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Abstract
Current breast cancer screening, using X-ray mammography has various draw-

backs. These include the use of ionising radiation, the need for breast compression,

high cost, and the difficulty in implementing this technology in rural communities.

The prototype of a portable screening device is presented; its design is aimed at

addressing the aforementioned problems.

Eight machine learning classifiers have been trained to predict the presence or

absence of tumour tissue from numerical breast models. Scattered electromagnetic

field values have been used as inputs for the classifiers. The performances of the

algorithms are presented and discussed, with two of the classifiers achieving metrics

comparable to those obtained by current X-Ray mammography modalities [1].

Further improvements on classification features might be necessary to adapt the

proposed approach to clinical practice. To this extent, the use of time-domain infor-

mation arising from both breasts in the classification process will be considered in

the future.
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Contributions

The notable contributions of the author of this thesis are the following:

• Design and assembly of a portable Breast Microwave Sensing (BMS) system’s

preliminary prototype. A rotating chamber houses a transmitting antenna and

12 microwave sensors. This rotating device can interrogate a user’s breast with

a microwave pulse from five positions within a 48◦ arc.

• Implementation of a two-dimensional Method of Moments (MoM) electromagnetic

forward solver with parallel processing capabilities. An Application Program

Interface (API) was designed to compute the electromagnetic field scattered by

arbitrary cross-sections of tissues with known permittivity values. A database

of tissues and their dielectric properties was compiled by Hayden Banting under

the author’s supervision.

• Creation of five datasets comprised of numerical two-dimensional breast models.

Each dataset contains data from the electromagnetic scattered field produced

by the tissues of each breast model. One of the datasets includes homogeneous

contents, the remaining four include Fibroglandular Tissue (FGT). Two of the

datasets contain information from five positions of the rotating chamber, the

remaining three use one position.

• Application of eight Machine Learning (ML) classifiers on the five numerical

breast datasets. A comparison of the performances obtained by the classifiers

is presented.
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Chapter 1

Introduction

A 2017 study attributes 13% of all cancer-related deaths in Canadian women

during 2017 to breast cancer [2]. The same study claims that over 32,000 breast cancer

deaths have been avoided in Canada between the years of 1987 and 2012, their findings

suggest these deaths have been avoided due to the advances in breast cancer treatment

as well as the availability of breast cancer screening technologies. Other studies

have also shown a reduction in mortality associated with X-ray mammography breast

cancer screening [3, 4]. However, in the last decade other authors have challenged

these findings and have argued that the benefits associated with mammography are

still inconclusive [5, 6].

The reported incidence of breast cancer is higher in the developed nations, while

people in emerging economies have lower survival rates. For instance, the five-year

survival rate for breast cancer is less than 50% in Gambia, Uganda, and Algeria, while

it is nearly 90% in the United States [7]. In Manitoba, Canada, women from rural

areas have a cancer mortality-to-incidence rate of 60%, while their urban counterparts

2
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have a rate of 37% [8]. These statistics also suggest a link between survival rates and

availability of breast cancer screening technologies.

Aside from the existence of divided opinions regarding the benefits of X-ray mam-

mography, the technology itself has many drawbacks, some of them are: a) The use

of ionising radiation, which can raise the risk of developing cancer. b) The need for

breast compression, which many women find uncomfortable. c) High costs and the

difficulty in bringing this technology to remote or rural communities. d) Relatively

low sensitivity and specificity rates [9].

X-Ray mammography is not the only technology capable of detecting breast tu-

mours, Ultrasound and Magnetic Resonance Imaging (MRI) can also fulfil this pur-

pose. However, these approaches have their own problems, In the case of MRI these

include higher costs and the subjection patients to a confined space, which might

render MRI unsuitable for patients who suffer from claustrophobia. In the case of

Ultrasound, disadvantages include low sensitivity rates might lead to unnecessary

procedures such as biopsies, and the need of a highly skilled operator to detect a

tumour.

It has been suggested that X-Ray mammography on its own, or even when com-

bined with Ultrasound, is insufficient for the early diagnosis of breast cancer in the

case of patients with increased risk due to family history of cancer [10].

In the last decades, there has been an increasing number of researchers using

microwave technologies to address the shortcomings of current breast cancer screening

modalities. A common approach is the one provided by Microwave Imaging (MWI),

which produces images based on the scattering of electromagnetic pulses within the
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microwave range.

The research presented in this thesis is part of an ongoing project that aims

to improve the availability of breast cancer screening technologies by providing a

portable Breast Microwave Sensing (BMS) system that is suited to the needs of low

and middle-income countries and rural communities. This BMS system has been de-

signed by borrowing different approaches and ideas from several other researchers, to

maximise portability and minimise costs without compromising the diagnostic capa-

bilities. This thesis evaluates the feasibility of such system by analysing numerical

simulations of microwave scattering data from breast models inside the system. In-

stead of the more popular MWI approach, Machine Learning (ML) classifiers have

been used to determine the presence or absence of breast tumours. A comparison

between the performances of eight classifiers is provided, as well as future research

directions.

The purpose of this thesis is to determine what is the most effective type of ML

classifier that could be employed in the BMS system to determine the presence or

absence of a tumour inside a patient’s breast.



Chapter 2

Literature Review

Chapter 1 presented the relationship between breast cancer incidence and mortal-

ity rates, as well as the link between decreasing death rates and increasing breast

cancer screening availability. Some of the drawbacks inherent to the most com-

mon screening technology, X-ray mammography, Ultrasound and Magnetic Resonance

Imaging (MRI) were presented.

This chapter presents an introduction to Machine Learning (ML) in general, with

instances of previous studies using ML for tumour detection being presented. The

technical details of microwave-based tumour detecting prototypes, published by other

research groups are also presented in this chapter. An overview of the computational

simulations of microwave scattering in different materials used for this research is

presented. Finally, the different approaches used in the breast tumour detection pro-

totypes of other researchers are explored, with an emphasis on identifying technologies

relevant to the design and implementation of a new portable Breast Microwave Sens-

ing (BMS) system.

5
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2.1 Machine Learning

In broad terms, Machine Learning (ML) involves the use and development of

algorithms that can make predictions about future instances by learning patterns

from previous "test" instances. In this context, the term "instances" also known as

"samples", refer to the observation of a phenomenon that can have several measurable

features associated with said sample [11].

Features typically have a numerical value, but other forms of features are possible,

like a string of characters. In this thesis, the feature vectors consist of the microwave

power values found at 12 sensor locations. These power values are obtained by sim-

ulating the electrical scattering produced by numerical breast models exposed to 5

signals with different frequencies in the 2.3 GHz to 6.5 GHz range. Further details

on the feature vectors are presented in Chapter 3.

Supervised and unsupervised learning are the two prominent categories of ML.

In the supervised scenario, a "label" associated with every sample is given to the

classifier during the training phase, and new samples are assumed to belong to one

of the possible labels that were provided to the classifier during training. In the case

of unsupervised learning, the classifier clusters samples and discovers different classes

of items based on the provided features. In this thesis, only supervised ML is used,

the labels employed are related to the presence or absence of a tumour.

An introductory example of the type of data used in supervised ML, is the classical

"Iris flower dataset" published by Fisher in 1936 ([12]), where samples consist of four

features (sepal and petal’s width and length) and the associated label correspond

to the species of the flower (Iris setosa, Iris versicolor and Iris virginica). An ML
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classifier can learn patterns produced by the combination of values that these four

features have, and use those patterns to predict the species of a new given sample.

The following subsections serve as a short introduction to some of the most popular

types of classifying algorithms found in the literature:

2.1.1 Logic-based Classifiers

Decision trees are non-parametric classifiers [13] based on Boolean logic; they

operate by recursively dividing the feature space into regions that can be associated

with a Boolean evaluation. The features of a sample are subjected to such evaluations

to assign the sample to a class [11].

Due to the recursive nature of the trees, one evaluation can branch off to further

evaluations until a leave of the tree is reached. The leaves of a tree represent the

decision of assigning a sample to a specific class. A maximum depth is usually imposed

during the training process to prevent the tree from recursively growing indefinitely.

The reader is invited to consult the "Tree-Based Methods" section in The elements

of statistical learning ([14]) for a more technical breakdown of decision trees.

2.1.2 Statistical Classifiers

Linear Discriminant Analysis (LDA) is a probabilistic model that computes the

probability of a sample belonging to a class; it finds the linear combination of features

that separates most efficiently two or more classes [11]. This classifier assumes the

classes to be normally distributed within the feature space. As the name suggests,

the decision function of this classifier divides the feature space with a straight line in
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two-dimensions or a hyperplane in higher dimensions. In the same vein, Quadratic

Discriminant Analysis (QDA) is a technique that separates the feature space using a

quadratic surface instead of a line.

The third technique in this family is a special case of QDA called the Naive Bayes

classifier. If the features are assumed to be independent to one another in QDA,

then the covariance matrices will be diagonal and the resulting classifier is equivalent

to Naive Bayes. Even though this assumption of independence might be wrong in

several real-world cases, Domingos and Pazzani found this classifier to be sometimes

superior to other learning techniques even on datasets in which the features were

strongly dependent on each other [15] [11].

2.1.3 Instance Based Learners

K-Nearest Neighbours (KNN) classifier is a type of non-parametric ML algorithm;

it is based on the assumption that the features of a sample will have a small distance

to the features of other samples of the same class [11]. In this technique, the distance

between two samples can be defined as the Euclidean distance between their feature

vectors. However, other definitions of this metric can be used. Some examples of al-

ternative distances are: Minkowski, Manhattan, Chebyshev, and Canberra distances

[11].

The performance of KNN depends on selecting a good value of ’K’. As the classi-

fier’s name suggests, this is the number of closest "neighbours" to which a new sample

is compared [13]. A new sample is assigned the class of the neighbours with the

closest distance. To avoid having a divided decision, it is common to set ’K’ to an
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odd number.

2.1.4 Margin Classifiers

Support Vector Machines (SVMs) in their current form were introduced in 1995

by Cortes and Vapnik [16]. This technique relies on the concept of a margin, a

hyperplane in the feature space that divides samples classes from one another. The

objective of a SVM is then to maximise the distance between the classes and the

hyperplane [11]. If the classes of a dataset are linearly separable and a hyperplane is

found, the specific samples that fall in the margin are called Support Vector Points

(SVPs), these points are used to represent the solution while the rest of the samples

are ignored.

In the cases where a hyperplane that perfectly separates the classes is not found,

the introduction of a transformation kernel that maps feature vectors into higher-

dimensional spaces can often help find a better solution [11]. Different kernels might

rely on the selection of parameters that affect the performance of the classifier, for this

reason, techniques such as Grid-Search Cross-Validation (GSCV) and Particle Swarm

Optimization (PSO) are often employed to find parameters values that maximise

performance for a given dataset [13]. Some popular choices for kernel functions are:

a) Linear given by K(x, x′) = 〈x, x′〉, b) Radial Basis Function (RBF) given by

K(x, x′) = e−γ||x−x′||2 , and c) dth-degree polynomial given by K(x, x′) = (1+〈x, x′〉)d.

The book The elements of statistical learning by Friedman, Hastie, and Tibshirani

provides a nice introduction to the concept of SVM in the "Support Vector Machines

and Kernels" section. The reader is also encouraged to read the lecture notes by Ng
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for a detailed crash-course on SVM [17].

2.1.5 Artificial Neural Networks

Artificial Neural Network (ANN) are algorithms loosely based on the structure of

a human brain, where individual nodes (also called perceptrons) resemble the role of

a neuron that is linked to other neurons within the network [13].

The simplest form of ANN is a single perceptron, this one-node classifier computes

the weighed sum of inputs corresponding to the features of a sample, the output of

the weighed sum is typically given to an activation function φ and its result (typically

within the [-1, 1] range) determines the sample’s class [11]. These perceptrons can

be linked together to construct more complex structures according to the complexity

of the dataset. A Multi Layer Perceptron (MLP) is a popular type of a Neural

Network. It is comprised of an inner layer, zero or more hidden layers and an output

layer of perceptrons. The choice of nomenclature for different Neural Networks is

usually determined by the algorithm used in the training phase of the classifier, some

common examples are Genetic Neural Network (GNN), Back Propagation Neural

Network (BPNN), Radial Basis Function Neural Network (RBNN) [13].

Back-propagation is a popular technique to train a neural network by determining

the weights linking one neuron with each of the neurons from the previous layers.

This algorithm makes use of the gradient descent method to iteratively minimise

the error in the output layer of the network. Since the derivative of the activation

function is computed by gradient descent, the chosen activation function needs to be

differentiable. A popular choice is the logistic function, given by f(x) = 1
1+e−x .
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The section "Error Backpropagation" in the book Pattern Recognition and Ma-

chine Learning by Bishop contains a detailed breakdown of the steps involved in the

back-propagation method for training neural networks [18].

2.1.6 Ensemble techniques in Machine Learning

The term "ensemble" in ML refers to the combination of predictions from multiple

"base classifiers". A simple example of this scheme is a hard-voting ensemble, where

a number of classifiers cast a vote to predict the class of a sample, the class with

more votes is then returned as the result of the ensemble. Soft-voting is a similar

approach that makes use of the predicted probability outputs of the classifiers. These

predicted probabilities are then summed and the result of the ensemble is the class

with a higher sum.

Random forests are an example of an ensemble ML method, they achieve classifica-

tion by training several decision trees and making those trees with different structure

cast a "vote" on every new sample. The class with the most votes is returned by the

random forest as the prediction [13].

Boosting is another example of an ensemble method, it is designed to improve the

performance of weak classifiers by sequentially addressing the shortcomings of the

previous weak classifier. The final prediction, similarly to other ensemble techniques,

is the weighed sum of the prediction of each individual weak classifier. AdaBoost

(Adaptive Boosting) was introduced in 2003 by Schapire and it is a popular example

of a boosting method for ML [19]. An intuitive of analogy between boosting and the

use of human specialists is provided by Pareek and Ravikumar [20].
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2.1.7 Machine Learning summary

The previous subsections have presented an introductory background on different

supervised ML classifiers, their nomenclature, some of the methods used for their

training as well as recommended literature sources for further reading. Eight of these

classifiers were implemented and their results were analysed in the research leading

to this thesis. For consistent column sizes in tables and software debugging, the

implemented classifiers were given a 9-character identifier [shown between squared

brackets]:

1. Gaussian Naive Bayes [NaivBayes]

2. K-Nearest Neighbours [KNearestN]

3. Decision Tree [DecsnTree]

4. Random Forest [RndForest]

5. AdaBoost classifier [AdaBostC]

6. Support Vector Machine (SVM) with a linear kernel [LinearSVM]

7. Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel

[RBFuncSVM]

8. Multi Layer Perceptron (MLP) [MLPClassf ]

Figure 2.1 shows a comparison of several of the classifiers presented in this chapter,

including the eight selected ones.
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Figure 2.1: Comparison of 11 classifiers on a 2-class synthetic dataset. The upper

left tile shows two classes of data (red and blue) represented by two features (x, y).

Samples drawn as stars and circles represent the training and testing sets respectively.

The darkness of the colours represents the classifier’s confidence regarding the class

of a sample. The score achieved by each classifier is shown in the lower right corner

of each tile. Figure adapted from [21], the code that produces this image is provided

in Appendix B
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2.2 Previous studies involving tumour detection

using Machine Learning

The following researchers have introduced the use of supervised Machine Learning

(ML) for tumour detection in several modalities. Some of these modalities go beyond

the detection of a tumour presence and can assess if the tumour is benign or malignant

as well as specifics of the tumour location.

• In 2010, AbdulSadda, Bouaynaya, and Iqbal [22] published a paper where they

produced time-domain simulations of microwave scattering on 1025 homoge-

neous breast models. The backscattering data was pre-processed using Discrete

Wavelet Transform (DWT) and then fed to a Genetic Neural Network (GNN).

They were able to detect and classify breast tumours as well as determine lo-

cation, size, depth and spatial orientation by optimizing the number of layers

and the weights of the nodes in the neural network.

Later, in 2013 AbdulSadda [23] published a paper based on the previous one,

where he used Simultaneous Perturbation Neural Network (SPNN) instead of

a GNN to determine the optimum structure and weights of the network.

• In 2012, Al-Badarneh, Najadat, and Alraziqi [24] published a paper presenting

an automatic classification system for tumours in Magnetic Resonance Imaging

(MRI). The system used 275 brain MRIs 181 of which, were abnormal while

the 94 remaining ones were healthy. The images were 256x256 pixels in size,

278 features were extracted from the images and fed into a K-Nearest Neigh-

bours (KNN) and an Artificial Neural Network (ANN). The author reported
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diagnostic accuracies of 98.55 % for both the ANN and the KNN.

• In 2011, Conceição, O’Halloran, Glavin, and Jones published a paper in which

she used Linear Discriminant Analysis (LDA), Quadratic Discriminant Anal-

ysis (QDA) and Support Vector Machine (SVM) to classify homogeneous and

heterogeneous breast phantoms [25].

Later, in 2013, Conceição et al. [26] examined the introduction of fibroglandular

clusters on breast models from 3D MRIs of breasts taken from the UWCEM

Numerical Breast Phantom Repository [27, 28]. She introduced tumours of sev-

eral shapes and sizes, modelling them using Gaussian Random Spheres (GRS)

and employing permittivity values reported by Lazebnik et al. [29, 30]. Electro-

magnetic scattering was simulated using 3D Finite-Difference Time-Domain

(FDTD) with a cubic grid of 0.5 mm resolution. For the classification aspect of

the work, features were extracted using Principal Component Analysis (PCA)

and a SVM was used as the classifier method.

2.3 Microwave data acquisition prototypes

Microwave based technologies have recently emerged as potential solutions to some

of the shortcomings inherent to X-ray mammography. Some of the recently proposed

systems based on microwave technology make use of Machine Learning (ML) clas-

sifiers to automatically detect the presence of a tumour inside a breast. The most

common approach to use microwave technology, however, is still Microwave Imag-

ing (MWI). There are currently two popular approaches to MWI being actively re-
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searched. The first one, Microwave Tomography (MWT) consists on reconstructing

a map of permittivity values corresponding to a cross-section of a target. This is

done by solving non-linear and ill-posed inverse scattering problems [31]. The second

approach to MWI is radar-based imaging, which uses the electromagnetic scattering

to build a map of reflections from the dielectric contrasts of a target.

In this section, the work of other researchers in the field of tumour detection

using microwave technologies is presented. The technical aspect of the technologies

chosen by different research groups will be emphasised, namely the frequency ranges

used, the type of antennas, the algorithms used as forward solvers, and the hardware

employed.

• In 2005, Nilavalan et al. [9] presented a prototype consisting of 16 Ultrawideband

(UWB) patch antennas in a flat array configuration. Their work started as a

theoretical study employing Finite-Difference Time-Domain (FDTD) simulation

models and eventually those results were confirmed with a physical prototype.

The prototype acquired data from the antennas, by way of a 16 channel RF-

switching matrix. Their array of antennas was used to scan phantoms made

of synthetic biological material that included breast tissue, skin and tumour.

In 2009, Klemm et al. [31] published a paper presenting a similar array of 16

antennas operating up to 3 GHz, configured in a hemispherical fashion.

• In 2009, Halter et al. [32] published a paper where they detailed a MWT system

comprised of 16 antennas operating from 0.6 GHz to 1.7 GHz. A patient lies

prone on a bed with one of her breasts inside an aperture, where the circu-

lar array of antennas surrounds the patient’s breast. Each antenna broadcasts
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a microwave signal while the remaining antennas act as sensors. The dielec-

tric properties of the patient’s breast is estimated using a 3D Finite Element

Method (FEM) forward model coupled with an iterative regularized Newton-

Raphson inversion routine. The array of antennas moves vertically to collect

measurements at several planes from the chest wall to the nipple.

• In [33], Rubæk, Kim, and Meincke [33] published a paper describing an MWI

system and its performance on simulated data. A Method of Moments (MoM)

forward solver was used to find the solution of the forward scattering problem.

32 antennas oriented in a cylindrical shape are used to collect the data. The

reconstructing method was based on a iterative Newton algorithm

• In 2000, Meaney et al. [34] published a paper where they reported a MWI system

consisting of a 16 monopole antenna array operating in the 0.3 GHz to 1.0 GHz

range. The data from the antennas are captured using a microwave switching

receiver with a capacity of up to 32 channels. The antenna array is placed inside

a tank filled with a saline solution that acts as a matching medium between the

antennas and the breast skin. Their system has the capability of acquiring data

at different heights by moving the antenna array using a hydraulic jack located

below the array housing.

• In 2010, Ostadrahimi et al. [35] published a paper presenting a MWI system

consisting of 24 modified Double Layer Vivaldi Antenna (DLVA) operating in

the 3.1 GHz to 10.6 GHz range. The antennas were designed using the commer-

cial FEM simulation package HFSS, and physical measurements were compared



18 Chapter 2: Literature Review

after fabrication. A 2x24 mechanical switch network was used to connect the

antennas to a network analyser. The array of antennas was mounted on a

Plexiglas cylinder of 45 cm diameter, equally separated by 15◦.

• In 2012, Bourqui, Sill, and Fear published a paper describing a breast MWI

system. The data acquisition aspect of their system consists of a bed on which

a patient lies prone and places one breast inside a 130 mm diameter opening.

The breast is submerged in oil, which acts as a matching medium for the skin

interface. A Balanced Antipodal Vivaldi Antenna with a Director (BAVA-D),

operating from 2.4 GHz to 18 GHz, rotates inside the oil tank and around the

patient’s breast while taking microwave measurements at different points until

completely encircling the breast. Measured data from this system was validated

by comparing it to simulations using an FDTD solver that took into account

the breast phantom, the BAVA-D, and the immersion liquid used in the tank

[36].

• In 2013, Cao et al. [37] published a paper describing a MWI technique involving

solid-state spintronic sensors. These sensors are a few millimetres in size and

have the capability of rectifying microwave radiation of both E-field and H-field

into a DC voltage. In this study, a standard X-band horn antenna of 8.0 GHz

to 12.0 GHz was used to illuminate a target, while the reflected signals were

captured with the spintronic sensors 15 cm away from the target. Additionally,

this technology showed the capability of working in the near and far fields at

microwave frequencies.
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2.4 Background on Electromagnetic scattering

The design process of a microwave data acquisition system usually involves sim-

ulating the electromagnetic scattering phenomenon that takes place in the system’s

geometry. Forward solvers such as Finite-Difference Time-Domain (FDTD) ([9, 25,

36]) and Finite Element Method (FEM) ([32, 35]) have been implemented to carry

out such simulations.

These forward solvers have advantages and disadvantages: FDTD and FEM re-

quire the solution domain to be truncated, while Method of Moments (MoM) does

not [38]. MoM operates in the frequency domain with one frequency value point at

a time, while FDTD and FEM do so in the time domain and can encompass sev-

eral frequencies simultaneously. In this thesis, the choice of using MoM as a forward

solving method was largely due to the familiarity of the author with this particular

algorithm [39]. MoM has been previously used as a forward solver in 2D for arbitrary

dielectric materials (Richmond [40]), and more specifically in 3D for breast cancer

screening systems (Rubæk, Kim, and Meincke [33]).

X~Y = ~Z (2.1)

C ~Etot = ~Einc (2.2)

At its core, MoM finds the unknown values of a column vector ~Y that satisfies

Equation 2.1, where X is a known matrix , and ~Z is a column vector with known

values. Specifically to solve the electromagnetic scattering problem, Richmond refor-

mulated Equation 2.1 as Equation 2.2, where ~Einc holds the values of the incident field

at every cell within a scatterer in the grid of the solution domain. ~Etot is the unknown
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column vector of the values corresponding to the total field at every cell of the scat-

terer in the grid. C is a square coefficient matrix containing each cell’s permittivity

value (εr) as well as the distance values between every pair of cells within the scatterer

( ρ(m,n)). In this context, the scatterer is defined as any cell with permittivity value

other than ε0.

Einc
(m,n) =


( j
2
)[πkaH

(2)
1 (ka)− 2j], if m = n

( jπka
2

)[J1(ka)H
(2)
0 (kρ(m,n))], if m 6= n

(2.3)

Equation 2.3 represents the incident field Einc
(m,n) produced by a point source located

at grid-cell m, at the location of any cell within the scatterer (n), this type of point

source corresponds to the two-dimensional representation of an isotropic antenna.

The components of Equation 2.3 are as follows:

• j is the imaginary number j =
√
−1

• k corresponds to the "wavenumber" given by k = ω
C0

= 2πf
C0

, where C0 represents

the speed of light in vacuum, ω is the angular frequency and f is the frequency

value in Hertz.

• a is the radius of a circle with an area equivalent to that of a grid-cell, given by

cell_size√
π

• H
(2)
1 is the Hankel function of the second kind of order 1.

• J1 is the Bessel function of the first kind and order 1.

• H
(2)
0 is the Hankel function of the second kind of order 2.
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• ρ(m,n) is the Euclidean distance between cell m and n.

Richmond computed the coefficient matrix C as presented by Equation 2.4 The

notation in this formula is similar than the previous one, with the addition of εm and

εn corresponding to the complex permittivity values of every pair of cells m and n

within the scatterer.

C(m,n) =


1 + (εm − 1)( j

2
)[πkaH

(2)
1 (ka)− 2j], if m = n

(εn − 1)( jπka
2

)[J1(ka)H
(2)
0 (kρ(m,n))], if m 6= n

(2.4)

Finally, the total electrical field at the location of each cell within the scatterer

~Etot, due to the scattering of the incident field upon every cell of the grid, was

computed by solving the System of Linear Algebraic Equations (SLAE) given by

Equation 2.2. This section presented a general idea of the inner working of the

MoM to solve the electromagnetic scattering problem as implemented by Richmond.

The reader is encouraged to reference Richmond’s paper [40] for further information

regarding the nature of Equations 2.3 and 2.4.

2.5 Background on constituent breast tissues

The permittivity of a material is a physical property that measures its capacity to

oppose an electrical field; vacuum possesses the lowest known permittivity value (ε0 ≈

8.85 × 10−12 Farads per metre). The relative permittivity of a material (relative to

that of vacuum) varies as a function of frequency, moisture, temperature and pressure.
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However, moisture, temperature and pressure can be assumed to be constant if the

measurement takes place in a short period of time [41]. Air possesses a relative

permittivity close to that of vacuum, to the point that its difference is often considered

negligible [42].

The state-of-the-art method for modelling a material’s relative permittivity is

fitting previously measured values into a Cole-Cole relaxation model [43]. This equa-

tion, often referred to as "Debye relaxation" when the value of α is zero, is presented

in equation 2.5 [30]:

εr = ε∞ +
εs − ε∞

1 + (jωτ)1−α
+

σs

jωε0
(2.5)

This is of importance, as there is a growing body of work reporting the values of

the parameters in equation 2.5 corresponding to different materials. Having such pa-

rameters readily available, allows the modelling and simulation of the electromagnetic

scattering phenomenon using the properties of known materials. The values for the

tissues that constitute human breasts will be discussed in section 3.2.2.

2.6 Relevance of previous work

This chapter has presented some background on the subjects of Machine Learning

(ML), Method of Moments (MoM) and its use as a forward solver for the microwave

scattering problem. The books, theses and papers mentioned in this chapter are

of importance to the design and development of a new Breast Microwave Sensing

(BMS) system, this new apparatus was inspired by some of the technical aspects of

other researchers’ work. Section 3.1 will explore some of the technologies that are
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compatible with the purposes of this research.



Chapter 3

Methods and materials

3.1 Prototype design

The purpose of this research is to examine the feasibility of a Breast Microwave

Sensing (BMS) system. The design of such system, and the prototype that was built

upon that design, had the following constraints:

1. The components that comprise the system should fit in a piece of luggage not

bigger than 55 cm × 55 cm × 55 cm.

2. The overall system weight should not exceed 25 Kg.

3. Most breast sizes should be able to be examined by the system.

4. Trained health personnel should not be needed for the system’s operation.

The first two constraints address the portability aspect of the system, as one of

the design objectives is to provide an apparatus that is easy to move to remote places

24
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by an individual. These constraints also limit the type of technologies available, as

some of the systems presented in Chapter 2 make use of beds ([32, 34, 36]), microwave

switches ([9, 34, 35]), and tanks for matching media ([34, 36]). Such approaches would

conflict with the portable system paradigm, as they are normally big in size and/or

weight.

On the other hand, techniques such as rotating an antenna around the breast (as

proposed in [36]) and microwave sensors of only a few millimetres in size (as presented

by [37]) are more compatible with the portability purpose of our system. Having these

techniques in mind, a rotating chamber was designed to hold one transmitting antenna

and multiple receiving microwave sensors. The rotating chamber can move within a

48◦ arc. As shown by [36], using multiple angles to interrogate the breast allowed

the collection of data coming from tumours that might otherwise be hidden behind a

Fibroglandular Tissue (FGT) patch from the antenna’s perspective.

The system described in [36] used a 13 cm diameter aperture for the breast.

However, a previous study found that for breasts with D-cup size, the mean breast

diameter (± standard error) was 13.7 cm ± 0.2 cm and their mean length in pendant

position was 9.7 cm ± 0.2 cm [44]. In the interest of accommodating a broader group

of breast sizes (the third constraint of the list), a 15 cm diameter and 15 cm height

were chosen for the breast aperture and chamber depth respectively.

The last item in the list of constraints eliminated the possibility of using a Mi-

crowave Imaging (MWI) or Microwave Tomography (MWT) approach, as both of

these require the interpretation of an expert to give a diagnosis on the presence or

absence of a tumour. This constraint was addressed in two ways: a) The use of an
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Figure 3.1: Isometric CAD render of the BMS system. The servomotor enables

the rotation of the chamber around the breast while the screen allows a user to follow

instructions while a breast is placed in the aperture.

automatic classification system using Machine Learning (ML) to determine the pres-

ence or absence of a tumour, and b) The use of on-screen instructions that guide the

patient in using the system from the microwave scanning process until the classifier’s

prediction on the presence or absence of a tumour.

Figures 3.1 and 3.2 show Computer-Aided Design (CAD) renders of the system

designed taking into consideration the constraints.
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Figure 3.2: CAD render of a user laying on top of the BMS prototype facing the

screen while a breast is inserted in the aperture for microwave scanning. This design

is based on several bed systems presented in Chapter 2. This approach requires the

breast to be in a pendant state, similar to several bed-based systems presented in that

chapter, without the need of having a full-sized bed.

3.2 Electromagnetic scattering and simulation

3.2.1 Forward Solver Implementation

Section 2.4 laid out the background of Richmond’s implementation of the Method

of Moments (MoM) as a forward solver for the application of electromagnetic scat-



28 Chapter 3: Methods and materials

tering. The 2D algorithm presented by Richmond, has been re-implemented and the

results provided by his original publication have been reproduced using the NumPy

package for Python [45].

Additionally to the contribution made by Richmond, part of his algorithm has

been reimplemented using multi-thread support, specifically, the construction of the

coefficient C matrix given by Equation 3.1. The elements contained in the C matrix

are independent to one another. Therefore, the order in which each element was

computed had no bearing on any other element of the matrix, this made parallel

computing of their values possible.

C(m,n) =


1 + (εm − 1)( j

2
)[πkaH

(2)
1 (ka)− 2j], if m = n

(εn − 1)( jπka
2

)[J1(ka)H
(2)
0 (kρ(m,n))], if m 6= n

(3.1)

A grid resolution of 2 mm was used for the implementation of MoM, the computa-

tional domain was partitioned into square cells. Consequently, the value of a circle’s

radius with equivalent area to that of a grid-cell, became a = 2mm√
π

.

A = (cell_size)2 = πa2 (3.2)

∴ a =
cell_size√

π
=

2mm√
π

(3.3)

Similarly to the value of a, the wavenumber (k) needed to be given a value before

the computation of the C matrix and the ~Einc vector. Five different frequencies were

used for the simulations (discussed in section 3.2.2). This required the computation of

five different wavenumbers given by k = 2πf
C0

where C0 is the speed of light in vacuum
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and f is the frequency value in Hertz.

3.2.2 Breast tissues and experiment design

Section 3.1, showed the design of a Polyvinyl chloride (PVC) chamber where a

transmitting antenna and several microwave sensors were fixed. In the absence of any

external material inside this chamber, the microwave sensors could only detect the

electromagnetic field produced by the transmitting antenna and scattered by the PVC

walls of the chamber. However, as external material was introduced into the chamber,

the electromagnetic field was perturbed, and the values logged by the sensors were

affected. The degree to which electromagnetic field scattering occurs is caused by

a difference between the relative permittivity εr of the introduced material and its

surrounding medium, which in this case is air. The contrast in permittivity exhibited

by healthy and malignant tissues is relevant for tumour detection purposes, as it

produces electromagnetic scattering patterns that were analysed by various Machine

Learning (ML) techniques discussed in section 3.3.

εr = ε∞ +
εs − ε∞

1 + (jωτ)1−α
+

σs

jωε0
(3.4)

Two-dimensional numerical models of breasts were simulated as collections of

circular patches made out of dielectric materials with permittivity values previously

reported by other researchers ([29, 46, 47, 41]). As discussed in section 2.5, the

permittivity of tissue can be modelled as a Cole-Cole curve, given by Equation 3.4.
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Table 3.1: Cole-Cole parameters of the materials used for Electromagnetic scattering

simulations. The values presented in this table were inserted into Equation 3.4 to

obtain permittivity as a function of frequency for each tissue type in a breast model.

Material εs ε∞ α τ(ps) σs reference
Skin 36.33 4.0 0.0 6.9 1.4 [47]
Fatty tissue 10 7.0 0.0 7.0 0.15 [46]
Fibroglandular Tissue (FGT) 21.57 6.14 0.0 7.0 0.31 [46]
Malignant tumour 56.839 6.749 0.051 10.5 0.794 [29]

Figure 3.3 presents the permittivity values and their variation with frequencies

between 1 GHz and 11 GHz. Electromagnetic scattering experiments were simulated

taking the cross-section of a breast model into account, as well as the PVC walls

that make up the chamber. Figure 3.4 shows a cross-section of the chamber and a

model of a breast including malignant breast tissue, the details of the dimensions and

positions of the different tissues that make up a breast are presented in Section 3.2.3.

The location of 12 solid state sensors and a transmitting antenna were fixed with

respect to the chamber’s PVC walls. The experiment simulations in this thesis assume

the use of sensors smaller than the grid-size of 2 mm, similar to those previously used

by [37]. The volume taken by the sensors is small enough that their contribution to

the electromagnetic scattering is not considered as each sensor’s cross-section would

occupy less than one cell in the grid. Five frequencies were used: 2.3 GHz, 3.35 GHz,

4.4 GHz, 5.45 GHz and 6.5 GHz. These frequency points were chosen to cover the

bandwidth supported by the antenna that was used in the physical prototype.

The PVC chamber was designed to be capable of rotating around the breast.

As a result, information about the scattering patterns of a breast model, can be



Chapter 3: Methods and materials 31

Figure 3.3: Complex permittivity values as functions of frequency for the different

tissues used to build breast models across five datasets. Solid lines represent the real

part of the complex permittivity, while the dotted lines indicate the imaginary part.

These curves were produced by plugging the Debye parameters from Table 3.1 into

Equation 2.5. The Debye parameters corresponding to each tissue were taken from

references between squared brackets in the legend [29, 47, 46, 48, 41].

captured from several angles. For this reason, two types of experiment were carried

out. The first type of experiment placed the chamber in the middle position of the

48◦ arc, and logged the electromagnetic scattering values from that position alone.

The second type of experiment accounted for five angles within the 48◦ arc, capturing

electromagnetic scattering information at each one of those angles. The combination
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Figure 3.4: Cross-section view of the BMS chamber simulation and a breast model

consisting of skin, fatty tissue, FGT and a tumour. The spatial resolution of the

models is 2mm. The permittivity values of the employed materials depend on the

transmitting frequency of the antenna, these permittivity values have to be computed

once for every frequency used in the experimental simulations.
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of 12 sensors and five frequency points yielded a vector of 60 values (referred to

as "features" in ML terminology) in the case of non-rotating experiments, and 300

values in those that include five rotational positions. These 60 or 300 feature vectors

represented a "sample" that was labelled as positive when a tumour was present in

the model or negative otherwise.

A group of simulated experiments with similar characteristics in terms of the

composition of their breast models and feature vector sizes, is called a dataset. Five

different datasets were created for the analysis of this thesis. The first two datasets

involve no rotation of the PVC chamber and the details of these datasets are presented

in section 3.2.4. The three remaining datasets are derived from experiments involving

five rotational positions of the chamber. However, one of these datasets discards

information from four rotational positions. These datasets are presented in in section

3.2.5.

Simulating the electromagnetic scattering in the different models is a time-consuming

process, as the contribution of each cell to the scattered field value of every other cell

in the grid needs to be calculated. New breast models for each dataset were com-

puted until adding samples resulted in less than a 1% improvement in either of the

four classification metrics. Table 3.2 summarizes the modelled datasets in terms of

their respective attributes and tissue contents.
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Table 3.2: Summary of characteristics of the modeled datasets

Material

Name Ro
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n
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s
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T

hom1b1p 1 1534 60 25.57 X X X -
het1b1p 1 2394 60 39.90 X X X X
het1b5pv2Alpha 5† 7000 60 116.67 X X X X
het1b5pv2Beta 1? 1400 60 23.33 X X X X
het1b5pv2Gamma 5 1400 300 4.67 X X X X

†: Each of the 5 positions are treated as independent samples in this modality.

?: Only 1 out of 5 positions was used in this modality.

3.2.3 Breast modelling using random variables

Breast models were built as collections of circular patches of different tissues with

known permittivity values. To account for differences between breast models, random

sizes and positions of the patches were used. The following limitations were imposed

unto the random variables:

1. The overall breast radius (RB) should not exceed the radius of the Breast Mi-

crowave Sensing (BMS) system’s breast cavity (75 mm).

2. The breast centre could have an offset distance (OB) with respect to the system’s

breast cavity centre, provided that this offset distance does not place the breast

outside of the breast cavity.

3. The skin thickness (TS) remains constant with a value of 2 millimetres.
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4. FGT patches would not be outside of the skin radius. Therefore the FGT patch

radius (Rfgt) could not exceed the radius of the fatty tissue (RB − TS).

5. The tumour tissue could not be outside of the skin radius.

6. The centre of a tumour and the FGT patch could have an offset distance with

respect to the breast centre (OT and Ofgt respectively).

Having considered the previous caveats, the first random variable that was de-

termined for every breast model was the overall breast radius (RB). RB was given

random values from a uniform distribution ranging from 50 mm to 75 mm to account

for different breast sizes.

The second random variable to be assigned a value was the breast offset distance

(OB) with respect to the BMS system’s breast cavity centre. OB was sampled from a

uniform distribution ranging from 0 mm (No offset) to a maximum of the remaining

space between the breast and the system’s cavity. The distance between the breast

skin and the edge of the system’s cavity depends on the breast radius, for this reason,

the value of RB was taken into consideration. An upper bound of (75 mm - RB)

ensured the breast was placed within the confines of the breast cavity.

A third random variable θB was sampled from a discrete uniform distribution

ranging from 0◦ to 359◦. θB was used to compute the x, y coordinates of the breast’s

centre point by following Equations 3.5 and 3.6.

x = OBcos(θB) (3.5)

y = OBsin(θB) (3.6)
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At this point, a permittivity matrix associated with each breast model only con-

tained values of the empty space (ε0) and the PVC’s permittivity corresponding to

walls of the system’s chamber. Once the breast radius was chosen and the x, y coor-

dinates of the breast’s centre were computed, the permittivity matrix was updated by

overwriting the values of cells corresponding to the circle with centre (x, y) and radius

RB. The process of determining values for a radius, an offset distance and angle to

compute x, y coordinates for a circle, was repeated for the rest of the circular patches

that compose the breast model. In the case of the fatty tissue, the radius was given

by RB − TS to comply with the limitations outlined previously. Tables presented in

sections 3.2.4 and 3.2.5 address the particular distribution ranges used for selecting

position and sizes of the FGT patch and the tumour for the different datasets.

3.2.4 Datasets of a single antenna position

As presented in section 3.1, the transmitting antenna and the microwave sensors

of the BMS system prototype are contained inside a PVC chamber. The chamber was

designed to rotate around the breast cavity within an arc of 48◦. The current section

presents two datasets comprised of experiments that make use of data collected from

a single position of the rotating chamber.

The first dataset was given the codename hom1b1p, indicating that the inside

of the breast is homogeneous in the sense that it contains only adipose tissue. 50% of

the models include a tumour with an uniform distribution of radius ranging from 2

mm to 10 mm. The lower limit of this range was chosen to match the grid resolution

of the simulations: 2 mm. 1534 breast models were computed for this dataset.
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The second dataset, called het1b1p, was produced similarly to the first one, with

the additional presence of a circular FGT patch of a size such that the fibroglandular-

to-fatty tissue ratio (also known as fibroglandular density) was uniformly distributed

from 0 to 25 %. Breasts with fibroglandular densities in this range are known as

Breast Imaging Reporting and Data System (BI-RADS) class 1, or "almost entirely

fat" [49]. Equation 3.7 presents the equivalence of FGT density, where Rfgt is the

radius of the FGT patch, and RB is the breast radius.

FGTDensity =
π(Rfgt)

2

π(RB − TS)2
≤ 0.25 (3.7)

Rfgt ≤
√

0.25(RB − TS)2 = 0.5(RB − TS) (3.8)

Limiting the fibroglandular density to 25 % led to the upper limit of the uniform

distribution of Rfgt being given by Equation 3.8. 2394 models were created for the

het1b1p dataset using this upper limit. A summary of the different random variables

employed in the creation of the single antenna position datasets is presented in Table

3.3.

Table 3.3: Random variables used in the hom1b1p and het1b1p datasets.

Variable Minimum Maximum Description
RB 50 mm 75 mm Breast radius
OB 0 mm 75 mm - RB Breast offset
Rfgt 0 mm 0.5(RB − TS) FGT radius
Ofgt 0 mm RB - Rfgt - TS FGT offset
RT 2 mm 10 mm Tumour radius
OT 0 mm RB - RT - TS Tumour offset
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3.2.5 Datasets of multiple antenna positions (het1b5pv2)

A third dataset het1b5pv2 was created with two major differences from the pre-

vious one. The first difference consisted in changes of the uniform distributions of

random variables. The second major difference consisted in the collection of electro-

magnetic data from five rotational positions of the transmitting antenna with respect

to the breast cavity; each rotational position was separated by 12◦ within a 48◦ arc.

The adjustments made to the random variables were made to limit variation and

edge cases, such as a breast having a FGT patch completely separated from the breast

centre and contacting the skin tissue. The maximum values for the breast offset with

respect to the centre of the chamber (OB), and the offset of the FGT (Ofgt) were

adjusted in this dataset to only allow 50% of what the previous datasets allowed.

The tumour radius (RT ) minimum and maximum were given values of 4 mm and 12

mm respectively, allowing lager tumours. Finally, the tumour offset (OT ) ranges from

0 to the radius of the FGT (Rfgt).

Figure 3.5 shows an example of a breast model in this dataset along with its five

positions. Table 3.4 presents the upper and lower limits of the uniform distributions

used for this dataset. A total of 1400 samples were produced in this dataset.

Table 3.4: Random variables used in the rotation-based datasets (alpha, beta, gamma).

Variable Minimum Maximum Description
RB 50 mm 75 mm Breast radius
OB 0 mm 0.5(75mm−RB) Breast offset
Rfgt 0 mm 0.5(RB − TS) FGT radius
Ofgt 0 mm 0.5(RB −Rfgt − TS) FGT offset
RT 4 mm 12 mm Tumour radius
OT 0 mm Rfgt Tumour offset
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By having data captured at five different transmitting antenna positions, the

feature vector size increased from the original 60 to 300 values. The increase in the

number of features prolonged the time needed to compute each experiment, while

decreased the samples-to-features ratio. This dataset was further divided into three

different modalities that produced different ratios:

1. Alpha: This modality assumed each one of the five rotated positions repre-

sented a different experiment, effectively turning the feature vector size back

to 60. A total of 7000 experiments are contained in this modality, bringing the

samples-to-features ratio to 116.67.

2. Beta: The second modality discards four out of the five positions and all their

data, only the middle position is used in this modality. Thus, the number of

features is still 60 in this modality. However, the number of samples becomes

1400 due to the discarding of models. This brings the samples-to-features ratio

to 23.33.

This modality is similar to the het1b1p dataset in the sense that both contain

fat, skin, FGT and tumours. However, the distributions of the tumour sizes and

of the offset of FGT and tumorous tissue is different, as indicated by Tables 3.3

and 3.4.

3. Gamma: The third modality treated data from the five positions as a single

sample, while this brought the number of features to 300 and kept the number

of samples at 1400, it also brought down the samples-to-features ratio to 4.67.
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(a) −24◦ rotation (b) −12◦ rotation (c) No rotation

(d) 12◦ rotation (e) 24◦ rotation

Figure 3.5: Breast models corresponding to an experiment from the het1b5pv2 dataset.

The sizes and positions of the circular patches were randomly determined once, then

the whole breast model was rotated with respect to the chamber’s centre into five dif-

ferent positions with an angular separation of 12 degrees. The antenna and the 12

sensors (represented with red crosses) remain static with respect to the chamber.
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3.3 Machine Learning

Eight classifiers from the scikit-learn python package [50, 51] were used to classify

the samples from the five different datasets presented in the previous section. Each

classifier was trained and applied a total of 100 times on each dataset, the resulting

metrics were averaged and are presented in Chapter 4. Figure 3.6 shows an example

of the four metrics resulting from running a classifier 100 times, the dashed lines

represent the averaged score of each metric.

The four metrics employed to evaluate the performance of a classifier were the

following:

1. Diagnostic accuracy: Measures the fraction of samples correctly classified, pre-

sented in Equation 3.9

2. True positive rate (also called sensitivity or recall): Measures the fraction of

positive samples correctly classified, presented in Equation 3.10

3. True negative rate (also called specificity): Measures the fraction of negative

samples correctly classified, presented in Equation 3.11

4. Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC).

DA =
TP + TN

TP + TN + FP + FN
(3.9)

TPR =
TP

TP + FN
(3.10)
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Figure 3.6: Example of the four performance metrics obtained from running a clas-

sifier 100 runs on a dataset. This particular graph shows the KNearestN classifier

on the het1b5pv2Alpha dataset.

TNR =
TN

TN + FP
(3.11)

The first three metrics were calculated using the number of samples that fell in

the following categories:

• TP: Number of samples correctly classified as positives (true positives).

• TN: Number of samples correctly classified as negatives (true negatives).
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• FP: Number of samples incorrectly classified as positives (false positives).

• FN: Number of samples incorrectly classified as negatives (false negatives).

These metrics are all important on their own, and the performance of the different

classifiers in terms of those metrics can be found in Chapter 4. However, the goal of

the training process was to maximise the value of the AUC, as ROC curves account

for both sensitivity and specificity simultaneously. Figure 3.7 shows an example of

a ROC curve, where the x-axis corresponds to the false positive rate (1 - specificity)

and the y-axis corresponds to the true positive rate (sensitivity). ROC curves also

have the property of accounting for skewed class distributions [52, 53, 54]. In general,

striving for a maximal value of the AUC achieved high values across the other three

metrics without compromising one or the other.

3.3.1 Classifier training process

A process was written to shuffle the samples from any dataset and divide them

into a training set (80%) and a testing set (20%). Then, data from the training set

was fed to a Principal Component Analysis (PCA) procedure, and its result was used

to train the classifiers. Once the classifiers were trained, they classified data coming

from the testing set. The training process in some of the classifiers included the use

of a Grid-Search Cross-Validation (GSCV) procedure, where one or more parameters

were given different values until a maximum performance was obtained. These steps

were repeated for each dataset and each of the classifiers. Figure 3.8 presents a flow

chart illustrating the steps involved in the training process.

The ML package scikit-learn provided a unified Application Program Interface
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Figure 3.7: Example of a ROC curve produced by a KNN classifier. The dashed line

represents an AUC of 50% which is what can be expected from random guessing. The

curved line represents the performance of this classifier. A perfect classifier would have

the curved line covering the entire area, for that reason, high performance classifiers

have the curved line close to the top left corner.
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(API) for the chosen machine learning methods [55], the flexibility of this package

permitted the use of different classifiers in the same process. The classifiers selected

from the scikit-learn package are presented in table 3.5, with code names included

between parentheses. These code names are used to refer the classifiers in subsequent

figures and tables.

3.3.2 Principal Component Analysis

PCA is a method that maps a dataset of M features into a new space of the

same size, where the new features (called principal components) are orthogonal to

each other. The principal components of the new space are presented in order of

decreasing variance, and by only using the first few principal components out of the

total M , a high percentage of the variance can be conserved, while the dimensionality

can be reduced [56]. Dimensionality reduction can be important as it can have the

desired effect of decreasing the computational time demanded by a classifier. An

example of reducing dimensionality while keeping most of the variance is given in

[57], where it was shown that applying PCA into the classical "Iris flower dataset" by

Fisher [12], the first principal component accounted for 92.5% of the variance in the

original dataset.

The PCA implementation used in this thesis had no dimensionality reduction, as

it was found that this had a negative impact on classification performances. However,

even without dimensionality reduction, the use of PCA helped raise the classification

performances by transforming the original features into principal components ordered

by decreasing variance.
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Figure 3.8: Flow chart of the process developed to allow the use of several classifiers on

a dataset. This process facilitated the comparison of performance metrics obtained by

each classifier on a dataset. The different classifiers (presented as green blocks) were

given as a list upon which the process iterates. A similar approach was implemented

for datasets (presented as a red block), where a list of the different datasets was

provided and every classifier will be trained and evaluated for a particular dataset.

The blue blocks represent parts of the process that required no user input and remain

the same across every combination of dataset-classifier. The parameters that Grid-

Search tries to optimize, vary according to each classifier, and the parameter spaces

were passed along as options.
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3.3.3 Parameter optimization using Grid-Search Cross-Validation

Seven out of the eight selected classifiers required one or more parameter values

to be specified in order to run. The choice of value for each classifier’s parameter had

an impact on the classification performances, and it was not known in advance which

values would produce the best performances for a given dataset.

GSCV is a method that given a grid of discrete parameter values, searches for

those that achieve the highest classification results. The cross-validation aspect of

GSCV prevents over-fitting by dividing the training set into K subsets (also known

as "folds") and testing them individually against the rest of the subsets [58]. K = 5

was selected as the number of folds for cross-validation, this number was chosen as a

balance between computational time and performance.

Figure 3.9 presents an example of a K-Nearest Neighbours classifier. Every sample

was compared to a fixed number of neighbours before making a prediction. The

number of neighbours is the only parameter that needs to be determined in the case

of ’KNearestN’. The remainder of the graphs showing tuned parameters can be found

in Appendix A
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Figure 3.9: Best performing parameter found by Grid-Search after 100 runs of the

’KNearestN’ classifier on the ’het1b5pv2Gamma’ dataset. Each point represents the

number of times a parameter value was found to be the best performing one for a

particular shuffle in the given dataset. In this case, n_neigbors = 3 was found to be

the value that was repeated the most times throughout the 100 runs.
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Table 3.5: Classifier algorithms and their parameters search space used by Grid-Search

Cross-Validation

Classifier Parameter Range of values
Gaussian Naive Bayes
(NaivBayes) - -

K-Nearest neighbors
(KNearestN) n_neighbors Odd integers from 1 to 23

Decision Tree
(DecsnTree) max_depth Integer numbers from 1 to 11

Random Forest
(RndForest)

max_depth Integers from 2 to 10, inclusive.
n_estimators Integers from 2 to 17, inclusive.
max_features Integers from 2 to 10, inclusive.

Ada Boost
(AdaBoostC) n_estimators Integers ranging from 20 to 49

SVM with linear kernel
(LinearSVM) C 3.33× 10−7 to 1000, logarithmic

SVM with RBF kernel
(RBFuncSVM)

C 2.5× 10−7 to 250, logarithmic
gamma 0 to 1000, logarithmic

Multi-layer Perceptron
(MLPClassf)

hidden_layer_sizes Fixed 4 layers: (400, 200, 100, 50 nodes)
max_iter Fixed value of 500 iterations
tol Fixed tolerance value of 1× 10−5
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Results

This chapter presents the training times and classification metrics achieved by

each classifier on the different datasets. The elapsed times and metrics presented

in this chapter have the form: µ ± σ, where µ stands for the average and σ stands

for the standard deviation. The training process was run 100 times in a multi-user

server running Scientific Linux 6.1 with an Intel R© Xeon R© X5680 processor (24 cores

running at 3.33GHz) and 96 GB of installed Random Access Memory (RAM).

Table 4.1: Average elapsed training times for the eight classifiers on the five datasets

Classifier Training time in seconds (µ± σ)
hom1b1p het1b1p het1b5pv2Alpha het1b5pv2Beta het1b5pv2Gamma

AdaBoostC 4.2 ± 0.1 5.8 ± 0.2 16.1 ± 0.3 4.6 ± 0.2 4.8 ± 0.2
DecsnTree 1.14 ± 0.08 1.51 ± 0.09 2.0 ± 0.1 1.80 ± 0.07 2.01 ± 0.07
KNearestN 2.0 ± 0.2 3.1 ± 0.1 46 ± 4 2.4 ± 0.2 2.7 ± 0.2
LinearSVM 300 ± 90 800 ± 100 4000 ± 1000 800 ± 100 700 ± 200
MLPClassf 3.2 ± 0.3 5 ± 2 6 ± 2 2.9 ± 0.3 2.3 ± 0.4
NaivBayes 0.24 ± 0.04 0.24 ± 0.05 0.27 ± 0.06 0.29 ± 0.07 0.30 ± 0.09
RBFuncSVM 74.6 ± 0.4 203 ± 1 7000 ± 900 65.8 ± 0.6 66.7 ± 0.6
RndForest 21 ± 3 28 ± 4 44 ± 1 20 ± 3 21 ± 3

50
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Table 4.1 shows the averaged time taken to train each one of the eight classifiers

on the five different datasets. Out of the different classifiers used, "RBFuncSVM" and

"MLPClassf" consistently showed either similar or higher performance metrics when

compared to the rest of the classification algorithms. The performance of the different

datasets, however, varies significantly.

The following sections show the performance results of the different classifiers used,

represented by four metrics: diagnostic accuracy, true positive rate (sensitivity), true

negative rate (specificity), and the Area Under the Curve (AUC) of the Receiver

Operating Characteristic (ROC). The classifiers are presented in descending order in

terms of the AUC.

4.1 Classification results of the homogeneous dataset

(hom1b1p)

This dataset contained 1534 samples and 60 features. The homogeneous dataset

was the least complex in terms of its constituent materials as it did not contain

fibroglandular patches. The AUC performances obtained for most of the classifier

were higher than 90%. These comparatively higher results are consistent with what

is expected from classifying a dataset of homogeneous breast models.

Table 4.2 and Figure 4.1 show the resulting metrics of the different classifiers on

this dataset.
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Table 4.2: Classifier performance comparison for the hom1b1p dataset

Classifier Performance metric
Diag. Accuracy Sensitivity Specificity ROC AUC

DecsnTree 81 % ± 3 % 77 % ± 5 % 86 % ± 4 % 85 % ± 3 %
KNearestN 63 % ± 3 % 27 % ± 4 % 99.5 % ± 0.6 % 90 % ± 2 %
NaivBayes 87 % ± 2 % 89 % ± 2 % 84 % ± 4 % 93 % ± 2 %

LinearSVM 88 % ± 6 % 81 % ± 9 % 95 % ± 10 % 93 % ± 1 %
AdaBoostC 92 % ± 2 % 92 % ± 2 % 91 % ± 3 % 96.9 % ± 0.9 %
RndForest 91 % ± 2 % 92 % ± 2 % 90 % ± 3 % 97.2 % ± 0.8 %
MLPClassf 95 % ± 1 % 93 % ± 2 % 96 % ± 2 % 97.6 % ± 0.9 %

RBFuncSVM 93 % ± 1 % 93 % ± 2 % 94 % ± 2 % 97.9 % ± 0.8 %
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(a) Classifiers with lowest AUC: ’DecsnTree’, ’KNearestN’, ’NaivBayes’, ’LinearSVM’.

(b) Classifiers with highest AUC: ’AdaBoostC’, ’RndForest’, ’MLPClassf’, ’RBFuncSVM’.

Figure 4.1: Performance comparison of eight classifiers on the hom1b1p dataset The

classifiers are in ascending order by their AUC. For this dataset, ’RBFuncSVM’ ob-

tained the highest performance in terms of AUC
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4.2 Classification results of the heterogeneous dataset

(het1b1p)

This dataset contained 2394 samples and 60 features. Similarly to the homo-

geneous dataset, the two highest performing classifiers were ’MLPClassf’ and "RB-

FuncSVM", with average AUC within 1% of each other. The three lowest performing

classifiers were ’LinearSVM’, ’DecsnTree’ and ’KNearestN’, just like in the previous

dataset. However, the maximum performances in terms of AUC did not exceed 70%

in this dataset. Lower performances with respect to the homogeneous dataset were

expected due to the inclusion of fibroglandular patches.

Table 4.3 and Figure 4.2 show the resulting metrics of the different classifiers on

this dataset.

Table 4.3: Classifier performance comparison for the het1b1p dataset

Classifier Performance metric
Diag. Accuracy Sensitivity Specificity ROC AUC

LinearSVM 53 % ± 3 % 60 % ± 20 % 50 % ± 20 % 57 % ± 2 %
DecsnTree 56 % ± 3 % 60 % ± 10 % 60 % ± 10 % 58 % ± 3 %

KNearestN 55 % ± 2 % 39 % ± 4 % 72 % ± 4 % 58 % ± 3 %
AdaBoostC 58 % ± 2 % 59 % ± 3 % 57 % ± 3 % 61 % ± 3 %
RndForest 57 % ± 2 % 57 % ± 4 % 58 % ± 4 % 61 % ± 2 %
NaivBayes 58 % ± 2 % 55 % ± 7 % 61 % ± 6 % 62 % ± 3 %
MLPClassf 62 % ± 2 % 61 % ± 5 % 64 % ± 5 % 66 % ± 2 %

RBFuncSVM 62 % ± 2 % 61 % ± 4 % 64 % ± 4 % 67 % ± 2 %
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(a) Classifiers with lowest AUC: ’LinearSVM’, ’DecsnTree’, ’KNearestN’, ’AdaBoostC’.

(b) Classifiers with highest AUC: ’RndForest’, ’NaivBayes’, ’MLPClassf’, ’RBFuncSVM’.

Figure 4.2: Performance comparison of eight classifiers on the het1b1p dataset The

classifiers are in ascending order by their AUC. For this dataset, ’RBFuncSVM’ ob-

tained the highest performance in terms of AUC
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4.3 Classification results of the heterogeneous dataset

with rotation (het1b5pv2Alpha)

This dataset mode consisted of 7000 samples and 60 features. This modality

achieved the highest AUC performance out of the three rotational setups. This higher

performance is consistent with having a larger samples-to-features ratio, and this

dataset modality has the highest ratio as presented in Table 3.2.

In terms of AUC, out of the eight classifiers used, ’KNearestN’ ranked 3rd place

in this dataset’s modality, whereas the same classifier ranked 6th and 7th in the

non-rotational datasets.

Table 4.4 and Figure 4.3 show the resulting metrics of the different classifiers on

this dataset.

Table 4.4: Classifier performance comparison for the het1b5pv2Alpha dataset

Classifier Performance metric
Diag. Accuracy Sensitivity Specificity ROC AUC

LinearSVM 67 % ± 1 % 66 % ± 2 % 69 % ± 2 % 72 % ± 1 %
DecsnTree 71 % ± 2 % 74 % ± 4 % 68 % ± 4 % 76 % ± 1 %
NaivBayes 73 % ± 1 % 71 % ± 2 % 74 % ± 2 % 80 % ± 1 %

AdaBoostC 73 % ± 1 % 72 % ± 2 % 73 % ± 2 % 81 % ± 1 %
RndForest 78 % ± 1 % 77 % ± 2 % 78 % ± 2 % 86 % ± 1 %

KNearestN 77 % ± 1 % 63 % ± 2 % 90 % ± 1 % 87.1 % ± 0.9 %
RBFuncSVM 91.3 % ± 0.7 % 89 % ± 1 % 93 % ± 1 % 96.9 % ± 0.5 %

MLPClassf 92 % ± 1 % 90 % ± 2 % 93 % ± 2 % 97.0 % ± 0.5 %
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(a) Classifiers with lowest AUC: ’LinearSVM’, ’DecsnTree’, ’NaivBayes’, ’AdaBoostC’.

(b) Classifiers with highest AUC: ’RndForest’, ’KNearestN’, ’RBFuncSVM’, ’MLPClassf’.

Figure 4.3: Performance comparison of eight classifiers on the het1b5pv2Alpha dataset

The classifiers are in ascending order by their AUC. For this dataset, ’MLPClassf’

obtained the highest performance in terms of AUC
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4.4 Classification results of the heterogeneous dataset

(het1b5pv2Beta)

This dataset modality consisted of 1400 samples and 60 features. The tissues used

here are the same as the ones used to build the heterogeneous dataset (het1b1p).

However, the two datasets differ in the number of samples and the distribution of

the random variables that determine tissue size and placement within the breast, as

presented in Tables 3.3 and 3.4.

The classification performances on both datasets are significantly different: even

the smallest AUC value obtained in this dataset (68 % ± 4 %, by ’DecsnTree’) is

similar to the highest AUC value obtained in the heterogeneous one (67 % ± 2 % by

’RBFuncSVM’).

Table 4.5 and Figure 4.4 show the resulting metrics of the different classifiers on

this dataset.

Table 4.5: Classifier performance comparison for the het1b5pv2Beta dataset

Classifier Performance metric
Diag. Accuracy Sensitivity Specificity ROC AUC

DecsnTree 65 % ± 3 % 68 % ± 10 % 61 % ± 9 % 68 % ± 4 %
LinearSVM 64 % ± 3 % 59 % ± 5 % 69 % ± 4 % 68 % ± 3 %
KNearestN 66 % ± 3 % 41 % ± 5 % 89 % ± 3 % 74 % ± 3 %
AdaBoostC 68 % ± 3 % 69 % ± 4 % 68 % ± 4 % 75 % ± 3 %
RndForest 68 % ± 3 % 65 % ± 6 % 71 % ± 4 % 75 % ± 3 %
NaivBayes 70 % ± 3 % 71 % ± 5 % 69 % ± 4 % 76 % ± 4 %
MLPClassf 79 % ± 2 % 76 % ± 4 % 81 % ± 3 % 86 % ± 2 %

RBFuncSVM 79 % ± 2 % 76 % ± 4 % 81 % ± 3 % 86 % ± 2 %
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(a) Classifiers with lowest AUC: ’DecsnTree’, ’LinearSVM’, ’KNearestN’, ’AdaBoostC’.

(b) Classifiers with highest AUC: ’RndForest’, ’NaivBayes’, ’MLPClassf’, ’RBFuncSVM’.

Figure 4.4: Performance comparison of eight classifiers on the het1b5pv2Beta dataset

The classifiers are in ascending order by their AUC. For this dataset, ’RBFuncSVM’

obtained the highest performance in terms of AUC
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4.5 Classification results of the heterogeneous dataset

with rotation (het1b5pv2Gamma)

This dataset mode consisted of 1400 samples and 300 features. The obtained clas-

sification performances for this dataset were the lowest of all 5 datasets. This dataset

modality had the lowest samples-to-features ratio. The small ratio is consistent with

low classification performances.

Table 4.6 and Figure 4.5 show the resulting metrics of the different classifiers on

this dataset.

Table 4.6: Classifier performance comparison for the het1b5pv2Gamma dataset

Classifier Performance metric
Diag. Accuracy Sensitivity Specificity ROC AUC

LinearSVM 53 % ± 3 % 40 % ± 20 % 70 % ± 20 % 54 % ± 3 %
KNearestN 54 % ± 3 % 52 % ± 5 % 56 % ± 5 % 55 % ± 3 %
NaivBayes 53 % ± 3 % 62 % ± 7 % 45 % ± 8 % 55 % ± 4 %
DecsnTree 54 % ± 3 % 60 % ± 10 % 50 % ± 10 % 55 % ± 3 %
RndForest 55 % ± 3 % 45 % ± 10 % 63 % ± 8 % 57 % ± 3 %

AdaBoostC 55 % ± 3 % 51 % ± 5 % 59 % ± 4 % 57 % ± 3 %
RBFuncSVM 59 % ± 3 % 56 % ± 5 % 61 % ± 5 % 62 % ± 3 %

MLPClassf 60 % ± 3 % 58 % ± 10 % 62 % ± 8 % 63 % ± 3 %
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(a) Classifiers with lowest AUC: ’LinearSVM’, ’KNearestN’, ’NaivBayes’, ’DecsnTree’.

(b) Classifiers with highest AUC: ’RndForest’, ’AdaBoostC’, ’RBFuncSVM’, ’MLPClassf’.

Figure 4.5: Performance comparison of eight classifiers on the het1b5pv2Gamma

dataset The classifiers are in ascending order by their AUC. For this dataset, ’MLP-

Classf’ obtained the highest performance in terms of AUC
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Discussion and conclusions

5.1 Summary of work

Chapter 1 presented the relationship between breast cancer screening availability

and mortality figures related to breast cancer. The use of X-ray mammography as

the primary screening technology and ultrasound and Magnetic Resonance Imaging

(MRI) as secondary screening technologies was established, as well as their benefits

and shortcomings. As a response to such drawbacks, the emerging microwave tech-

nologies have been presented, including the two most common variation of Microwave

Imaging (MWI): Radar imaging and Microwave Tomography (MWT).

Chapter 2 laid out some of the characteristics of MWI systems, as well as the

option of using Machine Learning (ML) classifiers on microwave data to determine the

presence or absence of tumours. The various aspects of different microwave systems

were explored in that chapter, highlighting the hardware and software that were used

as inspiration for the preliminary design of a new portable Breast Microwave Sensing
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(BMS) system.

Chapter 3 showed the steps taken in the design and simulation of a BMS system

that aims to reduce the size of previous systems, while trying not to compromise in

detection performance. That chapter also explored the process of producing datasets

composed of breast models that included the statistical distribution of the tissue

contents. The ML techniques applied to the simulated data obtained from numerical

models of breasts inside the system’s chamber were discussed as well.

Chapter 4 showed a comparison of the results obtained by using eight different ML

classifiers. Two of them consistently outperformed the rest: a Multi Layer Perceptron

(MLP) (MLPClassif) and a Support Vector Machine (SVM) (RBFuncSVM), despite

one of them (MLPClassif) having had no optimization of its layer structure.

This chapter presents the conclusions as well as ideas and suggestions for the

future of this research.

5.2 Discussion

Four out of the five datasets used in this thesis, used breast models which contained

Fibroglandular Tissue (FGT). The fibroglandular densities of these breast models

were limited to the Breast Imaging Reporting and Data System (BI-RADS) class

1. Currently, annual mammograms are recommended for women of 40 years of age

and older. Breasts of BI-RADS class 1 are common in this age group, as there is

an inverse relation between the fibroglandular densities and the age of a woman.

However, future research might want to introduce breast models of BI-RADS classes

2 and higher. These models would account for breasts with higher fibroglandular
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content, which are normally found in younger women.

5.3 Conclusions

The results presented in Chapter 4, suggest that the use of ML classifiers to detect

the presence of tumours, by analysing microwave data is feasible. The classification

results for the heterogeneous dataset with rotation (het1b5pv2Beta), show a ROC’s

AUC of 86% ± 2% for ’RBFuncSVM’ and similarly, 86% ± 2% in the case of ’MLP-

Classf’. These results are similar to those found in a 2012 study by Ying et al.,

where the reported AUC for X-ray mammography for 549 patients was of 88.6% ±

1.6%. Despite the use of synthetic data, these results are encouraging, especially

when considering that there are several possible improvements to the simulations and

pre-processing of the data.

The neural network (MLPClassf) was not subjected to Grid-Search Cross-Validation

(GSCV) or any other means of optimization for its layer structure. It is also encour-

aging that despite this lack of optimization, MLPClassf consistently scored in the first

or second place in terms of AUC when compared to the seven other classifiers. This

suggests that an Artificial Neural Network (ANN) might be one of the most efficient

classifiers to detect tumours from data in the format used by this research.
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5.4 Suggestions for future work

5.4.1 Modifications to the prototype’s design

The design of the Polyvinyl chloride (PVC) chamber used in this research, holds

the transmitting antenna and 12 receiving solid-state microwave sensors at the same

level from the chamber’s floor. This design allows for convenient analysis of the

cross-section corresponding to the height at which the solid-state sensors are located.

However, this 2D approach poses the problem that a tumour might go undetected if

it is far from the sensors’ level. Some systems, as presented in Chapter 2, address

this issue by using a hydraulic jack to move the sensors, covering different levels

from the chest wall to the nipple. Nevertheless, a hydraulic jack could significantly

increase the weight specifications of the system and could require a re-design of the

device. Another option could be the addition of sensors located at different levels.

Evaluating the benefits of several sensor layers might necessitate the introduction of

a 3D forward-solver for the electromagnetic scattering. Further analysis of this issue

needs to be carried out.

Another aspect of the design of the PVC chamber is the location of the 12 solid-

state sensors. They have been located to surround the breast cavity without consid-

ering that certain regions of the chamber might contribute more useful information

than the others. Future research could study the correlation between sensor position

and classification performance, effectively finding if there are optimal sensor posi-

tions. The opposite might also be true; future research could find if there are sensors

currently located in redundant regions and getting rid of such sensors could lower the
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feature vector sizes while having little or no impact in classification performance.

5.4.2 Alternative forward-solver for the electromagnetic scat-

tering simulation

This research relies exclusively on the Method of Moments (MoM) forward-solver

of Electromagnetic scattering, which is a frequency-domain approach. However, an

alternative simulation modality, such as the Finite-Difference Time-Domain (FDTD)

method could bring its own set of benefits to this research. As shown in Figure 3.3,

of all the tissues used for simulations, the skin is the healthy tissue with the highest

relative permittivity value. By having time-domain data available, the reflections

returning from the skin could be algorithmically removed. By removing the reflections

from the skin, the classifiers could potentially increase their performance, as they

would deal with information coming from higher contrasts of permittivity in the case

where there is a tumour (permittivity of fat and FGT tissue against the permittivity

of a tumour), and very little contrast when there is not one (permittivity of fat and

FGT tissue).

In addition to the use of a time-domain forward solver, more realistic simulations

could be carried out by taking into account the transmitting antenna’s radiation pat-

tern. The simulations performed in this thesis used a point source, this is equivalent

to an isotropic antenna in 2D. The consideration of the physical antenna’s radia-

tion pattern would bring the simulations closer to the real-life data produced by the

physical prototype.

This research made use of 2D numerical breasts modelled as circular patches of
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tissues with known permittivity values. However, more realistic numerical breast

models could be employed, even MRI-derived repositories such as the one provided

by [27, 28] could make the simulations closer to reality. Using FDTD and MRI-derived

numerical breasts could require higher computational power, this could be addressed

by using hardware acceleration in the FDTD method, as presented by Wang et al.

[60].

5.4.3 Classification process

As shown in the parameter graphs of ’RBFuncSVM’ in Appendix A.5 (Figures

A.21, A.22, A.23, A.24, and A.25), GSCV only found good-performing parameter

combinations (candidates) in the upper middle area of the gamma,C plane. It has

been recommended in the literature (Hsu, Chang, Lin, et al. [58]) that a good ap-

proach to GSCV, consists of refining the search space to a finer grid after having

identified a region containing good candidates. Future research could try and limit

the search space to find potentially even better-performing parameters in less time.

Besides the use of Principal Component Analysis (PCA), there were no feature

extraction or feature selection techniques applied to the data used in this research.

There is a vast amount of literature that covers feature selection and extraction

techniques for images, audio or text data. However, the type of information collected

by the BMS system is neither, so a more specific approach to pre-processing the

information coming from the sensors is needed. Focusing on feature engineering

might have the biggest impact in a future research project that seeks to continue the

work presented on this thesis, as having "good" features can significantly reduce the
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need for large datasets.

A good first step to improve the feature engineering, could be to use log-magnitude

and phase representation of the electric field as features, instead of the current ap-

proach, which is the magnitude of the complex energy values at the sensor locations.

This log-magnitude and phase technique has been suggested by Meaney, Paulsen,

Pogue, and Miga [61], with a significant improvement in image reconstruction for

high permittivity contrast scenarios. The same approach has also been employed by

Rubæk, Kim, and Meincke [33] with success; this suggests that, although the applica-

tion has been to image reconstruction algorithms, classification of that type of data

could potentially improve as well.

Although the choice of using the ML package scikit-learn is a good one, as the

complexity of the data increases, Graphical Processing Unit (GPU) acceleration might

become a necessity. Tensorflow ([62]) is a good example of a ML package that is com-

patible with GPU acceleration. The transition to such package should be relatively

smooth, as python wrappers are available, this means that most of the current code

could be adapted without having to write everything again.
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Appendix A

Values found using Grid-Search

A.1 Parameters tuned for AdaBoost

Figure A.1: Grid-Search space showing the best-performing values for AdaBoostC’s
parameter (n_estimators) on the hom1b1p dataset.
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Figure A.2: Grid-Search space showing the best-performing values for AdaBoostC’s
parameter (n_estimators) on the het1b1p dataset.

Figure A.3: Grid-Search space showing the best-performing values for AdaBoostC’s
parameter (n_estimators) on the het1b5pv2Alpha dataset.
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Figure A.4: Grid-Search space showing the best-performing values for AdaBoostC’s
parameter (n_estimators) on the het1b5pv2Beta dataset.

Figure A.5: Grid-Search space showing the best-performing values for AdaBoostC’s
parameter (n_estimators) on the het1b5pv2Gamma dataset.
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A.2 Parameters tuned for DecsnTree

Figure A.6: Grid-Search space showing the best-performing values for DecsnTree’s
parameter (max_depth) on the hom1b1p dataset.

Figure A.7: Grid-Search space showing the best-performing values for DecsnTree’s
parameter (max_depth) on the het1b1p dataset.



Appendix A: Parameters values optimized using Grid-Search 81

Figure A.8: Grid-Search space showing the best-performing values for DecsnTree’s
parameter (max_depth) on the het1b5pv2Alpha dataset.

Figure A.9: Grid-Search space showing the best-performing values for DecsnTree’s
parameter (max_depth) on the het1b5pv2Beta dataset.
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Figure A.10: Grid-Search space showing the best-performing values for DecsnTree’s
parameter (max_depth) on the het1b5pv2Gamma dataset.

A.3 Parameters tuned for KNearestN

Figure A.11: Grid-Search space showing the best-performing values for KNearestN’s
parameter (n_neighbors) on the hom1b1p dataset.
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Figure A.12: Grid-Search space showing the best-performing values for KNearestN’s
parameter (n_neighbors) on the het1b1p dataset.

Figure A.13: Grid-Search space showing the best-performing values for KNearestN’s
parameter (n_neighbors) on the het1b5pv2Alpha dataset.
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Figure A.14: Grid-Search space showing the best-performing values for KNearestN’s
parameter (n_neighbors) on the het1b5pv2Beta dataset.

Figure A.15: Grid-Search space showing the best-performing values for KNearestN’s
parameter (n_neighbors) on the het1b5pv2Gamma dataset.
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A.4 Parameters tuned for LinearSVM

Figure A.16: Grid-Search space showing the best-performing values for LinearSVM’s
parameter (C) on the hom1b1p dataset.

Figure A.17: Grid-Search space showing the best-performing values for LinearSVM’s
parameter (C) on the het1b1p dataset.
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Figure A.18: Grid-Search space showing the best-performing values for LinearSVM’s
parameter (C) on the het1b5pv2Alpha dataset.

Figure A.19: Grid-Search space showing the best-performing values for LinearSVM’s
parameter (C) on the het1b5pv2Beta dataset.
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Figure A.20: Grid-Search space showing the best-performing values for LinearSVM’s
parameter (C) on the het1b5pv2Gamma dataset.

A.5 Parameters tuned for RBFuncSVM

Figure A.21: Grid-Search space showing the best-performing values for RBFuncSVM’s
parameters (gamma, C) on the hom1b1p dataset.
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Figure A.22: Grid-Search space showing the best-performing values for RBFuncSVM’s
parameters (gamma, C) on the het1b1p dataset.

Figure A.23: Grid-Search space showing the best-performing values for RBFuncSVM’s
parameters (gamma, C) on the het1b5pv2Alpha dataset.
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Figure A.24: Grid-Search space showing the best-performing values for RBFuncSVM’s
parameters (gamma, C) on the het1b5pv2Beta dataset.

Figure A.25: Grid-Search space showing the best-performing values for RBFuncSVM’s
parameters (gamma, C) on the het1b5pv2Gamma dataset.
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A.6 Parameters tuned for RndForest

Figure A.26: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, max_depth) on the hom1b1p dataset.

Figure A.27: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, n_estimators) on the hom1b1p dataset.
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Figure A.28: Grid-Search space showing the best-performing values for RndForest’s
parameters (n_estimators, max_depth) on the hom1b1p dataset.

Figure A.29: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, max_depth) on the het1b1p dataset.
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Figure A.30: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, n_estimators) on the het1b1p dataset.

Figure A.31: Grid-Search space showing the best-performing values for RndForest’s
parameters (n_estimators, max_depth) on the het1b1p dataset.
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Figure A.32: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, max_depth) on the het1b5pv2Alpha dataset.

Figure A.33: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, n_estimators) on the het1b5pv2Alpha dataset.
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Figure A.34: Grid-Search space showing the best-performing values for RndForest’s
parameters (n_estimators, max_depth) on the het1b5pv2Alpha dataset.

Figure A.35: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, max_depth) on the het1b5pv2Beta dataset.
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Figure A.36: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, n_estimators) on the het1b5pv2Beta dataset.

Figure A.37: Grid-Search space showing the best-performing values for RndForest’s
parameters (n_estimators, max_depth) on the het1b5pv2Beta dataset.
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Figure A.38: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, max_depth) on the het1b5pv2Gamma dataset.

Figure A.39: Grid-Search space showing the best-performing values for RndForest’s
parameters (max_features, n_estimators) on the het1b5pv2Gamma dataset.
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Figure A.40: Grid-Search space showing the best-performing values for RndForest’s
parameters (n_estimators, max_depth) on the het1b5pv2Gamma dataset.



Appendix B

BSD3-License code used to
produce figure 2.1

Python code used to produce comparison graphics from Figure 2.1
1 #! / usr / bin / python
2 # −∗− coding : utf −8 −∗−
3
4 # Code s o u r c e : Gaël Varoquaux
5 # Andreas Müller
6 # Modif ied f o r documentation by Jaques Grobler
7 # Modif ied f o r i n c l u s i o n i n t o a t h e s i s by Jorge S a c r i s t a n
8 # L i c e n s e : BSD 3 c l a u s e
9

10 import numpy as np
11 import m a t p l o t l i b . pyplot as p l t
12 from m a t p l o t l i b . c o l o r s import ListedColormap
13 from s k l e a r n . m o d e l _ s e l e c t i o n import t r a i n _ t e s t _ s p l i t
14 from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
15 from s k l e a r n . d a t a s e t s import make_moons , make_circles , m a k e _ c l a s s i f i c a t i o n
16 from s k l e a r n . n e i g h b o r s import K N e i g h b o r s C l a s s i f i e r
17 from s k l e a r n . svm import SVC
18 from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r
19 from s k l e a r n . ensemble import RandomForestClass i f i er , A d a B o o s t C l a s s i f i e r
20 from s k l e a r n . naive_bayes import GaussianNB
21 from s k l e a r n . d i s c r i m i n a n t _ a n a l y s i s import L i n e a r D i s c r i m i n a n t A n a l y s i s ,

Q u a d r a t i c D i s c r i m i n a n t A n a l y s i s
22 from s k l e a r n . neural_network import MLPClass i f ier
23 from s k l e a r n . ensemble import V o t i n g C l a s s i f i e r
24
25
26 my_knn = K N e i g h b o r s C l a s s i f i e r ( 3 )
27 my_svm = SVC( k e r n e l= ’ r b f ’ , gamma=2, C=1, p r o b a b i l i t y=True )
28 my_mlp = MLPClass i f ier ( h i d d e n _ l a y e r _ s i z e s =(12 , 4) , max_iter =500 , v e r b o s e=False , t o l =1e−5,

a c t i v a t i o n= ’ r e l u ’ )
29
30 c l a s s i f i e r s =[( " D e c i s i o n Tree " , D e c i s i o n T r e e C l a s s i f i e r ( max_depth=5) ) ,
31 ( "Random F o r e s t " , R a n d o m F o r e s t C l a s s i f i e r ( max_depth=5, n_estimators =10 , max_features =1) ) ,
32 ( "LDA" , L i n e a r D i s c r i m i n a n t A n a l y s i s ( ) ) ,
33 ( "QDA" , Q u a d r a t i c D i s c r i m i n a n t A n a l y s i s ( ) ) ,
34 ( " Naive Bayes " , Q u a d r a t i c D i s c r i m i n a n t A n a l y s i s ( ) ) ,
35 ( "KNN ( 3 ) " , my_knn) ,
36 ( " Linear SVM" , SVC( k e r n e l=" l i n e a r " , C=0.025 , p r o b a b i l i t y=True ) ) ,
37 ( "RBF SVM" , my_svm) ,
38 ( " M u l t i l a y e r e d Perceptron " , my_mlp) ,
39 ( " AdaBoost " , A d a B o o s t C l a s s i f i e r ( ) ) ,
40 ( " S o f t V o t i n g (KNN,SVM,MLP) " , V o t i n g C l a s s i f i e r ( e s t i m a t o r s =[( ’ knn ’ , my_knn) ,
41 ( ’ svc ’ , my_svm) ,
42 ( ’ knn ’ , my_mlp) , ] ,
43 v o t i n g= ’ s o f t ’ , weights =[1 , 1 , 1 , ] , ) ) , ]
44
45 X, y = m a k e _ c l a s s i f i c a t i o n ( n _f ea t ur es =2, n_redundant =0, n_informative =2, random_state =1,
46 n _ c l u s t e r s _ p e r _ c l a s s =1)
47 rng = np . random . RandomState ( 2 )
48 X += 2 ∗ rng . uniform ( s i z e=X. shape )
49 l i n e a r l y _ s e p a r a b l e = (X, y )
50

98
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51 ds_names = [ " Moons d a t a s e t " , " C i r c l e s d a t a s e t " , " L i n e a r l y s e p a r a b l e d a t a s e t " ]
52 d a t a s e t s = [ make_moons ( n o i s e =0.3 , random_state=0) ,
53 make_circ les ( n o i s e =0.2 , f a c t o r =0.5 , random_state=1) ,
54 l i n e a r l y _ s e p a r a b l e ]
55
56 # A e s t h e t i c o p t i o n s
57 marker_train = " ∗ "
58 marker_test = " o "
59 alpha_train = 0 . 9
60 alpha_test = 0 . 7
61 alpha_cm = 0 . 7
62 my_fig_size = ( 7 , 9 . 5 )
63 g r i d _ r e s o l u t i o n = 0 . 0 2 # s t e p s i z e i n the mesh
64 f ig_rows = i n t ( np . c e i l ( np . s q r t ( l e n ( c l a s s i f i e r s ) ) ) )
65 f i g _ c o l s = i n t ( np . c e i l ( l e n ( c l a s s i f i e r s ) / f ig_rows ) )
66
67 f o r ds_idx i n range ( l e n ( d a t a s e t s ) ) :
68 # Peprocess dataset , s p l i t i n t o t r a i n i n g and t e s t part
69 ds = d a t a s e t s [ ds_idx ]
70 X, y = ds
71 X = S t a n d a r d S c a l e r ( ) . f i t _ t r a n s f o r m (X)
72 X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e =0.3)
73
74 x_min , x_max = X [ : , 0 ] . min ( ) − . 5 , X [ : , 0 ] . max ( ) + . 5
75 y_min , y_max = X [ : , 1 ] . min ( ) − . 5 , X [ : , 1 ] . max ( ) + . 5
76 meshgrid_x , meshgrid_y = np . meshgrid ( np . arange ( x_min , x_max , g r i d _ r e s o l u t i o n ) ,
77 np . arange (y_min , y_max , g r i d _ r e s o l u t i o n ) )
78
79 # j u s t p l o t the d a t a s e t f i r s t
80 my_colourmap = p l t . cm . RdBu
81 cm_bright = ListedColormap ( [ ’#FF0000 ’ , ’ #0000FF ’ ] )
82 f i g , axes = p l t . s u b p l o t s ( fig_rows , f i g _ c o l s , f i g s i z e=my_fig_size )
83
84 # Plot the t r a i n i n g p o i n t s
85 axes [ 0 , 0 ] . s c a t t e r ( X_train [ : , 0 ] , X_train [ : , 1 ] , c=y_train , cmap=cm_bright ,
86 alpha=alpha_train , marker=marker_train )
87
88 # and t e s t i n g p o i n t s
89 axes [ 0 , 0 ] . s c a t t e r ( X_test [ : , 0 ] , X_test [ : , 1 ] , c=y_test , cmap=cm_bright ,
90 alpha=alpha_test , marker=marker_test )
91
92 axes [ 0 , 0 ] . s e t _ t i t l e ( " S y n t h e t i c d a t a s e t " )
93
94 # i t e r a t e over c l a s s i f i e r s
95 ax_index_row = 0
96 ax_index_col = 1
97
98 # f o r name , c l f i n z i p ( clf_names , c l f _ o b j e c t s ) :
99 f o r name , c l f i n c l a s s i f i e r s :

100 c l f . f i t ( X_train , y_train )
101 s c o r e = c l f . s c o r e ( X_test , y_test )
102
103 # Plot the d e c i s i o n boundary . For that , we w i l l a s s i g n a c o l o r to each
104 # p o i n t i n the mesh [ x_min , m_max] x [ y_min , y_max ] .
105 i f h a s a t t r ( c l f , " d e c i s i o n _ f u n c t i o n " ) :
106 Z = c l f . d e c i s i o n _ f u n c t i o n ( np . c_ [ meshgrid_x . r a v e l ( ) , meshgrid_y . r a v e l ( ) ] )
107 e l s e :
108 Z = c l f . predict_proba ( np . c_ [ meshgrid_x . r a v e l ( ) , meshgrid_y . r a v e l ( ) ] ) [ : , 1 ]
109
110 # Put the r e s u l t i n t o a c o l o r p l o t
111 Z = Z . reshape ( meshgrid_x . shape )
112 axes [ ax_index_row , ax_index_col ] . c o n t o u r f ( meshgrid_x , meshgrid_y , Z ,
113 cmap=my_colourmap , alpha=alpha_cm )
114
115 # Plot a l s o the t r a i n i n g p o i n t s
116 axes [ ax_index_row , ax_index_col ] . s c a t t e r ( X_train [ : , 0 ] , X_train [ : , 1 ] , c=y_train ,
117 cmap=cm_bright , alpha=alpha_train , marker=

marker_train )
118
119 # and t e s t i n g p o i n t s
120 axes [ ax_index_row , ax_index_col ] . s c a t t e r ( X_test [ : , 0 ] , X_test [ : , 1 ] , c=y_test ,
121 cmap=cm_bright , alpha=alpha_test , marker=

marker_test )
122
123 axes [ ax_index_row , ax_index_col ] . s e t _ t i t l e ( name )
124 axes [ ax_index_row , ax_index_col ] . t e x t ( meshgrid_x . max ( ) − . 3 ,
125 meshgrid_y . min ( ) + . 3 ,
126 ( ’ %.2 f ’ % s c o r e ) . l s t r i p ( ’ 0 ’ ) ,
127 s i z e =15 , h o r i z o n t a l a l i g n m e n t= ’ r i g h t ’ )
128
129 i f ax_index_col + 1 < f i g _ c o l s :
130 ax_index_col += 1
131 e l s e :
132 ax_index_col = 0
133 ax_index_row += 1
134
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135 # A e s t h e t i c setup
136 f o r ax_row i n axes :
137 f o r ax i n ax_row :
138 ax . s e t _ x t i c k s ( ( ) )
139 ax . s e t _ y t i c k s ( ( ) )
140 ax . set_xlim ( meshgrid_x . min ( ) , meshgrid_x . max ( ) )
141 ax . set_ylim ( meshgrid_y . min ( ) , meshgrid_y . max ( ) )
142 # ax . a x i s ( ’ o f f ’ )
143
144 f i g . s u b p l o t s _ a d j u s t ( l e f t =0.02 , r i g h t =0.98 , bottom =0.01 , top =0.97)
145
146 p l t . show ( )
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