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ABSTRACT
A simple method for transmitting quantum states within a quantum computer is via a quantum
spin chain—that is, a path on n vertices. Unweighted paths are of limited use, and so a natural
generalization is to consider weighted paths; this has been further generalized to allow for
loops (potentials in the physics literature). We study the particularly important situation of
perfect state transfer with respect to the corresponding adjacency matrix or Laplacian through
the use of orthogonal polynomials. Low-dimensional examples are given in detail. Our main
result is that PST with respect to the Laplacian matrix cannot occur for weighted paths on
n ≥ 3 vertices nor can it occur for certain symmetric weighted trees. The methods used lead
us to a conjecture directly linking the rationality of the weights of weighted paths on n > 3
vertices, with or without loops, with the capacity for PST between the end vertices with respect
to the adjacency matrix.
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1. Introduction

A quantum spin chain can be used as a means of accomplishing the important task of trans-
ferring a quantum state from one place to another within a quantum computer [1]. From a
graph theoretic perspective, we are interested in paths on n vertices. It was found [2] that
unweighted paths governed by XX dynamics (where one considers the corresponding adja-
cency matrix) only exhibit perfect state transfer (PST; a desirable property when transferring
a quantum state) for n ≤ 3.

Several offshoots have developed: one avenue is to consider pretty good state transfer
(PGST; essentially this amounts to being “arbitrarily close” to PST). In this regard, a complete
characterization of the parameters (length of the unweighted chain) for which there is PGST
from one end vertex to the other was given in [3], where it was shown that PGST occurs on
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an unweighted chain with n nodes if and only if n + 1 is either a prime number, two times a
prime number, or a power of two.

A second avenue is to consider graphs other than paths to see if they also exhibit PST,
and as it turns out, many different families of graphs have this property. Some examples
are: a family of double-cone non-periodic graphs, certain joins of regular graphs with K2

or with the empty graph on two vertices [4,5]. Also, necessary and sufficient conditions for
circulant graphs (Cayley graphs on the group Zn) to exhibit PST have been given in [6,7]. The
Cartesian product of two graphs with PST both at time t has also been shown to exhibit PST
[8], in particular the n-fold Cartesian product of K2 with itself (the n-cube) has PST between
its antipodal vertices. For a more general family of graphs– cubelike graphs – it was shown
that if the sum of all the elements in the connection set is not 0, then there is PST in that graph
[9], and when the sum is 0, a necessary and sufficient condition for such a graph to admit
PST is given in [10]. The PST property of Hadamard diagonalizable graphs (a graph whose
Laplacian is diagonalizable by a Hadamard matrix) has also been studied in [11]; a simple
eigenvalue characterization for such graphs to admit PST at time π/2 is given, which was used
to construct more graphs with PST. However, a path is arguably the simplest graph structure,
and since the graphs would need to be realized physically within a quantum computer, it is
desirable to proceed with paths when possible, in order to minimize the amount of physical
and technological resources required.

Along this line, a third avenue is to consider weighted paths (we use the term “path” to
mean an unweighted path). In this paper, we always consider weighted or unweighted paths
on n vertices, with vertex set {1, 2, · · · , n}. In [12], it was shown that for XX dynamics, PST
can be achieved over arbitrarily long distances by allowing for different, but fixed, couplings
between the qubits on the chain (the strengths of couplings correspond to the edge weights
of the underlying weighted graph of the network; the edge weights they used to achieve PST
from vertex 1 to vertex n were w(j, j + 1) = w(j + 1, j) =

√
j(n− j) for each j ∈

{1, . . . , n− 1}). The case of other weights, as well as the addition of potentials (represented
mathematically as weighted loops in the graph) remained open. It was conjectured in [13],
based on numerical evidence, that paths of arbitrary length n can be made to have PST from
vertex 1 to vertex n by the addition of a suitable amount of energy (such energy shifts are
later [14,15] referred to as a potential function on the vertex set, or simply as potentials). This
conjecture was then raised as an open problem in [16]. Asymptotic [17] (taking the potentials
at the endpoints arbitrarily large) and approximate [18] results gave affirmative answers to the
conjecture in the respective settings. Very recently, the conjecture was shown to be false for
the PST setting [14] but true in the more relaxed setting of PGST [15].

We consider this third avenue from a matrix analysis point of view: weighted paths and
weighted paths with potentials (loops) amount to tridiagonal matrices with certain restric-
tions (e.g. the diagonal entries are necessarily zero for weighted or unweighted paths without
potentials when considering XX dynamics; that is, when considering the adjacency matrix
associated to the graph). Any symmetric tridiagonal matrix gives way to a three-term recur-
rence relation, and so our approach is to work with the orthogonal polynomials that arise by
considering the tridiagonal matrix as an operator on the polynomial space.

Given the eigenvalues of a weighted path with or without loops satisfying certain condi-
tions, several algorithms exist for constructing a tridiagonal matrix corresponding to a graph
with PST: in [19], the authors produce formulas for calculating the weights of the discrete
inner product that arises through the orthogonal polynomials; in [20, Chapter 4] two methods
for computing the eigenvectors needed in the inversion procedure are reviewed, in addition
to the method in [19], and in [21], the authors use the Euclidean algorithm starting with pn
and pn−1 in order to find pn−2 and then repeat until all the orthogonal polynomials have been
found.
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Using an approach similar to that found in [22], we obtain formulas, in terms of the eigen-
values, for the weight of the edge between vertices bn2 c and bn2 + 1c and the potential (if
allowing for loops) at vertex dn2 e. This allows one to determine the “middle” weights of the
weighted path (with or without loops) without the need to calculate all the orthogonal polyno-
mials or the weights of the inner product. We give examples for n < 5 illustrating the utility
of our formulas. We then show that if we consider XXX dynamics (that is, we consider the
Laplacian associated to the graph), a weighted path on at least three vertices cannot have PST.
We extend this result to apply to symmetric weighted trees. For XX dynamics, our analysis
leads us to propose the following conjecture: weighted paths on at least four vertices with or
without loops must have at least one irrational weight in order to have adjacency matrix PST
at a fixed readout time π; we confirm this conjecture for n = 4 as well as for n ≡ 3 mod 8
and for n ≡ 5 mod 8. These results shed light on the nature of weighted paths with or without
loops that exhibit PST between the endpoints.

Throughout this paper, in the setting of adjacency matrices, we consider paths with or
without loops. In the Laplacian matrix setting, we only consider paths without loops.

The paper is organized as follows. In Section 2 we review preliminary information neces-
sary for our results. In Section 3, we give our formulas for constructing the middle weights of
the weighted path and provide examples for small n (n = 2 and n = 3) for both the adjacency
matrix and Laplacian matrix settings. In Section 4, we prove that a weighted path with at least
three vertices cannot have Laplacian PST and generalize the result to mirror symmetric trees.
In Section 5, we consider further examples in the adjacency matrix setting (n = 4 and n = 5)
and prove a negative result for rational-weighted paths with or without potentials with respect
to adjacency matrix PST; we conjecture that this holds for all n ≥ 4.

2. Preliminaries

Given a quantum system, the Hamiltonian H is a matrix representing the total energy of the
system; its spectrum represents the possible measurement outcomes when one measures the
total energy. The dynamics of the system lead us to consider either the adjacency matrix or
the Laplacian of the graph corresponding to the system.

Let G be an undirected graph on n vertices (G here can be either weighted or unweighted).
The corresponding adjacency matrix is an n × n matrix A = [ajk] whose entries satisfy
ajk = w(j, k), where w(j, k) is the weight of the edge between vertex j and vertex k (if there
is no edge between the two vertices, then w(j, k) = 0; if the graph is unweighted then all
edges are taken to have weight 1). The degree of a vertex is the sum of the weights of the
incident edges, and we can create a diagonal degree matrix D whose (j, j) entry is the degree
of vertex j. The Laplacian matrix (or simply, the Laplacian) corresponding to a simple graph
G is L = D − A, which is a positive semidefinite matrix with smallest eigenvalue zero (its
multiplicity is equal to the number of connected components of the graph—and thus equal to
one herein—with the all-ones vector as its eigenvector).

We are interested in the matrix exponential eitH , whereH is the Hamiltonian of the system
(i.e., the adjacency matrix or the Laplacian matrix, depending on the dynamics) and t is the
readout time. Let 1 ≤ j < k ≤ n. There is perfect state transfer from vertex j to vertex k
if there exists some time t = t0 such that |eTj eit0Hek|2 = 1, where {e`}n`=1 is the standard
ordered basis. There is pretty good state transfer from vertex j to vertex k if for any ε > 0,
there exists a time t = tε such that |eTj eitεHek|2 > 1− ε. Note that, because G is undirected,
PST (or PGST) occurs from vertex j to vertex k if and only if it occurs from vertex k to vertex
j.

Here, we focus on two settings: weighted or unweighted paths governed by XXX dynam-
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ics; and weighted or unweighted paths, that may or may not have loops, governed by XX
dynamics. In both settings, the vertices of the path are labelled so that vertex j is adjacent
to vertex j + 1, j = 1, . . . , n − 1. As a result, our Hamiltonian will always be a tridiagonal
matrix of one of the following two forms depending on the dynamics (A for XX dynamics, L
for XXX dynamics)

A =



q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn−1

rn−1 qn

 , L =



q1 −r1

−r1 q2 −r2

−r2 q3 −r3

. . .
−rn−1

−rn−1 qn

 (1)

For the adjacency matrix case, all qj = 0 for (unweighted or weighted) paths without poten-
tials. A potential at vertex j corresponds to an entry qj 6= 0. For the Laplacian matrix case,
q1 = r1, qj = rj−1 +rj for j = 2, 3, . . . , n−1, and qn = rn−1. In both cases, rj > 0 denotes
the weight of the edge between vertex j and j + 1.

As in [22], we note that both of the above two symmetric tridiagonal n × n matrices are
connected to a set of n orthogonal polynomials via the three term recurrence given by

pk(x) = (x− qk)pk−1(x)− r2
k−1pk−2(x) for all k ∈ {1, . . . , n} (2)

where we define p−1(x) = 0 and p0(x) = 1. We will denote the eigenvalues of A or L (the
roots of pn(x)) by αr.

Rearranging equation (2), we find that xpk−1(x) = pk(x) + qkpk−1(x) + r2
k−1pk−2(x),

and thus we can consider the operator

M =



q1 1
r2

1 q2 1
r2

2 q3 1
. . . . . . . . .

r2
n−2 qn−1 1

r2
n−1 qn

 . (3)

The matrixM represents multiplication by x ( mod pn(x)) in the basis {p0(x), . . . , pn−1(x)}.
We note that A is similar to M via QM = AQ where Q = diag (d1, . . . , dn) and

dj =


1∏j−1
`=1 r`

if j 6= 1

1 if j = 1

(4)

The Matrix L is also similar to M via TM = LT where T = diag (d1, . . . , dn) and

dj =


(−1)j−1∏j−1
`=1 r`

if j 6= 1

1 if j = 1

(5)

Letting H denote the matrix A or L in equation (1), we also note that the eigenvalues of
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H are real and distinct since rj 6= 0 for all j (see, e.g. [23, Chapter 4]); this allows for the
multiplication by x viewpoint to hold. We then use this distinctness to order the eigenvalues
as follows:

α1 < α2 < · · · < αn (6)

Note that the eigenvector of M associated to the eigenvalue αj is wj =
[p0(αj), p1(αj), · · · , pn−1(αj)]

T . This can be verified by computing Mwj , and then using
the recurrence relation (2) evaluated at αj to simplify each term.

Now, let us consider the set of polynomials S = {p̃0(x), . . . , p̃n−1(x)} with p̃k(x) =
dk+1pk(x), where the d’s are given by Equation (4) if we are taking H = A and the d’s are
given by Equation (5) if we are taking H = L. The set S is a basis of the vector space of all
polynomials of degree less than n. In the basis S, the matrix that represents the multiplication
by the x ( mod pn(x)) operator is exactly H .

Let H denote the matrix A or L in Equation (1). Let vr =
[p̃0(αr), p̃1(αr), . . . , p̃n−1(αr)]

T , then the two vectors vr and vs are orthogonal to each
other for any r 6= s. Normalizing these vectors, assume the factors are √κj , j = 1, . . . , n,
respectively, then the matrix V = [

√
κ1v1,

√
κ2v2, . . . ,

√
κnvn] is an orthogonal matrix,

and it diagonalizes the Hamiltonian H to the diagonal matrix Λ = diag (α1, . . . , αn),
i.e., V THV = Λ. If there is PST between vertex j + 1 and k + 1 at time t = t0, then
1 = |eTj+1e

it0Hek+1| = |eTj+1V e
it0ΛV T ek+1| = |rj+1e

it0ΛrTk+1|, where rj is the j-th row of
the matrix V . From the Cauchy-Schwarz inequality, we know rj+1e

it0Λ = eiφrk+1 for some
phase factor φ, which can be rewritten as

p̃k(αr)

p̃j(αr)
= e−iφeit0αr (7)

for r = 1, 2, . . . , n, and some phase factor φ. Since the polynomials p̃j(x) are real, it follows
that p̃k(αr)/p̃j(αr) = ±1. In fact, if we consider the case of PST between the endpoints, it
is well known [21] that p̃n−1(αr) = (−1)n+r. Looking at two neighbouring eigenvalues αr
and αr−1, Kay [24] found that αr − αr−1 = (2mr + 1)π/t0 where mr is any nonnegative
integer. Here we scale the Hamiltonian (A or L depending on the dynamics) by a factor t0/π
so that the PST time is π, and we therefore look at the simpler expression

αr − αr−1 = (2mr + 1). (8)

It is known [24, Lemma 2] that for a symmetric tridiagonal Hamiltonian H , if PST oc-
curs between the end vertices, then H must also be persymmetric (symmetric about the anti-
diagonal; such persymmetric matrices are also called mirror symmetric in the literature). In
the case of a weighted path having no potentials and governed by XX dynamics (therefore
q1, . . . , qn are all zeros), the associated graph is then bipartite, and by properties of bipartite
graphs the eigenvalues are symmetric about zero. In this case, we give the eigenvalues another
set of labels as follows

−βn
2
< · · · < −β2 < −β1 < 0 < β1 < β2 < · · · < βn

2
, for n even

−βn−1

2
< · · · < −β2 < −β1 < β0 = 0 < β1 < β2 < · · · < βn−1

2
, for n odd (9)

(we use zero as the index of the zero eigenvalue in the case that n is odd; zero does not appear
as an eigenvalue in the case that n is even). From now on, when we mention the eigenvalues
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as αr, we mean the ones ordered as in (6); and when we mention eigenvalues βr we mean the
ones as in (9). If n is even then (8) and (9) yield the fact that β1− (−β1) = 2β1 = (2m1 +1),
and therefore β1 = (2m1 + 1)/2. Using this, we find

β2 − β1 = (2m2 + 1) (10)

⇒ β2 = (2m2 + 1) +
(2m1 + 1)

2
(11)

=
(4m2 + 2m1 + 3)

2
. (12)

Following this, we see that if n is even, all βr will be odd multiples of 1/2. In fact, one can
easily show by continuing the analysis of βr − βr−1, that the βr alternate between 1 mod 4
times 1/2 and 3 mod 4 times 1/2 (these give us alternating ±i when considering eiπβr in the
matrix exponential eiπH ). A similar analysis shows that if n is odd, the βr are even multiples
of 1/2, alternating between 0 mod 4 times 1/2 and 2 mod 4 times 1/2 (these give us alter-
nating ±1 when considering eiπβr ), with β0 = 0 ≡ 0 mod 4. We summarize this in the
following remark:

Remark 1. For the adjacency matrix of a weighted path without potentials that exhibits PST
between the end vertices at time π, the eigenvalues βr adhere to the following pattern: for n
even, the βr alternate between (1 mod 4)× 1/2 and (3 mod 4)× 1/2, while for n odd, the βr
alternate between (0 mod 4)× 1/2 and (2 mod 4)× 1/2.

For the adjacency matrix of a weighted path with loops, we can shift all the eigenvalues
(by adding a multiple of the identity) such that the smallest eigenvalue is an integer; equation
(8) then tells us they must alternate even and odd. This new weighted path (possibly with
potentials) will exhibit PST if and only if the original path does. The eigenvalues can then be
assumed to be integers with alternating parity without loss of generality. In the case of XXX
dynamics, L is positive semi-definite with smallest eigenvalue 0 (with multiplicity 1 since the
graph is connected). Using this together with equation (8), we know the integer sequence of
ordered eigenvalues αr begins with 0 (even number) and then alternates odd, even, odd, ... for
all the remaining eigenvalues. We summarize this in the following remark:

Remark 2. If a weighted path with potentials exhibits PST at time π, then the eigenvalues αr
of its adjacency matrix can be taken to alternate between even and odd (or odd and even) inte-
gers. Without loss of generality, for notational simplicity, we can shift so that the odd-indexed
eigenvalues are odd, and the even-indexed eigenvalues are even (so α1, . . . , αn alternate be-
tween odd and even). If the Laplacian of a weighted path with no potentials exhibits PST at
time π, then the eigenvalues αr alternate between even and odd integers (starting with the
smallest eigenvalue: zero).

Proposition 2.1. For a weighted path with or without potentials, PST between vertices 1 and
n implies PST between vertices j and n+ 1− j, for each j = 2, . . . , n− 1. If for some j with
2 ≤ j ≤ n− 1 there is PST between vertices j and n+ 1− j, and if in addition none of the
eigenvectors of the Hamiltonian has a zero entry in the j–th position, then the converse holds.

Proof. Consider the matrix M in equation (3). Recall that the eigenvector wr of this matrix
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corresponding to the eigenvalue αr is

wr =

 p0(αr)
...

pn−1(αr)

 . (13)

Since H = QMQ−1 (for H = A) or H = TMT−1 (for H = L), the eigenvector vr for H
corresponding to the eigenvalue αr is

vr = Qwr (or vr = Twr)

=

 d1p0(αr)
...

dnpn−1(αr)

 . (14)

Now, if we assume that there is PST between the endpoints then H must be mirror sym-
metric. The eigenvectors will therefore be either symmetric or antisymmetric (i.e (vr)j =
±(vr)n−j+1, j = 1, 2, . . . , n) [26, Theorem 2], and recall that p̃j(x) = dj+1pj(x), we have
either p̃j−1(αr) and p̃n−j(αr) are both zero, or neither of them is zero and for some phase
factor φ̂ they satisfy

p̃j−1(αr)

p̃n−j(αr)
=

p̃0(αr)

p̃n−1(αr)
= ±1 = ei(παr−φ̂). (15)

The above is valid for all αr and j such that p̃n−j(αr) 6= 0, and the quotients share the same
alternating pattern between 1 and −1 determined by the PST between the end vertices; hence
there is perfect state transfer between the vertices j and n+ 1− j.

The steps above are all reversible under certain conditions: if there is PST between a pair
of inner vertices j and n + 1 − j for some 2 ≤ j ≤ n − 1, and if pj−1(αr) 6= 0 for all
α1, · · · , αn (and therefore pn−j(αr) 6= 0 as well), then equation (15) is true for all αr and
the given j, and therefore there is PST between the two end vertices �

Referring to the proof of Proposition 2.1, we observe in passing that if pj−1(αr) =
pn−j(αr) = 0 for some r, then although the eigenvector symmetry/antisymmetry condition
still holds, it does not provide the ei(παr−φ̂) = ±1 constraints on the eigenvalues needed for
PST between end vertices.

3. Constructing matrices guaranteed to have PST for weighted paths with or without
loops

Given a set of eigenvalues (with restrictions given from equation (8)), we would like to recon-
struct the adjacency matrix of a weighted path with or without potentials, that is guaranteed
to have PST between vertices 1 and n. That is, by choosing values for α1, . . . , αn satisfy-
ing Equation (8) (these will correspond to the eigenvalues of the adjacency matrix), one can
reverse-engineer weighted paths, with or without potentials, having PST. We go through the
low-dimensional cases in detail in this section and the next section.

We next state a technical result that is especially helpful in analyzing the eigenvalues of
matrices that are persymmetric.
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Lemma 3.1. [26, Lemma 3]
Let R be the reversal matrix: an antidiagonal matrix with all ones along the antidi-

agonal.

(1) If n is even, the matrices B =

[
E RCR
C RER

]
and

[
E −RC 0

0 E +RC

]
are orthogo-

nally similar, where C is some n
2 ×

n
2 matrix, and R is also n

2 ×
n
2 .

(2) If n is odd, the matrices B =

E x RCR
xT q xTR
C Rx RER

 and

E −RC 0 0

0 q
√

2xT

0
√

2x E +RC


are orthogonally similar, where C is some n−1

2 ×
n−1

2 matrix, R is also n−1
2 ×

n−1
2 ,

q ∈ R, and x ∈ R
n−1

2 .

Let S1 =
∑n

r=1(−1)r+nαr and S2 =
∑n

r=1(−1)r+nα2
r .

Corollary 3.2. Let A be the Hamiltonian of a weighted mirror-symmetric path governed by

XX dynamics, with or without loops, on n vertices. If n is even then rn
2

=
S1

2
and qn

2
=

S2

2S1
.

If n is odd then rn−1

2
=

√
S2 − S2

1

2
and qn+1

2
= S1.

Proof. We use the notation of Lemma 3.1. Suppose n is even. Our Hamiltonian

q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn

2
−1 qn

2
rn

2

rn
2

qn
2

rn
2
−1

. . .

r2 q2 r1

r1 q1


(16)

is thus orthogonally similar to a 2-by-2 block diagonal matrix with diagonal blocks

B1 =


q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn

2
−1 (qn

2
− rn

2
)

 and B2 =


q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn

2
−1 (qn

2
+ rn

2
)

 .

Here, C has rn
2

in its (1, n/2) entry and zeros everywhere else. Note that B2 = B1 +

2rn
2
en

2
eTn

2

. It is a well-known fact that if one perturbs a Hermitian matrix by a rank-one sym-
metric matrix, the original matrix and the perturbed matrix will have interlacing eigenvalues.
Since rn

2
is positive, it follows that B1 has eigenvalues α1, α3, . . . , αn−1 and B2 has eigen-

values α2, α4, . . . , αn.
From the fact that the trace of a matrix is the sum of its eigenvalues, we find 2rn

2
=

tr (B2) − tr (B1) = S1 and therefore rn
2

=
S1

2
. Now, from the fact that the trace of the
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square of a matrix is the sum of the squares of the eigenvalues of the original matrix, we find

(qn
2

+ rn
2
)2 − (qn

2
− rn

2
)2 = tr (B2

2)− tr (B2
1) = S2 (17)

⇒ 4qn
2
rn

2
= S2 (18)

⇒ qn
2

=
S2

2S1
. (19)

Suppose n is odd. Our Hamiltonian

q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn−1

2
−1 qn−1

2
rn−1

2

rn−1

2
qn+1

2
rn−1

2

rn−1

2
qn−1

2
rn−1

2
−1

. . .

r2 q2 r1

r1 q1



(20)

is orthogonally similar to a block diagonal matrix with diagonal blocks

B1 =


q1 r1

r1 q2 r2

r2 q3 r3

. . .
rn−1

2
−1 qn−1

2

 and B2 =


qn+1

2
0 · · ·

√
2rn−1

2

0
...

B1√
2rn−1

2

.

Here, C is the zero matrix. From Cauchy’s interlacing theorem for a bordered Hermitian
matrix, we know the eigenvalues of B1 are α2, α4, . . . , αn−1, and the eigenvalues of B2 are
α1, α3, . . . , αn. A trace argument similar to the even case yields qn+1

2
= tr (B2)− tr (B1) =

S1 and q2
n+1

2

+ 4r2
n−1

2

= tr (B2
2)− tr (B2

1) = S2 ⇒ rn−1

2
=

√
S2 − S2

1

2
. �

Remark 3. For a weighted persymmetric path on n vertices governed by XXX dynamics

we have a similar result for the Hamiltonian L: if n is even, then rn
2

=
S1

2
and qn

2
=

S2

2S1
;

if n is odd, then rn−1

2
=

√
S2 − S2

1

2
and qn+1

2
= S1. Furthermore, for the even case, from

qn
2

= rn
2
−1 + rn

2
, we have rn

2
−1 = S2−S2

1

2S1
. While for the odd case, from qn+1

2
= 2rn−1

2
, we

have S2 = 2S2
1 .

Example 3.3 (2× 2 and 3× 3 Cases). For n = 2, Corollary 3.2 yields a weighted path with

potentials having r1 =
α2 − α1

2
and q1 =

α2 + α1

2
. If we consider a weighted path with no

potentials (and so α1, α2 are simply−β1, β1), the HamiltonianA reduces to
[

0 β1

β1 0

]
, which

9



shows that the unweighted path on 2 vertices, given by the adjacency matrix
[
0 1
1 0

]
has PST

from vertex 1 to vertex 2. Similarly, for the Laplacian case, since α1 = 0, the Hamiltonian L

reduces to 1
2

[
α2 −α2

−α2 α2

]
.

For n = 3, Corollary 3.2 yields a weighted path with potentials governed by the XX

dynamics having r1 =

√
−2α2

2 + 2α1α2 − 2α1α3 + 2α2α3

2
and q2 = α1 − α2 + α3. Here

B1 is simply the 1× 1 matrix (q1), and thus we can find q1 via q1 = tr (B1) = α2.
Under XX dynamics, the Hamiltonian A is

A =

 α2

√
−2α2

2+2α1α2−2α1α3+2α2α3

2 0√
−2α2

2+2α1α2−2α1α3+2α2α3

2 α1 − α2 + α3

√
−2α2

2+2α1α2−2α1α3+2α2α3

2

0

√
−2α2

2+2α1α2−2α1α3+2α2α3

2 α2

 .
If we consider a weighted path with no potentials (and so α1, α2, α3 are simply −β1, 0, β1),
the adjacency matrix reduces to

A =

 0 β1√
2

0
β1√

2
0 β1√

2

0 β1√
2

0

 . (21)

The unweighted path given by the adjacency matrix A =

0 1 0
1 0 1
0 1 0

 has eigenvalues

−
√

2, 0,
√

2, thus yielding β1√
2

= 1, and so A is the Hamiltonian given in equation (21). Thus
our 3× 3 example is consistent with the literature: the unweighted path on 3 vertices has PST
from vertex 1 to vertex 3, and from the above we see that the weighted case is simply a scalar
multiple (β1/

√
2) of the unweighted case.

Similarly for the XXX dynamics, from Remark 3 and the fact that α1 = 0, we know the
Laplacian reduces to

L =

 α2 −
√
−2α2

2+2α2α3

2 0

−
√
−2α2

2+2α2α3

2 α3 − α2 −
√
−2α2

2+2α2α3

2

0 −
√
−2α2

2+2α2α3

2 α2

 .

4. PST between end points of a path fails for the Laplacian

Now we show that under XXX dynamics there is no weighted path on at least 3 vertices that
admits PST between the end points. As discussed in Remark 2, if there is PST at time π
between the end vertices, the eigenvalues of the Laplacian are integers and alternate between
even and odd (starting at even).

Theorem 4.1. No weighted (or unweighted) path on n ≥ 3 vertices admits Laplacian PST
between the end points.

10



Proof. We begin by assuming n is even. The persymmetric Laplacian is of the form

r1 −r1

−r1 r1 + r2 −r2

−r2 r2 + r3 −r3

. . .
−rn

2
−1 rn

2
−1 + rn

2
−rn

2

−rn
2

rn
2
−1 + rn

2
−rn

2
−1

. . .

−r2 r1 + r2 −r1

−r1 r1


(22)

with B1 and B2 written according to Lemma 3.1. Note the eigenvalues of B1 are α2, · · · , αn,
and the eigenvalues of B2 are α1, · · · , αn−1.

First, we compute the determinant ofB1. Observe thatB1 can be written as B̂1+2rn
2
en

2
eTn

2

,

where B̂1 is the Laplacian matrix for a weighted path on n
2 vertices with edge weights

rj , j = 1, . . . , n2 − 1. We deduce that detB1 = det B̂1 + 2rn
2
c, where c is the determi-

nant of the leading principal submatrix of B̂1 of order n
2 − 1. Evidently det B̂1 = 0, and

applying the weighted matrix tree theorem [27, Theorem 1.2], we find that c = r1r2 . . . rn
2
−1;

hence detB1 = 2r1r2 · · · rn
2

. Thus we have

2r1r2 · · · rn
2

= α2α4 · · ·αn. (23)

Note that in this setting B2 is a also a Laplacian matrix, and so the weighted matrix tree
theorem tells us that all its cofactors of order n2 − 1 are equal. The (1, n2 ) cofactor in this case
is (−1)

n

2
−1(−r1)(−r2) · · · (−rn

2
−1) = r1r2 · · · rn

2
−1. Since the sum of all principal minors

of size n
2 − 1 equals the (n2 − 1)-th elementary symmetric function of α1, α3, · · · , αn−1, that

is
∑

j=0,··· ,n
2
−1

∏
k 6=j α2k+1, and using the fact α1 = 0 (so the only nonzero product in the

summand is α3 · · ·αn−1), we have

n

2
r1r2 · · · rn

2
−1 = α3α5 · · ·αn−1. (24)

Combining equations (24) and (23), we find that

2rn
2

=
n
2α2α4 · · ·αn
α3α5 · · ·αn−1

. (25)

Now, 2rn
2

= S1 ∈ Z by Corollary 3.2, and the numerator of the right hand side of equation
(25) is n

2 times all the odd eigenvalues while the denominator is the product of all the even
eigenvalues. Thus we obtain a factor of 2

n

2
−1 in the denominator, from which it follows that

2
n

2
−1 divides n

2 , which is a contradiction provided n
2 ≥ 3, i.e. provided n ≥ 6.

For n = 4, again from Corollary 3.2, we find r2 =
S1

2
and q2 =

S2

2S1
. Substituting q2 into

11



the trace equations

tr (B1) = q1 + q2 + r2 = α2 + α4 (26)
tr (B2) = q1 + q2 − r2 = α1 + α3 (27)

(with q2 = r1 + r2) and then adding them gives q1 =
α2α4 − α1α3

S1
. Now, substituting q1

and q2 into the determinant equations

det(B1) = q1q2 + q1r2 − r2
1 = α2α4 (28)

det(B2) = q1q2 − q1r2 − r2
1 = α1α3 (29)

(with q1 = r1) and then adding them gives

r1 =

√
(α2α4 − α1α3)S2 − (α2α4 + α1α3)S2

1

2S2
1

. (30)

With the fact α1 = 0, we have r1 =
√

α2α4(S2−S2
1)

2S2
1

and q1 = α2α4

S1
. Since r1 = q1, we have

α2α4 = S2−S2
1

2 , which tells us 2α2α4 = α4α3 − α2
3 + α3α2, with α2 and α4 being odd

integers, and α3 an even integer. Note that the left hand side of this equation is congruent to
2 mod 4 while the right hand side is congruent to 0 mod 4, and so we have a contradiction for
n = 4. This completes the n even case.

We now assume n is odd. Our Hamiltonian is

r1 −r1

−r1 r1 + r2 −r2

. . .
−rn−1

2
−1 rn−1

2
−1 + rn−1

2
−rn−1

2

−rn−1

2
2rn−1

2
−rn−1

2

−rn−1

2
rn−1

2
−1 + rn−1

2
−rn−1

2
−1

. . .

−r2 r1 + r2 −r1

−r1 r1


,

(31)

and again we take B1 and B2 as in Lemma 3.1. The eigenvalues of B1 and B2 interlace, with
detB1 yielding r1r2 · · · rn−1

2
= α2α4 · · ·αn−1 (the calculation is similar to the n even case),

where α2, α4, . . . , αn−1 are the odd eigenvalues. For B2, its (1, 1) minor is just det(B1) =
r1r2 · · · rn−1

2
. Now we calculate the other principal minors of size (n− 1)/2 of B2. Fix such

a minor. If we take the factor
√

2 from the first row and the first column, then the principal
minor that we seek is twice the principal minor of size n−1

2 of a Laplacian matrix; by the
weighted matrix tree theorem, that minor is equal to the (1,1) minor of the Laplacian, which
is det(B1). Therefore the corresponding principal minors of B2 are given by 2 det(B1) =
2r1 · · · rn−1

2
. Again, from the fact that the sum of all ofB2’s principal minors of size (n−1)/2

is equal to the (n−1
2 )-th elementary symmetric function of α1, α3, · · · , αn+1, we find that

12



r1 · · · rn−1

2
+ n−1

2 2r1 · · · rn−1

2
= nr1 · · · rn−1

2
= α3α5 · · ·αn. Combining this equation with

the one for B1, we have nα2α4 · · ·αn−1 = α3α5 · · ·αn. This is a contradiction, since the left
side of the equation is an odd number, while the right side is an even number.

This completes the n odd case. �

We note that it was recently found [28] that there is no Laplacian PST for (unweighted)
trees. Theorem 4.1 resolves the weighted generalization for the special case of paths. In fact,
we can generalize the above theorem to any weighted tree whose Laplacian matrix is persym-
metric. Such a weighted tree can be represented schematically as follows (see Figure 1):

Figure 1.

G G̃
w1

or

G v G̃
w1 w1

where G is a weighted tree, G̃ is the mirror image of G, and w1 is an edge weight. The
first graph (with a weighted edge connecting a vertex in G to its corresponding vertex in G̃)
generalizes weighted paths with n even, while the second graph (with one middle vertex v
connected to a vertex in G and to the corresponding vertex in G̃) generalizes weighted paths
with n odd.

Lemma 3.1 applies equally well in the situation of a weighted tree whose Laplacian matrix
is persymmetric. For such a weighted tree, the matrix C is as in Corollary 3.2: it has one non-
zero entry for n even (so the two matricesB1 andB2 are still rank one Hermitian perturbation
of each other) and it is the zero matrix for n odd (B2 is a bordered Hermitian matrix of
B1). Although the Hamiltonian (and thus B1 and B2) is more complicated than in Corollary
3.2, the interlacing of the eigenvalues of B1 and B2 still holds, and the arguments using the
weighted matrix tree theorem continue to apply.

Assume n is even, now observe that if v is an eigenvector of B1 = E − RC associated to

the eigenvalue λ, i.e., (E −RC)v = λv, then from
[
E RCR
C RER

] [
v
−Rv

]
=

[
Ev −RCv
Cv −REv

]
=

λ

[
v
−Rv

]
, we know the antisymmetric vector

[
v
−Rv

]
is an eigenvector of the Hamiltonian

L =

[
E RCR
C RER

]
associated to the eigenvalue λ. Similarly, if u is the eigenvector of B2 =

E+RC associated to the eigenvalue µ, then the symmetric vector
[
u
Ru

]
is an eigenvector of

L associated to eigenvalue µ. Using all the n/2 orthogonal eigenvectors vj of B1 and the n/2

orthogonal eigenvectors uj of B2, we can form n orthogonal eigenvectors of L:
[
vj
−Rvj

]
,[

uj
Ruj

]
, j = 1, . . . , n/2. Normalize each of them and use them as columns to form a real

orthogonal matrix S; assume it diagonalizes L to Λ. If there is PST between a vertex j and
its mirror image n + 1 − j, then sjeiπΛ = eiφsn+1−j , where s` is the `-th row of S and φ is
some real number. If we assume S does not have any zero entries, then from the symmetric
and antisymmetric structures of the eigenvectors, and the fact that 0 is an eigenvalue, we

13



know the eigenvalues of B1 are odd integers, and the eigenvalues of B2 are even integers. So
the arguments in Theorem 4.1 applies if each of the two matrices B1 and B2 formed from
the Laplacian of a persymmetric weighted tree can be diagonalized by some real orthogonal
matrix which does not have zero entries.

If n is odd, then the Laplacian of the tree is L =

E x 0
xT 2w1 xTR
0 Rx RER

, where x =

[
0 · · · 0 − w1

]T ∈ R
n−1

2 . As above, we can check if v is an eigenvector ofB1 = E−RC = E

associated to the eigenvalue λ, i.e., Ev = λv, then

 v
0
−Rv

 is an eigenvector of L associated

to the eigenvalue λ. And if u =

[
a
ũ

]
is an eigenvector of B2 =

[
2w1

√
2xT√

2x E

]
associated to

the eigenvalue µ, then

 ũ√
2a
Rũ

 is an eigenvector of L associated to the eigenvalue µ. Using

the n−1
2 eigenvectors vj of B1 = E and the n+1

2 eigenvectors uj of B2, we form n orthogo-

nal eignvectors of L:

 vj
0
−Rvj

,

 ũj√
2a

Rũj

. Now assume that B1 can be diagonalized by a real

orthogonal matrix which does not have zero entries, and thatB2 can be diagonalized by a real
orthogonal matrix which does not have zero entries apart from the first row. With a similar
argument as in the n even case, we can see if there is PST between a vertex j < n+1

2 and its
mirror image n+ 1− j, then the eigenvalues of B1 = E are odd integers, and the eigenvalues
of B2 are even integers. Therefore the arguments in Theorem 4.1 applies here.

We summarize the above arguments in the following Theorem:

Theorem 4.2. Symmetric trees as in Figure 1 (namely, weighted trees whose Laplacian ma-

trix is persymmetric) do not admit Laplacian PST between vertex j <
n+ 1

2
and its mirror

image n+ 1− j.

Symmetric trees are special cases of graphs with an involution; PST and PGST properties
of such graphs were studied in [15] under XX dynamics. The Hamiltonian considered in [15]
was the adjacency matrix plus a diagonal matrix rather than the weighted Laplacian matrix
considered here. The results in [15] and those in this section are independent in that neither
implies the other.

5. Adjacency Matrices and the Rational weights conjecture

Henceforth, we focus on XX dynamics (and the corresponding adjacency matrix). We give a
complete analysis of the 4× 4 and 5× 5 cases and prove a more general result motivated by
an observation made in the 4× 4 case.

Example 5.1. For a weighted path (with no loops) on 4 vertices, using a similar computation
to that in the proof of Theorem 4.1 for the n = 4 case, and with eigenvalues α1, . . . , α4 of the
adjacency matrix written as −β2,−β1, β1, β2, we have r2 = β2 − β1 and r1 =

√
β1β2. The

14



Hamiltonian is then

A =


0

√
β1β2 0 0√

β1β2 0 β2 − β1 0
0 β2 − β1 0

√
β1β2

0 0
√
β1β2 0

 . (32)

It is clear from the above matrix why PST does not occur in the unweighted path on 4
vertices. In this case r1 = r2 = 1 and therefore β1 = −1+

√
5

2 and β2 = 1+
√

5
2 . Since β2/β1

is irrational, there is no nonzero constant κ for which both κβ1 and κβ2 are integers. Hence
the unweighted path on four vertices cannot have PST (this is shown more generally for
unweighted paths of length four or greater with loops in [14]). More generally no weighted
path without potentials on four vertices with all rational weights can have PST. By Remark 1,
we set β1 = 1 mod 4 and β2 = 3 mod 4 without loss of generality (we scale the Hamiltonian
by a factor 2 to have integer eigenvalues). It follows that β2− β1 is an even integer. However,
β1β2 ≡ 3 mod 4, so the quantity is not a perfect square, and therefore

√
β1β2 is irrational.

There is no nonzero constant κ for which both κ(β2 − β1) and κ
√
β1β2 are rational. This

observation motivates a more general result which we will present after we analyse the 5× 5
case.

Example 5.2 (5 × 5 Case). For n = 5, we can solve for q3 in terms of the eigenvalues as
before. However the trace equation now has two unknowns q1 and q2, so we cannot use our
previous method to solve for these entries. The case with no potentials is still amenable. The
eigenvalues of the adjacency matrix in this case are −β2 < −β1 < β0 = 0 < β1 < β2 and
the two polynomials are p5(x) = x(x2 − β2

2)(x2 − β2
1) = x5 − (β2

2 + β2
1)x3 + β2

1β
2
2x and

p̃4(x) = b4x
4 + b2x

2 + b0 for some real numbers b0, b2, b4. The system of equations to solve
is

b4β
4
2 + b2β

2
2 + b0 = 1 (33)

b4β
2
1 + b2β

2
1 + b0 = −1 (34)

b0 = 1 (35)

which has the corresponding solutions b4 =
2

β2
1(β2

2 − β2
1)

, and b2 =
−2β2

2

β2
1(β2

2 − β2
1)

, b0 = 1.

We now have p̃4(x) =
2[x4−β2

2x
2+ 1

2
β2
1(β2

2−β2
1)]

β2
1(β2

2−β2
1) with the monic version being p4(x) = x4 −

β2
2x

2 + 1
2β

2
1(β2

2 − β2
1). Now performing the subtraction p5− xp4 yields r2

1 = β2
1 and the new

monic polynomial p3(x) = x3 − 1
2(β2

1 + β2
2)x. Repeating this again with p4 and p3 gives

r2
2 = 1

2(β2
2 − β2

1). The Hamiltonian is now

A =



0 β1 0 0 0

β1 0
√

β2
2−β2

1

2 0 0

0
√

β2
2−β2

1

2 0
√

β2
2−β2

1

2 0

0 0
√

β2
2−β2

1

2 0 β1

0 0 0 β1 0


. (36)

Theorem 4.1 tells us that no weighted path of length at least 3 has Laplacian PST between
its end vertices. Contrast this with the adjacency matrix setting, where there is a weighted path
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(with no loops) of any length that admits PST between its end vertices. We have a conjecture
about the weights: if all the weights of a weighted path on at least 4 vertices are rational
numbers, then there is no adjacency matrix PST at time π between the end vertices of the
path. We confirm that conjecture in the cases that n = 4, n ≡ 5 mod 8 and for n ≡ 3 mod 8
but n 6= 3.

Proposition 5.3. Suppose that n = 4, or n ≥ 5 and n ≡ 3 mod 8 or n ≡ 5 mod 8. If the
weights of a weighted path on n vertices with or without potentials are all rational numbers,
then there is no adjacency matrix PST between its end vertices at readout time π.

Proof. As discussed, for a weighted path that exhibits PST at time π between its end vertices,
by performing an overall energy shift if necessary (which does not change the PST readout
time), we can make all its eigenvalues integers (in particular, with the smallest one being an
odd integer) with alternating parity. See Remark 2.

For n = 4, from Corollary 3.2, r2 = S1

2 ∈ Q. We show that r1 =√
(α2α4−α1α3)S2−(α2α4+α1α3)S2

1

2S2
1

(calculated in Theorem 4) cannot be rational by showing that

(α2α4 − α1α3)S2 − (α2α4 + α1α3)S2
1

2
is not a perfect square. Rearranging the terms we

have

1

2
(α2α4(S2 − S2

1)− α1α3(S2 + S2
1))

= −α2α4(α2
1 + α2

3)− α1α3(α2
2 + α2

4) + α2α4

× (α1α2 − α1α3 + α1α4 + α2α3 − α2α4 + α3α4)

− α1α3α2α4 + α1α3(α1 + α3)(α2 + α4)− α2
1α

2
3

(37)

From the fact that α1 and α3 are odd integers, and α2 and α4 are even integers, we know
the first 5 terms in the summand are all divisible by 4, and therefore their sum is congruent
to either 0 mod 8 or 4 mod 8. Since the square α2

1α
2
3 of an odd integer α1α3 is congruent to

1 mod 8, we know the result in equation (37) is congruent to either 3 mod 8 or 7 mod 8, and
hence is not a perfect square. Thus r1 is not rational, which establishes the result for n = 4. In
fact we can say more: if the weights of a weighted path on 4 vertices are all rational numbers,
then there is no adjacency matrix PST between its end vertices at any time, since we can not
scale the adjacency matrix such that r1 and r2 are both rational.

Next, suppose that n ≥ 5 and n ≡ 3 mod 8 or n ≡ 5 mod 8. Observe that since

n is odd, by Corollary 3.2 we have rn−1

2
=

√
S2 − S2

1

2
. We claim now that the quan-

tity S2 − S2
1 is not a perfect square, and so rn−1

2
is irrational. To see the claim, note that

S2 − S2
1 = −2[

∑
r α

2
2r +

∑
1≤j<k≤n(−1)j+kαjαk], where

∑
r α

2
2r is divisible by 4. Conse-

quently, 2
∑

r α
2
2r ≡ 0 mod 8.

If we can show that
∑

1≤j<k≤n(−1)j+kαjαk is odd, then we can conclude that S2 − S2
1

is not a perfect square. To this end, it is enough to count the number of distinct pairs of
odd numbers appearing in the summation. If n = 2m − 1 for some m ∈ Z, then m is the
number of odd numbers in the sum, and the number of distinct odd pairs is m(m− 1)/2. For
n ≡ 3 mod 8 or n ≡ 5 mod 8, we have m ≡ 2 mod 4 or m ≡ 3 mod 4, respectively. In either
case, m(m− 1)/2 is odd and the claim follows. Thus S2−S2

1 is not a perfect square, so rn−1

2

is not rational.
�
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