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A graph is said to exhibit perfect state transfer (PST) if one of its corresponding Hamil-
tonian matrices, which are based on the vertex-edge structure of the graph, gives rise

to PST in a quantum information-theoretic context, namely with respect to inter-qubit

interactions of a quantum system. We perform various perturbations to the hypercube
graph—a graph that is known to exhibit PST— to create graphs that maintain many of

the same properties of the hypercube, including PST as well as the distance for which
PST occurs. We show that the sensitivity with respect to readout time errors remains

unaffected for the vertices involved in PST. We give motivation for when these pertur-

bations may be physically desirable or even necessary.
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1 Introduction

Undirected connected graphs are used as models for quantum spin networks, and in particu-

lar to model inter-qubit interactions of quantum registers and processors within a quantum

computer. The transfer of quantum states from one location to another within a quantum

computer is then analyzed by way of a Hamiltonian H, which is a matrix describing the total

amount of energy of a quantum system, and, depending on the dynamics of the quantum

system, is typically taken to be either the adjacency matrix or Laplacian matrix associated

to the graph.

Recent work explores hypercubes (also called n-cubes) [1] and the more general notion

of cubelike graphs [2, 3] as a means of achieving perfect state transfer (PST): a quantum

state placed at a particular vertex of the spin network is transmitted perfectly (up to a global

phase) to another vertex at time t = t0. In [3], the authors make use of results in [4] involving

Laplacians that can be diagonalized by a Hadamard matrix to create a variety of new graphs

having PST; again, particular attention is paid to the hypercube and, more generally, to

1



2 Switching and partially switching the hypercube while maintaining perfect state transfer

cubelike graphs. One is often interested in sending the state as far as possible along the

spin network (maximizing the distance between the vertices of the sender and receiver), and

ensuring that the state transfer is as insensitive as possible to errors in the readout time (that

is, if one has PST at time t = t0, then at time t = t0± ε, one would hope to have near-perfect

state transfer, for small epsilon).

We present new results on variants of the hypercube while avoiding much of the heavy

machinery from graph theory. We use a graph operation called Godsil-McKay (GM) switch-

ing that perturbs a graph by removing and creating edges based on certain criteria that a

partition of the vertex set must satisfy. We apply GM switching to the hypercube as a means

of constructing non-isomorphic graphs that have many of the same nice properties of the

hypercube, including PST.

Other recent work perturbs the graph, often taken to be a quantum spin chain modeled

by a path, by adding loops (corresponding to energy potentials) at certain vertices [5, 6, 7].

This type of perturbation has garnered much attention as a powerful tool to improve quantum

state transfer capabilities of quantum networks. Other work ([8, 9] and others) focuses more

on manufacturing coupling strengths (corresponding to the weights of the edges of the graph)

to achieve perfect state transfer. Small changes in the edge weights lead to manufacturing

errors; an analysis of how such errors decrease the probability of quantum state transfer

can be found in [10]. Other more applied literature discusses enhancing the probability of

state transfer by way of partially collapsing measurements, weak measurement strength, and

quantum measurement reversal [11], radio frequency pulses in NMR [12], quantum error

correction [13], among other useful perturbations, both at the local (individual vertices) and

global (quantum system) levels.

In Section 2, we give the necessary graph theory and linear algebra background for this

work. In Section 3, we use Godsil-McKay switching to construct a graph (the switched n-

cube) of order 2n for n > 4 that has many of the same properties as the n-cube (notably,

it is cospectral to the n-cube and exhibits PST, with distance n between PST pairs), but is

nevertheless not isomorphic to the n-cube, and is not Hadamard-diagonalizable. In Section 4,

we then consider partially switched n-cubes, which generalize the process of GM switching on

the n-cube by considering it as the Cartesian product of the (n−4)-cube with the 4-cube, and

performing GM switching on some copies of the 4-cube. These new graphs are not cospectral

to the n-cube in general, but do exhibit PST (though in significantly fewer pairs of vertices).

We further generalize this by replacing each copy of the 4-cube by a convex combination of

the 4-cube and the switched 4-cube; we also generalize it to a time-dependent Hamiltonian

(see, e.g. [14]) that alternates between the various graphs considered. We give motivation

as to why these families of graphs might be useful in practice; in particular, we conduct a

sensitivity analysis with respect to readout time errors in Section 5.

2 Preliminaries

We consider only unweighted (with the exception of a generalization in Section 4), undirected,

simple, connected graphs herein. Given a graph G on m vertices, its corresponding adjacency

matrix is an m × m matrix A(G) = [ajk] with ajk = 1 if vertices j and k are adjacent,

and ajk = 0 otherwise (in general, ajk represents the weight of the edge between vertices

j and k). The Laplacian matrix L(G) corresponding to G is defined as the m × m matrix
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L(G) = D(G)−A(G), where D(G) (the degree matrix) is the diagonal matrix of row sums of

A(G). Since the hypercube is regular, many of the properties of the Laplacian matrix L(G)

are shared by the adjacency matrix A(G), and we focus on the latter herein. In particular,

PST with respect to the Laplacian matrix will occur if and only if PST with respect to the

adjacency matrix occurs, for the same vertex pairs; this statement is in general not true if

regularity is dropped.

The graph G is used to represent a single-excitation spin network, with each electron being

represented by a vertex of the graph, and coupling strengths being represented by the weight

of the edge between the two interacting electrons (adjacent vertices). The system is given

by the Hilbert space C2⊗n; here, we are interested in the XY -interaction model (alternative

terminology is that the spin network has XX couplings). The total energy of the system is

thus given by the Hamiltonian

H =
1

2

∑
{j,k}∈E(G)

wjk(XjXk + YjYk)

where {j, k} ∈ E(G) means that there is an edge between vertices j and k in the graph, having

edge weight wjk (in nearly all of what follows, wjk = 1), and Xj and Yj are the standard Pauli

matrices acting on the j-th copy of C2. Although in the above, H is a matrix of order 2n,

since we are considering only the single excitation subspace Cn spanned by the standard basis

{|1〉, . . . , |n〉} ⊂ Cn, the state transfer dynamics are completely determined by the evolution

within this n-dimensional subspace, and the Hamiltonian can be represented by H = A(G)

when considering XY interactions, as per [15].

The probability (or fidelity) of state transfer

p(t) = |〈j|eitH|k〉|2 = |〈k|eitH|j〉|2, (1)

where H is the Hamiltonian of the system (since we are considering XY interactions, H =

A(G)). Since H is symmetric, we can consider either the (j, k) or (k, j) entry of the unitary

matrix U(t) = eitH. If there exists a time t = t0 for which p(t0) = 1, then we say that the

vertices j and k exhibit PST (or that the graph has PST, or that {j, k} is a PST vertex pair,

or that j and k pair up and have PST). If the graph theoretic distance between vertices j and

k is ` (that is, the minimum number of edges in a path joining j and k), then we say that the

PST distance is `. For regular graphs, which are our focus here, a graph exhibits PST with

respect to the Laplacian matrix if and only if it exhibits PST with respect to the adjacency

matrix, so focussing on the adjacency matrix is not a restriction in this setting.

We use In to denote the identity matrix of size 2n, and 1m to denote the unnormalized

maximally mixed state (all-ones vector) of length 2m. A Hadamard matrix of order m is an

m×m square (1,−1) matrix whose columns are pairwise orthogonal. The standard Hadamard

matrices of order 2n for n ∈ N are defined recursively: let

H1 =

[
1 1
1 −1

]
, H2 =

[
H1 H1

H1 −H1

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,
and then

Hn =

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
= H1 ⊗Hn−1 = H⊗n1 ,
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for 2 ≤ n ∈ N, where H⊗n1 denotes the Kronecker product of H1 with itself n times.

A graph G on m vertices is Hadamard-diagonalizable if we can write L(G) = 1
mHΛHT ,

where Λ is the diagonal matrix of eigenvalues of L(G), and H is a Hadamard matrix. From

[4] we know that any Hadamard diagonalizable graph is regular, so a graph is Hadamard

diagonalizable if and only if its adjacency matrix is diagonalizable by some Hadamard matrix.

In this paper, we will make use of the adjacency matrix of a graph to check whether it is

Hadamard diagonalizable or not. Here, we focus on standard Hadamard matrices, and so

m = 2n for some n ∈ N.

A useful family of Hadamard diagonalizable graphs is the family of cubelike graphs [16]:

Take a set C ⊂ Zn2 = Z2 × · · · × Z2 (n times), where C does not contain the all-zeros vector.

Construct the cubelike graph G(C) with vertex set V = Zn2 and two elements of V are adjacent

if and only if their difference is in C. The set C is called the connection set of the graph G(C).

From the definition we can see G(C) is a |C|-regular graph. A cubelike graph is connected

if and only if its connection set C contains a basis of Zn2 when viewed as a vector space or

C generates Zn2 when viewed as a group [17, Ch. 3]. Since Zn2 is n-dimensional, we know a

connected cubelike graph on 2n vertices is regular with degree at least n.

An unweighted graph G is diagonalizable by the standard Hadamard matrix if and only

if G is a cubelike graph [3]. Combined with the above information, we know that for any

positive integer n, no connected graphs on 2n vertices that have fewer edges than the n-cube

are diagonalizable by the standard Hadamard matrixHn. So we cannot perturb the hypercube

by deleting edges, without adding edges as well, while still maintaining PST, connectivity, and

diagonalizability by the standard Hadamard. We summarize this in the following proposition.

Proposition 1: No connected proper subgraphs of hypercubes are diagonalizable by the

standard Hadamard matrix Hn.

The switched cube discussed in Section 3 maintains the same sparsity structure (the same

number of edges) as the n-cube Qn.

3 A PST Graph Cospectral to the n-cube

In this section, we give a cospectral mate of the n-cube that is no longer Hadamard diago-

nalizable, but is n-regular, exhibits PST, and has PST distance n.

The Cartesian product of two graphs G1 and G2 gives a new graph G1�G2 with vertex set

V (G1)× V (G2) and two vertices (j1, j2) and (k1, k2) are adjacent in G1�G2 provided either

j1 = k1 and j2 is adjacent to k2 in G2, or j2 = k2 and j1 is adjacent to k1 in G1.

We will make use of Godsil-McKay (GM) switching [18]: Let G be a graph and let π =

(C1, C2, · · · , Ck, D) be a partition of the vertex set V (G). Suppose that, whenever 1 ≤ i, j ≤ k
and v ∈ D, we have:

(a) any two vertices in Ci have the same number of neighbours in Cj , and

(b) v has either 0, ni/2 or ni neighbours in Ci, where ni = |Ci|.
The graph G(π) formed by local switching in G with respect to π is obtained from G as follows:

for each v ∈ D and 1 ≤ i ≤ k such that v has ni/2 neighbours in Ci, delete these ni/2 edges

and join v instead to the other ni/2 vertices in Ci. The graphs G(π) and G are cospectral.

In [19, Section 1.8], a cospectral mate of the 4-cube is given, and can be seen to be an
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example of Godsil-McKay (GM) switching. With labeling as in Fig. 1, the partition π has

C1 = {1}, C2 = {6, 7, 8, 9, 10, 11}, C3 = {12, 13, 14, 15}, C4 = {16}, and D = {2, 3, 4, 5};
denote the graph Q

(π)
4 by Q̃4, and call it the switched 4-cube. Note that Qn = Qn−4�Q4,

that is, the n-cube can be seen as 2n−4 copies of the 4-cube connected in a specific way

(in fact, according to the (n − 4)-cube). If we partition each of the 2n−4 copies of 4-cube

according to the above partition π, we get a partition π1 of V (Qn), and it is an equitable

partition. Now taking the union of all the 2n−4 copies of the D cell and keeping all the

other cells unchanged, we get a new partition π2 of V (Qn), which satisfies the GM switching

conditions. Denote Q
(π2)
n as Q̃n and call it the switched n-cube. From the construction we

know that Q̃n = Qn−4�Q̃4. For this switched n-cube, we order the vertices of Q̃4 as in

Fig. 1, order the vertices of Qn−4 in increasing order of their binary representations, and

finally order the vertices of the Cartesian product Q̃n = Qn−4�Q̃4 in accordance with the

dictionary ordering, that is, A(Q̃n) = A(Qn−4)⊗ I4 + In−4 ⊗ A(Q̃4) [20]. Order the vertices

of the n-cube accordingly.

1

2 3 4 5

6 7 10 11 9 8

15 14 13 12

16

1

2 3 4 5

6 7 10 11 9

15 14 13 12

16

8

Fig. 1. The 4-cube Q4 (left) and the switched 4-cube Q̃4 (right).

Denote the adjacency matrix of Qn by Cn, and the adjacency matrix of Q̃n by C̃n. The

non-isomorphism of Q̃n and Qn can be seen directly from the fact that they exhibit different

PST properties: namely, they have different numbers of PST vertex pairs.

Theorem 2: For n ≥ 4, exactly half of the vertices of the switched n-cube Q̃n pair up and
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have PST between each other at time π/2.

Proof: Since the eigendecomposition of C̃4 is known in closed form, we may explicitly com-

pute eiC̃4π/2, also in closed form. From that explicit computation, we can see that there is

PST between vertices 1 and 16, 6 and 11, 7 and 10, 8 and 9 in Q̃4 at time π/2 (whereas the

4-cube has PST between vertices j and 17− j for each j in this ordering); exactly half (8 out

of 16) of the vertices pair up. Recall C̃n = Cn−4 ⊗ I4 + In−4 ⊗ C̃4. Therefore

U(π/2) = ei(π/2)C̃n = ei(π/2)(Cn−4⊗I4+In−4⊗C̃4)

= ei(π/2)Cn−4⊗I4ei(π/2)In−4⊗C̃4 = ei(π/2)Cn−4 ⊗ ei(π/2)C̃4

= (i)(n−4)


0 0 · · · 0 ei(π/2)C̃4

0 0 · · · ei(π/2)C̃4 0
· · · · · · · · · · · · · · ·
0 ei(π/2)C̃4 · · · 0 0

ei(π/2)C̃4 0 · · · 0 0

 ,

where the third equality is based on the fact that C̃k ⊗ I1 and Ik ⊗ C1 commute. Hence if

half the rows of ei(π/2)C̃4 have an offdiagonal entry with modulus 1, then so does ei(π/2)C̃n ,

i.e., half of the vertices of Q̃n pair up and have PST between each other at time π/2. �

From [16, 2] we know that all vertices of the n-cube pair up to have PST at time π/2

(that is, each vertex of the n-cube is part of a vertex pair for which PST occurs at time π/2:

namely, PST occurs between vertex k and vertex 2n+1−k for k = 1, . . . , 2n, where again the

vertices of the n-cube and switched n-cube are ordered as mentioned above Fig. 1. We thus

have the following corollary, implying that the two graphs Qn and Q̃n are non-isomorphic.

Corollary 3: There are half as many vertex pairs for which PST occurs (at time π/2) for

the switched n-cube as there are for the n-cube.

4 Partial Switching and PST

In Section 3, we explored the PST property of the cospectral mate Q̃n of the n-cube, which can

be obtained from each other through GM switching. In this Section, we continue considering

the Cartesian product construction of the n-cube (Qn = Qn−4�Q4) so that the corresponding

adjacency matrix is seen to be a block matrix, with each block of size 16×16, and the diagonal

blocks are copies of the adjacency matrix C4 of Q4. We then perform GM switching to some

(but not all) copies of Q4 inside the n-cube, i.e., some diagonal blocks of Cn are changed

from C4 to C̃4. We call this partial switching, and we analyze the property of PST for these

partially switched n-cubes.

4.1 Construction

Let n ≥ 4. Let An,1 = Cn be the adjacency matrix of the n-cube, and let An,2 = C̃n
be the adjacency matrix of the switched n-cube. The adjacency matrix of the n-cube is

An,1 = An−4,1 ⊗ I4 + In−4 ⊗ A4,1 = diag (A4,1, · · · , A4,1) + An−4,1 ⊗ I4. For example,
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A5,1 =

[
A4,1 I4
I4 A4,1

]
, and A6,1 =


A4,1 I4 I4 0
I4 A4,1 0 I4
I4 0 A4,1 I4
0 I4 I4 A4,1

. For the switched n-cube, we

just need to replace every occurrence of A4,1 with A4,2. Now, if we replace some of the

diagonal blocks A4,1 in An,1 by A4,2, we get the adjacency matrix of a partially switched

n-cube. For n = 5, by a simple reordering of the copies of A4,1 and A4,2, it is clear that[
A4,1 I4
I4 A4,2

]
and

[
A4,2 I4
I4 A4,1

]
are isomorphic; but they are not isomorphic to the 5-cube

or the switched 5-cube (by checking that they have different spectrum or by the result of

Example 7 in Section 4.2 below we know they have fewer vertices that exhibit PST).

For n = 6, there is a unique (up to isomorphism, which can be accomplished by reordering

the copies of A4,1 and A4,2) partially switched 6-cube with exactly one copy of the 4-cube, say

A6,3 = diag (A4,1, A4,2, A4,2, A4,2)+A2,1⊗I4 and a unique (again, up to isomorphism) partially

switched 6-cube with three copies of the 4-cube, say A6,4 = diag (A4,2, A4,1, A4,1, A4,1)+A2,1⊗
I4; furthermore, G(A6,4) can be obtained from G(A6,3) by performing the GM switching.

When there are two copies of A4,1 and two copies of A4,2, there are two nonisomorphic partially

switched 6-cubes: A6,5 = diag (A4,1, A4,1, A4,2, A4,2) +A2,1⊗ I4, A6,6 = diag (A4,1, A4,2, A4,2,

A4,1) + A2,1 ⊗ I4, and these two graphs are not even cospectral. For n ≥ 7, there are more

different types of partially switched n-cubes.

The partially switched n-cubes are no longer cospectral with the n-cube in general, but

still exhibit PST (though the number of PST vertex pairs is significantly fewer than in the

n-cube), and are not cubelike graphs, for the following reason. It can be shown that there is

no isomorphism of the partially switched n-cube that maps vertex 16 to vertex 6 within any

copy of Q̃4, which shows that the graph is not vertex-transitive, and hence it is not a cubelike

graph.

4.2 Which vertices maintain PST?

We keep the same vertex ordering as before, where vertices of the 4-cube are labeled as in

Fig. 1 and for the n-cube in accordance with the dictionary ordering of the vertices of the

Cartesian product. Let S = {1 + 24m4 + · · ·+ 2n−1mn−1, 16 + 24m4 + · · ·+ 2n−1mn−1 |mk ∈
{0, 1} for k = 4, · · · , n− 1}.

Theorem 4: Let n > 4. Then for any given partially switched n-cube, at least 1/8 of its

vertices pair up to exhibit PST at time π/2. Specifically, for any partially switched n-cube, all

the vertices in the set S pair up to exhibit PST, with PST vertex pairs 1+24m4+25m5+ · · ·+
2n−2mn−2+2n−1mn−1 and 16+24(1−m4)+25(1−m5)+· · ·+2n−2(1−mn−2)+2n−1(1−mn−1),

where mj ∈ {0, 1} for j = 4, . . . , n−1. Furthermore, at any time t, the fidelity of state transfer

from vertex j to any other vertex is the same for any partially switched n-cube as it is for the

n-cube.

Theorem 2 in [21] states that if we have an equitable partition with u, v as singleton cells,

then the fidelity from u to v at any time t is the same in the original graph as it is in the

symmetrized quotient graph. Therefore one could use the fact that the n-cube and partially

switched n-cube have the same quotient graph according to the partition π1 as mentioned
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above Fig. 1 to prove the PST pairs results. But our arguments show something stronger,

namely that for the n-cube, switched n-cube and partially switched n-cubes (and, as we show

in Propositions 10 and 13, convex combinations and time-switched systems), at any time t,

the fidelity from vertex 1 to every other vertex (not just the fidelity to vertex 2n) is preserved.

So, there is more information than what we can deduce from using Theorem 2 in [21].

Proof: By direct computation, we know 〈1|Ak4,1 = 〈1|Ak4,2 for k = 1, 2, 3, 4. Since A4,1 and

A4,2 have the same minimal polynomial x5 − 20x3 + 64x, we know 〈1|Ak4,1 = 〈1|Ak4,2 for any

positive integer k, i.e., for any positive integer k, Ak4,1 and Ak4,2 have the same first row. Sim-

ilarly, they have the same 16-th row. Therefore, for any nonnegative integers j1, j2, · · · , j2s,
the matrix Aj14,1A

j2
4,2A

j3
4,1 · · ·A

j2s
4,2 has the same first row as Aj1+···+j2s4,1 , since

〈1|Aj14,1A
j2
4,2A

j3
4,1 · · ·A

j2s
4,2 = 〈1|Aj14,2A

j2
4,2A

j3
4,1 · · ·A

j2s
4,2 = 〈1|Aj1+j24,2 Aj34,1 · · ·A

j2s
4,2

= 〈1|Aj1+j2+j34,1 · · ·Aj2s4,2 = · · ·

= 〈1|Aj1+j2+j3+···+j2s4,1

= 〈1|Aj1+j2+j3+···+j2s4,2 .

As mentioned earlier, for n > 4, the adjacency matrix of a partially switched n-cube is of the

form An,p = diag (A4∗, · · · , A4∗)+An−4,1⊗I4, where An−4,1 is the adjacency matrix of the (n−
4)-cube, and ∗ represents 1 or 2. For any positive integer k, each block of the matrix Akn,p is of

the form
∑
c(j1, j2, . . . , j2s)A

j1
4,1 A

j2
4,2 · · ·A

j2s
4,2 for some nonnegative integers j1, · · · j2s and some

real number c(j1, j2, . . . , j2s), which has the same first row as
∑
c(j1, j2, . . . , j2s)A

j1+···+j2s
4,1 ,

the corresponding block in Akn,1. Therefore 〈`|Akn,p = 〈`|Akn,1 for ` = 1, 16, 24 +1, 24 +16, 25 +

1, 25 + 16, 25 + 24 + 1, 25 + 24 + 16 · · · (these rows correspond to the first and 16-th vertices

in each copy of the 4-cube or switched 4-cube). Hence for the unitary matrices Un,p(t) =

eitAn,p =
∑∞
j=0

(itAn,p)
j

j! for An,p and Un,1(t) = eitAn,1 for An,1, 〈`|Un,p(t) = 〈`|Un,1(t) for

these ` and any time t. As a result, at any time t, each of the vertices in the set S has the

same probability of state transfer to any other vertex as it has in the n-cube. In the n-cube,

there is PST between any two vertices of distance n at time t = π/2, which correspond to

vertices k and 2n+1−k i.e., |〈k|Un,1(π/2)|2n+1−k〉| = 1. Therefore, in any partially switched

n-cube, there is PST between vertices 1 + 24m4 + 25m5 + · · · + 2n−2mn−2 + 2n−1mn−1 and

16 + 24(1−m4) + 25(1−m5) + · · ·+ 2n−2(1−mn−2) + 2n−1(1−mn−1) at time π/2, where

mj ∈ {0, 1} for j = 4, . . . , n− 1. �

Below we conjecture that the lower bound of 1/8 of the vertices in Theorem 4 is in fact

exact (that is, exactly 1/8 of the vertices of partially switched n-cubes pair up to exhibit

PST at time π/2). As a motivating example, we consider A5,3, the first interesting partially

switched n-cube, and verify that the bound is attained in this case. The verification process

is rather tedious, but we include the technical details for completeness. The main takeaway

is that the smallest nontrivial example does indeed attain our lower bound.

We first recall some spectral graph theory results. The adjacency matrix A(G) of a

graph G is real and symmetric, so it has a spectral decomposition A(G) =
∑s
r=1 λrEr, where

λ1, . . . , λs are all the distinct eigenvalues of A(G), and Ej represents the orthogonal projection

onto the eigenspace associated with eigenvalue λj . Given a vertex u ∈ V (G), its characteristic

(indicator) vector is |u〉 ∈ R|V (G)|. The eigenvalue support of |u〉 is defined to be the set of
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eigenvalues λr of A(G), such that Er|u〉 6= 0.

Theorem 5:[22, Theorem 3.1] Let X be a graph and u be a vertex in X at which X is

periodic. If θk, θ`, θr, θs are eigenvalues in the support of |u〉 and θr 6= θs, then θk−θ`
θr−θs ∈ Q.

(Therefore if there are two integer eigenvalues in the support of u, then all the eigenvalues in

the support of u are integers.)

Remark 6: Let G be a graph on m vertices, and u be a vertex of G. Then the eigenvalue λr of

A(G) is in the eigenvalue support of |u〉 if we can find a (normalized) eigenvector |v1〉 of A(G)

associated to λr, such that 〈v1|u〉 6= 0. From |v1〉, we can get a basis {|v1〉, |v2〉, . . . , |vk〉} of the

eigenspace associated to λr, then by the Gram-Schmidt procedure, we can get an orthonormal

basis |w1〉, . . . , |wk〉 of the eigenspace. Now we have Er|u〉 = (|w1〉〈w1| + |w2〉〈w2| + · · · +
|wk〉〈wk|)|u〉 = 〈w1|u〉|w1〉 + · · · + 〈wk|u〉|wk〉 for any vertex u, and Er|u〉 = 0 if and only if

〈wj |u〉 = 0 for all j = 1, . . . , k, i.e., all the eigenvectors of A(G) associated to λr have their u-

th entry equal to 0. This implies that for any eigenvalue λr of A(G), if it has a corresponding

eigenvector whose u-th entry is not 0, then λr is in the eigenvalue support of |u〉.

We are now in the position to consider the example of A5,3.

Example 7: Consider A5,3 =

[
A4,1 I4
I4 A4,2

]
, it has λ1 = 5 as a simple eigenvalue, with

v1 = 15 being a corresponding eigenvector. By direct computation, we know v2 =

[
14

−14

]
is an eigenvector of A5,3 associated to eigenvalue 3. Since all the entries of v1 and v2 are

nonzero, from the above remark, we know λ1 = 5 and λ2 = 3 are both in the eigenvalue

support of all the vertices.

Now let p(λ) = −λ6 + 11λ4 − 27λ2 + 1 = −(λ3 + λ2 − 5λ − 1)(λ3 − λ2 − 5λ + 1),

then it has 6 real roots, for example, by the Intermediate Value Theorem we can check it

has a root λ3 between 2.7 and 2.8. Assume the 6 roots are λ3 ≥ · · · ≥ λ8; they are all

eigenvalues of A5,3, and each of them is irrational (non-integer roots of a monic integer-

coefficients polynomial are irrational), with minimal polynomial either (λ3 + λ2 − 5λ − 1)

or (λ3 − λ2 − 5λ + 1). For k = 3, . . . , 8, the eigenvalue λk has an associated eigenvec-

tor v(λk) = [0, a,−3a, a, a, b,−b, b,−b, b,−b, c, c,−3c, c, 0, 0, d,−3d, d, d, e,−e, e,−e, e,−e, d+

4, d+4,−3(d+4), d+4, 0]T , where a = 2λk(λ4k−10λ2k+17), b = 8λ2k−8, c = 2λk(λ2k−5)2, d =

2λ4k−12λ2k−6, and e = 8λk(λ2k−5). Note that for each u ∈ Z = {1, 2, . . . , 32}\{1, 16, 17, 32},
the entry v(λk)u is not divisible by the minimal polynomial of λk, and therefore none of these

entries are zero. Again from the above remark, we know that for each k = 3, . . . , 8, λk is in

the eigenvalue support of every vertex u ∈ Z. Now for each u ∈ Z, λ1 = 5, λ2 = 3, and

λ3 ∈ [2.7, 2.8] are in the eigenvalue support of |u〉. Since PST implies periodicity, Theorem 5

implies that, no vertices in the set Z exhibit PST. Combining this result with Theorem 4, we

know the set of vertices of A5,3 with PST is exactly {1, 16, 17, 32}.

Conjecture 8: Let n > 4. For any partially switched n-cube, the set of its vertices that
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exhibits PST is exactly the set S we give in Theorem 4, therefore exactly 1/8 of the vertices

of a partially switched n-cube pair up to have PST.

4.3 Other Variants

A dual-channel quantum directional coupler was introduced in [24] as a means to selectively

transfer a state to either of the two output ports in a controlled and deterministic way; the

Hamiltonian describing these dynamics is H = Hh+Hv where Hh describes the energy related

to the source or drain channel, while Hv describes the energy of the inter-channel dynamics.

Quantum state transfer between vertices in parallel, multi-user networks, is described in [25],

where one sender-receiver pair uses each channel at a time to achieve optimal routing. A

description of how to design a large quantum network out of smaller independent subsystems

is described in [23]. Motivated by this literature on quantum routing as a technique in

quantum state transfer, we consider several ways to oscillate between the graphs considered

herein while preserving PST for many vertex pairs, and in fact maintaining all the dynamics

of fidelity (namely, the fidelity function is exactly the same) for many vertex pairs.

We first consider different convex combinations of each 4-cube or switched 4-cube block

of a partially switched n-cube. General linear combinations could also be used, though the

PST time would change.

Remark 9: We can generalize partially switched n-cubes to specially weighted ones. Consider

a convex combination of the 4-cube and the switched 4-cube. The resulting graph G has

adjacency matrix M = pA4,1 + (1− p)A4,2 for 0 ≤ p ≤ 1. Using the same techniques we used

in the proof of Theorem 4, we can see there is perfect state transfer between vertex 1 and

vertex 16. Furthermore, by induction we can see that for the graph F = Qn−4�G, whose

adjacency matrix is A(F ) = In−4 ⊗M + Cn−4 ⊗ I4 = diag (M, · · · ,M) + Cn−4 ⊗ I4, every

vertex in the set S as mentioned in Theorem 4 exhibits PST. A similar statement holds for the

graph F̃ with (nonnegative) adjacency matrix A = diag (M1,M2, · · · ,M2n−4) + Cn−4 ⊗ I4,

where Mj = pjA4,1 + (1 − pj)A4,2 for 0 ≤ pj ≤ 1, j = 1, . . . , 2n−4. Note that this new

family of graphs contains all the other cubes as special cases: when p1 = · · · = p2n−4 = 1,

we have the n-cube, where all the vertices pair up to exhibit perfect state transfer; when

p1 = · · · = p2n−4 = 0, we have the switched n-cube, where exactly half of the vertices pair

up to exhibit perfect state transfer; when p1, . . . , pn−4 ∈ {0, 1} and not all of them are equal,

then we have a partially switched n-cube, and Theorem 4 gives a list of vertex pairs having

PST.

More generally, we can consider convex combinations of arbitrary graphs on m vertices

whose adjacency matrices satisfy some specific conditions for some row.

Proposition 10: Let G1, G2, . . . , Gk be graphs on m vertices, whose corresponding adjacency

matrices are A(G1), A(G2), . . . , A(Gk), respectively. Suppose that for some ` ∈ {1, . . . ,m},
〈`|A(Gr)

j = 〈`|A(Gs)
j for every positive integer j and any r, s = 1, . . . , k. If there is PST

in any one of the k graphs from vertex ` to some other vertex u at time t = t0, then all the

other graphs have PST between vertex ` and u at time t0, as well as the weighted graph G

with adjacency matrix A = c1A(G1) + · · ·+ ckA(Gk), where 0 ≤ cr ≤ 1 for r = 1, . . . , k, and
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c1 + · · ·+ ck = 1.

The argument is similar to that given in Remark 9 as well as the proof of Theorem 4.

In particular, we note that Aj = (c1A(G1) + · · · + ckA(Gk))j has the same `-th row as

A(Gr)
j = (c1A(Gr) + · · ·+ ckA(Gr))

j for any nonnegative integer j and r = 1, . . . , k.

Corollary 11: Any convex combination of the n-cube, the switched n-cube, some partially

switched n-cube, and the weighted matrices in Remark 9, has PST between vertices 1 +

24m4 +25m5 + · · ·+2n−2mn−2 +2n−1mn−1 and 16+24(1−m4)+25(1−m5)+ · · ·+2n−2(1−
mn−2) + 2n−1(1−mn−1), at time π/2, where mj ∈ {0, 1} for j = 4, . . . , n− 1.

Remark 12: We already know that any convex combination of A4,1 and A4,2 exhibits PST

between vertex 1 and 16. Here we give some spectrum properties of such convex combinations.

For any 0 ≤ p ≤ 1, the weighed graphs with adjacency matrices pA4,1 + (1 − p)A4,2 and

pA4,2 +(1−p)A4,1, respectively, are cospectral to each other, with the similarity matrix being

the symmetric orthogonal matrix Q given by QA4,1Q = A4,2 and QA4,2Q = A4,1 (Q exists by

[18]). Alternatively, let C = 1/2A4,1+1/2A4,2 and E = A4,2−A4,1. Then for any 0 < α ≤ 1/2,

the two nonnegative matrices C + αE and C − αE have the same spectrum (indeed, since

QCQ = C and QEQ = −E, we have Q(C + αE)Q = C − αE). The eigenvalues of C + αE

and C − αE are ±4 (with multiplicity 1), ±2 (with multiplicity 1), 0 (with multiplicity 6),

and
√

2 + 8α2 (with multiplicity 3), which can be checked by calculating the rank of the

corresponding matrices.

Similarly, for the adjacency matrix Cn = In−4⊗A4,1+Cn−4⊗I4 of Qn, if we replace the di-

agonal blocksA4,1 by different convex combinations ofA4,1 andA4,2, then the nonnegative ma-

trices diag (p1A4,1+(1−p1)A4,2, p2A4,1+(1−p2)A4,2, · · · , p2n−4A4,1+(1−p2n−4)A4,2)+Cn−4⊗
I4, and diag (p1A4,2 + (1− p1)A4,1, p2A4,2 + (1− p2)A4,1, · · · , p2n−4A4,2 + (1− p2n−4)A4,1) +

Cn−4 ⊗ I4 have the same spectrum (similar through the matrix diag (Q,Q, . . . , Q)), where

0 ≤ pj ≤ 1, j = 1, . . . , 2n−4.

As another variant, we consider switched systems where one employs a switching func-

tion to change between systems at particular times (this can be done in the absence of GM

switching—it is a coincidence in naming). For example, one might use the spin network as-

sociated to the hypercube from time t = 0 to time t = t1, then change to the spin network

associated to the switched cube from time t = t1 to time t = t2, change to use a partially

switched hypercube from time t = t2 to time t = t3, and so on, up to time tr = π/2, when

the n-cube, the switched n-cube, and any partially switched n-cube have PST. We show that

this new system (whose Hamiltonian changes with respect to time) has PST for vertices in

the set S as mentioned in Theorem 4.

The motivation here is potential stability issues in the lab: spin networks are created in the

lab with magnets and other devices and may be unstable, especially for long periods of time.

Thus, one might wish to send a state along the first network until one loses confidence in the

stability, then one can change to the second network and continue sending the state through

this “fresh” network while rebooting the first. This would be an example of a quantum

state transfer protocol requiring external modulation; such external modulation approaches
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typically increase the effectiveness of the state transfer, but it may be undesirable to use

a protocol that relies heavily on a “hands on” approach. A binary switching between spin

networks may be a useful compromise. Our approach is motivated by switched systems in

control theory; see, e.g. [26].

Proposition 13: Assume r is some positive integer. For j = 1, . . . , r, let Gj be any of

the following: the n-cube, the switched n-cube, the partially switched n-cubes, or convex

combinations as described in Corollary 11. If a quantum state is transferred through the

network G1 for 0 ≤ t ≤ t1, G2 for t1 ≤ t ≤ t2, G3 for t2 ≤ t ≤ t3, . . . , Gr for tr−1 ≤ t ≤ tr =

π/2, then the quantum system with time-dependent Hamiltonian Ht is guaranteed to have

PST at time π/2 for the vertices in the set S as mentioned in Theorem 4. Further, if for each

j = 1, . . . , r, Gj is either the n-cube or the switched n-cube, and in addition at least one Gj
is the switched n-cube, then the set of vertices exhibiting PST in this system is exactly the

set of vertices exhibiting PST in the switched n-cube (one half of all the vertices).

Proof: We consider the case r = 2, the general case follows from induction. Fix a vertex

` ∈ S. We have

〈`| exp{it1A(G1)} exp{i(t− t1)A(G2)}

= 〈`|
∞∑
k=0

(it1)kA(G1)k exp{i(t− t1)A(G2)}

= 〈`|
∞∑
k=0

(it1)kA(G2)k exp{i(t− t1)A(G2)} by Proposition 10

= 〈`| exp{it1A(G2)} exp{i(t− t1)A(G2)}
= 〈`| exp{i(t1 + t− t1)A(G2)} = 〈`| exp{itA(G2)}.

Thus the problem reduces to finding PST pairs in S for A(G2). �

We will analyse the variants discussed above in terms of their sensitivity to readout time

errors in Section 5. When there is PST these variants have the same sensitivity to readout

time errors as the original hypercube when considering PST pairs from the set S defined

above Theorem 4.

5 Sensitivity analysis with respect to readout time errors

Recall S = {1 + 24m4 + · · · + 2n−1mn−1, 16 + 24m4 + · · · + 2n−1mn−1 |mk ∈ {0, 1} for k =

4, · · · , n − 1}. The sensitivity of the probability of state transfer (fidelity) with respect to

readout time is typically analyzed through the first derivative. An analysis of the kth deriva-

tives (for any k ∈ N) for weighted graphs with PST was done in [10]. Here, we consider both

the first and second derivatives.

Theorem 14: The n-cube, the switched n-cube, the partially switched n-cubes, and the

other n-cube variants discussed herein all have the same derivatives with respect to time t at

time t = π/2 for the PST pairs of vertices in the set S.

Proof:
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As in Theorem 4, we have already shown that for any vertex j ∈ S, there is PST between

vertex j and vertex 2n + 1− j at time π/2 for the (switched, partially switched) n-cube, and

〈j|Un,p(t) = 〈j|Un,1(t) = 〈j|Un,2(t). Therefore the fidelity of state transfer from vertex j to

any other vertex k is the same as it is in the n-cube at any time t. It follows that the three

types of n-cubes have the same derivatives with respect to readout time t at time t = π/2. For

an undirected graph G exhibiting PST between vertices r and s at time t = t0, the derivatives

of fidelity with respect with readout time t at time t = t0 is given in [10]:

dkp

dtk

∣∣∣∣∣
t=t0

=

{
(−1)(k mod 4)/2

∑k
`=0(−1)`

(
k
`

)
〈s|H`|s〉〈s|Hk−`|s〉 if k is even

0 if k is odd.

From this we find that, for the PST vertex pairs in the set S, dpdt |t=π
2

= 0, and d2p
dt2 |t=π

2
= −2n,

where p is the fidelity of state transfer at time t between PST vertex pairs in S. Similarly,

we can use the proof in Proposition 10 to prove this result for convex combinations, and use

Proposition 13 to prove it for the switched system. �

6 Conclusion

The hypercube and the more general class of cubelike graphs whose elements in the connection

set have nonzero sums have seen much attention recently as they have been shown to exhibit

PST between pairs of vertices at time π/2, where the PST pairing is determined by the sum of

the elements in the connection set. Here, we perform various perturbations on the hypercube

while maintaining PST for a subset of vertices, including a perturbation that allows for a

time-dependent Hamiltonian, which may be of practical use. The fidelity of state transfer

involving vertices where PST occurs in our various perturbed hypercubes have the same

sensitivity to readout time errors as the original hypercube, thus identifying infinite families

of graphs sharing the highly desirable properties of PST and maximal PST distance. It would

be of interest to see if further perturbations can be done, or how radical the perturbations

can be, before completely losing the property of PST.
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