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Abstract 

Background: The pro-inflammatory mediator receptor activator of nuclear factor-

kappa B ligand (RANKL) plays a major role in the development of rheumatoid arthritis; 

however, its role in inflammatory bowel disease is unknown. Genome-wide association meta-

analysis for Crohn’s disease (CD) identified a variant, near the TNFSF11 gene that encodes 

RANKL. Moreover, CD risk allele increased expression of RANKL in specific cell lines. This 

study aims to elucidate if the RANKL inhibitor Denosumab (Prolia™) can reduce the severity 

of experimental colitis via modifying gut microbiota dysregulation. Methods: CD-like colitis 

was induced via intrarectal administration of dinitrobenzenesulfonic acid (DNBS, 4mg/kg) 

dissolved in Ethanol (30%) to C57Bl/6 mice (n=12). One day before colitis induction, daily 

injection of Prolia (10mg/kg/d, intraperitonealy) was initiated and continued over four days. 

Vehicle mice received PBS1%. On the sacrifice day, inflammatory status was evaluated 

clinically. DNA was extracted from colonic mucosa and fecal samples, and V4 region of 

bacterial 16S rRNA gene was amplified and subjected to Illumina sequencing for microbiome 

analysis. Alpha- and beta-diversities were calculated in QIIME and subjected to SAS and 

PERMANOVA, respectively. Differences in clustering pattern of microbiota at the genus 

level were determined. Differences between were considered significant at P<0.05. Results: 

Disease severity, macroscopic score and pro-inflammatory cytokines (Il-6, IL-1β and TNF-α) 

were increased in DNBS/Ethanol-treated vs. vehicle mice. Prolia treatment decreased 

(P<0.05) only the pro-inflammatory cytokines. Prolia treatment also modified the alpha- and 

beta-diversity of colonic mucosa and fecal microbiota. DNBS/Ethanol group clustered 

separately (P<0.05) compared to the vehicle group, Prolia treatment attenuated the negative 

effects of DNBS/Ethanol.  Conclusions: The development of colitis in DNBS/Ethanol model 
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was accompanied by disruption of gut microbiota. Preventative treatment with Prolia 

modulated intestinal inflammation and gut microbiota dysbiosis in a murine model of colitis. 

Our results provide a rationale for considering Prolia as a future potential therapy in CD, but 

more experimental and clinical studies need to be performed. 
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Chapter One 

1.1. Overview 

Inflammatory bowel diseases (IBD), consisting of ulcerative colitis (UC) and Crohn’s 

disease (CD), are characterized by chronic inflammation and ulceration in the segments of the 

gastrointestinal tract (Nemati et al., 2017). The highest IBD prevalence worldwide was 

reported in 2011 were in Europe (UC, 505 per 100,000 persons; CD, 322 per 100,000 

persons) and North America (UC, 249 per 100,000 persons; CD, 319 per 100,000 persons), 

which provide evidence for association between this disease and industrialization (Molodecky 

et al., 2012). Furthermore, based on Moum and Zeng (1996) studies, there are peaks in the 

onset of UC and CD exacerbations in winter months in the Northern Hemisphere and the 

highest rate of prevalence have been reported in Scandinavia, Great Britain, and North 

America. This theory is thought to be related to vitamin D deficiency in IBD patients (Sands 

et al., 2009).  

The total direct cost for IBD patients in Canada is estimated to be approximately 

between $7,210 CAD (95% CI $5,005 - $9,464) (Gibson et al., 2008). Although the causative 

etiology of IBD is not fully understood, extensive studies in the past few decades suggest 

impairments in the immune system, genetic susceptibility and environmental risk factors as 

well as gut microbiota dysbiosis as the main players in IBD pathogenesis (Kelsen et al., 2017; 

Lopetuso et al., 2017; Nemati et al., 2017; Rodriguez de Santiago et al., 2017; Rogler, 2017). 

According to the genome-wide association study (GWAS), 163 genes and genetic loci have 

been identified that can contribute to IBD pathogenesis (Abreu, 2013; Loddo et al., 2015; Liu 
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et al., 2016), from which approximately 30% are shared between CD and UC patients. For 

instance, in CD, GWAS identified a variant, near the gene TNFSF11 that encodes for receptor 

activator of nuclear factor kappa-B ligand (RANKL) (Boyce et al., 2007; Dixon et al., 2007; 

Ali et al., 2009; Krela-Kazmierczak et al., 2016). The CD risk allele increased expression of 

RANKL in specific cell lines (Franke et al., 2010; Sanseau et al., 2012). Although RANKL 

plays a major role in the development of rheumatoid arthritis by assisting the excessive 

osteoclastogenesis in such disease, its role in the development of IBD is not clear. Because of 

the implication of the RANK/RANKL in the pro-inflammatory pathway of the immune 

system, it is expected that this pathway can contribute to IBD (Boyce et al., 2007). This study 

aims to elucidate if Denosumab (Prolia™) as a RANKL inhibitor have any impacts on 

dinitrobenzosulfonic acid (DNBS)-induced colitis in an experimental setting through the 

regulation of immune activation and gut microbiota. If positive, RANKL inhibitor may 

potentially serve as a therapeutic approach in IBD, particularly in CD patients.  
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1.2. Literature Review 

1.2.1. Overview of Inflammatory Bowel Disease  

1.2.1.1. Definition of IBD 

IBD, consisting two major types of idiopathic intestinal disorders: CD and UC, are 

characterized by chronic inflammation and ulceration in the segment of the gastrointestinal 

tract (Kelsen et al., 2017; Nemati et al., 2017). In CD, there is an incidence of transmural 

inflammation at the site of the ileum and the colon which in a discontinuous pattern may 

involve any parts of the gastrointestinal tract; while in UC the inflammation occurs at the 

mucosal layer and mostly involves the rectum with the possibility to affect a part or the entire 

colon in a continuously manner (Fiocchi, 1998; Fiocchi, 2005; Danese et al., 2011; Baumgart 

et al., 2012). CD is usually associated with intestinal granulomas, strictures, and fistulas, 

whereas the incidence of bowel perforation (rupture) and colorectal cancer occur more in UC 

(Abraham et al., 2009). 

1.2.1.2. Epidemiology of IBD 

Epidemiologic studies demonstrated a strong worldwide variation in the context of 

prevalence and incidence of IBD. The highest prevalence of IBD reported in 2011 was in 

Europe (UC, 505 per 100,000 persons; CD, 322 per 100,000 persons) and in North America 

(UC, 249 per 100,000 persons; CD, 319 per 100,000 persons) illustrating a significant 

association between IBD and industrialized countries (Hanauer, 2006; Gibson et al., 2008). In 

contrast, Eastern countries having considerably lower incidence rates (Gibson et al., 2008; 

Hanauer, 2006). However, in the last two decades, studies reported a rising incidence rate in 

several developing regions including Asia, South America and Middle East suggesting an 
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evolution of IBD and an increased prevalence across geographic regions (Molodecky et al., 

2012; M'Koma, 2013; Kaplan, 2015). 

1.2.1.3. Etiopathology 

1.2.1.3.1. Genetic Susceptibility in IBD 

According to the genome-wide association study (GWAS), 163 genes and genetic loci 

have been identified that can contribute to susceptibility to IBD (Abreu, 2013; Loddo et al., 

2015; Liu et al., 2016), from which approximately 30% are shared between CD and UC 

patients. Analyses of these genes showed that they are associated with several essential 

pathways implicated in intestine homeostasis, implying a role of genetic susceptibility in the 

mechanism of the pathogenesis of IBD (Doecke et al., 2013; Mondal et al., 2017). Some of 

these pathways include: barrier function, epithelial restitution, microbial defense, innate and 

adaptive immune regulation, reactive oxygen species generation, autophagy, endoplasmic 

reticulum (ER) stress, and metabolic pathways (Kaser et al., 2008; Mazmanian et al., 2008; 

Sollid et al., 2008). Up until now, more than 30 genes related to IBD susceptibility have been 

recognized of which some are only associated with CD (e.g. NOD2, ATG16L1, IRGM, 

PTGER4) or UC (e.g. ECM1), while others are shared between CD and UC patients (e.g. 

IL23R, STAT3) (Xavier et al., 2007; Kaser et al., 2008; Mazmanian et al., 2008; Sollid et al., 

2008; Zhang et al., 2014). 

1.2.1.3.2. Environmental Factors 

The (Derakhshani, Tun, et al., 2016)changing pattern in global prevalence of IBD 

suggests a role of environmental factors in the pathogenesis of IBD (Ali et al., 2008). One of 

these factors has been described as “Hygiene hypothesis”. In that context, a higher rate of IBD 
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pathogenesis has been described in high socioeconomic countries, where there is lack of 

exposure of people to certain microbial agents (both pathogenic and non-pathogenic) during 

infancy and childhood because of stringent sanitation conditions. Overall, the hygiene 

hypothesis suggests the insufficient development of the immune system that leads to 

increased rates of IBD and other dysfunctional immune-related diseases, such as asthma 

development (Hanauer, 2006; Ali et al., 2008; Mazmanian et al., 2008). Moreover, this 

lifestyle is also associated with Western diet, stressful job-related lifestyle as well as higher 

chance of exposure to pollution and industrial chemical in urban areas compared to rural sites 

(Xavier et al., 2007; Manzel et al., 2014; Vasquez, 2014). Drinking and smoking habits are 

also known as potential factors in the pathogenesis of IBD (Molodecky et al., 2012; Legaki et 

al., 2016). 

1.2.1.3.3. Dysfunctional Immune Response in IBD 

The immune inflammatory response, a host defense mechanism in the case of injury or 

infection, is stratified into two main steps: activation of the innate immune response followed 

by an activation of the adaptive immune response.  

In the last several decades, studied demonstrated the contribution of dysregulated 

inflammatory molecules to the immunopathogenesis of IBD. Most considered IBD as a 

consequence of an abnormality at the level of the adaptive immune response, while GWAS 

revealed a variety of target genes that point toward a dysfunctional innate immune response 

(Cader et al., 2013). Proven efficacy of anti-TNF-α drugs, a crucial player in regulating innate 

inflammatory response underscores the importance of the established therapeutic 

interventions targeting the defective innate immune system (Rahimi et al., 2007). But it needs 

to be mentioned that adaptive immune cells can release tumor necrosis factor (TNF)-α. 
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Disrupted intestinal epithelial barrier integrity leads to mucosal susceptibility by enhancing 

toll-like receptor activity directed against commensal bacteria, pathogenic invaders or 

environmentally derived antigens, which results in activation of a series of innate 

inflammatory response cascades. In the context of chronic colonic inflammation, defect at the 

epithelial level can be caused either by genetic perturbations of expressing antimicrobial 

peptides in the epithelium layer or by an imperfection in controlling the intracellular bacteria 

within phagocytic cells, such as antigen presenting cells (APC) like dendritic cells or 

macrophages (Barcelo-Batllori et al., 2002; Roda et al., 2010; Bar et al., 2013). Following 

APC activations and production of a large amount of pro-inflammatory cytokines, not only 

the innate components including macrophages/monocytes, neutrophils, and dendritic cells will 

be activated but this will also lead to the recruitment activation and differentiation of naïve T-

cells into effector T helper (Th) cells, polarizing them to a Th1, Th2, or Th17 profile, or 

activating B cells. These cytokine-mediated interactions also activate reactive oxygen 

metabolite (ROM) cascade and chemotaxis, causing further oxidative stress, which alters gut 

homeostasis and results in aggravation of the inflammation initiated tissue damage (Frink et 

al., 2007). Several pro-inflammatory markers play a key role in during the over-activated 

immune response during IBD. This includes interleukin (IL)-1, IL-6, IL-18, TNF, members of 

IL-12 family (IL-12, -23, -27, -35), interferon (IFN)-α, and IFN-β produced by APCs, such as 

dendritic cells (DCs) and macrophages, all reported during the development of IBD (Park et 

al., 2017). Although prototypically CD and UC were considered as T helper Th1 or Th2-

associated diseases, over the time other pathways including the Th17, Th22, and T regulatory 

cell cytokines have been identified as a common factor in both disease phenotypes, 

highlighting the role of IL-22 and IL-17A/IL-23 axis (Monteleone et al., 2001; Strober et al., 
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2007; Neurath, 2008; Park et al., 2017). The last axis is mostly secreted by innate lymphoid 

cells (ILCs) but as a controversial role as an effector or protector for IL17 in different models 

of IBD (Yang et al., 2008; O'Connor et al., 2009; Eken et al., 2014). Understanding the basic 

characteristic of the major subsets of clusters of differentiation (CD) 4+ and CD8+ T helper 

cells, encompassing Th1, 2, 9, 17, 22 and Tregs will help us to investigate their role in 

interactions between innate and adaptive immunity in the gut of IBD patients. IFN-γ produced 

by natural killer and DC in response to intracellular pathogens or commensal bacteria induces 

Th cell polarization and Th1 differentiation through activating STAT1, 4 (Signal transducer 

and activator of transcription1,4) transcription factors that lead to activation of the lineage-

specific transcription factor T-bet (Becker et al., 2006; Chaudhry et al., 2009; Hisamatsu et 

al., 2013; Park et al., 2017). Th1 production is vital for cell-mediated immunity through the 

production of several signature cytokines including IFN-γ, TNF, and IL-2. As a fact, it has 

been recently described that during CD, a high level of IL-2Rα expressed by mucosal T cells 

results in producing a notable amount of IL-2, which has also been reported to have a positive 

correlation with cytotoxicity of T cells in CD (de Souza et al., 2016). Along with IFN-γ 

produced by DC or macrophages, other pivotal cytokines like IL-12 and IL-18 can control 

Th1 T-cell differentiation ability and are up-regulated in CD (Fuss et al., 1996; Monteleone et 

al., 1997; Pizarro et al., 1999; Park et al., 2017). In addition to the Th1 cytokines, the Th2 

signature cytokines, such as IL-5, IL-10, IL-13, IL-21 and IL-25, and transcription factors 

such as GATA-binding protein 3 (GATA3) were also increased during CD and UC (Fuss et 

al., 1996; Heller et al., 2005; Fuss et al., 2008). On the other hand, the reported decrease in 

production of IL-4 by mucosal T cells in both UC and CD, suggests a defect in exhibiting a 

full classical Th2 response in the pathogenesis of IBD (West et al., 1996; Park et al., 2017). 
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The IL-4 released by APC and specifically DC mediates the activation of the lineage-specific 

transcription factor GATA-3 and induces Th2 cells, which by secreting IL-4 and IL-10 

participates in the B cells activation and targets the termination of extracellular bacteria 

(Becker et al., 2006; Annunziato et al., 2007; Kleinschek et al., 2009). The lineage induction 

of the other subset of T helper cells, Th17, occurs in the absence of IL-4 and IL-12 secretion, 

cytokines in charge of the polarization toward Th2 and Th1 respectively. Also, IL-6-mediates 

the activation of STAT3 by inducing RORγt transcription factor leading to the production of 

Th17 signature cytokines, such as IL-6, IL-17, IL-23 and TGF-β (Annunziato et al., 2007; 

Yang et al., 2008; Ivanov et al., 2009; Park et al., 2017). In IBD patients, high level of Th17 

cell-associated cytokines, such as IL-17A and IL-17F, has been reported in response to the 

increase levels of IL-6 and IL-23 upon microbiome stimulation (Annunziato et al., 2007; 

Ivanov et al., 2009; Kleinschek et al., 2009) which leads to severe epithelial damages by 

recruiting neutrophils as well as increasing the levels of IL-1β, IL-6, IL-8 and TNF in CD 

(Siakavellas et al., 2012). In addition, several studies addressed the Th9 and Th22 cell subsets 

of Th17 cells implicated by describing higher levels of IL-9 produced by Th9 cell subset and 

reduction levels of Th22 subset in patients with UC (Gerlach et al., 2014; Leung et al., 2014). 

Th9 cells require IL-4 and TGF-β for maturation and they secret their signature pro-

inflammatory cytokine, IL-9, and IL-10 in order to activate Th17 cells (Asseman et al., 1999; 

Becker et al., 2006; Park et al., 2017). CD4+ T Th22 cells in contrary to Th17, secret low 

level of RORγt, a transcription factor essential for TH17 development, and TGF-β inhibits IL-

22 expression by Th22 cells. Th22 differentiation is promoted by IL-6 and TNF and due to the 

activation of Th22 cells results in the secretion of IL-22, IL-13, fibroblast growth factor, 

chemokines, and TNF. Several studies reported the protective role of Th22 cells against 
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bacterial, fungal or viral infection at the epithelial barrier of the gastrointestinal tract 

associated with accelerating the wound repair mechanism (Monteleone et al., 2001; Becker et 

al., 2006; Chaudhry et al., 2009). 

1.2.1.4. Microbiome and IBD 

1.2.1.4.1. Definition of Microbiome 

For the first time the term “microbiome” was used by Joshua Lederberg (2001) and 

defined by Merriam Webster dictionary as the collective genomes of microorganisms 

including but not limited to bacteria, fungi, archaea and viruses inhabiting a particular 

environment and specifically the human body. There is a coexistence and co-evolution 

between human and microorganisms to keep a homeostatic body status while having a mutual 

symbiotic relationship benefiting both groups (Rapozo et al., 2017). The human microbiome 

contains approximately more than 10 times as many genes as the human genome and is 

entitled the “virtual organ” or “our forgotten organ” (Chung et al., 2016; Song et al. 2016). 

The estimation for a number of bacteria exist in a reference man (70 kg) is 3.8* 1013, this is 

when the total count for human cells is 3.0*1013 equals to 0.2 kg of body weight (Sender et al., 

2016). Around 5 million variable genes are estimated to be present in the human gut 

microbiota, which predominantly belong to Firmicutes, Bacteroidetes and Actinobacteria 

phyla, whereas, Proteobacteria, Fusobacteria, Cyanobacteria and Verrucomicrobia phyla are 

less represented (Qin et al., 2010; D'Argenio et al., 2015). Based on comparative varied 

cohort studies, biological factors such as genetic, age, diet, delivery method, lifestyle, and 

antibiotic usage can impact the composition of microbiome (Debelius et al., 2016; Dickson, 

2017). Many ongoing studies tried to unravel the mechanism underlying the microbiome 

effect through the host/microbe interactions in different disease states compared to healthy 
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ones. Based on these studies several functions are associated with microbiota, consisting 

polysaccharide digestion, vitamin synthesis, fat storage, and angiogenesis regulation. Also 

microbiome profile contributes to shape and educate the local and systemic immune response, 

through inhibition of nutrients and adhesion sites for pathogenic and opportunistic bacteria 

with mediation of commensal bacteria. Any disturbances in the microbe—host interactions, 

such as a defect in the innate microbial sensing and clearance, loss of barrier functions, and 

failure to maintain intestinal epithelial cell homeostasis targeting Paneth cells, may lead to the 

chronic activation of immune mediators and ultimately dysbiosis (Becker et al., 2015; 

Nakamura et al., 2016).  

To define a healthy state of microbiome within a specific site (Eubiosis), measurement 

of two aspects of “robustness” and “resilience” need to be determined to understand its 

contribution to the overall definition for the stability of a community (Backhed et al., 2012; 

Flores et al., 2014). In one hand, robustness refers to the capability of one community to 

withstand any changes undergoing in an ecological stress-related disturbance without having 

any effects on its functions (Backhed et al., 2012; Flores et al., 2014). Resilience measures the 

ability of a microbial community of how often or how strong it can recover and come back to 

an equilibrium state following a community perturbation (Backhed et al., 2012; Flores et al., 

2014). In that context, dysbiosis refers to an imbalance in both robustness and the resilience of 

quasi-stable state of microbiome. This dysbiosis is due to overcome of pathogenic and 

opportunistic bacteria over commensals or simultaneously loss of beneficial microorganisms 

as well as disturbance in the richness or diversity of microbial communities that results in a 

disharmonic chronic alteration in the composition and functionality of the gut microbiome 

profile (Bien et al., 2013; Knights et al., 2013; Lepage et al., 2011; Willing et al., 2010; Frank 
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et al., 2007; Manichanh et al., 2006). Although the role of microbial dysbiosis in the 

pathogenesis of several diseases needs more explorations, recent large-scale studies 

demonstrated its considerable intervention in several immune-related pathologies both in 

human and animal models, including but not limited to allergic disorders, asthma, obesity, 

Type 1 diabetes, autism, colorectal cancer, rheumatoid arthritis and IBD. (Russell et al., 2012; 

Kostic et al., 2015; Butto et al., 2016; DeGruttola et al., 2016; Sokol et al., 2016)  

1.2.1.4.2. Gut Microbial Dysbiosis and IBD 

In recent years, the etiology of aberrant immune response to suboptimal gut 

microbiome attracted researchers and clinicians’ attention in investigating the cause and 

consequence of microbiome alteration in the context of IBD. The considerable improvements 

in bioinfomatics analysis in association with in-vitro and in-vivo experimental models of CD 

and UC contributed to a better understanding about the role of the gut-microbial dysbiosis and 

microbiome/host interplays during the development of IBD and experimental colitis.  

According to population cohort studies, an imbalance in intricate symbiotic correlation 

between host and gut microbiota is a dynamic characteristic for healthy populations (Backhed 

et al., 2012; Flores et al., 2014; Halfvarson et al., 2017). Although there are variations 

between microbiome of healthy individuals due to differences in their age, diet, ethnicity, etc., 

to study the long-term gut microbiome dynamics, these variations affect minor proportion of 

bacteria. This contrasts with IBD group, which traversed far from the healthy groups 

representing the notable volatility in the gut microbiome composition, diversity, and species 

richness in IBD patients (Halfvarson et al., 2017). These studies define the dysbiosis 

associated with IBD pathogenesis through alteration in both disrupted physiological functions 

and compositional perturbation.  
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In the context of IBD, resident and transient microbiota as well as sample types and 

sites (e.g. remission or inflamed conditions, surgical samples, location) revealed differences in 

both abundance and composition of bacteria between various counterparts of the digestive 

system (lumina and mucosa) (Seksik et al., 2003; Peterson et al., 2008; Gu et al., 2013; 

Miyoshi et al., 2017). Previous research revealed an increase in the abundance of 

Enterobacteriaceae in fecal samples of CD patients (Seksik et al., 2003) and a decrease in the 

proportion of butyrate-producing Roseburia hominis and Faecalibacterium prausnitzii, with 

anticipated anti-inflammatory role, in fecal samples of UC patients (Sokol et al., 2016(Ott et 

al., 2004; Machiels et al., 2014; Sokol et al., 2016). Such declines were also observed in 

resected ileal samples of CD patients associated with endoscopic recurrence after surgery. 

Gophna et al. (2006) demonstrated an increased in Proteobacteria and Bacteroidetes and a 

down-regulation in Clostridia in biopsy samples from CD patients (Gophna et al., 2006). 

Additionally, Mylonaki et al. (2005) observed less Bifidobacteria and more Escherichia coli in 

IBD biopsies (Mylonaki et al., 2005). Another study targeting newly diagnosed pediatric CD 

patients showed an increase in abundance of Enterobacteriaceae, Pasteurellaceae, 

Veillonellaceae, and Fusobacteriaceae, and a decrease in the population of Erysipelotrichales, 

Bacteroidales, and Clostridiales in the mucosal samples from ileal and rectal biopsies (Gevers 

et al., 2014). Additionally, a depleted portion of abundance of Bacteroidetes and 

Lachnospiraceae in tissue samples from resected GI tract of CD and UC patients were 

reported by Frank et al. (2007). Recent studies claim for a direct effect of fungi and archaea 

dysbiosis in the pathogenesis of IBD (Sokol et al., 2016) which to wrap up reveals a 

significant dysbalance in both CD and UC disease. 
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1.2.1.5. Treatments for IBD 

Although there is still no cure for IBD several treatments are suggested. These 

treatments mostly target the over-activated immune response, which result in suppressing the 

active flare stage of IBD while leading to remission state, with the hope of long-term healing. 

Such treatments are prescribed with different dosages and different injection methods, mainly 

subcategorized into two groups: Immunomodulatory drugs as well as antibiotics. Immune-

targeting drugs impact inflammatory pathways with suppressive, anti-inflammatory 

characteristics. The mostly used anti-inflammatory drugs are Aminosalicylates and 

Corticosteroids (Brown et al., 1952; Modigliani et al., 1990; Olaison et al., 1990). With regard 

to immune system suppressors Azathioprine, Mercaptopurine, Cyclosporine, Infliximab, 

Adalimumab, Golimumab, Methotrexate, Natalizumab, Vedolizumab, and Ustekinumab are 

mainly used (Dulai et al., 2016; Atreya et al., 2017; Neurath, 2017). The second group as 

antibiotics (Metronidazole, Ciprofloxacin) target pathogenic bacteria and other 

microorganisms, which carry the drawback of bacterial robustness after continuous usage 

(Sartor, 2004; de Souza et al., 2016). Antibiotics also increase the commensal bacteria activity 

to recover them faster from dysbiosis stage toward normal equilibrium. In several UC cases, 

there is recommendation for surgery that eliminates the signs and symptoms of IBD (Seifarth 

et al., 2017). It is crucial to know that each of the above treatments is recognized with several 

side effects. According to clinical therapeutic reviews in 2017 (Atreya et al., 2017; Neurath, 

2017), the effects of each treatment (on both CD and UC patients) on mucosal healing 

symptoms are investigated and the authors confirmed the induction of mucosal healing for the 

indicated treatments. Also, Neurath (2017) in his comprehensive overview of current and 

future therapeutic approaches for IBD mentioned the role of several cytokine inhibitors in 
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addition to TNF blockers. These drugs are interacting with pro-inflammatory cytokines, such 

as IL-6, IL-12, IL-23, and can also modulate several cytokine-signaling pathways, such as 

JAK inhibitors and SMAD7 blockers, or transcription factors inhibitors, such as GATA3 and 

RORγt ((Sandborn et al., 2012; Neurath, 2017). 

1.2.2. The Role of Receptor Activator of Nuclear Factor Kappa-B in IBD 

1.2.2.1. Denosumab, Monoclonal Antibody Against RANKL 

Denosumab, with two brand names as Prolia™ and Xgeva™, is a humanized 

monoclonal antibody against RANKL (Fouque-Aubert et al., 2008). Denosumab has been 

developed as an effective treatment for postmenopausal osteoporosis (PMO) with high 

fracture risk (Dempster et al., 2012). Denosumab is considered as an appropriate first-line 

pharmacologic option for PMO management due to its efficacy, safety, and potential to 

improve adherence rates (Anastasilakis et al., 2009; Miller, 2011; Josse et al., 2013). The 

discovery of antibodies against RANKL was the culmination of clarification about internal 

bone microenvironment regulation of bone remodeling: the process of old bone resorption and 

new bone formation by osteoclasts and osteoblasts (Moschen et al., 2005). This regulation is 

under the control of three main molecules including receptor activator of nuclear factor-κB 

(RANK, TNFRSF11A), RANK ligand (RANKL, TNFSF11) and osteoprotegerin (OPG, 

TNFRSF11B) (Moschen et al., 2005; Boyce et al., 2007). RANK is a type I transmembrane 

protein that can be found on osteoclasts, dendritic cells, fibroblasts, B and T cell lines 

(Fouque-Aubert et al., 2008; Cankaya et al., 2013). The high-affinity binding between 

RANKL and RANK expressed by osteoclasts and their precursors results in the fusion, 

differentiation, and activation of osteoclasts (Anderson et al., 1997; Lacey et al., 1998; Hsu et 

al., 1999), which leads to the activation of several transcription factors including activator 
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protein-1 (AP1) and NFκB (Jimi et al., 1999; Fouque-Aubert et al., 2008). Osteoprotegerin, a 

secreted glycoprotein with homology to members of the TNF receptor family (Jones et al., 

2002; Fouque-Aubert et al., 2008), is a soluble decoy receptor for RANKL, which is 

expressed by osteoblasts in bone and lymphoid cells and DCs in the immune system (Lacey et 

al., 1998; Yun et al., 2001; Nahidi et al., 2011). OPG through its binding to the receptor 

RANKL or by inhibiting the RANKL/RANK ligation plays a major role as an inhibitory 

factor for osteoclastogenesis (Lacey et al., 1998; Nahidi et al., 2011). Up-regulation of 

RANKL simultaneously with OPG down-regulation is due to an estrogen deficiency in the 

context of the postmenopausal state and is known as the major mechanism for bone loss and 

osteoporotic fractures in such patients (Young-Yun Kong et al., 1999; Yun et al., 2001; Boyce 

et al., 2007; Nahidi et al., 2011; Dempster et al., 2012; Cook et al., 2014; De Voogd et al., 

2016). Denosumab, through its binding to RANK Ligand, can compensate the lack of OPG 

level and reduce bone resorption by reducing the activation of osteoclasts (Miller, 2011; 

Dempster et al., 2012). Phase III clinical trial studies showed an effective role of a 

monoclonal antibody against RANKL on both men and women and potentially effective in 

glucocorticoid-induced osteoporosis (Buehring et al., 2013). 

1.2.2.2. Rational for the Use of a Monoclonal Antibody Against RANKL in the 

Treatment of IBD 

2 main concepts showed promises for the possible therapeutic effect of a monoclonal 

antibody against RANKL on CD patients including:  

1- The symptoms of mutation at the locus, which encodes RANKL in CD patients. 

2- The increased risk of osteoporosis associated with CD patients. 
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1.2.2.2.1. Mutation at RANKL Locus 

A GWAS meta-analysis for CD demonstrated the presence of a variant near the gene 

TNFSF11 encoding for RANKL that together with TNF-α activates the NF-κB pathway 

(Dixon et al., 2007; Tremelling et al., 2007; Franke et al., 2010). As discussed above, this 

pathway is critical in the regulation of intestinal inflammatory response. Sanseu et al. (2012) 

showed a strong implication of CD risk allele at TNFSF11 gene in overexpression of the 

TNFSF11 transcript in all cell lines and in CEU B-lymphoblasts and osteoblasts. In addition, 

the strong association of such risk allele with increased expression of RANKL was reported in 

a publicly available database (LOD = 5.9) (Dixon et al., 2007). Hence, these data provide 

several evidences about genetic mutations that are more common in CD patients with ultimate 

overexpression of RANKL. 

1.2.2.2.2. Osteoporosis During IBD 

Population-based studies showed the rise in fracture risk in IBD patients 

approximately by 40%-60% compared to match controls (Bernstein et al., 2000; Card et al., 

2004). According to a comprehensive bone mineral density (BMD) study, there is a 

significant decrease in BMD of IBD patients (Schule et al. 2016). Authors indicated the 

severity of gut inflammation, perianal disease including fistulas, systemic steroid usage, low 

BMI, age, and intestinal malabsorption leading to calcium and vitamin D deficiency as risk 

factors for low BMD (Bernstein et al., 2000; Card et al., 2004; Jahnsen et al., 2004; Ali et al., 

2009; Azzopardi et al., 2013; Krela-Kazmierczak et al., 2016; Schule et al., 2016). Also, IBD 

patients under long-term corticosteroid therapy developed osteoporosis (Reinshagen, 2008). It 

decreased the level of calcium, which absorbed by intestine as an essential bone-remodeling 

mineral. Simultaneously, the decrease in estrogen secretion level contributes to high 
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osteoclastogenesis through reduction in OPG level (Krela-Kazmierczak et al., 2016; Schule et 

al., 2016; Narula et al., 2012; Reinshagen, 2008).  

Local or generalized inflammation during IBD attracts systemic T cell activation 

through DCs/Th1 cell interaction; which leads RANKL induction (Ashcroft et al., 2003; 

Moschen et al., 2005; Boyce et al., 2007; Fouque-Aubert et al., 2008; Narula et al., 2012). 

This RANKL production not only triggers osteoclast activation, but also is in charge of 

activation of inflammatory pathways in the gut immune system (Narula et al., 2012; Moschen 

et al., 2005; Bernstein et al., 2003). Several animal models studies demonstrated compelling 

evidence for the importance of RANKL paradigm in bone hemostasis maintenance during 

IBD, suggesting a therapeutic role for OPG as a blocker for RANKL. In the context of 

experimental colitis, Ashcroft et al. (2003) used IL-2 deficient mouse model of colitis, model 

known to develop both osteopenia and colitis and demonstrated that animals had significant 

increase in bone marrow mononuclear cell expression of soluble RANKL (sRANKL) and 

OPG mRNA as well as serum sRANKL and OPG in comparison to control group. Osteopenia 

was not evident in IL-2 deficient mice crossbred to be T cell deficient, and osteopenia could 

be induced in T cell deficient mice by adoptive transfer of T cells from IL-2 deficient mice 

(Ashcroft et al., 2003; Boyce et al., 2007; Bernstein, 2005). Importantly the administration of 

exogenous OPG reversed both the osteopenia and the colitis as shown by colitis abrogation 

through a significant reduction in colonic dendritic cells, while circulating inflammatory 

cytokines were unaffected by exogenous OPG (Bernstein, 2006). These data illustrate the 

importance of OPG and RANKL in osteopenia and colitis in IL-2 deficient mice and the 

importance of activated T cells in mediating these conditions. Hence, RANKL plays a critical 
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role in association of mucosal inflammation with deregulated bone metabolism and, 

consequently, osteoporosis. 

1.2.2.3. Monoclonal Antibody Against RANKL Safety 

The safety of Denosumab in the treatment of osteoporosis for both genders has been 

assessed in phase III clinical trials in over 3876 multinational women and 1000 men aged 

from 60 to 91 years (Jean-Jacques Body, 2006; Anastasilakis et al., 2009; Fizazi et al., 2011; 

Miller, 2011; Saad et al., 2012; Smith et al., 2012). All patients received a single 60 mg dose 

every 6 months administered subcutaneously and all were instructed to take calcium (≥500 

mg) and vitamin D (≥400 IU) supplementation per day. Adverse reactions including 

hypocalcemia, serious infections, osteonecrosis of the jaw and some dermatological reactions 

were reported in more than 2% of postmenopausal women and more than 5% of men with 

osteoporosis and more frequently in the Prolia-treated patients when compared with the 

placebo-treated group. Hypocalcaemia, which represents the serum calcium level reduction to 

less than 8.5 mg/dL at any visit, was reported 13% more in woman receiving Prolia (Saad et 

al., 2012). Osteonecrosis of the jaw, which is associated with tooth extraction or local 

infection, was reported in less than 1% of women with postmenopausal osteoporosis receiving 

Prolia (Neuprez et al., 2014; Olate et al., 2014). Epidermal and dermal adverse effects such as 

dermatitis, eczema, and rash were reported 2.6% more in Prolia-treated patients (Fizazi et al., 

2011). Additionally, blocking the RANKL receptor on activated T- and B-lymphocytes 

increase the risk of infection, although there were no reports related to serious infections. 

1.2.3. Animal Models to Study IBD 

For research purposes, studies using samples from affected patients provide the most 

reliable data; however, due to difficulties in human tissues sample collection, few and small 
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sample size, animal models are used (Coors et al., 2010). Since animal model studies provide 

large sample sizes, fewer limitations exist for invasive sampling, and existence of genetically 

homogeneous animals (i.e. genetically engineered rodent models).  

1.2.3.1. Characteristics of a Suitable Animal Model of IBD  

To select an ideal animal model, several characteristics need to be considered 

including: availability of animals, being relatively inexpensive, being fast reproducible for 

more off springs per litter, and yielding information that could be easily translated to humans. 

Also, it should exhibit human UC/CD disease symptoms and should respond to treatment or 

therapeutic measures the same way the IBD patients would respond. Since all models do not 

have all IBD characteristics simultaneously, models that possess some of these characteristics 

are utilized (Mizoguchi et al., 2008)  

1.2.3.2. Common Animals Used in IBD Research  

A number of animal species are used to mimic IBD pathogenesis including: the non-

human primates (e.g. monkeys, cotton-top tamarins), zebra fish, rodents (e.g. mice, rat, guinea 

pigs), and domestic pigs (Heinritz et al., 2013). While non-human primates provide the best 

comparable data to people, they are not widely used due to their high costs, ethical purposes, 

and the potential hazards of carrying highly virulent zoonotic agents (Coors et al., 2010; 

Ideland, 2009). Zebra fish in IBD are used to study both innate and adaptive immune 

responses (Lam et al., 2004; Oehlers et al., 2011). Rat’s models are larger thus allowing larger 

sample acquisition. Also rodent’s fermentation happens in their large cecum (Houpt et al., 

1979) and have faster digestive passage rates which defines as requiring more feed per unit 

body weight, in addition to a lower comparable capacity for fiber digestion compared to 

humans (Heinritz et al., 2013). Mice are good animal models because of shared characteristics 
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in their intestinal genes with humans (Waterston et al., 2002; Bryda, 2013). In addition, 

human and murine intestinal gut microbiota exhibit comparable diversity of species within the 

Firmicutes and Bacteroidetes phyla (Dethlefsen et al., 2008; Heinritz et al., 2013). Mice with 

the presence of similar populations of B cells, T cells, and isotype antibodies exhibit adaptive 

immune response features same as IgG and IgM (Mestas et al., 2004). Also, their small size, 

low breeding costs, relatively short estrous cycles and gestation period, and large litter sizes 

(Nguyen et al., 2008) lead them to be selected as an advantageous model to study immune 

related diseases.  

1.2.3.3. Types of Animal Models of IBD 

Despite existence of several IBD models, none completely photocopies human IBD. 

These models in overall categorized in 5 types, antigen-induced colitis or colitis induced by 

microbiota (Iqbal et al., 2002), chemical inducible forms of colitis (Cooper et al., 1993), 

genetic or transgenic colitis models (Kuhn et al., 1993), adoptive transfer of immune cell 

models (German et al., 2000; Mansfield et al., 2001), and spontaneous colitis models 

(Kobayashi et al., 2014). Between such models, only few can mimic CD, which is the target 

of this thesis including: TNBS or DNBS models. The effectiveness of these chemicals for 

mimicking tissue injuries similar to CD are affected by the molecular weight of the chemical, 

its concentration and manufacturer (Perse et al., 2012) as well as the species, gender 

(Mizoguchi et al., 2008), and the genetic background of the animal model (Wirtz et al., 2007; 

Lakhan et al., 2010; Wirtz et al., 2017). More importantly, the administration method affects 

the severity of disease, as some chemicals work well to induce post-ingestion inflammation 

(Mizoguchi, 2012), while others need to be applied directly to the infection site to be effective 

(e.g. intrarectal administration) (Elson et al., 1995). Furthermore, the differences in intestinal 
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microbiome profile can influence the effectiveness of chemicals in tissue injury induction 

(Kitajima et al., 2001). 

1.2.3.3.1. Trinitrobenzene Sulfonic Acid (TNBS)  

Trinitrobenzene sulfonic acid is primarily used to induce acute intestinal inflammation 

in animal models, but can also be employed to induce chronic inflammation in rodents 

(Fitzpatrick et al., 2010; Mariman et al., 2012), pigs (Pouillart et al., 2010), rabbits 

(Mizoguchi, 2012), guinea pigs (Robinson et al., 2014), and non-human primates (Kim et al., 

1992). TNBS is a hapten that when it binds to a high molecular tissue protein gets turned into 

an antigen. TNBS needs to be dissolved in Ethanol to be activated. TNBS by altering host 

proteins through covalent bonds formation with trinitrophenyl haptens of TNBS (Elson et al., 

1995) stimulates an immune-inflammatory response. Ethanol, by contributing to disruption of 

epithelial barrier, helps TNBS to colon shortening, epithelial necrosis causing crypt 

architecture destruction, and transmural inflammation in parallel with increased colonic Th1 

immune response (Neurath et al., 2000; Kawada et al., 2007; Kremer et al., 2012). Neurath et 

al. (2000) indicated mice as the best models for investigating TNBS-Ethanol induced colitis 

due their genetic background and phenotypic profile of the mouse. For example, C57BL/6 and 

DBA/2 strains showed robustness to TNBS treatment, whereas SJL/J, C3HeJ and BALB/c 

mice produce significant tissue ulceration associated with TNBS-induced colitis (Elson et al., 

1995; Kawada et al., 2007) 

1.2.3.3.2. Dinitrobenzene sulfonic Acid (DNBS)  

DNBS is also a hapten used to induce colonic inflammation, with similar features to 

TNBS model although TNBS due to having an additional active nitro group has higher 

affinity binding to proteins and enzymes. On the other hand, DNBS more selectively binds 
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only to the e—amino group of lysine (Hawkins et al., 1997). Previously, DNBS dissolved in 

50% Ethanol, was administered as an enema to induce CD, but the method was modified 

where colitis is induced in lightly anesthetized mice by an intrarectal injection, delivered 3 cm 

into the colon via a polyethylene catheter (Cuzzocrea et al., 2001). The physical, histologic 

features, and inflammatory responses in the DNBS model, are comparable to observations 

made in the TNBS models (KoCho, 2005; Ko, Lam, et al., 2005; Joshi et al., 2011). 
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Chapter Two 

Rational, Hypothesis and Aims 

2.1. Rational  

In IBD, CD and UC are characterized by chronic intestinal inflammation. Genetic 

susceptibility, environmental triggers, deregulated immune system as well as imbalanced 

host/gut microbiome interactions are recognized as prominent factors contributing to the 

development of IBD (Abraham et al., 2011; Khor et al., 2011; Maloy et al., 2011; Manichanh 

et al., 2012). RANKL plays a major role in the development of rheumatoid arthritis (Jones et 

al., 2002) and genome-wide association meta-analysis for CD identified a variant near the 

TNFSF11 gene that encodes RANKL. RANKL is expressed in immune cell and cell lines that 

contributes to the CD pathogenesis (Dixon et al., 2007; Franke et al., 2010). Despite of 

RANKL role in rheumatoid arthritis (RA), its implication in the pathogenesis of IBD and CD 

is unknown. This study aims to investigate if the RANKL inhibitor (Prolia) can modify the 

gut microbiota dysregulation under experimental colitic conditions and how ultimately this 

treatment can be used to decrease the colitic condition in DNBS model of colitis and therefore 

serve as a potential therapeutic target in IBD. 
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2.2. Hypothesis 

RANKL inhibitor treatment (ProliaTM) decreases colitic condition in an experimental 

model of CD through a decrease of colonic mucosal proinflammatory cytokines and a 

modification of the intestinal microbiome. 

2.3. Aims 

1. To investigate the effect of DNBS/Ethanol-induced colitis on gut microbiome 

composition. 

2. To demonstrate the effect of RANKL inhibitor in suppression the DNBS/Ethanol-

induced inflammatory response. 

3. To investigate the role of RANKL inhibitor on microbiome dysbiosis induced by 

DNBS/Ethanol-induced colitis. 
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Chapter Three 

Material and Methods 

3.1. Animals and Experimental Design 

Forty-eight, 7-week-old male C57Bl/6 mice were received from Charles Rivers, 

(Winnipeg, MB, Canada) and maintained under co-housed pathogen-free conditions in the 

animal care facility at the Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, 

Canada. Mice were treated with daily intraperitoneal (i.p.) injection of PBS 1% (Vehicle; 

n=24) or Denosumab (Prolia™, n=24) at 10 mg/kg/d for four days.  On day two of the 

experiment, mice were divided into four subgroups (n=6/subgroup) and subjected to different 

colitis induction models: a) PBS 1%, b) Ethanol 30%, c) DNBS (4mg/kg) dissolved in PBS 

1% (DNBS/PBS), and d) DNBS (4mg/kg) dissolved in 30% Ethanol (DNBS/Ethanol) (Fig 

1). Injections were done intrarectally using a PE-90 tubing (10 cm long; ClayAdam, 

Parisppany, NJ, USA) inserted 3.5 cm into their colons and attached to a tuberculin syringe 

(BD, Mississauga, ON, Canada). All mice were received a similar standard chow diet. The 

experimental protocol (–010) was approved by the University of Manitoba Animal Ethics 

Committee and conducted under the guidelines of the Canadian Council on Animal Care 

(CCAC, 1993). 
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Figure 1. Experimental design. Mice were treated with daily injection (i.p.) of PBS 1% (Vehicle; 

n=24) or Prolia  (n=24) at 10 mg/kg/d for four days.  On day two of the experiment, mice were divided 

into four subgroups (n=6/subgroup) and subjected to different colitis induction models: a) PBS 1%, b) 

Ethanol 30%, c) DNBS (4mg/kg) dissolved in PBS 1% (DNBS/PBS), and d) DNBS (4mg/kg) 

dissolved in Ethanol 30% (DNBS/Ethanol). On day 5, all mice were sacrificed and colon 

tissue/mucosa and feces samples were collected. 

 

3.2. Evaluation of Inflammation 

Disease activity index (DAI) is a composite index taking into consideration the 

percentage of weight loss, stool consistency and fecal blood scores. DAI was assessed from 

day 1 to day 4 over the period of DNBS/Ethanol-induced colitis treatment. The DAI scoring 

system was defined as follows: weight: 0, no loss; 1, 5–10%; 2, 10–15%; 3, 15–20%; and 4, 

>20%; stool: 0, normal; 2, loose stool; and 4, diarrhea; and bleeding: 0, no blood; 2, presence 

of blood; and 4, gross blood. Presence of blood in the stool was assessed using the Hemoccult 

II test (Beckman coulter, Oakville, ON, Canada). 
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On the sacrifice day, to evaluate the colonic macroscopic damage, colon was opened 

longitudinally and macroscopic score was assessed immediately using previously established 

scoring system (Cooper et al., 1993; Khan et al., 2002). Macroscopic score was evaluated 

based on four parameters including rectal bleeding, rectal prolapse, diarrhea, and colonic 

bleeding. Histology analysis was assessed using fixed colonic segments that were paraffin 

(Sigma, Mississauga, ON, Canada)—embedded and then stained (10 µm sections) using 

hematoxylin-eosin (H&E) (Sigma, Mississauga, ON, Canada). Architectural derangements, 

goblet cell depletion, edema/ulceration and degree of inflammatory cells infiltrate were 

considered as evaluating the inflammatory response (Ghia, Blennerhassett, et al., 2009). 

Serum CRP was measured through collecting the blood by intracardiac puncture under 

isoflurane (Abbot, Mississauga, ON, Canada) anesthesia. Colonic inflammatory cytokines 

were assessed after colon samples homogenization in 700 µL Tris-HCl buffer containing 

protease inhibitors (Sigma, Mississauga, ON, Canada), centrifuged at 13000 × g for 20 min at 

4 °C. The supernatant was frozen at -80 °C until assay. Serum CRP, MPO activity (Hycult 

Biotech, PA, USA) level and colonic cytokine levels (IL-6, IL-1β, TNF-α) were quantified 

using ELISA (R&D Systems, Inc., Minneapolis, MN, USA) according the manufacturer 

instructions. 

3.3. Enzyme-Linked Immunosorbent Assays (ELISA)—Sandwich Type 

The sandwich ELISAs with using pair of antibodies, as capture and detector, targets 

two or more distinct epitopes of antigens to specify antigen detection (Stanker et al., 2015). In 

brief, the antigen specific capture antibodies are first coated on the microtiter plate, then a 

series of sample dilutions consisting target antigen and standard antigen are added. The 

antigen are captured by capture antibody and as the next step, the bound antigens are 
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subsequently detected by adding a specific amount of detector antibodies; therefore, the 

antigens get trapped and—sandwiched in between the capture and detector antibodies. To 

remove the excess or unbound proteins, multiple washing steps were performed in between 

each step. The bound antigen-antibodies complexes are detected by the addition of the 

enzyme-conjugated secondary antibodies (second antibody which will bind specifically to the 

detector antibody), followed by incubation of the enzyme substrate. As a result, the 

colorimetric signal produced during the enzymatic reaction is proportional to the amount of 

enzyme-conjugate bound to the plate as measured with the ELISA plate reader. A direct 

relationship exists between the concentration of the antigen-antibody and the intensity of the 

signal (or color). As the concentration of antigen in the sample increases, the color becomes 

more intense. The sandwich ELISA was used to measure the level of MPO, CRP, pro-

inflammatory cytokines, and total protein concentrations as previously described in our group 

(Ghia et al., 2008; Ghia, Li, et al., 2009). 

3.4. RNA Extraction, cDNA Synthesis and Quantitative Real-Time 

Polymerase Chain Reaction (qRT-PCR) 

For RNA extraction using TRIzol (Gibco BRL, Life Technologies, NY, USA), 

approximately 30–40 mg of colon tissue was used. Quality and quantity of RNA were 

determined by measuring the absorbance at 260 and 280 nm using NanoDrop ND-1000 UV-

Vis Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). All samples had an 

absorption ratio A260/A280 greater than 1.8 RNA (1 μg). Reverse transcription was 

performed using SuperScript VILO cDNA Synthesis Master Mix (Invitrogen, Grand Island, 

NY, USA) in an Eppendorf Thermo cycler at 25 °C for 10 min, followed by 42 °C for 60 min, 

and 85°C for 5 min according to the manufacturer’s instructions. Samples were stored at -20 
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°C for RT-qPCR analysis. Real-time PCR (RT-PCR) reactions were performed in a Roch 

light Cycler 96 Real-Time System using Power SYBR green master mix (Life Technologies) 

in a final volume of 20 µL reactions. The PCR conditions were as follows: 95 °C for 10 min, 

followed by 40 cycles at 95 °C for 15 s and at 60 °C for 60 s. As the reference gene, the 

TATA Box Binding Protein (tbp) primer (forward ACCGTGAATCTTGGCTGTAAAC,   

reverse GCAGCAAATCGCTTGGGATTA), il1b (forward, GCAACTGTTCCTGAACTCAACT 

reverse ATCTTTTGGGGTCCGTCAACT), il6 (forward, TAGTCCTTCCTACCCCAATTTCC reverse 

TTGGTCCTTAGCCACTCCTTC) and tnfa (forward CCCTCACACTCAGATCATCTTCT, reverse 

GCTACGACGTGGGCTACAG) were used, designed from nucleotide sequences identified using 

NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). All RT-qPCRs were run in duplicate, 

the average standard deviation within duplicates of all samples studied was 0.25 cycles. 

3.5. DNA Extraction and Quality Control  

Colon mucosa and fecal samples were homogenized at room temperature and their 

DNA were extracted using ZR Tissue and Insect DNA extraction Kit (Zymo Research Corp., 

Orange, CA, USA) and ZR fecal DNA extraction kit (Zymo Research Corp., Orange, CA), 

respectively. Bead-beating step for the mechanical lysis of the microbial cells was included in 

both kits. DNA concentration was determined using a NanoDrop 2000 spectrophotometer 

(ThermoFisher Scientific, Wilmington, DE, USA), and the DNA quality was evaluated by 

PCR amplification of the 16 S rRNA gene using universal primers 27F (5′ -

GAAGAGTTTGAT CATGGCTCAG-3′) and 342R (5′-CTGCTG CCTCCCGTAG-3′), 

as previously described (Khafipour et al., 2009). Amplicons were verified using agarose gel 

electrophoresis. 
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3.6. Library Construction and Illumina Sequencing 

Library construction and Illumina sequencing were performed as described by 

Derakhshani et al. (2016). Briefly, the V4 region of 16S rRNA gene was targeted for PCR 

amplification using modified F515/R806 primers (Caporaso et al., 2012), as previously 

described (Khafipour et al., 2009; Derakhshani, De Buck, et al., 2016). Briefly, the reverse 

PCR primer was indexed with 12-base Golay barcodes allowing for multiplexing of samples. 

The PCR reaction for each sample was performed in duplicate and contained 1.0 µL of pre-

normalized DNA (20ng/µL), 1.0 µL of each forward and reverse primers (10 µM), 12 µL 

HPLC grade water (Fisher Scientific, Ottawa, ON, Canada), and 10 µL 5 Prime Hot 

MasterMix (5 Prime, Inc., Gaithersburg, MD, USA). Reactions consisted of an initial 

denaturing step at 94°C for 3 min followed by 35 amplification cycles at 94°C for 45 sec, 

50°C for 60 sec, and 72°C for 90 sec, and an extension step at 72°C for 10 min in an 

Eppendorf Mastercycler pro (Eppendorf, Hamburg, Germany). PCR products were then 

purified using ZR-96 DNA Clean-up Kit (ZYMO Research, Irvine, CA, USA) to remove 

primers, dNTPs, and reaction components. The V4 library was then generated by pooling 200 

ng of each sample and quantified using Picogreen (Invitrogen, Burlington, NY, USA). This 

was followed by multiple dilution steps using pre-chilled hybridization buffer (HT1; Illumina, 

San Diego, CA, USA) to bring the pooled amplicons to a final concentration of 5 pM, 

measured by Qubit2.0 Fluorometer (Life technologies, Burlington, ON, Canada). Finally, 

15% of PhiX control library was spiked into the amplicon pool to improve the unbalanced and 

biased base composition, a known characteristic of low diversity 16S rRNA libraries. 

Customized sequencing primers for read1 (5′-TATGGTAATTGTGTG 

CCAGCMGCCGCGGTAA-3′), read2 (5′-AGT 



 31 

CAGTCAGCCGGACTACHVGGGTWTCTA AT-3′), and index read (5′-

ATTAGAWACCCBDGT AGTCCGGCTGACTGACT-3′; Integrated DNA Technologies, 

Coralville, IA, USA) were added to the MiSeq Reagent V2 Kit (300-cycle; Illumina, San 

Diego, CA, USA). The 150 paired-end sequencing reaction was performed on a MiSeq 

platform (Illumina, San Diego, CA, USA) at the Gut Microbiome and Large Animal 

Biosecurity Laboratories (Department of Animal Science, University of Manitoba, Winnipeg, 

MB, Canada).  

3.7. Bioinformatics Analyses  

Bioinformatics analyses were performed as described previously (Derakhshani et al., 

2016). Briefly, the PANDAseq assembler (Masella et al., 2012) was used to merge 

overlapping paired-end Illumina fastq files. The output fastq file was then analyzed using 

downstream computational pipelines in the open source software package QIIME (Caporaso 

et al., 2010). Chimeric reads were filtered using UCHIME (Edgar et al., 2011) and sequences 

were assigned to Operational Taxonomic Units (OTU) using the QIIME implementation of 

UCLUST (Edgar, 2010) at 97% pairwise identity threshold using an open reference OTU 

picking process (Rideout et al., 2014). Taxonomies were assigned to the representative 

sequence of each OTU using an RDP classifier (Wang et al., 2007) and aligned with the 

Greengenes (v. 13.5) core reference database (DeSantis et al., 2006) using PyNAST 

algorithms (Caporaso et al., 2010). In order to compare microbial communities, the 

phylogenetic tree was built with FastTree 2.1.3. (Price et al., 2010). 
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3.8. Alpha—and Beta—Diversity 

Within-community diversity (α-diversity) was calculated by different indices of 

species richness and evenness including Chao1 and Shannon using the open source 

bioinformatics package QIIME (Caporaso et al., 2010) and Phyloseq R package (3.1.0) 

(McMurdie et al., 2013). The p-values were calculated using the MIXED procedure of SAS 

(SAS 9.3) using a randomized factorial design where the effects of treatment (Vehicle vs. 

Prolia), induction model (PBS 1%, Ethanol 30%, DNBS/PBS, DNBS/Ethanol), and their 

interaction were considered as fixed factors and the effect of mice as a random factor. An 

even depth of 1500 and 25000 sequences per sample was used to calculate the richness and 

diversity indices for the colon mucosa and feces, respectively. To assess the beta-diversity (β-

diversity) differences among bacterial communities from different treatments within each 

induction model, non-metric multidimensional scaling (nMDS) ordination plots were 

generated using R software (3.1.1) by employing Bray-Curtis similarity matrices with a 

conventional cut-off of <0.2 for the stress value (Munyaka et al., 2016). The resulting 

minimum stress solution was used to produce the nMDS plots, in which each data point 

represents one sample. The spatial distance between points in the plot was interpreted as the 

relative difference in the bacterial community composition; thus, points that were closer were 

more similar than points that were more distant. To assess the statistical differences in β-

diversity of bacterial communities among treatment groups, permutation multivariate analysis 

of variance (Anderson, 2005) was performed using the above-mentioned statistical model and 

p-values were calculated. 

3.9. Clustering Analysis 

To illustrate the distinct clustering pattern within colonic vehicle and Prolia groups, 
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the relative abundance of the OTUs were binned into genus-level taxonomic groups and 

filtered to keep the most abundant genera found across all samples (cutoff value of> 0.1% of 

the community) (Derakhshani, Tun, et al., 2016). The resulting relative abundance table was 

normalized to correct for compositionality and also assist heat map-visualization of 

differentially abundant genera. The dissimilarity of samples were calculated based on Bray–

Curtis measures using R “vegan” package (Oksanen, 2007) and the resulting matrix was 

subjected to unsupervised hierarchical clustering using R “dendextend” package (Galili, 2015) 

and visualized over the heat map of abundance matrix using R “complexheatmap” package 

(Gu et al., 2016). Genera were also clustered based on their Spearman’s correlation 

coefficient using R “complexheatmap” package.  

3.10. Correlation Coefficients 

Associations between bacterial taxa with an abundance ≥0.5% of the community in the 

colon mucosa, inflammatory markers (IL-1β, IL-6, TNF-α, CRP, MPO) and tight junction 

proteins (F.actin and OCl) and alpha-diversity indices were explored using non-parametric 

Spearman’s rank correlation implemented in PAST software (Hammer, 2001). For each 

correlation, correlation coefficient (Spearman’s Rho) and p-value were obtained (Wei, 2016) 

and the resulting correlation matrix was visualized in a heatmap format generated by the 

corrplot package of R (Corrplot: visualization of a correlation matrix. R package ver. 02-

0.2010; http://CRAN). The correlation coefficient values ranged from −1 to +1 with larger 

absolute values indicating stronger relationship while positive and negative values indicating 

the direction of association. Alpha value for the correlation confidence intervals was set up as 

0.05. 
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3.11. Prediction of Functional Metagenomics 

The open source software PICRUSt (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States; v. 1.0.0-dev) was used to predict the functional capacity 

of microbiome using 16S rRNA gene sequencing data and Greengenes (v. 13.5) reference 

database (DeSantis et al., 2006). To make our open-reference picked OTUs compatible with 

PICRUSt, all de-novo OTUs were removed and only those that had matching Greengenes 

identifications were retained. The new OTU table was then used to generate metagenomic 

data after normalizing the data by copy numbers, and to derive relative Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway abundance (Langille et al., 2013). The KEGG data 

was analyzed using STAMP (STatistical Analysis of Metagenomic Profiles) (Parks et al., 

2014). 

3.12. Other Statistical Analysis 

To test the normality of residuals for alpha biodiversity, ELISA and qRT-PCR data the 

SAS UNIVARIATE procedure (SAS 9.3, 2012) was used and non-normal distributed data 

were logged transformed. Transformed data were further analyzed using SAS MIXED 

procedure with the effects of treatment (Vehicle vs. Prolia), induction model (PBS 1%, 

Ethanol 30%, DNBS/PBS, DNBS/Ethanol), and their interaction were considered as fixed 

factors and the effect of mice as a random factor. Tukey studentized range adjustment was 

used for all pairwise comparisons among the groups. GraphPad Prism 6 (GraphPad Software, 

Inc. La Jolla, CA, USA) was used for ELISA and qRT-PCR results graph plotting using the 

multiple comparisons of two-way analysis of variance (ANOVA). Differences were reported 

as statistically significant when P<0.05 while trends were discussed at 0.05 < P<0.1.  
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Chapter Four 

Results 

4.1. Effect of Prolia Treatment on the Disease Activity Index  

DNBS/Ethanol induced a colitis that was characterized by increased DAI (p=0.02), 

weight loss (p=0.01), decreased stool consistency and increased blood presence in the feces, 

which was evident on day 2 post colitis induction (day 4 of the study) in the vehicle group 

(Fig 2a,b). Within the vehicle group, on day 4, the DAI increased (p=0.03) by 34.5 fold in 

DNBS/Ethanol compared to Ethanol. PBS 1%, Ethanol 30% or DNBS/PBS treatments did not 

affect the development of colitis across treatments. Prolia treatments did not modify the DAI 

in Prolia group across different induction models.  In non-colitic condition (PBS 1%, Ethanol 

30%, DNBS/PBS), Prolia did not affect the weight loss (Fig 2a,b), stool consistency and 

presence of blood in the feces.  
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(a) 

   

(b)  

 

Figure 2: The effects of DNBS/Ethanol-induced colitis and Prolia treatment on a. weight loss and b. 

disease activity index. Vehicle=PBS 1%. Error bars are shown as SEM.*: P<0.001 when compared 

with other induction models within the Prolia or vehicle group calculated using SAS UNIVARIATE 

procedure and illustrated by Prism using two-way ANOVA. n=6 mice per group. 
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4.2. Effect of Prolia Treatment on the Macroscopic and Microscopic Scores 

On day 3 post DNBS induction (day 5 of the study), mice were euthanized and 

external overall appearance of the colon was scored. Rectal bleeding, rectal prolapse, 

diarrhea, and colonic bleeding inside the colon of the mice were quantified. Results confirmed 

the DAI score. Within the Vehicle group, compared to Ethanol 30%, DNBS/Ethanol increased 

(p=0.01) the macroscopic score by 6-fold (Fig 3). PBS 1%, Ethanol 30% or DNBS/PBS 

groups did not show any effect on the macroscopic index as no differences were detected in 

rectal bleeding, rectal prolapse, diarrhea and colonic bleeding. In DNBS/Ethanol colitic 

conditions, Prolia treatment did not decrease the macroscopic score (Fig 2). Similarly, in non-

colitic conditions (PBS 1%, Ethanol 30% or DNBS/PBS), Prolia did not have any effect on all 

the markers studied. 

 

      

Figure 3. The effects of DNBS/Ethanol-induced colitis and Prolia treatment on colonic macroscopic 

score. Error bars are shown as SEM Error bars are shown as SEM.*: P<0.001 when compared with 

other induction models within the Prolia or vehicle group calculated using SAS UNIVARIATE 

procedure and illustrated by Prism using two-way ANOVA. n=6 mice per group. 
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In parallel, based on the H&E staining, across treatments DNBS/Ethanol mice 

experienced a notable increase in epithelial integrity disruption level as well as in necrosis and 

transmural infiltration of immune cells (Fig 4a, as presented by black dots). When compared 

to vehicle, DNBS/Ethanol treatment increased (p=0.03) the histologic score by 3.5-fold. 

Across all indcution models, Prolia treatment did not improve the histological score (Fig 4). 
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(a)  

 

 

 

 

(b) 

 

Figure 4. The effects of DNBS/Ethanol-induced colitis and Prolia treatment on representative 

hematoxylin and eosin (H&E) stained colon mucosa and histologic score. The H&E stained colon 

mucosa section showed a significant disruption of epithelial integrity, necrosis and transmural 

infiltration of immune cells. DNBS/Ethanol group increased (p=0.03) the histological score while 

Prolia did not alleviate colitis. b. Histological scores. AU: arbitrary unit. Error bars are shown as 

SEM.*: P<0.001 when compared with other induction models within the Prolia or vehicle group 

calculated using SAS UNIVARIATE procedure and illustrated by Prism using two-way ANOVA. n=6 

mice per group. 
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4.3. Effect of Prolia on Colonic and Serum Acute Inflammatory Markers 

To demonstrate if the treatment with Prolia would have a systemic and more specific 

effect on granulocytic activation, colonic MPO activity and serum CRP were quantified. Our 

data indicated that under DNBS/Ethanol colitic conditions, DNBS/Ethanol increased (p=0.02) 

colonic activity of MPO (3.2-fold) and serum concentration of CRP (4.74-fold) compared to 

other induction model within vehicle group, however, Prolia treatment did not reduce the 

level of these inflammatory markers (Fig 5).  

 

(a)          (b) 

 

Figure 5. The effects of DNBS/Ethanol-induced colitis and Prolia treatment on regulating the colonic 

MPO activity and serum CRP. DNBS/Ethanol significantly increased a. colonic MPO activity and b. 

serum CRP. Prolia did not ameliorate the negative effects of DNBS/Ethanol-induced colitic 

conditions. Vehicle=PBS 1%. Error bars are shown as SEM.*: P<0.001 when compared with other 

induction models within the Prolia or vehicle group, is calculated using SAS UNIVARIATE 

procedure and illustrated by Prism using two-way ANOVA. n=6 mice per group. 
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4.4. Effect of Prolia on Colonic Pro-inflammatory Cytokines 

As macroscopic and microscopic scores do not have high precision as inflammatory 

indicators, we evaluated the effect of DNBS/Ethanol and Prolia treatment on colonic pro-

inflammatory cytokines expression and their concentrations. 

DNBS/Ethanol colitis induction increased (p=0.03) colonic mRNA levels of Il1β, Il6 

and Tnfα and, Prolia treatment decreased (p=0.01) their relative expression level from 1.26 ± 

0.44 to 0.31 ± 0.15 for Il6, from 9.40 ± 5.90 to 0.95 ± 1.24 for Il1β, from 3.99 ± 2.16 to 0.62 ± 

0.77 for Tnfα (Fig 6a-c). PBS 1%, Ethanol 30% or DNBS/PBS with or without Prolia did not 

have any effect on the mRNA expression of the studied markers.   

To confirm these results at the protein level, colonic concentration of TNF-α, IL-1β, 

and IL-6 were quantified. Prolia treatment decreased the colonic concentration of TNF-α, IL-

1β, and IL-6 significantly from 234.36 ± 59 to 135.23 ± 64.63 pg/mg for IL-6 (P<0.05), from 

278.62 ± 130.8 to 68.84 ± 58.98 pg/mg for IL-1β (P<0.03), from 70.86 ± 11.8 to 31.11 ± 

14.86 pg/mg for TNF-α (P<0.03) in DNBS/Ethanol-induced colitis (Fig 6d-f). PBS 1%, 

Ethanol 30% or DNBS/PBS with or without Prolia did not have any effect on the colonic 

concentration of the three markers studied. 
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Figure 6. The effects of DNBS/Ethanol-induced colitis and Prolia treatment on the colonic IL1β, IL-6, 

and TNF-α pro-inflammatory cytokines. DNBS/Ethanol increased (P<0.05) colonic pro-inflammatory 

cytokines (a-c). The cytokine expression levels were confirmed using qRT-PCR analysis (d-e). TATA 

Box Binding Protein (TBP) is used as housekeeping genes for qRT-PCR. Error bars are shown as 

SEM.*: P<0.001 when compared with other induction models within the Prolia or vehicle group 

calculated using SAS UNIVARIATE procedure and illustrated by Prism using two-way ANOVA. n=6 

mice per group. 

4.5. Microbiome Analyses  

4.5.1. Colonic and Fecal Alpha-Diversity 

We firstly investigated the impact of treatments on “within communities’ species 

richness” and “diversity” using Chao1 and Shannon-index, respectively. In Chao1 rarefaction 

plots, X-axis indicates the rarified 1600 and 25000 sequences per sample for colon and fecal 

samples, respectively, while Y-axis represents the Chao1-index of species richness. SAS 

MIXED procedure was used to calculate p-value and R software for plotting of the alpha 

diversity graphs (Fig 7, 8). As the Chao1 rarefaction graphs show, we looked at both resident 

colon microbiota and the transient fecal microbiota. Data indicates that in the colon samples, 

within the vehicle group, all induction models increased the chao1-index compared to PBS 

1%, while DNBS/PBS resulted in the most significant increase in the species richness 

(p=0.021) (Fig 7a). In the case of fecal samples, in the absence of Prolia, all induction models 

reduced (p=0.03) chao1-index notably. In the DNBS/Ethanol colitic condition, there was a 

decrease (p=0.03) from PBS 1% in the average chao1-index from 3560 to 2620 (Fig 7c). 

After 4 days continuous i.p. injection of Prolia, chao1 index of alpha-diversity of all induction 

models stayed at the approximately similar level (p=0.2) which indicating Prolia could 

alleviate the dysbiosis made by colitic inducers (Fig 7d). Therefore, our alpha-diversity data 
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confirmed the existence of dysbiosis within both resident and transient microbiota in vehicle 

group, and also the alleviating effect of Prolia in these samples. 

a) Colon, Vehicle              b) Colon, Prolia  

   

c) Colon, Vehicle vs. Prolia 
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d) Feces, Vehicle             e) Feces, Prolia 

  

f) Feces, Vehicle vs. Prolia 

  

Figure 7. Alpha-diversity of colonic and fecal microbiota of DNBS/Ethanol-induced colitis and Prolia 

treated mice. (a-f) Measure of species richness based on operational taxonomic unit (OTU) for colon 

(a) and fecal (d) vehicle group (i.r. administration of PBS 1%) and colon (b) and feces (e) of Prolia 

groups in samples collected after induction of colitis with DNBS/Ethanol and its controls: PBS 1%, 

Ethanol 30%, and DNBS/PBS. (c,f) the comparison of Chao1 index of species richness in vehicle 

(PBS 1%) and Prolia groups interactions, within colonic and fecal samples. 
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a) Colon, Vehicle vs. Prolia 

 

b) Feces, Vehicle vs. Prolia 

Figure 8. Summary of alpha-diversity indices of vehicle- and Prolia-treated colon and vehicle 

samples. (a-b) Comparison of Chao1 and Shannon indices of colonic microbiota between Prolia-

treated vs. vehicle animals with or without induction of DNBS/Ethanol colitis. Statistical analyses 

were conducted using mixed procedure of SAS. Alphabetical letters on each graph shows the 

significant differences (P<0.05) among treatments. 
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4.5.2. Colonic and Fecal Beta-Diversity 

 To compare diversity between different induction models within Prolia and vehicle 

groups, nMDS plots based on Bray-Curtis dissimilarity matrices were generated. Colonic 

mucosa-associated microbiota clustered separately (p=0.002) in DNBS/Ethanol compared to 

other induction models in vehicle group. The same pattern was observed in fecal samples of 

vehicle group. Additionally, the fecal microbiota of PBS 1% and Ethanol 30% were clustered 

separate (p=0.02) from each other. This confirms the role of Ethanol in accelerating the 

dysbiosis within both resident and transient microbiota. In colon mucosa, there was a clear 

evidence of alleviating the dysbiotic effects of DNBS/Ethanol in Prolia-treated animals 

according to bray-curtis clustering patterns. This pattern was similarly observed in fecal 

samples (Fig 9) and Prolia could avoid dysbiosis in the transient microbiota within PBS 1% 

and Ethanol 30% treated controls. 

Figure 9 (c, f) compares DNBS/Ethanol and Ethanol treatments between vehicle and 

Prolia treatments. Results showed that DNBS/Ethanol with Prolia-treatment has a trend 

toward the Ethanol 30% in both vehicle and Prolia groups (p=0.1). In addition there was a 

significant difference between DNBS/Ethanol of vehicle group and both Ethanol 30% of 

vehicle and Prolia groups. Taken together, DNBS/Ethanol altered (p=0.05) beta-diversity of 

colon and fecal microbiota compared to its control treatments but its negative effects on colon 

microbiota were reduced following administration of Prolia.  
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Figure 9. Non-metric multidimensional scaling (nMDS) ordination plot, a measure of relative 

dissimilarities in the bacterial community composition in the colon mucosa and feces of (a, d) 

vehicle and (b,e) Prolia treated mice; (c, f) comparison between two groups of Prolia and 

vehicle in DNBS/Ethanol vs. Ethanol treatments. The colored points are shaded according to 

different treatment groups. The p-values were calculated using PERMANOVA. For the 

multiple-comparison tests, only the significant p-values were included. Trends were discussed 

at P<0.1. 

 

Table 1. Summary of p-value for treatment groups across vehicle, Prolia, and the 
interaction between vehicle vs. Prolia treated groups in colon and fecal samples. 
The p-values were calculated using PERMANOVA. 

Treatment p-value  

 
Colon Feces 

PBS 1% 0.33 0.31 

Ethanol 30% 0.26 0.04 

DNBS/PBS 0.25 0.28 

DNBS/Ethanol 0.05 0.39 

Group*Treatment 0.03 0.15 

4.5.3. Clustering of Colonic and Fecal of Microbiota 

Next, we investigated which phyla and genera were responsible for the gut dysbiosis 

and how is the clustering pattern of microbiota at the genus level changed following 

DNBS/Ethanol colitis induction and Prolia administration. For this purpose, a clustering 

analysis based on Bray-Curtis dissimilarity was employed in R (Gu et al., 2016). The X-axis 

on the graphs represents the composition of bacterial communities at the genus level while the 

phylum they belong to is color coded at the top. The Y-axis represents the color-coded 
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induction models (PBS 1%, Ethanol 30%, DNBS/PBS, DNBS/Ethanol) within vehicle (a, c) 

or Prolia groups (b, d) in the colon mucosa (a, b) or feces (c, d).  

As these graphs reveal within vehicle group of both colon mucosa and feces (Y-axis of 

Fig 10a, c), the DNBS/Ethanol induction model clustered separately (p=0.03) from its control 

groups while DNBS/PBS, Ethanol 30%, and PBS 1% didn’t cluster separately. Bacteroidetes, 

Fibrobacteres, and Proteobacteria were the phyla with relative abundances highly associated 

(p=0.01) with DNBS/Ethanol both in the colon mucosa and feces of vehicle mice. In contrast, 

phylum Firmicutes was highly associated with colon mucosa in the vehicle group (Fig 10a). 

In the feces, Bacteroidetes, Verruocomicrobia and several members of Firmicutes were 

significantly associated with vehicle group (Fig 10c).  

The clustering analysis of Prolia-treated mice showed a clear alteration in clustering 

pattern in both colon mucosa and feces microbiota (Fig 10b, d). There was no significant 

difference between clustering of DNBS/Ethanol group vs. its controls. These data also 

confirm the colitic effect of DNBS/Ethanol in colon and fecal microbiome dysbiosis and also 

the alleviating role of Prolia treatment on colitic situation. 
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a) Colon: Vehicle group 

 

 

b) Colon: Prolia group 
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c) Fecal: Vehicle group

 

d) Fecal: Prolia group 

 

Figure 10. The Clustering pattern of colonic and fecal microbial communities of vehicle and 

Prolia treated samples. Rows correspond to samples and columns correspond to abundant 

genera (> 0.1% of community). The “Normalized Abundance” key relates colors to the 
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normalized proportions of genera (relative abundance of each genus divided by the Euclidean 

length of the column vector). The left dendogram shows how samples are clustered based on 

their Bray–Curtis dissimilarities (using unweighted pair group method with arithmetic 

averaging UPGMA). The significance of clustering patterns has been calculated based on 

9999 permutations and p-values calculated based on PERMANOVA. The top dendogram 

shows how genera correlate (co-occur) with each other based on their Spearman’s correlation 

coefficient. The “Phylum” key relates the top annotations to the corresponding phylum of 

each genus. The “Treatment”, key relates samples to the treatments group (PBS 1%, Ethanol 

30%, DNBS/PBS, DNBS/Ethanol). The bottom box-plot shows the distributions of the non-

normalized relative abundances of genera in Vehicle group (a, c) and Prolia group (b, d). 

Color codes have been also used to highlight bacterial genera that were significantly 

associated with treatment groups (colors are in accordance with the colors of treatment 

groups; P<0.05). 
 

Following up on the previous analyses, using LEfSe and MIXED procedure of SAS, 

the most significant increases in the relative abundance of bacterial taxa were identified. 

Bacterial taxa that were significantly increased in the colon mucosa of the vehicle and Prolia 

groups are presented in Fig 11 (a) and (b), while Fig 11 (d) and (e) show taxa which their 

relative abundances significantly changed under DNBS/Ethanol condition compared to other 

induction model in vehicle group. DNBS/Ethanol decreased Lachnospiraceae and Clostridials 

from Firmicutes phylum (Fig 11c, p=0.02) and increased Bacteroidaceae and Akkermansia 

from Bacteriodetes and Veruccomicrobia (Fig 11.d, p=0.01), respectively. Prolia treatment 

tended (p=0.1) to increase the Lachnospiraceae and Clostridials compensating their low 

abundance in the colon mucosa of DNBS/Ethanol and DNBS/PBS induction models. Prolia 

treatment also decreased (p=0.02) the relative abundance of Bacterioidaceae in the 

abovementioned groups. 
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a) Colon: Vehicle group 
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b) Colon: Prolia group 

 

c) Colon: Vehicle vs. Prolia 
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d) 

       

e) 

       

Figure 11. Colonic mucosa-associated bacterial taxa with the significant relative abundance 

increase in (a) vehicle (i.p. administration of 1% PBS) or (b) Prolia treated mice. The legend 

shows four different induction models (PBS 1%, Ethanol 30%, DNBS/PBS, DNBS/Ethanol) 

within vehicle and Prolia treatments. (c) Bacteria which showed significant changes in both 

vehicle and Prolia treatments. (d) Bacteria that their relative abundances were significantly 

decreased in colon mucosa-associated microbiota under DNBS/Ethanol colitic conditions. (e) 

The significant increased colon-associated genera of bacteria in colotic conditions. *, a, b, c, d 

indicate significant difference (P<0.05) among treatment groups. The letters (f) and (g) in the 

graphs are representing family and genus of bacteria, respectively. 
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4.5.4. Correlation Analysis 

The non-parametric Spearman’s rank correlation analysis showed associations 

between several bacterial taxa with an abundance ≥ 0.5% of community in the colon mucosa 

and inflammatory markers (IL-1β, IL-6, TNF-α at both protein and gene level), histologic 

score, CRP, and MPO. According to figure 12 (a), the i.r. administration of DNBS/Ethanol 

compared to its control Ethanol 30% resulted in a notable dysbiosis as shown by white 

asterisk, while some genera were associated with a negative or positive correlation (p ≤0.05). 

In the presence of Prolia (Fig 12b), less significant number of correlations were observed 

demonstrating the effective role of Prolia in alleviating the dysbiotic effect induced by 

DNBS/Ethanol.  
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a) Vehicle group   b) Prolia group 
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Figure 12. Correlation coefficient between the proportion of abundant colonic bacteria taxa (≥0.5% of 

community) and immunological factors (inflammatory markers), in both vehicle and Prolia-treated 

mice. The non-parametric Spearman’s rank correlation implemented in PAST software was used. For 

each correlation, correlation coefficient (Spearman’s Rho) and p-value were obtained and the resulting 

correlation matrix was visualized in a heatmap format generated by the corrplot package of R ver. 02-

0.2010. The correlation coefficient values ranged from −1 (red) to +1 (blue) with larger absolute 

values indicating stronger relationship while positive and negative values between DNBS/Ethanol vs. 

Ethanol 30% and immunological factors indicating the direction of association. Alpha value for the 

correlation confidence intervals was set up as 0.05. *: P<0.05. 

 

4.5.5. Prediction of Functional Capacity of Microbiota   

To assess the functional capacity of microbiome under each treatment and induction 

model, PICRUSt was used. Several metabolic pathways were associated with DNBS/Ethanol-

induced colitis in vehicle group. Prolia administration altered several KEEG pathways 

predicted by PICRUSt. Using LEfSe (Segata et al., 2011), several metabolic pathways that 

increased in association with each treatment, were highlighted (Fig 13). Each color was 

assigned to one treatment. DNBS/Ethanol administration in vehicle group increased several 

pathways including amino acid uptake, carbohydrate synthesis, lipid uptake, and mucin 

overproduction metabolism while Prolia treatment reduced such pathways in DNBS/Ethanol 

colitic mice. 
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Figure 13. Prediction of functional capacity of colon-associated micobiota in vehicle vs. Prolia-treated 

mice. A statistical differences between KEGG pathways (explored at Levels 1–3, indicated as L1–L3) 

of predicted colonic mucosa metagenomes were evaluated by LEfSe, a metagenome analysis approach 

which performed the linear discriminant analysis following the Wilcoxon Mann–Whitney test to 

assess effect size of each differentially abundant variable. The length of the horizontal bars indicated 

log-fold changes for each variable. Color code represents the class of treatments; red and green 

represent colitic condition of DNBS/Ethanol, while blue and purple are showing the Ethanol 30% 

condition in the absence and presence of Prolia, respectively. 

'1%6�(WKDQRO���� '1%6�(WKDQRO�������3UROLD (WKDQRO���� (WKDQRO�������3UROLD
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Chapter Five 

Discussion 

As highlighted in the literature review of this thesis, IBD is a gastrointestinal 

idiopathic inflammatory condition that manifests in two main subtypes, CD and UC (Strober 

et al., 2007; Manichanh et al., 2012). The etiopathology suggested encompasses 

environmental triggers, susceptible genetic variants and deregulated immune response toward 

a potentially dysbiotic gut microbiota of IBD patients (Strober et al., 2002; Nagalingam et al., 

2011; Manichanh et al., 2012; Molodecky et al., 2012). Despite extensive research, 

identification of contributory candidate for IBD pathogenesis is still not completely 

understood. This lack of understanding hinders the availability of the optimal treatments. This 

calls for more research to further investigate the role of perceived triggers in initiation or 

development of IBD, also exploring alternative therapeutic candidates that add values to the 

existing treatments.  

Therefore, the overall objectives of this research were to investigate the effective role 

of Prolia, an inhibitor of pro-inflammatory receptor activator of nuclear factor kappa-b ligand, 

on the inflammatory immune response and the gut microbiome dysbiosis in a DNBS/Ethanol-

induced experimental model of CD. In a second intent, this thesis also addressed whether or 

not DNBS/Ethanol-induced colitis can recapitulate the IBD-associated dysfunctional immune 

response and the gut microbiome dysbiosis seen in human studies.  

We investigated the role of RANKL inhibitor on immune response and also the gut 

microbiota. RANKL plays a prominent role in development of rheumatoid arthritis and 

osteoporosis (Fouque-Aubert et al., 2008; De Voogd et al., 2016), but there is no study 
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demonstrating its role in IBD pathogenesis. Blocking osteoclast-membrane RANK/soluble 

osteoblasts secreted RANKL pathway with a soluble decoy receptor for RANKL called 

osteoprotegerin (OPG), results in balanced osteoclasts activation (Moschen et al., 2005; 

Nahidi et al., 2011; De Voogd et al., 2016). Several studies reported low bone density 

minerals (BMD) in teenage IBD patients, the year that bone density is supposed to be at its 

peak, reflecting the potential aberrant osteoclastogenesis in such patients (Compston, 2003; 

Roshandel et al., 2010; Pichler et al., 2014; Krela-Kazmierczak et al., 2016; Schule et al., 

2016). The reduction in vitamin D, vitamin K, calcium, and estrogen level, as well as 

mutation in their intestinal receptors, result in a dysfunctional absorption of such minerals. 

These deficiencies may contribute to the impaired osteoblast differentiation and excessive 

osteoclastogenesis during IBD (Saleiro et al., 2012; Cook et al., 2014; Wu et al., 2014; 

Fletcher, 2016). Regardless of decreased bone density in IBD patients, the other rational 

would be the existence of the RANK/RANKL/OPG pathway inside immune system 

(Moschen et al., 2005; Boyce et al., 2007; Fouque-Aubert et al., 2008). B- and T-

lymphocytes, macrophages, and dendritic cells express such pathway, which through the 

innate or the adaptive immune response, toward invasive bacteria, result in inflammatory 

cascades activation and gut inflammation, the main characteristic of IBD (Wang et al., 2001; 

Ashcroft et al., 2003; Boyce et al., 2007; Fouque-Aubert et al., 2008). Additionally, genome-

wide association metadata analysis identified a gene near the TNFS11 that encodes RANKL 

and its expression is increased in CD patients (Dixon et al., 2007; Sanseau et al., 2012). Prolia 

is a monoclonal antibody that inhibits RANK/RANKL pathway in bone remodeling 

procedures (Miller, 2011; Dempster et al., 2012). Therefore, we decided to use Prolia to target 

RANKL inhibition for obtaining a decreased level of inflammatory response in colitic 
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conditions. To confirm the effectiveness of Prolia-treatment, we looked at fecal and colon 

mucosa-associated microbiota as well as several inflammatory markers, in PBS 1%, Ethanol 

30%, and DNBS/PBS treatments of vehicles and Prolia groups, which there was no evidence 

of adverse effects of these treatments on the inflammatory response and the microbiome 

dysbiosis. After verifying the effect of Prolia on microbiome/host immune response 

interactions, we defined its effects on DNBS/Ethanol-induced colitic conditions. Our results 

demonstrated that the inhibition of RANKL did not show any adverse pro-inflammatory 

effect on DAI, macroscopic/microscopic scores, the level of CRP and colonic MPO. On 

sacrifice day, mice from DNBS/Ethanol group treated with Prolia did not show any symptoms 

of ameliorating colitis. CRP and MPO levels as well as microscopic and macroscopic scores 

were also not modified following administration of Prolia. However, Prolia administration 

significantly reduced (P<0.02) the mRNA expression and protein concentration of IL6, IL1B, 

and TNF-a. This reduction in pro-inflammatory cytokines levels at the colonic mucosa can be 

interpreted as a RANKL blockade that led to the inhibition of the activation of immune cells 

possessing the RANK receptors, such as macrophages and dendritic cells. As vital members 

of innate immunity, majority of these antigen-presenting cells induce IL-1β, IL-6, TNF-α, 

therefore, their downregulation is probably due to reduced activation of such APC (Wang et 

al., 2001; Ashcroft et al., 2003; Moelants et al., 2013). Lending support to this hypothesis, 

Aschroft et al. (2003) reported that in IL-2-deficient mice, which develop spontaneous CD4+ 

T cells activated autoimmune disease associated within multi-organ inflammation and 

excessive gastrointestinal tract T-cell infiltration, administration of Fc-OPG not only 

increased bone density but also ameliorated ulceration in the gastrointestinal tissue as well as 

reduced level of mucosal T-cell infiltration. Also, RANKL contributes to B-cell maturation 
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and development, since the RANKL (-/-) mice are illustrated with a reduced numbers of B-

cells in the spleen and with defective transition of pro-B to pre-B resulting in an impaired 

antibody immune response in the invasion of pathogenic bacteria (Young-Yun Kong et al., 

1999). Yun et al. (2001) reported that the OPG (-/-) mice demonstrated an increase in B-cell 

proliferation with altered antibody response due to specific isotype imperfection in IgG 

immunoglobulins class switching, although in contrast, OPG transgenic mice showed neither 

B-cell maturation nor innate immune-related cell deficiency (Stolina et al., 2007). All the 

above studies confirm the anti-inflammatory effect of RANKL inhibitor, which is in 

consistent with our data regarding reduction of pro-inflammatory cytokines.  

In the next part of our project, we examined the modulatory role of Prolia on 

DNBS/Ethanol-induced microbiome dysbiosis. Prolia reduced the altered species richness and 

avoided dysbiosis in DNBS/Ethanol treatment when compared with other induction models. 

In DNBS/Ethanol-induced colon samples, Prolia reduced the increased number of species due 

to DNBS/Ethanol administration. Furthermore, having looked at beta-diversity comparing 

different treatments, Prolia attenuated microbiota dysbiosis within both colon mucosa and 

feces. Bacterial taxa that were promoted by Prolia treatment consisted of increased level of f. 

Lachnospiraceae from p. Firmicutes in contrast with decreased level of o. RF32, f. 

Entereobacteriaceae, and g. Bilophila from p. Proteobacteria, g. Bacteroides, g. Rikenellaceae 

from p. Bacteroidetes, and g. Akkermansia from p. Verrucomicrobia. Prolia also increased o. 

Clostridiales, which their decrease was one of the symptoms of experimental models of CD 

(Oberc et al., 2015; Abeles et al., 2016).  

Understanding the correlations between altered inflammatory pathways due to vehicle 

or Prolia treatment and the most abundant (0.1 % of the community) taxa within the colonic 
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mucosa and feces were of high importance in this study. As shown in figure 12, vehicle group 

was characterized with a dysbiotic community with high number of correlations between 

several bacterial taxa and immunological factors compared to Prolia group illustrating the 

alleviated effect of Prolia under DNBS/Ethanol-induced colitis. 

To address the second objective of this project, which was to assess the role of 

experimental model of colitis on inflammatory response and gut microbiota, the DNBS model 

of colitis was used. Although there are several models that can recapitulate CD (Kim et al., 

1992; Mizoguchi, 2012), two main hapten-induced models are the DNBS and the TNBS, 

which both are administered intrarectally. Clinically, DNBS/Ethanol-induced colitis results in 

severe inflammatory response in the colon and rectum of rats (Morampudi et al., 2014). 

Compared to DNBS, TNBS due its highly oxidative nature is a hazardous chemical with 

explosion potentiality in contact with sodium and potassium. The binding affinity of DNBS is 

higher with proteins compared to TNBS, which selectively binds only to the lysine ε-amino 

group (Goyal et al., 2014; Morampudi et al., 2014).  

Previously in animal studies Ethanol 30 or 50 percent were used extensively to 

dissolve DNBS. However, what was not considered in those earlier studies was the potential 

role of Ethanol in causing dysbiosis in the gut independent of DNBS. As such, varying 

concentrations of Ethanol could possibly result in different colonic inflammatory response 

(Morampudi et al., 2014). In addition, for the first time, here we reported the role of DNBS 

alone (dissolved in PBS 1%) on inflammatory markers, colonic mucosa-associate and fecal 

microbiota. Our study revealed that pro-inflammatory cytokines and inflammatory markers as 

well as colonic mucosa-associated and fecal microbiota, were not significantly affected when 

DNBS or Ethanol administered alone. DNBS dissolved in Ethanol 30% was the only group 
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that showed all the symptoms of disease. Samples taken from colon mucosa were used to 

measure inflammatory response at the site of induction of colitis. Disease activity index, 

macroscopic and microscopic assessment plus histology images from H&E staining showed a 

transmural infiltration of immune cells, a disruption of epithelial barrier and a depletion of 

goblet cells, which together confirms the activation of colonic inflammatory response 

following DNBS/Ethanol administration. Also, analysis of the inflammatory mediators 

including serum CRP level, a marker for systemic inflammation, and colonic MPO level 

showed significant up-regulation in the case of DNBS/Ethanol induced colitis. In line with 

previous studies, considerable neutrophil accumulation and increased levels in serum CRP 

level and colonic MPO have been reported in DNBS/Ethanol-induced colitis (Ghia et al., 

2008; Borrelli et al., 2015). Also, in parallel with previous studies (Yan et al., 2002; Ghia et 

al., 2007; Harel et al., 2011; Rabbi et al., 2016), potential pro-inflammatory mediators such as 

il6, il1b, tnfa at both mRNA and protein level are up-regulated confirming the inflammatory 

response induced by DNBS/Ethanol. IL-1β secreted by a large number of immune cells, such 

as DC, macrophages, fibroblasts and endothelial cells, leads to activation of T cells and NK 

cells, proliferation of B cells, nitric oxide production and increase in the level of adhesion 

molecule expressions (Beck et al., 1997). On the other hand, IL-6 promotes activation of 

inflammatory cells, such as T and B-lymphocytes, and several reports declare the increased 

level of IL-6 in CD patients (Beck et al., 1997; Neurath, 2014). The suggested mechanism 

behind DNBS/Ethanol role can be explained by the fact that Ethanol administration is needed 

to disrupt the colonic mucosal barrier and consequently let the DNBS to penetrate into lamina 

propria in order to haptenize the local colonic and gut bacterial proteins to acquire 

immunogenic characteristic (Morampudi et al., 2014). DNBS by its high-binding affinity to 
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lysine e-amino group shifts those membrane-bound proteins to the haptenized proteins, thus, 

initiating the activation of antigen presenting cells inside the colon mucosa to overexpress 

pro-inflammatory cytokines, such as INF-γ, IL-β, IL-12, TNF-α and nitric oxide (NO) through 

induction of inducible nitric oxide synthase (iNOS) as well as T-helper 1-mediated innate 

immune response. Weight loss and diarrhea are some of the symptoms of such transmural 

colonic inflammatory immune response due to DNBS administration (Kim et al., 2012; Goyal 

et al., 2014; Morampudi et al., 2014).  

Resident gut microbiota are key-role players in IBD pathogenesis since approximately 

all IBD murine models requisite microbiome presence for development of colitis and likewise 

germfree mice show no signs for initiation of colitic conditions (Rath et al., 2001). Building 

on these observations, in our study we evaluated both fecal and mucosa-associated microbial 

communities alterations by evaluating species richness and diversities, patterns of microbiota 

clustering, prediction of functional capacities of the gut microbiome. Our results elucidated 

signature bacterial species in DNBS/Ethanol treated mice compared to control groups that 

were highly correlated with inflammatory immune responses.   

Several meta-analyses have identified dysbiotic patterns of gut bacteria in both UC 

and CD patients (Halfvarson et al., 2017; Knights et al., 2013). Decreased species richness 

and bacterial species diversities within fecal and mucosa-associated microbiome (MAM) is a 

characteristic of IBD patients. Similar pattern was discovered in rodents under DSS 

experimental colitis (Andoh et al., 2005; Moschen et al., 2005; Xenoulis et al., 2008; 

Zenewicz et al., 2008; Samanta et al., 2012; Wills et al., 2014). These data are consistent with 

our alpha- and beta-diversity results, when communities’ richness was compared between 

DNBS/Ethanol and its controls. In transient fecal microbiota, there was a significant decrease 
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in species richness under DNBS/Ethanol and it was clustered far from its controls. This 

distinctive clustering pattern was also seen in colon mucosa, although, DNBS/Ethanol 

administration increased the species richness in colon mucosa compared to controls. The 

dysbalanced patterns seen in microbiome profile of fecal and colon samples in colitic 

conditions could be suggested as dysbiosis state. This may be due depletion of commensal gut 

bacteria following DNBS/Ethanol administration, which provided an opportunity for 

opportunistic/pathogenic bacteria to grow more due to higher availability of nutrients, space, 

and oxygen. Furthermore, our data suggests the impact of DNBS/Ethanol on the microbiome 

composition may vary across different anatomical sites of murine gut. Having determined the 

alterations in the microbial community compositions at the lower taxonomic levels, several 

bacteria genera showed more relative abundance fluctuations within each treatment. Several 

taxa that were positively associated with DNBS/Ethanol-induced colitis in colon mucosa 

were: o. RF32, g. Sutterella, f. Entereobacteriaceae, and g. Bilophila from p. Proteobacteria, 

g. Bacteroides, f. Rikenellaceae from p. Bacteroidetes, g. Coprococcus from p. Firmicutes, 

and g. Akkermansia from p. Verruocomicrobia. The results showed the presence of 

Firmicutes’s members associated with control group (Fig 9a). In the fecal microbiota, f. 

Ruminococcaceae, g. Coprobacillus, g. Blautia and g. Enterococcus from p. Firmicutes, f. 

Rikenellaceae and g. Parabacteroides from p. Bacteroidetes, YS2 from p. Cyanobacteria, in 

addition to the taxa mentioned in colon samples, were positively associated with 

DNBS/Ethanol group. The first important message to convey would be the positive 

association of p. Firmicutes members, such as f. Lachinospiraceae, g. Ruminococcus, g. 

Lactobacillus, g. Clostridium, and g. Turibacter with control samples, and their significant 

deficiency in DNBS/Ethanol group which result in a separate clusteration of DNBS/Ethanol. 



 69 

Our data is confirmed by several studies demonstrated the decrease in majority of Firmicutes 

members, such as g. Clostridium in CD patients with an increased abundance in the p. 

Proteobacteria (Manichanh et al., 2006; Oberc et al., 2015). The role of g. Clostridium is 

widely investigated in butyrate production, a short chain fatty acid and source of energy for 

intestinal epithelium with the potentiality to acidify the intestinal lumen and therefore protect 

it against certain pathogenic bacteria, such as Salmonella and Escherichia coli (Topping et al., 

2001; Vogt et al., 2015). Also, consistent with our findings, Schwab et al. (2014) reported 

several genera from p. Bacteroidetes, such as g. Bacteroides as a key role player in the onset 

of mouse model of colitis. Similarly several clinical studies reported the bold presence of 

mentioned bacteria in both CD and UC patients (Ott et al., 2004; Andoh et al., 2005; 

Swidsinski et al., 2005; Gophna et al., 2006; Sepehri et al., 2007; Bibiloni et al., 2008). The 

depletion in proportion of relative abundance of g. Bacteroides and f. Lachnospiraceae in 

tissue samples from resected GI tract of CD and UC patients were also reported in Frank et al. 

(2007) study. Additionally, the increased level of f. Enterobacteriaceae was highlighted in 

various studies in experimental model of CD or after enteric pathogens infection (Lupp et al., 

2007; Stecher et al., 2012; Hill et al., 2014). Similar findings regarding association of f. 

Enterobacteriaceae with IBD, especially CD patients were also reported and support our 

findings (Ott et al., 2004; Manichanh et al., 2012; Nagalingam et al., 2012; Stecher et al., 

2012; Berry et al., 2015). A study by Gophna et al. (2006) demonstrated the 

overrepresentation of p. Proteobacteria and p. Bacteroidetes and underrepresentation of o. 

Clostriales in biopsy samples from CD patients, the same pattern was also observed in our 

study. Additionally, g. Roseburia, g. Faecalibacterium, and f. Ruminococcaceae, known as 

some of producers of short-chain fatty acids (SCFA), were reduced whereas g. 
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Escherichia/Shigella were particularly elevated in the ileum of CD patients (Kinross et al., 

2011; Morgan et al., 2012; Oberc et al., 2015). These data confirm the observed enrichment in 

the abundance of these bacteria within the DNBS/Ethanol colon mucosa-associated 

microbiota. Based on PICRUSt analysis, our data predicted a reduced amino acid synthesis. 

This phenomenon is in parallel with prediction of several elevated pathways such as: amino 

acid uptake, carbohydrate level, lipid uptake, and those metabolism pathways in charge of 

mucins overproduction during CD. Also, the glutathione uptake pathway, with its role to store 

oxidative stress from inflammation, is enriched in ileal CD patients and in our DNBS induced 

colitis (Keshavarzian et al., 2003).  

The mechanism behind how these microbiota shifts contribute to pathophysiological 

state during CD and what initiates such dysbalanced microbiota in parallel with excessive 

inflammatory response is still an active area of research. One idea is the loss of SCFA 

producing bacteria lead to less enterocyte survival at epithelial layer and increase the 

permeability of this layer through loosen tight junction because of impaired butyrate synthesis 

and then as a result activate inflammatory response pathways (Peng et al., 2009). Also, 

survival of facultative anaerobic Proteobacteria, such as members of Entereobacteriaceae, and 

Bilophila with their higher robustness to reactive-oxygen species gives them priority to 

compete during inflammatory response with predominant anaerobic Firmicutes and 

Bacteroidetes (Miyoshi et al., 2017) . It seems that microbiome dysbiosis works as both as a 

cause and a consequence of IBD pathogenesis. However, the idea of whole microbiome 

genome sequencing flourished to look at the composition and abundance of all present gut 

bacteria at the same time rather than putting one pathogenic bacterium in charge of all IBD or 

CD pathogenesis. This is when network analysis is required to look at not only all correlated 
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bacteria, but also the archaea, the fungi communities and how a continuous disturbance in one 

member can affect the equilibrium state of the host. Furthermore, more clinical studies are 

required since future therapies are mostly focused on deteriorating harmful microbes and 

restoring a protective gut microbiome in IBD susceptible individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

Chapter Six 

Conclusion, Significance, and Future Directions 

6.1. Conclusion 

Our experiments confirmed that DNBS solubilized in Ethanol 30% mimics a CD 

model of colitis based on inducing an inflammatory response and a gut microbiota dysbiosis. 

It also confirmed the neutral effect of DNBS or Ethanol alone on the immune response and 

the gut microbiota profile. Most importantly, by blocking the pro-inflammatory 

RANK/RANKL pathway through administration of Denosumab (Prolia™), which acts like 

OPG, the inflammatory response was decreased significantly as illustrated by cytokine levels. 

This is in parallel with Prolia’s alleviating the effects on gut microbiota dysbiosis induced by 

experimental colitis, in which, Prolia-treatment resulted in prevention of dysbiosis in gut 

microbiome under DNBS/Ethanol induction model. All these data confirmed the effective 

role of anti-RANKL on modulating DNBS/Ethanol-induced colitis in murine model through 

the regulation of immune activation and gut microbiota.  

6.2.  Significance 

This study depicted how DNBS experimental model of colitis can affect the colonic 

mucosa and fecal microbiota in murine model. It also highlighted the role of Ethanol for 

DNBS dissolvent in activating this experimental model. On the other hand, Prolia for the first 

time was used to target inflammation in an experimental model of CD. Our data confirmed 

the anti-inflammatory role of inhibitor of RANK/RANKL pathway. Prolia not only 

contributes to reduction of osteoclastogenesis for arthritis patients (Dempster et al., 2012), but 
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also according to this study, it reduced the inflammatory response and modulated the 

dysbalance in gut microbiota in DNBS/Ethanol-induced model of colitis. More experiments 

need to be performed to define the exact cellular mechanisms of action. 

6.3. Future Directions 

Keystone and foundation bacterial species that are crucial in development or 

prevention of gut microbiota dysbiosis can be cultured and inoculated into germ-free or 

spontaneous colitic mice to more precisely study their function and role in development of 

colitis and activation of immune response. Metabolomics and proteomics analysis can be 

performed to better understand how bacterial dysbiosis contributes to development of CD. 

Combination of microbiome, metabolome and proteomics data using network analysis can 

help us to identify the influential members of a defined community that can be used a 

therapeutic approach for treatment of IBD. Although Prolia has been used in treatment of 

arthritis patients, its safety for therapeutic use under CD condition requires further 

assessment. 
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