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Abstract

Using pivotal quantities, we construct a variety of exact and asymptotic

confidence intervals (CI) for the tail index (shape parameter) α > 0 of the

Pareto distribution of the first type, Pareto(I)(α,σ), assuming that the scale

parameter σ > 0 is known. The obtained CI’s are compared in terms of their

expected lengths and finite-sample coverage probabilities, and thus the better

performing CI’s among them are determined. We also outline the construction

of exact and asymptotic CI’s for α when σ is unknown.
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Chapter 1

Introduction

The Pareto distribution of the first type, denoted by Pareto(I)(α,σ), has the

probability density function

f(x) =


ασα

xα+1
, if x ≥ σ,

0 , if x < σ,

(1.1)

where α > 0 is the tail index (shape parameter) and σ > 0 is the scale

parameter of the distribution. The parameter α shows how heavy the tail of

the distribution is, and E(Xv) < ∞ for 0 < v < α. This distribution was

named after Vilfredo Pareto, who in 1897 made a famous claim that he could

model the proportion of people in a society whose income exceeded x as Cx−α,

with some positive real constants C and α (cf. Arnold (1983)).

Pareto(I)(α,σ) is a part of a large family of univariate and multivariate

Pareto distributions (cf. Arnold (1983) and Johnson, Kotz, and Balakrishnan

1



2 CHAPTER 1. INTRODUCTION

(1994, Chapter 20)). These distributions have been widely applied in actuarial

science, econometrics, and other fields. In particular, they have been useful

for modelling income and wealth distributions and insurance claims. However,

while Pareto distributions are good at approximating the distributions of the

upper values of many variables, the same cannot be said for lower values. When

modelling income distributions, for example, Pareto distributions are most

useful for examining the wealthiest members of a society. Also, in modelling

of insurance claims, Pareto distributions are useful for modelling large losses

above a certain threshold. For examples of some real-life data sets that are

described with Pareto distributions, we refer to Brazauskas and Serfling (2003)

and Arnold (1983).

This thesis focuses on confidence intervals (CI) for the tail index α of

Pareto(I)(α,σ) mainly under the assumption that the scale parameter σ is

known. In applications, estimation of α is often of more interest than that of σ

and, moreover, in some situations, it is indeed reasonable to assume that σ is

known. For example, when modelling insurance claims with the Pareto(I)(α,σ)

distribution, σ may represent a deductible that is set in advance. Furthermore,

dealing with robust and efficient point estimation of α when σ is assumed to

be known, Brazauskas and Serfling (2000a, section 6) argue that even small

improvements in methods of estimation of α can yield significant favourable

impact in estimating important quantities based on α in applications. This

inspired us to closely investigate precision of the CI’s for α that we construct
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in the thesis. Accordingly, our CI’s are compared from the standpoint of two

standard criteria, expected length and finite-sample coverage probability, and

thus we determine the better performing CI’s, that is those with relatively short

expected lengths and appropriately high finite-sample coverage probabilities.

While many of the pivotal and asymptotically pivotal quantities we use for

building our CI’s for α have been well known, we have not found any references

with comparative analysis of properties of such CI’s. Moreover, the literature

on CI’s for α constructed with other possible pivots is scarce. On the other

hand, the research in this thesis is largely inspired by Martsynyuk and Tuzov

(2016) and the earlier mentioned Brazauskas and Serfling (2000a). Martsynyuk

and Tuzov (2016) constructed CI’s for a mean of a population from the domain

of attraction of the normal law that are based on convergence in distribution

of five special functionals of the so-called Student process, that is on five

special cases of the functional central limit theorem (FCLT). They concluded

that the obtained CI’s may be preferred to a classical asymptotic CI that

follows simply from asymptotic normality of the Student t-statistic. Inspired

by Martsynyuk and Tuzov (2016), we adapt convergence in distribution of a

few of their functionals to constructing asymptotic CI’s for α of Pareto(I)(α,σ),

assuming that σ is known (cf. section 3.2). This way of constructing asymptotic

CI’s for α appears to be new. Assuming that σ is known, Brazauskas and

Serfling (2000a) studied asymptotic performance of various point estimators of

α of Pareto(I)(α,σ) based on two criteria: asymptotic relative efficiency (with
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respect to the maximum likelihood estimator (MLE) of α) and robustness

against upper outliers (cf. subsection 3.3.3). In particular, in their search for a

relatively highly efficient and adequately robust estimator of α, Brazauskas and

Serfling (2000a) introduced the so-called generalized median estimator (GME)

and showed that it performs best in this sense among several other estimators

of α. Based on asymptotic normality of this estimator, we construct one of

our best performing asymptotic CI’s for α in this thesis, denoted by AI10 (cf.

subsection 3.3.3 and Chapter 4 for details).

In Chapter 2, using known exact pivots that are based on the MLE’s for α

and σ, we derive two exact CI’s for α assuming that σ is known and investigate

their expected lengths (cf. section 2.1). We minimize the expected length of a

shorter CI numerically using the R 3.3.2 software and writing an algorithm for

finding the appropriate lower and upper quantiles of a chi-square distribution.

An analogue of this interval in the case of σ being unknown is presented in

section 2.2. All R codes of this thesis are collected in Appendix.

In Chapter 3, we assume that σ is known and build a variety of asymptotic

CI’s for α from several asymptotically pivotal quantities. Accordingly, sections

3.1 and 3.2 utilize respectively the central limit theorem (CLT), with asymptotic

normality of the Student t-statistic, and convergence in distribution of special

functionals of the corresponding Student process, as special cases of the FCLT

for the latter process. While the use of such CLT and FCLT requires that we

have a distribution from the domain of attraction of the normal law (DAN) and
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hence imposes the condition α ≥ 2 on Pareto(I)(α,σ), we avoid any restrictions

on α by simply converting Pareto(I)(α,σ) to an exponential distribution with

mean 1/α, Exp(α) (that belongs to DAN for any α > 0), and by applying

the CLT and FCLT for the latter distribution. Studying Pareto(I)(α,σ) with

Exp(α) has been a standard practice in the literature. Moreover, according

to our simulation studies, this approach also leads to the better performing

CI’s for α. In section 3.3, we build CI’s for α using asymptotic normality of

three estimators of α: the MLE, method of moments estimator, and GME

of Brazauskas and Serfling (2000a). In sum, we end up with studying ten

asymptotic CI’s for α, AI1 to AI10, in sections 3.1 - 3.3. For a convenient

comparison of all these CI’s, each AIk of AI2 to AI10 is compared to the CLT

based AI1 of (3.18) via studying the finite-sample coverage probabilities of

AIk and AI1 and the ratio of the expected lengths of AIk to that of AI1. The

comparisons are done numerically through simulations in R 3.3.2, since it is not

feasible to obtain closed-form expressions for most of the expected lengths and

finite-sample coverage probabilities of AI1 - AI10 (cf. Tables 3.2 - 3.10). The

last section of Chapter 3, section 3.4, briefly discusses some possible adaptations

of the methods in sections 3.1 - 3.3 to construction of CI’s for α when σ is

unknown.

Finally, in Chapter 4, we present a summary table of the performance of

the asymptotic CI’s AI2 - AI10 versus that of AI1 of (3.18), Table 4.1, that

is based on Tables 3.2 - 3.10 produced in Chapter 3. This enables us to
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determine the better performing asymptotic CI’s for α. On one hand, most

of AI2 - AI10 demonstrate some trade-off between an expected length and

finite-sample coverage probability of a CI, and are a bit longer than AI1 on

average, but have somewhat higher finite-sample coverage probabilities than

those of AI1. However, the CI AI7 of (3.51), based on the asymptotic normality

of the MLE of α, performs better than AI1 in terms of both criteria. On the

other hand, while the expected length of AI10 of (3.63), the CI built from the

asymptotic normality of the GME of α, is under, or slightly above, that of

AI1, the finite-sample coverage probabilities of AI10 are the highest among AI1

- AI10. Consequently, AI10 may be desirable when having a CI for α with a

higher finite-sample coverage probability is a priority. We also conclude that

the performance of the asymptotic CI’s AI7 and AI10 is very comparable to that

of the exact CI I1 of (2.7) in terms of the finite-sample coverage probabilities

and expected lengths, where I1 is the better performing of the two exact CI’s

for α from section 2.1. However, we believe that in the case when the actual

data departures from the assumed Pareto(I)(α,σ) distribution, for example

due to unrepresentative outliers in the sample, AI10 likely outperforms I1, and,

perhaps, this is also true for AI7 and some other asymptotic CI’s for α in the

thesis. Further to this conjecture, we conclude Chapter 4 with a list of other

possible extensions of the research of this thesis.



Chapter 2

Exact Confidence Intervals for
the Tail Index α

In this chapter, we construct confidence intervals for the tail index α of the

Pareto(I)(α,σ) distribution that are based on exact pivotal quantities. Expected

lengths of the obtained intervals are also investigated. In section 2.1, we consider

the case when the scale parameter σ is known, while section 2.2 addresses the

situation of σ being unknown. We minimize numerically the expected length

of the shorter of the two CI’s built in section 2.1 and also that of the CI of

section 2.2.

2.1 Scale parameter σ is known

Let χ2
v denote a chi-square distribution or random variable (r.v.) with v degrees

of freedom, v=1,2,..., and ∼ stands for the equality in distribution of two r.v.’s.

7



8 CHAPTER 2. EXACT CONFIDENCE INTERVALS FOR α

We first consider the following pivotal quantity (cf. Arnold (1983, p. 225),

for example):

2nα

α̂mle
∼ χ2

2n, (2.1)

where

α̂mle =
n∑n

i=1 log(Xi
σ

)
(2.2)

is the maximum likelihood estimator (MLE) of the tail index α derived under

the assumption that σ is known. The relationship in (2.1) can be verified by

using the transformations

log
(Xi

σ

)
∼ Exp(α) and

n∑
i=1

log
(Xi

σ

)
∼ Γ(n, α), (2.3)

where Exp(α) and Γ(n, α) stand for an exponential and gamma distributions

(or r.v.’s) with the means 1/α and n/α, respectively, as well as by using that

2αΓ(n, α) ∼ Γ

(
n,

1

2

)
and Γ

(
n,

1

2

)
∼ χ2

2n. (2.4)

For 0 < γ < 1, let

P (χ2
2n < χ2

2n,γ1
) = γ1 and P (χ2

2n > χ2
2n,1−γ2) = γ2, (2.5)

where γ1+γ2=γ. Then, from (2.1) and (2.5),

P
(
χ2
2n,γ1

≤ 2nα

α̂mle
≤ χ2

2n,1−γ2

)
= 1− γ, (2.6)
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which yields the following 100(1− γ)% exact CI for α:

I1 :=

[
χ2
2n,γ1

2
∑n

i=1 log(Xi
σ

)
,

χ2
2n,1−γ2

2
∑n

i=1 log(Xi
σ

)

]
. (2.7)

To find the expected length of I1, we first compute E [1/
∑n

i=1 log(Xi/σ)]

using (2.3).

E

[
1∑n

i=1 log(Xi
σ

)

]
=

∫ ∞
0

1

y

αn

Γ(n)
yn−1 e−αy dy

=
αn

Γ(n)

Γ(n− 1)

αn−1

∫ ∞
0

αn−1

Γ(n− 1)
y(n−1)−1 e−αy dy

=
αn

Γ(n)

Γ(n− 1)

αn−1

=
α

n− 1
. (2.8)

Thus, the expected length of I1 is

E(Length of I1) =
α

2(n− 1)
(χ2

2n,1−γ2 − χ
2
2n,γ1

). (2.9)

It is minimized when χ2
2n,1−γ2 − χ

2
2n,γ1

is, and in order to find such a lower and

upper quantile of the χ2
2n distribution, denoted by a and b for easier reference,

we apply Theorem 9.3.2 in Casella and Berger (2002). Accordingly, a and b
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must satisfy the following conditions:

(i)

∫ b

a

g(x) dx = 1− γ,

(ii) g(a) = g(b) > 0, and

(iii) a ≤ x∗ ≤ b, where x∗ is the mode of g(x),

(2.10)

where g(·) denotes the probability density function (PDF) of our unimodal χ2
2n

distribution.

Next, we find a and b as in (2.10) numerically using the R 3.3.2 software

(all our R codes are included in Appendix). In fact, having taken a ∈ (0, x∗),

we find b > x∗ from the condition (ii) in (2.10) using the uniroot function

in R, and then we check if a and b in hand satisfy (i) in (2.10). To optimize

our search, we apply the following logic. We first take a1 = 0.45x∗ and

a2 = 0.9999x∗ and find the corresponding b1 and b2. For all n = 50, 100, 300,

and 1000 and γ = 0.02, 0.05, and 0.1 considered in these computations, we

have
∫ b1
a1
g(x)dx > 1− γ + 10−7 and

∫ b2
a2
g(x)dx < 1− γ − 10−7. Consequently,

the desired lower quantile must be between a1 and a2. On the next step, we

take a3 = (a1 + a2)/2 and find the corresponding b3. If
∫ b3
a3
g(x)dx is within

our tolerance level 10−7 of 1 − γ, then we stop our search and declare a3

and b3 our desired pair of quantiles. Otherwise, we continue our search by

considering the next candidate a4 = (a1 + a3)/2, if
∫ b3
a3
g(x)dx < 1− γ − 10−7,

or a4 = (a2 + a3)/2, if
∫ b3
a3
g(x)dx > 1− γ + 10−7. We repeat this process until
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we find an interval [a lower quantile, an upper quantile] over which
∫
g(x)dx is

within 10−7 of 1− γ. As a result of this algorithm, we obtain Table 2.1 of the

lower and upper quantiles a and b satisfying (2.10).

1− γ
n 0.9 0.95 0.98
50 (76.706,122.911) (73.021,128.114) (68.891,134.340)
100 (167.022,232.591) (161.486,239.642) (155.209,248.015)
300 (542.890,656.719) (532.737,668.387) (521.094,682.125)
1000 (1895.810,2103.798) (1876.641,2124.482) (1854.516,2148.700)

Table 2.1: Quantiles (a,b) of χ2
2n as in (2.10)

We note in passing that the way of finding a and b described above turns

out to be more time efficient than an alternative one when we first take a large

number of quantile pairs a and b satisfying (i) in (2.10) (based on a grid of

(0, x∗)) and then select a pair among them for which |g(a)−g(b)| is the smallest

(cf. (ii) of (2.10)).

Although in this section we assume that σ is known and does not need to

be estimated, let’s consider the MLE σ̃mle for σ,

σ̃mle = X1:n, (2.11)

which is commonly used when both α and σ are unknown (cf. Arnold (1983)),

where X1:n = min(X1, ..., Xn). Using (2.3) and a known fact that

σ̃mle ∼ Pareto(I)(nα, σ) (2.12)
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(cf. Arnold (1983, p. 225)), we have

nαlog
(X1:n

σ

)
∼ Exp(1). (2.13)

The pivotal quantity in (2.13) can be used to construct another (1− γ)100%

exact CI for α when σ is assumed to be known:

I2 :=

[
a

nlog(X1:n

σ
)
,

b

nlog(X1:n

σ
)

]
, (2.14)

where positive a and b are such that P (α < Exp(1) < b) = 1− γ, 0 < γ < 1.

However, the expected length of I2 is ∞, since

E

[
1

log(X1:n

σ
)

]
=

∫ ∞
0

1

u
nα e−nαu du

≥
∫ 1

0

1

u
nα e−nαu du ≥

∫ 1

0

1

u
nα e−nα du

=nαe−nα
∫ 1

0

1

u
du =∞.

This means that in practice I2 may have a very large average length and is not

very desirable.

Based on the expected lengths of I1 of (2.7) and I2 of (2.14), we conclude

that I1 should be used when an exact CI for α is sought.
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2.2 Scale parameter σ is unknown

The two CI’s of section 2.1 were obtained based on the assumption that σ is

known. Now, let’s assume that σ is unknown and build a CI for α.

From Chapter 5 of Arnold (1983), the MLE’s σ̃mle of σ and α̃mle of α are

respectively (2.11) and

α̃mle =
n∑n

i=1 log
(

Xi
σ̃mle

) , (2.15)

where

α̃mle ∼ IG(n− 1, αn), (2.16)

that is α̃mle follows the inverse gamma distribution with the shape parameter

n− 1 and the rate parameter αn, and the PDF

fα̃mle(x) =
(αn)n−1

Γ(n− 1)xn
e−

nα
x , x > 0,

where Γ(·) is the gamma function.

Now, we consider the following pivotal quantity that is based on α̃mle (cf.

Arnold (1983, p. 225)):

2αn

α̃mle
∼ χ2

2n−2. (2.17)
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The relationship (2.17) can be easily seen by first showing that (2.16) implies

that

1

α̃mle
∼ Γ(n− 1, αn) (2.18)

and then applying (2.4). Using (2.17), we construct a 100(1− γ)% exact CI

for α:  χ2
2n−2,a

2
∑n

i=1 log
(

Xi
σ̃mle

) , χ2
2n−2,b

2
∑n

i=1 log
(

Xi
σ̃mle

)
 , (2.19)

where χ2
2n−2,a and χ2

2n−2,b are positive quantiles of χ2
2n−2 satisfying

P (χ2
2n−2,a ≤ χ2

2n−2 ≤ χ2
2n−2,b) = 1− γ. (2.20)

We notice that the CI in (2.19) is similar in form to that in (2.7) obtained

under the assumption that σ is known. Likewise to Table 2.1, the following

Table 2.2 provides the quantiles (χ2
2n−2,a, χ

2
2n−2,b) that minimize the expected

length of (2.19).

1− γ
n 0.9 0.95 0.98
50 (74.942,120.676) (71.302,125.833) (67.224,132.008)
100 (165.187,230.425) (159.684,237.445) (153.443,245.781)
300 (540.985,654.624) (530.850,666.274) (519.228,679.990)
1000 (1893.862,2101.746) (1874.703,2122.420) (1852.590,2146.627)

Table 2.2: Quantiles (χ2
2n−2,a, χ

2
2n−2,b) of χ2

2n−2 minimizing the length of (2.19)



Chapter 3

Asymptotic Confidence

Intervals for the Tail Index α

In this chapter, we construct a variety of asymptotic CI’s for α that are based

on convergence in distribution of several asymptotically pivotal quantities.

We start off with the central limit theorem (CLT) for the Student t-statistic

in section 3.1. Then, in section 3.2, we utilize special cases of the so-called

functional CLT (FCLT) for the corresponding Student process. We discover

that the CLT and FCLT in sections 3.1 and 3.2 based on the exponential

transformation in (2.3) of the original Pareto(I)(α,σ) sample not only allow us to

drop the condition α ≥ 2 required when they are applied for the Pareto(I)(α,σ)

sample, but also lead to the better performing CI’s for α. Section 3.3 deals

with the asymptotic normality of the MLE, method of moments estimator and

generalized median estimator for α. In sections 3.1 - 3.3, we assume throughout

that the scale parameter σ is known.

15
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We also investigate numerically the expected lengths and finite-sample

coverage probabilites of the asymptotic CI’s obtained in sections 3.1 - 3.3,

denoted by AI1 to AI10 (it is not feasible to obtain closed-form expressions

for most of the expected lengths and finite-sample coverage probabilities of

AI1-AI10). We do so by using 10,000 repetitions of a Pareto(I)(α,σ) sample of

size n and computing the empirical finite-sample probabilities and expected

lengths of AIk’s by the formulae:

ĈPAIk :=

∑10,000
i=1 1{α ∈AIk for the ith sample}

10, 000
, (3.1)

with an indicator function 1{·} of an event, and

E(Length of AIk)
∧

:=

∑10000
i=1 (Length of AIk based on the ith sample)

10, 000
. (3.2)

In fact, each AIk of AI2 to AI10 is compared numerically to the CLT based

AI1 of (3.18) via studying the empirical finite-sample coverage probabilities of

AIk and AI1 and the ratio

r̂k :=
E(Length of AIk)
∧

E(Length of AI1)
∧ (3.3)

of their empirical expected lengths. Accordingly, Tables 3.2 - 3.10 are produced

for the sample size n = 50, 100, 300, and 1,000, the confidence level 1 − γ

= 0.9, 0.95 and 0.98, the tail index α = 0.5, 1.5, 2, 3, and 5 (representing
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various spread of Pareto(I)(α,σ), from big to small, but not too small so that

the distribution would not behave like a degenerate one), and for σ=1 (we

believe that the corresponding simulation results for other values of σ should

be similar). The entries in Tables 3.2 - 3.10 are in the form of

r̂k (ĈPAIk , ĈPAI1). (3.4)

Finally, in section 3.4, we briefly discuss some possible adaptations of the

methods in sections 3.1 - 3.3 to construction of CI’s for α when the parameter

σ is unknown.

3.1 Student t-statistic based confidence inter-

vals

First of all, let’s look at the notion of the domain of attraction of the normal

law (DAN). Let X,X1, X2, ... be independent and identically distributed (i.i.d.)

random variables (r.v.’s). Then, X is said to belong to DAN if there exist

normalizing sequences an and bn such that

∑n
i=1Xi − bn
an

D−→ N(0, 1), n→∞, (3.5)

(cf. Gut (2009), for example).

Note that the classical CLT (under 0 < V ar(X) <∞) is a special case of

(3.5): bn and an can be taken as nE(X) and
√
nV ar(X), respectively. In fact,
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(3.5) is less restrictive than the CLT, as it is known that if X ∈ DAN, then

E|X|v <∞ for all v ∈ (0, 2), while V ar(X) does not need to be finite.

Does the Pareto(I)(α,σ) distribution belong to DAN? It can be easily seen

that for α > 2, the second moment of Pareto(I)(α,σ) is finite and hence, if

X ∈ Pareto(I)(α,σ), then the CLT holds for X1, X2, .... Thus, Pareto(I)(α,σ)

belongs to DAN for α > 2. When α < 2, Pareto(I)(α,σ) is not in DAN, as in

this case its αth moment is infinite. In order to see if Pareto(I)(2,σ) ∈ DAN,

we can use the following useful characterization of Lévy (1937):

X ∈ DAN ⇔ lim
x→∞

x2P (|X| > x)

E(X21|X|≤x)
= 0. (3.6)

Let X ∼ Pareto(I)(2,σ), then

lim
x→∞

x2P (|X| > x)

E(X21|X|≤x)
= lim

x→∞

x2
∫∞
x

2σ2

y3
dy∫ x

σ
y2

2σ2

y3
dy

= lim
x→∞

x2 · (−y−2)
∣∣∣∞
x

log y
∣∣∣x
σ

= lim
x→∞

1

log x− log σ
= 0.

Thus, Pareto(I)(2,σ) ∈ DAN. In sum, Pareto(I)(α,σ) ∈ DAN for α ≥ 2.

Let

X̄n =

∑n
i=1Xi

n
, Sn(X) =

√∑n
i=1(Xi − X̄n)2

n− 1
, µ = E(X), (3.7)
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and

Tn(X) =

∑n
i=1Xi

Sn(X)
√
n
, (3.8)

where the latter is the Student t-statistic.

It is known that

Tn(X − µ) =

∑n
i=1(Xi − µ)

Sn(X)
√
n

(3.9)

converges in distribution to N(0, 1) when 0 < V ar(X) <∞. Moreover, Giné

et al. (1997) proved that

Tn(X − µ)
D−−−→

n→∞
N(0, 1) ⇔ X ∈ DAN and E(X) = µ. (3.10)

In other words, (3.10) shows that the condition of 0 < V ar(X) < ∞ can be

relaxed to having X ∈ DAN, and the latter condition is both necessary and

sufficient for Tn(X − µ) to be asymptotically N(0, 1).

We will now introduce our first asymptotic CI that is based on the asymp-

totic normality of Tn(X − µ) in (3.10). Let X ∈ Pareto(I)(α,σ) with α ≥ 2,

then E(X) = ασ/(α− 1) and (3.10) implies

∑n
i=1(Xi − ασ

α−1)

Sn(X)
√
n

D−−−→
n→∞

N(0, 1). (3.11)

Having (3.11), we can easily build an asymptotic CI for α. For 0 < γ < 1,

let z γ
2

be such that P (|N(0, 1)| < z γ
2
) = 1− γ. From (3.11),

P
(
− z γ

2
≤
∑n

i=1(Xi − ασ
α−1)

Sn(X)
√
n

≤ z γ
2

)
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= P
(∑n

i=1Xi − z γ
2
Sn(X)

√
n

nσ
≤ α

α− 1
≤
∑n

i=1Xi + z γ
2
Sn(X)

√
n

nσ

)

= P
(∑n

i=1Xi − z γ
2
Sn(X)

√
n

nσ
− 1 ≤ 1

α− 1
≤
∑n

i=1Xi + z γ
2
Sn(X)

√
n

nσ
− 1
)

−−−→
n→∞

1− γ, (3.12)

and we have

P

((∑n
i=1Xi+z γ

2
Sn(X)

√
n

nσ
− 1
)−1

+ 1 ≤α≤
(∑n

i=1Xi−z γ
2
Sn(X)

√
n

nσ
− 1
)−1

+ 1

)
−−−→
n→∞

1− γ, (3.13)

leading to the following 100(1− γ)% asymptotic CI for α :

(∑n
i=1Xi + z γ

2
Sn(X)

√
n

nσ
− 1

)−1
+ 1,

(∑n
i=1Xi − z γ

2
Sn(X)

√
n

nσ
− 1

)−1
+ 1

 ,
(3.14)

which is valid for α ≥ 2.

Before we proceed, we have to note that to flip the last inequality in (3.12)

to arrive to (3.13), we used the fact that its lower bound converges in probability

to E(X)/σ − 1 = 1/(α− 1) > 0 (by, for example, Remark 2 and Example 1 of

Martsynyuk (2013) and the weak law of large numbers (WLLN) that guarantee

that Sn(X)/
√
n

P−→ 0 and X̄n → E(X) as n→∞). Hence the probability of

this bound being non-positive converges to 0, as n→∞, and can be ignored.

The latter convergence can be seen from the following simple proposition that
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will help us to ignore similar asymptotically zero probabilities in the future as

well.

Proposition 3.1. Let {Xn}n≥1 be a sequence of r.v.’s such that Xn
P−→ c >

0, as n →∞. Then, P(Xn ≤ 0) → 0, as n → ∞.

Proof. Let Xn
P−→ c, as n→ ∞. Then,

P
(
|Xn − c| ≤

c

2

)
→ 1, n→∞.

But,

P
(
|Xn − c| ≤

c

2

)
≤ P

( c
2
≤ Xn

)
≤ P (0 < Xn).

Hence,

P (0 < Xn)→ 1, or P (Xn ≤ 0)→ 0, n→∞.

Let’s look at an Exp(α) counterpart of the CI in (3.14) that uses

{
log

(
Xi

σ

)}
1≤i≤n

=: {Yi}1≤i≤n (3.15)

instead of the original sample X1, ..., Xn (cf. (2.3)). We note that since Var(Y1)

= α−2 <∞ for all α > 0, using the convergence in (3.10) for the exponential
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r.v.’s Yi’s relieves us of the restriction α ≥ 2 required for the CI in (3.14). Thus,

we have ∑n
i=1(Yi −

1
α

)

Sn(Y )
√
n

D−−−→
n→∞

N(0, 1), n→∞, (3.16)

with Sn(Y ) as in (3.7). Since

P

(
−z γ

2
≤
∑n

i=1(Yi −
1
α

)

Sn(Y )
√
n
≤ z γ

2

)

=P

(
−z γ

2
Sn(Y )

√
n−

n∑
i=1

Yi ≤ −
n∑
i=1

1

α
≤ z γ

2
Sn(Y )

√
n−

n∑
i=1

Yi

)

=P

(∑n
i=1 Yi − z γ2Sn(Y )

√
n

n
≤ 1

α
≤
∑n

i=1 Yi + z γ
2
Sn(Y )

√
n

n

)
, (3.17)

we obtain the following 100(1− γ)% asymptotic CI for α > 0 :

AI1 :=

[
n∑n

i=1 Yi + z γ
2
Sn(Y )

√
n
,

n∑n
i=1 Yi − z γ2Sn(Y )

√
n

]
, (3.18)

where concluding AI1 from (3.16) and (3.17) is similar to arriving from (3.12)

to (3.14) via (3.13) and is based on applying Proposition 3.1 again.

In sum, both (3.14) and AI1 of (3.18) are based on asymptotic normality

of the Student t-statistic. However, as compared to the asymptotic CI in

(3.14), AI1 has no restriction on α and also performs better in terms of both

the empirical expected length and finite-sample coverage probability, as illus-

trated in our Table 3.1, where r̂(3.14) = E(Length of (3.14))
∧

/E(Length of AI1)
∧

,
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with E(Length of (3.14))
∧

defined similarly to E(Length of AIk)
∧

of (3.2), and

ĈP (3.14) defined like ĈPAIk of (3.1). Therefore, in what follows, we will not

consider (3.14) anymore and compare the rest of the CI’s obtained in this

chapter, one-by-one, to AI1.

1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.330(0.755,0.879) 1.619(0.798,0.929) 1.838(0.839,0.955)
α=2 100 1.165(0.787,0.892) 1.409(0.830,0.936) 1.732(0.877,0.972)

300 1.217(0.822,0.896) 1.327(0.876,0.946) 1.363(0.915,0.977)
1000 1.301(0.839,0.895) 1.678(0.895,0.950) 1.369(0.934,0.976)
50 1.039(0.824,0.875) 1.729(0.881,0.930) 1.445(0.910,0.958)

α=3 100 1.050(0.853,0.891) 1.068(0.901,0.940) 1.178(0.941,0.973)
300 1.070(0.876,0.894) 1.078(0.925,0.947) 1.107(0.956,0.977)
1000 1.103(0.886,0.900) 1.106(0.937,0.946) 1.106(0.969,0.978)
50 1.013(0.856,0.877) 1.037(0.906,0.926) 1.097(0.940,0.961)

α=5 100 1.014(0.877,0.891) 1.022(0.928,0.941) 1.035(0.958,0.970)
300 1.022(0.890,0.898) 1.024(0.937,0.946) 1.028(0.971,0.976)
1000 1.028(0.896,0.898) 1.029(0.948,0.950) 1.029(0.977,0.979)

Table 3.1: (3.14) vs AI1
r̂(3.14) (ĈP (3.14), ĈPAI1)

3.2 Functional CLT based confidence intervals

The CI’s for α in the previous section were based on the asymptotic normality

of the Student t-statistic. In this section, we will consider convergence in

distribution of r.v.’s that are based on the corresponding Student process. The

Student process in D[0, 1], the space of real-valued functions on [0,1] that are
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right-continuous and have left-hand limits, is defined as follows:

T tn(X) =

∑[nt]
i=1Xi

Sn(X)
√
n
, for 0 ≤ t ≤ 1, (3.19)

where
∑0

i=1Xi := 0. We note that T 1
n(X) is the Student t-statistic.

Let {W (t), 0 ≤ t ≤ 1} be a standard Wiener process, ρ be the sup-norm

metric in D[0, 1] and D be the σ-field generated by the finite-dimensional

subsets of D[0, 1].

Generalizing (3.10), Csörgő et al. (2003) proved:

X ∈ DAN and E(X) = µ ⇔ h(T tn(X − µ))
D−−−→

n→∞
h(W (t)), (3.20)

for all functionals h : D[0, 1] → R that are D-measurable and ρ-continuous,

or ρ-continuous except at points forming a set of Wiener measure zero on

(D[0, 1],D). The convergence in distribution in (3.20) is called the functional

CLT (FCLT).

As a consequence of (3.20), Martsynyuk and Tuzov (2016) considered

convergence in distribution of five special functionals of the Student process

and derived respective asymptotic CI’s for µ = E(X), assuming that X ∈ DAN.

They concluded that the obtained CI’s may present reasonable alternatives to

a classical asymptotic CI that follows simply from the asymptotic normality

of the Student t-statistic in (3.10), due to them having higher finite-sample

coverage probabilities, or shorter expected lengths.
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In this section, inspired by Martsynyuk and Tuzov (2016), we adapt con-

vergence in distribution of (3.20) of three of their functionals to constructing

asymptotic CI’s for α of Pareto(I)(α,σ), assuming that σ is known. This method

of building asymptotic CI’s for α appears to be new. In fact, throughout the

section, instead of dealing with the Pareto(I)(α,σ) sample {Xi}1≤i≤n, we will

apply (3.20) to its Exp(α) counterpart {Yi}1≤i≤n of (3.15). This transformation

has its advantages for our FCLT based CI’s in the same way that AI1 has over

(3.14). First of all, while Pareto(I)(α, σ) ∈ DAN for α ≥ 2, Exp(α) ∈ DAN for

all possible values of the tail index α > 0. Secondly, in our preliminary studies

(not included here), we constructed CI’s based on the asymptotically pivotal

quantities of this section both for the Pareto(I)(α, σ) and Exp(α) samples and,

using simulations, concluded that all the Exp(α) based CI’s perform better in

terms of both the finite-sample coverage probability and expected length.

CI based on h1

Let t0 ∈ (0,1] be fixed and consider the following special functional for f(t) ∈

D[0, 1]:

h1(f(t)) = f(t0). (3.21)

By applying the FCLT of (3.20) with h = h1, we have:

∑[nt0]
i=1 (Yi − 1

α
)

Sn(Y )
√
n

D−−−→
n→∞

N(0, t0), (3.22)
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where Sn(Y ) is as in (3.7). Clearly, when t0=1, (3.22) becomes (3.16) from

section 3.1.

For 0< γ <1,

P
(
− z γ

2

√
t0 ≤

∑[nt0]
i=1 (Yi − 1

α
)

Sn(Y )
√
n
≤ z γ

2

√
t0

)

=P
(
− z γ

2
Sn(Y )

√
nt0 −

[nt0]∑
i=1

Yi ≤ −
[nt0]

α
≤ z γ

2
Sn(Y )

√
nt0 −

[nt0]∑
i=1

Yi

)

=P
(∑[nt0]

i=1 Yi − z γ2Sn(Y )
√
nt0

[nt0]
≤ 1

α
≤
∑[nt0]

i=1 Yi + z γ
2
Sn(Y )

√
nt0

[nt0]

)
. (3.23)

In view of the WLLN and Proposition 3.1, we can solve the last inequality for

α on a set whose probability converges to one as n → ∞, and conclude the

following (1− γ)100% asymptotic CI for α:

AI2 :=

[
[nt0]∑[nt0]

i=1 Yi + z γ
2
Sn(Y )

√
nt0

,
[nt0]∑[nt0]

i=1 Yi − z γ2Sn(Y )
√
nt0

]
. (3.24)

Now, before comparing AI2 to AI1 of (3.18) numerically, we are left with

the problem of choosing the value of t0 in (3.24). Using preliminary simulations

(not included here), we saw that higher values of t0 led to AI2 being shorter on

average, while lower values of t0 increased the finite-sample coverage probability

of AI2. As a compromise solution, we choose t0 = 0.9.
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From Table 3.2 on the performance of AI2 versus that of AI1, whose entries

are in the form of r̂2 (ĈPAI2 , ĈPAI1), we can see that the ratio r̂2 of the

empirical expected lengths is somewhat larger than 1, implying that AI2 is

longer than AI1 on average. The ratio tends to be a bit larger for the larger

values of the confidence level 1− γ. However, AI2 mostly has slightly higher

finite-sample coverage probabilities than AI1.

1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.071(0.886,0.884) 1.074(0.931,0.930) 1.080(0.965,0.962)
α=0.5 100 1.062(0.887,0.887) 1.063(0.938,0.935) 1.065(0.973,0.974)

300 1.057(0.897,0.898) 1.057(0.948,0.947) 1.057(0.977,0.976)
1000 1.054(0.898,0.897) 1.055(0.949,0.951) 1.055(0.977,0.976)
50 1.069(0.878,0.881) 1.072(0.930,0.926) 1.081(0.961,0.960)

α=1.5 100 1.062(0.893,0.894) 1.063(0.944,0.942) 1.065(0.972,0.968)
300 1.057(0.898,0.895) 1.057(0.945,0.945) 1.058(0.979,0.978)
1000 1.055(0.902,0.904) 1.055(0.947,0.946) 1.055(0.980,0.979)
50 1.070(0.883,0.880) 1.074(0.932,0.930) 1.081(0.963,0.959)

α=2 100 1.062(0.893,0.893) 1.062(0.937,0.934) 1.065(0.972,0.972)
300 1.056(0.901,0.901) 1.057(0.945,0.947) 1.058(0.976,0.976)
1000 1.054(0.893,0.891) 1.055(0.946,0.948) 1.055(0.977,0.978)
50 1.072(0.880,0.877) 1.075(0.931,0.932) 1.080(0.961,0.959)

α=3 100 1.062(0.892,0.892) 1.063(0.944,0.940) 1.066(0.969,0.968)
300 1.056(0.895,0.894) 1.057(0.950,0.947) 1.058(0.977,0.977)
1000 1.054(0.904,0.902) 1.055(0.945,0.945) 1.055(0.979,0.981)
50 1.068(0.884,0.880) 1.074(0.927,0.923) 1.078(0.963,0.960)

α=5 100 1.062(0.892,0.892) 1.064(0.941,0.940) 1.065(0.969,0.970)
300 1.057(0.903,0.900) 1.057(0.943,0.942) 1.058(0.976,0.977)
1000 1.055(0.900,0.900) 1.055(0.947,0.949) 1.055(0.976,0.978)

Table 3.2: AI2 vs AI1
r̂2 (ĈPAI2 , ĈPAI1)

We note that the R code for producing Table 3.2 and the upcoming Tables

3.3 - 3.8 on AIk versus AI1, k = 3, 8, is written in such a way that it ignores
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all rarely occurring samples that violate the conditions for deriving AI1 - AI8,

like for example the condition for AI2 that the lower bound of the inequality

in (3.23) is positive.

CI based on h2

Now, on applying the FCLT with the functional

h2(f(t)) = sup
0≤t≤1

|f(t)|, (3.25)

where f(t) ∈ D[0, 1], we have:

max
1≤k≤n

|
∑k

i=1(Yi −
1
α

)|
Sn(Y )

√
n

D−−−→
n→∞

sup
0≤t≤1

|W (t)|. (3.26)

We note that for 0 < γ < 1, the values of b such that

P

(
sup
0≤t≤1

|W (t)| ≤ b

)
= 1− γ (3.27)

were tabulated in Csörgő and Horváth (1985) and can be used in construction

of a CI based on (3.26).

From (3.26),

P
(

max
1≤k≤n

|
∑k

i=1(Yi −
1
α

)|
Sn(Y )

√
n

≤ b
)

= P
( n⋂
k=1

{ |∑k
i=1(Yi −

1
α

)|
Sn(Y )

√
n

≤ b
})
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=P
( n⋂
k=1

{
− b ≤

∑k
i=1(Yi −

1
α

)

Sn(Y )
√
n
≤ b
})

=P
( n⋂
k=1

{∑k
i=1 Yi − bSn(Y )

√
n

k
≤ 1

α
≤
∑k

i=1 Yi + bSn(Y )
√
n

k

})
−−−→
n→∞

1− γ.

(3.28)

To derive a 100(1− γ)% CI from (3.28), we have to solve for α under the last

probability sign. Let’s first analyze the inequality

∑k
i=1 Yi − bSn(Y )

√
n

k
≤ 1

α
≤
∑k

i=1 Yi + bSn(Y )
√
n

k
, (3.29)

keeping in mind that α > 0. Clearly, since Yi’s are positive, we have (
∑k

i=1 Yi

+ bSn(Y )
√
n)/k > 0 for all k. If

∑k
i=1 Yi − bSn(Y )

√
n

k
> 0 for all k,

then the mutual solution of (3.29) for all k yields the following CI for α:

[
max
1≤k≤n

k∑k
i=1 Yi + bSn(Y )

√
n
, min
1≤k≤n

k∑k
i=1 Yi − bSn(Y )

√
n

]
. (3.30)

However, there may exist some indices k for which

∑k
i=1 Yi − bSn(Y )

√
n

k
≤ 0.
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For such indices, (3.29) is equivalent to

α ∈

[
k∑k

i=1 Yi + bSn(Y )
√
n
, ∞

)
. (3.31)

However,

P
( n⋂
k=1

{∑k
i=1 Yi − bSn(Y )

√
n

k
≤ 0
})
≤ P

(∑n
i=1 Yi − bSn(Y )

√
n

n
≤ 0
)
−−−→
n→∞

0,

(3.32)

due to Proposition 3.1 and the WLLN that implies that (
∑n

i=1 Yi−bSn(Y )
√
n)/n

P−→ E(Y1) = 1/α > 0. In other words, with probability approaching 1 as n →

∞, we do not have (3.31) for all k, 1 ≤ k ≤ n. Therefore, (3.28) leads to a

finite 100(1− γ)% CI for α:

AI3 :=max
1≤k≤n

k∑k
i=1 Yi + bSn(Y )

√
n
, min{

k:

∑k
i=1

Yi−bSn(Y )
√
n

k
>0, 1≤k≤n

} k∑k
i=1 Yi − bSn(Y )

√
n

 .
(3.33)

The comparative simulation performance of AI3 versus AI1 is included

in Table 3.3. Table 3.3 shows that the ratio r̂3 of the empirical expected

lengths is larger than 1, implying that AI3 is longer than AI1 on average. The

ratio decreases as n increases or as confidence level increases. In terms of
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the finite-sample coverage probability, AI3 performs better than AI1, and the

difference ĈPAI3 − ĈPAI1 ranges from -0.1% to 2%, being higher when n = 50

or n = 100 and when the confidence level 1− γ is smaller.

1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.116(0.903,0.884) 1.100(0.938,0.930) 1.089(0.967,0.962)
α=0.5 100 1.089(0.900,0.887) 1.073(0.943,0.935) 1.063(0.978,0.974)

300 1.064(0.906,0.898) 1.055(0.953,0.947) 1.044(0.978,0.976)
1000 1.051(0.905,0.897) 1.043(0.955,0.951) 1.034(0.976,0.976)
50 1.118(0.899,0.881) 1.100(0.934,0.926) 1.090(0.965,0.960)

α=1.5 100 1.088(0.904,0.894) 1.074(0.947,0.942) 1.063(0.972,0.968)
300 1.064(0.906,0.895) 1.054(0.948,0.945) 1.044(0.980,0.978)
1000 1.051(0.907,0.904) 1.041(0.946,0.946) 1.033(0.979,0.979)
50 1.116(0.900,0.880) 1.099(0.939,0.930) 1.089(0.965,0.959)

α=2 100 1.089(0.907,0.893) 1.075(0.943,0.934) 1.063(0.974,0.972)
300 1.065(0.908,0.901) 1.054(0.950,0.947) 1.044(0.977,0.976)
1000 1.051(0.895,0.891) 1.043(0.950,0.948) 1.035(0.979,0.978)
50 1.115(0.896,0.877) 1.100(0.940,0.932) 1.088(0.965,0.959)

α=3 100 1.087(0.899,0.892) 1.074(0.947,0.940) 1.063(0.972,0.968)
300 1.065(0.902,0.894) 1.053(0.954,0.947) 1.045(0.979,0.977)
1000 1.052(0.910,0.902) 1.041(0.948,0.945) 1.035(0.980,0.981)
50 1.117(0.898,0.880) 1.101(0.934,0.923) 1.089(0.966,0.960)

α=5 100 1.088(0.907,0.892) 1.074(0.947,0.940) 1.063(0.972,0.970)
300 1.064(0.909,0.900) 1.053(0.949,0.942) 1.044(0.979,0.977)
1000 1.051(0.907,0.900) 1.042(0.950,0.949) 1.034(0.979,0.978)

Table 3.3: AI3 vs AI1
r̂3 (ĈPAI3 , ĈPAI1)

CI based on h3

When we read the FCLT in (3.20) with an integral functional h3, where

h3(T
t
n(Y − µ)) =

∫ 1

0

(T tn(Y − µ))mdt, for m = 1 and 2, (3.34)
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we have

1

n

n−1∑
k=1

(∑k
i=1(Yi −

1
α

)

Sn(Y )
√
n

)m D−−−→
n→∞

∫ 1

0

Wm(t)dt. (3.35)

We note that obtaining 100(1−γ)% CI’s for α from (3.35) requires knowing

the exact or approximate distribution of the limiting r.v.
∫ 1

0
Wm(t)dt. It is

well known that ∫ 1

0

W (t)dt ∼ N
(

0,
1

3

)
(cf. Pinsky and Karlin (2011, p. 442), for example), while the values of b

satisfying

P
(∫ 1

0

W 2(t)dt ≤ b
)

= 1− γ (3.36)

were tabulated in Csörgő and Horváth (1985).

(3.35) with m = 1

For m = 1, (3.35) becomes

1

n

n−1∑
k=1

∑k
i=1(Yi −

1
α

)

Sn(Y )
√
n

D−−−→
n→∞

N
(

0,
1

3

)
. (3.37)

Let 0 < γ < 1 and a and b be such that

P (a < N(0, 1) < b) = 1− γ, (3.38)
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where γ1 + γ2 = γ. Then, (3.37) implies that

P

(
a√
3
≤ 1

n

n−1∑
k=1

∑k
i=1(Yi −

1
α

)

Sn(Y )
√
n
≤ b√

3

)
=

P

(
1

n

n−1∑
k=1

k∑
i=1

Yi −
bSn(Y )

√
n√

3
≤ 1

αn

n(n− 1)

2
≤ 1

n

n−1∑
k=1

k∑
i=1

Yi −
aSn(Y )

√
n√

3

)
=

P

(
2

n−1

( 1

n

n−1∑
k=1

k∑
i=1

Yi−
bSn(Y )

√
n√

3

)
≤ 1

α
≤ 2

n− 1

( 1

n

n−1∑
k=1

k∑
i=1

Yi−
aSn(Y )

√
n√

3

))

−−−→
n→∞

1− γ, (3.39)

leading to a 100(1− γ)% asymptotic CI for α:

AI4 :=[
n− 1

2

( 1

n

n−1∑
k=1

k∑
i=1

Yi −
bSn(Y )

√
n√

3

)−1
,
n− 1

2

( 1

n

n−1∑
k=1

k∑
i=1

Yi −
aSn(Y )

√
n√

3

)−1]
.

(3.40)

To check the validity of going from (3.39) to (3.40), we need to make sure

that the probability of the lower (and hence the upper) bound of (3.39) being

non-positive goes to 0, as n → ∞. Since (2bSn(Y )
√
n)/(
√

3(n − 1))
P−→ 0, it

suffices to show that (2
∑n−1

k=1

∑k
i=1 Yi)/(n(n− 1)) is a consistent estimator of

1/α, which is positive. From (3.37), by using that Sn(Y )
P−→ 1/α, n→∞, and
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applying Slutsky’s theorem,

1

n

n−1∑
k=1

∑k
i=1(Yi −

1
α

)
√
n

D−−−→
n→∞

N

(
0,

1

3α2

)
,

but

1

n

n−1∑
k=1

∑k
i=1(Yi −

1
α

)
√
n

=

√
n

2

n− 1

n

(2
∑n−1

k=1

∑k
i=1 Yi

(n− 1)n
− 1

α

)
and, applying Slutsky’s theorem again, we get

2
∑n−1

k=1

∑k
i=1 Yi

(n− 1)n
− 1

α

P−→ 0, n→∞, (3.41)

that is (2
∑n−1

k=1

∑k
i=1 Yi)/(n(n− 1)) is indeed a consistent estimator of 1/α.

Now, let’s look at the length of (3.40), which is

n− 1

2

( 1

n

n−1∑
k=1

k∑
i=1

Yi −
aSn(Y )

√
n√

3

)−1
−

(
1

n

n−1∑
k=1

k∑
i=1

Yi −
bSn(Y )

√
n√

3

)−1
(3.42)

=
n− 1

2

(b− a)Sn(Y )
√
n√

3(
1
n

∑n−1
k=1

∑k
i=1 Yi

)2
− (b+a)Sn(Y )

√
n√

3
1
n

∑n−1
k=1

∑k
i=1 Yi + abS2

n(Y )n
3

=
2

n− 1

(b− a)Sn(Y )
√
n√

3(
2

n(n−1)
∑n−1

k=1

∑k
i=1 Yi

)2
− 2(b+a)Sn(Y )

√
n√

3(n−1)

(
2

(n−1)n
∑n−1

k=1

∑k
i=1 Yi

)
+ 4abS2

n(Y )n
3(n−1)2

=
2 (b− a)

√
n√

3 (n− 1)

1/α + op(1)

(1/α)2 + op(1)
,

on account of (3.41) and the WLLN, where op(1) stands for a sequence of

r.v.’s that converges in probability to 0, as n → ∞. Thus, for large enough



3.2. FCLT BASED CONFIDENCE INTERVALS 35

n, the length of AI4 is essentially proportional to b − a, where a and b are

as in (3.38). Therefore, it is reasonable to select −a = b = zγ/2 in order to

approximately minimize (3.42) (cf. (2.10)). Naturally, this choice of a and b

does not guarantee higher finite-sample coverage probabilities for AI4.

1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.237(0.890,0.884) 1.258(0.937,0.930) 1.281(0.971,0.962)
α=0.5 100 1.194(0.891,0.887) 1.199(0.942,0.935) 1.206(0.977,0.974)

300 1.167(0.896,0.898) 1.169(0.948,0.947) 1.169(0.978,0.976)
1000 1.157(0.896,0.897) 1.159(0.953,0.951) 1.159(0.976,0.976)
50 1.240(0.888,0.881) 1.257(0.931,0.926) 1.281(0.966,0.960)

α=1.5 100 1.194(0.892,0.894) 1.197(0.945,0.942) 1.206(0.973,0.968)
300 1.167(0.901,0.895) 1.167(0.946,0.945) 1.170(0.978,0.978)
1000 1.158(0.903,0.904) 1.159(0.946,0.946) 1.160(0.980,0.979)
50 1.239(0.888,0.880) 1.256(0.935,0.930) 1.279(0.968,0.959)

α=2 100 1.191(0.899,0.893) 1.195(0.940,0.934) 1.206(0.974,0.972)
300 1.165(0.898,0.901) 1.168(0.948,0.947) 1.170(0.976,0.976)
1000 1.158(0.893,0.891) 1.158(0.947,0.948) 1.159(0.977,0.978)
50 1.239(0.882,0.877) 1.254(0.939,0.932) 1.282(0.967,0.959)

α=3 100 1.192(0.891,0.892) 1.197(0.943,0.940) 1.206(0.973,0.968)
300 1.166(0.895,0.894) 1.167(0.949,0.947) 1.171(0.979,0.977)
1000 1.158(0.899,0.902) 1.159(0.947,0.945) 1.159(0.980,0.981)
50 1.234(0.893,0.880) 1.255(0.936,0.923) 1.282(0.967,0.960)

α=5 100 1.194(0.893,0.892) 1.198(0.944,0.940) 1.207(0.972,0.970)
300 1.167(0.902,0.900) 1.168(0.945,0.942) 1.170(0.975,0.977)
1000 1.159(0.902,0.900) 1.158(0.946,0.949) 1.160(0.979,0.978)

Table 3.4: AI4 vs AI1
r̂4 (ĈPAI4 , ĈPAI1)

In Table 3.4, we can see that the ratio r̂4 of the empirical expected lengths

is bigger than 1, implying that AI4 is longer than AI1 on average. The ratio

decreases as n increases, and increases as the confidence level increases. The

empirical finite-sample coverage probability of AI4 is mostly higher than that
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of AI1. The difference ĈPAI4-ĈPAI1 ranges from -0.3% to 1.3%.

(3.35) with m = 2

We now consider (3.35) with m = 2.

With b as in (3.36),

P

(
1

n

n−1∑
k=1

(∑k
i=1(Yi −

1
α

)

Sn(Y )
√
n

)2
≤ b

)

= P

(
n−1∑
k=1

( k∑
i=1

Yi

)2
− 2

α

n−1∑
k=1

k
k∑
i=1

Yi +
1

α2

n−1∑
k=1

k2 ≤ bS2
n(Y )n2

)

= P

(
Cn
α2
− 2

α

n−1∑
k=1

k
k∑
i=1

Yi +
n−1∑
k=1

( k∑
i=1

Yi

)2
− bS2

n(Y )n2 ≤ 0

)
, (3.43)

where

Cn :=
n−1∑
k=1

k2 =
n(n− 1)(2n− 1)

6
.

Whenever

Dn :=

√√√√√(n−1∑
k=1

k

k∑
i=1

Yi

)2

− Cn

n−1∑
k=1

(
k∑
i=1

Yi

)2

− bS2
n(Y )n2

 > 0,

solving the quadratic inequality for 1/α under the probability sign in (3.43) as

A1n ≤
1

α
≤ A2n,
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with

A1n,2n =

∑n−1
k=1 k

∑k
i=1 Yi ∓

√
Dn

Cn
, (3.44)

leads to a 100(1− γ)% asymptotic CI for α:

AI5 :=

[
1

A2n

,
1

A1n

]
. (3.45)

To justify the validity of AI5, it needs to be shown that P (Dn > 0) → 1

and P (
∑n−1

k=1(
∑k

i=1 Yi)
2 − bS2

n(Y )n2 > 0) → 1 as n → ∞ to ensure that we

have two distinct positive zeroes for the quadratic function in 1/α in (3.43)

with probability approaching one, as n → ∞. Indeed, the condition Dn > 0

guarantees the existence of two distinct zeroes, while the condition that the

free term
∑n−1

k=1(
∑k

i=1 Yi)
2 − bS2

n(Y )n2 in (3.43) is positive guarantees that

they are positive. We were unable to prove these convergences analytically,

but preliminary simulations estimating P (Dn > 0) and P (
∑n−1

k=1(
∑k

i=1 Yi)
2 −

bS2
n(Y )n2 > 0) for n = 500, 1000, ... indicated convergence to 1 of these

probabilities.

Table 3.5 on AI5 versus AI1, with the entries of the form r̂5 (ĈPAI5 , ĈPAI1),

shows that AI5 is longer than AI1 on average. The ratio r̂5 decreases as

n increases, and increases as the confidence level increases. AI5 has higher

empirical finite-sample coverage probabilities than those of AI1 in most cases,

and the difference ĈPAI5-ĈPAI1 ranges from -0.4% to 1%.



38 CHAPTER 3. ASYMPTOTIC CONFIDENCE INTERVALS FOR α

1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.155(0.890,0.884) 1.166(0.935,0.930) 1.178(0.968,0.962)
α=0.5 100 1.127(0.891,0.887) 1.130(0.940,0.935) 1.133(0.975,0.974)

300 1.109(0.897,0.898) 1.112(0.948,0.947) 1.111(0.978,0.976)
1000 1.103(0.898,0.897) 1.104(0.952,0.951) 1.105(0.977,0.976)
50 1.156(0.885,0.881) 1.165(0.931,0.926) 1.178(0.965,0.960)

α=1.5 100 1.127(0.894,0.894) 1.129(0.945,0.942) 1.134(0.973,0.968)
300 1.109(0.902,0.895) 1.110(0.945,0.945) 1.111(0.979,0.978)
1000 1.104(0.900,0.904) 1.104(0.944,0.946) 1.105(0.979,0.979)
50 1.155(0.885,0.880) 1.165(0.933,0.930) 1.178(0.966,0.959)

α=2 100 1.125(0.897,0.893) 1.127(0.938,0.934) 1.133(0.973,0.972)
300 1.108(0.900,0.901) 1.110(0.946,0.947) 1.111(0.976,0.976)
1000 1.103(0.891,0.891) 1.104(0.947,0.948) 1.105(0.976,0.978)
50 1.155(0.881,0.877) 1.164(0.935,0.932) 1.179(0.965,0.959)

α=3 100 1.125(0.889,0.892) 1.128(0.941,0.940) 1.135(0.972,0.968)
300 1.109(0.895,0.894) 1.109(0.950,0.947) 1.112(0.977,0.977)
1000 1.104(0.902,0.902) 1.104(0.946,0.945) 1.105(0.979,0.981)
50 1.151(0.888,0.880) 1.165(0.933,0.923) 1.178(0.967,0.960)

α=5 100 1.126(0.894,0.892) 1.130(0.943,0.940) 1.135(0.972,0.970)
300 1.109(0.902,0.900) 1.110(0.944,0.942) 1.111(0.975,0.977)
1000 1.104(0.903,0.900) 1.104(0.946,0.949) 1.105(0.980,0.978)

Table 3.5: AI5 vs AI1
r̂5 (ĈPAI5 , ĈPAI1)

3.3 Confidence intervals based on asymptotic

normality of estimators for α

In this section, we derive CI’s for α from the asymptotic normality of the MLE

for α, the method of moments estimator (MME) for α, and the generalized

median estimator (GME) for α respectively in subsections 3.3.1, 3.3.2, and

3.3.3. All three CI’s will be compared to AI1 of (3.18).
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3.3.1 Maximum likelihood estimator for α

The MLE α̂mle for α as in (2.2) is well-known to be asymptotically normal (cf.

Arnold (1983, p. 226), for example):

√
n

α
(α̂mle − α)

D−−−→
n→∞

N(0, 1). (3.46)

Since

P

(
−z γ

2
≤
√
n

α
(α̂mle − α) ≤ z γ

2

)

=P

(
1

α̂mle

(
1−

z γ
2√
n

)
≤ 1

α
≤ 1

α̂mle

(
1 +

z γ
2√
n

))
, (3.47)

where P ((1− z γ
2
/
√
n)/α̂mle > 0)→ 1, as n→∞, (3.46) leads to the following

100(1− γ)% asymptotic CI for α:

AI6 :=

[
α̂mle

(
1 +

z γ
2√
n

)−1
, α̂mle

(
1−

z γ
2√
n

)−1]
. (3.48)

We note in passing on why −zγ/2 and zγ/2 were chosen in (3.47). In general,

AI6 could look like [α̂mle(1+b/
√
n)−1, α̂mle(1+a/

√
n)−1], with a and b satisfying

(3.38). The length of such a CI would be

α̂mle
(b− a)√

n

1

1 + a+b√
n

+ ab
n

.
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For large n, the whole expression is essentially proportional to (b − a) and

approximately minimized when −a = b = zγ/2.

Fortunately, it is not difficult to obtain the closed form expression for the

expected length of AI6. Indeed, by using (2.8),

E(Length of AI6) = E(α̂mle)

[(
1−

zα
2√
n

)−1
−
(

1 +
zα

2√
n

)−1]

=
αn

n− 1

2 z γ
2

√
n

n− z2γ
2

. (3.49)

We can think of a variation of (3.46). Since α̂mle
P−→ α, n → ∞, using

Slutsky’s theorem, we can replace α in the denominator in (3.46) with α̂mle:

√
n

α̂mle
(α̂mle − α)

D−−−→
n→∞

N(0, 1). (3.50)

Using (3.50), a 100(1− γ)% asymptotic CI, denoted by AI7, is easily derived:

AI7 :=

[
α̂mle −

z γ
2
α̂mle√
n

, α̂mle +
z γ

2
α̂mle√
n

]
. (3.51)

The endpoints ∓zγ/2 in (3.51) were chosen to minimize the length of AI7, in

view of (2.10) applied to the limiting N(0, 1) distribution. From (2.8), the

expected length of AI7 is:

E(Length of AI7) = E

[
2α̂mle

z γ
2√
n

]
=

2αn

n− 1

z γ
2√
n
.
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We can also campare the expected lengths of AI6 and AI7:

E(Length of AI6)

E(Length of AI7)
=

2αn

n− 1

z γ
2

√
n

n− z2γ
2

2αn

n− 1

z γ
2√
n

=
n

n− z2γ
2

.

For our settings with γ ≤ 0.1 and n ≥ 50, AI6 is always a bit longer than AI7.

We produce Tables 3.6 and 3.7 to compare the performance of AI6 and AI7

to that of AI1.

From Table 3.6, AI6 is a bit longer than AI1 on average, less so as n

increases. The empirical finite-sample coverage probability of AI6 is almost

always higher than that of AI1, with the difference ĈPAI6-ĈPAI1 ranging from

-0.1% to 1.4% and being higher for smaller n’s, n = 50 and n = 100. Similarly

to the expected lengths, the coverage probabilities of AI6 and AI1 become

almost the same as n increases.

From Table 3.7, we can see that the ratio r̂7 of the expected lengths of

AI7 and AI1 is less than 1, implying that AI7 is shorter than AI1 on average.

Although r̂7 increases as n increases, a simulation run for n as large as 30,000

(not included here) showed that r̂7 is still slightly less than 1 for such large n.

The ratio r̂7 decreases as the confidence level increases. Moreover, the difference

ĈPAI7-ĈPAI1 ranges from 0% to 3%. Thus, AI7 performs better than AI1

both in terms of the expected length and finite-sample coverage probability.
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1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.016(0.896,0.884) 1.018(0.940,0.930) 1.013(0.968,0.962)
α=0.5 100 1.010(0.897,0.887) 1.011(0.942,0.935) 1.008(0.978,0.974)

300 1.003(0.899,0.898) 1.003(0.950,0.947) 1.004(0.977,0.976)
1000 1.001(0.897,0.897) 1.001(0.951,0.951) 1.001(0.977,0.976)
50 1.016(0.894,0.881) 1.019(0.938,0.926) 1.011(0.966,0.960)

α=1.5 100 1.010(0.900,0.894) 1.006(0.946,0.942) 1.009(0.973,0.968)
300 1.004(0.896,0.895) 1.004(0.948,0.945) 1.003(0.980,0.978)
1000 1.001(0.903,0.904) 1.001(0.947,0.946) 1.001(0.980,0.979)
50 1.018(0.891,0.880) 1.017(0.940,0.930) 1.015(0.967,0.959)

α=2 100 1.010(0.901,0.893) 1.010(0.941,0.934) 1.008(0.975,0.972)
300 1.004(0.907,0.901) 1.004(0.950,0.947) 1.004(0.978,0.976)
1000 1.001(0.892,0.891) 1.001(0.949,0.948) 1.001(0.979,0.978)
50 1.018(0.891,0.877) 1.019(0.943,0.932) 1.020(0.966,0.959)

α=3 100 1.011(0.900,0.892) 1.010(0.947,0.940) 1.008(0.972,0.968)
300 1.004(0.899,0.894) 1.004(0.951,0.947) 1.003(0.978,0.977)
1000 1.001(0.904,0.902) 1.001(0.944,0.945) 1.000(0.980,0.981)
50 1.015(0.892,0.880) 1.019(0.936,0.923) 1.016(0.968,0.960)

α=5 100 1.009(0.903,0.892) 1.008(0.947,0.940) 1.011(0.974,0.970)
300 1.004(0.904,0.900) 1.004(0.945,0.942) 1.003(0.978,0.977)
1000 1.001(0.904,0.900) 1.001(0.948,0.949) 1.001(0.980,0.978)

Table 3.6: AI6 vs AI1
r̂6 (ĈPAI6 , ĈPAI1)

3.3.2 Method of moments estimator for α

We can construct a CI for α from the asymptotic normality of the method of

moments estimator (MME) α̂mme for α, where

α̂mme =
X̄n

X̄n − σ
, (3.52)

obtained by equating the sample mean X̄n to the expected value ασ/(α− 1)

of Pareto(I)(α, σ) and then solving for α.
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1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 0.961(0.904,0.884) 0.940(0.950,0.930) 0.904(0.980,0.962)
α=0.5 100 0.982(0.904,0.887) 0.972(0.948,0.935) 0.954(0.982,0.974)

300 0.994(0.901,0.898) 0.990(0.950,0.947) 0.986(0.980,0.976)
1000 0.998(0.899,0.897) 0.997(0.951,0.951) 0.995(0.977,0.976)
50 0.961(0.900,0.881) 0.941(0.949,0.926) 0.902(0.980,0.960)

α=1.5 100 0.982(0.903,0.894) 0.967(0.954,0.942) 0.955(0.980,0.968)
300 0.994(0.903,0.895) 0.991(0.952,0.945) 0.985(0.981,0.978)
1000 0.998(0.904,0.904) 0.997(0.947,0.946) 0.995(0.979,0.979)
50 0.963(0.902,0.880) 0.939(0.949,0.930) 0.905(0.981,0.959)

α=2 100 0.982(0.901,0.893) 0.971(0.950,0.934) 0.953(0.980,0.972)
300 0.995(0.903,0.901) 0.991(0.949,0.947) 0.986(0.979,0.976)
1000 0.999(0.891,0.891) 0.997(0.950,0.948) 0.996(0.978,0.978)
50 0.963(0.907,0.877) 0.941(0.952,0.932) 0.909(0.979,0.959)

α=3 100 0.984(0.903,0.892) 0.971(0.954,0.940) 0.953(0.978,0.968)
300 0.995(0.901,0.894) 0.991(0.951,0.947) 0.985(0.980,0.977)
1000 0.999(0.906,0.902) 0.997(0.946,0.945) 0.995(0.981,0.981)
50 0.960(0.904,0.880) 0.940(0.949,0.923) 0.906(0.977,0.960)

α=5 100 0.981(0.905,0.892) 0.969(0.952,0.940) 0.956(0.979,0.970)
300 0.995(0.903,0.900) 0.991(0.949,0.942) 0.985(0.979,0.977)
1000 0.999(0.902,0.900) 0.997(0.950,0.949) 0.996(0.980,0.978)

Table 3.7: AI7 vs AI1
r̂7 (ĈPAI7 , ĈPAI1)

Using the WLLN, we can easily check that α̂mme is a weakly consistent

estimator of α:

α̂mme =
X̄n

X̄n − σ
P−→ E[X]

E[X]− σ
=

ασ
α−1

ασ
α−1 − σ

=
ασ
α−1
σ

α−1
= α, n→∞.

It is also known that α̂mme is asymptotically normal:

√
n(α̂mme − α)

D−−−→
n→∞

N

(
0,
α(α− 1)2

α− 2

)
, for α > 2. (3.53)
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To verify (3.53), we first note that by the CLT,

√
n

(
X̄n −

ασ

α− 1

)
D−→ N

(
0,

ασ2

(α− 1)2(α− 2)

)
, n→∞. (3.54)

This holds true when V ar(X) is finite, that is when α > 2. Let’s consider now

function

g(x) =
x

x− σ
. (3.55)

Since

α̂mme = g(X̄n) and g

(
ασ

α− 1

)
= α,

and

g′(x) = − σ

(x− σ)2
, g′

(
ασ

α− 1

)
= − σ

( ασ
α−1 − σ)2

= −(α− 1)2

σ
6= 0,

and

V ar(X)

[
g′
(

ασ

α− 1

)]2
=

ασ2

(α− 1)2(α− 2)
· (α− 1)4

σ2
=
α(α− 1)2

α− 2
,

convergence in (3.53) is obtained from that in (3.54) by the delta method.

To use (3.53) for constructing an asymptotic CI for α, we first estimate the

asymptotic variance in (3.53) with α̂mme(α̂mme − 1)2/(α̂mme − 2) (as leaving

it unestimated makes it too difficult to solve for α) and then obtain the
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100(1− γ)% asymptotic CI AI8 for α > 2 using Slutsky’s theorem:

AI8 :=

[
α̂mme −

z γ
2

√
α̂mme(α̂mme − 1)√
n(α̂mme − 2)

, α̂mme +
z γ

2

√
α̂mme(α̂mme − 1)√
n(α̂mme − 2)

]
.

(3.56)

Comparing the finite-sample coverage probabilties and expected lengths

of AI8 and AI1 in Table 3.8, we observe that the ratio r̂8 of the empirical

expected lengths is bigger than 1, with a few exceptions for α = 5 and n = 50

and 100, which implies that AI8 is longer than AI1 on average. It should be

noted that the ratio increases as n increases. We run an additional simulation

(not included here) with n as large as 30,000 and the result showed r̂8 stays

around 1.155 and 1.033 respectively for α = 3 and 5 for such large n. The ratio

decreases as the confidence level increases. AI8 has mostly higher empirical

finite-sample coverage probabilities than those of AI1, with the difference

ĈPAI8-ĈPAI1 ranging from -0.1% to 8.3% and being higher for smaller n’s,

but the difference decreases as n increases.

3.3.3 Generalized median estimator for α

Brazauskas and Serfling (2000a) studied asymptotic performance of several

estimators of the tail index α of the Pareto(I)(α, σ) distribution. They used

two measures of asymptotic performance of an estimator: its asymptotic

relative efficiencey (ARE with respect to the MLE of α) and robustness against
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1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.137(0.960,0.877) 1.114(0.984,0.932) 1.077(0.994,0.959)
α=3 100 1.151(0.940,0.892) 1.138(0.978,0.940) 1.115(0.993,0.968)

300 1.153(0.918,0.894) 1.150(0.964,0.947) 1.142(0.984,0.977)
1000 1.155(0.912,0.902) 1.153(0.952,0.945) 1.150(0.984,0.981)
50 0.997(0.912,0.880) 0.977(0.953,0.923) 0.941(0.982,0.960)

α=5 100 1.016(0.908,0.892) 1.004(0.956,0.940) 0.990(0.983,0.970)
300 1.028(0.906,0.900) 1.025(0.948,0.942) 1.018(0.980,0.977)
1000 1.032(0.899,0.900) 1.030(0.950,0.949) 1.029(0.979,0.978)

Table 3.8: AI8 vs AI1
r̂8 (ĈPAI8 , ĈPAI1)

upper outliers. ARE of an estimator is defined as the limiting ratio of the

respective sample sizes at which this estimator and the MLE work equivalently

in terms of the asymptotic variance criterion. In Brazauskas and Serfling

(2000a), robustness of an estimator is defined via its upper breakdown point,

characterized as the largest proportion of upper sample observations from

Pareto(I)(α,σ) which may be taken to ∞ without taking the estimator to a

limit not depending on the parameter being estimated. The MLE for α being

efficient but nonrobust prompted the authors to look for alternative estimators

for α with a relatively high efficiency and adequate robustness. In this regard,

they introduced a new estimator for α, called generalized median estimator

(GME), and compared it with the MLE and other known estimators for α,

such as the ones obtained by the method of moments, trimming, least squares,

and quantiles/percentile matching. Brazauskas and Serfling (2000a) concluded

that the GME performs best in terms of both the robustness and efficiency. It

led us to investigate the performance of the CI’s for α that are based on the
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asymptotic normality of the GME.

First, let’s consider how the GME for α was introduced in Brazauskas and

Serfling (2000a).

Let k ≥ 1 be an integer. Consider a kernel:

h0(X1, ..., Xk) =
(
k−1

k∑
j=1

logXj − logσ
)−1

. (3.57)

We observe that h0(X1, ..., Xk) is the MLE for α based on the sample X1, ..., Xk

of size k (cf. (2.2)). Let M2k be the median of the χ2
2k distribution. Then,

using the fact that

2kα h−10 (X1, ..., Xk) ∼ χ2
2k, (3.58)

which corresponds to (2.1) with the sample size k, one can see that the r.v.

h(X1, ..., Xk) =
M2k

2k
h0(X1, ..., Xk) (3.59)

has median α. Then, the GME is defined by taking
(
n
k

)
subsets of the sample

X1, ..., Xn, evaluating h(·) based on all those subsamples, and then taking the

median of the obtained h(·)’s:

α̂gme = Median
{
h(Xi1 , ..., Xik), 1 ≤ i1 < ... < ik ≤ n

}
. (3.60)

The values of M2k and M2k

2k
for k=1:10 were tabulated in Brazauskas and

Serfling (2000a). We note that when k = n, α̂gme is simply (M2n α̂mle)/2n,

with α̂mle of (2.2).
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Brazauskas and Serfling (2000a) argued that α̂gme is asymptotically normal:

√
n

α
√
γk

(α̂gme − α)
D−−−→

n→∞
N(0, 1), (3.61)

where γk is a constant depending on k. They also tabulated the values of γk

for k=1:10.

From (3.61), we construct a 100(1− γ)% CI for α, AI9, in the same manner

as the previous CI’s and using quantiles −z γ
2

and z γ
2

of N(0, 1). Since

P

(
−z γ

2
≤
√
n

α
√
γk

(α̂gme − α) ≤ z γ
2

)

=P

(
1−

z γ
2

√
γk√
n
≤ α̂gme

α
≤ 1 +

z γ
2

√
γk√
n

)

and, due to the consistency of α̂gme, P (α̂gme(1 − zγ/2
√
γk/
√
n)−1 > 0) → 1,

n→∞, we obtain

AI9 :=

[
α̂gme

(
1 +

z γ
2

√
γk√
n

)−1
, α̂gme

(
1−

z γ
2

√
γk√
n

)−1]
. (3.62)

We note that α in the denominator on the left-hand side of (3.61) can also

be estimated with with α̂gme, for example. Using such convergence, one can

build one more GME based 100(1− γ)% CI for α:

AI10 :=

[
α̂gme −

z γ
2
α̂gme
√
γk√

n
, α̂gme +

z γ
2
α̂gme
√
γk√

n

]
, (3.63)
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which is a slightly shorter CI on average than AI9, since

E(Length of AI9)

E(Length of AI10)
=

E(α̂gme)
2zγ/2

√
n
√
γk

n− z2γ/2γk

E(α̂gme)
2zγ/2

√
γk√

n

=
n

n− z2γ/2γk
> 1.

However, the ratio of the expected lengths goes to 1, as n→∞.

As to comparing AI9 and AI10 to AI1, we have to note that there was a

computational cost problem related to evaluating AI9 and AI10 even for one

repetition of the sample X1,...,Xn, which really comes from the calculation of

α̂gme based on evaluating h(·) of (3.59) for all
(
n
k

)
subsamples Xi1 ,...,Xik of

X1,...,Xn. As a result, in our simulations, we had to compromise the sample size

n, the number of repetitions of X1, ..., Xn and k (1 ≤ k ≤ 10) while maintaining

competitive expected lengths of AI9 and AI10. Accordingly, we decided on k=4,

since the ARE of α̂gme, decreasing with k, is still fairly high and equals 0.92 in

this case (cf. Brazauskas and Serfling (2000a)). We chose n = 50, 100, 200, and

300, and the number of repetitions to be 500. Brazauskas and Serfling (2000a)

discussed a possible remedy to this computational problem. They proposed

to estimate α̂gme by taking only a big enough number N of all
(
n
k

)
required

subsamples of X1, ..., Xn. This way of computing is much more time efficient

while still maintaining desired numerical accuracy. However, we did not apply

it for our simulations to avoid the unspecified numerical inaccuracy.

Comparing AI9 to AI1 in Table 3.9, we can see that AI9 is somewhat longer

than AI1 on average. The ratio r̂9 decreases as n increases. AI9 mostly has
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1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.065(0.904,0.868) 1.063(0.946,0.930) 1.054(0.974,0.962)
α=0.5 100 1.043(0.904,0.906) 1.052(0.946,0.934) 1.051(0.972,0.976)

200 1.048(0.904,0.900) 1.041(0.962, 0.960) 1.043(0.982,0.982)
300 1.046(0.902,0.906) 1.043(0.940,0.934) 1.048(0.974,0.970)
50 1.060(0.910,0.888) 1.061(0.948,0.928) 1.058(0.980,0.966)

α=1.5 100 1.052(0.878,0.874) 1.054(0.938,0.926) 1.056(0.978,0.964)
200 1.047(0.908,0.902) 1.050(0.960, 0.946) 1.050(0.970,0.976)
300 1.047(0.868,0.870) 1.044(0.950,0.952) 1.048(0.990,0.982)
50 1.061(0.876,0.878) 1.061(0.958,0.942) 1.069(0.978,0.960)

α=2 100 1.049(0.910,0.904) 1.046(0.958,0.948) 1.048(0.986,0.974)
200 1.047(0.878,0.876) 1.045(0.940,0.938) 1.051(0.980,0.982)
300 1.044(0.896,0.890) 1.047(0.934,0.934) 1.047(0.964,0.974)
50 1.059(0.896,0.858) 1.058(0.958,0.936) 1.060(0.964,0.962)

α=3 100 1.048(0.914,0.914) 1.052(0.940,0.934) 1.050(0.972,0.966)
200 1.045(0.894,0.894) 1.048(0.950,0.936) 1.046(0.980,0.980)
300 1.045(0.914,0.904) 1.044(0.974,0.970) 1.044(0.978,0.976)
50 1.052(0.908,0.900) 1.059(0.956,0.944) 1.062(0.976,0.962)

α=5 100 1.056(0.924,0.906) 1.057(0.946,0.940) 1.055(0.982,0.968)
200 1.049(0.874,0.866) 1.044(0.938,0.922) 1.046(0.986,0.974)
300 1.004(0.882,0.888) 1.045(0.950,0.952) 1.050(0.990,0.990)

Table 3.9: AI9 vs AI1
r̂9 (ĈPAI9 , ĈPAI1)

higher empirical finite-sample coverage probabilities as compared to AI1, with

the difference ĈPAI9 − ĈPAI1 ranging from −1% to 3.6%.

As to analyzing AI10 versus AI1 in Table 3.10, while AI10 is mostly a

bit longer than AI1 on average, the ratio r̂10 is less than 1 for n = 50, and

it increases as n increases and decreases as the confidence level increases.

Further, the difference ĈPAI10 − ĈPAI1 of the empirical finite-sample coverage

probabilities of AI10 and AI1 fluctuates between −1.6% and 5.2% and is mostly

positive. It turns out that AI10 is one of the best performing asymptotic CI’s
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1− γ
Pareto(I)(α,1) n 0.9 0.95 0.98

50 1.002(0.920,0.868) 0.974(0.944,0.930) 0.930(0.970,0.962)
α=0.5 100 1.013(0.902,0.906) 1.008(0.950,0.934) 0.989(0.980,0.976)

200 1.033(0.904,0.900) 1.019(0.960,0.960) 1.016(0.980,0.980)
300 1.036(0.900,0.906) 1.029(0.942,0.934) 1.027(0.974,0.970)
50 0.998(0.912,0.888) 0.972(0.932,0.928) 0.933(0.974,0.966)

α=1.5 100 1.021(0.876,0.874) 1.010(0.952,0.926) 0.994(0.976,0.964)
200 1.039(0.904,0.902) 1.028(0.958,0.946) 1.019(0.978,0.976)
300 1.037(0.880,0.870) 1.030(0.960,0.952) 1.027(0.988,0.982)
50 0.998(0.890,0.878) 0.972(0.948,0.942) 0.943(0.982,0.960)

α=2 100 1.018(0.922,0.904) 1.003(0.960,0.948) 0.986(0.974,0.974)
200 1.031(0.878,0.876) 1.024(0.942,0.938) 1.020(0.984,0.982)
300 1.034(0.902,0.890) 1.033(0.946,0.934) 1.026(0.982,0.974)
50 0.996(0.902,0.858) 0.970(0.962,0.936) 0.935(0.974,0.962)

α=3 100 1.017(0.914,0.914) 1.008(0.952,0.934) 0.988(0.964,0.966)
200 1.029(0.894,0.894) 1.026(0.950,0.936) 1.015(0.988,0.980)
300 1.035(0.912,0.904) 1.030(0.962,0.970) 1.024(0.980,0.976)
50 0.990(0.922,0.900) 0.971(0.928,0.944) 0.937(0.970,0.962)

α=5 100 1.025(0.920,0.906) 1.013(0.954,0.940) 0.993(0.992,0.968)
200 1.034(0.862,0.866) 1.023(0.942,0.922) 1.015(0.982,0.974)
300 1.038(0.878,0.888) 1.030(0.950,0.952) 1.029(0.982,0.990)

Table 3.10: AI10 vs AI1
r̂10 (ĈPAI10 , ĈPAI1)

for α among AI1-AI10, as will be discussed in Chapter 4.

We note in passing that using the Computational Cluster for the Department

of Statistics at the University of Manitoba (which is four Dell PowerEdge R620

servers, each with a total of 32 CPU cores and 64 GB of memory)1 to generate

Table 3.9 and 3.10, it took 0.347, 5.542, 91.543 and 455.194 seconds to calculate

α̂gme of (3.60) for one repetition of the Pareto(I)(α,1) sample of size n = 50,

1Each system in the cluster scores over 272 GFlops on the 2017 Intel(R) Optimized
LINPACK Benchmark.
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100, 200 and 300, respectively. The runtime seems to increase exponentially as

n goes up. It would take approximately 50 days to complete each of Tables

3.9 and 3.10 entry-by-entry, but we splited our tables by entries and run the

respective simulations as parallel files to improve on time. Then, the obtained

results were combined into Tables 3.9 and 3.10 manually rather than by using

the function makeTable in section A.4 of Appendix which was used to make

Tables 3.2 - 3.8.

3.4 Scale parameter σ is unknown

All the asymptotic CI’s for α in sections 3.1-3.3 were built under the assumption

that the scale parameter σ of the Pareto(I)(α,σ) distribution is known. Now

let’s consider the case when σ is unknown and briefly discuss if some of the

methods used in sections 3.1-3.3 can be adapted to construct asymptotic CI’s

for α in this case as well.

First, we consider the asymptotic normality of the Student t-statistic as

in (3.11) that is based on Pareto(I)(α, σ). To adapt this convergence in

distribution to the case when σ is unknown, we would first need to replace σ in

the mean ασ/(α− 1) with its consistent estimator that, for example, converges

in probability to σ at an appropriate rate or is asymptotically normal with

an appropriate rate, and then perform further detailed analysis to see if such

a modified left-hand side of (3.11) would converge in distribution as n→∞.

This investigation is beyond the scope of this thesis.
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Next, we look at the convergence of (3.16), the counterpart of (3.11) with

the Exp(α) i.i.d. r.v.’s {Yi}1≤i≤n = {log (Xi/σ)}1≤i≤n (cf. (2.3)) that was used

to build AI1, where X1,...,Xn is a random sample from Pareto(I)(α,σ). Clearly,

unless σ is known, the key relationship (2.3) no longer holds true. For this

reason, we cannot adapt (3.16) and also the FCLT based CI’s obtained in

section 3.2 here. However, the convergences in section 3.2 can be applied to X1,

X2,... directly (provided that α ≥ 2) and then potentially modified when σ can

be appropriately estimated there, similarly to the discussions in the previous

paragraph.

Now, let’s look at the α̃mle of (2.15), which is the MLE of α when σ is

unknown. From (2.17) and the CLT, we get

2αn

α̃mle
− (2n− 2)

2
√
n− 1

D−−−→
n→∞

N(0, 1),

which leads to the following (1− γ)100% asymptotic CI for α:

[
α̃mle

(
n− 1

n
−
z γ

2

√
n− 1

n

)
, α̃mle

(
n− 1

n
+
z γ

2

√
n− 1

n

)]
.

In Quandt (1966), the MME estimators α̃mme and σ̃mme for α and σ when

both parameters are unknown were obtained by equating the sample mean and

sample minimum to their expectations,

α̃mme =
nX̄n −X1:n

X̄n −X1:n

and σ̃mme = (1− (nα̃mme)
−1)X1:n.
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Both of these estimators were found to be strongly consistent. However, we have

not found any literature on whether α̃mme, properly centered and scaled, has

an asymptotic distribution so that this could potentially be used to construct

an asymptotic CI for α. As α̃mme is a function of (X̄n, X1:n), as long as the

limiting distribution of the latter vector exists and can be found, one can hope

to find the limiting distribution of α̃mme. Such asymptotic studies are beyond

the scope of this thesis.

One can also think of another set of the MME estimators for α and σ

by equating the sample mean and variance to the mean and variance of

Pareto(I)(α,σ):

X̄n =
ασ

α− 1
and X2

n − (X̄n)2 =
ασ2

(α− 1)2(α− 2)
.

The corressponidng MME α̃∗mme for α is a solution of the quadratic equation

α2 − 2α− (X̄n)2

X2
n − (X̄n)2

= 0.

Since α̃∗mme is a function of (X̄n, X2
n), one can first try to establish asymptotic

normality of the latter vector, properly centered and normalized, and then

proceed with finding the limiting distribution of α̃∗mme, as n→∞, potentially

leading to an asymptotic CI for α.

Finally, in Brazauskas and Serfling (2000b), the authors presented the GME
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for α when σ is unknown as follows. First, the kernel h∗0(·) was defined as

h∗0(X1, ..., Xk) =
k∑k

i=1(logXi − logmin1≤i≤k(X1, ..., Xk))
, (3.64)

which is the MLE for α as in (2.15) based on the sample X1,...,Xk of size k.

Similarly to the construction of α̂gme in subsection 3.3.3,

2kα

h∗0(X1, ..., Xk)
∼ χ2

2n−2. (3.65)

The latter relationship can be used to see that the median of the r.v.

h∗(X1, ..., Xk) =
M2k−2

2k
h∗0(X1, ..., Xk) (3.66)

becomes α, where M2k−2 is the median of χ2
2k−2. Finally, similarly to α̂gme

of (3.60), they defined α̂∗gme of α as the median of all h∗(·)’s based on all
(
n
k

)
subsamples of the sample X1, ..., Xn:

α̂∗gme = Median {h∗(Xi1 , ..., Xik), 1 ≤ i1 < ... < ik ≤ n} .

Brazauskas and Serfling (2000b) proved that (3.61) holds true with α̂∗gme and a

constant γ∗k replacing α̂gme and γk, and tabulated γ∗k for k=2:10. Consequently,

we can use AI9 and AI10 with α̂∗gme and γ∗k instead of α̂gme and γk as the

100(1− γ)% asymptotic CI’s for α when σ is unknown.



Chapter 4

Conclusions

In sections 2.1 and 3.1 - 3.3, we derived various exact and asymptotic CI’s

for the tail index α of Pareto(I)(α,σ) using several pivotal quantities and

assuming that the scale parameter σ is known. In sections 2.2 and 3.4, we

briefly outlined a few exact and asymptotic CI’s for α obtained without the

latter assumption. We minimized the expected lengths of a shorter of the two

exact CI’s built in section 2.1 and its analogue in section 2.2. Asymptotic

CI’s AI2-AI10 constructed in sections 3.1 - 3.3 were compared one-by-one to

the CLT based one in (3.18), AI1, in terms of their expected lengths and

finite-sample coverage probabilites. Our CLT and FCLT based asymptotic CI’s

of sections 3.1 and 3.2 were built on the Exp(α) transformation of our original

Pareto(I)(α,σ) sample as in (2.3). This way we avoided imposing the condition

α ≥ 2 (implying that Pareto(I)(α,σ) ∈ DAN and allowing the use of those CLT

and FCLT for the Pareto(I)(α,σ) distribution). It also led to the CI’s with

shorter expected lengths and higher finite-sample coverage probabilities.

56
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In this chapter, we will first present a summary table of the performance

of our asymptotic CI’s AI2-AI10 versus that of AI1 (cf. Table 4.1), and then

determine the better ones among them, that is those with relatively short ex-

pected lengths and appropriately high finite-sample coverage probabilities. For

a convenient overall comparison of AI1-AI10, Table 4.1 reports the ranges of the

differences ĈPAIk-ĈPAI1 of the empirical finite-sample coverage probabilities

of AIk and AI1 (in %) and the average values of the ratios r̂k of the empirical

expected lengths of AIk and AI1 taken over different values of the tail index α

and the confidence level 1− γ from Tables 3.2 - 3.10, k = 2, 10.

From Tables 3.2 - 3.10 and Table 4.1, we conclude that the empirical finite-

sample coverage probabilities of AI2-AI10 are higher than those of AI1, except

for a few cases for some of AI2-AI10 where AI1 has a slightly higher coverage.

As to the expected lengths, the CI AI7 of (3.51), based on the asymptotic

normality of the MLE of α, is somewhat shorter than AI1 on average, though

less so as n increases. The same holds true for the GME based AI10 of (3.63)

when n = 50. We also note that the ratios r̂7 and r̂10 of the expected lengths

of AI7 and AI10 to that of AI1 decrease as the confidence level 1− γ increases

(cf. Table 3.7 and 3.10). The rest of our asymptotic CI’s for α are longer than

AI1 on average. Consequently, AI7 performs better than AI1 both in terms

of the expected length and finite-sample coverage probability and hence may

be an appealing choice among AI1-AI10. It overall improves on another MLE

based asymptotic CI, AI6 of (3.48), that has a slightly higher finite-sample
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Asymptotic n
CI’s 50 100 200 300 1000

AI2
Range of

[-0.3, 0.4] [-0.1, 0.4] - [-0.2, 0.3] [-0.2, 0.2]
ĈPAI2-ĈPAI1

Mean of r̂2 1.075 1.063 - 1.057 1.055

AI3
Range of

[0.5, 2] [0.2, 1.5] - [0.1, 1.1] [-0.1, 0.8]
ĈPAI3-ĈPAI1

Mean of r̂3 1.102 1.075 - 1.054 1.042

AI4
Range of

[0.5, 1.3] [-0.2, 0.7] - [-0.3, 0.6] [-0.3, 0.2]
ĈPAI4-ĈPAI1

Mean of r̂4 1.258 1.199 - 1.168 1.159

AI5
Range of

[0.3, 1] [-0.3, 0.5] - [-0.2, 0.7] [-0.4, 0.3]
ĈPAI5-ĈPAI1

Mean of r̂5 1.166 1.13 - 1.11 1.104

AI6
Range of

[0.6, 1.4] [0.3, 1.1] - [0.1, 0.6] [-0.1, 0.4]
ĈPAI6-ĈPAI1

Mean of r̂6 1.017 1.009 - 1.004 1.001

AI7
Range of

[1.7, 3] [0.8, 1.7] - [0.2, 0.8] [0, 0.4]
ĈPAI7-ĈPAI1

Mean of r̂7 0.936 0.969 - 0.99 0.997

AI8
Range of

[2.2, 8.3] [1.3, 4.8] - [0.3, 2.4] [-0.1, 1]

(α = 3 & 5)
ĈPAI8-ĈPAI1

Mean of r̂8 1.041 1.069 - 1.086 1.0915

AI9
Range of

[-0.2, 3.8] [-0.4, 1.8] [-0.6, 1.6] [-1, 1] -
ĈPAI9-ĈPAI1

Mean of r̂9 1.06 1.051 1.047 1.043 -

AI10
Range of

[-1.6, 5.2] [-0.4, 2.6] [-0.4, 2] [-1, 1.2] -
ĈPAI10-ĈPAI1

Mean of r̂10 0.968 1.006 1.025 1.031 -

Table 4.1: Summary performance of asymptotic CI’s AI2-AI10 vs that of AI1
Ranges of ĈPAIk-ĈPAI1 (in %) and means

of r̂k for AI2-AI10
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coverage probability than that of AI1 and is insignificantly longer than AI1.

On the other hand, while the empirical expected lengths of AI10 are under, or

slightly above those of AI1 (cf. Table 4.1), the empirical finite-sample coverage

probabilities of AI10 are the highest among all AI1-AI10, excluding the MME

based AI8 derived under the restriction α > 2 and examined for α = 3 and 5

only. Therefore, AI10 may be desirable when a CI for α with a higher finite-

sample coverage probability is a priority. For practical applications, one may

like to improve on time efficiency of computing AI10 along the lines proposed in

Brazauskas and Serfling (2000a). We recall that, due to a computational cost,

the simulations for AI10 in Table 3.10 (and for AI9 in Table 3.9) were done

for the sample sizes n = 50, 100, 200, and 300 and the number of repetitions

N = 500 instead of for n = 50, 100, 300, and 1000 and N = 10,000 used for

AI1-AI8. From Table 4.1, we also observe that AI10 outperforms AI9 of (3.62),

another asymptotic GME based CI for α that may also be desirable in practice

due to its probability coverage and relatively short expected length.

Consider the MME based AI8 of (3.56) derived under the restriction that

α > 2. Its empricial finite-sample coverage probability outperforms that of AI1

by the highest percentage of 8.3% for n = 50 and Pareto(I)(3,1) (cf. Table 3.8),

but at the expense of AI8 being longer than AI1 on average. For the case of

Pareto(I)(5,1), from Table 3.8, the expected length of AI8 is under, or slightly

above, that of AI1, and the coverage ĈPAI8 is almost at, or above, the nominal

1− γ and is higher than ĈPAI1 .
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Analyzing the rest of the asymptotic CI’s in Table 4.1 in the light of

an apparent trade-off between their finite-sample coverage probabilities and

expected lengths, we observe that AI3 of (3.33) has the highest coverage among

the FCLT based CI’s, up to 2% higher than that of AI1, and its expected

length is relatively short.

Since the finite-sample coverage probabilities of AI7 of (3.51) and AI10 of

(3.63) are close enough to the nominal 1 − γ level (cf. Tables 3.7 and 3.10),

and since they perform well in terms of their relative expected lengths as well,

it seems natural to compare the expected lengths of AI7 and AI10 with that of

I1 of (2.7), the better performing of the two exact CI’s from section 2.1. First,

from (2.9) and (3.51),

E(Length of AI7)

E(Length of I1)
=

2αn

n− 1

z γ
2√
n

α

2(n− 1)
(χ2

2n,1−γ2 − χ2
2n,γ1

)

=
4z γ

2

√
n

χ2
2n,1−γ2 − χ2

2n,γ1

,

where the quantiles χ2
2n,1−γ2 and χ2

2n,γ1
of the χ2

2n distribution (cf. (2.5)) that

minimize E(Length of I1) are taken from Table 2.1. By examing this ratio

numerically for our values of n = 50, 100, 300, and 1,000 and 1− γ = 0.9, 0.95,

and 0.98, we conclude that AI7 is only insignificantly longer than I1 on average,

by a factor of less than 1.007 for n = 50 and even less so for larger values

of n. A similar conclusion holds true for E(Length of AI10)
∧

/E(Length of I1)
∧
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that seems to slightly deviate around 1.04 for α = 0.5, 1.5, 2, 3, and 5, n

= 50, 100, 200, and 300, and 1 − γ = 0.9, 0.95, and 0.98. However, the

latter ratio can be seen to go a bit below one (and above 0.99) for n = 30

when AI10 of (3.63) is defined with k = 10 instead of k = 4, in which case

the asymptotic relative efficiency (with respect to the MLE of α) of α̂gme is

known to be higher (cf. Brazauskas and Serfling (2000a)). Thus, although the

performance of the exact CI I1 and those of the asymptotic CI’s AI7 and AI10

are very comparable in terms of the finite-sample coverage probabilities and

expected lengths, it may not be the case when the actual data departures from

the assumed Pareto(I)(α,σ) distribution, for example due to unrepresentative

outliers in the sample. Moreover, in view of robustness of α̂gme (cf. Brazauskas

and Serfling (2000a) and subsection 3.3.3 in this thesis), we conjecture that in

the case of such a deviation, AI10 likely outperforms I1. Perhaps, this is also

true for AI7 and some other asymptotic CI’s for α in this thesis.

Finally, in addition to investigating the veracity of our conjecture at the

end of the previous paragraph, other possible extensions of the research of

this thesis could include studying CI’s for α obtained from other possible

pivotal quantities, for example by considering other convenient functionals of

the Student process in the FCLT of (3.20). It would also be of interest to

investigate the CI’s for α outlined in sections 2.2 and 3.4 when the parameter

σ is unknown. Constructing exact and asymptotic CI’s for σ and confidence

regions for (α,σ) when both α and σ are unknown could be another natural
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desirable extension of our work.



Appendix

R code

A.1 Finding the quantiles of a chi-square dis-

tribution that minimize the length of I1

find.cutoffs Given n (the sample size) and γ (the value of 1-confidence level), the function

find.cutoffs finds the upper and lower quantiles a and b of χ2
2n as in (2.10) which minimize

the length of the exact confidence interval I1 of (2.7). To find such a and b, the code is

implemented to follow the algorithm described on page 10 in this thesis.

find.b Given values of n and a, the function find.b finds the value of b that satisfies

g(a)=g(b) as in (2.10).

#############################################################################

#find.cutoffs

#############################################################################

find.cutoffs <-function(args){

n<-args [1]

g<-args [2]

g<-1-g

chi.mode <-max(c(n-2,0))

leftratio <-0.45

rightratio < -0.999999

a.left <-leftratio*chi.mode

63
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b.left <-find.b(a.left ,n,chi.mode)

cov.left <-pchisq(b.left ,n)-pchisq(a.left ,n)

a.right <-rightratio*chi.mode

b.right <-find.b(a.right ,n,chi.mode)

cov.right <-pchisq(b.right ,n)-pchisq(a.right ,n)

if(abs(cov.left -g) <10^-7){

a<-a.left

b<-b.left

cov <-cov.left

return(c(a,b,cov))

}

else if(abs(cov.right -g) <10^-7){

a<-a.right

b<-b.right

cov <-cov.right

return(c(a,b,cov))

}

else{

a.cen <-(a.left+a.right)/2

b.cen <-find.b(a.cen ,n,chi.mode)

cov.cen <-pchisq(b.cen ,n)-pchisq(a.cen ,n)

}

while(abs(cov.cen -g) >10^-7){

if(cov.cen <g){

a.right <-a.cen

b.right <-b.cen

a.cen <-(a.left+a.right)/2 #finding the new a_M

b.cen <-find.b(a.cen ,n,chi.mode)

cov.cen <-pchisq(b.cen ,n)-pchisq(a.cen ,n)

}

if(cov.cen >=g){

a.left <-a.cen

b.left <-b.cen

a.cen <-(a.left+a.right)/2 #finding the new a_M

b.cen <-find.b(a.cen ,n,chi.mode)

cov.cen <-pchisq(b.cen ,n)-pchisq(a.cen ,n)

}

}

return(paste("(",formatC(a.cen ,format="f",digits =3),",",formatC(b.cen ,

format="f",digits =3),")",sep=""))

}

#############################################################################

#find.b

#############################################################################

find.b<-function(a,n,chi.mode){

a.val <-dchisq(a,n)

upper <-3*chi.mode

b<-uniroot(function(x) a.val -dchisq(x,n),lower=chi.mode ,upper=upper ,tol=1e

-9)$root

return(b)

}
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A.2 Building Tables 2.1 and 2.2 of Chapter 2

The code below builds Tables 2.1 and 2.2, which are the tables of the quantiles (a, b) of χ2
2n

as in (2.10) and the quantiles (χ2
2n−2,a, χ

2
2n−2,b) of χ2

2n−2 that minimize the length of the CI

in (2.19).

#############################################################################

#Table 2.1

#############################################################################

g.s<-c(0.1 ,0.05 ,0.02)

g.vec <-c(rep(g.s[1] ,4),rep(g.s[2] ,4),rep(g.s[3] ,4))

n.values=c(50 ,100 ,300 ,1000)

df.values <-n.values *2

df.vec=rep(df.values ,3)

args=matrix(c(df.vec ,g.vec) ,12,2)

cutoffs.vec <-apply(args ,1,find.cutoffs)

cutoffs.mat <-matrix(cutoffs.vec ,4,3)

rownames(cutoffs.mat)<-n.values

colnames(cutoffs.mat)<-1-g.s

View(cutoffs.mat)

#############################################################################

#Table 2.2

#############################################################################

g.s<-c(0.1 ,0.05 ,0.02)

g.vec <-c(rep(g.s[1] ,4),rep(g.s[2] ,4),rep(g.s[3] ,4))

n.values=c(50 ,100 ,300 ,1000)

df.values.2<-n.values *2-2

df.vec.2= rep(df.values .2,3)

args2=matrix(c(df.vec.2,g.vec) ,12,2)

cutoffs.vec2 <-apply(args2 ,1,find.cutoffs)

cutoffs.mat2 <-matrix(cutoffs.vec2 ,4,3)

rownames(cutoffs.mat2)<-n.values

colnames(cutoffs.mat2)<-1-g.s

View(cutoffs.mat2)

A.3 Generating asymptotic CI’s of Chapter 3

AI1 Given a random sample x of size n from Pareto(I)(α,σ) and g (the value of 1-confidence

level), the function AI1 builds AI1 of (3.18). Additionally, the true α is given as a parameter
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to check if the resulting interval contains it. The scale parameter σ is also passed as a

parameter, though we use σ=1. As a result, the function returns the length of AI1 and a

binary number indicating whether AI1 captures the true α, where 1 refers to AI1 capturing

the true α. In the case when a sample does not satisfy the condition that the lower bound

in (3.17) is positive, the code stops.

AI2-AI10 Each of the functions AI2 to AI10 for the CI’s AI2 to AI10 takes a desired

number n of the sample size and g as parameters, generates a random sample of size n

from Pareto(I)(α,σ) and builds the corresponding 1 − g size CI. As in AI1, the true α is

passed as a parameter to check if the resulting intervals contain it. The value of σ is also a

parameter, though we take σ = 1. Within each of these functions AI2-AI10, the function

AI1 is called with the same sample generated by these functions for comparison of the

corresponding interval with AI1. As a result, the lengths of the latter two CI’s and whether

the CI’s capture the true α are returned. Note that each of AI2-AI6, AI8 and AI9 was

derived under certain conditions, as described in Chapter 3. In the case when the initial

sample generated by the functions AI2-AI6, AI8 and AI9 does not satisfy the conditions of

the validity of their corresponding CI’s, these functions ignore such a “bad” sample, resample

and repeat the process until the new sample satisfies the conditions. However, AI9 is built

to stop the code with an error message if a “bad” sample arises. An additional parameter

for the functions AI2-AI8, add.condition, which is set equal to TRUE by default for the

purposes of the present thesis, enables us to use only the samples that satisfy the conditions

of the validity of all AI1-AI6 and AI8 (that are checked via the function condition listed

next). This parameter can be set equal to FALSE, if one does not need such samples.

Note that add.condition does not count in the condition for the validity of AI9, due to the

computational cost of this CI. The functions AI2-AI10 are inspired by Tuzov (2014).
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condition Given a random sample x from Pareto(I)(α,σ), its exponential counterpart y as

in (3.15), g (the value of 1-confidence level), and the values of α and σ, the function condition

checks if this particular sample x satisfies the conditions for the validity (derivation) of the

CI’s AI1-AI6 and AI8 and returns FALSE only when it satisfies all these conditions. The

condition for deriving AI9 is not included due to its computational time.

GME The function GME takes a random sample x of size n from Pareto(I)(α,σ) and k

(for
(
n
k

)
subsamples, k = 4 for Tables 3.9 and 3.10) and returns the GME for α as in (3.60).

#############################################################################

#AI1

#############################################################################

AI1 <-function(x,n,g,alpha ,sigma){

y<-log(x/sigma)

lower <-n/(sum(y)+qnorm(1-g/2,0,1)*sd(y)*sqrt(n))

upper <-n/(sum(y)-qnorm(1-g/2,0,1)*sd(y)*sqrt(n))

length <-upper -lower

if((1/ upper) <0) stop("The sample does not satisfy the condition")

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in))

}

#############################################################################

#AI2

#############################################################################

AI2 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

cond <--1

t0 <-0.9

while( cond <0 ||add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

t0 <-0.9

flor <-floor(n*t0)

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

if((sum(y[1: flor])+qnorm(1-g/2,0,1)*sd(y)*sqrt(flor)/flor) >0) cond <-1

}

lower <-flor/(sum(y[1: flor])+qnorm(1-g/2,0,1)*sd(y)*sqrt(flor))

upper <-flor/(sum(y[1: flor])-qnorm(1-g/2,0,1)*sd(y)*sqrt(flor))

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI3

#############################################################################

AI3 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

b.s<-c(1.96 ,2.241538 ,2.576)

if(g==0.1){b=b.s[1]}
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if(g==0.05){b=b.s[2]}

if(g==0.02){b=b.s[3]}

checker <--1

while(checker <0|| add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

k<-1:n

check <-(cumsum(y)-b*sd(y)*sqrt(n))/k

neg.indices <-which(check <0)

if(length(neg.indices)!=n) checker =1

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

}

lower.part <-(cumsum(y)+b*sd(y)*sqrt(n))/k

upper.part <-(cumsum(y)-b*sd(y)*sqrt(n))/k

lower.part <-1/lower.part

upper.part <-1/upper.part

upper.part <-upper.part[-neg.indices]

lower <-max(lower.part)

upper <-min(upper.part)

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI4

#############################################################################

AI4 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

cond <--1

while(cond <0|| add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

sum.sum.x<-sum(cumsum(y[1:(n-1)]))

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

if(((sum(cumsum(y[1:(n-1)]))/n)-(qnorm(1-g/2,0,1)*sd(y)*sqrt(n)/sqrt (3)))

/((n-1)/2) >0) cond <-1

}

lower <-((n-1) /2)/((sum(cumsum(y[1:(n-1)]))/n)+( qnorm(1-g/2,0,1)*sd(y)*sqrt(

n)/sqrt (3)))

upper <-((n-1) /2)/((sum(cumsum(y[1:(n-1)]))/n)-(qnorm(1-g/2,0,1)*sd(y)*sqrt(

n)/sqrt (3)))

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI5

#############################################################################

AI5 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

b.s<-c(0.765 ,0.94 ,1.195 ,1.655 ,2.29 ,2.79)
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gs<-c(0.2 ,0.15 ,0.1 ,0.05 ,0.02 ,0.01)

values <-matrix(c(gs ,b.s),length(gs),2,byrow=F)

b=values[values [,1]==g,2] # select a value of b according to alpha

cond <--1

while(cond <0|| add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

k<-seq(1,n-1)

sum.x<-cumsum(y[1:(n-1)])

sum.x.k<-sum(k*sum.x)

sum.x.sq<-sum((sum.x)^2)

c<-(n*(n-1) *(2*n-1))/6

Sn<-sd(y)

Dn<-sum.x.k^2-c*(sum.x.sq-b*(Sn*n)^2)

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

if(Dn >0&& sum.x.sq-b*(Sn*n)^2>0) cond <-1

}

Dn<-sqrt(Dn)

lower <-c/(sum.x.k+Dn)

upper <-c/(sum.x.k-Dn)

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI6

#############################################################################

AI6 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

cond <--1

while(cond <0|| add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

mle <-a.mle(x,sigma)

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

if((1-( qnorm(1-g/2,0,1)/sqrt(n)))/mle >0) cond <-1

}

lower <-mle /(1+( qnorm(1-g/2,0,1)/sqrt(n)))

upper <-mle/(1-( qnorm(1-g/2,0,1)/sqrt(n)))

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI7

#############################################################################

AI7 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

cond <--1

while(cond <0|| add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

mle <-a.mle(x,sigma)

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

cond <-1
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}

lower <-mle -(mle*qnorm(1-g/2,0,1))/sqrt(n)

upper <-mle+(mle*qnorm(1-g/2,0,1))/sqrt(n)

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI8

#############################################################################

AI8 <-function(n,g,alpha ,sigma ,add.condition=TRUE){

if(alpha <=2){

check <--1

while(check <0|| add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

add.condition <-condition(x,y,g,alpha ,sigma)

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

if(alpha <=2) check <-1

}

return(c(0,0,0,0))

}

else{

cond <--1

while( cond <0 ||add.condition){

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

mme <-a.mme(x,sigma)

if(add.condition) add.condition <-condition(x,y,g,alpha ,sigma)

if(mme >2) cond <-1

}

z<-qnorm(1-g/2,0,1)

c<-z*sqrt(mme)*(mme -1)/(sqrt(n*(mme -2)))

lower.mme <-mme -c

upper.mme <-mme+c

length.mme <-upper.mme -lower.mme

if(( lower.mme <=alpha)&&( upper.mme >=alpha)){alpha.in=1} else alpha.in=0

return(c(length.mme ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

}

#############################################################################

#AI9

#############################################################################

AI9 <-function(n,g,alpha ,sigma ,k=4){

g.ks <-c(1.563 ,1.280 ,1.141 ,1.088 ,1.061 ,1.044 ,1.035 ,1.028 ,1.023 ,1.019)

g.k<-g.ks[k]

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

a.gm <-GME(x,k)

lower <-(a.gm*(sqrt(n))/(sqrt(n)+qnorm(1-g/2,0,1)*sqrt(g.k)))

upper <-(a.gm*(sqrt(n))/(sqrt(n)-qnorm(1-g/2,0,1)*sqrt(g.k)))

length <-upper -lower
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if((1/ upper) <0) stop("The sample does not satisfy the condition")

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#AI10

#############################################################################

AI10 <-function(n,g,alpha ,sigma ,k=4){

g.ks <-c(1.563 ,1.280 ,1.141 ,1.088 ,1.061 ,1.044 ,1.035 ,1.028 ,1.023 ,1.019)

g.k<-g.ks[k]

x<-rpareto(n,alpha ,sigma)

y<-log(x/sigma)

a.gm <-GME(x,k)

lower <-a.gm -(qnorm(1-g/2,0,1)*a.gm*sqrt(g.k))/sqrt(n)

upper <-a.gm+(qnorm(1-g/2,0,1)*a.gm*sqrt(g.k))/sqrt(n)

length <-upper -lower

if((lower <=alpha)&&(upper >=alpha)){alpha.in=1} else alpha.in=0

return(c(length ,alpha.in,AI1(x,n,g,alpha ,sigma)))

}

#############################################################################

#condition

#############################################################################

condition <-function(x,y,g,alpha ,sigma){

n<-length(x)

mme <-a.mme(x,sigma)

mle <-a.mle(x,sigma)

t0 <-0.9

if(((sum(y)-qnorm(1-g/2,0,1)*sd(y)*sqrt(n))/n) >0) cond.1<-TRUE

else cond.1<-FALSE

flor <-floor(n*t0)

if((flor/(sum(y[1: flor])-qnorm(1-g/2,0,1)*sd(y)*sqrt(flor))) >0) cond.2<-

TRUE

else cond.2<-FALSE

k<-1:n

b.s<-c(1.96 ,2.241538 ,2.576)

if(g==0.1){b=b.s[1]}

if(g==0.05){b=b.s[2]}

if(g==0.02){b=b.s[3]}

check <-(cumsum(y)-b*sd(y)*sqrt(n))/k

neg.indices <-which(check <0)

if(length(neg.indices)!=n) cond.3<-TRUE

else cond.3<-FALSE

sum.sum.x<-sum(cumsum(y[1:(n-1)]))

if((((n-1)/2) /((sum(cumsum(y[1:(n-1)]))/n)-(qnorm(1-g/2,0,1)*sd(y)*sqrt(n)/

sqrt (3)))) >0) cond.4<-TRUE
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else cond.4<-FALSE

b.s<-c(0.765 ,0.94 ,1.195 ,1.655 ,2.29 ,2.79)

gs<-c(0.2 ,0.15 ,0.1 ,0.05 ,0.02 ,0.01)

values <-matrix(c(gs ,b.s),length(gs),2,byrow=F)

b=values[values [,1]==g,2]

k<-seq(1,n-1)

sum.x<-cumsum(y[1:(n-1)])

sum.x.k<-sum(k*sum.x)

sum.x.sq<-sum((sum.x)^2)

c<-(n*(n-1) *(2*n-1))/6

Dn<-sum.x.k^2-c*(sum.x.sq-b*(sd(y)*n)^2)

if(Dn >0&& sum.x.sq-b*(sd(y)*n)^2>0) cond.5<-TRUE

else cond.5<-FALSE

k<-1:n

if( ( (1-(qnorm(1-g/2,0,1)/sqrt(n)))/mle) >0 ) cond.6<-TRUE

else cond.6<-FALSE

if(alpha <=2){ cond.8<-TRUE}

else{

if(mme >2) cond.8<-TRUE

else cond.8<-FALSE

}

if(cond .1&& cond .2&& cond .3&& cond .4&& cond .5&& cond .6&& cond .8) condition <-TRUE

else condition <-FALSE

return (! condition)

}

#############################################################################

#GME

#############################################################################

GME <-function(x,k){

corrections <-c(0.693 ,0.839 ,0.891 ,0.918 ,0.934 ,0.945 ,0.953 ,0.959 ,0.963 ,0.967)

correction <-corrections[k]

n<-length(x)

comb.mat <-combn(x,k)

#All combination of size k from a set of sample x of size n.

comb.mat <-log(comb.mat)

h0.inv <-colMeans(comb.mat)

#These two lines build h0.

h<-correction/h0.inv

a.gm <-median(h)

return(a.gm)

}
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A.4 Making tables of Chapters 3 and 4

makeTable The function makeTable is used to make Tables 3.2 to 3.8 and Table 4.1. It

takes parameters listed below:

CI: The CI number (from 2 to 8).

n: The vector of possible values of n (the sample size).

g: The vector of possible values of γ (where 1− γ is the confidence level).

a: The vector of possible values of the tail index α.

sigma: The value of σ. The default is set to 1.

N : The number of repetitions of a Pareto(I)(α,σ) sample. The default is set to 10,000.

seed: The seed to be used. The deault is set to 123.

comparison: This binary parameter is set to TRUE by default for the purposes of the present

thesis, so that studying AI1-AI8 in Tables 3.2 to 3.8 and the comparative Table 4.1 is based

on the same samples that satisfy the conditions for the validity (derivation) of all AI1-AI6

and AI8. When the parameter is set to FALSE, the samples that satisfy the condition of the

validity of a chosen CI are used, but they do not necessarily have to satisfy the conditions of

all AI1-AI6 and AI8.

Given these parameters, the function makeTable returns result matrices of the simula-

tion (corresponding to Tables 3.2 to 3.8), where the elements are of the form of r̂k (ĈPAIk , ĈPAI1)

defined via (3.3) and (3.1), for all α, n and γ used, and a summary matrix of these result

matrices, which consists of the ranges of ĈPAIk − ĈPAI1 (in %) and sample means of r̂k, k

= 2, ..., 8, for each α used. Many parts of makeTable are borrowed from Tuzov (2014).

nwise summary While the output of makeTable includes a summary matrix of the

values of the ranges of ĈPAIk − ĈPAI1 (in %) and sample means of r̂k of the results of the
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simulation for each α used, k = 2, ..., 8, the function nwise summary returns a summary

matrix of such values for each n used. This function is used to construct Table 4.1.

#############################################################################

#makeTable

#############################################################################

makeTable <-function(CI,n,g,alpha ,sigma=1,N=10000 , seed =123, comparison=TRUE){

if(CI==2) ci<-AI2

else if(CI==3) ci<-AI3

else if(CI==4) ci<-AI4

else if(CI==5) ci<-AI5

else if(CI==6) ci<-AI6

else if(CI==7) ci<-AI7

else if(CI==8) ci<-AI8

else return("Choose a Valid number for CI")

n.length <-length(n)

g.length <-length(g)

alpha.length <-length(alpha)

ng.length <-n.length*g.length

n.vec <-rep(n,times=g.length)

g.vec <-rep(g,each=n.length)

args <-matrix(c(n.vec ,g.vec),ng.length ,2)

set.seed(seed)

result_list <-list()

summary_mat <-matrix(0,nrow=2,ncol=alpha.length)

for(i in 1:alpha.length){

ci.table <-function(args){

n.cur <-args [1]

g.cur <-args [2]

alpha.cur <-alpha[i]

sigma <-1

if(comparison) add.cond <-TRUE

else add.cond <-FALSE

sample <-replicate(N,ci(n.cur ,g.cur ,alpha.cur ,sigma ,add.cond))

return(paste(formatC(mean(sample [1,])/mean(sample [3,]),format="f",

digits =3),"(",formatC(sum(sample [2,])/N,format="f",digits =3),",",

formatC(sum(sample [4,])/N,format="f",digits =3),")",sep=""))

}

res.mat=matrix(apply(args ,1,ci.table),nrow=n.length ,ncol=g.length ,F)

res.list <-as.list(res.mat)

num_res <-sapply(res.list ,splitit ,expr=("\\(| ,|\\)"))

mean_r<-mean(num_res[1,])

diff_row <-num_res[2,]-num_res[3,]

num_res <-rbind(num_res ,diff_row)

range1 <-range(num_res[4,])

range_perc <-range1 *100

summary_mat[1,i]<-paste(range_perc[1],"% - ",range_perc[2],"%")

summary_mat[2,i]<-round(mean_r,3)

results=cbind(n,res.mat)

colnames(results)=c("n",g)

result_list[[i]]<-results

rm(results ,res.mat ,ci.table ,res.list ,num_res ,mean_r,diff_row ,range1 ,range

_perc)



A.4. MAKING TABLES OF CHAPTERS 3 AND 4 75

}

names(result_list)<-alpha

colnames(summary_mat)<-alpha

rownames(summary_mat)<-c("range of CP","r hat")

result_list[["summary"]]<-summary_mat

return(result_list)

}

#############################################################################

#nwise_summary

#############################################################################

nwise_summary <-function(res.list){

res.length <-length(res.list)

n<-nrow(res.list [[1]])

nwise.list <-list()

for(j in 1:n){

nwise.list[[j]]<-numeric (0)

}

for(i in 1:(res.length -1)){

awise.list <-as.list(res.list[[i]])

nnames <-awise.list [(1:n)]

awise.list <-awise.list [-(1:n)]

num_res <-sapply(awise.list ,splitit ,expr=("\\(| ,|\\)"))

name.vec <-vector ()

for(j in 1:n){

name.vec <-cbind(name.vec ,nnames [[j]])

nwise.list[[j]]<-cbind(nwise.list[[j]],num_res[,seq(j,ncol(num_res) ,4)

])

}

}

nwise.matrix <-sapply(nwise.list ,extract)

rownames(nwise.matrix)<-c("range of CP","r hat")

colnames(nwise.matrix)=name.vec

return(nwise.matrix)

}

#############################################################################

#Table making

#Before running this code , codes from Miscellaneous should be run first.

#############################################################################

resultAI2 <-makeTable(CI=2,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c

(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI2)

resultAI3 <-makeTable(CI=3,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c

(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI3)

resultAI4 <-makeTable(CI=4,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c

(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI4)

resultAI5 <-makeTable(CI=5,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c

(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI5)

resultAI6 <-makeTable(CI=6,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c

(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI6)

resultAI7 <-makeTable(CI=7,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c
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(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI7)

resultAI8 <-makeTable(CI=8,n=c(50 ,100 ,300 ,1000),g=c(0.1 ,0.05 ,0.02) ,alpha=c

(0.5,1.5 ,2 ,3 ,5),N=10000 , seed =123, comparison=T)

nwise_summary(resultAI8 [ -(1:3)])

Tables for the GME based CI’s Due to a long computational time for constructing

the GME of (3.60) with a big n, instead of running one code as makeTable, we resort to

building Tables 3.9 and 3.10 entry-by-entry, as it would take about 50 days for each of these

tables if they were constructed at one go. Below is a sample code for one entry of Table 3.9

(n = 100, γ = 0.1, α = 1.5, σ = 1). Before we simulate this entry, we generate the same

number of samples that would have been generated up to this entry if the entire Table 3.9

was made with one execution of makeTable. Other entries of Table 3.9, as well as Table

3.10, are built in a similar fashion. We note in passing that even though AI9 of (3.62) has

a special condition for it to be valid, samples which violate such a condition did not arise

in our simulations. AI10 of (3.63) does not have a condition. The conditions of other CI’s

(AI2-AI6 and AI8) are not applied on making Tables 3.9 and 3.10.

#############################################################################

#Tables for GME based CIs

#############################################################################

set.seed (123)

N<-500 #For the tables for AI9 and AI10 , the number of repetition is 500.

dummy <-replicate(N,runif (50)) #Entry for alpha =0.5,n=50,g=0.1, sigma =1

dummy <-replicate(N,runif (100)) #Entry for alpha =0.5,n=100,g=0.1, sigma =1

dummy <-replicate(N,runif (200)) #Entry for alpha =0.5,n=200,g=0.1, sigma =1

dummy <-replicate(N,runif (300)) #Entry for alpha =0.5,n=300,g=0.1, sigma =1

dummy <-replicate(N,runif (50)) #Entry for alpha =0.5,n=50,g=0.0.05 , sigma=1

dummy <-replicate(N,runif (100)) #Entry for alpha =0.5,n=100,g=0.0.05 , sigma=1

dummy <-replicate(N,runif (200)) #Entry for alpha =0.5,n=200,g=0.0.05 , sigma=1

dummy <-replicate(N,runif (300)) #Entry for alpha =0.5,n=300,g=0.0.05 , sigma=1

dummy <-replicate(N,runif (50)) #Entry for alpha =0.5,n=50,g=0.02, sigma=1

dummy <-replicate(N,runif (100)) #Entry for alpha =0.5,n=100,g=0.02, sigma=1

dummy <-replicate(N,runif (200)) #Entry for alpha =0.5,n=200,g=0.02, sigma=1

dummy <-replicate(N,runif (300)) #Entry for alpha =0.5,n=300,g=0.02, sigma=1

dummy <-replicate(N,runif (50)) #Entry for alpha =0.5,n=50,g=0.1, sigma =1



A.5. MISCELLANEOUS 77

dummy <-replicate(N,runif (100)) #Entry for alpha =0.5,n=100,g=0.1, sigma =1

dummy <-replicate(N,runif (200)) #Entry for alpha =0.5,n=200,g=0.1, sigma =1

dummy <-replicate(N,runif (300)) #Entry for alpha =1.5,n=300,g=0.1, sigma =1

dummy <-replicate(N,runif (50)) #Entry for alpha =1.5,n=50,g=0.05, sigma=1

result <-replicate(N,AI9 (100 ,0.05 ,1.5 ,1)) #Our entry of interest

paste(formatC(mean(result [1,]),format="f",digits =8),",",formatC(mean(result

[3,]),format="f",digits =8),",","(",formatC(sum(result [2,])/N,format="f",

digits =8),",",formatC(sum(result [4,])/N,format="f",digits =8),")",sep="")

A.5 Miscellaneous

The functions listed here have to be run in advance to use the codes given in

Appendix.

a.mme Given a random sample x from Pareto(I)(α,σ) and a value of σ, a.mme returns

the MME of (3.52).

a.mle Given a random sample x from Pareto(I)(α,σ) and a value of σ, a.mle returns the

MLE of (2.2).

rpareto Given n, α and σ, rpareto returns n number of random samples from Pareto(I)(α,σ).

splitit Given a string and an expression, the function splitit splits the string by the given

expression and returns only the numbers in the string. For our purpose, splitit is used

within the function makeTable and takes elements of the result matrices of the simulation

as a parameter, in which each element is a string of the form of r̂k (ĈPAIk , ĈPAI1), and

returns the numbers r̂k, ĈPAIk and ĈPAI1 , without (, ) or , in the elements.

extract The function extract is called within nwise summary. It takes one result

matrix from the output of the result matrices of the function tableMake as a parameter
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and returns the summary of the range of ĈPAIk − ĈPAI1 and the sample mean of r̂k for

each n used in the matrix.

#############################################################################

#a.mme

#############################################################################

a.mme <-function(x,sigma){

mme <-mean(x)/(mean(x)-sigma)

return(mme)

}

#############################################################################

#a.mle

#############################################################################

a.mle <-function(x,sigma){

n<-length(x)

mle <-n/(sum(log(x/sigma)))

return(mle)

}

#############################################################################

#rpareto

#############################################################################

rpareto <-function(n,a,b){

#inverse Transformation Method

if(a<0 || b<0){

return("a and b should be positive")

}

inv.cdf <-function(u){

x<-b/((1-u)^(1/a))

}

U<-runif(n,0,1)

X<-inv.cdf(U)

return(X)

}

#############################################################################

#splitit

#############################################################################

splitit <-function(string ,expr){

list_res <-strsplit(string ,expr)

vector_res <-as.vector(list_res [[1]])

numeric_res <-as.numeric(vector_res)

return(numeric_res)

}

#############################################################################

#extract

#############################################################################

extract <-function(x){

mean_r<-mean(x[1,])

diff_row <-x[2,]-x[3,]

range <-range(diff_row)

range_perc <-range *100

range_str <-paste(range_perc[1],"% - ",range_perc[2],"%")

mat <-matrix(c(mean_r,range_str) ,2,1)

return(mat)

}
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