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Abstract 
 

Haemophilus influenzae is a human pathogen that can cause disease in young children and 

the elderly. While there are several typing methods used for H. influenzae, serotyping and multi 

locus sequence typing (MLST) are the two most commonly used methods. The antigenic 

properties of the polysaccharide capsule surrounding some H. influenzae are used to classify the 

encapsulated strains into six serotypes (a-f), whereas non-encapsulated strains are considered 

non-typeable (NTHi). Historically, H. influenzae serotype b (Hib) has been the leading cause of 

morbidity and mortality worldwide. The introduction of a Hib conjugate vaccine in the 1990s 

drastically reduced the incidence of Hib disease. In the following years however, serotype f (Hif) 

has emerged as the most dominant serotype in the general population while serotype a (Hia) has 

emerged in the indigenous populations of North America. Since the Hib vaccine does not protect 

against non-Hib strains, the rising rates of disease warrants investigation into the development of 

vaccines for other H. influenzae serotypes. Developing an effective vaccine for serotypeable 

strains requires an understanding of its population structure; however, the population structure of 

H. influenzae is currently unclear. Although the 7-gene MLST is commonly used in laboratories 

worldwide, advances in genome sequencing can be used to provide a vastly more detailed 

understanding of the population structure of H. influenzae. This study investigates the utility of a 

core genome MLST scheme (cgMLST) as a potential extended MLST scheme for H. influenzae 

typing. 

A total of 314 genomes were used to design a cgMLST schema. Minimum spanning trees 

were generated based on the 7-gene MLST, the ribosomal protein MLST (rMLST) and cgMLST 

schemas, and all three schemas were evaluated for concordance using Simpson’s index of 
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diversity, the adjusted Rand coefficient and the adjusted Wallace coefficient. A single nucleotide 

variant (SNV) analysis was performed, and a SNV-based phylogeny was used to compare the 

concordance of all three methods.  

The cgMLST schema contained a total of 980 loci, and partitioned the H. influenzae genomes 

into 204 partitions. The cgMLST schema was shown to have higher discriminatory power 

compared to the 7-gene MLST and rMLST schemas. Additionally, the cgMLST was found to 

have the highest level of concordance to the SNV-based phylogeny. The results of this study 

indicate possible capsular switching or loss among H. influenzae. Overall, the cgMLST schema 

provides higher discriminatory power over the classical 7-gene MLST and the rMLST schemas. 

A 7-gene MLST schema is considered the gold standard in H. influenzae typing, however, with 

the lowering cost of sequencing, whole genome sequencing-based typing methods should be 

used. The cgMLST has strong potential to replace the 7-gene MLST scheme as a typing method 

for H. influenzae. 
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1.1 General Introduction 

Haemophilus influenzae, first described by Pfeiffer in 1892 (Pfeiffer 1892),  is a human 

pathogen that has been causing outbreaks for centuries. At first, it was thought to be the 

causative agent of the 1918 Influenza pandemic that killed between 20 and 50 million people. 

For this reason, it was erroneously given the name influenzae in 1922 (Kristensen 1922). It is 

now known that viral influenza was to blame, however H. influenzae is thought to have had a 

key role in this pandemic by causing secondary infections (Morris, Cleary, and Clarke 2017).  

Decades later, serotype b (Hib), one of the seven subtypes in H. influenzae, continued to 

cause outbreaks globally, mostly affecting young children, the elderly, and the 

immunocompromised. A vaccine was developed and introduced in the 1990’s that radically 

reduced the incidence rate of Hib disease. However, with that newfound protection came an 

increase in disease incidence caused by other H. influenzae subtypes. While there are efforts to 

develop vaccines that protect against all H. influenzae subtypes, not much is known about the 

population structure and diversity of this pathogen, which can greatly aid in the selection of an 

effective vaccination strategy. Although there are many methods used to study H. influenzae, not 

a lot of methods utilize new advances in sequencing technologies, despite the current trend to 

modernize pathogen typing and surveillance of other public health priority pathogens with these 

new sequencing technologies (Zhou et al. 2017; Moura et al. 2016; Kingry et al. 2016). In the 

current study, a novel typing scheme for H. influenzae was developed and evaluated as a 

potential tool for studying the population structure of H. influenzae, and monitoring its spread in 

populations.  
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1.2 Bacteriology 

1.2.1 Features and Growth Requirements 

Haemophilus influenzae is a coccobacillus belonging to the Phylum Proteobacteria, Class 

Gammaproteobacteria, Order Pasteurellales, Family Pasteurellaceae. It is a Gram-negative, non-

motile, facultative anaerobe. All H. influenzae have a cell wall with a cytoplasmic membrane, a 

periplasm, and an outer membrane, and in some strains, a polysaccharide capsule. H. influenzae 

strains lacking a capsule are not detectable using serological methods, and are referred to as non-

typeable (NTHi). In contrast, strains with a polysaccharide capsule typically present antigens on 

the capsular surface, which are used to group them into 6 serotypes (a-f), and are referred to as 

Hia, Hib, Hic, Hid, Hie and Hif. 

The word “Haemophilus” is a Greek word meaning “blood-loving” to reflect the bacteria’s 

requirement of the X and V factors to grow. Many Haemophilus spp. only require the X factor 

hemin, which is an organic compound found in the red blood cells. In addition to the X factor, H. 

influenzae also requires the V factor, nicotinamide adenine dinucleotide (NAD) for growth 

(Evans, Smith, and Wicken 1974). Interestingly, in environments lacking the V factor, H. 

influenzae can grow in satellite colonies in the presence of other NAD-producing organisms such 

as Staphylococcus spp. and some species of fungi (Hirschmann and Everett 1979; Evans and 

Smith 1972).  

In most Gram-negative bacteria, the lipopolysaccharide (LPS) is a major component of the 

outer membrane, which is comprised of an inner core anchored to lipid A and an outer core with 

the O antigen, a highly variable polysaccharide. Rather than having an LPS, H. influenzae 

belongs to a group of bacteria that have a lipooligosaccharide (LOS), which lack the O antigen. 
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The LOS composition is highly variable due to phase variation that occurs in the LOS 

biosynthesis genes (Swords, Jones, and Apicella 2003; Hardy, Tudor, and Geme 2003; Bayliss, 

Field, and Moxon 2001). In addition, the surface structures on the H. influenzae cell can undergo 

antigenic variation, either due to mutations or horizontal gene transfer (Hardy, Tudor, and Geme 

2003; Bayliss, Field, and Moxon 2001). This awards H. influenzae an advantage in evading the 

immune system. For example, some NTHi strains produce a LOS that mimics a human 

glycolipid, camouflaging the bacteria from the immune system (Moran, Prendergast, and 

Appelmelk 1996). 

1.2.2 The Polysaccharide Capsule 

Many species of bacteria have an outer capsule made of polysaccharides, prominent 

examples include Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, 

Salmonella typhi, and Haemophilus influenzae. The capsular locus  has been found to be highly 

conserved among encapsulated bacteria, and it is thought to have a crucial role in the 

pathogenicity and virulence of these species (Roberts 1996; Zwahlen et al. 1989). There are 

many functions to the capsule, such as prevention from desiccation (Roberson and Firestone 

1992), adhering to each other and to the environment (Wang et al. 2015), and providing a 

defense mechanism against the host’s immune response (Roberts 1996; Cress et al. 2014; 

Hallström and Riesbeck 2010). 

Not all H. influenzae strains have an outer capsule. The presence of the polysaccharide 

capsule was first described in 1931 by Margaret Pittman, when she, and other scientists, 

observed different phenotypic characteristics of H. influenzae in culture. She observed that some 

strains are encapsulated and appeared smooth, large and opaque while other strains appeared to 
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lack a capsule, and were shown to be rough, small, and more transparent than the encapsulated 

strains. Nowadays, the capsule is recognized as an important virulence factor in H. influenzae, 

and has been thoroughly studied. 

The capsule itself is composed of monosaccharides joined together by phosphodiester 

linkages, and it is attached to the cell through covalent bonds (Kuo et al. 1985; Cress et al. 2014). 

Due to the presence of multiple hydroxyl groups in the monosaccharides, two molecules can link 

together in different configurations, making it possible for H. influenzae to produce six different 

polysaccharide capsules, a-f (Roberts 1996; Crisel et al. 1975). Capsular biosynthesis begins in 

the cytoplasm where the sugars are synthesized, polymerized, then transported outside of the cell 

via an ATP-binding cassette (ABC) transporter (Follens et al. 2001; Roberts 1996). 

The capsular biosynthesis genes in H. influenzae reside in the capsule polysaccharide 

synthesis operon – or cps operon. The capsular genes are homologous with those found in E. coli 

and N. meningitidis (Frosch et al. 1991; Thiên Trí Lâm et al. 2011). The cps locus consists of 

three regions; regions I and III are common to all six serotypes, whereas region II is serotype 

specific. Region I contains four genes, bexA, bexB, bexC and bexD, which are responsible for 

encoding an ATP-binding cassette transporter for exporting the capsular sugars outside the cell 

(J. S. Kroll et al. 1990). Region III has two genes, hcsA and hcsB, which encode proteins that 

play a role the post-translational modification and the export of the polysaccharide from the 

periplasm to the cell surface (Sukupolvi-Petty, Grass, and St. Geme 2006). Region II, flanked by 

regions I and III, typically has four to eight genes depending on the serotype. This region 

harbours the serotype-specific genes, and is responsible for the expression of the polysaccharides 

(J. S. Kroll, Loynds, and Moxon 1991; Van Eldere et al. 1995; Follens et al. 2001). 
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While most serotypeable H. influenzae have only one copy of the cps operon, between 55% 

and 80% of serotype b (Hib) strains were observed to have a partial tandem duplication – and in 

some cases, up to six copies – of the cps locus (Cerquetti, Cardines, Giufrè, et al. 2006; Cerquetti 

et al. 2005; Cerquetti, Cardines, Giufre, et al. 2006). The number of copies of the cps region has 

been found to be proportional to the size of the capsule, which in turn has been linked to 

increased virulence (Corn et al. 1993; Susan K Hoiseth, Moxon, and Silver 1986; J. Simon Kroll, 

Moxon, and Loynds 1993). The duplicated 17 kb segments are flanked by insertion sequence 

1016 (IS1016) elements (J. S. Kroll et al. 1990; Zwahlen et al. 1989). In this duplication event, 

one copy of the cps region was truncated, with a 1.2 kb deletion in the IS1016 and bexA gene. 

The presence of IS1016 presents potential for recombination in the cps region. In fact, 

spontaneous loss of capsule in Hib strains has been reported if all copies of the bexA genes have 

been disrupted (J. Simon Kroll, Hopkins, and Moxon 1988; S. K. Hoiseth, Connelly, and Moxon 

1985; Cintra and Takagi 2015).  

 In recent years, there has been an increase in hypervirulent Hia strains. It was found that the 

increased virulence of some Hia strains was associated with a duplication-deletion of the IS1016 

and bexA gene, like the mutation found in Hib. While only one copy of the cps region was 

sufficient to cause invasive disease, the duplicated cps region has been associated with high 

mortality rate, especially among children (Kapogiannis et al. 2005; Lima et al. 2010; Ulanova 

and Tsang 2014). The emergence of this mutation indicates the potential of Hia to cause global 

outbreaks, similar to those caused by Hib in the pre-vaccine era (Adderson et al. 2001). 
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1.3 Typing Methods 

Traditionally, identification of H. influenzae was done through observation of the colony’s 

morphology, testing for growth requirement using the X and V factors, and testing for the 

presence or absence of the polysaccharide capsule (Price et al. 2015). Now, the most commonly 

used methods for studying H. influenzae are serotyping and multilocus sequence typing (MLST). 

In addition to MLST and serotyping, other methods are also used: biotyping, which tests the 

bacteria’s ability to produce indole, urease and ornithine; outer membrane protein (OMP) typing, 

which types bacteria based on the properties of the major outer membrane proteins; multilocus 

enzyme electrophoresis (MLEE) which identifies variants of 17 housekeeping enzymes; 

ribotyping (fingerprinting using ribosomal RNA gene enzyme restriction); and pulsed-field gel 

electrophoresis (PFGE) (fingerprinting using genomic DNA enzyme restriction) (Ulanova and 

Tsang 2014; Hardy, Tudor, and Geme 2003). 

1.3.1 Multilocus Sequence Typing 

Multilocus sequence typing (MLST) is a typing method that has been extensively used in 

bacterial research, and is considered the gold standard for bacterial typing (Maiden et al. 1998). 

This method relies on the detection of variants in a set of housekeeping genes—typically 

between 2 and 13 genes—chosen for their stability within the genome. Gene variants, called 

alleles are shared on an online database, making it possible for scientists to compare their data in 

a standardized way (Maiden et al. 1998). The MLST scheme most commonly used for H. 

influenzae has seven genes, called loci, which are summarized in Table 1 (Meats et al. 2003). 

Each of the seven loci are amplified using polymerase chain reaction (PCR) primers designed by 

Meats et al. (2003) and sequenced. Each newly sequenced allele is compared to a public MLST 

database and assigned an allele number, or if a novel allele is found, a curator can assign a 
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number and add it to the database. The database of loci, their alleles, and their nomenclature is 

called a schema. The allele numbers for all seven loci define an MLST profile, and each unique 

combination of alleles is assigned a sequence type (ST) number (Sullivan, Diggle, and Clarke 

2005). These steps can be done using the Bacterial Isolate Genome Sequence Database (BIGSdb) 

software (Jolley and Maiden 2010), which is hosted by the University of Oxford on the 

PubMLST website (https://pubmlst.org/). 

Table 1 Housekeeping genes used in the MLST scheme for Haemophilus influenzae 

Locus Gene product Gene length 
adk Adenylate kinase 477 
atpG ATP synthase F1 subunit gamma 447 
frdB Fumarate reductase iron-sulfur protein 489 
fucK Fuculokinase 345 
mdh Malate dehydrogenase 405 
pgi Glucose-6-phosphate isomerase 468 
recA RecA protein 426 

 

Allele profile data can be clustered and visualized using the global optimal eBURST 

(goeBURST) algorithm that has been implemented in Phyloviz v2.0 (Nascimento et al. 2017). 

The algorithm builds a minimum spanning tree—a tree that minimizes the summed distance of 

all links—using the goeBURST algorithm, which clusters isolates into clonal complexes based 

on the number of allelic differences between profiles. A great advantage of the goeBURST 

algorithm is the ability to choose the locus variant level, or the maximum number of allelic 

mismatches that are used to cluster isolates (e.g. single locus variants (SLV), double locus 

variants (DLV), …, nLV). The resulting minimum spanning tree will link all clonal isolates, 

based on the locus variant level used. 

 



9 
 

1.3.2 Serotyping 

Serotyping is a method of identifying bacterial strains based on their surface antigens. 

Traditionally, H. influenzae serotyping was done through slide agglutination serotyping (SAST), 

using rabbit anti-capsular antiserum (Shively et al. 1981). Six separate antisera, one for each 

serotype, are used to test each strain, and the reaction to the antisera is observed. However, 

SAST has been shown to produce inconsistent results. For instance, some Hib strains do not 

produce a capsule if the bexA gene has been disrupted. In this case, SAST cannot distinguish 

between those serotype b capsule-deficient mutants (Hib- strains) and NTHi (LaClaire et al. 

2003; Satola et al. 2007).  

Serotyping by PCR has been more widely used in the laboratory. Primers for the cps genes, 

including the serotype-specific genes, are used to perform PCR, and products are identified by 

performing electrophoresis (Falla et al., 1994; Ulanova & Tsang, 2014). The PCR serotyping 

method has been shown to have higher sensitivity and specificity compared to SAST, and is 

considered a gold standard for serotyping H. influenzae (LaClaire et al. 2003). Although PCR 

can detect capsule-deficient serotypeable strains, this method cannot differentiate between strains 

that have retained a disrupted copy of the cps operon from stains that have completely lost the 

operon. Alternate methods for serotyping H. influenzae have been suggested, such as using the 

housekeeping gene pgi, however these methods are not commonly used (Anyanwu et al. 2003). 

1.4 Epidemiology and Pathogenesis 

Haemophilus influenzae has a worldwide distribution, with humans being the only reservoir. 

Historically, Hib had been a significant cause of global outbreaks (Ulanova and Tsang 2009; 

Dworkin, Park, and Borchardt 2007) In the late 1980’s, a conjugate vaccine was developed for 
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Hib, and was introduced to most developed nations by the 1990s. Since then, a dramatic decline 

in Hib disease has been observed. In Canada, an average of 700 cases of Hib disease were 

reported per year before the introduction of the Hib vaccine, whereas the number decreased to 26 

cases per year from 2008 to 2012 (Desai et al. 2014). In the United States, the annual number of 

Hib cases declined on the same scale, from 20,000 cases in the pre-vaccine years, to 2,562 cases 

from 2003 to 2010 (Hamborsky, Kroger, and Wolfe 2015). The effectiveness of the Hib vaccine 

is highlighted by observing an increase in Hib disease incidence in under-vaccinated 

communities, such as the Amish communities in Pennsylvania and Missouri (Myers et al. 2017; 

Fry et al. 2001). 

As the rate of Hib disease decreased, capsular replacement was reported globally. In the 

general population in the United States, NTHi and Hif strains have been found to be the most 

prominent cause of disease (Livorsi et al. 2012). Similar trends were also reported in Canada 

(Shuel et al. 2011; Sill et al. 2007), England and Wales (Hargreaves et al. 1996), Alaska (Perdue 

et al. 2000), Europe (Ladhani et al. 2010; Resman et al. 2011; R. Whittaker et al. 2017), and 

Australia (Staples, Graham, and Jennison 2017; Cleland et al. 2017). On the other hand, increase 

in disease incidence due to Hia has been reported in the Indigenous communities in Northern 

Canada (Tsang et al. 2016, 2017; Brown et al. 2009; Kelly et al. 2011), United States (Millar et 

al. 2005), and Alaska (Bruce et al. 2013). 

Haemophilus influenzae is a commensal organism that is commonly found in the upper 

respiratory system in healthy humans (Beck, Young, and Huffnagle 2012). Carriage begins in 

childhood, where approximately 20% of children under the age of 12 months carry NTHi. Once 

they reach adulthood, approximately 50% of adults carry NTHi in their nasopharynx, and 6.6% 

carry typeable strains. Typically, the carriage is transient, and an adult will only carry an H. 
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influenzae strain for a few weeks or months at a time (Howard, Dunkin, and W 1988; Spinola et 

al. 1986; High, Fan, and Schwartzman 2015; Hardy, Tudor, and Geme 2003). H. influenzae is 

mostly transmitted among people in crowded areas, particularly in schools or overcrowded 

daycares (Schumacher et al. 2012; Murphy et al. 2009). 

Despite the high non-symptomatic carriage rate, H. influenzae is an opportunistic pathogen, 

and can cause disease in vulnerable populations. Toddlers have the highest risk of disease, since 

the maternal antibodies are no longer protective after 12 months, and their immune system does 

not mature until around 36 months (Aubrey and Tang 2003). The elderly and immuno-

compromised are also at an elevated risk of H. influenzae infection. Serotypeable strains 

typically cause invasive disease, such as meningitis, epiglottitis, cellulitis, septicemia, 

pneumonia and septic arthritis, while NTHi strains tend to cause non-invasive disease such as 

bronchitis, sinusitis, and otitis media. In recent years, however, invasive disease caused by NTHi 

has emerged, and has been reported globally (Van Eldere et al. 2014; Langereis and De Jonge 

2015; T. T. Lâm et al. 2016; Tsang et al. 2016). 

There are three steps in the development of invasive disease. Colonization, passing the 

epithelial-blood barrier into the blood stream, and passing the blood-brain barrier into the central 

nervous system (CNS). Haemophilus influenza is a successful colonizer of the nasopharyngeal 

mucosa, which is the first line of defense against pathogens. Invasive H. influenzae can penetrate 

the mucosal layer, disrupt tight junctions of the respiratory epithelial cells, and gain access to the 

host’s blood stream, which can lead to septicemia (Wilson 1991; High, Fan, and Schwartzman 

2015). Once in the blood stream, H. influenzae can cross the blood-brain barrier, causing 

meningitis, which has 3% mortality rate, and 15-30% chance of causing permanent damage 

(Parisi and Martinez 2014; High, Fan, and Schwartzman 2015). 
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Non-invasive H. influenzae disease, on the other hand, often occurs in the presence of factors 

that can reduce the integrity of the mucosa and respiratory epithelium. Risk factors include 

infection with respiratory pathogens, such as viral influenzae, chronic obstructive pulmonary 

disease and cystic fibrosis (le Roux and Zar 2017; Sriram et al. 2017; Morris, Cleary, and Clarke 

2017). There are also reports of elevated rates of H. influenzae disease among patients infected 

with the human immunodeficiency virus, or those who have sickle cell anemia or cancer (Allali 

et al. 2016; High, Fan, and Schwartzman 2015).  

1.5 H. influenzae Population Structure 

While the population structure of H. influenzae is largely unknown, it has been the target of 

study for many years. The serotypeable strains are more clonal, compared to NTHi, which form a 

more diverse group (E J Feil et al. 2001). For instance, MLEE analysis reveals that serotypes c, 

d, e, and f form a monophyletic group (Musser et al. 1988; Meats et al. 2003). Additionally, 

serotypeable strains can be clustered in two groups: division I, which contains Hia, Hib, Hic, Hid 

and Hie, and division II, which contains Hia, Hib and Hif. (Ulanova and Tsang 2014; Hardy, 

Tudor, and Geme 2003). 

The NTHi population has been found to be a highly recombinogenic population, with much 

greater diversity than the serotypeable strains (Cody et al. 2003). For instance, capsular loss 

among Hib strains has also been documented, and it has been suggested that some NTHi strains 

may be Hib-. In a Finnish study performing Southern Blot analysis, 31% of NTHi stains studied 

hybridized with the Hib cps locus, 15% of which had IS1016. These results suggest that a 

subgroup within the NTHi population may have descended from encapsulated strains that lost 

the capsule, and are more closely related to serotypeable strains than to other NTHi (St. Geme et 
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al. 1994). Haemophilus haemolyticus also has a documented presence in the NTHi population, 

due to the high phenotypic similarity to H. influenzae (Nørskov-Lauritsen 2009; Price et al. 

2015). 

1.6 Hib Conjugate Vaccine 

The first attempt to protect against Hib used a polyribosylribitol phosphate (PRP) vaccine. In 

the early 1970’s, the inadequacy of this vaccine became evident, as it did not deliver a strong 

immune response, especially in children (Peltola et al. 1977). The polysaccharide antigens are T-

cell independent, and therefore stimulate the B-cells in adults (Barrett et al. 1992). However, 

since children under the age of 18 months do not yet have mature B-cells, the polysaccharide 

vaccine failed to generate an immune response (Timens et al. 1989). Since the PRP vaccine did 

not protect toddlers, the most vulnerable to Hib disease, alternative vaccines were developed. 

To increase the effectiveness of the vaccine, the PRP was conjugated with other proteins that 

can mount a larger immune response in humans. The first Hib conjugate vaccine (PRP-D), the 

Hib polysaccharide was conjugated with the diphtheria toxoid as a protein carrier. Since the 

diphtheria toxoid is T-cell dependent, this vaccine resulted in an enhanced immunogenic 

response to vaccines, even in young children (Mäkelä and Käyhty 2002; Hamborsky, Kroger, 

and Wolfe 2015). Currently, the PRP-D vaccine is not commonly used, and has been replaced by 

PRP-T, which uses the tetanus toxoid as a carrier protein, or the PRP-OMP, which uses the outer 

membrane protein of Neisseria meningitidis serogroup B. The current recommended vaccination 

schedule begins at two months of age with multiple doses, and a booster shot at 12-15 months. 

(Hamborsky, Kroger, and Wolfe 2015). In addition to the monovalent conjugate vaccines, there 

are also several combination vaccines that include the Hib conjugate vaccine: HepB-Hib-PRP-
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OMP (hepatitis B and Hib), HibMenCY (Hib, N. meningitidis serotype C, and Y-tetanus toxoid) 

and DTaP-IPV-Hib-PRP-T (diphtheria, tetanus, acellular pertussis, poliovirus, and Hib) 

(Capeding et al. 2008; Habermehl et al. 2010; Hamborsky, Kroger, and Wolfe 2015). 

1.7 Whole Genome Sequencing Approaches 

1.7.1 Sequencing Technologies 

Advancements in sequencing technology have made sequencing an affordable tool that is 

now used in laboratories worldwide. Current sequencing technologies fall into two broad classes: 

short read sequencers, of which the Illumina line of platforms are most popular; and long read 

sequencers, largely represented by the PacBio line of sequencers. The Illumina sequencing 

platforms use a sequence-by-synthesis approach; the DNA sequence is “read” as it is being 

synthesized by polymerases. Library preparation involves shearing the DNA into small 

fragments, and ligating adapters that are necessary for the sequencing process. The DNA 

fragments are amplified using a process called bridge PCR. The fragments can be sequenced one 

of three ways: 1) single-end, where fragments are read from only one end; 2) paired-end, where 

fragments are read from both ends, and the reads can either be overlapping or separated by a 

short sequence (typically used to extend the effective size of the read); 3) mate-pair, where 

fragments are read from both ends, and the reads are separated by a long sequence (used to order 

and orient disconnected sequences). Coloured fluorescent nucleotides, one colour for each of the 

four bases, are used in the sequencing process. As the polymerase incorporates a fluorescent 

nucleotide into a DNA strand, the newly liberated fluorescent molecule is excited and emits a 

signal that is captured by sensors. This produces raw sequences that can then be assembled with 

other overlapping reads into draft genome sequence data (Park et al. 2016). 
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PacBio single molecule real time (SMRT) sequencing is a highly sensitive method that does 

not require DNA amplification. Libraries are prepared by shearing the DNA into long fragments 

(~20 kb, but can be much higher), and sequencing is performed using a SMRT cell, which 

contains thousands of wells, called zero-mode waveguides (ZMW).  A single polymerase is 

attached to the bottom of each ZMW, where a highly sensitive sensor is positioned. As with 

Illumina sequencing, fluorescent nucleotides are used, with a distinct colour for each of the four 

bases. As the polymerase incorporates nucleotide into a nascent DNA strand, the fluorescent 

molecules are cleaved, and the light emitted from them is captured and recorded. Unlike Illumina 

sequencing, PacBio sequencing results in very long reads, averaging over 10 kb, with some reads 

over 60 kb. The long reads produced by PacBio can often close a genome, depending on the size 

of the organism. However, the error rate in PacBio sequencing is the high, ~11-15%, compared 

to the lower error rate of Illumina, ~1% (Rhoads and Au 2015; Lin and Liao 2015).  The high 

accuracy of short read sequencing is sometimes used to correct the errors in long reads, thus 

facilitating the closing and finishing of a genome.  

1.7.2 Extended MLST Schemas 

Extended MLST schemas use the same concept as the current 7-gene MLST scheme, but 

instead of seven genes, a much larger number of loci are used. Several types of schemas can be 

defined based on the type of information used, such as ribosomal protein (rMLST), whole 

genome (wgMLST), pan-genome (pgMLST), core genome (cgMLST) or accessory genome 

MLST (agMLST) schemas. In recent years, extended schemas have been used more frequently 

to study bacterial species such as Salmonella spp. (Yoshida et al. 2016), Listeria monocytogenes 

(Moura et al. 2016), Klebsiella pneumoniae (Zhou et al. 2017), among others. Commercial 

software can be used to define extended schemas, such as the BioNumerics wgMLST plugin 
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(Applied Maths, Belgium), or Ridom SeqSphere+ (Ridom, Germany). Open source software 

options include a combination of software, such as Roary (Page et al. 2015) and BIGSdb (Jolley 

and Maiden 2010), or using a complete workflow such as chewBBACA (Silva et al. 2017). 

There are three general steps to defining an extended schema: 1) defining the loci, 2) allele 

calling, and 3) filtering the schema for quality and robustness. There are two approaches for 

defining the loci: the whole genome approach, and the pan-genome approach. The whole 

genome approach uses all genes in a (preferably high quality, closed, and curated) reference 

genome or a small set of reference genomes that represent the population under study. However, 

only using a few genomes can risk excluding accessory genes that may contain important 

discriminatory information from the final schema. The pan-genome approach uses genes from all 

genomes in the dataset. While this will ensure that all genes, including accessory genes, are 

included in the schema, there is a risk of including low quality loci and missing loci, which can 

may confound the typing and analysis, into the final schema. 

Once the wgMLST or pgMLST loci are defined, allele calling will detect allelic variants for 

each locus in each genome in the dataset. Optionally, low quality genomes that are missing most 

loci, and low-quality loci missing from most genomes, can be removed from the dataset. The 

loci, together with the allelic profiles, will constitute the wgMLST or pgMLST schema, 

depending on the approach used when defining the loci. The cgMLST schemas are defined by 

selecting loci that are present in 100% of the genomes, and agMLST schemas are defined by 

using loci found in only a subset of strains, and not represented in the core genome. 

 Once a schema is defined, isolate relationships can be visualized by generating a goeBURST 

minimum spanning tree, as described in section 1.3.1 (Francisco et al. 2009; Nascimento et al. 
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2017). Finally, sequence types (STs) can be defined by clustering allelic profiles, and assigning 

ST numbers. Isolate metadata and epidemiological data are typically used to help define STs. 

Cluster stability analysis can also aid in defining a schema by calculating the Shannon index and 

adjusted Wallace coefficient for all possible goeBURST cluster levels, and choosing a threshold 

where the clusters begin to stabilize. 

Currently, there isn’t a single standardized database dedicated for storing wg/pg/cg/ag MLST 

schemas. Extended schemas are supported by BIGSdb (Jolley and Maiden 2010) on the 

PubMLST website. Several species already have cgMLSTs defined and available on PubMLST, 

such as Campylobacter jejuni and Neisseria meningitidis. Another database for storing cgMLST 

schemas is a server hosted by Ridom (http://www.cgmlst.org/), which currently has cgMLST 

schemas for 9 bacterial species. 

1.8 Rationale and Objectives 

The epidemiology of H. influenzae is complex, and continually evolving. With the success of 

the Hib conjugate vaccine, non-Hib H. influenzae has emerged worldwide. As similarities 

between Hib and Hia appear, concern over Hia’s outbreak potential increases. Additionally, the 

increasing number of invasive disease caused by NTHi has been on the rise on a global scale. 

These trends confirm the need for more research and development into new vaccines H. 

influenzae. The population structure of H. influenzae is currently not very clear. Common typing 

schemes that are routinely used to study H. influenzae have not changed despite the availability 

of new sequencing technologies. In fact, the misidentification of H. haemolyticus as NTHi has 

been reported, and currently used methods are poor at distinguishing between the two species 

(Murphy et al. 2007; Price et al. 2015). There are many typing methods that exist for the 
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studying of H. influenzae, they exploit only a small subset of the available molecular 

information, and some of them are tedious and time consuming.  

Instead of only using a handful of genes to type a bacterium with a complex population 

structure, the entire genome could be utilized, especially since the price of sequencing has 

dramatically decreased over the past decade. A cgMLST schema has an immense potential to 

replace some of the typing schemes used in H. influenzae research, thus simplifying the process. 

In the current study, a core genome MLST scheme is designed using both in-house sequences 

and publicly available H. influenzae genomes, and evaluated as a potential new typing tool. 

1.8.1 Objectives 

There are four objectives to this work: 

1) Develop a core genome MLST schema using both typeable and non-typeable H. 

influenzae strains to discern the population structure of the organism  

2) Compare the discriminatory power and concordance of the cgMLST schema with the 7-

gene MLST schema and the ribosomal protein-based MLST schema 

3) Evaluate the concordance of MLST-based trees against phylogenetic trees built using 

single nucleotide variant data 

4) Determine the level of recombination in the cps region of H. influenzae serotype a to 

determine the suitability of the Hia capsule as a vaccine target. 
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1.8.2 Hypotheses 

In this thesis, I hypothesize that: 

1) The cgMLST schema has a higher discriminatory ability compared to both the 7-gene 

MLST scheme and the ribosomal MLST scheme 

2) The cgMLST schema can better discriminate between serotypes, compared to the 7-gene 

MLST schema and the ribosomal MLST schema 

3) Phylogeny generated using the cgMLST schema is congruent with the SNV-based 

phylogeny 

4) The cps region in H. influenzae serotype a has little to no recombination 

 



20 
 

 

 

 

 

Chapter 2 Methods 
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2.1 Bacterial Isolates  

A total of 83 serotypeable Haemophilus influenzae isolates (Table 2) were grown on brain 

heart infusion (BHI) agar, incubated at 37 °C in 5% CO2. Bacteria was suspended in 0.2 ml of 

ddH2O and heated to 100 °C for 15 minutes. The crude DNA preps were stored at -20 °C. DNA 

was extracted using either the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valencia, 

California, USA) or the MasterPure DNA Purification Kit (Epicentre Technologies, Madison, 

Wisconsin, USA). Amplified DNA was purified using Agencourt AMPure XP Kit (Beckman 

Coulter, Brea, CA, USA), and samples were quantified using the Qubit 2.0 Fluorometer 

(Invitrogen, Carlsbad, California, USA). 

Table 2 The number of isolates in each serotype group selected for sequencing 

Serotype # isolates 
a 37 
b 11 
c 10 
d 5 
e 10 
f 10 

 

2.2 Whole Genome Sequencing 

A paired-end sequencing library was prepared using TruSeq Nano DNA HT Library 

Preparation Kit (Illumina, San Diego, California, USA) and sequencing was performed on the 

Illumina MiSeq platform (Illumina, San Diego, California, USA) at the NML Genomics Core.  

To establish a reference genome for H. influenzae serotype a, a putative vaccine candidate strain 

11-139 was selected to be sequenced and closed. Genomic DNA was extracted using Qiagen 

DNeasy blood and tissue kit (Qiagen, Valencia, California, USA), and a large insert library (20 

kb) was prepared using manufacturers’ recommendations. Whole sequencing was performed on 
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a PacBio RSII platform (Pacific Biosciences, Menlo Park, California, USA) at Génome Québec, 

using a single-molecule real-time cell.  

2.3 Publicly Available Data 

H. influenzae genomes were downloaded from public databases. A total of 406 paired-end 

reads were downloaded from the NCBI Sequence Read Archive (SRA). The SRA is a public 

database hosted by the National Center for Biotechnology Information, which allows individual 

laboratories to upload and share data publicly. The SRA database holds raw sequencing reads 

from Illumina, Ion Torren and PacBio (Leinonen, Sugawara, and Shumway 2011). Additionally, 

133 whole genomes were downloaded from the Pathosystem Resource Integration Center 

(PATRIC) database. PATRIC is a project hosted by the University of Chicago that collects 

reference genomes from public data, and provides tools for biomedical research (Wattam et al. 

2017).  

2.4 WGS Assembly 

The PacBio sequenced genome was assembled using the Hierarchical Genome Assembly 

Process (HGAP) and polished using Quiver (Chin et al. 2013). In-house generated Illumina 

reads, as well as paired-end reads downloaded from public databases were assembled using the 

Galaxy Workflow Spades assemblies with FLASH v1.5 (Bioinformatics Core, NML). The 

workflow first uses Fast Length Adjustment of Short reads (FLASH) v1.3.0 to merge short 

paired-end reads. All reads are then assembled using SPAdes v.3.9, using auto k-mer selection. 

Finally, the contigs are filtered using Filter SPAdes repeats tool, which detects and removes 

small contigs under 5 kb in length, and contigs with coverage less than 33% of the overall 

genome coverage. 
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2.5 Seven-gene Multi-Locus Sequence Typing 

The multilocus sequence typing scheme for H. influenzae includes the seven housekeeping 

genes: adk, atpG, frdB, fucK, mdh, pgi, and recA. Primers were prepared for the for the seven 

sequences as described by Meats et al. (2003). The DNA was amplified using PCR, prepared, 

and sequenced using the Illumina sequencing platform. Each sequence was assigned an allele 

number, and sequence types (ST) were identified using BIGSdb (Jolley and Maiden 2010) on the 

PubMLST website (https://pubmlst.org/hinfluenzae/).  

All whole genome sequences downloaded from public sources were sequence typed using 

Torsten Seemann’s mlst script v2.8 (https://github.com/tseemann/mlst). The program uses MLST 

schemas from PubMLST, downloaded on January 30th, 2017. All genomes were scanned with 

BLAST using the hinfluenzae MLST scheme. Alleles for each of the seven loci were assigned 

allelic numbers and each strain was assigned a ST based on the allelic profile. Genomes with 

missing or incomplete alleles were not assigned a sequence type. Additionally, any novel alleles 

or sequence types were assigned new numbers and included in the database. 

2.6 Serotyping 

2.6.1 Slide Agglutination and PCR 

All NML strains were serotyped by slide agglutination (Difco, Oakville, Ontario, Canada; 

Denka Seiken, Tokyo, Japan). Results from the slide agglutination test were supported using 

PCR. Primers for region II serotype-specific capsular polysaccharide synthesis (cps) genes were 

prepared, and PCR was performed as previously described by Falla et al. (1994). The PCR 
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products were detected using gel electrophoresis, and compared against a positive control for 

each of the six serotypes. Strains with no detectable product were considered non-typeable. 

2.6.2 cps Alignment Serotyping 

Serotype specific genes of all six H. influenzae serotypes were downloaded from NCBI, and 

summarized in Table 3. A BLAST database was created using all cps genes, using BLAST+ 

v2.6.0 (Camacho et al. 2009). All genome sequences against were aligned against the cps genes 

database using BLASTn. A serotype was assigned for each strain based on the BLAST report’s 

top hit. A minimum percent identity of 95% and hit length of 95% were used to evaluate top hits. 

Strains that returned no results were considered non-typeable. 

2.6.3 MLST Serotyping 

Isolate data was downloaded from PubMLST (https://pubmlst.org/hinfluenzae/) on August 

10th, 2017, including isolate IDs, sequence types (ST), and serotypes of all isolates. First, isolate 

data was used to build a dictionary of serotype and ST pairs using a python script. For each ST, 

all isolates were queried, and serotypes were paired with the corresponding ST. For each ST, 

only one serotype was used to build the dictionary. In cases were a ST matched with more than 

one serotype, the serotype with the largest number of isolates was chosen. All strains were 

assigned a serotype based on the ST-serotype pairs dictionary. All strains with ST not found in 

the dictionary were considered non-serotypeable. 

2.7 Quality Control 

Before assembling reads, all FASTQ files containing fewer than 100,000 reads were 

eliminated from the dataset. Once assembled, the Galaxy assemblystats tool v1.0.1 was used to  
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Table 3  NCBI accession numbers of GenBank sequences, and locations of H. influenzae 
serotype specific genes used in the cps alignment serotyping method. 
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   Location 
Serotype Gene Accession Start End 

 
 
a 
 

acs1 Z37515.2 270 1694 
acs2 Z37515.2 1712 2827 
acs3 Z37515.2 2838 5207 
acs4 Z37515.2 5221 5577 

 
 

b 
 

bcs1 AF549213.1 4060 5484 
bcs2 AF549213.1 5502 6617 
bcs3 AF549213.1 6632 10279 
bcs4 AF549213.1 10296 12119 

 
c 
 
 

ccsA HM770876.1 840 1778 
ccsB HM770876.1 1789 5460 
ccsC HM770876.1 5471 6700 
ccsD HM770876.1 7473 7841 

 
 
 
 
 

d 
 
 
 
 

dcsA HM770877.1 695 1819 
dcsB HM770877.1 1837 3099 
dcsC HM770877.1 3183 6125 
dcsD HM770877.1 6138 8105 
dcsE HM770877.1 8109 9098 
dcs1 HQ424464.1 264 1388 
dcs2 HQ424464.1 1406 2668 
dcs3 HQ424464.1 2752 5694 
dcs4 HQ424464.1 5707 7674 
dcs5 HQ424464.1 7678 8667 

 
 
 
 
e 
 
 
 

ecs1 FM882247.1 4351 5475 
ecs2 FM882247.1 5493 6758 
ecs3 FM882247.1 6803 9778 
ecs4 FM882247.1 9775 11235 
ecs5 FM882247.1 11251 11973 
ecs6 FM882247.1 11982 12359 
ecs7 FM882247.1 12356 13915 
ecs8 FM882247.1 13926 14903 

 
f 
 

fcs1 AF549211.1 7744 8838 
fcs2 AF549211.1 8847 11510 
fcs3 AF549211.1 11503 12642 
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produce assembly statistics such as N50 contig length, total number of bases, number of 

contigs, etc. N50 contig length values were plotted in order to determine a threshold value to 

remove low quality genomes. To reduce the chances of incorporating contaminated sequences 

into the analysis, genomes with total sizes less than 90% (1.62 Mb) or more than 110% (2.07Mb) 

of the expected genome size of 1.8 Mb were removed. Finally, genomes with any partial or 

missing MLST genes were also removed from the dataset. 

Since genomes in this study were downloaded from multiple sources, some redundant 

genomes existed in the dataset. Custom python scripts were used to identify and remove 

duplicate genomes by matching NCBI biosample accession numbers. Additionally, some 

downloaded genomes were artificially transformed in a laboratory. A python script was used to 

query NCBI biosample pages for keywords to identify and remove transformed genomes from 

the dataset. Finally, the set of publicly available genomes that could not be assigned any 

serotypes were also removed from the dataset. 

2.8 Schema Creation 

2.8.1 Core Genome MLST 

2.8.1.1 PgMLST Schema Creation 

The pan-genome loci used in this study were defined using chewBBACA, (Comprehensive 

and Highly Efficient Workflow: BSR-Based Allele Calling Algorithm, v1.0; Silva et al. 2017). 

The program consists of a series of python scripts that first define either a whole genome or pan-

genome MLST schema, performs allele calling using a set of target genomes, and filters the 



28 
 

schema by removing low quality genomes and loci to define a core genome MLST schema 

(Figure 1). 

ChewBBACA scripts defined coding sequences (CDSs) for each genome with Prodigal 

(Hyatt et al. 2010), using a supplied H. influenzae training file. CDSs were filtered by discarding 

small sequences contained within larger sequences, as well as CDSs less than 200 bp in size. An 

all-against-all BLASTP was performed, and BLAST Score Ratios (BSR) are calculated by 

dividing the query-reference raw BLAST score with the BLAST score of the reference 

BLASTed against itself. Genes with a BSR of 0.60 or higher are considered homologs and 

grouped together under the same locus.  

2.8.1.2 Allele calling 

Alleles in a set of target genomes were detected using chewBBACA’s AlleleCall script. 

Prodigal is used to detect CDSs in the query genomes, which are in turn BLASTed against the 

pgMLST schema described in Section 2.8.1.1. In this approach, only CDSs are considered, and 

any newly identified alleles are automatically added to the database. Paralogous genes are 

detected and reported. Once all alleles have been called, an evaluation of the schema quality was 

produced using the SchemaEvaluator script. 

2.8.1.3 cgMLST schema definition 

The TestGenomeQuality script was used to detect low quality draft genomes in the pgMLST 

schema. The algorithm detects genomes with missing loci that are found in at least 95% of all 

other genomes using an adjustable exclusion threshold for the maximum number of allowable 

missing loci. The script ran with a maximum of 12 iterations, testing exclusion thresholds from 0 

to 125 missing loci, with step size of 5. 
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Figure 1 ChewBBACA workflow for defining a cgMLST schema.  
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The final cgMLST schema was defined using the ExtractCgMLST script, which filters the 

pgMLST schema and removes low quality genomes and loci. All paralogous genes and low-

quality genomes—both of which were detected in sections 2.8.1.2 and 2.7, respectively—were 

removed from the dataset. Additionally, the script accepts a cut-off parameter, p, to remove low 

quality loci. To create a true cgMLST schema, p was set to 1.0, meaning that all loci in the final 

schema must be present in 100% of the genomes.  

2.8.1.4 Cluster stability analysis 

The cgMLST schema was used to calculate globally optimal eBURST (goeBURST) (Edward 

J. Feil et al. 2004) clusters using Phyloviz (Nascimento et al. 2017), and all possible locus variant 

levels (nLV) were exported. Cluster stability analysis was used to determine the optimal 

threshold for clustering the cgMLST schema into core genome sequence types (CT). The 

algorithm calculated the adjusted Wallace coefficient (Severiano, Pinto, et al. 2011) and Shannon 

index (Keylock 2005) for neighbouring cluster thresholds. The adjusted Wallace coefficients and 

Shannon indices were plotted against the goeBURST nLV levels, along with the total number of 

clusters and percentage of singleton clusters at each threshold. 

2.8.2 Ribosomal MLST 

Ribosomal MLST loci were downloaded from PubMLST (https://pubmlst.org/hinfluenzae/), 

and prepared as a database using chewBBACA’s PrepExternalSchema script. Alleles were called 

for 304 genomes that were in the final cgMLST schema, as described in section 2.8.1.2. To 

define a final rMLST schema, no genomes were selected for removal, and a p value of 1.0 was 

used to filter low quality alleles. Clusters at the single locus variant (SLV) level were generated 
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using Phyloviz (Nascimento et al. 2017), and ribosomal sequence types (rST) were assigned in 

sequential order for all profiles. 

2.8.3 Minimum Spanning Trees 

Isolate relationships were visualized using profile data from the three generated MLST 

schemas. Full minimum spanning trees for the 7-gene MLST scheme, the rMLST scheme and 

the cgMLST scheme were generated using Phyloviz Online (Ribeiro-Gonçalves et al. 2016). 

Isolate data was used to annotate tree nodes using serotype information. Both the 7-gene MLST 

and rMLST schemas were visualized using SLV, whereas the cgMLST schema was generated 

using locus variants level 25. 

2.9 Typing Schemes Congruence Analysis 

Congruence analysis was performed using Comparing Partitions 

(http://www.comparingpartitions.info). This web tool calculates a variety of indices and 

coefficients that are most commonly used in the analysis and evaluation of typing schemes. In 

this study, Simpson’s index of diversity, adjusted Rand coefficient and the adjusted Wallace 

coefficient were calculated to discern the discriminatory power and congruence of serotyping, 

the 7-gene MLST, rMLST and cgMLST schemes. 

2.9.1 Simpson’s Index of Diversity 

The Simpson’s index of diversity (D) (Hunter and Gaston 1988) was used to test the 

discriminatory power of typing methods. D can be calculated for each typing method as follows: 

𝐷𝐷 = 1 −  
1

𝑁𝑁(𝑁𝑁 − 1) �𝑛𝑛𝑖𝑖(𝑛𝑛𝑖𝑖 − 1)
𝑆𝑆

𝑖𝑖=1
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where N is the total number of strains, S is the number of partitions in the typing scheme, and 

ni is the number of strains in the ith partition. The index calculates the probability of two strains 

chosen at random belonging to two different partitions. A 95% confidence interval was 

calculated as described by Grundmann et al. (2001) as follows: 

𝐶𝐶𝐶𝐶 = �𝐷𝐷 − 2�𝜎𝜎2,𝐷𝐷 + 2�𝜎𝜎2� 

and the variance (σ 2) is calculated as follows: 

𝜎𝜎2 =  
4
𝑛𝑛

 ��𝜋𝜋𝑖𝑖3 − ��𝜋𝜋𝑖𝑖2�
2
� 

where πi is the frequency of strains in the ith partition (e.g. 𝑛𝑛𝑖𝑖 𝑁𝑁⁄ ).. Since the Simpson’s index 

is measured using a sample of H. influenzae genomes, the index may not be representative of the 

H. influenzae population due to sample variability. Calculating the confidence intervals aims to 

test the reliability of the index. In addition to the CI calculation described above, the the 95% 

confidence intervals were also calculated using the jackknife approach (Severiano, Carriço, et al. 

2011). The jackknife approach is a resampling approach that leaves out one strain in each 

resample and calculates a confidence interval. The jackknife approach performs better than other 

resampling techniques and CI calculations, hence it was used to estimate the CI for all 

coefficients used in this study. 

 

2.9.2 Adjusted Rand Coefficient 

The Rand coefficient evaluates the concordance between two clustering methods (Rand 

1971), however, it does not consider that two entities can be clustered together by chance. The 
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adjusted Rand coefficient addresses this issue, and was used in this study in a pairwise manner to 

compare all four typing schemes (Hubert and Arabie 1985). The adjusted Rand coefficient is 

calculated by first generating a mismatch matrix from contingency tables (e.g. Table 4). 

The adjusted Rand coefficient is calculated as follows: 

𝐴𝐴𝐴𝐴 =  
𝑎𝑎 + 𝑑𝑑 −  𝑛𝑛𝑐𝑐

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑 −  𝑛𝑛𝑐𝑐
 

and, 

𝑛𝑛𝑐𝑐 =  
𝑁𝑁(𝑁𝑁2 + 1) − (𝑁𝑁 + 1)∑𝑛𝑛𝑖𝑖2 − (𝑁𝑁 + 1)∑𝑛𝑛𝑗𝑗2 + ∑∑

𝑛𝑛𝑖𝑖𝑖𝑖2
𝑁𝑁

2(𝑁𝑁 − 1)  

 where N is the total number of strains, ni is the number of strains in the ith cluster of 

typing scheme A, and nj is the number of strains in the jth cluster of typing scheme B. The 

jackknife resampling approach was used to calculate the 95% confidence intervals, and 

corresponding p-values. 

Table 4 A mismatch matrix between two typing schemes, A and B. Table adapted from Hubert and Arabie (1985) 

 Partition B 

Pa
rti

tio
n 

A Number of pairs In the same cluster In different clusters Sums 
In the same cluster a b a + b 
In different clusters c d c + d 

Sums a + c b + d M 

 

2.9.3 Adjusted Wallace Coefficient 

The Wallace coefficient is used to evaluate the congruence between two typing methods in a 

bi-directional manner (Wallace 1983). If two strains cluster together in the same partition using 
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typing method A, the coefficient represents the probability that the two strains will cluster in the 

same partition using typing scheme B. Given a mismatch matrix (e.g. Table 4), the Wallace 

coefficient for two typing schemes, A and B, is calculated as follows: 

𝑊𝑊𝐴𝐴→𝐵𝐵 =
𝑎𝑎

𝑎𝑎 + 𝑏𝑏
   ,   𝑊𝑊𝐵𝐵→𝐴𝐴 =

𝑎𝑎
𝑎𝑎 + 𝑐𝑐

 

where a, b, and c are entries in the mismatch table. The adjusted Wallace coefficient, proposed 

by Pinto, Melo-Cristino, and Ramirez (2008), improves this method by calculating the expected 

Wallace coefficient (Wi) assuming that classifications are independent, and by calculating a 

confidence interval. The adjusted Wallace coefficient is calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴→𝐵𝐵 =  
𝑊𝑊𝐴𝐴→𝐵𝐵 −𝑊𝑊𝑖𝑖(𝐴𝐴→𝐵𝐵)

1 −  𝑊𝑊𝑖𝑖(𝐴𝐴→𝐵𝐵)
 

where Wi is the expected Wallace coefficient. Wi is calculated using D, Simpson’s index of 

diversity for typing method B (𝑊𝑊𝑖𝑖(𝐴𝐴→𝐵𝐵) = 1 − 𝐷𝐷𝐵𝐵). A 95% confidence interval for the adjusted 

Wallace coefficient was calculated as described by Pinto, Melo-Cristino, and Ramirez (2008).  

𝐶𝐶𝐶𝐶 = �𝑊𝑊𝐴𝐴→𝐵𝐵 − 2�𝜎𝜎𝐴𝐴→𝐵𝐵 ,𝑊𝑊𝐴𝐴→𝐵𝐵 + 2�𝜎𝜎𝐴𝐴→𝐵𝐵� 

and,  

𝜎𝜎𝐴𝐴→𝐵𝐵 =
 ∑ �𝑎𝑎𝑖𝑖(𝑎𝑎𝑖𝑖 − 1)�

2
 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵,𝐴𝐴𝑖𝑖

𝑟𝑟
𝑖𝑖=1

(∑ 𝑎𝑎𝑖𝑖(𝑎𝑎𝑖𝑖 − 1)𝑟𝑟
𝑖𝑖=1 )2  

Where ai is the sum of row i, and 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵,𝐴𝐴𝑖𝑖
 is the variance of Simpson’s index of diversity of B 

within cluster Ai. The jackknife approach was also used to calculate the 95% confidence 

intervals and corresponding p values. 
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2.9.4 Hypotheses 

H0: The 7-gene MLST, rMLST and the cgMLST schemas can all have the same 

discriminatory power as typing methods for H. influenzae. 

H1: The cgMLST schema has a higher discriminatory power in the typing of H. influenzae 

compared to the 7-gene MLST and rMLST typing schemas. 

2.10 Single Nucleotide Variant Analysis 

2.10.1 H. influenzae Population Structure 

Single nucleotide variants (SNVs) were detected in all genomes used in this study using the 

Galaxy SNVPhyl v1.0.1b workflow (Petkau et al. 2017), with the NTHi strain 2019 (accession 

CP008740) as a reference. SNVPhyl was run using a minimum coverage of 15 X, a minimum 

mean mapping quality of 15, SNV abundance ratio of 0.75 and a SNV density threshold of 25 

over a 400 bp search window. The phylogenetic tree was visualized using EMBL’s Interactive 

Tree of Life (iToL) website (Letunic and Bork 2016). Tree leaf nodes were coloured based on 

each strain’s serotypes, and additional tracks were added outside of the tree to visualize the 7-

gene MLST, rMLST, and cgMLST clusters. 

Neighbour joining trees were generated using the whole genome SNV data, the cgMLST, 

rMLST and 7-gene MLST schemas. Either the SNV table or the MLST profiles were used to 

calculate distance matrices using a custom R script, and neighbour joining trees were built using 

the R package Ape (Paradis, Claude, and Strimmer 2004). Trees were ladderized and plotted – 

using ladderize() and plot(), respectively, and tree tips were coloured using serotype data. To 

compare tree topographies, the SNV tree was compared against each of the MLST trees, and 



37 
 

tanglegrams were generated using Dendroscope v3.539 (Huson and Scornavacca 2012). Final 

tanglegrams were visualized using Ape’s cophyplot.  

2.10.2 Recombination Detection in the cps Region 

A phylogenetic tree was produced by running the Galaxy SNVPhyl workflow v1.0.1 on reads 

from the 35 Canadian Hia strains and 1 Hic strain, using the Hia reference NML-Hia-1 

(accession number CP017811.1). The phylogeny based on whole genome sequences was 

produced using a minimum coverage of 30, minimum mean mapping quality of 30, SNV 

abundance ratio of 0.75 and a SNV density threshold of 50 over a 500 bp search window. To 

produce a phylogenetic tree based only on the cps region of Hia, first, the full cps region 

sequence was extracted from the Hia reference, NML-Hia-1 (1470003:1501642). Hia reads were 

then mapped against the cps reference sequence with bowtie2 (Langmead and Salzberg 2012). 

Reads that mapped to the cps region were extracted using samtools v1.5 (Li et al. 2009) and 

seqtk v1.2 (https://github.com/lh3/seqtk). Phylogeny based on the cps region was produced with 

SNVPhyl using a minimum coverage of 30, minimum mean mapping quality of 30, SNV 

abundance ratio of 0.75 and a SNV density threshold turned off. Both the whole genome and the 

cps region trees were rooted using the Hic strain as an outgroup. To visualize the differences in 

tree topologies, a tanglegram was produced using Dendroscope v3.5.9, and the trees were drawn 

using a custom R script using cophyplot() from the Ape package (Paradis, Claude, and Strimmer 

2004).  
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3.1 Whole Genome Sequencing 

3.2 Data Selection 

All 621 genomes used in this dataset were either sequenced in-house or downloaded from 

public sources, 488 of which were pair-end reads. A small number (55) FASTQ files were 

judged invalid due to having different number of reads in the forward and reverse directions and 

were removed from the dataset. The assembly of the 433 read sets was conducted using a Galaxy 

SPAdes pipeline. A group of 47 read sets failed to assemble using the SPAdes pipeline running 

FLASH, but were successfully assembled using a modified pipeline that skips the FLASH step. 

A small number of read sets (11) failed to assemble and were removed from the dataset, leaving 

555 H. influenzae draft genomes for further analysis. 

3.3 Quality Control 

To ensure the design of a high quality cgMLST schema is designed, a set of stringent quality 

criteria were used to eliminate low quality genomes from the dataset. All N50 contig lengths 

were scatterplotted (Figure 2). The distribution of N50 contig lengths has a strong negative skew, 

caused by a group of 18 closed genomes downloaded from PATRIC with N50 contig length 

values exceeding 1.8 million bp. Several genomes with extremely low N50 contig lengths were 

observed, followed by sudden increase – around 50,000 bp – and a plateau in values (mode = 

131,567 bp). All assemblies under 50,000 bp N50 contig length were judged to be low quality 

genomes and were removed from the dataset. In addition to N50 contig lengths, 5 other quality 

criteria were used, and 214 genomes were removed as detailed in Table 5. A total of 314 

genomes passed quality control and were used for all further analyses. 
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Table 5 The number of genomes eliminated from the study from not meeting the quality criteria 

Quality Criteria Number of failed genomes 
Duplicate genomes 67 

Transformed genomes 46 
N50 contig length < 50,000 95 

Size between 1620000 bp and 2070000 bp 60 
Invalid ST 73 

No serotype 145 
Total genomes removed 214 

 

3.4 Typing Schemes 

3.4.1 In Silico Serotyping 

For all genomes, in silico serotyping was done using two methods: 1) by sequence alignment 

of the cps region against reference serotypes, or 2) transitively assigned by MLST analysis 

against the PubMLST database. The performance of the in silico serotyping methods was tested 

using the 82 NML strains which have been traditionally serotyped in the laboratory, using both 

PCR and SAST. Using the alignment approach, 61 strains (74.4%) were correctly serotyped, 

while the PubMLST method correctly serotyped 76 strains (92.7%). Using both serotyping 

methods 61 (74.4%) strains were correctly serotyped. Of the 555 genomes tested, 410 strains had 

congruent serotype assignments, while 145 had inconclusive serotypes (Table 6). 
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Figure 2 Scatterplot of N50 contig lengths for 555 H. influenzae genomes. The dataset 

comprised of in-house sequenced genomes, reference genomes downloaded from PATRIC and 

raw reads downloaded from SRA. The scatterplot was used to define a minimum N50 contig 

length threshold of 50,000 bps. 
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Table 6 The number of strains in each serotype group. All strains were serotyped using the cps region and PubMLST data. 
Strains that had no metadata or inconsistent serotypes were excluded from the study (ND). 

Serotype Number of strains 
a 
b 
c 
d 
e 
f 

NT* 
ND** 

39 
42 
13 
7 
14 
19 
276 
145 

* Non-typeable 
** Not-determined  

 

3.4.2 Seven-gene MLST Schema 

All genomes were typed using the H. influenzae 7-gene MLST schema. Of the 555 genomes, 

73 were either missing one or more of the seven alleles, or a partial match was found, and 38 

were assigned a novel sequence type (ST). A total of 80 novel alleles and 33 novel STs were 

found. The 304 genomes that were included in the final cgMLST schema were partitioned into 

144 different STs. 

3.4.3 Core genome MLST Schema 

A pgMLST schema was defined by identifying all CDSs in all 314 genomes, and clustering 

orthologous genes. The schema had 3824 loci, 876 of which had only one allele (Figure 3). 

Allele mode size was calculated for each locus, which ranged from 165 bp to 9249 bp (Figure 4), 

with most loci falling between 165 bp and 1500 bp. 

To filter out low quality genomes, the number of missing loci in each genome was examined. 

An exclusion threshold of 20, a parameter to determine the maximum number of loci allowed to 

be missing from any given genome, was chosen by examining the effects of different threshold 
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values on cgMLST schemas (Figure 5). Ten genomes were filtered out by this method and were 

removed from the final cgMLST. Additionally, 135 paralogous genes were identified during 

allele calling, and the loci were also removed from the final schema. 

To define a robust cgMLST schema, low quality loci should be removed. The minimum 

percentage of genomes missing any given locus (p) is used to remove accessory loci. To 

determine the optimal parameter to use, schemas were generated using 8 different p values (65, 

70, 75, 80, 85, 90, and 95%). Minimum spanning trees for each percentage were generated 

(Figure 6). Tree topographies remain relatively stable between 90% and 100% p values, and start 

to diverge for values lower than 85%. The final cgMLST scheme was defined using a p value of 

100%, and had 980 loci.  

A cluster stability analysis was conducted to partition the 980 loci into cgMLST types (CTs). 

Clusters are generated using every possible locus variant level (i.e. from SLV up to nLV). At the 

SLV level, the 304 genomes were clustered into 257 groups. The adjusted Wallace coefficient 

and the Shannon diversity index were calculated for every pair of neighbouring clusters. The 

plotted coefficients (Figure 7) reveal that the clusters stabilize around a threshold of 25, which 

was used for the assignment of CTs. The cgMLST schema was partitioned into 204 different CTs 

(Table 7). 

Table 7 The number of loci and the number of distinct clusters in the 7-gene MLST, rMLST and cgMLST schemas. 

Schema 7-gene MLST rMLST cgMLST 
Number of loci 7 49 980 
Number of clusters 204 148 144 
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Figure 3 Frequencies of loci sizes, based on the number of alleles in each locus. 
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Figure 4 Frequencies of allele mode sizes 



48 
 

 

 



49 
 

 

 

 

 

 

 

Figure 5 Number of loci and number of genomes in every exclusion threshold level. The number 

of alleles found in 95%, 99%. 99.5% and 100% of genomes are shown. 
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Figure 6  Core genome MLST minimum spanning trees generated using the goeBURST 

algorithm using 8 exclusion threshold levels, ranging from 0.65 to 1.0. A total of 304 genomes 

were used to generate the cgMLST schema. 
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Figure 7 Cluster stability analysis of the cgMLST goeBURST clusters at 257 different locus 

variant levels. The adjusted Wallace coefficient and Shannon index was calculated for each pair 

of neighbouring clusters. The coefficients, number of clusters and percentage of singletons were 

plotted against all possible locus variant levels. 
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3.4.4 Ribosomal MLST Schema 

A ribosomal protein MLST schema was defined based on a 53-locus schema downloaded 

from PubMLST. The chewBBACA workflow was used to call alleles for all 304 genomes that 

were in the final cgMLST schema. No paralogous genes were detected, and no genomes were 

removed from the dataset. Alleles were required to be present in 100% of genomes. Four alleles 

did not meet this requirement, and were removed from the schema. The final rMLST schema had 

49 loci, and partitions 304 genomes into 148 ribosomal sequence types (rSTs). 

3.4.5 Minimum Spanning Trees 

Minimum spanning trees were built using the goeBURST algorithm for each of the MLST 

schemas (Figures 8, 9, and 10). The cgMLST schema was additionally clustered at nLV level 25 

to reflect the different CTs. As expected, NT strains show the largest amount of diversity 

compared to the serotypeable strains in all three trees. While serotypes c, d, e and f were all 

clustered together in the cgMLST minimum spanning tree, serotype a strains were grouped into 

two distinct clades; the majority of strains clustered closer to serotypes c and d, while a smaller 

number of strains clustered more closely with serotypes e and f. Most serotype b strains were 

clustered among NT strains, except for 3 strains that were either clustered with Hia or Hic. 

Despite a few similarities in clustering patterns, the minimum spanning trees produced by the 

rMLST schema and 7-gene MLST schema differ in topology, compared to the cgMLST tree. In 

the rMLST tree, Hia and Hib are clustered near each other; however, this isn’t supported by 

either the 7-gene MLST or the cgMLST trees. In the 7-gene MLST tree, Hib and Hie are most 

closely related, while the rest of the serotypes form distinct clusters among the NTHi strains. 
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3.5 Typing Methods Congruence Analysis 

To evaluate the congruence among typing schemes used in this study, the Simpson’s index of 

diversity (D), the adjusted Rand coefficient (AR), and the adjusted Wallace coefficients (AW) 

were calculated, using the jackknife resampling approach to calculate confidence intervals. 

Simpson’s index of diversity calculates the probability that two randomly selected strains 

will be typed in two different partitions. The 7-gene MLST, rMLST and cgMLST all have high 

values for the Simpson index, with the cgMLST being slightly higher than the 7-gene MLST and 

rMLST schemas (Table 8). The confidence interval for all three MLST methods overlap, 

meaning that the null hypothesis cannot be rejected, and all three methods have the same 

discriminatory power. Interestingly, p values produced by the jackknife approach indicates that 

the differences in values between the cgMLST and all other typing methods, to be statistically 

significant (p < 0.001, using α=0.05). Therefore, the null hypothesis that the cgMLST has the 

same discriminatory power as serotyping, the 7-gene MLST, and the rMLST schema, can be 

rejected. On the other hand, differences between the rMLST and the 7-gene MLST schemas were 

found to be to be statistically insignificant (p = 0.081; using α=0.05), indicating that the 

discriminatory power between the two methods is likely equal.  

Table 8 Simpson's diversity indices for serotyping, 7-gene MLST, rMLST and cgMLST schemas. The confidence intervals 
were calculated using the jackknife resampling approach 

Typing scheme Number of partitions (S) Simpson’s ID (D) Confidence Interval 
Serotype 7 0.576 (0.515 – 0.636) 

7-gene MLST 144 0.989 (0.986 – 0.992)* 

rMLST 148 0.986 (0.982 – 0.991)* 

cgMLST 204 0.993 (0.990 – 0.996)* 

* Overlapping confidence intervals at 95% 
 

 



57 
 

 

 

 

 

 

 

 

Figure 8 Minimum spanning tree generated using the cgMLST schema of 304 H. influenzae 

isolates. Tree nodes were clustered at locus variant level 25, and coloured by serotype. 
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Figure 9 Minimum spanning tree generated using the rMLST schema of 304 H. influenzae 

isolates. Tree nodes were coloured by serotype. 
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Figure 10 Minimum spanning tree generated using the 7-gene MLST schema of 304 H. 

influenzae isolates. Tree nodes were coloured by serotype. 
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The adjusted Rand coefficient calculates the concordance between two typing methods. The 

highest level of concordance was found between the 7-gene MLST scheme and the rMLST 

scheme (Table 9). Since at 95% the confidence intervals overlap, we can’t reject the hypothesis 

that the 7-gene MLST scheme is as congruent with the cgMLST scheme as the rMLST schema 

(p = 0.997). 

Table 9 Adjusted Rand coefficient and 95% confidence intervals for serotyping, 7-gene MLST, rMLST and cgMLST 
schemas 

Typing Scheme Serotype 7-gene MLST rMLST cgMLST 

Serotype     
 

7-gene MLST 0.028 
(0.015 – 0.040)¶    

rMLST 0.035 
(0.016 – 0.051)¶ 

0.729 
(0.632 – 0.827)¥   

cgMLST 0.017 
(0.007 – 0.028)¶ 

0.649 
(0.527 – 0.781)¥ 

0.649 
(0.526 – 0.782)¥  

¥ ¶ Overlapping confidence intervals at 95% 
 

Finally, the adjusted Wallace coefficient was calculated for all typing pairs (Table 10). If two 

strains are clustered in the same cluster in the cgMLST schema, there is 86.7% chance of the two 

strains also clustering in the same ST, however in the reverse situation, the probability is only 

51.9%. In addition, the 95% confidence intervals do not overlap, meaning that the null 

hypothesis is rejected (p < 0.001). Similar comparisons between other typing methods revealed 

that all MLST schemes are more discriminatory than serotyping (p < 0.001) and cgMLST is 

more discriminatory than rMLST (p < 0.001). However, the 95% confidence interval of the 7-

gene MLST and rMLST schemas overlap, meaning that both methods have equal discriminatory 

power (p = 0.044). 
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Table 10 Adjusted Wallace Coefficients and 95% confidence intervals using serotyping, 7-gene MLST, rMLST and 
cgMLST schemas 

Typing Scheme Serotype 7-gene MLST rMLST cgMLST 

Serotype - 0.014* 

(0.008-0.021) 
0.018* 

(0.010-0.026) 
0.009* 

(0.003-0.015) 

7-gene MLST 0.952* 

(0.902-1.000) - 0.816 

(0.741-0.891) 
0.519* 

(0.433-0.604) 

rMLST 0.944* 

(0.882-1.000) 
0.659 

(0.549-0.769) - 0.481* 

(0.373-0.589) 

cgMLST 0.977* 

(0.950-1.000) 
0.867* 

(0.740-0.994) 
0.997* 

(0.993-1.000) - 
* Significance at p < 0.001 with reciprocal comparisons 

 

3.6 Single Nucleotide Variant Analysis 

3.6.1 H. influenzae Population Structure 

Single nucleotide variant analysis was performed with SNVPhyl, using all 304 genomes in 

the final cgMLST schema. A total of 275,433 SNVs were detected among all H. influenzae 

genomes, however, after filtering, the final phylogenetic tree was generated using only 26,888 

SNVs. A circular phylogenetic tree was generated, and annotated by using MLST-based schemes 

clusters, and serotype information (Figure 11). There are two distinct Hia strains, which are 

consistent with the two clusters found in the cgMLST schema minimum spanning tree. However, 

unlike the cgMLST minimum spanning tree, Hia and Hib are clustered together with serotypes c 

and d. Similarly, serotype f and e are clustered along with the smaller Hia group, and one Hib 

strains. Finally, NTHi strains ERR125065 and ERR125097 are clustered with serotypes f and b, 

respectively. 
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Figure 11 Phylogenetic tree based on SNV-data. Each isolate label was colourized using 

serotype data. Tracks for cgMLST, rMLST and 7-gene MLST clusters were plotted around the 

tree. 

  



66 
 

 

 

  



67 
 

Distance matrices using both the SNV data and MLST profile data were calculated, and 

neighbour joining trees were produced. A neighbour joining tree (NJT) for each method was 

generated, and each node tip coloured using serotype data (Supplementary Figure 1). The NJT 

produced from the SNV data was compared to NJ trees generated from all allele profile data 

produced from each of the MLST schemas. The 7-gene MLST tanglegram (Figure 12) shows the 

least amount of concordance, compared to the rMLST (Figure 13) and the cgMLST tanglegram 

(Figure 14). NTHi strains are more organized in the cgMLST tanglegram, compared to the 7-

gene MLST tanglegram, and more clusters were kept intact, even if they moved around the tree. 

3.6.2 Recombination Detection in the cps Region 

Single nucleotide variant analysis was performed using the whole genome of Hia, as well as 

the cps region to uncover the amount of recombination in the cps genes. The whole genome SNV 

analysis detected 111058 total SNVs, and the phylogenetic tree was build using a total of 77318 

SNVs. On the other hand, 95 SNVs were detected in the cps region analysis, and 73 SNVs were 

used to build the phylogenetic tree. Topology differences of the two trees were visualized by 

producing a tanglegram (Figure 15). The tanglegram indicates that some recombination occurs in 

the cps region.  
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Figure 12 A tanglegram generated using neighbour joining trees of SNV data (left), and 7-gene 

MLST profiles (right). Tanglegram connections were colorized based on serotype data. 
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Figure 13 A tanglegram generated using neighbour joining trees of SNV data (left), and rMLST 

profiles (right). Tanglegram connections were coloured by serotype. 

  



71 
 

 

 

 

 

 

 

 

 

 

 

  



72 
 

 

 

 

 

Figure 14 A tanglegram generated using neighbour joining trees of SNV data (left), and 

cgMLST profiles (right). Tanglegram connections were coloured by serotype. 
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Figure 15 A tanglegram generated using neighbour joining trees of Hia whole genome SNV data 

(left), and SNVs only based on the cps region (right).  
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Chapter 4 Discussion 
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4.1 The Molecular Epidemiology of H. influenzae 

Haemophilus influenzae has been the cause of invasive and non-invasive disease globally. 

While this pathogen can be a commensal resident of the upper respiratory system, it can also be 

the cause of disease, mostly infecting young children and those with a weakened immune 

system. Historically, H. influenzae serotype b had been the cause of global outbreaks. A 

conjugate vaccine was introduced in the 1990’s that drastically reduced the incidence and 

prevalence of Hib disease. However, non-Hib strains, including NTHi, have since replaced Hib 

as the most prevalent cause of disease. While NTHi and Hif are most predominant in the general 

population, Hia strains have been thriving in the Indigenous populations of North America and 

Australia. The population structure and diversity of H. influenzae is not fully known.  

To assist in the epidemiological investigations of H. influenzae, and to research potential 

vaccines for non-Hib strains, it is essential to discern the population structure, and to develop a 

scheme for typing this pathogen. Whole genome sequencing has emerged as a powerful tool for 

surveillance and molecular typing of bacterial pathogens. In this study, I hypothesize that whole 

genome sequencing can be used to develop a cgMLST schema for the typing of H. influenzae. I 

also hypothesize that the cgMLST schema is concordant with existing molecular typing 

techniques, and has higher discriminatory power than existing methods. 

4.1.1 Data Selection and Quality Control 

To develop a typing scheme, a large dataset is optimal to ensure that the entire species is 

represented. In this study, only a set of 83 in-house sequenced genomes were available, and only 

serotypeable strains were represented, mostly serotypes a and b. To increase the size of the 

dataset, all publicly available genomes were downloaded either from SRA or PATRIC. While 
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genomes sequenced at the NML were high quality genomes, most of the reads downloaded from 

SRA or PATRIC were low quality and did not meet our minimum quality criteria. In contrast to 

the 7.2% of NML-sequenced genomes that were removed from the dataset, 40.6% of PATRIC 

genomes and 47% of SRA genomes were eliminated, either due to low quality or missing 

serotype or sequence type information. Unfortunately, this is a significant limitation for publicly 

available data. 

4.1.2 The in silico Serotyping of H. influenzae 

Another factor to consider is the evaluation of a new typing scheme. Typically, this 

evaluation is done by comparing the method’s partitions to available epidemiological and 

outbreak data. In addition to the low quality, virtually no metadata was available for the publicly-

available strains. For this reason, in silico serotyping was done to provide a starting reference for 

schema evaluation. Serotyping is traditionally done in a laboratory using either SAST or PCR, 

and there are currently no validated methods for in silico serotyping of H. influenzae. Two 

methods were used to perform in silico serotyping: 1) the cps region alignment method, and 2) 

the MLST method.  

Using a set of 82 strains that were traditionally serotyped at the NML, the MLST method 

outperformed the cps alignment method. Using the MLST method, 92.7% of strains were 

correctly serotyped, but only 74.4% of strains were correctly typed using the cps alignment 

method. However, since neither method has been validated outside of this work, and the sample 

size is relatively small, consensus from both methods were used to serotype the full dataset, and 

genomes with conflicting serotype assignments (n = 145) were removed.  
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4.2 Development and Evaluation of the cgMLST Schema 

In the present study, a core genome MLST schema was developed and validated as a 

potential typing method for H. influenzae. To define a high-quality schema, stringent quality 

criteria were set to eliminate low quality genomes, or genomes with missing information (Table 

5). Since the 7-gene MLST ST designations were essential for evaluating the cgMLST schema, 

all 555 genomes in the dataset were typed in silico, and any genomes missing a ST or having 

partial matches to existing alleles were removed from the dataset (n = 73). In addition to the 

MLST criteria, other criteria were also used to filter low quality genomes. For instance, genomes 

with a N50 contig length of 50,000 bp or less were removed (n = 95), genomes under minimum 

size of 1.62 Mb or over a maximum size of 2.07 Mb were removed (n = 60), and laboratory 

transformed genomes were also removed (n = 46). Finally, due to obtaining sequences from 

multiple sources, some duplicated genomes were found in the dataset (n = 67), and were 

removed by cross-referencing the biosample accession numbers.  

The pgMLST schema was defined using 314 genomes that passed quality control using 

chewBBACA. The schema is built by first identifying CDSs in all genomes, and using a 

recommended BSR value of 0.6 to cluster alleles into loci (n = 3824). To define a high quality 

cgMLST, only genomes missing less than 20 loci—which are present in at least 95% of all 

genomes—were used for schema definition. Paralogous genes were identified (n = 135), and 

removed from the pool of loci. Finally, a minimum cut-off was set to ensure that loci that are 

missing from a large proportion of the genomes are not included in the dataset. Minimum 

spanning trees were built using eight cut-offs, ranging from 65% minimum percentage of 

genomes having a given locus to 100% (Figure 6). While the tree topology was observed to 
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stabilize around a value of 85%, ultimately, a cut-off of 100% was chosen to define a true 

cgMLST schema. The final cgMLST schema is comprised of 980 loci, out of an average of 

1,800 genes typically found in the H. influenzae genome (Hogg et al. 2007; Kappler et al. 2017). 

The schema was developed using 304 genomes, which were partitioned into 204 CTs. 

To evaluate the cgMLST schema, the 7-gene MLST and rMLST schemas were used to 

compare the concordance and discriminatory power between all three methods. A 53-locus 

rMLST schema was downloaded from PubMLST, and alleles were called in the 304 genomes in 

the final cgMLST schema. However, some loci were missing from 1 or more genomes, and the 

final rMLST schema only had 49 loci. The 7-gene MLST schema partitioned the 304 genomes 

into 144 STs, while the rMLST schema had 148 partitions. The concordance and discriminatory 

power of all three schemas, as well as serotyping, were compared by calculating the Simpson’s 

index, the adjusted Rand coefficient and the adjusted Wallace coefficient (Table 8, 9, and 10). 

The validation of the cgMLST schema was complicated by the lack of epidemiological data 

associated with the publicly available strains. Epidemiological data could be used to compare the 

concordance between the schema clustering and outbreak data, such as strains grouped by 

geographical location or a specific period of time. This data can also be used to determine 

clustering thresholds when defining the schema. In the absence of this data, the schema was 

instead evaluated by using statistical methods to determine the discriminatory power of the 

typing schema, as well as comparisons for concordance with the 7-gene MLST schema, rMLST 

schema, and SNV-based phylogeny.   

The Simpson diversity index (Table 8), the adjusted Rand coefficient (Table 9) and the 

adjusted Wallace coefficient (Table 10) were calculated for all three schemas (Severiano, Pinto, 
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et al. 2011; Hunter and Gaston 1988; Rand 1971). Both the Simpson index and the adjusted Rand 

coefficient found all three MLST schemas to be equally discriminatory. The Simpson’s index 

measures the probability that two strains picked at random will belong to the same cluster. While 

this method is often used to measure the discriminatory power of typing methods, Simpson’s 

index is heavily weighted by the most abundant type, and rare types have very little effect on the 

index (R. H. Whittaker 1972). For instance, in the cgMLST schema, CT-1 is the most abundant 

type, containing only serotype a strains, followed by CT-2 containing only NTHi strains. The 

Simpson index for the cgMLST will, therefore, be heavily weighted by those two groups, while 

other CTs may not be properly represented by the index. This bias is accentuated by the uneven 

serotype representation in the dataset. Curiously, p-values calculated using the jackknife 

resampling approach indicated that the discriminatory power of the cgMLST schema is 

significantly higher (p < 0.001) than the 7-gene MLST and rMLST schemas, despite the slight 

overlapping between the 95% confidence intervals among the groups. 

The adjusted Rand score measures the overall concordance between two methods, but 

provides no directionality, i.e. the concordance of schema A to schema B is the same as the 

concordance of schema B to schema A. The 7-gene MLST and rMLST schemas have the highest 

adjusted Rand score, indicating high congruence between the two methods. The cgMLST 

schema, on the other hand, had a lower adjusted Rand score compared to the 7-gene MLST and 

rMLST schemes, however, this score does not indicate which of the methods has the higher 

discriminatory power, since the, the coefficient is not directional. In contrast, the adjusted 

Wallace coefficient is more informative, since it is directional, and can determine which of the 

two methods being compared is more discriminatory. Hence, the adjusted Wallace coefficient 

was calculated to show directional congruence. The results indicate that the cgMLST is 
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statistically a more discriminatory typing method compared to serotyping, the 7-gene MLST and 

the rMLST schemas. Taken together, these results reveal that while the cgMLST schema is not 

significantly congruent with the 7-gene MLST or the rMLST schemas, it is the most 

discriminatory typing method. 

To confirm the cgMLST schema’s discriminatory ability, a single nucleotide variants (SNV) 

analysis was performed using the SNVPhyl pipeline (Petkau et al. 2017). Since SNVPhyl is a 

highly validated method used for analysing bacterial population structure, the pipeline was used 

to estimate a phylogeny that most resembles the population structure of H. influenzae. Due to the 

diverse nature of H. influenzae, performing the SNV analysis was challenging. The SNVPhyl 

pipeline detects sequence regions with high SNV density, and masks those regions as it is an 

indication of possible recombination. Using a value between 2 bp and 20 bp for SNV density in a 

400 bp window resulted in phylogenetic trees with poor support since they were constructed 

using only a handful of SNVs. On the other hand, using values over 30 bp resulted in an analysis 

using a large number of SNVs—over 150,000—and phylogenetic trees were not built due to the 

excessive computational requirement requirement. A value of 25 bp over a 400 bp window was 

chosen, and a phylogenetic tree was generated using 26,888 SNVs. 

The SNV phylogeny (Figure 11) highlights the discriminatory ability of the cgMLST 

schema. Most of the 7-genome MLST schema STs were further subdivided by the cgMLST 

schema, while the reverse was not true, with some minor exceptions. Additionally, tanglegrams 

between each of the MLST-based schemas and the SNV-based neighbour joining trees were 

plotted. Although the tree topography of the cgMLST neighbour joining tree was different than 

that of the SNV-based tree, the same group of strains are seen clustered in both trees (Figure 14). 

In contrast, the 7-gene MLST tanglegram (Figure 12) reveals more scattering of strains, 
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particularly in non-typeable H. influenzae. The rMLST tanglegram (Figure 13) shows higher 

concordance to the SNV-based neighbour joining tree than the 7-gene MLST schema, but lower 

concordance compared to the cgMLST schema. Of all three tanglegrams, the cgMLST maintains 

the highest congruence against the SNV data, followed by the rMLST schema, and the 7-gene 

MLST schema.  

4.3 H. influenzae Population Structure 

The population structure of H. influenzae was investigated using minimum spanning trees. 

Trees were generated for the 7-gene MLST, rMLST and cgMLST schemas using the goeBURST 

algorithm (Figures 8, 9, and 10). Both the 7-gene MLST and rMLST were built using SLV, 

while the cgMLST schema was generated using a locus variant level 25. All three trees exhibited 

the same subclustering patterns for each of the serotypes, however, cluster placements on the tree 

differed among the three methods. The NTHi strains were the largest group in all three trees. 

Serotypes c, d e, and f each formed distinct clusters, while serotypes a and b strains each formed 

one large group, with a few strains scattered around the trees.  

The cgMLST tree had four distinct branches; one branch contained only NTHi strains, one 

branch contained Hib strains along with NTHi strains, one branch mostly had serotypes e and f, 

while the last branch held serotypes a, c and d. While most Hia strains clustered on the same 

branch as Hic and Hid, a small set of strains were clustered with the Hie strains. Similarly, Hib 

stains were clustered with Hic and Hie. This is a possible indication of serotype switching 

occurring amongst serotyepable strains. If true, this exposes a severe limitation of traditional 

serotyping in that it may not represent the true population structure of H. influenzae. 
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Additionally, all branches had NTHi strains, which is an indication that serotypeable strains may 

not have descended from a common ancestor, a finding supported by St. Geme et al. (1994a).  

The 7-gene MLST tree was also observed to have four distinct branches, however, the 

relationships between different clades did not correspond to the cgMLST tree. Serotype c and 

NTHi strains are found on one branch, Hid and NTHi found on another branch, Hib and Hie 

cluster together on the third branch, and Hia and Hif are grouped on the last branch. As in the 

cgMLST tree, some Hia strains are found clustered with Hif and Hib, while some Hib strains are 

found clustered with Hia and Hif. In contrast to the cgMLST and 7-gene MLST schemes, the 

rMLST tree had more ambiguous branches. Serotypes a and b were found to be grouped in close 

proximity, which contradicts the cgMLST and 7-gene MLST trees. However, there were some 

consistencies between the rMLST and the cgMLST trees. For example, Hif and Hie are grouped 

together, along with some Hia and Hib strains, and Hic and Hid were grouped on the same 

branch, also with some Hia and Hib strains.   

Ribosomal proteins are typically used in bacterial typing since there is little to no expected 

recombination in those proteins, which could be an advantage over other schemas. While 

recombinogenic loci are likely included in the cgMLST schema, the effects of these loci should 

be minimal since a large number of loci are used. Only 49 loci were used in the rMLST schema, 

which could account for the differences observed between the rMLST and the cgMLST schemas. 

In addition, the rMLST schema partitioned the 304 genomes into 148 partitions, only four more 

partitions than the 7-gene MLST schema. The discriminatory power and concordance of the 7-

gene MLST and the rMLST were found to be approximately similar with the Simpson index and 

the adjusted Rand coefficient, however, the adjust Wallace coefficient indicates that the 

discriminatory power of the 7-gene MLST schema is higher than that of the rMLST 
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schema,which is counterintuitive. These results are an indication that the rMLST schema is an 

questionable method for typing H. influenzae.  

Previous studies using MLEE found that Hia and Hib typically have different lineages, 

whereas serotypes c, d, e and f formed a monophyletic group (Ulanova and Tsang 2014). While 

serotypes a and b have different lineages according to the cgMLST minimum spanning trees, the 

remaining serotypes do not form a monophyletic group. In fact, even 7-gene MLST data 

contradicts the MLEE findings in the literature (Ulanova and Tsang 2014; Hardy, Tudor, and 

Geme 2003; Musser et al. 1988; Meats et al. 2003). These contradicting results could be an 

indication of the low discriminatory power, and corresponding inadequacy of MLEE as a typing 

scheme for H. influenzae, compared to the MLST schemas. 

Non-typeable H. influenzae forms a more diverse and recombinogenic phylogeny (Cody et 

al. 2003). The diversity of NTHi is further emphasised by the difficulties encountered when 

generating a SNV-based phylogeny. The SNV-based phylogeny indicates that the NTHi 

population is sub-divided into two distinct groups, consistent with what is described in the 

literature (Meats et al. 2003). In the SNV-based phylogeny, serotypes e and f were found to be 

clustered, along with a subset of Hia and Hib strains, which supports the findings from the 

cgMLST scheme minimum spanning tree. Serotypes a, b, c and d are grouped together. While 

the clustering of Hia, Hic and Hid is consistent with the cgMLST schema minimum spanning 

tree, the grouping of Hia and Hib contradicts the cgMLST tree topology. Since lenient 

parameters for masking recombination regions were used in SNVPhyl, the SNV-based 

phylogeny is likely affected by recombination. In contrast, using the entire genes as loci in the 

cgMLST schema likely masks recombination regions, which can account for the differences in 

tree topology between the cgMLST tree and the SNV-based tree. 
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4.4 Recombination in the Hia cps Region 

Serotype a disease has been on the rise, particularly in the Indigenous populations of North 

America. Due to the similarities in virulence factors between Hia and Hib, the concern over the 

outbreak-causing potential of Hia grows. Since the Hib conjugate vaccine does not protect 

against Hia, there is a need to research and develop a vaccine for this serotype to stem future 

outbreaks. Since a vaccine for Hia will likely target the cps region (Desai et al. 2014), a 

knowledge of the structure and diversity of the cps region is important. To determine whether 

there is recombination in the cps region of Hia, SNV-based analysis was performed using the Hia 

whole genome and the Hia cps region. Phylogenetic trees from both analyses were compared, 

and the two trees were found to have differing topologies (Figure 15), which may be an 

indication of recombination in the Hia cps region. This capsular diversity in Hia can present 

challenges in developing a vaccine against this serotype. If recombination is common in the cps 

region of Hia, then future vaccines based on the cps may not protect against all Hia strains, and 

selection pressures on the population may cause the vaccine to be eventually ineffective. 

4.5 Limitations of the Study 

A major limitation in this study is the limited number of isolates used to define the cgMLST 

schema. Since many isolates were downloaded from public databases, the quality of many of the 

reads downloaded from SRA was low. Despite having an initial dataset of 555 genomes, only 

304 passed all the quality criteria. Core genome MLST schemas defined for other organisms 

typically include between 1000 and 5000 isolates (Moura et al. 2016; Yoshida et al. 2016; 

Santona et al. 2016; Kluytmans-Van Den Bergh et al. 2016; Zhou et al. 2017). Additionally, not 

all subgroups were proportionately represented in the dataset; non-typeable strains made up 

62.8% of all genomes in the schema, and serotypes c, d and e made up 3.3%, 2.3% and 3.6%, 
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respectively. Due to this imbalance, the cgMLST schema may not be representative of the true 

diversity of H. influenzae.  

Another limitation is the lack of metadata or epidemiological data for most of the genomes 

used to define the cgMLST schema. Without this data, evaluation of the schema was done using 

only statistical methods and comparisons of tree topologies. Furthermore, clustering of the 

cgMLST was done using alternative methods, such as the cluster stability method. Serotyping of 

genomes missing data was done using two in silico methods. While the cps method could 

potentially be the most accurate, since it relies on identifying the serotype-specific genes in the 

cps region, the method has limitations. For instance, the presence of serotype-specific genes does 

not necessarily indicate that the strain is capsulated, since spontaneous capsule loss has been 

reported in H. influenzae. In addition, attempting to serotype draft genomes could be problematic 

if the cps region is not covered by sequencing – a false NTHi could be assigned to a capsulated 

strain.   

4.6 Conclusions and Future Direction 

In this thesis, we have shown that cgMLST schema has tremendous potential to become a 

typing scheme for H. influenzae. The 980-locus cgMLST schema has a much higher 

discriminatory power in H. influenzae typing compared to the 7-gene MLST schema. If 

validated, this schema can replace multiple traditional typing methods that can be tedious and 

time consuming, and enhance the workflow for studying outbreaks. 

 To define a more robust schema, more high-quality H. influenzae isolates need to be 

sequenced, and more epidemiological data should be available to guide with validation and 

interpretation. Additionally, a larger number of serotypeable strains should be used to ensure that 
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the diversity of H. influenzae is properly represented. In addition to the increased discrimination, 

the cgMLST schema can be used for in silico serotyping of H. influenzae. The cgMLST schema 

had a 97.7% chance of correctly assigning a serotype, as opposed to the 95.2% of the 7-gene 

MLST schema. The cgMLST schema has the potential for serotyping H. influenzae strains, 

similar to the in silico serotyping method being used for Salmonella (Yoshida et al. 2016), 

however, more studies and validation are required. Future studies should also evaluate the 

schema’s ability to distinguish between Hib, Hib- and NTHi strains. It has been shown that H. 

haemolyticus is often mistaken with NTHi, due to the low discriminatory power of current 

methods (Nørskov-Lauritsen 2009). The cgMLST schema’s potential to distinguish between H. 

influenzae and H. haemolyticus should be studied and evaluated. 
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Appendix 
 

 

Supplementary Figure 1 Neighbour joining trees based on the a) SNV data, b) cgMLST schema, c) rMLST 
schema, and d) 7-gene MLST schema. The branch tips were colorized using serotyping information 


	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Abbreviations
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 General Introduction
	1.2 Bacteriology
	1.2.1 Features and Growth Requirements
	1.2.2 The Polysaccharide Capsule

	1.3 Typing Methods
	1.3.1 Multilocus Sequence Typing
	1.3.2 Serotyping

	1.4 Epidemiology and Pathogenesis
	1.5 H. influenzae Population Structure
	1.6 Hib Conjugate Vaccine
	1.7 Whole Genome Sequencing Approaches
	1.7.1 Sequencing Technologies
	1.7.2 Extended MLST Schemas

	1.8 Rationale and Objectives
	1.8.1 Objectives
	1.8.2 Hypotheses


	Chapter 2 Methods
	2.1 Bacterial Isolates
	2.2 Whole Genome Sequencing
	2.3 Publicly Available Data
	2.4 WGS Assembly
	2.5 Seven-gene Multi-Locus Sequence Typing
	2.6 Serotyping
	2.6.1 Slide Agglutination and PCR
	2.6.2 cps Alignment Serotyping
	2.6.3 MLST Serotyping

	2.7 Quality Control
	2.8 Schema Creation
	2.8.1 Core Genome MLST
	2.8.1.1 PgMLST Schema Creation
	2.8.1.2 Allele calling
	2.8.1.3 cgMLST schema definition
	2.8.1.4 Cluster stability analysis

	2.8.2 Ribosomal MLST
	2.8.3 Minimum Spanning Trees

	2.9 Typing Schemes Congruence Analysis
	2.9.1 Simpson’s Index of Diversity
	2.9.2 Adjusted Rand Coefficient
	2.9.3 Adjusted Wallace Coefficient
	2.9.4 Hypotheses

	2.10 Single Nucleotide Variant Analysis
	2.10.1 H. influenzae Population Structure
	2.10.2 Recombination Detection in the cps Region


	Chapter 3 Results
	3.1 Whole Genome Sequencing
	3.2 Data Selection
	3.3 Quality Control
	3.4 Typing Schemes
	3.4.1 In Silico Serotyping
	3.4.2 Seven-gene MLST Schema
	3.4.3 Core genome MLST Schema
	3.4.4 Ribosomal MLST Schema
	3.4.5 Minimum Spanning Trees

	3.5 Typing Methods Congruence Analysis
	3.6 Single Nucleotide Variant Analysis
	3.6.1 H. influenzae Population Structure
	3.6.2 Recombination Detection in the cps Region


	Chapter 4 Discussion
	4.1 The Molecular Epidemiology of H. influenzae
	4.1.1 Data Selection and Quality Control
	4.1.2 The in silico Serotyping of H. influenzae

	4.2 Development and Evaluation of the cgMLST Schema
	4.3 H. influenzae Population Structure
	4.4 Recombination in the Hia cps Region
	4.5 Limitations of the Study
	4.6 Conclusions and Future Direction

	References
	Appendix

