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Abstract

Given an irreducible stochastic matrix T , Kemeny’s constant κ(T )
measures the expected number of steps from any initial state to a
randomly chosen final state, and is thus regarded as an indicator of
the overall transit efficiency of the corresponding Markov chain. For
a random walk on a connected graph with twin vertices, we present
a formula for the change in Kemeny’s constant after the insertion of
an edge between the twins. Using that result, we investigate the cir-
cumstances under which inserting a new edge increases Kemeny’s con-
stant. In particular, we characterise the complete multipartite graphs
without dominating vertices having the property that adding any new
edge increases Kemeny’s constant. We establish an analogous result
for complete split graphs. We also prove that if a complete multi-
partite graph has enough dominating vertices, then there is always a
non–edge whose addition will decrease Kemeny’s constant.

∗Corresponding author; email: stephen.kirkland@umanitoba.ca .

1



1 Introduction and preliminaries

New connections sometimes yield surprising results. A famous example of
that effect is Braess’ paradox [1, 2], whereby the addition of a new route in a
vehicle traffic network can have the effect of increasing travel times. In this
paper, we continue the study (initiated in [9]) of a version of Braess’ paradox
arising in Markov chains.

Next, we briefly introduce a few important results on Markov chains.
Given a Markov chain, its transition matrix T ∈ Mn(R) is a non–negative
stochastic matrix with ti,j equal to the transition probability from state i
to state j for 1 ≤ i, j ≤ n. Thus, the chain can be completely studied
by analysing the corresponding transition matrix. In particular, when T
is irreducible, the Perron–Frobenius theorem guarantees the existence of a
unique probability vector wt such that wtT = T . Known as the stationary
distribution vector, wt captures long–term behaviour of the chain. Indeed,
it is shown in [7] that

lim
k→∞

1

k

k−1∑
j=0

πtT j = wt.

An important collection of quantities related to the short–term behaviour
of a Markov chain is the set of mean first passage times : for each 1 ≤ i, j ≤ n,
the mean first passage time mi,j is the expected number of steps needed
for a chain to arrive at state j for the first time, given that it started in
state i. Denoting the mean first passage time matrix by M = [mi,j]1≤i,j≤n,
a key observation by Kemeny [7] is that Mw = (κ(T ) + 1)1, where the
constant κ(T ) is known as Kemeny’s constant, and 1 denotes the all–ones
column vector of appropriate order. The quantity κ(T ) + 1 =

∑n
j=1mi,jwj

(1 ≤ i ≤ n) admits a natural interpretation – it is the expected number of
steps, starting from state i, for the chain to arrive for the first time at a
randomly chosen final state. Further, from the above, it is straightforward
to see that κ(T ) + 1 =

∑n
i,j=1wimi,jwj, so that κ(T ) also measures the

expected number of steps from a randomly chosen initial state to a randomly
chosen final state. Thus, Kemeny’s constant can be regarded as a measure
of overall transit time for the Markov chain. As is shown in [7], Kemeny’s
constant can also be written as κ(T ) =

∑n
i=2

1
1−λi where 1, λ2, λ3, . . . , λn are

the eigenvalues for T . We note in passing that Kemeny’s constant has arisen
in a variety of applied settings, including consensus algorithms [6], economics
[10], vehicle traffic networks [4] and wireless network design [5].
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Of interest in the present paper is a special type of Markov chain, namely
a random walk on a connected undirected graph G. Here the transition
matrix can be written as D−1A, where A is the (0, 1) adjacency matrix of
the graph, and D is the diagonal matrix of vertex degrees. In this setting
we will abuse the notation slightly and write κ(G) instead of κ(D−1A). One
might expect that adding a new edge into a graph G would decrease the
value of Kemeny’s constant, but as shown in [9] that is not always the case.
In this paper, we consider the notion of a Braess edge introduced in [9]: we
say that a non–edge e of G is a Braess edge if its insertion strictly increases
Kemeny’s constant, i.e. if κ(G ∪ e) > κ(G). A non–edge e is a non–Braess
edge for G if κ(G ∪ e) ≤ κ(G). Indeed, one of the main results in [9] is that
for almost every tree there is a Braess edge; in particular, every non–edge in
a star graph of order at least 4 is a Braess edge.

Graphs with the property that every non–edge is a Braess edge may
be instructive for the design of networks (such as wireless networks), for
they not only illuminate the structure of graphs possessing Braess edges,
but also generate further insight into the workings of Kemeny’s constant.
Consequently, we make the following definition: a connected graph G is a
Braess graph provided that every non–edge ofG is a Braess edge. Such graphs
may be viewed as either annoying (since any edge addition makes Kemeny’s
constant worse), or appealing (since such graphs can be thought of providing
local minima for Kemeny’s constant). Motivated by the observation that
K1,n−1 is a Braess graph when n ≥ 4, we seek larger families of Braess
graphs, focusing in this paper on complete multipartite graphs.

In section 2 we identify two families of complete multipartite Braess
graphs. In section 3.1, we provide a formula for the change in Kemeny’s
constant after the insertion of an edge between twin vertices. That result
is used in sections 3.2 and 3.3 to discuss the complete multipartite graphs
that are Braess graphs. In particular, Theorem 3.3.3 characterises the com-
plete multipartite graphs without dominating vertices that are Braess graphs,
while Conjecture 3.4.7 speculates on the structure of complete multipartite
graphs having dominating vertices that are Braess graphs.

Throughout we will use standard notation from linear algebra: Jk,j and
0k,j will denote the k× j all ones and all zeros matrices, respectively, 1d and
0d will denote the all ones vector and the zero vector in Rd, respectively, and
ej will denote the j–th standard unit basis vector, whose order shall be clear
from the context.
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2 Complete bipartite graphs and complete

split graphs

Here we consider random walks on two families of graphs that admit Braess
graphs: complete bipartite graphs, and complete split graphs. In this sim-
plified setting, we will illustrate a technique that will be used throughout
the paper and motivates our approach in section 3 to the general complete
multipartite case.

Theorem 2.0.1. Suppose that n ≥ 4 and consider the complete bipartite
graph G = Kk,n−k, with 1 ≤ k ≤ n − 1. G is a Braess graph if and only if
one of the following holds: (i) k = 1, (ii) k = n − 1, (iii) 3n+8

7
< k < 4n−8

7

and n = 18, 20, 22 or n ≥ 24.

Proof. The cases k = 1 and k = n− 1 are both stars, and it follows from [9]
that these are Braess graphs.

Next, we assume that n−3 ≥ k ≥ 3 (so that the sizes of the independent
sets are at least 3) and let T be the transition matrix given by

T =

 02,2 02,k−2
1

n−kJ2,n−k
0k−2,2 0k−2,k−2

1
n−kJk−2,n−k

1
k
Jn−k,2

1
k
Jn−k,k−2 0n−k,n−k

 .
Notice that the partitioning of T forms an equitable partition of the

matrix [3], and the corresponding quotient matrix Q is given by

Q =

0 0 1
0 0 1
2
k

k−2
k

0

 .
When k ≥ 4, the vectors

t =


1
−1

0k−2
0n−k

 , ui =

 02

e1 − ei
0n−k

 , vj =

 02

0k−2
e1 − ej

 , (2 ≤ i ≤ k−2, 2 ≤ j ≤ n−k)

are null vectors of T , while when k = 3, T has null vectors t, v2, . . . , vn−3;
in either case we find that 0 is an eigenvalue of T with multiplicity at least
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n− 3. The remaining eigenvalues of T are given by the eigenvalues of Q, i.e.
1,−1, and 0.

Now without loss of generality, suppose the edge inserted is between ver-
tex 1 and 2. The resulting transition is given by

T̃ =


0 1

n−k+1
1

n−k+1
0

02,k−2
1

n−k+1
J2,n−k

0k−2,2 0k−2,k−2
1

n−kJk−2,n−k
1
k
Jn−k,2

1
k
Jn−k,k−2 0n−k,n−k

 ,
with the corresponding quotient matrix

Q̃ =

 1
n−k+1

0 n−k
n−k+1

0 0 1
2
k

k−2
k

0

 .

The vectors t, ui, 4 ≤ i ≤ k, vj, k + 2 ≤ j ≤ n are eigenvectors of T̃
corresponding to − 1

n−k+1
and 0, the latter with multiplicity n − 4. The

remaining eigenvalues of T̃ are those of the quotient matrix Q̃. Next we
use the formula for Kemeny’s constant in terms of eigenvalues in order to
compute the change in Kemeny’s constant when edge between vertices 1 and
2 is added to Kk,n−k. That is,

κ(T̃ )− κ(T ) = κ(Q̃)− κ(Q)− 1

n− k + 2

=
7k − 3n− 8

2kn2 + (−4k2 + 4k + 2)n+ 2k3 − 4k2 − 2k + 4

=
7k − 3n− 8

2[k(n− k)2 + 2k(n− k) + n− k + 2]
.

Note that κ(T̃ ) − κ(T ) > 0 if and only if k > 3n+8
7

. Similarly, in order for
any non–edge in the independent set of size n−k to be Braess edge, we need
n − k > 3n+8

7
. We thus deduce that for 3 ≤ k ≤ n − 3 every non–edge is

a Braess edge if and only if 3n+8
7

< k < 4n−8
7
. Note that the open interval

(3n+8
7
, 4n−8

7
) includes a positive integer (which is necessarily at least 3) if and

only if n = 18, 20, 22 or n ≥ 24.

5



Lastly, when k = 2, a computation reveals that κ(T̃ ) − κ(T ) = n−1
n

+
n−1
2n−3 −

3
2
< 0. The conclusion now follows.

Example 2.0.2. The graph K8,8 serves as a ‘boundary case’ for Theorem
2.0.1. In the language of that theorem, we have k = 8, and n = 2k = 16.
Observe that for these values of k and n we have 7k = 3n + 8 = 7(n − k).
It now follows that adding an edge to K8,8 will have no effect on Kemeny’s
constant for the corresponding random walk.

Recall that a complete split graph is formed by removing a clique on j
vertices from a complete graph on n vertices; equivalently, a complete split
graph can be written as K̄j ∨Kn−j, where ∨ denotes the join operation. We
have the following result for complete split graphs; its proof follows along the
same lines as that of Theorem 2.0.1, and is omitted.

Theorem 2.0.3. Suppose that n ≥ 4 and the complete split graph G =
K̄j ∨ Kn−j where 2 ≤ j ≤ n − 1. G is a Braess graph if and only if
14−6n+

√
68n2−8n+4
8

< j ≤ n− 1.

Example 2.0.4. It is straightforward to see that Theorem 2.0.3 is equivalent
to the statement that K̄j ∨Kn−j is a Braess graph if and only if n − 1 ≥ j
and 2j2 + (3n− 7)j − (n2 + 5n− 6) > 0. Further, for values of j and n such
that 2j2 + (3n− 7)j− (n2 + 5n− 6) = 0, then adding an edge into K̄j ∨Kn−j
will have no effect on Kemeny’s constant for the corresponding random walk.
For instance j = 1170, n = 4161 is such a pair, and one may generate other
such pairs by solving the corresponding Diophantine equation.

3 Random walks on complete multipartite graphs

3.1 Graphs with twin vertices

The results in section 2 conform to the pattern that a large independent set
leads to the existence of Braess edges. Motivated by this intuition, it is nat-
ural to ask: are there any Braess graphs in the class of complete multipartite
graphs Kk1,...,kr with r ≥ 3? To address that question, we first develop some
theory in a broader setting, namely, graphs with twin vertices.

Recall that in a graph G, two nonadjacent vertices u and v are called twins
provided that their neighbourhoods coincide, i.e. a vertex x is adjacent to
u in G if and only if it is adjacent to v. In this section, in the setting of a
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random walk on a graph, we investigate the change in Kemeny’s constant in
the scenario where an extra edge is inserted between a pair of twin vertices.

First we provide an expression for the change of Kemeny’s constant after
perturbing one row of the transition matrix. This expression is fundamental
to our subsequent results. As part of that expression, we make use of the
group inverse (I−T )# associated with an irreducible stochastic matrix T ; we
refer the reader to [8] for background on this group inverse and its use in the
study of Markov chains. In particular we recall the following basic property:
if T has stationary vector wt, then (I−T )#(I−T ) = I−1wt = (I−T )(I−T )#.

Here we let ei denote the i–th standard unit basis vector in Rn.

Lemma 3.1.1. Let T be an irreducible, stochastic matrix of order n and
T̃ = T + eiu

t where ut is some appropriate perturbing vector so that T̃ is still
irreducible and stochastic. Let

θj =
ut(I − T )#ej

1− ut(I − T )#ei
, j = 1, ..., n.

Denote the stationary vector of T by wt, and the mean first passage times by
mp,q(1 ≤ p, q ≤ n). Fix k 6= i. The change in Kemeny’s constant is given by

κ(T̃ )− κ(T ) = wi
∑
j

θj(mk,i −mj,i) + θi.

Proof. Denote the mean first passage times of T̃ by m̃p,q(1 ≤ p, q ≤ n),
and the stationary vector of T̃ by w̃t. From [8] Proposition 6.1.7, m̃k,j =

wj

wj+θjwi
mk,j +

θjwi

wj+θjwi
(mk,i −mj,i), and m̃k,i = mk,i. Also, notice that

(I − eiut(I − T )#)−1 = I +
1

1− ut(I − T )#ei
eiu

t(I − T )#,

so that

w̃t = wt(I − eiut(I − T )#)−1 = wt
(
I +

1

1− ut(I − T )#ei
eiu

t(I − T )#)

)
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from [8] Lemma 5.3.1. Therefore,

κ(T̃ )− κ(T ) =
n∑
j=1

(m̃k,jw̃j −mk,jwj)

=
∑
j 6=i,k

(m̃k,jw̃j −mk,jwj) + ((m̃k,iw̃i −mk,iwi))

=
∑
j 6=i,k

[(
wj

wj + θjwi
mk,j +

θjwi
wj + θjwi

(mk,i −mj,i)

)
×(

wt
(
I +

1

1− ut(I − T )#ei
eiu

t(I − T )#
))

ej −mk,jwj

]
+mk,iw

t

(
I +

1

1− ut(I − T )#ei
eiu

t(I − T )#)

)
ei −mk,iwi

=
n∑
j=1

θjwi(mk,i −mj,i) + θi,

as desired.

To make use of Lemma 3.1.1, we use the same technique as shown in the
bipartite case, namely an equitable partition, to refer our problem to the
study of a transition matrix with one row perturbed.

For convenience, throughout this section, we denote the transition matrix
of a random walk on an undirected graph of order n with twins 1 and 2 having
d neighbours by

T =

 02,2
1
d
J2,d 02,n−d−2

x1t2 A B
0n−d−2,2 C D

 , (1)

(here x is some positive vector in Rd), and the transition matrix after the
insertion of an edge between the twins by T̃ . The quotient matrix of T
corresponding to the partition { {1, 2}, {3}, . . . , {n} } is given by the block
matrix

Q =

 0 1
d
1td 0tn−d−2

2x A B
0n−d−2 C D

 .
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Recall that the eigenvalues of T consist of the eigenvalues of Q, along with
0. Denote the stationary vector of Q by wt, and the mean first passage times
of Q by M = [mi,j]1≤i,j≤n−1.

Theorem 3.1.2. Suppose that T is given by (1), and that T̃ is the transition
matrix arising from the addition of the edge between the twin vertices 1, 2.
Then the change in Kemeny’s constant is given by

κ(T̃ )− κ(T ) =
w1

d+ w1

(
n∑
j=1

wjmj,1 − 1−m1,1 +
2− w1

w1(d+ 2)

)
.

Proof. The corresponding quotient matrix after the insertion of the extra
edge is given by

Q̃ =

 1
d+1

1
d+1

1td 0tn−d−2
2x A B

0n−d−2 C D

 ,
and the eigenvalues of T̃ consist of the eigenvalues of Q̃, along with − 1

d+1
.

Note that Q̃ = Q+ e1u
t where

ut =
1

d+ 1

[
1 −1

d
1td 0tn−d−2

]
=

1

d+ 1
et1(I −Q).

Notice that

ut(I −Q)# =
1

d+ 1
et1(I −Q)(I −Q)# =

1

d+ 1
et1(I − 1wt) =

1

d+ 1
(et1−wt).

Let θj =
ut(I−Q)#ej

1−ut(I−Q)#e1
=

et1ej−wj

d+w1
. Similar to Theorem 2.0.1 and applying

Lemma 3.1.1, we have (taking k = 2 in that lemma)

κ(T̃ )− κ(T ) = κ(Q̃)− κ(Q) +
1

1− (− 1
d+1

)
− 1

1− 0

= κ(Q̃)− κ(Q)− 1

d+ 2

= w1

n∑
j=1

θj(m2,1 −mj,1) + θ1 −
1

d+ 2

= w1

(
n∑
j=1

et1ej − wj
d+ w1

(m2,1 −mj,1)

)
+ θ1 −

1

d+ 2

=
w1

d+ w1

(
n∑
j=1

(
wjmj,1 − 1−m1,1 +

2− w1

w1(d+ 2)

))
.
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Next we utilise Theorem 3.1.2 in our investigation of Braess edges for
complete multipartite graphs.

3.2 Theorem 3.1.2 for complete multipartite graphs

Let T be the transition matrix of the random walk on a complete multipar-
tite undirected graph with independent sets S1, S2, ..., Sr of sizes k1, k2, ..., kr
respectively, and assume k1 ≥ 2. Let T̃ be the transition matrix after insert-
ing an edge in S1, say the edge 1 ∼ 2. Let Q be the quotient matrix of T
induced by vertex sets {1, 2}, S1 \ {1, 2} (if this is non–empty), S2, S3, ..., Sr.
To study the change in Kemeny’s constant, we derive an expression in terms
of the sizes of independent sets.

Here we introduce some notation that is useful throughout this section.
Let n =

∑r
j=1 kj, αj = n − kj(1 ≤ j ≤ r), γ =

∑r
j=1 kjαj. Since the value

of k1 determines the way the graph is partitioned (when k1 = 2, the subset
S1 \ {1, 2} vanishes), we first deal with the case when k1 ≥ 3. The case that
k1 = 2 will follow similarly.
Case 1: k1 ≥ 3
Without loss of generality, assume that

T =



02,2 02,k1−2
1
α1
J2,k2

1
α1
J2,k3 . . . 1

α1
J2,kr

0k1−2,2 0k1−2,k1−2
1
α1
Jk1−2,k2

1
α1
Jk1−2,k3 . . . 1

α1
Jk1−2,kr

1
α2
Jk2,2

1
α2
Jk2,k1−2 0k2,k2

1
α2
Jk2,k3 . . . 1

α2
Jk2,kr

...
...

...
. . .

...
...

1
αr−1

Jkr−1,2 . . . 0kr−1,kr−1

1
αr−1

Jkr−1,kr
1
αr
Jkr,2 . . . . . . . . . . . . 0kr,kr


,

(2)
so that the corresponding quotient matrix is

Q =


0 0 k2

α1

k3
α1

. . . kr
α1

0 0 k2
α1

k3
α1

. . . kr
α1

2
α2

k1−2
α2

0 k3
α2

. . . kr
α2

...
...

...
. . . . . .

...
2
αr

k1−2
αr

k2
αr

k3
αr

. . . 0

 . (3)

To apply Theorem 3.1.2, we need to find the stationary distribution and
the mean first passage times into state 1 for Q.
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Proposition 3.2.1. Suppose that Q is given by (3). Then the stationary
vector of Q is given by

wt =
1

γ
[2α1 (k1 − 2)α1 k2α2 k3α3 . . . krαr].

Proof. A direct computation reveals that wtQ = wt.

Proposition 3.2.2. Suppose that Q is given by (3). The mean first passage
times into vertex 1 (corresponding to {1, 2} in the original graph) of the
quotient matrix Q are given by

m1,1

m2,1

m3,1
...

mr+1,1

 =



γ
2α1
γ

2α1
α2

n
+ k1−2

2
+ (n−2)(γ−k1α1)

2nα1
...

αr

n
+ k1−2

2
+ (n−2)(γ−k1α1)

2nα1



Proof. From [7] Theorem 3.2.4,
m2,1

m3,1
...

mr+1,1

 = (I −Q(1))
−11r−1

where Q(1) is the principal submatrix of Q formed by deleting the first row
and column. Notice that (I −Q(1)) = A− uvt where

A =


1 + k1−2

α1
0

1 + k2
α2

1 + k3
α3

. . .

0 1 + kr
αr


is a diagonal matrix, and

u =


1
α1
1
α2
...
1
αr

 , vt =
[
k1 − 2 k2 k3 . . . kr

]
.
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Applying the Sherman–Morrison formula, we obtain

(I −Q(1))
−1 = (A− uvt)−1 = A−1 +

A−1uvtA−1

1− vtA−1u
,

and the conclusion follows immediately.

Theorem 3.2.3. Suppose that T is given by (2) and that T̃ is the transition
matrix arising from adding the edge between vertices 1 and 2. Then κ(T̃ )−
κ(T ) = 2

γ+2
{− γ

2α1
+ 1
γ
[ (k1−2)γ

2
+
∑r

j=2 kjαj(
αj

n
+ k1−2

2
+ (n−2)(γ−k1α1)

2nα1
)]+ γ−α1

α1(α1+2)
}.

Proof. Applying Theorem 3.1.2, Proposition 3.2.1, and Proposition 3.2.2, the
result follows immediately.

Case 2: k1 = 2
Without loss of generality, assume that

T =


02,2

1
α1
J2,k2

1
α1
J2,k3 . . . 1

α1
J2,kr

1
α2
Jk2,2 0k2,k2

1
α2
Jk2,k3 . . . 1

α2
Jk2,kr

...
...

. . .
...

...
1
αr
Jkr,2 . . . . . . . . . 0kr,kr

 , (4)

so that the corresponding quotient matrix is

Q =


0 k2

α1

k3
α1

. . . kr
α1

2
α2

0 k3
α2

. . . kr
α2

...
...

. . . . . .
...

2
αr

k2
αr

k3
αr

. . . 0

 . (5)

The proof of the following is analogous to the proofs of Propositions 3.2.1
and 3.2.2, and is omitted.

Proposition 3.2.4. Suppose that Q is given by (5). Then the stationary
vector for Q is given by

wt =
1

γ
[2α1 k2α2 k3α3 . . . krαr].
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The mean first passage times into vertex 1 (corresponding to {1, 2} in the
original graph) of the quotient matrix Q is given by

m1,1

m2,1

m3,1
...

mr,1

 =


γ

2α1

(α2 + γ−2α1

2
) 1
n

(α3 + γ−2α1

2
) 1
n

...
(αr + γ−2α1

2
) 1
n

 .

Theorem 3.2.5. Suppose that T is given by (4) and that T̃ is the transition
matrix arising from adding the edge between vertices 1, 2. Then

κ(T̃ )− κ(T ) =
2

γ + 2

(
1

γn

r∑
j=2

kjα
2
j +

(γ − 2α1)
2

2γn
− γ

2α1

+
γ − α1

(α1 + 2)α1

)
.

Proof. Applying Theorem 3.1.2 and Proposition 3.2.4, the result follows im-
mediately.

3.3 Existence of non–Braess edges in complete multi-
partite graphs

As mentioned previously, it follows from [9] that every non–edge in a star
graph of order at least 4 is a Braess edge. The results of section 2 characterise
the complete split graphs and complete bipartite graphs for which every non–
edge is a Braess edge, thus generalising the observation for star graphs. In
this section we consider general complete multipartite graphs, as another
natural generalisation of star graphs.

Theorem 3.3.1. Suppose that G = Kk1,k2,...,kr is a complete r–partite with
r ≥ 3. Suppose further that min{k1, . . . , kr} ≥ 3. Then G has a non–Braess
edge.

Proof. Without loss of generality, suppose that k1 is the smallest among all
the ki’s (1 ≤ i ≤ r), so that α1 is the greatest among all the αj’s (1 ≤ j ≤ r).
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From Theorem 3.2.3,

κ(T̃ )− κ(T ) ≤ 2

γ + 2

{
− γ

2α1

+
1

γ

[
(k1 − 2)γ

2

+
r∑
j=2

kjαj

(
α1

n
+
k1 − 2

2
+

(n− 2)(γ − k1α1)

2nα1

)]
+

γ − α1

α1(α1 + 2)

}

=
2

γ + 2

(
− γ

2α1

+
k1 − 2

2
+

(n− 2)(γ − k1α1)

2α1n
+

γ − α1

α1(α1 + 2)

)
=

2

γ + 2

(
−6α1n− 2α2

1n− 2α1γ + 2k1α
2
1 − 4γ + 4k1α1 + 2nγ

2α1(α1 + 2)n

)
=

2

γ + 2

(
4(k1α1 − γ) + 2(−α3

1 + γk1)− 6α1n

2α1(α1 + 2)n

)
.

To show that this last expression is negative, it suffices to observe that

−α3
1 + γk1 = −(

r∑
j=2

k2j + 2
∑

2≤i 6=j≤r

kikj)α1 + 2k1(
∑

2≤i 6=j≤r

kikj + k1α1)

= 2(k1 − α1)
∑

2≤i 6=j≤r

kikj + (2k21α1 −
r∑
j=2

k2jα1) ≤ 0.

Theorem 3.3.2. Suppose that G = Kk1,k2,...,kr is a complete r–partite with
r ≥ 3. Suppose further that min{k1, . . . , kr} = 2. Then G has a non–Braess
edge.

Proof. Without loss of generality, suppose k1 = 2, so that α1 is the greatest
among all the αj’s (1 ≤ j ≤ r). From Theorem 3.2.5 we have,

κ(T̃ )− κ(T ) =
2

γ + 2

(
1

γn

r∑
j=2

kjα
2
j +

(γ − 2α1)
2

2γn
− γ

2α1

+
γ − α1

(α1 + 2)α1

)

≤ 2

γ + 2

(
α1

γn
(γ − 2α1) +

(γ − 2α1)
2

2γn
− γ

2α1

+
γ − α1

(α1 + 2)α1

)
=

2

γ + 2

(
γ − 2α1

2n
+
−γ − 2

2(α1 + 2)

)
=

2

γ + 2

(
−2α2

1 − 4α1 − 2n

2n(α1 + 2)

)
< 0.
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The following theorem summarises some of our results so far. Its proof is
immediate from Theorems 2.0.1, 3.3.1 and 3.3.2.

Theorem 3.3.3. Suppose that G = Kk1,...,kr is a complete multipartite graph
such that r ≥ 2 and min{k1, . . . , kr} ≥ 2. Then G is a Braess graph if and
only if r = 2, k1 + k2 = 18, 20, 22 or k1 + k2 ≥ 24, and 3k2+8

4
< k1 <

4k2−8
3
.

3.4 Complete multipartite graphs with dominating ver-
tices

Recall that a dominating vertex in a graph is one that is adjacent to every
other vertex in the graph. While Theorem 2.0.3 identifies a certain family
of complete multipartite graphs with dominating vertices that are Braess
graphs, the following example highlights the fact that there are some sub-
tleties inherent in characterising such graphs in general.

Example 3.4.1. For the complete multipartite graph G = K9,9,1,1, we have
κ(G) = 4339

236
. If we add any edge to G to create G̃, we find that κ(G̃) =

1287
70

> κ(G). Consequently K9,9,1,1 is a Braess graph.
Next we consider H = K9,9,1,1,1, and find that κ(H) = 5707

295
. Adding any

edge to H to create H̃, we find that κ(H̃) = 1567
81

< κ(H); thus any non–edge
for H is a non–Braess edge.

Together these two examples reveal the influence of the number of domi-
nating vertices in determining whether or not a complete multipartite graph
is a Braess graph or not.

In the case that k1 = 2, we are able to make a definitive statement.

Theorem 3.4.2. Suppose that s ≥ 2, p ≥ 1, G = Kk1,...,ks ∨ Kp, and that
min{k1, . . . , ks} = 2. Then G has a non–Braess edge.

Proof. Set r = s + p, and without loss of generality we assume that k1 = 2.
Set n̂ =

∑s
j=1 kj, α̂j = n̂−kj, j = 1, . . . , s, and γ̂ =

∑s
j=1 kjα̂j. It now follows

via some routine computations that α1 = α̂1 + p, γ = p2 + (2n̂− 1)p+ γ̂, and
that

r∑
j=2

kjα
2
j = p3 + (2n̂+ α̂1 − 2)p2 + ((n̂− 1)2 + 2γ̂ − 2k1α̂1)p+

r∑
j=2

kjα̂
2
j .
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According to Theorem 3.2.5, in order to show that the non–edge corre-
sponding to the independent set of size 2 is a Braess edge, we need to show
that

1

γn

r∑
j=2

kjα
2
j +

(γ − 2α1)
2

2γn
− γ

2α1

+
γ − α1

(α1 + 2)α1

< 0. (6)

Some algebraic manipulations (which use the fact that α+2 = n since k1 = 2)
reveal that (6) is equivalent to

r∑
j=2

kjα
2
j − 2α1γ + 2α2

1 − γ < 0. (7)

Substituting for αj and γ in terms of α̂j, γ̂, n̂ and p, and simplifying eventually
shows that

r∑
j=2

kjα
2
j − 2α1γ + 2α2

1 − γ =

−p3 − (2n̂+ α̂1 − 1)p2 − (3n̂2 − 4n̂)p+
r∑
j=2

kjα̂
2
j − 2α̂1γ̂ + 2α̂2

1 − γ̂.

Observe that since α̂j ≤ α̂1, j = 2, . . . , s, we have

r∑
j=2

kjα̂
2
j − 2α̂1γ̂ + 2α̂2

1 − γ̂ <
r∑
j=2

kjα̂
2
j −

r∑
j=2

kjα̂jα̂1 + α̂1(−γ̂ + 2α̂1)− γ̂ < 0.

Inequality (7) follows readily, yielding the desired conclusion.

Next, we show that if there are enough dominating vertices, there is a
non–Braess edge for our complete multipartite graph.

Theorem 3.4.3. Suppose that s ≥ 2 and that min{k1, . . . , ks} ≥ 3. There
is a p0 ∈ N such that if p ≥ p0, there is a non–Braess edge for the graph
G = Kk1,...,ks ∨Kp.

Proof. Fix p ∈ N, let G = Kk1,...,ks ∨Kp, and form G̃ from G by adding the
edge between vertices 1 and 2. Let r = s + p, and set n̂ =

∑s
j=1 kj, so that

n = n̂+ p. Let α̂j = n̂− kj, j = 1, . . . , s, and γ̂ =
∑s

j=1 kjα̂j. As in the proof

of Theorem 3.4.2, we have α1 = α̂1 + p, γ = p2 + (2n̂− 1)p+ γ̂, and

r∑
j=2

kjα
2
j = p3 + (2n̂+ α̂1 − 2)p2 + ((n̂− 1)2 + 2γ̂ − 2k1α̂1)p+

r∑
j=2

kjα̂
2
j .
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From Theorem 3.2.3, the edge between vertices 1 and 2 is a non–Braess
edge if and only if

− γ

2α1

+
1

γ

[
(k1 − 2)γ

2
+

r∑
j=2

kjαj

(
αj
n

+
k1 − 2

2
+

(n− 2)(γ − k1α1)

2nα1

)]
+

γ − α1

α1(α1 + 2)
< 0. (8)

Multiplying (8) by 2α1(α1 + 2)nγ and the applying some algebraic manipu-
lations, we find that (8) is equivalent to the following:

−(γ + 2)γα1n+ (n− 2)(α1 + 2)(γ − k1α1)
2 +

(k1 − 2)α1n(α1 + 2)(2γ − k1α1) + 2(α1 + 2)α1

r∑
j=2

kjα
2
j < 0. (9)

We are going to consider the left side of (9) as a polynomial in p, and deter-
mine its leading term. Observe that α1 and n are linear in p, γ is quadratic in
p, and

∑r
j=2 kjα

2
j is cubic in p, so that the left side of (9) is of degree at most

6 in p. Note further that the leading term of (k1− 2)α1n(α1 + 2)(2γ − k1α1)
is 2(k1 − 2)p5, while the leading term of 2(α1 + 2)α1

∑r
j=2 kjα

2
j is 2p5.

Next we note that

−(γ + 2)γα1n+ (n− 2)(α1 + 2)(γ − k1α1)
2 =

−2k1α
2
1γn+ 2nγ2 − 2α1γ

2 +

2k1α
2
1γ + 3k21α

3
1n− (4k1 + 2)α1nγ − 2k21α

3
1 − 4k21α

2
1. (10)

From (10), we find that the leading term of −(γ + 2)γα1n + (n − 2)(α1 +
2)(γ − k1α1)

2 is −2k1p
5, and hence we deduce that the leading term on the

left side of (9) is 2(k1 − 2)p5 + 2p5 − 2k1p
5 = −2p5. We deduce that for all

sufficiently large values of p, inequality (8) holds, from which the conclusion
follows readily.

Next, we consider a special case.

Theorem 3.4.4. Suppose that s ≥ 2, k ≥ 3 and p ≥ 1, and consider the
graph G = Kk,...,k ∨Kp, where the number of independent sets of size k is s.
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Then G is a Braess graph if and only if

0 < −2p5 + [(10− 10s)k − 10]p4 + [(−20s2 + 40s− 10)k2 + (6− 40s)k + 12]p3

+ [(−20s3 + 60s2 − 36s+ 4)k3 + (−60s2 + 36s)k2 + (24s− 12)k]p2

+ [(−10s4 + 40s3 − 42s2 + 12s)k4 + (−40s3 + 54s2 − 10s− 4)k3

+ (12s2 − 22s+ 10)k2 + (4s− 4)k]p

+ (−2s5 + 10s4 − 16s3 + 10s2 − 2s)k5 + (−10s4 + 24s3 − 18s2 + 4s)k4. (11)

Proof. Maintaining the notation of Theorem 3.2.3, we find that r = s+p, n =
sk + p, αj = (s − 1)k + p, j = 1, . . . , s, αj = n − 1, j = s + 1, . . . , r, and
γ = p2 + (2sk− 1)p+ s(s− 1)k2. An uninteresting computation reveals that

2α1(α1 + 2)nγ{− γ
2α1

+ 1
γ
[ (k1−2)γ

2
+
∑r

j=2 kjαj(
αj

n
+ k1−2

2
+ (n−2)(γ−k1α1)

2nα1
)] +

γ−α1

α1(α1+2)
} is equal to the right–hand side of (11). The conclusion now follows

from Theorem 3.2.3.

Corollary 3.4.5. Let k, s, p and G be as in Theorem 3.4.4, and suppose that
s ≥ 3. Then each non–edge of G is a non–Braess edge.

Proof. From the hypothesis that s ≥ 3, the following inequalities are readily
established: −20s2+40s−10 < 0,−20s3+60s2−36s+4 < 0,−10s4+40s3−
42s2+12s < 0,−40s3+54s2−10s−4 < 0,−2s5+10s4−16s3+10s2−2s < 0,
and −10s4 + 24s3− 18s2 + 4s < 0. From these inequalities, it follows that on
the right–hand side of (11), the coefficients of the p5, p4, p3, p2 and p terms, as
well as the constant term, are all negative. The conclusion now follows.

Corollary 3.4.6. Suppose that k ≥ 3 and p ≥ 1. Then Kk,k∨Kp is a Braess
graph if and only if

0 < −2p5 − (10k + 10)p4 − (10k2 + 74k − 12)p3 + (12k3 − 168k2 + 36k)p2

+ (16k4 − 128k3 + 14k2 + 4k)p+ 4k5 − 32k4. (12)

Proof. The conclusion follows upon substituting s = 2 in (11) and simplify-
ing.

Remark 1. Analysing the right–hand side of (12), it is straightforward to
determine that if k > 8, then considered as a polynomial in p, the coefficients
of the right–hand side of (12) exhibit exactly one sign change. Hence that
polynomial in p has at most one positive root, by Descartes’ rule of signs. It
now follows that if k > 8 and Kk,k∨Kp is a Braess graph, then so is Kk,k∨Kq

for q = 1, . . . , p.
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Remark 2. Suppose that k1, k2 ≥ 3 and that p ∈ N, and consider the graph
G = Kk1,k2 ∨ Kp. Suppose without loss of generality that k1 ≤ k2. Using
techniques similar to those above, it can be shown that adding an edge into
the independent set of size k1 will increase Kemeny’s constant if and only if

0 < −2p5 + [−10k2 − 10]p4 + [−20k22 − 40k2 + 10k21 − 34k1 + 12]p3

+[−18k32(−8k1 − 50)k22 + (30k21 − 94k1 + 24)k2 + 8k31 − 24k21 + 12k1]p
2

+[−6k42 + (−16k1 − 16)k32 + (22k21 − 72k1 + 4)k22
+(16k31 − 40k21 + 10k1 + 4)k2]p

−6k1k
4
2 + (2k21 − 16k1)k

3
2 + (8k31 − 16k21)k22 ≡ f(k1, k2). (13)

Similarly, adding an edge into the independent set of size k2 increases Ke-
meny’s constant if and only if 0 < f(k2, k1).

Next, applying some simplifications to f(k1, k2)− f(k2, k1), we find that

f(k1, k2)− f(k2, k1) =

(k1 − k2)[10p4 + 6(5k1 + 5k2 + 1)p3

+2(13k21 + 32k1k2 + 13k1 + 13k22 + 13k2 − 6)p2

+2(3k31 + 19k21k2 + 8k21 + 19k1k
2
2 + 24k1k2

−2k1 + 3k32 + 8k22 − 2k2 − 2)p

+2k1k2(k1 + k2)(3k1 + 3k2 + 8)].

Consequently, since k1 ≤ k2, we have f(k1, k2) ≤ f(k2, k1). We deduce from
the above that G is a Braess graph if and only if (13) holds.

We close with a conjecture that is supported in part by Corollary 3.4.5
and Remark 2.

Conjecture 3.4.7. Suppose that r ≥ 2, p ∈ N, and min{k1, . . . , kr} ≥ 3. Let
G = Kk1,...,kr ∨Kp. Then G is a Braess graph if and only if:
i) r = 2; and assuming (without loss of generality) that k1 ≤ k2,
ii) (13) holds.
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