping function is not restricted to reproducing kernel Hilbert space as

KCCA [21, 40]. In the case of high-dimensional datasets, interpreting the results from the

above-mentioned methods is difficult and in some cases unachievable. However, in

biological applications, along with finding correlations between datasets, researchers seek to

trace the original features that correspond to the resulting correlations. Therefore, to deal with

this issue, sparse versions of the canonical correlation analysis (SCCA) methods have been

developed [71, 73, 78]. Supervised version of the SCCA has also been developed which

 42

considers the class label information while calculating the correlated features [79]. Along

with the above methods, tensor canonical correlation analysis [20], Bayesian canonical

correlation analysis [19], and some autoencoder based methods [22, 40] also exist. However,

there exists no study which highlighted the comparison of the approaches with application to

multi-omics datasets especially datasets consisting of microbiome and gene expression

profiles.

Here I perform a detailed comparison of the canonical correlation methods (RCC,

SCCA, supervised SCCA, and DCCA) in terms of applications with a multi-omics dataset

consisting of microbiome and gene expression profiles. To the best of our knowledge, this

study is the first to investigate the CCA approaches for microbiome and gene expression data

together. I will perform the comparison based on the total correlation scores between the

omics datasets, and performance of learning methods using the learned representations from

different CCA methods. Here, first I will provide the fundamentals of the respective

canonical correlation analysis methods. Then, I will provide the details of the experiments

and discuss the results. Finally, I will discuss several pros and cons of the methods.

3.2.2 Preliminaries

Originally proposed by [14], the CCA methods have been modified in various ways for

different application domains. In this section, I will discuss the fundamentals of the original

version of the CCA and its four variants: regularized canonical correlation analysis (RCC),

deep canonical correlation analysis (DCCA), sparse canonical correlation analysis, and

supervised sparse canonical correlation analysis (SCCA (S)).

 43

3.2.2.1 Canonical Correlation Analysis (CCA)

Having two datasets 𝑋1 and 𝑋2 with (𝑛 × 𝑝1) and (𝑛 × 𝑝2) dimensions measured on the same

subject 𝑖 = 1,2 … , 𝑛, CCA finds linear combinations of the features from the two datasets

which are maximally correlated [14]. The objective of the CCA method is to maximize the

following:

 𝑐𝑜𝑟𝑟(𝑤1
𝑇𝑋1, 𝑤2

𝑇𝑋2) 𝑜𝑟, (
𝑤1

𝑇Σ12𝑤2

√𝑤1
𝑇Σ11𝑤1𝑤2

𝑇Σ22𝑤2

) (3. 1)

CCA finds the linear projections 𝑤1
𝑇𝑋1 and 𝑤2

𝑇𝑋2 which have a maximum correlation

between them, where 𝑤1 and 𝑤2 are the canonical coefficients. Here, Σ11 and Σ22 are the

covariances of 𝑋1 and 𝑋2, and Σ12 is the cross-covariance between the features of the

datasets.

3.2.2.2 Regularized Canonical Correlation (RCC) Analysis

When the number of features (𝑝1 or 𝑝2) become larger than the total number of samples (𝑛),

the basic version of the CCA doesn’t work as the first 𝑛 canonical variates possess larger

values while the rest of the canonical covariates become zero [52]. To deal with this,

regularization parameters (𝜆1and 𝜆2) can be added with the covariance matrices in the

following manner (𝐼𝑝1
 and 𝐼𝑝2

 are identity matrices) [53, 54].

Σ11
′ = Σ11 + 𝜆1𝐼𝑝1

 (3. 2)

Σ22
′ = Σ22 + 𝜆2𝐼𝑝2

 (3. 3)

 44

Here, 𝜆1and 𝜆2are the regularization parameters, and 𝐼𝑝1
 and 𝐼𝑝2

 are identity matrices. The

covariance matrices Σ11, and Σ22 of equation 3.1 can be replaced with Σ11
′, and Σ22

′ for the

regularized version.

3.2.2.3 Deep Canonical Correlation Analysis (DCCA)

While CCA and RCC look for linear combinations of the features, deep canonical correlation

analysis (DCCA) searches for complex nonlinear projections of the input features which are

maximally correlated [21]. DCCA is a DNN-based approach, where two densely connected

networks (Network 1 and Network 2 in Figure 3.1) are separately trained on two views of the

datasets. These two networks learn nonlinear feature combinations and use a correlation

maximization objective function to adjust the weight values.

Figure 3.1: Schematic diagram of the DCCA method.

Let’s consider Network 1 and Network 2 as f and g and the learned features from these two

networks as f(X) and g(Y). Then the CCA objective function takes the following form:

max tr (𝑈𝑇𝑓(𝑋)𝑔(𝑌)𝑇𝑉) (3.4)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝑈𝑇𝑓(𝑋)𝑓(𝑋)𝑇𝑈 = 𝐼

𝑉𝑇𝑔(𝑌)𝑔(𝑌)𝑇𝑉 = 𝐼

 45

Here, tr denotes the trace function which calculates the trace of a given matrix. U, V are the

projection matrices for projecting the output of f(X) and g(Y).

3.2.2.4 Sparse Canonical Correlation Analysis (SCCA)

For datasets with a large number of features, the interpretation of linear combinations

becomes impracticable. Hence, considering a sparse subset of the features is a viable

approach [55, 56]. In this case, the objective function to be maximized takes the following

form:

𝑐𝑜𝑟𝑟(𝑤1
𝑇𝑋1, 𝑤2

𝑇𝑋2)

 𝑤ℎ𝑒𝑟𝑒 ||𝑤1||
2

≤ 1, ||𝑤2||
2

≤ 1, 𝑷1(𝑤1) ≤ 𝑐1, 𝑎𝑛𝑑 𝑷2(𝑤2) ≤ 𝑐2 (3.5)

Here, 𝑷1 and 𝑷2 are called penalty functions or sparse CCA criterion. These penalty

functions are chosen in a way to provide sparse feature combinations and also to make the

CCA deal with situations where the feature sets are large compared to the number of samples.

𝑷1 and 𝑷2 can be lasso or fused lasso penalty functions. The parameters 𝑐1, 𝑐2 are used to

control the level of penalization.

3.2.2.5 Supervised Sparse Canonical Correlation Analysis (SCCA (S))

In the above approaches, the class label information remains unused. If the class label

information can be used while calculating the learned correlated features they can provide

discriminative powers in downstream analyses (e.g., classification, clustering). Inspired by

this rationale, a supervised version of the SCCA method was developed [57]. This method

modifies equation 3.5 in the following way:

 46

𝑐𝑜𝑟𝑟(𝑤1
𝑇𝑋1, 𝑤2

𝑇𝑋2) 𝑤ℎ𝑒𝑟𝑒 ||𝑤1||
2

≤ 1, ||𝑤2||
2

≤ 1,

 𝑷1(𝑤1) ≤ 𝑐1, 𝑷2(𝑤2) ≤ 𝑐2, 𝑤1𝑗 = 0∀𝑗 ∉ 𝑄1, 𝑎𝑛𝑑 𝑤2𝑗 = 0∀𝑗 ∉ 𝑄2 (3.6)

Here, Q1, Q2 denote the set of features in X1, and X2 , which are largely correlated with the

class labels.

3.2.3 Experiments and Results

3.2.3.1 Dataset

I considered a multi-omics dataset consisting of two views: gene expression and microbiome

profile [58]. All the patients in this cohort had undergone ileal-pouch-anal anastomosis

(IPAA) surgery and were recruited from Mount Sinai Hospital, Toronto, Canada. The cohort

represents a wide range of variation in terms of clinical and molecular data. The gene

expression dataset consists of 184 patients and there are 20,253 gene expression features

(representing the level of expression for 20,253 genes) available for each patient. These gene

expression data were generated using microarray technology and are continuous. The

microbiome dataset represents the microbiome community abundance from the same cohort.

This data-set consists of 7,000 microbiome features (representing the count of 7,000 bacteria

groups or OTUs) for every individual. These microbiome data were generated using 16s

rRNA technology and have zero-inflated discrete count values. There are four pouchitis sub-

types recorded in the dataset. These disease sub-types are Familial Adenomatous Polyposis

(FAP), No Pouchitis (NP), Acute Pouchitis (AP), and Crohn’s Disease-Like Inflammation

(CDL). Among the 184 patients, 63 are classified as AP, 28 are classified as CDL, 35 are

classified as FAP, and the remaining 58 of the patients are classified as NP. Along with the

above information, the dataset also contains some meta information including biopsy location

(pouch or pre-pouch ileum), inflammation score (0 to 11). None of the patients were taking

any antibiotic at the time of the biopsy. Table 3.1 shows a summary of the dataset.

 47

Table 3.1: Summary of the dataset.

Type Count

Patient 184

Genes 20,253

Operational Taxonomic Units 7,000

Classes 4

3.2.3.2 Preprocessing and Hyperparameter Tuning

At first, all the zero and constant valued features were removed from the dataset. The

remaining dataset contained 20,251 features in the gene expression view and 5,443 features

in the microbiome view. Then the datasets were normalized to have zero mean and unit

variance. The 184 samples were randomly divided into train (147) and test (37) groups in a

stratified manner.

For the RCC analysis, we need to find the values of λ_1 and λ_2 . To do so, I

searched them in a 5×5 grid where λ_1 was in one axis and λ_2 was in another. The value of

λ_1 and λ_2 were varied from 0.1 to 0.9. The pair of λ_1 and λ_2 which provided the best

train correlation (total correlation of 119.32) was 0.1 and 0.1. This pair was selected for

finding the final canonical projections for both the train and test data. I used the R package:

CCA for the RCC analysis [80].

For the DCCA, I have used the python implementation from [82] which was based on

the original DCCA article [21]. RMSProp optimizer and sigmoid activation function were

used in the model. However, for our purpose, I tuned the hyperparameters (learning rate,

number of layers, regularization value, batch size, etc.). For the DCCA, I split the train data

(147) into train (110) and validation (37) groups. Learning rate of 10KL provided the best

validation correlation. As our dataset consists of very few numbers of samples, a shallow

 48

network with only one hidden layer (1024 units) performed better than deeper networks (with

two or more hidden layers). For the regularization step, I varied the values from 10^(-1) to

10^(-11) and found 10^(-9) to provide the best validation correlation. Finally, as suggested

by [40], I have set a larger value (100) for the mini batch size as it enabled more information

for estimating the covariances accurately.

For the SCCA, I have used the PMA package in R [83]. The CCA method in the PMA

package uses a lasso penalty when the features of the datasets are unordered. In the case of

ordered features, a fused lasso penalty is used. As the features of our dataset are unordered, I

have used the lasso penalty. The levels of penalization were set using the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑋, and

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑍 parameters whose value should be in the range (0, 1) . To find the optimal values

of 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑋, and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑍 I have searched in a 10 × 10 grid and found 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑋 = 0.8

and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑍 = 0.8 provide the best train correlation (total correlation of 87.9) when the

output dimension (K) was set to 100. The PMA package also provides a supervised version

of the sparse canonical correlation analysis, where the output labels are used to ensure that

the learned feature projections are also correlated with the output labels. I will call this

version supervised SCCA or SCCA (S). After tuning for SCCA (S), 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑋 = 0.8 and

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑍 = 0.9 provided the best training correlations which I selected for the subsequent

analyses.

3.2.3.3 Total Correlation Scores

After tuning the hyperparameters to their appropriate values, I have performed the canonical

correlation analyses (RCC, SCCA, SCCA (S), DCCA). I have conducted the experiments for

different number of output dimensions (10, 20, 30, 40, 50) and learned the canonical

coefficients (𝑤1and 𝑤2) for each of the output dimensions for every method. After learning

the coefficients, I have multiplied it with the original dataset (train and test) to generate the

 49

projections. I have calculated total correlations (using the 𝑙𝑖𝑛𝑒𝑎𝑟_𝑐𝑐𝑎 method provided in

[59]) from the projections of the test data to evaluate different CCA methods. The results are

illustrated in Figure 3.2.

Figure 3.2: Total correlation scores for different canonical correlation approaches. The x-axis

represents the number of output dimensions and the y-axis represents corresponding total correlation

scores.

From the above figure (Figure 3.2), we can see that RCC provides better correlation

scores. On the other hand, SCCA, SCCA(S), and DCCA provide almost similar correlation

scores. However, with the increasing number of output dimensions (when the output

dimension surpasses the number of test samples), the correlation scores become almost the

same for all of the approaches. For the SCCA methods, the sparsity nature may correspond to

the compromise in the total correlation score. As DNN-based approaches are always data-

hungry, the fewer number of samples is the main reason behind the relatively lower

correlation scores of DCCA method.

 50

3.2.3.4 Classification Performance

CCA is often used to reduce the dimensionality of high-dimensional datasets to make them

suitable for downstream analyses (classification, clustering, etc.). To evaluate the

classification performances of different CCA methods, I have performed binary

classifications using the projected data from the CCA methods. The original dataset contains

four disease classes (FAP, NP, AP, and CDL) which I converted into binary by taking the NP

(No Pouchitis) class in one group and all the other classes in another group. I have used the

support vector machine (SVM) method for the classification. I have tried several kernel

functions (linear, radial basis function, polynomial, and sigmoid) for the SVM method and

adjusted the hyperparameters (C, sigma, gamma, degree, etc.) accordingly. For the

evaluation, I have used accuracy and area under the receiver operating characteristics (ROC)

curve (AUC) metrics. Table 3.2 illustrates the results.

Table 3.2: Binary class classification results using SVM on the output projections from different

CCA methods. Evaluation metrics are accuracy and area under the ROC curve (AUC).

Dimensions Metrics RCC SCCA SCCA(S) DCCA

10 Accuracy 67.56% 72.97% 72.97% 67.56%

AUC 0.5 0.6 0.6 0.5

20 Accuracy 67.56% 75.67% 75.67% 67.56%

AUC 0.5 0.71 0.67 0.5

30 Accuracy 70.27% 75.67% 75.67% 67.56%

AUC 0.54 0.756 0.67 0.5

40 Accuracy 70.27% 78.37% 78.37% 67.56%

AUC 0.54 0.69 0.69 0.5

50 Accuracy 67.56% 70.27% 70.27% 67.56%

AUC 0.5 0.63 0.6 0.5

 51

From Table 3.2, we can see that DCCA provides the worst classification performance both in

terms of accuracy and AUC value for all the output dimensions. The nonlinear nature of the

DCCA method and the smaller size of the dataset may be the reason behind this performance

loss. The RCC method’s performance is also poor which is easily observed with the low

AUC values. Although multi-omics datasets consist of very high-dimensional features, only a

handful of these features are responsible for a particular phenotype. Therefore, incorporating

all the input features for finding the projections may be responsible for the poor classification

performance of RCC. Finally, it is visible that the SCCA methods (SCCA and SCCA (S))

provide relatively better classification performances than the other two methods. The sparse

nature of these methods is the main reason behind this performance. However, it is surprising

that the supervised version of the SCCA didn’t provide any better results than the

unsupervised version.

3.2.4 Conclusion

In this study, I found that SCCA provides interpretable correlation scores and better

performance in downstream analysis while projecting high-dimensional multi-omics datasets

in a low-dimensional space. The regularized version of the canonical correlation analysis

(RCC), although provides good correlation scores, lacks interpretability and provides poor

classification performance. On the other hand, the DCCA provides moderate correlation

scores but lacks interpretability and suffers from poor performance in classification.

Therefore, it is advised to not use DCCA with high-dimensional multi-omics datasets having

fewer number of samples.

 52

3.3 Classification of Multi-omics Data Using Supervised Deep Canonical

Correlation Analysis

3.3.1 Introduction

CCA-based approaches are the widely used multi-view learning methods. The basic versions

of the CCA (e.g., CCA, Regularized CCA, etc.) consider linear combinations of the input

features for correlated projections, hence failing to capture the non-linear characteristics of

the multi-view datasets. In the previous section, we saw that the sparse version of the CCA is

better suitable for the analysis of high-dimensional multi-omics datasets. Besides, the deep

version of the CCA (DCCA) is capable of extracting non-linear feature combinations. All

these methods are unsupervised. However, in a real world scenario, many of the multi-omics

datasets have the sample labels or disease information. Therefore, using this type of

unsupervised approaches for multi-view learning keeps the label information unexploited.

 To leverage the class label information, various supervised versions of the canonical

correlation analysis (CCA) method have been developed. Generalized version of the CCA

(GCCA) is one of the first such methods which learns maximally correlated features and

makes sure that these learned features minimize within class scatters as well [60]. Supervised

sparse canonical correlation analysis is another one which modified the original sparse

canonical correlation analysis (SCCA) and is specifically designed for high-dimensional

multi-omics datasets [57]. Some other notable approaches are the group sparse canonical

correlation analysis (GSCCA), supervised multi-view canonical correlation analysis

ensemble (SMVCCAE) etc. [61, 62]. Recently, a supervised version of the deep canonical

correlation analysis (SDCCA) method have also been proposed which modified the original

DCCA objective function by incorporating class labels [63]. However, the implementation is

not tested on very high-dimensional dataset like us.

 53

 Here, in this thesis, I propose a novel framework for multi-view analysis of the multi-

omics datasets. The framework considers sparse feature extraction from high-dimensional

datasets and learns correlated features from different views in a supervised manner. For the

correlation step I propose two new versions of the supervised deep canonical correlation

analysis (DCCA S1, and DCCA S2). Whereas the supervised DCCA method modified the

original DCCA objective function, I combined the cross entropy loss [64] with the DCCA

objective function for the proposed two new models. Besides, in these new models the effect

of these two losses (CCA loss and cross entropy loss) can be configured to have an overall

customized behavior.

3.3.2 Methodology

Based on the fact that sparse methods work better for very high-dimensional datasets, our

proposed framework includes a sparse feature selection step. Figure 3.3 illustrates the overall

process of the proposed framework, which includes three major steps: Step 1 – Lasso-based

feature selection for each view of the data; Step 2 – supervised DCCA to select correlated

features and Step 3 – supervised DNN for the classification using the learned features For the

Steps 2 and 3, new computational approaches are proposed. Lasso-based methods assign zero

weights to features with less importance. The number of features can be varied by varying the

regularization parameter (e.g., C parameter in logistic regression method in sklearn software

[65]).

 54

Figure 3.3: Proposed supervised deep learning framework for multi-view learning.

 Followed by the feature selection step, our framework includes the correlated feature

extraction step. This step extracts the shared correlated features with possibly smaller

dimension which are representative of the original data as well as discriminative in terms of

the class label (e.g., disease phenotype). I have proposed two new models for this step, which

I will describe in the following subsections. The final step involves the downstream analyses

including classification or clustering on the extracted features.

From Table 3.2, we can observe that the learned features from DCCA provide no

discriminative advantage (e.g., AUC of 0.5). Hence, I incorporated the class label

information to make the extracted features more discriminative in nature. To do so, I have

passed the learned features to a new network off fully connected layers. This network at the

tail is optimized based on the cross entropy loss which maximizes the classification accuracy.

However, due to the backpropagation of the whole network, this loss affects all the layers of

the model. Hence, the first two networks and the merged layer’s weights are updated based

on both the CCA loss and the cross entropy loss. I call this model version 1 of the supervised

DCCA or DCCA S1 in short. Figure 3.4 depicts the schematic diagram of this model.

 55

Figure 3.4: Schematic diagram of the version 1 of the supervised DCCA model (DCCA S1).

In the DCCA S1, the output of the merged layer was fed to the fully connected

network of the tail. It is worthy of mentioning that the network up to the merged layer is

identical to the original DCCA model [21]. Hence, the output of this merged layer consists of

the learned correlated features from the original views. In the second version of the

supervised DCCA model (DCCA S2), I made a short circuit connection of the output of the

first two networks with the next fully connected layers at the tail. This was done based on the

thought that only feeding the correlated features could compromise the discriminative power

of the model. This new model is illustrated in Figure 3.5.

 56

Figure 3.5: Schematic Diagram version 2 of the supervised DCCA model (DCCA S2).

3.3.3 Results and Discussion

Correlation-based multi-view learning approaches aim to learn shared representations of

multiple views. This representation should also be capable of retaining the original class

separability information. Hence, I have evaluated the newly proposed methods based on total

correlation scores, and classification performances. In this study, I have used the same dataset

as used in section 3.2. Therefore, I will only give a very short description of the dataset here.

The dataset is based on gene expression and microbiome profiles of 184 patients with 4

pouchitis (a special disease of the ileal pouch) states (Familial Adenomatous Polyposis

(FAP), No Pouchitis (NP), Acute Pouchitis (AP), and Crohn’s Disease-Like Inflammation

(CDL)) [81]. The gene expression view of the dataset has 20,253 genes, and the microbiome

view has 5,443 operational taxonomic units (OUT). The gene expression data are mainly

continuous values and represent the level of expression for a given gene in the corresponding

sample. The microbiome data are mostly sparse and represent the abundance of the OTUs in

 57

a sample. In all the analyses, I have considered both multi-class and binary class supervised

cases. In the binary case, I have kept the NP (no pouchitis) class in one group and other types

in another group. This was done to divide the data into a case (others) and a control (NP)

group.

Table 3.3 shows the number of features selected by the Lasso model. The number of

features from this feature selection was varied by varying the regularization parameter of the

lasso method. A smaller value of the regularization adds more regularization (selects fewer

features) than larger ones. For feature selection in the multi-class case, multinomial loss

function was used in the Lasso model. The new models were built using “keras” framework

with “theano” backend [90].

Table 3.3: Different number of selected features from Lasso models. Regularization values were

varied from 0.5 to 3.0. View 1 is microbiome data, View 2 is gene expression data.

Regularization Multi-class Binary

 View 1 View 2 Both View 1 View 2 Both

f1 0.5 10 93 39 9 145 82

f2 0.8 39 292 240 57 432 436

f3 1.0 97 667 427 97 667 718

f4 1.5 138 789 849 205 1269 1431

f5 2.0 221 1150 1270 342 1872 2183

f6 3.0 406 1843 2059 599 3107 3619

f7 N/A All All All All All All

3.3.3.1 Correlation Scores

Here, I have compared the two new models (DCCA S1 and DCCA S2) with the original

DCCA model using the features selected by the Lasso models. I compared the total

 58

correlation scores for multi-view and binary cases. For both these cases, the number of

selected features is varied. The total correlation scores were computed using the output from

the merged layer (see Figure 3.4 and Figure 3.5) of the new models and the final layers of

the DCCA model (see Figure 3.1). The output dimensions of the models were set to 50 for

all the cases.

Figure 3.6: Total correlation scores from supervised version of the DCCA. f1 to f7 correspond to

different number of selected features from Lasso. (A) Multi-class supervised analyses (B) Binary

class supervised analyses.

 Figure 3.6 illustrates the results from these correlation analyses. From this figure, we

can see that for both multi-class and binary class cases, DCCA S1 and DCCA S2 are

providing better total correlation scores than the original DCCA model. Initially, the total

correlation scores are relatively smaller due to the small number of selected features (see f1

and f2 in Table 3.3) from the lasso model. In the supervised models (DCCA S1, and DCCA

S2) the within class scatters are minimized. This could be the reason behind these supervised

models with better correlation scores than the original unsupervised DCCA model. Likewise,

it is also noticeable that the total correlation scores for the binary class are marginally greater

than the multi-class case.

 59

3.3.3.2 Classification Performances

After the correlation score analysis, I did the classification analysis using the learned

correlated features. SVM was used to do the classification. Kernel, gamma value, degree,

regularization hyperparameters were tuned appropriately. Classification performance was

also measured from the softmax layer of the supervised models (DCCA S1, and DCCA S2).

10 fold cross-validation was done for all the cases.

 Accuracy, and area under the ROC (receiver operating characteristics) curve

(AUC) measures were used for evaluation purpose. For multi-class classification, two types

of AUC measures can be taken. One is macro averaging and another is micro averaging

technique. The macro averaging technique considers each class equally. It calculates AUCs

for each class in a one versus all manner and then averages them for the final AUC. On the

other hand, micro averaging aggregates all the results together and calculates a single metric.

It is capable of dealing with class imbalance. Therefore, in this study, I have used micro

averaging of the AUC value for the multi-class evaluation.

In Table 3.4, I present the results from the multi-class analyses. The SVM results

from the DCCA, DCCA S1, and DCCA S2 are almost similar and none of them are good

enough (with the best AUC 0.62 and accuracy of 35.09%. The classification performances of

the softmax layer of the DCCA S1 and DCCA S2 is slightly better than the others. Here, the

best AUC is around 0.68 and accuracy of 40.56%.

 60

Table 3.4: Multi-class classification performance comparisons. Here, f1 to f7 represent the

features from view 1 and view 2 of the first column (multi-class) of Table 3.3.

Features Metrics DCCA +

SVM

DCCA S1

+ SVM

DCCA S2

+ SVM

DCCA S1 DCCA S2

f1 Accuracy 30.6% 33.46% 32.17% 35.52% 37%

AUC 0.65 0.62 0.6 0.66 0.64

f2 Accuracy 35.48% 31.13% 27.55% 41.47% 34.28%

AUC 0.58 0.61 0.61 0.65 0.62

f3 Accuracy 33.03% 33.44% 34.1% 37.5% 39%

AUC 0.58 0.6 0.58 0.64 0.63

f4 Accuracy 34.4% 31.2% 31.1% 33.63% 37.67%

AUC 0.5 0.58 0.61 0.59 0.63

f5 Accuracy 35.09% 30% 35% 36.7% 39.2%

AUC 0.53 0.57 0.63 0.65 0.63

f6 Accuracy 34.85% 31.04% 34.31% 40.56% 41.5%

AUC 0.58 0.58 0.61 0.68 0.63

f7 Accuracy 32.06% 34.23% 27.87% 61.82% 39.46%

AUC 0.53 0.59 0.59 0.35 0.63

From the multi-class analyses, the performances were not up to the mark. I then

grouped the 4 class into 2 groups. One group had the NP class (control) and all the other

classes were in another group (case). Similar to the multi-class case, SVM and softmax layer

of the supervised models were used for classification. In this case, we can observe that the

SVM AUC and accuracies are almost similar for all the DCCA models (Table 3.5).

However, the softmax layers AUC and accuracy is much better compared to the unsupervised

DCCA model with SVM classification. One possible explanation of this behavior is that the

 61

correlated features may have a very complex non-linear class separability which is learned by

the fully connected network at the tail of the supervised models.

Table 3.5: Binary class classification performance comparisons. Here, f1 to f7 represent the

features from view 1 and view 2 of the second column (Binary) of Table 3.3.

Features Metrics DCCA +

SVM

DCCA S1

+ SVM

DCCA S2

+ SVM

DCCA S1 DCCA S2

f1 Accuracy 68.5% 61.4% 64.75% 67.45% 67.42%

AUC 0.71 0.5 0.5 0.65 0.67

f2 Accuracy 69% 59.75% 61.95% 70% 63.18%

AUC 0.62 0.5 0.56 0.63 0.58

f3 Accuracy 68.5% 58.63% 58.63% 64.23% 67.98%

AUC 0.59 0.5 0.5 0.65 0.66

f4 Accuracy 68.5% 62.9% 59.75% 66.95% 70.61%

AUC 0.59 0.53 0.51 0.69 0.71

f5 Accuracy 68.5% 60.3% 58.63% 74.47% 74.07%

AUC 0.65 0.5 0.51 0.77 0.74

f6 Accuracy 68.5% 58.11% 58.6% 73.91% 72.2%

AUC 0.53 0.51 0.51 0.73 0.71

f7 Accuracy 68.5% 57.9% 58.63% 64.73% 60.24%

AUC 0.47 0.5 0.53 0.52 0.5

3.3.4 Conclusion

In this study, I propose a simple framework for multi-view learning of high-dimensional

multi-omics data. I also propose two new supervised Deep Canonical Correlation Analysis

(DCCA) models (DCCA S1, and DCCA S2). From the experimental results, we can observe

a significant gain in the total correlation scores in the new supervised models than the

 62

original unsupervised DCCA model. However, the classification performances didn’t provide

any noteworthy improvements. In future, I want to test the new models on larger data. I will

look for modifying the models to improve the classification performance as well.

3.4 Classification of Multi-omics Data Using Classic Machine Learning

and Deep Neural Network Models

After doing the correlation-based multi-view learning experiments, I focused on studying

classical and DNN-based classification approaches. At first, I have conducted the baseline

classification experiments on the pouchitis dataset (see section 3.1). I ran classical methods:

SVM, Random Forest (RF) on the cleaned dataset to perform classifications. I also developed

two DNN-based models for integrating the two views of the data for classification purpose.

As the dataset is high-dimensional, most of the features may represent unnecessary and

redundant information. Therefore, feature selection was done before the classification steps.

3.4.1 Methodology

Classification of high-dimensional datasets is always a hard problem due to the irrelevance

and redundancy of the features. It becomes even harder when we have multiple high-

dimensional views of the data with different number of dimensions and statistical properties.

In this part of my study, I experimented with different feature selection strategies and

combined them with classification step. I used RF and lasso based feature selection

techniques. After the feature selection step, I ran two classical classification algorithms:

SVM, and RF.

DNN is capable of dealing with high-dimensional data. Further, DNNs can capture

the non-linear structure of datasets easily. This inspired me to develop DNN-based

integration models for classification of the Pouchitis dataset. Figure 3.7 illustrates the

 63

structure of this model (I named this model as DNN Y model). The two views of the data

have varying number of dimensions (one has around 20k features, another has around 5k

features) and different statistical properties (one is continuous-valued, and another is discrete

and sparse). That’s why the gene expression and the microbiome views are fed into two

different networks with different structures (different number of hidden units) and

concatenated in a hidden layer which is followed by another fully connected network. The

dropout layers were added for regularization purpose. Before the concatenation, the

activation layers are linear, whereas after the concatenation rectified linear unit (RELU)

activation was used. The final output layer was a Softmax activation layer. In this model, all

the hyper-parameters (e.g., learning rate, loss functions, optimizers, initializer, batch size,

number of epochs, etc.) were appropriately tuned.

Figure 3.7: Integration of the two views of data using a deep neural network-based architecture.

This version of the DNN model is called as DNN Y Model.

 I have also built a simple DNN model by concatenating the input features from both

the views and feeding it to a fully connected network. Dropout was used to avoid overfitting

 64

on the train data. I named this model as the DNN flat model (see Figure 3.8 for the schematic

diagram).

Figure 3.8: DNN flat model

3.4.2 Results and Discussion

I have done both multi-class and binary class classifications using the classical and the newly

developed DNN-based models. At first, I investigated differences between treating the

individual views separately and treating them together. Then I moved on to the performance

evaluation of the DNN-based multi-view models.

3.4.2.1 Single View Approach vs. Multi-view Approach

I used individual views (gene expression, and microbiome views) separately as well as

together by concatenating them in a straightforward manner. I used the SVM and RF

algorithms from python module scikit-learn [66]. While using SVM, I tried several kernels

including linear, polynomial (with degree 2 and 3), radial basis function (rbf). However, in

most of the cases, linear and polynomial kernel provided better results. In case of RF

algorithm, I have set the number of trees to 50 (n_estimators = 50), and the minimum

samples split to 30 (min_samples_split = 30).

 65

Along with using all the features from the cleaned data, I have also done supervised

feature selection using the feature_importances_ attribute of the RF algorithm. I have

selected the top 20, 50, 100, 500, and 1000 features to build the training models.

 Table 3.6 illustrates the overall accuracies of multi-class classification using the SVM

algorithm. From the table, I can see that the best result is around 61.93% when both the genes

and OTUs were used together with the top 500 features.

Table 3.6: Overall accuracies of multi-class classifications using SVM. Different rows represent

accuracies using different number of features. There are four classes: NP, CDL, AP, FAP. The bold

cell of the table represents the best result.

Number of

Features

Accuracy (Genes) Accuracy (OTUs) Accuracy (Both

Genes and OTUs)

All 48.43% 47.54% 46.03%

20 43.28% 45.02% 43.64%

50 44.99% 43.83% 49.0%

100 48.22% 43.9% 52.31%

500 53.93% 53.08% 61.93%

1000 51.97% 48.65% 55.73%

In Table 3.7, the accuracies of multi-class classification from the RF algorithm is

shown. Again, in this case, we can see that the best result (55.83%) is achieved when both the

genes and OTUs were used together. However, RF worked best with only 20 selected

features. As RF cannot perform well when the features have dependencies among them, with

increased number of features (which may increase the dependencies among the features)

RF’s classification performance degrades.

 66

Table 3.7: Overall accuracies of multi-class classifications using RF. Different rows represent

accuracies using different number of features. There are four classes: NP, CDL, AP, FAP. The bold

cell of the table represents the best result.

Number of

Features

Accuracy (Genes) Accuracy (OTUs) Accuracy (Both

Genes and OTUs)

All 42.02% 41.31% 43.36%

20 50.94% 51.24% 55.83%

50 49.84% 50.48% 52.65%

100 50.83% 48.24% 52.23%

500 50.2% 47.49% 49%

1000 48.81% 44.82% 47.31%

Table 3.8: Binary classification (NP vs. all others) using SVM. Different rows represent accuracies

using different number of features selected from RF importance score.

Number of

Features

Accuracy (Genes) Accuracy (OTUs) Accuracy (Both

Genes and OTUs)

 ACC AUC ACC AUC ACC AUC

20 72.15% 0.73 73.39% 0.73 69.15% 0.68

50 72.31% 0.77 73.48% 0.65 72.8% 0.72

100 71.78% 0.75 74.01% 0.72 70.87% 0.69

500 78.15% 0.81 72.89% 0.69 70.17% 0.75

1000 73.39% 0.78 71.93% 0.6 78.3% 0.79

All 68.5% 0.5 70.29% 0.6 68.5% 0.5

Table 3.8, and Table 3.9 represent the binary class classification results using SVM and RF.

In this case, NP (No Pouchitis) was kept in one class, and all the other clases (AP, FAP,

CDL) were in another. Here, we can also see the same scenario that using both genes and

OTUs information together provides better classification performances both in terms of

 67

accuracy (78.3% from SVM, and 75.56% from RF) and AUC (0.79 from SVM, and 0.86

from RF).

Table 3.9: Binary classification (NP vs. all others) using RF. Different rows represent accuracies

using different number of features selected from RF importance score.

Number of

Features

Accuracy (Genes) Accuracy (OTUs) Accuracy (Both

Genes and OTUs)

 ACC AUC ACC AUC ACC AUC

20 74.47% 0.83 73.48% 0.73 74.47% 0.83

50 69.61% 0.81 71.17% 0.72 75.56% 0.86

100 72.3% 0.82 71.8% 0.76 73.9% 0.86

500 72.27% 0.82 68.65% 0.69 72.2% 0.85

1000 69.58% 0.82 66.52% 0.66 70% 0.82

All 66.89% 0.63 65.31% 0.56 65.9% 0.65

I have also run the DNN Y model using all the features from the two views. The best test

accuracy of multi-class classification from this model is 50%. For binary class case (NP in

one class and all other in another class), the model provided 67.85% accuracy and 0.65 AUC.

From all the above results, we can conclude that the multi-view approach of learning

provides better learning outcomes than comparing the views individually.

3.4.2.2 Evaluation of the DNN-based multi-view models

Inspired by the advantages of using the multi-view approaches, I have built two new DNN-

based multi-view classification models. From section 3.2 we have learned that sparse

approaches works better for high-dimensional omics datasets. Therefore, I have used a sparse

lasso based feature selection step before feeding the data in the DNN models. The number of

selected features are termed as f1, f2, …, f7 (see Table 3.3). For DNN flat model, SVM, and

 68

RF, the features from the both views were concatenated in the beginning, whereas for the

DNN Y model, the features of the two views were fed into the two input networks. The

performances were evaluated using accuracy and area under the ROC curve (AUC). For

multi-class case, micro averaging of the AUC was done for evaluation. 10 fold cross

validation (in a stratified manner) was used for all the cases.

From Table 3.10, we can see the classification results of the multi-class analyses. We

can see that, the DNN Flat model, SVM, and RF provides the best results with relatively

small number of selected features (f1 and f2). It’s also noticeable that if we use all the

features, all the models performances degrade.

 69

Table 3.10: Performance of multi-class classifications. Here, f1 to f7 represent the features from

view 1 and view 2 of the first column (multi-class) of Table 3.3 for DNN Y model. For all the other

models they represent the features from both views of the first column (multi-class) of Table 3.3 3.3.

Features Metrics SVM RF DNN Y DNN Flat

f1 Accuracy 43.68% 48.51% 34.24% 41.4%

AUC 0.73 0.75 0.65 0.74

f2 Accuracy 45.8% 41.39% 39.09% 45.98%

AUC 0.77 0.72 0.63 0.76

f3 Accuracy 44.08% 38.75% 29.87% 39.6%

AUC 0.78 0.7 0.58 0.74

f4 Accuracy 42.6% 37.92% 37.06% 40.3%

AUC 0.77 0.68 0.64 0.72

f5 Accuracy 44.38% 34.36% 40.52% 42.78%

AUC 0.76 0.67 0.67 0.71

f6 Accuracy 42.04% 32.2% 39% 41.36%

AUC 0.76 0.66 0.67 0.7

f7 Accuracy 34.31% 30.45% 62.73% 33.83%

AUC 0.59 0.62 0.39 0.59

 Finally, I also performed the binary classification analyses (NP vs. all others) using all

the developed models. In this case, we can observe (see Table 3.11) that the accuracy and

AUC of the DNN flat model is very good and mostly consistent regardless of the number of

selected features. The performance of the DNN Y model is also good in most of the cases.

 70

Table 3.11: Performance of binary classification results. Here, f1 to f7 represent the features from

view 1 and view 2 of the second column (Binary) of Table 3.3 for DNN Y model. For all the other

models they represent the features from both views of the second column (Binary) of Table 3.3.

Features Metrics SVM RF DNN Y DNN Flat

f1 Accuracy 68.5% 68.47% 65.9% 80.38%

AUC 0.83 0.77 0.62 0.84

f2 Accuracy 68.5% 69.5% 67.54% 87.37%

AUC 0.9 0.73 0.71 0.9

f3 Accuracy 68.5% 68.5% 68.59% 85.73%

AUC 0.9 0.7 0.74 0.89

f4 Accuracy 70.73% 68.5% 79.97% 84.25%

AUC 0.9 0.68 0.85 0.89

f5 Accuracy 73.95% 68.5% 76.7% 83.14%

AUC 0.89 0.66 0.83 0.88

f6 Accuracy 79.33% 68.56% 77.69% 80.94%

AUC 0.9 0.62 0.88 0.85

f7 Accuracy 65.9% 66.9% 62.96% 66.86%

AUC 0.55 0.42 0.58 0.47

3.4.3 Conclusion

In this part of my thesis, I investigated the differences between single view and multi-view

learning approaches. I have found that the multi-view approaches have more advantages in

terms of classification performances (accuracy and AUC). I have also developed two new

DNN-based models for mulit-view classification. From the experimental results, I have

observed that the new models provide better or comparable results than the classical

approaches (SVM, RF).

 71

3.5 Visualization of the multi-view omics data

Visual exploration of data is an integral part of any bioinformatics and machine learning

study. This step provides valuable insights of the data and guides the researchers to the right

directions. Depending on the insights from particular visualizations, one may take important

decisions on the downstream analyses (classification, clustering etc.). However, presenting

data at a suitable level of detail without bombarding the user with too much complexity has

always been a challenge [67]. Dimension reduction techniques with an output dimension of

two or three are generally used for this visualization task. There are many dimension

reduction methods, and visualization results may differ based on the type of dimension

reduction methods one uses. Therefore, to get unique and meaningful insights from the

visualization of the data, selecting the appropriate methods for reducing the dimension is

essential [68].

 In my thesis, I have performed visual exploration of the data to get an idea about the

underlying distributions at different steps of the analyses. Principal component analysis

(PCA) is a widely used approach for dimensionality reduction and visualization. However,

PCA can not capture the non-linear behavior of the data. Recently, t-stochastic neighbor

embedding (t-SNE), a deep neural network based visualization approach has gained

attractions in the research community for its ability to perform dimensionality reduction and

capture non-linear behaviors [69]. In my thesis, I have used t-SNE for visualizing the

pouchitis data. For all the visualizations, I have considered both multi-class and binary class

(NP vs. all others) cases.

 72

Figure 3.9: t-SNE visualization using all the features from both microbiome and gene expression

views. (A) gene expression view multi-class; (B) microbiome view multi-class; (C) both views multi-

class; (D) gene expression view binary class (NP vs. others); (E) microbiome view binary class; (F)

both views binary class.

At first, I performed 2D t-SNE visualization on all the features from both the views

(see Figure 3.9). The perplexity of the t-SNE method was tuned for better visualizations. The

data points were colored based on the class labels. From this visualization we can see that

there is no observable patterns in the data in terms of class labels (both multi-class and

binary).

 73

Figure 3.10: t-SNE visualizations using f2 (see Table 3.3) features selected by lasso. (A) gene

expression view multi-class; (B) microbiome view multi-class; (C) both views multi-class; (D) gene

expression view binary class (NP vs. others); (E) microbiome view binary class; (F) both views binary

class.

From Table 3.10 and Table 3.11we can see that with f2 selected features (240

features for multi-class, and 436 features for binary class), almost all the methods provide

good classification performance. That’s why I performed t-SNE visualization using these

selected features to understand the reason behind this improved performance (Figure 3.10).

The visualization of the gene expression data for multi-class case reveals that the FAP class

clusters separately from all the others. However, for all the other cases no noticeable pattern

can be found.

 74

Figure 3.11: t-SNE visualizations using correlated features from DCCA, DCCA S1, and DCCA

S2. (A) correlated features of DCCA (multi-class); (B) correlated features from DCCA S1 (multi-

class); (C) correlated features from DCCA S2 (multi-class); (D) correlated features of DCCA (binary

class); (E) correlated features from DCCA S1 (binary class); (F) correlated features from DCCA S2

(binary class).

 In section 3.3, I studied new models of deep canonical correlation analysis.

One of our goals was to extract correlated features which will be capable of discriminating

the disease subtypes as well. In this part of the thesis, I took the learned correlated features

from the supervised new DCCA models (DCCA S1, DCCA S2), and from the original

unsupervised DCCA model and visualized them using t-SNE (see Figure 3.11). From the

visualization we can observe the similar behavior where there data points from all the classes

are almost uniformly mixed with each other.

 75

Figure 3.12: t-SNE visualizations of the features of DCCA S1 and DCCA S2 from the last fully

connected layer. (A) output from final fully connected layer of DCCA S1 (multi-class); (B) output

from the final fully connected layer of DCCA S2 (multi-class); (C) output from the final fully

connected layer of DCCA S1 (binary class); (D) output from the final fully connected layer of DCCA

S2 (binary class).

In section 3.3 we observed that the performance of the final output layer of the

supervised versions of the DCCA models is better than using a SVM over the learned

correlated features. Hence, I visualized the final dense layer of the DCCA S1, and DCCA S2

models to understand the reason behind this. Figure 3.12 shows these visualizations.

Although some clusters are visible in the figures, there is no grouping based on the class

labels.

 76

3.6 Conclusion and Future Directions

In this part of the thesis, I investigated a few correlation-based multi-view learning methods

for multi-omics datasets. I found that the sparse versions of the CCA methods perform better

than others in terms of both correlation scores and classification performance. Two new

supervised versions of the deep canonical correlation analysis (DCCA S1, and DCCA S2)

have been developed along with a general framework for the overall workflow. The new

models are found to outperform the original DCCA method in terms of total correlation

scores. I have also developed new DNN-based classification models for classifying high-

dimensional multi-omics data. Finally, explorative visualization of different steps was done

for getting a clearer insight into the underlying mechanisms. This study answered some

important questions in the field of multi-omics data analyses. First, existing CCA methods

are not better suited for high-dimensional multi-view learning. Second, new supervised

DCCA methods have improved correlation scores. Third, new DNN-based multi-view

classification models have state-of-the-art or better classification performances. However,

several important questions remained unanswered and several new questions were also raised

from this research. For instance, although the new supervised DCCA models provided better

total correlation scores, they didn’t offer better classification performance. Also, it is yet to be

tested whether the methods presented in this paper are readily transferrable to all the other

types of multi-omics data (e.g., proteomics, transcriptomics, metabolomics, etc.). The future

directions of this research will mainly focus on these issues.

 77

Chapter 4: Conclusion, Limitations, and Future Directions

This thesis focused on studying novel CPU-based time-efficient ways of finding LCS of

DNA sequence data in the field of bioinformatics. Here, I also performed a thorough

investigation of multi-view learning techniques for disease-based multi-omics data. The

multi-view learning techniques included correlation-based integration methods, classification

algorithms, and visualizations. Although I found a few promising findings and developed

novel techniques, there exist several limitations which need to be addressed in the future

works.

In the first part of this thesis, I developed CPU-based parallel algorithms for finding

LCS using MPI, OpenMP, and hybrid MPI-OpenMP frameworks. I found that the OpenMP

based parallel algorithm provides 2 times absolute speedup than the sequential version of the

LCS algorithm. This version also provides a 7 times relative speedup. This version of LCS is

a special one where each row of the scoring table of the LCS was made independent for the

sake of parallel calculation. However, there exist some other versions of the LCS algorithm

such as anti-diagonal, bit-wise parallel algorithm, etc. which I didn’t investigate in this study.

Therefore, I intend to study other versions of the LCS algorithm with a view to finding even

better parallel algorithms. Besides, in this thesis, I have only focused on CPU-based

techniques. In the future, I also plan to study GPU-based parallel algorithms as they are

capable of offering highly parallel solutions.

In the second part of this thesis, my focus was on studying multi-view learning

techniques for disease based multi-omics data. Here, I extended an existing DNN-based

multi-view learning method to new supervised versions (supervised deep canonical

correlation analysis (DCCA S1, and DCCA S2)). The experimental results show that the new

methods are capable of offering more correlated features than the original deep canonical

correlation analysis (DCCA) method. However, the classification performance of the new

 78

methods remains almost the same as the original DCCA method. In the future, I plan to

investigate the reason behind this issue in detail and will try to design models with improved

classification performance. We know that the deep learning models are generally data

hungry. Working with a larger data or augmented data could have provided a clearer picture

of the advantage of this type of methods. Besides, this thesis only focused on correlation-

based multi-view learning techniques. In the future, I will also study other methods (e.g.,

autoencoder-based, co-training-based, etc.) of multi-view learning. In this part of the thesis, I

also developed new DNN-based models for classifying the disease-based multi-omics data.

The new models provided better or similar classification performances than the classical

SVM and RF. Finally, t-SNE visualizations were carried out to have a better understanding of

the process. While the existing methods are good at projecting the high-dimensional data into

lower dimensions (e.g., 2D or 3D), I felt that they lack the flexibility to explore in the data. I

also felt the need for an interactive visualization tool to explore the canonical correlations of

such high-dimensional multi-omics data. Developing such interactive tools of visualization

could be a promising field of research and may significantly benefit the community.

 79

References

1. Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. Genome,

transcriptome and proteome: The rise of omics data and their integration in biomedical

sciences. Brief Bioinform. 2018.

2. Collins FS, Lander ES, Rogers J, Waterson RH. Finishing the euchromatic sequence of the

human genome. Nature. 2004.

3. Venter JC, Smith HO, Adams MD. The sequence of the human genome. Clin Chem.

2015;61:1207–8.

4. Calle ML. Statistical analysis of metagenomics data. Genomics Inform. 2019;17.

5. Moore GE. Cramming More Components Onto Integrated Circuits, Electronics, April 19,

1965. Electronics. 1965.

6. Gottlieb A, Almasi G. Highly parallel computing. Benjamin/Cummings Redwood City,

CA; 1989.

7. Zhao J, Xie X, Xu X, Sun S. Multi-view learning overview: Recent progress and new

challenges. Inf Fusion. 2017.

8. Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In:

Proceedings of the eleventh annual conference on Computational learning theory - COLT’

98. 1998.

9. Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training. In:

Proceedings of the ninth international conference on Information and knowledge

management - CIKM ’00. 2000.

10. Ion M, Minton S, Knoblock CA. Active + Semi-Supervised Learning = Robust Multi-

View Learning. In: Proceedings of the Nineteenth International Conference on Machine

 80

Learning. 2002.

11. Muslea I, Minton S, Knoblock CA. Active learning with multiple views. J Artif Intell

Res. 2006.

12. Yu S, Krishnapuram B, Rosales R, Rao R. Bayesian co-training. J Mach Learn Res. 2011.

13. Yang P, Gao W. Information-theoretic multi-view domain adaptation: A theoretical and

empirical study. J Artif Intell Res. 2014.

14. Hotelling H. Relations Between Two Sets of Variates. Biometrika. 1936.

15. Kettenring JR. Canonical analysis of several sets of variables. Biometrika. 1971.

16. Chaudhuri K, Kakade SM, Livescu K, Sridharan K. Multi-view clustering via canonical

correlation analysis. In: Proceedings of the 26th Annual International Conference on Machine

Learning - ICML ’09. 2009.

17. Lai PL, Fyfe C. Kernel and nonlinear canonical correlation analysis. Int J Neural Syst.

2000;10:365–77.

18. Akaho S. A kernel method for canonical correlation analysis. arXiv Prepr cs/0609071.

2006.

19. Klami A, Seppo J Virtanen, Kaski S. Bayesian Canonical Correlation Analysis. J Mach

Learn Res. 2013.

20. Luo Y, Tao D, Ramamohanarao K, Xu C, Wen Y. Tensor canonical correlation analysis

for multi-view dimension reduction. In: 2016 IEEE 32nd International Conference on Data

Engineering, ICDE 2016. 2016.

21. Andrew G, Arora R, Bilmes JA, Livescu K. Deep Canonical Correlation Analysis. Icml.

2013.

22. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal Deep Learning. In:

Proceedings of the 28th Annual International Conference on Machine Learning (ICML’11).

2011.

 81

23. Kim T, Kittler J, Cipolla R. Learning Discriminative Canonical Correlations for Object

Recognition with Image Sets. Eccv. 2006.

24. Diethe T, Hardoon DR, Shawe-Taylor J. Constructing nonlinear discriminants from

multiple data views. In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2010.

25. Sun T, Chen S, Yang J, Shi P. A novel method of combined feature extraction for

recognition. In: Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on.

2008. p. 1043–8.

26. Diethe T, Hardoon DR, Shawe-taylor J. Multiview Fisher Discriminant Analysis. In:

NIPS workshop on learning from multiple sources. 2008.

27. Sharma A, Kumar A, Daume H, Jacobs DW. Generalized Multiview Analysis: A

discriminative latent space. In: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. 2012.

28. Farquhar J, Hardoon D, Meng H, Shawe-taylor JS, Szedmak S. Two view learning:

SVM-2K, theory and practice. Adv Neural Inf Process Syst. 2005.

29. Xie X, Sun S. Multi-view twin support vector machines. Intell Data Anal. 2015;19:701–

12.

30. Sun S, Chao G. Multi-view maximum entropy discrimination. In: IJCAI International

Joint Conference on Artificial Intelligence. 2013.

31. Chao G, Sun S. Alternative Multiview Maximum Entropy Discrimination. IEEE Trans

Neural Networks Learn Syst. 2016.

32. Chao G, Sun S. Consensus and complementarity based maximum entropy discrimination

for multi-view classification. Inf Sci (Ny). 2016.

33. Long B, Yu PS, Zhang Z (Mark). A General Model for Multiple View Unsupervised

Learning. In: Proceedings of the 2008 SIAM International Conference on Data Mining. 2008.

 82

34. Xu C, Tao D, Xu C. A survey on multi-view learning. arXiv Prepr arXiv13045634. 2013.

35. Sun S. A survey of multi-view machine learning. Neural Computing and Applications.

2013.

36. Kakade S, Foster D. Multi-view regression via canonical correlation analysis. Conf Learn

Theory. 2007.

37. Verleysen M, François D. The curse of dimensionality in data mining and time series

prediction. In: International Work-Conference on Artificial Neural Networks. 2005. p. 758–

70.

38. Fodor IK. A survey of dimension reduction techniques. Cent Appl Sci Comput Lawrence

Livermore Natl Lab. 2002;9:1–18.

39. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural

networks. Science (80-). 2006.

40. Wang W, Arora R, Livescu K, Bilmes J. On deep multi-view representation learning. In:

International Conference on Machine Learning. 2015. p. 1083–92.

41. Phan AH, Cichocki A. Tensor decompositions for feature extraction and classification of

high dimensional datasets. Nonlinear Theory Its Appl IEICE. 2010.

42. Rabanser S, Shchur O, Günnemann S. Introduction to Tensor Decompositions and their

Applications in Machine Learning. arXiv Prepr arXiv171110781. 2017.

43. Young VB. The role of the microbiome in human health and disease: An introduction for

clinicians. BMJ (Online). 2017.

44. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev

Genet. 2012.

45. Bergroth L, Hakonen H, Raita T. A survey of longest common subsequence algorithms.

In: String Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh

International Symposium on. 2000. p. 39–48.

 83

46. Yang J, Xu Y, Shang Y. An efficient parallel algorithm for longest common subsequence

problem on gpus. In: Proceedings of the World Congress on Engineering. 2010. p. 499–504.

47. Random DNA Sequence Generator. http://www.faculty.ucr.edu/~mmaduro/random.htm.

Accessed 2 Apr 2018.

48. National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov/.

Accessed 20 Sep 2018.

49. Installing OpenMP on Mac OS X 10.11. Stack Overflow.

https://stackoverflow.com/questions/35134681/installing-openmp-on-mac-os-x-10-11.

Accessed 30 Oct 2018.

50. Getting started with openMP. install on windows. Stack Overflow.

https://stackoverflow.com/questions/11079586/getting-started-with-openmp-install-on-

windows. Accessed 15 Dec 2018.

51. Shikder R. Tutorial on How to Use an OpenMP-based LCS Tool. Youtube.

https://www.youtube.com/watch?v=2CBsNiu0i1w&feature=youtu.be.

52. Gonzalez I, Déjean S, Martin P, Baccini A. CCA : An R Package to Extend Canonical

Correlation Analysis. J Stat Softw. 2008.

53. Vinod HD. Canonical ridge and econometrics of joint production. J Econom. 1976.

54. Leurgans, S. E., R. A. Moyeed and BWS. Canonical Correlation Analysis when the Data

are Curves. J R Stat Soc Ser B. 1993.

55. Parkhomenko E, Tritchler D, Beyene J. Sparse canonical correlation analysis with

application to genomic data integration. Stat Appl Genet Mol Biol. 2009.

56. Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications

to sparse principal components and canonical correlation analysis. Biostatistics. 2009.

57. Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with

applications to genomic data. Stat Appl Genet Mol Biol. 2009.

 84

58. Morgan XC, Kabakchiev B, Waldron L, Tyler AD, Tickle TL, Milgrom R, et al.

Associations between host gene expression, the mucosal microbiome, and clinical outcome in

the pelvic pouch of patients with inflammatory bowel disease. Genome Biol. 2015.

59. Noroozi V. VahidooX/DeepCCA. GitHub. https://github.com/VahidooX/DeepCCA.

Accessed 30 Aug 2018.

60. Sun Q Sen, Liu ZD, Heng PA, Xia D Sen. A theorem on the generalized canonical

projective vectors. Pattern Recognit. 2005.

61. Zhang Z, Zhao M, Chow TWS. Binary-and multi-class group sparse canonical correlation

analysis for feature extraction and classification. IEEE Trans Knowl Data Eng. 2013.

62. Samat A, Persello C, Gamba P, Liu S, Abuduwaili J, Li E. Supervised and semi-

supervised multi-view canonical correlation analysis ensemble for heterogeneous domain

adaptation in remote sensing image classification. Remote Sens. 2017.

63. Liu Y, Li Y, Yuan Y-H, Qiang J-P, Ruan M, Zhang Z. Supervised deep canonical

correlation analysis for multiview feature learning. In: International Conference on Neural

Information Processing. 2017. p. 575–82.

64. De Boer PT, Kroese DP, Mannor S, Rubinstein RY. A tutorial on the cross-entropy

method. Ann Oper Res. 2005.

65. Pedregosa F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R,

et al. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent

Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu

Perrot. J Mach Learn Res. 2011.

66. McCoy F, Eckard L, Nutt LK. Janus-Faced PIDD: A Sensor for DNA Damage-Induced

Cell Death or Survival? Mol Cell. 2012;47:667–8.

67. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, et al.

Visualization of omics data for systems biology. Nature Methods. 2010.

 85

68. Fanaee-t H, Thoresen M. Multi-insight visualization of multi-omics data via ensemble

dimension reduction and tensor factorization. Bioinformatics. 2018.

69. Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008.

	Chapter 1: Introduction
	1.1 Background and Literature Review
	1.1.1 Omics and Multi-omics Data
	1.1.2 Parallel Computing
	1.1.3 Multi-view Learning Using Multi-omics Data

	1.2 Motivation
	1.3 Research Objectives

	Chapter 2: CPU-based Parallel Algorithms for Finding LCS Using Omics Data
	2.1 Introduction
	Finding the Longest Common Subsequence (LCS) is a classic problem in the field of computer algorithms and has diversified application domains. A subsequence of a string is another string which can be derived from the original string by deleting none o...
	LCS has various applications in multiple fields including DNA sequence alignment in bioinformatics [49–51], speech and image recognition [52, 53], file comparison, optimization of database query, etc. [54]. In the field of bioinformatics, pattern disc...
	Out of the parallel solutions of the LCS problem, anti-diagonal [58] and bit-parallel [59] algorithms are few of the firsts and noteworthy attempts. Recently, with the rise of Graphics Processing Unit (GPU)- based accelerators, several Compute Unifi...
	1. A new OpenMP-based publicly available tool for finding the length of LCS of DNA sequences for the end-users.
	2. A detailed benchmarking of the newly developed CPU-based parallel algorithms using different performance metrics on both simulated and real DNA sequence data, where I found that our OpenMP-based algorithm provides at-least 2 times absolute speedup ...
	3. A comparison of the newly developed OpenMP-based LCS algorithm with and without branch conditions.
	2.2 Preliminaries
	2.2.1 Row-wise Independent Algorithm (version 1)
	2.2.2 Row-wise Independent Algorithm (Version 2)

	2.3 Methodology
	2.3.1 PCAM Formulation
	2.3.1.1 Partitioning
	2.3.1.2 Communication
	2.3.1.3 Agglomeration & Mapping

	2.3.2 MPI-based Approach
	2.3.3 OpenMP-based Approach
	2.3.4 Hybrid MPI-OpenMP-based Approach

	2.4 Results & Discussion
	2.4.1 Data Sets and Specifications of the Computer
	2.4.2 Comparison among Different Approaches
	2.4.3 Comparison between the Two Versions of the Algorithm in OpenMP Approach

	2.5 Availability and Documentation of Tool
	2.5.1 Requirements of the Installation
	2.5.1.1 Mac OS X
	2.5.1.2 Linux, Windows

	2.5.2 How to Run?
	2.5.2.1 Prepare the Input
	2.5.2.2 Execution
	2.5.2.3 Understanding the Output

	2.6 Conclusion & Future Directions

	Chapter 3: Correlation Analysis, Classification, and Visualization of Disease-based Multi-omics Data
	3.1 Introduction
	3.2 Review of CCA Approaches
	3.2.1 Introduction
	3.2.2 Preliminaries
	3.2.2.1 Canonical Correlation Analysis (CCA)
	3.2.2.2 Regularized Canonical Correlation (RCC) Analysis
	3.2.2.3 Deep Canonical Correlation Analysis (DCCA)
	3.2.2.4 Sparse Canonical Correlation Analysis (SCCA)
	3.2.2.5 Supervised Sparse Canonical Correlation Analysis (SCCA (S))

	3.2.3 Experiments and Results
	3.2.3.1 Dataset
	3.2.3.2 Preprocessing and Hyperparameter Tuning
	3.2.3.3 Total Correlation Scores
	3.2.3.4 Classification Performance

	3.2.4 Conclusion

	3.3 Classification of Multi-omics Data Using Supervised Deep Canonical Correlation Analysis
	3.3.1 Introduction
	3.3.2 Methodology
	3.3.3 Results and Discussion
	3.3.3.1 Correlation Scores
	3.3.3.2 Classification Performances

	3.3.4 Conclusion

	3.4 Classification of Multi-omics Data Using Classic Machine Learning and Deep Neural Network Models
	3.4.1 Methodology
	3.4.2 Results and Discussion
	3.4.2.1 Single View Approach vs. Multi-view Approach
	3.4.2.2 Evaluation of the DNN-based multi-view models

	3.4.3 Conclusion

	3.5 Visualization of the multi-view omics data
	3.6 Conclusion and Future Directions

	Chapter 4: Conclusion, Limitations, and Future Directions
	References

