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A B S T R A C T

Mobile devices, such as smartphones and other personal devices, are
increasingly used to view maps and other large datasets. Their nec-
essarily small displays can only show a small portion of the data at
one time. Researchers have developed various visual techniques that
overlay icons or shapes onto the edge of the display to provide the
user with hints regarding the existence and location of undisplayed
points of interest. However, current techniques fail in practice on
mobile devices because they are confusing, do not scale or take up
too much valuable screen space.

In this thesis, I describe a new technique to visualize the location of
off-screen points of interest. This technique, called Wedge, addresses
specific shortcomings of existing techniques. This thesis details the
design and implementation of Wedge and summarizes the results
of a thorough experimental evaluation. Furthermore, I present a
preliminary model of user performance that I use to highlight design
suggestions for practitioners using Wedge.
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The greatest enterprise of the mind has
always been and always will be the attempted

linkages of the sciences and the humanities.

— E.O. Wilson, Consilience [56]
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1
I N T R O D U C T I O N

In many computer-based tasks (such as map viewing, web browsing
or computer-aided design) there is much more data to display on
the screen than can fit. New generations of mobile devices, such
as smartphones and Personal Digital Assistants (PDAs), especially
Apple’s iPhone, now have the processing power and connectivity
to provide functionality previously only available on desktop and
laptop computers. However, mobile devices will always be limited
by their display sizes. When a dataset, such as a map, does not fit all
on the screen at one time, an application must provide a mechanism
to choose what to display, to navigate to the undisplayed regions,
and possibly, to inform the user of what is not displayed.

There are many strategies for displaying and navigating datasets
that are larger than the display. My work focuses on off-screen pointing
techniques that consist of graphical elements overlaid upon the
screen, where each element represents a specific point of interest
that is not currently shown. The off-screen pointer informs the user
of a location or point of interest in the periphery of the current view.
Knowing the location of an off-screen point of interest is obviously
valuable if the user wants to navigate to that point, but it is also
helpful to provide the user with a more complete mental model of
the surroundings that is used in complex tasks such a route planning.

Figure 1 shows three common techniques for providing the user
with information regarding nearby points of interest. The first of
these, overview+detail (Figure 1a), is one of the most commonly used
techniques. The other two techniques, simple arrows (Figure 1b) and
Halo (Figure 1c) are occasionally used and belong to the off-screen
pointing class of techniques.

I have identified a number of problems with the existing techniques
for visualizing undisplayed data and I designed a new technique
called Wedge that improves on how well the user can determine the
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precise location of an off-screen point of interest, while avoiding
the clutter that plagues other techniques. In addition, I present a
preliminary model to describe user performance with Wedge and
related techniques. Using this model I was able to provide specific
design suggestions aimed at implementers of Wedge and similar
techniques.

The rest of this thesis is structured as follows. First, in Chapter 2, I
discuss the work related to displaying and navigating large datasets
on small devices; I then present, in Chapter 3, a detailed problem
statement that enumerates the many problems with existing tech-
niques. Followed, in Chapter 4, with a thorough description of the
Wedge technique and its evaluation in a lab setting. In Chapter 5, I
present a preliminary formal specification of Wedge performance fol-
lowed by, in Chapter 6, a summary of the thesis and some directions
for future work.
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Figure 1: Three existing techniques for visualizing large datasets on a small
device: a) overview+detail; b) arrows; c) Halo. Beneath (d-f) are
larger sections of the map showing the off-screen locations with
the respective visual techniques.



2
R E L AT E D W O R K

Researchers have studied the problem of how best to represent and
interact with a dataset that is larger than the display for many years.
The obvious solution is to show only part of the data and then
provide a mechanism for navigating to an undisplayed region. These
traditional methods of navigation and interaction are the first set of
related work that I will survey. I will then describe more throughly
the concept of an off-screen pointer, along with related work from
perceptual psychology that forms the theoretical base of some of the
pointing techniques. Following this, I will survey distortion-based
techniques that affect the presentation of the data to fit more on the
screen at one time, lessening the need for navigation and off-screen
pointers.

2.1 traditional techniques

Traditionally, navigation through a large dataset is accomplished
with a combination of panning, zooming and multiple windows.

Panning/scrolling (the term panning is generally used for maps,
scrolling for documents) is the simple operation of moving the
viewing window to display information not currently on the screen
as is done in all current word processors and web browsers.

Zooming is another simple technique that allows the user to ad-
just the current level of detail for viewing. The ZoneZoom [48]
smartphone-based mapping application is an example of a zoom-
only interface. The application divides a map into nine areas, each
of which can be zoomed into by pressing on one of nine keys on
a phone’s keypad. The zoom-only interface matches well with this
application and the limited input capabilities of a mobile phone.

In practice, pan and zoom are usually used together because
they perform complementary functions. Bederson and his colleagues
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2.1 traditional techniques 5

developed Pad++ [3] – and later, Jazz and Piccolo [4] – to investigate
the concept of a Zoomable User Interface (ZUI), now often referred to
as a multi-scale interface. In a multi-scale world the user may pan in
any direction and may zoom in and out freely. Multi-scale interfaces
are widely used today for map viewers, such as Google Maps [21], in
various experimental commercial projects including Microsoft Live
Labs’ SeaDragon [36], and extensively in games.

With Pad++, Bederson and Hollan also introduced the idea of
semantic zooming where different information could be presented
at each zoom level. Semantic zooming allows a computer system
designer to provide more information about an object as a user
zooms in on it. Semantic zoom was employed in the Summary
Thumbnails [37] PDA web browser. Instead of compressing a full
web page to fit it into the display of a PDA (which would make it
unreadable), Summary Thumbnails maintains the layout of the page
and only displays extracted keywords from each paragraph. The
user can zoom in on a section of a page to read the full text.

A new class of techniques has emerged in the last several years that
combines panning and zooming into one seamless operation. Speed
Dependant Automatic Zooming (SDAZ) is a technique proposed for
conventional-sized displays by Igarashi and Hinkley [30] where the
zoom-level automatically decreased as the panning speed increased.
The effect results in a fluid zooming out when the user chooses
to move the current focal point. Because the user is not generally
inspecting, in detail, the content while panning, the system can auto-
matically zooms out to provide better context information to the user
that aids their navigation task. As soon as the user stops panning,
the zoom level is returned to normal. Cockburn and Savage [14]
performed a full evaluation of the technique and corroborated the
original informal evaluation results, showing that SDAZ outperforms
simple scrolling and pan/zoom interfaces.

Pan and zoom-based techniques provide temporally separated views
of the data. Other techniques utilize spatial separation of the data
views by presenting the users with multiple windows at the same
time, often overlaid. The most common multiple-windows technique
involves one large detail window and a small overlaid window that
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shows the location of the detail window in the larger problem space.
This technique is called overview+detail [46] and is very common in
map viewers and games. Multiple window techniques that do not
use the overview+detail model are possible, but rarely used outside
of specialized visualization software (like GeoZui4D [1]). One notable
exception is DragMag [55] and similar lens-based techniques [45]
which invert the overview+detail model, displaying the detail view
in a small magnifying window that can be dragged around the large
full-sized overview.

Nekrasovski et al. [44] compared pan-and-zoom interfaces with
and without overviews. Although they found no difference in task
completion time, users preferred the interface with the overview.
Büring et al. [9] found a different result: in their study, users did not
have a significant preference for either interface and users performed
tasks faster without the overview. The Büring study was done on a
small display, where the overview occupied a larger portion of the
screen than that used by Nekrasovski, suggesting that, for small dis-
plays, a large detailed view can outweigh the benefits of an overview
window. Chittaro [11] also notes this problem, hypothesizing that
limited size and detail of the overview window makes it difficult to
relate the two displays.

Recently Burigat, Chittaro and Parlato [8] followed up on the issue
of using overviews on small mobile displays. They compared a classic
zoom and pan interface with no overview, with a traditional overview
and with a completely transparent wire-frame overview window.
They found that the overview was beneficial by both improving task
search times and by increasing spatial recall of the content explored.
This finding directly contradicts that of Büring et al. [9], suggesting
that those results are not generalizable and that particular care must
be paid to ensure overviews are implemented in a beneficial manner.

One popular application which quite effectively uses a combina-
tion of panning, zooming, and multiple views is Google Maps [21].
Google Maps is an online mapping application that provides maps
and satellite images for most of the world. The user can click and
drag on the screen at any point to pan the display in any direction.
Panning is also possible by dragging in the overview window located
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in the bottom-right corner. In the case of Google Maps the overview
window does not show an overview of the entire dataset as that
would be much too large (i.e., the entire world), instead when the
user changes the zoom level, the overview window’s zoom level is
also changed to keep it representing roughly three times the area
represented by the detail window.

Google Maps also employs semantic zooming. Views at different
zoom levels show different content. For example, when the user is
at a country-wide zoom level only the major roads and cities are
shown but when the user zooms in, secondary roads and smaller
towns are shown.

The major problem with traditional navigation and presentation
techniques is that they do not provide sufficient context to the user.
There is either no context at all (as with panning and zooming) or
the context is relegated to a separate window. In either case users
can get lost navigating the data set – eloquently described as desert
fog by Jul and Furnas [35].

2.2 off-screen pointing techniques

Traditional navigation techniques can be supplemented by off-screen
pointers – icons or shapes placed at the edge of screen to signify the
existence of a point of interest, along with the direction and possibly
the distance to the point. The canonical off-screen pointer is an arrow
that points off-screen in the direction of a particular off-screen point
of interest; however, there are many other techniques that provide
the same function.

In order of importance, the fundamental spatial information pro-
vided by off-screen pointing techniques are: existence (whether or
not a point of interest is available on the map); direction (which
way the user must pan to locate the point of interest), and distance
(the Euclidean distance from the current focal point to the point
of interest). Existing techniques differ with respect to the spatial
information that they provide and can be categorized as 0d, 1d, 2d,
or 3d, which refers to the number of spatial dimensions employed



2.2 off-screen pointing techniques 8

Direction Distance

0d

{
Icons and
Lists No No

1d

{
Arrows Yes No

2d



Scaled and
Stretched Arrows Yes Partial, arbitrary mapping

of distance to size

City Lights Yes,
indirectly

Partial, arbitrary mapping
of distance to colour

EdgeRadar Yes,
indirectly

Partial, arbitrary mapping
of distance to position

Halo Yes, via
position Yes, via position

3d

{
3d Arrows Yes, 2d

Partial, arbitrary mapping
of distance to length

Table 1: Spatial dimensions supported by off-screen pointing techniques.

by the pointer. Table 1 lists several off-screen pointing techniques
and the functionality provided by each.

Perhaps the most important information that an off-screen pointer
can provide to the user is the confirmation (or denial) of the existence
of a nearby point of interest. A traveler searching for a subway station
is in a much better position if her cell phone map indicates that one
is nearby, rather than if she did not have that knowledge.

Each of the techniques discussed in the rest of this section provide
an explicit indication of the existence of a point of interest while
providing some information regarding its location. Techniques that
provide no information about location are really not pointers at all,
but they can be considered in the same class as the other off-screen
pointing techniques because they can provide much of the same
functionality.

A pointer that indicates the direction to its corresponding point of
interest is very helpful to users of some systems, particularly maps.
A user driving in a certain direction is only interested in restaurants
located along his planned route, not those in the opposite direction.
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The basic example of a directional icon, a 1d pointer, is a simple
arrow.

Arrow indicators (Figure 1a) are used extensively in Global Po-
sitioning Satellite (GPS) navigation systems to provide step-by-step
directions from a starting point to a destination. Arrows are also
common off-screen pointers in games. They are especially prevalent
in overhead-view team sports games. Early arcade football games
like Tecmo Bowl (released in 1987) and current EA Sports titles alike
use simple arrows on the edge of the screen to signify the location
of team members in the backfield or defensive zone.

The off-screen pointing technique City Lights [58], shown in Fig-
ure 2b, also provides an indication of direction, but does so without
a pointing icon. Named after the glow that a city produces on the
horizon when approaching from a distance, City Lights indicates
an off-screen point of interest by drawing a thin coloured rectangle
at the edge of the screen orthogonal to a point of interest. When
the point of interest is not orthogonally located (i. e., the target is
beyond the corner of the viewport), a convention must be used to
properly indicate its direction from the corner. City Lights simply
places an arrow-like triangle in the corner of the display to represent
any number of off-screen objects in that corner. The corner problem
is pervasive; most off-screen pointing techniques suffer from it to
some degree.

An off-screen pointer that combines distance and direction to a
point of interest (i. e., a 2d pointer) provides more information about
the location of the point of interest than the techniques described
above. Burigat et al. [7] used scaled or stretched arrows that mapped
distance to the size or length of the arrow (Figure 2a). Unfortunately,
these techniques do not provide enough information to accurately
pinpoint the location of an off-screen point of interest. However, the
simplicity of this type of technique could outweigh its inability to
provide exact position information.

A related technique, EdgeRadar [25] (Figure 2c), provides the
same function as an overview+detail configuration, by displaying off-
screen points of interest as blips in a compressed view of off-screen
space. But instead of the conventional inset windows, EdgeRadar
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a b c

Figure 2: Two dimensional off-screen pointing techniques: a) Scaled arrows
(Image from [7] © 2006 ACM, Inc. Reprinted by permission.);
b) City Lights (Image from [58] © 2003 authors. Reprinted by
permission.); c) EdgeRadar

splits up the off-screen space into four elongated regions and places
them directly at the edge of the screen. The end result is a display
very similar to City Lights that also provides a measure of distance
from the screen edge. But, again, just like Burigat’s arrows, EdgeR-
adar does not provide enough distance information to properly
position the target in off-screen space.

A technique that does provide absolute positioning information is
the Halo [2] off-screen pointing technique (Figure 1c), and as such
can be considered truly two dimensional. A halo is a circle drawn
around a point of interest such that a small arc intrudes onto the
edge of the display. From this arc users can imagine the full shape
using their perceptual ability to reproduce a complete object from
only a small part. This ability is known as amodal perception which I
will discuss in more detail in Section 2.2.2.

Halo has been used commercially in the Second Life virtual world
and in various systems described in Human-Computer Interaction
(HCI) literature. For example, Nacenta and colleagues [42, 43] have
used Halo to indicate the location of off-screen cursors in a multi-
monitor system. Halo has also used as a target indicator in a study
comparing pan and zoom to rubber sheet navigation [44].
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a b c

Figure 3: Three dimensional off-screen pointing techniques: a) FreeSpace-
like pointer; b) 3d arrow (Image from [12] © 2004 ACM, Inc.
Reprinted by permission.); c) simple arrow augmented with extra
glyphs.

2.2.1 Beyond two dimensions

Driving-based video games and many GPS navigation systems use
arrows extensively to provide directions for the user. Although these
systems have a strong three dimensional component, the third di-
mension (i. e., height/zenith) is unneeded for navigation. Because of
this a conventional 1 or 2d off-screen pointer may suffice for these
applications.

Three dimensional virtual reality systems without a ground-based
bias (e. g., flight simulators, non-spatial data exploration, etc.) could
fully exploit an off-screen pointing technique that indicates the loca-
tion of a target in three dimensions. Many systems use arrow-like
indicators to point in the direction the user must rotate to have the
target in view and may also include an indication of distance as
well, as in the space simulator game series FreeSpace. The FreeSpace
pointer uses a simple equilateral triangle to point to nearby off-screen
targets but for distant objects the triangle splits into two triangles
of half the original size, connected by a single straight line segment
(see Figure 3a). The distance between the two triangles indicates how
far away the target is.

To be fully 3d, however, the cue must show distance to the target
and direction in two dimensions. Chittaro and Burigat developed
the 3d arrow off-screen pointer, Figure 3b, and evaluated its use
for navigation in 3d virtual environments [6, 12]. They compared
user’s performance navigating two virtual environments: a realistic
environment where the user walked and in an abstract environment
where the users flew around in three dimensions. The users were
tested using the 3d arrow, a 2d arrow, an overview+detail-like rep-
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Figure 4: The Hop interaction style: the laser beam is created (a) when
the user drags, when the beam intersects a halo (b) a proxy icon
is created (c). Image from [31] © 2006 ACM, Inc. Reprinted by
permission.

resentation, and a control condition with no navigational aid. The
researchers found that 3d arrows outperformed the other conditions
in all situations except when experienced users navigated the real-
istic environment, in which case the 3d arrow performed no worse
than the other techniques

Other than spatial dimensions, an off-screen pointer can use avail-
able visual features to encode any data dimension required by the
designer. For example, the designer could use transparency to indi-
cate relevancy, colour as a type (with a corresponding legend), or
even attach extra glyphs such as stars to indicate, as the example in
Figure 3c shows, a restaurant’s rating.

Finally, a pointer can provide more than just information to the
user. It may also act as a convenient handle that can be used as
a surrogate object, offering similar interaction modalities to those
supplied by the actual target.

Off-screen pointers can be used to facilitate navigation, such as
Halo in the Hop [31] and WinHop [32] navigation techniques, illus-
trated in Figure 4. These techniques, developed by Irani et al., allow
the user to first inspect properties of an off-screen object and then
easily navigate to that object. Dragging on the screen invokes a laser
beam – a vector drawn from the starting drag position through the
current cursor position to the edge of the display. When the laser
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beam intersects a halo arc, the system draws a proxy icon close to
the cursor. The user may then investigate the proxy (and possibly
choose to pan to the object’s true location) by simply clicking on the
icon. WinHop differs from Hop by displaying the off-screen point of
interest in a separate overlaid window, allowing the user to investi-
gate the area around the point before leaving the currently displayed
region. Off-screen pointers are an essential component of the Hop
and WinHop interaction style, where they provide both visual cues
for undisplayed points of interest and handles that can be exploited
to improve navigation through a map.

2.2.2 Theoretical support for Halo

The human perceptual system is able to reproduce a circle from
an arc quite accurately. The Halo technique takes advantage of this
ability to give clues to the user of the location of interesting points
located close to the viewable area. This perceptual ability is, in part,
explained by the Gestalt principle of closure [54]: as shown in Fig-
ure 5a, we perceive full, closed shapes even when they are partially
occluded. Additionally, the Gestalt principle of symmetry [54], which
states that we tend to perceive symmetric objects, comes into play
here.

Beyond the traditional Gestaltist principles there is a modern the-
ory to explain how humans interpret a Halo arc. The theory of
amodal perception describes how our visual system completes par-
tially occluded shapes [17, 50]. Amodal perception is rooted in the
evolutionary adaptation of our visual system and allows humans to
recognize partially visible objects in their environment [51].

There are two prevailing models for amodal perception. The global
model describes how the perceptual system tends to adopt the most
regular or symmetrical solutions [52] (Figure 5b); this might explain
why halos are perceived as complete wholes based solely on the
visible arc portion. The local model suggests that the visual system
completes the occluded part by connecting the extension of the
visible contours [52] as shown in Figure 5c. Continuity and simplicity
are the prevailing principles of the local model. There are proponents
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ba c

Figure 5: (a) Processes of amodal perception lead the visual system to
infer a full circle covered by a square. (b) The shaded figure is
completed based on symmetry/regularity – described by the
global model. (c) In this case the figure is completed based on
continuation – described by the local model.

for both theories but it seems that both local and global processes are
involved when humans perceptually complete occluded objects [50].

Cinematographers use a concept similar to amodal perception
called partially out of the frame [40]. This is a well-known technique for
suggesting the presence of an object off-screen by partially intruding
it into the recorded frame. The viewer is cued to the presence of
the object even if they cannot completely recognize it. Baudisch and
Rosenholtz [2] invoked this concept when describing how Halo is
interpreted.

2.2.3 Poggendorff effect

A user’s ability to interpret Halo may be limited by the Poggendorff
effect [29]. This effect is the basis of an illusion first described by
Johann Poggendorff in 1860 which involves the incorrect perception
of a line segment’s orientation when partially occluded. As shown
in Figure 6a-b, the left line segment is interpreted as continuing on
the right with the top-most line when it is actually continued with
the bottom-most.

Despite their lack of straight line segments, halos may be affected
by this phenomenon when the intersection angle of the circle’s
tangent is misinterpreted, leading to the perception of a smaller
circle. Figure 6c-d shows how the tangent is typically perceived and
how that leads to a smaller circle.

Although this consistent underestimation of circle radius and
of off-screen target distance was noticed by Baudisch and Rosen-
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a b c d

actual tangent

perceived tangent

Figure 6: Two versions of the Poggendorff illusion. Traditional version: a)
the left line segment appears to continue with the bottom-most
line on the right, b) removing the occlusion shows that this is not
the case. Similarly, the circular version: c) the left arc appears to
be part of the smaller circle, but d) it is actually part of the larger.

holtz [2], the solution they proposed of simply drawing a larger circle
will not effectively compensate for the Poggendorff effect because
the effect increases with the steepness of the intersection angle [29]
and a larger circle will (all else being equal) have a steeper intersec-
tion angle. Furthermore, increasing the circle radius of the Halo will
increase the size of its on-screen arc, leading to more clutter and
severe cropping by the opposing edges of the display.

Automatically correcting for the Poggendorff Effect is also prob-
lematic because the effect differs between males and females, as well
as between right and left-handed users [41]. The effect diminishes
with practice and prolonged inspection [47] as well.

2.3 distortion-based techniques

Another approach to the problem of displaying large datasets on
smaller displays is to distort the data to emphasize the most im-
portant information at the expense of poor visibility for less useful
data, what Cockburn et al. [16] call a seemless integration of focus
and context. First introduced by Furnas [19], distortion-based tech-
niques visually compress some of the contextual data to provide
space for a highly emphasized focal point. The choice of what to
emphasize varies among techniques, but in general, the emphasized
data points are near a user-chosen focal point. Such systems must
provide a mechanism for choosing a new focal point, which means
that navigation is still an issue in these environments.
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a b c fd e

Figure 7: Traditional distortion techniques: a) undistored; b) Bifocal Dis-
play; c) progressive fisheye; d) Perspective Wall; e) optical fisheye;
f) normalized optical fisheye. Image adapted and redrawn from
Leung and Apperley [39] © 1994 ACM, Inc. Reprinted by permis-
sion.

Distortion-based techniques are often called fisheye views because
resemble the effect of fisheye lenses used by photographers. The
fisheye lens provides an exaggerated field of view by emphasizing
the center of the image and de-emphasizing the periphery. The fish-
eye view mimics how our biological vision system works: Ware [54]
explains that as light enters our eye, the current scene is sensed by
photoreceptors on the retina in the rear of the eye. The density of
photoreceptors is not uniform, but is instead mostly concentrated
at one small location called the fovea. The fovea contains a large
percentage of the total photoreceptors but is responsible for only
a very small portion of our field of vision. Of the total 200

◦× 120
◦

that humans are generally able to see [57] (as cited in [16]), the fovea
covers 2 degrees at most [54]. It is very difficult to perceive any detail
using our peripheral vision, but a wide field of vision is crucially
important for helping us maintain the context of our current focus.
The same principle is exploited in fisheye visualization techniques
to provide the user with a highly focused area and the surrounding
context.

Figure 7 shows some of the classic distortion techniques surveyed
by Leung and Apperley [39]. One can see that there are many ways
to distort the view. The Bifocal Display [53], shown in Figure 7b, has
two distinct amplification levels. The progressive fisheye (Figure 7c)
is similar to the Bifocal Display, except that the Bifocal Display de-
emphasizes all peripheral content by the same amount, while the
progressive fisheye de-emphasizes peripheral content over a gradient.
Figure 7d, shows the Perspective Wall [49], which exploits our per-
ceptual ability to correct distortion when viewing a 2d projection of
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a 3d space. Figure 7e mimics an optical fisheye lens by distorting the
distance in a polar coordinate system, but has the obvious disadvan-
tage of a non-rectangular external shape. Figure 7f is a normalized
version of Figure 7e that corrects the distorted shape but maintains
the desired effect.

Semantic Fisheye views [34] are a class of techniques that are ap-
plied not to a visual representation, but rather to the underlying data
from which the visual representation was created. In this case, the
distortion comes in the form of changing the attributes of peripheral
data points (such as colour, font, size, etc.) or perhaps selectively
choosing the most important data points to be displayed.

The Furnas Fisheye [19] is an early example of a semantic fish-
eye. Furnas created a source code browser that selectively displayed
important lines of code, such as function declarations, in the pe-
riphery. Furnas generalized his selection algorithm as DOI(a, b) =
API(a)− D(a, b), where DOI(a, b) is the degree of interest in line
a, given the current focal point of line b. API(a) is the a priori im-
portance of line a (e. g., function declarations are viewed as more
important than lines containing a variable declaration) and D(a, b)
is the number of lines of code from a to b.

The computed DOI was then used to determine if a given line was
to be displayed or not. Therefore, for a given line to be displayed, it
must either be important or close to the focal point (or a little bit of
both), leading to a display that shows all lines near the focal point
(regardless of importance), but only important lines in the periphery.
The DOI function creates an effect similar to a fisheye lens, but the
effect is accomplished by selecting data points (i. e., line of code)
instead of compressing pixels.

The Furnas Fisheye, though extremely influential, had not un-
til recently been formally evaluated. Jakobsen and Hornbæk [33]
implemented a fisheye browser for Java source code, based on
Furnas’s ideas, and embedded it into an Integrated Development
Environment (IDE). In their subsequent evaluation they found that
users performed tasks significantly faster when using the fisheye
view and users preferred it over a traditional source-code editor.
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Figure 8: Fisheye Java sourcecode browser, based on the ideas from the
Furnas Fisheye. Image from [33] © 2006 ACM, Inc. Reprinted by
permission.

Although Gutwin and Fedak [28] found that fisheye techniques
outperform panning and zooming in some applications, the dis-
tortion creates strange visual effects that users must correct for.
Gutwin [27] showed that users have difficulty with targeting tasks
in distorted displays because the target appears to move as the focal
point approaches it. Gutwin and Fedak [28] also found that users
prefer to use non-distorted techniques, despite performing better
with the distortion techniques.



3
C H A R A C T E R I S T I C S O F A N O F F - S C R E E N
V I S U A L I Z AT I O N T E C H N I Q U E

I have identified seven qualities of off-screen visualization techniques
that characterize a technique’s usefulness. The characteristics are:
unobtrusiveness, positioning ability, ranking ability, scalability, even
spread, distinctness, and continuity.

The techniques for visualizing off-screen points of interest I pre-
sented in the previous chapter are all inadequate in some respect. In
this chapter, I discuss how each established off-screen visualization
technique performs with respect to the seven desirable characteristics
and show how each existing technique fails to provide a balance of
these important characteristics.

3.1 unobtrusiveness

The most important characteristic of an off-screen pointing technique
is that it is unobtrusive. The technique should not extensively en-
croach into the user’s main area of focus. Working with off-screen
points of interests is often secondary to the more important task
of investigating the detail currently displayed (e.g., when using a
mobile device to help navigate through an unknown city). If the
visualization technique occupies too much of the main window, per-
formance of the primary task will suffer [9]. Therefore any provision
given for interacting with off-screen objects should not interfere with
the primary task.

The overview+detail technique provides a low-resolution view of
off-screen data. However, in order to be useful, the overview window
must take up a significant portion of a mobile device’s small display.
The occlusion of the main view by the overview window makes
this technique less suitable, though not completely unsuitable, for a
range of situations on small screen devices.

19
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Similarly, distortion-based techniques use large amounts of screen
space for displaying contextual information, making them mostly
inappropriate for deployment to devices with small displays.

Arrows (simple and scaled) are usually implemented as small
glyphs placed near the edge of the screen and as such are quite
unobtrusive.

City Lights was designed to be minimally intrusive and only
occupies a very small band along the screen edge. To accomplish
this, City Lights is deficient in several other areas. However, it is
exceptionally unobtrusive and an excellent choice for designers that
are severely limited in available screen space.

EdgeRadar uses a transparent overview band located along the
screen edge. The band is larger than that employed by City Lights
but because of its transparency it is also quite unobtrusive. Recall
that EdgeRadar is effectively an overview+detail view where the
overview window has been split up and placed at the edge of the
screen, lessening the main drawback of overview+detail by not
obscuring the central area of the window.

Halo is also limited to the screen edge where the arcs are overlaid
onto the map content. Similar to EdgeRadar, the map content can be
seen through the visualization making it fairly unobtrusive.

Overall, most existing techniques are unobtrusive to the main
task except, to some extent, overview+detail and distortion-based
interfaces.

3.2 positioning ability

Another important characteristic is the technique’s positioning abil-
ity, that is, how well can a user determine an object’s position in
off-screen space from the displayed graphical elements. Some tech-
niques only provide relative distance information that require exact
knowledge of some other off-screen object’s position to determine
the desired object’s position.

Overview+detail provides the users with two distinct views (at
different zoom levels) which can create problems for resolving the
location of a target in one space based on its view in the other.
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However, overview+detail implementations usually provide a full
miniaturized view of the world in the overview window, allowing
the user to match distinctive landscape features between the two
views and reasonably determine the position of points of interest in
off-screen space.

Distortion-based displays use continuously variable zoom levels
for different levels of the display (with more detail near the focal
point and progressively less the further from that point). This makes
it somewhat difficult to determine the exact position of a point of
interest but because, like overview+detail, salient map features are
also scaled, making it generally possible to place a point of interest
at the correct location on the user’s mental map.

However, users suffer a cognitive penalty when compensating for
the visual effect of the distortion, inhibiting the usefulness of this
type of interface [27]. This is especially true for map viewers, where
a distorted image will turn otherwise recognizable landmarks into
incomprehensible shapes and straight roads into confusing curves.

Simple arrows do not provide enough information for precise
positioning – only the direction to the target, not the distance. Scaled
arrows, on the other hand, provide relative distance information
by scaling the size of the arrow proportionally to the distance of
the target from the screen edge. Using the size of a scaled arrow
for a known position it is possible to roughly position a target, by
comparing arrow sizes.

City Lights lacks the ability to accurately show the position of an
object in off-screen space. The deficiency is partially addressed by
using two distinct colours to signify that some points of interest are
near and others are far.

EdgeRadar is similar to overview+detail with respect to position-
ing, except only the targets are shown and not the landscape, making
it only possible to accurately position a target if a reference point is
known.

Halo, on the other hand, solves many of the problems inherent
with the techniques just discussed. It provides both direction and dis-
tance information explicitly in the size and shape of the on-screen arc.
Although Halo provides enough information for users to accurately
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determine the position of the object via the angle of the arc, users
tend to consistently underestimate the distance to the target [2].

Positioning is a difficult characteristic to excel at and all existing
techniques leave much to be desired. Of the available techniques
overview+detail and Halo provide the best positioning performance.

3.3 ranking ability

For many tasks, off-screen objects must be easily ranked by distance
from the edge of the screen. This is primarily important for cursory
determinations of what are the closest off-screen points of interest.
For example, “Where is the nearest fast food restaurant?” The ability
to emphasize close targets is desirable in many applications because
points of interest closest to the current view are often of greatest
importance and should therefore be emphasized.

Overview+detail and distortion-based interfaces provide reason-
able support for ranking of showing each object’s position in relation
to the on-screen area. However, ranks must be calculated by the user
from the position – they are not explicitly encoded and available at a
glance.

Although simple arrows provide no support for ranking, scaled
arrows encode rank as the size of the arrow. The smallest arrow rep-
resents the object closest to the screen edge and the largest represents
the furthest.

City Lights has very minimal ranking ability. It simply encodes
two categories of distance (near and far) with two distinct colours.

EdgeRadar is similar to overview+detail by providing a scaled
down view of off-screen space that users can interpret to determine
the rank of each point of interest. EdgeRadar is perhaps slightly eas-
ier than overview+detail because only objects off-screen are shown.

Halo does provide useful rankings, the smaller an arc the closer
the target. As targets get further away the difference in arc size for
the same change in distance shrinks and approaches zero. However,
that is generally desirable because small differences between distant
targets are less important than between close targets.
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All techniques except simple arrows and City Lights provide a
reasonable mechanism for ranking, while scaled arrows performs
quite well in this regard.

3.4 scalability

A versatile off-screen visualization technique can represent off-screen
points of interest at any reasonable distance from the screen edge.
Often this means that the growth of visual elements in response to
increased distance from the screen edge is bounded. In general, it
is important that the technique is reasonably scalable with respect to
distance.

Overview+detail interfaces are scalable to reasonable sizes. The
designer must simply choose a higher ratio of zoom levels between
the detail and overview windows. Researchers have proposed a
practical limit on the ratio of 20:1 [16]. A higher disparity than this
is difficult for people to use.

Distortion-based interfaces behave similar to overview+detail with
respect to scalability. The amount of off-screen space that can be
represented is governed simply by the ratio of zoom-levels for the
detailed focal point and the contextual area.

Simple arrows do not encode distance information at all, so they
are infinitely (and trivially) scalable. Scaled arrows are scalable and
only limited by the size of the on-screen arrow glyph.

City Lights are scalable but only because of the extremely limited
support for representing distance (i.e., two levels encoded with
colour).

EdgeRadar is similar to overview+detail and distortion-based
interfaces. To represent a larger area, simply increase the ratio of
zoom levels.

Halos grow as a function of distance from the edge. Objects that
are farther away have larger halos, which results in more clutter, as
shown in Figure 9. Within a fairly small distance – around 1.5 screen
widths – a halo becomes too large to fit entirely on the screen edge.
Therefore Halo is not sufficiently distance-scalable.
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Figure 9: Halos grow as the off-screen objects gets farther away. This figure
shows the halos for a series of objects at 50 pixel increments from
the screen edge.

All techniques, except Halo, are reasonably scalable with respect
to distance, with overview+detail, arrows and EdgeRadar outper-
forming the rest.

3.5 even spread

It is also desirable for the technique’s graphical components to
be evenly spread around the screen edge. This is a very important
characteristic; with most off-screen visualization techniques, the
placement of the graphical element is chosen such that the off-screen
object is orthogonal to the screen. It is not possible for objects located
in the area extending from the corner of the display to be displayed
in the same area as those for the side. Because of this, the graphical
elements for these objects are generally placed in a small area at the
corner to avoid conflicting with objects on the edge. This placement
is reasonable for small off-screen areas but for a larger off-screen
area the corner area grows exponentially. Figure 10 shows how the
size of the off-screen area, in relation to the on-screen area, affects
the area containing corner objects. The center rectangle represents
the on-screen area and the full square is the area represented by
the visualization. When the off-screen area grows relative to the
on-screen, a greater proportion of the off-screen area is represented
by the corners (shown above as shaded areas).

The corner problem is not an issue with overview+detail interfaces.
However, some distortion-based interfaces such as the 2d Bifocal Dis-
play [53] can be affected because the corners are rendered differently
than the sides. Most other fisheye displays evenly spread the targets
radially from the focal point.
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Figure 10: A large off-screen area leads to a concentration of off-screen
pointers at corners. The shaded area represents the portion of
the screen not orthogonal to the screen.

Simple and scaled arrows are generally not affected by this prob-
lem because the arrows are often laid-out radially, pointing out from
the center of the display.

City Lights is seriously affected by the corner problem. Any num-
ber of objects located beyond the screen corner are represented by a
single small arrow.

EdgeRadar also suffers from the corner problem but to a lesser
degree than City Lights. The corner regions are compressed into a
small square placed in the screen corners. The amount of on-screen
representation space given to corner areas is much less than that
given to regions orthogonal to the screen edges.

With Halo, arcs for corner targets are drawn in the corner and
are severely cropped by the opposed screen edge. Baudisch and
Rosenholtz [2] alleviated this to some extent by giving the corner
targets more space (see Figure 11), but, as they admit, this only
corrects a small amount of the arc cropping.

Many of the off-screen visualization techniques suffer from the
corner problem due to uneven spread of the on-screen representation.
Only overview+detail and arrows are immune.
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Figure 11: The fix used by Baudisch et al. [2] to partially overcome the cor-
ner problem with Halo. The green rounded rectangle represents
the maximum intrusion depth for halo. The rounded corners al-
low more on-screen space for halos representing targets beyond
the screen corner.

3.6 distinctness

Another important characteristic is that the graphical components
of the technique for each off-screen object should not overlap, or if
they do, each should remain visually distinct. Furthermore, when off-
screen objects are in motion, the visual components remain distinct
as two objects pass.

With overview+detail interfaces each target is represented unam-
biguously as a blip (as on a radar screen) that will only overlap if the
off-screen objects themselves are collocated.

In distortion-based interfaces, each target is scaled at the same rate
as its surrounding environment and is distinct as long as the scale is
sufficient to represent the object.

Simple and scaled arrows have some risk of overlap when off-
screen targets are roughly collocated. This problem can be addressed
with more sophisticated placement algorithms that intelligently place
arrows to avoid overlap.

In the case of City Lights, two or more targets roughly collocated
are only represented by a single on-screen representation causing
this technique to perform quite poorly for this characteristic.

EdgeRadar is based on the same idea as overview+detail, where
each target is represented by a blip and as such each target is dis-
tinctly identifiable.
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Figure 12: Halos become easily cluttered with a few off-screen targets. In
this case there are only five targets.

With Halo clutter is a major problem. A proliferation of off-screen
objects results in many overlapping arcs that are difficult to distin-
guish and interpret, as shown in Figure 12. Often two overlapping
arcs can create a third arc-like shape that may be misinterpreted as a
third target.

In general, the set of techniques performs well with respect to
distinctness. However, City Lights and Halo experience problems in
this area in some situations.

3.7 continuity

When an object enters or leaves the screen there should be a fluid
transition from the on-screen to off-screen representation. Without
this continuity, the user must reacquire an object that they are track-
ing when it leaves the screen, incurring a performance penalty and
introducing a source of confusion.

In all cases except overview+detail, the techniques seamlessly
change from an on-screen object to an off-screen representation
when the target leaves the screen (usually from the user panning in
the opposite direction). Overview+detail forces the users to abruptly
adjust their focal point when they are tracking a target.

3.8 summary

To summarize the discussion in this chapter, Table 2 lists how these
leading techniques perform with respect to each of the character-
istics I just laid out. For each characteristic, I provide a subjective
score based on my opinion from zero to four check marks, where
zero means the technique is completely inadequate; one means the
technique has some features that support this characteristic but they
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unobtrusive positioning ranking scalable
Overview+detail

√ √√ √√ √√√

Distortion
√ √ √√ √√

Simple Arrows
√√√

N/A N/A
√√√

Scaled Arrows
√√√ √ √√√ √√√

City Lights
√√√√

N/A
√ √√

EdgeRadar
√√√ √ √√ √√√

Halo
√√√ √√ √√ √

spread distinct continuity
Overview+detail

√√√ √√√ √

Distortion
√√ √√√ √√√

Simple Arrows
√√√ √√√ √√√

Scaled Arrows
√√√ √√√ √√√

City Lights
√ √ √√√

EdgeRadar
√ √√√ √√√

Halo
√ √√ √√√

Table 2: Performance of current techniques for each of the desirable charac-
teristics of a mobile off-screen visualization technique.

are mostly ineffective; two means has adequate support for the char-
acteristic; three means the technique provides very good support;
and four means the technique is exceptional in this respect. These
ratings are purely subjective and serve only as a summary of the
discussion in each section.

As you can see in the table and discussion in this chapter, all
existing techniques are deficient in some respect for the purpose
of representing off-screen targets on mobile displays. In the next
chapter, I introduce a technique that I designed to overcome some of
these deficiencies.
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D E S I G N A N D E VA L U AT I O N O F W E D G E

In this chapter, I describe the design and evaluation of a new
off-screen pointing technique called Wedge. I specifically designed
Wedge to overcome some of the problems with existing techniques I
outlined in Chapter 3.

Wedge combines the positioning ability of Halo, using the same
principles of amodal object completion, with the small size and
possibility of adaptive layout of arrow-based techniques.

The design of Wedge came about iteratively by investigating the
effects of various modifications to Halo to reduce the effects of clutter.
In this chapter, I recount that design process, then describe in detail
the final version of Wedge and discuss an experimental evaluation
of Wedge, comparing it to Halo.

4.1 wedge design process

The design of Wedge resulted from a rigorous design-implementation-
evaluation cycle. Initially, I investigated if changes to the visual char-
acteristics of Halo (such as colour, fill, etc) could reduce clutter by
allowing users to visually separate overlapping arcs. Following this,
I studied several structural changes to the Halo shape before finally
coming to the Wedge technique itself. I carried out small pilot studies
throughout the design process to evaluate my designs. The outcome
from each phase resulted in design decisions that led to incremental
improvements of the system.

surface properties

In this phase, I manipulated the visual properties of the halo arcs
such as colour, fill-in, transparency and by adjusting intrusion depth
through various schemes. Some of the modified versions of Halo are

29
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Figure 13: Early designs of an improved Halo: a) regular Halo; b) colour;
c) filled in; d) fill and colour; e) clustering; f) varying intrusion
depth; g) constant arc length (intrusion); h) constant arc length
(compression); i) constant arc length (hybrid); j) oval (compres-
sion); k) half arc; l) pie slice (constant aperture); m) pie slice
(constant arc length); n) pie slice (rotated).
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shown in Figure 13. The goal of this phase was to determine if Halo
variations can reduce clutter from overlapping arcs and improve
accuracy in terms of identifying exact locations of off-screen objects.

I performed a series of informal pilot studies where participants
were asked to complete a location estimation task (similar to the
Locate task in the formal evaluation presented later in this chapter).
This allowed me to determine which of the changes to the visualiza-
tion allowed users to best estimate the location of off-screen objects
in the presence of clutter.

In all cases, I found very little improvement in user interpretation
of the Halo arcs. Beyond giving me an opportunity to fine-tune
the experimental task, this phase allowed me to discard modifying
surface properties as a legitimate method of reducing clutter among
Halo arcs.

structural changes

Instead of changing the surface properties of Halo to make them
stand out amongst clutter, in this stage I looked at modifying the
shape and structure of the halos to make them smaller and therefore
avoid clutter from the beginning.

I tried two methods of making halos smaller: 1) compression –
changing the halo from a circle to an oval; and 2) cropping – lopping
off a portion of the circle.

To determine if these approaches were worthy of more in-depth
investigation, I performed a small study comparing ovals to half arcs
to full halos. Five student volunteers participated in the experiment
and were asked to click on the screen where they believed each
off-screen target was present (similar to the Locate task presented
later in this chapter).

The experimental system presented each participant with a series
of randomly placed targets (the set was the same for each technique
and each participant) between 0 and 640 pixels from the screen edge
in groups containing 1, 4 or 8 targets.

The system calculated error amounts as the distance from the
participant selected point to the actual target position. A repeated
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Figure 14: Results from Oval vs Half arc vs Halo study. Error bars indicate
± 1 standard error.

measures Analysis of Variance (ANOVA) showed an overall main
effect of visualization type on error rates (F(1,3)=34.090, p=0.009).
Posthoc pairwise comparisons show that each visualization was
significantly different from the others (all p<0.01) with error amounts
for Halo (mean 162.81 pixels) less than Half arc (mean 223.91 pixels)
which were in turn less than Oval (mean 334.84 pixels). The results
are summarized in Figure 14 and the raw statistics are available in
Appendix A.1.

Although the study did not show much promise for changing the
Halo shape, it did provide an important contribution: oval halos,
as used in other published systems [31], are much more difficult
to interpret than standard Halo and I would not recommend their
use to avoid clutter in systems that depend on the accuracy of user
interpretation.

approaching the wedge shape

The final design phase was based on the insight that cropped halos
performed poorly despite their smaller size because the irregular
shape was very difficult to interpret when they overlap (even though
they were less likely to overlap than standard halos).

In this phase I developed a series of cropped Halo versions, im-
plemented an adaptive placement algorithm that actively avoided
overlap, and eventually ended up with the Wedge off-screen pointing
technique described in detail in the proceeding sections.
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a

legs base

Figure 15: The Wedge off-screen pointing technique. The pair of legs point
toward the target, converging off-screen at the position of the
target. The base connects the legs and completes the shape.

4.2 wedge technique

After the thorough iterative design process I chose a final Wedge de-
sign, shown in Figure 15. Each wedge consists of three line segments:
two legs of equal length and one terminating line called the base.
The legs are the key element. In order to locate the off-screen object
referred to by a wedge, users visually trace the legs, extrapolate
them across the display edge, and estimate where they intersect. The
intersection point is the location of the off-screen object.

The base plays an important role by connecting the legs. On a
screen with multiple wedges, it is the bases that allow users to match
legs, thus preventing users from tracing a pair of legs which belong
to different wedges. To function properly, the bases should overlap
as little as possible.

The base may be a straight line or it can be an arc with its center
point located at the off-screen location (see Figure 16). Both form
factors have benefits and drawbacks. The angles produced by the
straight base can serve as an additional cue reinforcing distance. The
curved base, in contrast, offers a distance cue by means of circle
completion, as introduced by Halo. In the case of a curved base,
however, vertex angles do not provide any additional cues, as they
are always 90 degrees. The choice has little consequence and for
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a b

Figure 16: Options for the base of a wedge: a) straight or b) curved.

a cbrotation intrusionaperture

Figure 17: Each wedge has three adjustable degrees of freedom: a) rotation,
b) aperture/base length and c) intrusion that can be used for
various purposes.

clarity I illustrated the Wedge technique with a straight base in most
of this thesis. The experiment described later in this chapter used
the curved base version of Wedge.

The key aspect that distinguishes Wedge from its predecessors is
its three degrees of freedom. As shown in Figure 17, we can change
the a) rotation, b) aperture, and c) intrusion of a wedge, while it still
points to the same location. Only modification to intrusion depth
was possible with Halo.

The three degrees of freedom of each wedge can be used for three
distinct purposes:

1. Avoiding overlap with other wedges. To resolve the overlap of
the two wedges, we can either rotate the wedge away from
each other (Figure 18b), reduce their aperture/base length (Fig-
ure 18c), or in some cases reduce the intrusion of one wedge
(Figure 18d).

2. Maximizing the location accuracy communicated by a wedge. Each
wedge exists to allow users to accurately locate an off-screen
target, but a look at Figure 18 suggests that some of these
wedges work better than others. The thin wedge in Figure 18c,
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Figure 18: Overlap between two wedges can be resolved by adjusting wedge
b) rotation, c) aperture, and/or in some case d) intrusion.

for example, might not work as well as the rotated wedge in
Figure 18b.

3. Serving as an additional cue or proxy for distance. Aperture and
intrusion can also be used to communicate a certain target
property by convention. For example, larger wedges could refer
to more distant off-screen objects. An easily-interpreted distance
cue is important for tasks not involving absolute distances, such
as determining which of two targets is closer.

The primary goal of Wedge design is to achieve maximum accuracy.
On the other hand, it is clear that overlap and clutter have a huge
affect on the readability of wedges, ultimately impacting accuracy
more than any other factor. I therefore designed a Wedge layout
algorithm that prioritizes as follows: 1) avoid overlap, 2) maximize
location accuracy, and 3) provide an additional distance cue. This
prioritization is not strict, since I must still attain a balance of the
three goals described above.

In terms of the desired characteristics for off-screen visualization
techniques laid out in the previous chapter, the Wedge layout al-
gorithm attempts to improve the distinctness and even spread of the
on-screen elements by actively avoiding overlap. Wedge also was
designed to make gains with respect to positioning and ranking by
virtue of its more easily interpretable shape.
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a b c

Figure 19: Two overlapping wedges shown in each of the three options for
leg length: a) constant leg intrusion; b) shorter leg intrusion for
further targets; c) longer leg intrusion for further targets.

4.3 wedge layout algorithm

The layout algorithm chooses base and leg lengths that are pro-
portional to the distance of the target from the edge of the screen.
This choice improves location accuracy and provides a cue for dis-
tance (i. e., large wedges represent distant objects). Once the wedges
have been placed on the screen in their initial configuration, the
system runs an avoidance algorithm to dynamically resolve overlap
by rotating wedges away from one another.

The layout algorithm creates an acceptable layout of wedges by
manipulating intrusion depth, base length, and rotation, as described
in this section.

Intrusion

I considered three primary options for mapping distance to intrusion:
a) constant intrusion, b) inversely proportional: shorter intrusion
for further distances, and c) directly proportional: longer intrusion
for further distances (Figure 19). While constant intrusion led to
increased overlap between wedge outlines (Figure 19a), the other
two mappings naturally reduced overlap. These two mappings also
have the potential to serve as an additional distance cue.

I chose the directly proportional mapping (Figure 19c), because
it increased accuracy (see Chapter 5 for a detailed discussion as to
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why) and as a positive side effect, it allowed me to nest wedges in
some cases as shown in Figure 19c.

I calculated wedge leg intrusion using a function that contains a
non-linear component causing leg intrusion to gradually level off
for very distant objects. This ensured that leg intrusion depth did
not grow in an unbounded fashion, which would occlude the main
display. The function used to set total leg length was:

leg = dist + ln( (dist+20)
12 )× 10

where leg is the length of each leg in pixels and dist is the distance
in pixels between target and the edge of the screen. The additive
constant of 20 pixels assures a minimum intrusion for close targets.

Base length

The base length of each wedge was mapped linearly to target distance
using the following function:

base = (5 + dist× 0.3)/leg

where base is the length (in pixels) of the base, dist is the distance
of the target to the edge of the screen (in pixels), and leg is the
overall length of each leg (in pixels). This mapping serves as the
primary cue for target distance. The constants were the result of
several pilot studies and they balance positioning performance and
risk of overlap: larger base lengths would have led to more accurate
positioning and easier ranking, but at the expense of a significantly
increased risk of overlap.

During pilot studies I discovered that, just like Halo, participants
tended to underestimate the distance to the off-screen target. In an
attempt to correct this, I rendered each wedge 25% longer than it
should be as in Figure 20. Although I did not formally evaluate
the corrected vs. the uncorrected version of Wedge, I believe the
correction did not have a large effect.
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a

b

Figure 20: An attempt to correct the underestimation bias that users experi-
ence with Wedge: a) uncorrected version; b) correction version
representing a target an exaggerated 40% further away than the
actual target.

Corners

Screen corners have traditionally been a challenge for all off-screen
pointers because they represent a large proportion of off-screen
space [2, 25, 58], as discussed in Section 3.5. At the same time, they
offer less space for the proxy representing the target. The halo arcs
in Figure 11, for example, are cropped, reducing their accuracy
substantially [2].

The additional degrees of freedom offered by wedges help alleviate
this problem, yet this case still requires additional attention. Wedges
for extremely distant objects will also be cropped by the edges
of the screen when displayed in the corners. To alleviate this, the
layout algorithm (see Listing 4.1) will increase leg intrusion, up to
an arbitrary maximum of 20 pixels, until the wedge is centered in
the corner with at least 10 pixels of empty space between each vertex
and the edge of the screen. If the new leg intrusion was still unable
to show a sufficient portion of both wedge legs, the algorithm would
decrease the base length to the point of making the wedge fit in
the corner. As a result of this, wedges will always show legs in the
corners. The distances used in the experiment later in this chapter
were rarely large enough for this correction to occur.
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Listing 4.1: Corner correction portion of the layout algorithm.

// First, increase intrusion depth
fullArcLength = max possible arc length
arcLength = calcArcLength()
count = 0

while arcLength > fullArcLength - 20
intrusion += 1;
arcLength = calcArcLength()

if( count++ > 20 )
break;

// Second, if necessary crop arc length
if arcLength > fullArcLength - 20

arcLength = fullArcLength - 20 �

a
perpend icu la r

b
cen te red
be tw een
edges

Figure 21: Wedges are initially placed a) perpendicular to the screen edge,
or if in the corner, b) centered between the two opposing edges.

ba

Figure 22: A cluster of wedges a) before and b) after applying the wedge
overlap algorithm.
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Listing 4.2: Avoidance portion of the wedge layout algorithm.

foreach wedge in clockwise order
for i=0 to 10

if !overlap(current, previous) and \
!overlap(current, next)
break

if overlap(current, previous)
if !tooCloseToEdge(previous)

previous.rotation += 3 pixels

if !tooCloseToEdge(current)
current.rotation -= 3 pixels

if overlap(current, next)
if !tooCloseToEdge(next)

next.rotation -= 3 pixels

if !tooCloseToEdge(current)
current.rotation += 3 pixels �

a b c d

Figure 23: Iterations of the avoidance portion of the wedge layout algorithm:
(a) Two wedges overlap, (b) they are rotated away causing new
overlap, (c) new overlap is resolved, creating yet another overlap,
and (d) all overlap is avoided.
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Rotation

Rotation is the primary means of avoiding wedge overlap. Figure 22

shows a cluster of wedges before and after resolving overlap using
rotation. Fortunately, rotation has little impact on intrusion and none
on aperture, so it does not affect the distance cues conveyed by
intrusion and aperture.

Rotation is computed using a simple iterative algorithm. It is
reasonably inexpensive computationally and offers real-time perfor-
mance for maps with up five overlapping wedges.

Initially, wedges located along a screen edge are placed perpen-
dicular to that edge (Figure 21a). If a wedge is near a corner, the
algorithm places it such that there is an equal amount of on-screen
space on either side of the wedge (Figure 21b). Next, the algorithm
iterates to resolve overlap. The algorithm traverses all wedges on
screen in clockwise order (according to the location of their base
centers, not by target location). The algorithm rotates wedges away,
by a small amount, from neighbors with which it overlaps. This can
propagate overlap to neighboring wedges and is resolved through
repetition as shown in Figure 23 and Listing 4.2. If there is no solu-
tion the algorithm will terminate after a fixed number of iterations,
leaving wedges with as little overlap as possible.

4.4 user study to evaluate wedge

To evaluate the utility of Wedge, I performed a user study1 that
compared the effectiveness of Wedge with Halo. I hypothesized
that Wedge would be more accurate than Halo, primarily when it
represents objects that get mapped to the corner of the display. I was
also interested in identifying the effects of each of these techniques
in high density layouts.

The experiment was conducted using custom software written
in Adobe Flash that simulated a handheld PDA. A simulated PDA

1 The study described in this section is an extended version of that presented in [26].
Due to time constraints that publication reported results based on 16 participants.
The results here are from an extended study with 36 participants.
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Locate Avoid Closest

Figure 24: Screenshots of each task from the experiment application used
during the evaluation. Wedge in top row, Halo in bottom row.

screen was shown in the center of a 19" monitor at slightly larger
than real-life size. Participants interacted with the simulated PDA via
a standard mouse interface.

Halo was implemented using the original code written by Baudisch
and Rosenholtz [2]. Wedge was implemented exactly as described
above, except that each wedge base was curved.

The study used three tasks from Baudisch and Rosenholtz’s [2]
comparison of Halo to arrows, see Figure 24:

Locate The users clicked in the off-screen space at the expected lo-
cation of the off-screen targets indicated by each of the two
visualizations. Users located targets in any order and the sys-
tem automatically picked the closest match.

Avoid As an “ambulance dispatcher,” the user selected the hospital
farthest from traffic jams. Each map contained indicators of five
on- or off-screen traffic jams, and three blue cross-shaped icons
representing hospitals.
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Closest Each map contained a blue car icon and five red wedges/ha-
los representing restaurants. The user’s task was to click on the
wedge/halo corresponding to the off-screen location closest to
the car.

In all tasks the distances to the off-screen targets ignored the road
grid and participants were instructed to compare distances “as the
crow flies” and not take into account the displayed roads.

The Locate task directly assessed the accuracy of each visualization,
while the other two were secondary tasks that looked at how the
visualizations could be used in realistic problem solving scenarios.

I controlled the total on-screen line length between the two condi-
tions by choosing functions for wedge base and leg lengths such that
the overall average on-screen line length for every target used in the
study was equal (75 pixels for both Halo and Wedge). A wedge and
halo for a given position may have different on-screen line lengths
but overall, for all positions used in this study, the average length
was equal.

To explore whether overlap affects performance, I tested two differ-
ent configurations of targets: sparse and dense. In sparse conditions,
the targets were organized such that overlapping halos were mini-
mized. In dense conditions, the five targets were positioned so that
all of the halos/wedges were packed into a smaller area. The sparse
conditions were programmatically converted to dense conditions
by folding the display (once for Avoid and Closest tasks, twice for
Locate task) such that each target was placed onto the same side of
the display at the exact position as they were on the other side, as
shown in Figure 25. As a result, the dense condition simulated the
amount of clutter that would be equivalent to 20 (Locate task) or 10

(other tasks) off-screen objects. This procedure ensured that sparse
and dense maps were comparable in terms of distance of each target
from the screen edge and the location of each target in relation to a
corner.

A second issue that can also affect clutter and density is whether
or not the on-screen visualizations are placed in the corner or along
the edge of the screen. In the Locate task, a target was considered in
the corner if it was not located directly orthogonal to the on-screen
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a b c d

Figure 25: Folding procedure used to create dense conditions from sparse
layouts: a) original sparse layout; b) folding along vertical axis
– all targets on the left are moved to the right; c) folding along
horizontal axis – all targets on top are moved to the bottom; d)
final result with all targets in bottom right quadrant.

window. Each Locate trial contained five targets, some of which
would be located in the corners.

For the Closest task, a trial was considered a corner trial if one or
both of the first and second closest targets were located in the corner.
A corner trial in the Avoid task was one where off-screen objects
were purposely placed in the corner such that the participant must
have considered that location when performing the task.

A total of 39 undergraduate students participated in the study
in exchange for course credit. Due to unnaturally large error rates,
the results from three participants were removed from the analysis.
Of the remaining participants there were 22 males and 14 females.
The participant’s ages ranged from 18 to 30 and all had normal or
corrected to normal vision.

The study used a 2×2×2 factorial design with three factors: Visu-
alization (Halo or Wedge), Density (dense or sparse target clustering)
and Position (corner or side of the screen).

Participants were shown the experiment application and were
given a brief demonstration of both Halo and Wedge. They were
supplied with two sheets of paper showing examples of interpreting
Wedge and Halo (supplied in Appendix A.2). They then performed
the three tasks; first on four training maps, and then 16 (for Locate)
or 32 (for Closest, Avoid) test maps. The order of tasks and display
conditions were fully counterbalanced. After the session, participants
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Halo Wedge
Locate 49.7 pixels (24.1) 36.2 pixels (19.92)

Avoid 33.0% (19.6) 31.5% (22.9)

Closest 42.7% (22.8) 36.4% (21.3)

Table 3: Summary of error results – means (standard deviation)

Halo Wedge
Locate 2.41 sec (1.33) 2.17 sec (0.88)

Avoid 4.16 sec (2.19) 4.20 sec (1.97)

Closest 4.31 sec (3.48) 4.94 sec (3.29)

Table 4: Summary of completion times – means (standard deviation)

were asked to state which visualization type they preferred for each
task. The experiment application collected error and completion time
data.

4.5 results

In this section the results are organized by task. Within each task I
consider the effects of each of the three factors (visualization type,
density, and position) on error and completion time. Note that in all
analyses, participant was included as a random factor. Tables 3 and 4

show summary means for all measures and tasks and Appendix A.2
contains all raw results from the analysis.

Task 1: Locate the off-screen location

The first task asked participants to click on the locations of the off-
screen objects indicated by each wedge or halo on the screen. The
system gathered data about error amount and the completion time
to locate each of the five targets. The error amount was the Euclidean
distance from the guessed position to the target’s position.

Figure 26 shows the error amounts and completion times for Halo
and Wedge in all conditions (dense and sparse; corner and side). I
carried out a 2×2×2 ANOVA (Visualization × Density × Position)
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to test for differences. We found main effects of all three factors:
for Visualization, F(1,35)=19.003, p<0.001; for Density, F(1,35)=28.843,
p<0.001; and for Position, F(1,35)=135.800, p<0.001.

As can be seen from Figure 26 larger errors were seen in corner
trials (mean 53.5 pixels) than in side trials (mean 32.5 pixels). There
were also larger errors in dense configurations (mean 46.1) than
sparse configurations (mean 39.9). The overall difference between
visualizations was about 13 pixels (Halo mean 49.7 pixels; Wedge
mean 36.2 pixels).

In addition, there was a significant interaction between Visualiza-
tion and Position (F(1,35)=40.745, p<0.001). As shown in Figure 26,
the difference between visualization types is considerably larger in
corners than on the sides of the screen, which supports my hypothe-
sis that the reduced space in corners causes additional problems for
Halo interpretation. There was also an interaction between Visualiza-
tion and Density (F(1,35)=4.399, p=0.043), supporting the hypothesis
that increased clutter in general also leads to problems interpreting
Halo.

We also tested for differences in time to complete the task (see right
chart in Figure 26). A 2×2×2 ANOVA showed no significant effects
of Visualization (F(1,35)=3.222, p=0.081) or Density (F(1,35)=0.640,
p=0.429). There was a significant main effect of Position (F(1,35)=
10.107, p=0.003) on task completion time and a significant interac-
tion between Density and Position (F(1,35)=4.540, p=0.040), but no
interactions with Visualization.

Task 2: Avoid the traffic jam

The second task asked participants to select one of three on-screen
objects that was furthest from a set of off-screen objects. I gathered
error rate and completion time data.

Figure 27 shows error rates and completion times for the different
visualizations, densities, and positions. A 2×2×2 ANOVA did not
show any effects of Visualization (F(1,35)=0.541, p=0.467), Position
(F(1,35)=0.699, p=0.409), or Density (F(1,35)=3.654, p=0.064). In addi-
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tion, there were no interactions between any factors except between
Position and Density (F(1,35)=4.422, p=0.043).

A 2×2×2 ANOVA showed no effects of any of the three factors
on task completion time (Visualization F(1,35)=0.037, p=0.848; Posi-
tion F(1,35)=0.007, p=0.932; Density F(1,35)=0.085, p=0.772), and no
interactions between any factors.

Task 3: Find the closest restaurant

The third task asked participants to select the closest off-screen object
to an on-screen icon. Again, I gathered error rate and completion
time data.

Figure 28 shows error rates for the different visualizations, densi-
ties, and positions. A 2×2×2 ANOVA showed significant main effects
of Visualization (F(1,35)=4.793, p=0.035) and Position (F(1,35)=204.200,
p<0.001), but not Density (F(1,35)=0.019, p=0.890). There was a sig-
nificant interaction between Density and Position (F(1,35)=45.821,
p<0.001), but no interactions with Visualization.

A 2×2×2 ANOVA showed significant main effects of Visualiza-
tion (F(1,35)=7.399, p=0.010) for task completion time in favour of
Halo and Position (F(1,35)=14.231, p=0.001), but did not show ef-
fects of Density (F(1,35)=1.764, p=0.193). There were no significant
interactions between the factors.

Overall Preferences

After the experiment the participants were asked to state which
visualization they preferred for each task. Table 5 summarizes the
subjective preferences. In the Locate task there was a clear pref-
erence for Wedge (χ2(1,N=35)=6.429, p=0.011). More participants
preferred Wedge in the Avoid (χ2(1,N=34)=1.882, p=0.170) and Clos-
est (χ2(1,N=32)=0.500, p=0.480) tasks, but those differences were not
statistically significant.
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Figure 26: Locate task error amount and completion times by visualization,
density, and position. Error bars indicate ± 1 standard error.
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Figure 27: Avoid task error amount and completion times by visualization,
density, and position. Error bars indicate ± 1 standard error.
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Figure 28: Closest task error amount and completion times by visualization,
density, and position. Error bars indicate ± 1 standard error.

Wedge Halo No Preference
Locate 25 10 1

Avoid 21 13 2

Closest 18 14 4

Table 5: The number of participants who preferred each visualization tech-
nique for the three tasks.
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Participant Comments

Comments made during the experiment suggested reasons for the
advantages for Wedge over Halo. One user said, “I found that when
the rings overlap it is almost impossible to tell which is the right
ring. Wedges just seem natural.” And another stated, “overlapping
rings made it very confusing at times. Directional wedges helped
a lot, and they also seem to take up less space. More information
meant less thinking with the wedges.”

Participants’ comments also provided some insight into the rea-
sons why Wedge was somewhat less preferred in the Closest task –
that the difference between distant and close off-screen objects was
easier to determine with Halo, since there is a large visual difference
in this case. One participant stated that, “the sizes of the arcs did not
require too much calculation or thinking to spot the smallest ring.”

4.6 discussion

My hypotheses were that Wedge would be more accurate than Halo,
and that this effect would be stronger in corners and in dense con-
ditions. The Locate task provided evidence in support of all three
hypotheses: accuracy with Wedge was significantly higher than Halo,
and the difference was larger in corners and in dense layouts.

In the Avoid and Closest tasks where people had to make use of
this accuracy, I did not find many significant differences between
Wedge and Halo. Users were significantly more accurate in the
Closest task with Wedge but they were also significantly slower –
suggesting a time/accuracy trade-off. Part of the reason for the lack
of difference is that these tasks involved strategy more than the Lo-
cate task; therefore, it is possible that strategy choice overshadowed
the beneficial effects of Wedge that were seen in the Locate task. In
addition, the Closest task revealed an advantage for Halo (the large
visual difference between distant and close objects) that I had not
considered. Subjective results reinforce these findings - Wedge was
strongly preferred for the Locate and Avoid tasks, in which Halo has
several problems and few advantages.
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Overall, the results confirmed my hypotheses and show the ben-
efits of the new visualization technique. These benefits are more
pronounced when off-screen objects are clustered into corners, where
wedges allow users to triangulate the location of off-screen objects
more precisely. I believe that Wedge’s overlap-avoidance algorithm
aids users in determining direction and distance. While I chose a
brute-force approach for the layout algorithm a proper optimiza-
tion technique to fit and layout the wedges optimally in the limited
display space could prove useful.

To successfully complete these tasks, it appears that participants
employ different strategies. It is clear that for the Locate task, partici-
pants are extrapolating the full shape of the wedge and halo to locate
the off-screen object. In this task, I reason that the visual shape of the
wedge more clearly shows the shape completion process needed to
perform the Locate task. In the case of the Avoid and Closest tasks,
users seem to rely primarily on distance cues. As we see from the
results, the distance cues in Wedge are as good as those provided by
Halo, and in some cases even better.

Based on the results of the study, I propose the following recom-
mendations to mobile application designers:

Consider Wedge. Off-screen object information could be displayed
using Wedge as the primary off-screen pointing technique: it
offers significant improvements over Halo.

Reduce overlap. Designers should reduce overlap in any visualization
of off-screen objects, as overlap leads to reduced accuracy and
greater difficulty identifying objects.

Rotation is better than overlap. None of the participants were concerned
about the rotation of the wedges, although several comments
were received about the difficulty of the overlapping halos.
Therefore, I believe that rotation should be chosen over either
cropping or overlap for off-screen pointers.

Corners need special attention. The results confirm that designers need
to pay special attention to the design of off-screen pointers so
that they work equally well in the display corners.
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Strike a balance. Designers need to strike a fine balance in selecting
parameters for off-screen pointers to avoid as much overlap as
possible, maximize location accuracy and to create an excellent
cue for distance.

In designing Wedge I set out to improve the Halo technique with
respect to the distinctness and even spread characteristics, hoping that
this will address a major problem with Halo: clutter. By nature of its
smaller size and by dynamically avoiding overlap Wedge avoids clut-
ter and allows for more targets to be clearly displayed in the corners.
The results of this experimental evaluation provide excellent support
that Wedge outperforms Halo in positioning and some marginal sup-
port for an improvement in ranking. The experiment also indicates
that this is partially because of the improved distinctness and spread
of Wedge. Furthermore, the ability to choose functions for intrusion
and base length allows designers to draw wedges that are scalable to
the distances required by a specific application. Table 6 shows is an
updated version of Table 2 that lists the subjective performance of
Wedge with respect to Halo.

unobtrusive positioning ranking scalable
· · ·
Halo

√√√ √√ √√ √

Wedge
√√√ √√√ √√ √√

spread distinct continuity
· · ·
Halo

√ √√ √√√

Wedge
√√ √√√ √√√

Table 6: Performance of Halo and Wedge for each of the desirable charac-
teristics of a mobile off-screen visualization technique.
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I M P R O V I N G W E D G E P E R F O R M A N C E

Most of the published work relating to off-screen visualization are
point studies that introduce and/or evaluate a novel technique. This
type of work, though very important for the introduction of new
ideas, is generally only a small portion of the body of knowledge
for a mature field. As the field of HCI matures, more work must
concentrate on generalizing specific results, supplying results and
introducing robust metaphorical models that can be used to predict
future results and assist in the design of new techniques.

The BRETAM framework, introduced by Gaines [20], classifies tech-
nology into six categories: Breakthrough, Replication, Empiricism,
Theory, Automation, and Maturity. Inspired by this model of tech-
nology development, Cockburn and Gutwin [13] suggested that
the maturity of a science can be determined by the distribution of
published results that are categorized in each of the BRETAM stages.
In that respect, most of the published work related to off-screen
pointing is in either the Breakthrough, Replication or Empiricism
stages and very little in the Theory or higher abstract stages.

In this chapter I cap my thesis with an attempt to move beyond
the current practice in the field by introducing a preliminary model
to describe user performance with Wedge and similar techniques.
The model is based on the fact that users do not necessarily perceive
an off-screen object at the indicated location. Targeting error tends
to consists of 1) an error distribution/scattering around the target
and 2) a systematic biases. The exact nature and magnitude of the
effects and their dependence of target location and type of on-screen
cue is unknown at this point and I provide some preliminary results
and a framework that may eventually lead to a full model.

My model framework breaks Wedge interpretation error down into
four measures: bias, misinterpretation of the distance to an off-screen
target; offset, misinterpretation of the direction a wedge is pointing;

52
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orbital length, the variability in distance guesses; orbital width, the
variability in direction guesses. The purpose of the model is to relate
measures of Wedge size and shape to these four measurements of
error.

I present a pointing study with 21 participants that was used to
gather data on user performance in a triangle completion task. The
task has obvious parallels to interpreting a wedge pointing into
off-screen space. Based on the results of the study and guided by
my model, I present a series of recommendations to implementers
of Wedge and similar techniques.

The study results do not directly support much of the model
and I was unable to provide much in the way of specific predictive
equations for Wedge performance. I present them both here as pre-
liminary work in the area and future work is certainly necessary to
improve and verify the model.

5.1 wedge model framework

The purpose of this model is to relate measurements that describe a
specific wedge (such as its length and rotation) to measurements of
user interpretability.

A wedge has many adjustable parameters that describe its look
and shape. Here is a mostly complete list:

wedge length Overall length from base to tip.

base length Length of base connecting line.

leg length Overall length of the legs.

top/bottom leg extrusion Length of the off-screen portion of each leg.

top/bottom leg intrusion Length of the visible portion of each leg.

rotation Angle the entire shape is orientated.

aperture Angle separating the legs.

top/bottom leg to edge intersection angle Angle of intersection between
each leg and the edge of the screen.

leg to base intersection angle Interior angle at the leg-base vertex.

Many of these parameters are inter-related, for example the leg
length is simply the addition of the intrusion and extrusion segments.
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base length

top  leg  in tru
s ion

bottom  leg  in trus ion
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Figure 29: The degrees of freedom for Wedge used in the model.

The difference between the top and bottom intrusion/extrusion
lengths depends on the angle of rotation of the entire wedge (or,
if located in the screen corner, on the amount of cropping by the
opposing edge). Furthermore, the various angles (aperture, rotation,
intersection angles) can be expressed in terms of the line segment
lengths using simple trigonometry.

I decided to describe a wedge in terms of four parameters, from
which all others can be derived. These proved to be the most practical
for my purposes. I call these specific parameters the degrees of
freedom of a wedge because they are the parameters that can be
adjusted by a layout algorithm as presented in the last chapter. The
Wedge degrees of freedom I chose are: base length, top leg intrusion,
bottom leg intrusion, and wedge length (illustrated in Figure 29).

I chose these degrees of freedom because it is a small set that
completely describes a wedge’s shape and size, they are mostly
visible on-screen, they are easy to compute, and they represent
salient features of the shape. Also for the purposes of the model it
is convenient to have all parameters in the same units (i.e., pixels) –
which is the main reason for choosing base length instead of aperture
(in degrees).

Corners are one of the more interesting cases because wedges
located in the corner are not only rotated but will have one of its
legs cropped by the opposing edge of the screen. By representing
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d rotation

b intrusion

c aperturea normal

d rotationd rotated

bb reduced intrusion

c aperturec reduced aperturea normala normal

orbital

beam

beam

Figure 30: a) The orbital is the area where users expect the target to be
located. Its shape and size are determined by the intersection
between the two beams emerging from each leg. Changing b)
intrusion, c) aperture, and d) rotation of the wedge affects size
and shape of the orbital.

a wedge with two separate on-screen wedge leg extrusions, I was
able to model both rotated wedges and corner wedges with same
parameters.

My goal is to create a formal model that predicts the interpretabil-
ity of a wedge. Interpretability is a complex topic and to discuss it
further, I introduce the term orbital. I derive the term from chemistry,
where a molecular orbital is the region in which an electron may be
found in a molecule – basically, a two dimensional probability dis-
tribution. Figure 30 illustrates the concept used with Wedge. While
we tend to think of Wedge legs as the first part of a line pointing
toward the off-screen target, there is a certain amount of uncertainty
about the angle. As a result, the shape emerging from a leg is not a
line, but a cone. I call them beams. The intersection of the two beams
is where the user would expect to find the off-screen target; this is
the orbital. In reality, beams and orbitals have a fuzzy perimeter, but
for the sake of simplicity, I illustrate them as solids. The size of the
orbital depends on two factors: beam spread and intersection angle.

The spread of each beam depends on the length of the leg from
which it emerges. In the same way that a rifle fires more accurately
than a pistol, long legs resulting from deeper intrusion result in
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thinner beams (Figure 30a) than the shorter legs of a wedge with
shallow intrusion (Figure 30b). Note that the orbital of a wedge is
infinite if the outside edges of the two beams diverge, as is the case
in Figure 30b. In this case, a wedge provides users with an estimate
of the minimum target distance, but not with an estimate for the
maximum distance.

The angle under which the two beams intersect depends on the
aperture separating the wedge legs. Decreasing the aperture of a
wedge (Figure 30c) generally leads to a shallower angle, resulting in
a longer orbital.

Rotating a wedge decreases the spread of one beam at the expense
of increasing the spread of the other. This results in a skewed orbital
(Figure 30d).

Using this framework, I believe it is possible to develop a predictive
model of Wedge performance that relates Wedge length, base length,
and leg lengths directly to orbital size and position. The next section
describes an experiment that begins to provide the empirical support
needed to create such a predictive model.

5.2 data collection experiment

In this experiment, I collected data related to the perceptual com-
pletion of the triangular shape that forms the basis of the Wedge
off-screen pointing technique. Appendix A.3 contains raw results
and ancillary material from the experiment.

The experiment consisted of a task requiring the participants to
perceptually complete a triangle shape, show in Figure 31. The par-
ticipants were shown part of a triangle, containing three connected
line segments and they were asked to click in the blank space at the
location of the remaining vertex. The partial triangle was presented
at a different random orientation for each trial.

Participants were shown all triangles resulting from the factorial
combination of these independent variables:

leg lengths The length of the lines extending from the base of a
triangle. Four conditions used identical leg lengths (4, 8, 16, 32
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Figure 31: Triangle completion task: the blue lines were shown to the user
and they were asked to click where they believed the remaining
triangle vertex was located. All dashed red lines are drawn for
illustration purposes only and were not shown to the user.

pixels) and six used combinations of those lengths (4/8, 4/16,
4/32, 8/16, 8/32, 16/32).

base length The base of the triangle. Four levels were used (25, 50,
100, 200 pixels).

distance The distance from the base to undisplayed point. Four levels
were used (50, 100, 200, 300 pixels).

The set of trials was repeated 3 times for each participant, yielding
10 leg length combinations × 4 base lengths × 4 distances × 3 blocks
= 480 trials per participant.

The experiment system recorded depth error and breadth error.
Depth error is the difference from the selected point to the actual
point of the complete triangle along the length-wise axis of the
triangle. Depth error is a measurement of the misinterpretation of
the overall size of the triangle. Breadth error was calculated as the
distance along the width-wise axis of the triangle from the selected
to the correct point. It is a measurement of misinterpreting which
direction the triangle is pointing.

Twenty one participants recruited from undergraduate classes
participated in the study and all had normal or corrected to normal
vision. The participants received course credit for completing the
study.

At the start of the session, an administrator provided a brief
demonstration of the experiment and instructed the participant to
follow the on-screen prompts for the rest of the experiment. The
experiment application walked the participant through a training
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phase before it began recording error data. The training phase con-
sisted of 20 trials where the participant was supplied with feedback
on their performance and the completed shape was briefly shown
(0.5 seconds) at the end of each trial. No feedback was given after
the training. The training phase was designed to instruct the par-
ticipants on the task only, not to improve their performance with
the technique. I wished to model the real life performance of per-
ceptual shape completion. In real world situations the user is never
shown the full shape or any feedback, therefore I designed the ex-
perimental phase of the experiment to mimic this minimal feedback
environment.

5.3 experiment results

I analyzed the recorded data to determine trends and relationships
among the variables and determined the orbital size and shape
for each condition. Initially I will consider unrotated wedges (i.e.,
identical leg lengths) and I will consider rotated wedges separately
at the end of this section.

In Figure 32 I show all collected data points for each distance
when the base length was 50 pixels and the both legs were 16 pixels.
Overlaid onto this figure are the full triangle shapes for those condi-
tions. From this figure you can clearly see the spreading out of the
selected points as the distance increases. You can also note how the
center of hits (i.e., the bias) separates further from the actual target
as distance increases.

In general the distribution of errors for a given leg length, base
length and distance can be roughly fit to a bivariate normal distri-
bution oriented with one axis along the length of the triangle and
the other across. The two variables of the bivariate distribution are,
in this case, depth and breadth error, as described previously. In
these terms the orbital is the portion of the error distribution likely
to contain most positioning guesses from a user. Figure 33 illustrates
the measurements of the orbital discussed in the next subsections.
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Figure 32: Scatterplot showing all data points from study for all distances,
a base length of 50 pixels, and both legs at 16 pixels. Notice how
the depth error is much more spread than breadth error.
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Figure 33: Close-up of Figure 32 showing the measures of orbital bias,
width and length. The fourth measure, orbital offset, is not
shown in this case because it is zero.
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Orbital Bias

The distribution of depth error tends to be centered substantially
closer to the edge of the screen than the actual target position. I
define the orbital bias to be the mean value along the depth axis of
the error distribution. From the results of the experiment, shown in
Figure 34, it appears that bias is primarily determined by distance
(i.e., wedge length) and to a less extent base and leg length. A simple
linear regression (r2 = 0.625) produced the following equation:

bias = −58.781 + 0.582 dist− 0.002 base− 0.375 leg (5.1)

Orbital length

Along with bias, the orbital length is an important element that can
be modeled. It is effectively a measure of variation in the distribution
of depth errors. I chose to define the length of the orbital as the
standard deviation from the mean (i.e., bias) along the depth axis
for each participant and condition. The experiment indicates (see
Figure 35) orbital length is primarily determined by the distance to
the target (although to a lesser extent than bias) and the leg and base
length are also important factors. A linear regression (r2 = 0.135) of
these parameters yields:

length = 24.904 + 0.074 dist− 0.059 base− 0.217 leg (5.2)

Orbital width

While orbital length is a measurement of misinterpreting distance
to an off-screen target, the orbital width measures interpretation of
the direction to the target. I define orbital width as the standard
deviation along the breadth axis of the error distribution for each
participant and condition. See Figure 36 for a summary of the results.

Orbital width is much smaller than the length (length is on average
almost 4.5 times as large: length mean = 28.21 pixels; width mean
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Figure 34: Orbital bias results for unrotated wedges. Error bars indicate ±
1 standard error.
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Figure 35: Orbital length results for unrotated wedges. Error bars indicate
± 1 standard error.
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Figure 36: Orbital width results for unrotated wedges. Error bars indicate
± 1 standard error.
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Figure 37: Wedge orbital width for rotated triangles. The leg length values
listed are for the top and bottom leg lengths. For example 4/4 is
a non-rotated wedge with both legs at 4 pixels and 4/8 has one
leg of 4 pixels and the other of 8.

= 6.35). So much so that almost all of the misinterpretation error
is in depth. For completeness and despite its poor fit (r2 = 0.080) I
include an equation relating orbital width to the wedge factors:

width = 4.010 + 0.012 dist + 0.013 base− 0.050 leg (5.3)

Equations 5.1-5.3 are clearly too simple to capture all of the com-
plexities of the error distributions. From Figures 34-36 there does
appear to be certain patterns and complex interactions between the
factors. However, I was unable to mathematically capture those rela-
tionships and I therefore must leave a full investigation for future
work.

Rotated wedges

When legs are not equal (i.e., the wedge is rotated) the triangle is
usually interpreted very similarly to a non-rotated version. However,
this is not true when the triangle has a large difference between
leg lengths. As you can see in Figure 37, highly rotated triangles,
like those with one 32 pixel leg and the other 4 pixels long, have a
slightly increased orbital width. Participants appear to misinterpret
Wedge direction slightly more when it is heavily rotated.
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5.4 minimizing errors

Based on the experimental data, I provide a number of design impli-
cations for practitioners such that errors in interpreting Wedge are
minimized.

Since large wedges are more intrusive into the main display area
and they are more likely to overlap, a system designer should choose
the smallest possible leg and base length (which together determine
wedge size) that still results in a reasonably small orbital. Since an
increased leg and base length will result in a smaller orbital, the
exact level of compromise among the variables is a subjective matter.
I encourage a system designer to take into account the Wedge charac-
teristics outlined in this chapter along with the specific requirements
of the intended system when implementing Wedge.

A base length of at least 50 pixels appears sufficient for close
targets (50, 100 pixels from the screen edge) and a base length of at
least 100 pixels for further distances. Increasing it to 200 pixels does
improve bias at large distances but a 200 pixel base is probably too
large to be practical for most systems.

A large base length can actually be detrimental to orbital width.
As seen in Figure 36 large bases tend to increase orbital width.

Using an increased leg length (i.e., greater than 8 pixels) does
not have much of an effect on orbital length but does decrease
bias slightly. Because of this, along with the general desire to avoid
wedges from heavily intruding into the display, I recommend varying
leg lengths from roughly 8-16 pixels long.

What is clear from the results is that users are inconsistent in their
interpretation of wedges. There is both a large amount of variability
between participants and within a participant’s own performance.

It appears that a system designer should strike a fine balance to
limit this variability to reasonable levels, by eliminating situations
that increase variability above the base line. For the most part this
can be done by eliminating wedges with very small leg and base
lengths, especially for distant objects, and avoiding heavily rotated
objects as much as possible. However, rotating wedges, even heavily,
may still be preferable to displaying overlapping wedges.
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Figure 38: The relationship between distance from screen edge and angle
of intersection between a wedge’s leg and the screen edge.

5.5 correcting errors

Beyond the suggestions for minimizing interpretation error in the
last section, there is the possibility of correcting some of the users’
bias.

As discussed in Section 4.3 a simple bias correction was included
in the original version of Wedge. That method was simply to draw a
wedge for a given distance as if it was actually 25% further away. It
is illustrated in Figure 20 back in Chapter 4. As seen in Equation 5.1,
bias was actually closer to 50% but only significantly present for
distant targets (further than 100 pixels from the screen edge).

Regardless, another reason why the automatic correction scheme
from Section 4.3 did not work as well as intended is because as
distance grows so does the angle of intersection between the wedge
legs and the edge of the screen. The relationship is not linear and
levels off fairly rapidly (increased base length will push off the
leveling until a little later) meaning that after a certain distance, each
wedge for larger distances are virtually indistinguishable from one
another (i.e., all are very close to 90 degrees), as shown in Figure 38.
This relationship is:

f (x, c) = arctan(2x/c) (5.4)
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where f () is a function that calculates the current angle of inter-
section (in radians) of the leg/base vertex for a wedge with x as the
current wedge length and c as current base length.

A bias correction scheme that increases overall wedge length leads
to a problem: For a given base length, a larger wedge length results
in less distinguishability of leg/base vertex angles. The sections of
lines in Figure 38 that have leveled off have very small changes in
angle compared to the more vertical segments. The distinguishability
can be defined at the slope of the curve at a given point, i.e., the
derivative of Equation 5.4 with respect to x, which is:

f ′(a, c) =
2c

c2 + 4a2 (5.5)

Now, if the system automatically modifies the wedge length from
a to b, what new base length, d would be required to maintain the
same rate of change in intersection angle? To calculate, I equate two
derivatives of the form of Equation 5.5, modifying the variables and
solving for d:

f ′(a, c) = f ′(b, d)
2c

c2 + 4a2 =
2d

d2 + 4b2

d =
c2 + 4a2 −

√
c4 − 16b2c2 + 8a2c2 + 16a4

2c
(5.6)

For small values of a, b, c this function does not produce mean-
ingful results. For example, when c is 50 and b = a ∗ 1.25 (like the
Wedge length correction function used in Chapter 4) values of c are
out of range when a < 75.

Given the complexity of Equation 5.6 system designers may choose
to precalculate tables of overall Wedge lengths and base lengths for
reasonable distances in their system.

I have not tested this bias correction scheme and it is possible
that the improvements to distinguishability will be overshadowed
by increased overlap caused by the larger wedges. In any event
this discussion underscores the complexities involved in improving
Wedge interpretability.



5.6 conclusion 66

5.6 conclusion

In this chapter I presented a model that relates characteristics of a
wedge’s size and shape to the distribution of interpretation errors,
followed by a preliminary data collection experiment to provide
empirical foundations for a full predictive model. I then made sev-
eral recommendations based on the gathered data that will help
implementers of the Wedge technique avoid problems.

Although the results presented in this chapter are preliminary, I
believe they represent an excellent starting point for developing a
full predictive model of user performance using Wedge.
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S U M M A RY A N D F U T U R E W O R K

The display and navigation of large amounts of spatial data (espe-
cially maps) on small displays is a common problem for existing
navigation and presentation techniques. In this thesis, I report on
my thorough investigation of off-screen pointing techniques and
describe the specifics of a new technique, called Wedge, for visualiz-
ing the location of off-screen points of interest. Wedge has specific
advantages that make it more useful than traditional techniques.

I describe in detail the design and implementation of Wedge, as
well as the results and analysis of an empirical evaluation intended
to test the effectiveness of this technique in real world tasks. Fur-
thermore, I include a preliminary theoretical analysis that hopefully
serves as the start of a full predictive model of Wedge interpretability.
The preliminary model provides insight that may be used to guide
future design and could lead to a deeper understanding of off-screen
pointing in general.

By dynamically avoiding clutter, the Wedge off-screen pointing
technique improves on the distinctness and even spread of similar
techniques, like Halo [2]. I show Wedge to be easier to interpret and
to determine the position of off-screen points of interest. Wedge is
also more scalable than Halo, making it suitable for a wider range of
deployments.

The main contributions of this research are:

• The summary of existing techniques and a set of criteria for
evaluating them.

• The introduction of a new technique, Wedge, that is superior in
many respects to other techniques.

• The introduction of the concept of degrees of freedom for an
off-screen pointing technique and the use of them in a dynamic
layout algorithm.

67
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• A thorough evaluation of Wedge that supports its improve-
ments over Halo.

• An empirical investigation and preliminary model of user per-
formance using Wedge.

6.1 future work

The most exciting prospect for future work in this area is the inte-
gration of off-screen pointing into a general Fitts’ Law [18] model of
selection in multi-scale environments. Fitts’ Law is a classic model,
used extensively in HCI, that can be used to predict the selection time
of a target based on its distance and size. There are many variations
of this model, such as [22, 23], that extend its usefulness beyond
one dimensional pointing tasks. Of particular interest to this thesis
is the finding by Guiard and Beaudouin-Lafon [24] that Fitts’ Law
still applies when navigating multi-scale worlds (such as map in-
terfaces), where pointing at the target involves a series of pan and
zoom operations as well as normal pointing. However, they show
this is only true when the exact off-screen location of the target is
known in advance and feedback is supplied throughout the user’s
navigation. When the target location is not known the user may
revert to a simple visual search-like [38] behavior that is typically
characterized by linearly scaling time (as opposed to the logarithmic
scaling of Fitts’ Law). An off-screen pointer provides the user with
partial knowledge of the target’s location, hypothetically resulting
in search times characterized by a weighted average of linear and
logarithmic functions.

That style of model was employed by Cockburn and colleagues [13,
15] in two related models that describe menu and hierarchical list
item selection time. In Cockburn’s models the weighted average
increased influence of the logarithmic term as the user’s familiarity
with the menu/list contents increased with use.

In a similar vein, Cao et al. [10] investigated target selection time
in a peephole pointing framework (where physical movement of
the display causes the virtual world to move in the opposite direc-
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tion, creating a portal-like effect). They came to the conclusion that
completely directed movement (i.e., the target location is precisely
known) results in a task completion time logarithmically related
to the target constraints, and undirected (i.e., search-like behavior)
navigation was related linearly.

There appears to be great possibility for creating a model of se-
lection time in multi-scale worlds (especially maps) that incorpo-
rates the effectiveness of off-screen pointing techniques. With such a
model, researchers could show the usefulness of specific off-screen
pointers in real world map navigation tasks and more completely
determine their benefits.

Beyond that, the research presented in this thesis opens up a
number of other possibilities for future exploration:

• Completing a full predictive model of Wedge interpretability.
This may lead to models for the interpretation of other off-
screen pointing techniques.

• An optimized version of Wedge could be created using the
model of interpretability. By selecting the smallest possible
wedge sizes that still have good accuracy, overall performance
should increase by improving the balance between accuracy
and risk of overlap.

• Testing Wedge in a real world scenario might reveal difficulties
with the technique not present in a lab setting.

• Chapter 3 lays out a good starting point for a taxonomy of
off-screen visualization techniques that could lead to new tech-
niques that address even more of the problems.

• Creating new interaction techniques, like Hop [31], that take
full advantage of off-screen pointers by shortcutting common
navigation tasks.

• Developing a more computationally efficient Wedge layout al-
gorithm would also be a useful endeavour. It could be based on
spring models, simulated annealing or possibly label placement
algorithms from Geographical Information System (GIS) and
augmented reality research.
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6.2 final words

Off-screen pointing in general, and Wedge in particular, are simple
techniques that have proved useful for improving the usability of
map interfaces on devices with very small displays.

As more power and functionality come to our mobile devices,
we will expect more from these small instruments and their tiny
displays. The constrained physical form factor of these devices will
become even more limiting as our expectations increase. Techniques
like Wedge that make up for this limitation (in whatever small way)
will only become increasingly important and I hope research in this
area continues.
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M AT E R I A L F R O M E X P E R I M E N T S

a.1 halo vs oval vs half arc study

Halo vs Oval vs Half Arc Pilot 
 
Within-Subjects Factors 

Measure:MEASURE_1 

Viz Dependent Variable 

1 Compression 

2 HalfArc 

3 NoEffect 

 
Descriptive Statistics 

 Mean Std. Deviation N 

Compression 334.8401 43.99794 5 

HalfArc 223.9094 59.79769 5 

NoEffect 162.8144 60.71734 5 

 
Multivariate Testsb 

Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .958 34.090a 2.000 3.000 .009 

Wilks' Lambda .042 34.090a 2.000 3.000 .009 

Hotelling's Trace 22.726 34.090a 2.000 3.000 .009 

Roy's Largest Root 22.726 34.090a 2.000 3.000 .009 

a. Exact statistic 

b. Design: Intercept  
 Within Subjects Design: Viz 

 
Pairwise Comparisons 

Measure:MEASURE_1 

(I) Viz (J) Viz 

 a 
95% Confidence Interval for 
Differencea 

Mean Difference 
(I-J) Std. Error Sig.a Lower Bound Upper Bound 

1 2 110.931* 14.782 .005 52.382 169.480 

3 172.026* 18.429 .002 99.032 245.019 

2 1 -110.931* 14.782 .005 -169.480 -52.382 

3 61.095* 8.357 .006 27.996 94.194 

3 1 -172.026* 18.429 .002 -245.019 -99.032 

2 -61.095* 8.357 .006 -94.194 -27.996 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

a. Adjustment for multiple comparisons: Bonferroni. 

 

Raw statistics from SPSS for Halo vs Oval vs Half arc evaluation
study. Above “No Effect” refers to Halo and “Compression” to Oval.
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a.2 wedge evaluation study

 

Locate Task – Means 
 

Viz Position Density Errpx Tmems 

Halo Corner Dense Mean 69.3380 2421.2014 

Std. Deviation 19.80299 1355.93641 

Sparse Mean 59.3819 2615.5625 

Std. Deviation 15.33213 1609.82159 

Total Mean 64.3600 2518.3819 

Std. Deviation 18.28466 1481.02120 

Side Dense Mean 38.6545 2384.5544 

Std. Deviation 21.54293 1284.01634 

Sparse Mean 31.4714 2219.1687 

Std. Deviation 17.68150 1024.21809 

Total Mean 35.0630 2301.8615 

Std. Deviation 19.89919 1156.19925 

Total Dense Mean 53.9962 2402.8779 

Std. Deviation 25.70567 1311.26391 

Sparse Mean 45.4267 2417.3656 

Std. Deviation 21.62152 1354.42672 

Total Mean 49.7115 2410.1217 

Std. Deviation 24.05574 1328.37083 

Wedge Corner Dense Mean 44.3345 2270.9109 

Std. Deviation 22.34972 968.58626 

Sparse Mean 40.7500 2216.2060 

Std. Deviation 20.27631 1013.74711 

Total Mean 42.5422 2243.5584 

Std. Deviation 21.26414 984.80252 

Side Dense Mean 32.0757 2161.5309 

Std. Deviation 17.07284 784.59780 

Sparse Mean 27.8187 2028.0692 

Std. Deviation 15.54502 731.88911 

Total Mean 29.9472 2094.8000 

Std. Deviation 16.35251 756.33060 

Total Dense Mean 38.2051 2216.2209 

Std. Deviation 20.68875 876.90805 

Sparse Mean 34.2843 2122.1376 

Std. Deviation 19.08362 882.97025 

Total Mean 36.2447 2169.1792 

Std. Deviation 19.92999 878.13199 

 

Raw statistics from SPSS for Wedge evaluation study.
Summary of means for Locate Task.
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Locate Task - Error 
 
Descriptive Statistics 

 Mean Std. Deviation N 

Errpx_mean.Halo.Corner.Dense 69.3380 19.80299 36 

Errpx_mean.Halo.Corner.Sparse 59.3819 15.33213 36 

Errpx_mean.Halo.Side.Dense 38.6545 21.54293 36 

Errpx_mean.Halo.Side.Sparse 31.4714 17.68150 36 

Errpx_mean.Wedges.Corner.Dense 44.3345 22.34972 36 

Errpx_mean.Wedges.Corner.Sparse 40.7500 20.27631 36 

Errpx_mean.Wedges.Side.Dense 32.0757 17.07284 36 

Errpx_mean.Wedges.Side.Sparse 27.8187 15.54502 36 

 
Multivariate Testsb

 

Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .352 19.003a 1.000 35.000 .000 

Wilks' Lambda .648 19.003a 1.000 35.000 .000 

Hotelling's Trace .543 19.003a 1.000 35.000 .000 

Roy's Largest Root .543 19.003a 1.000 35.000 .000 

Position Pillai's Trace .795 1.358E2 1.000 35.000 .000 

Wilks' Lambda .205 1.358E2 1.000 35.000 .000 

Hotelling's Trace 3.880 1.358E2 1.000 35.000 .000 

Roy's Largest Root 3.880 1.358E2 1.000 35.000 .000 

Density Pillai's Trace .452 28.843a 1.000 35.000 .000 

Wilks' Lambda .548 28.843a 1.000 35.000 .000 

Hotelling's Trace .824 28.843a 1.000 35.000 .000 

Roy's Largest Root .824 28.843a 1.000 35.000 .000 

Viz * Position Pillai's Trace .538 40.745a 1.000 35.000 .000 

Wilks' Lambda .462 40.745a 1.000 35.000 .000 

Hotelling's Trace 1.164 40.745a 1.000 35.000 .000 

Roy's Largest Root 1.164 40.745a 1.000 35.000 .000 

Viz * Density Pillai's Trace .112 4.399a 1.000 35.000 .043 

Wilks' Lambda .888 4.399a 1.000 35.000 .043 

Hotelling's Trace .126 4.399a 1.000 35.000 .043 

Roy's Largest Root .126 4.399a 1.000 35.000 .043 

Position * Density Pillai's Trace .008 .284a 1.000 35.000 .598 

Wilks' Lambda .992 .284a 1.000 35.000 .598 

Hotelling's Trace .008 .284a 1.000 35.000 .598 

Roy's Largest Root .008 .284a 1.000 35.000 .598 

Viz * Position * Density Pillai's Trace .044 1.613a 1.000 35.000 .212 

Wilks' Lambda .956 1.613a 1.000 35.000 .212 

Hotelling's Trace .046 1.613a 1.000 35.000 .212 

Roy's Largest Root .046 1.613a 1.000 35.000 .212 

a. Exact statistic       
b. Design: Intercept  
 Within Subjects Design: Viz + Position + Density + Viz * Position + Viz * Density + Position * Density + Viz * Position * Density 

 

Raw statistics from SPSS for Wedge evaluation study.
Locate Task, Error.
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Locate Task - Time 
 
Descriptive Statistics 

 Mean Std. Deviation N 

Tmems_mean.Halo.Corner.Dense 2421.2014 1355.93641 36 

Tmems_mean.Halo.Corner.Sparse 2615.5625 1609.82159 36 

Tmems_mean.Halo.Side.Dense 2384.5544 1284.01634 36 

Tmems_mean.Halo.Side.Sparse 2219.1687 1024.21809 36 

Tmems_mean.Wedges.Corner.Dense 2270.9109 968.58626 36 

Tmems_mean.Wedges.Corner.Sparse 2216.2060 1013.74711 36 

Tmems_mean.Wedges.Side.Dense 2161.5309 784.59780 36 

Tmems_mean.Wedges.Side.Sparse 2028.0692 731.88911 36 

 
Multivariate Testsb 
Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .084 3.222a 1.000 35.000 .081 

Wilks' Lambda .916 3.222a 1.000 35.000 .081 

Hotelling's Trace .092 3.222a 1.000 35.000 .081 

Roy's Largest Root .092 3.222a 1.000 35.000 .081 

Position Pillai's Trace .224 10.107a 1.000 35.000 .003 

Wilks' Lambda .776 10.107a 1.000 35.000 .003 

Hotelling's Trace .289 10.107a 1.000 35.000 .003 

Roy's Largest Root .289 10.107a 1.000 35.000 .003 

Density Pillai's Trace .018 .640a 1.000 35.000 .429 

Wilks' Lambda .982 .640a 1.000 35.000 .429 

Hotelling's Trace .018 .640a 1.000 35.000 .429 

Roy's Largest Root .018 .640a 1.000 35.000 .429 

Viz * Position Pillai's Trace .020 .717a 1.000 35.000 .403 

Wilks' Lambda .980 .717a 1.000 35.000 .403 

Hotelling's Trace .020 .717a 1.000 35.000 .403 

Roy's Largest Root .020 .717a 1.000 35.000 .403 

Viz * Density Pillai's Trace .045 1.636a 1.000 35.000 .209 

Wilks' Lambda .955 1.636a 1.000 35.000 .209 

Hotelling's Trace .047 1.636a 1.000 35.000 .209 

Roy's Largest Root .047 1.636a 1.000 35.000 .209 

Position * Density Pillai's Trace .115 4.540a 1.000 35.000 .040 

Wilks' Lambda .885 4.540a 1.000 35.000 .040 

Hotelling's Trace .130 4.540a 1.000 35.000 .040 

Roy's Largest Root .130 4.540a 1.000 35.000 .040 

Viz * Position * Density Pillai's Trace .096 3.696a 1.000 35.000 .063 

Wilks' Lambda .904 3.696a 1.000 35.000 .063 

Hotelling's Trace .106 3.696a 1.000 35.000 .063 

Roy's Largest Root .106 3.696a 1.000 35.000 .063 

a. Exact statistic       
b. Design: Intercept  
 Within Subjects Design: Viz + Position + Density + Viz * Position + Viz * Density + Position * Density + Viz * Position * Density 

 

Raw statistics from SPSS for Wedge evaluation study.
Locate Task, Completion Time.
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Avoid Task – Means 
 
Viz Position Density Time ErrorRate 

Halo Corner Dense Mean 4342.8785 30.9028 

Std. Deviation 2440.43650 17.29113 

Sparse Mean 4158.6528 37.1528 

Std. Deviation 2168.11711 18.29474 

Total Mean 4250.7656 34.0278 

Std. Deviation 2293.85915 17.95218 

Side Dense Mean 4131.8958 31.5972 

Std. Deviation 2167.35839 17.80001 

Sparse Mean 4023.7049 32.2917 

Std. Deviation 2064.14871 24.34407 

Total Mean 4077.8003 31.9444 

Std. Deviation 2102.13180 21.17675 

Total Dense Mean 4237.3872 31.2500 

Std. Deviation 2294.09005 17.42691 

Sparse Mean 4091.1788 34.7222 

Std. Deviation 2102.90964 21.52036 

Total Mean 4164.2830 32.9861 

Std. Deviation 2194.09588 19.58993 

Wedges Corner Dense Mean 4085.7188 27.7778 

Std. Deviation 1824.51447 19.15890 

Sparse Mean 4166.1875 35.7639 

Std. Deviation 1816.14033 24.84825 

Total Mean 4125.9531 31.7708 

Std. Deviation 1807.92158 22.39387 

Side Dense Mean 4236.9688 30.9028 

Std. Deviation 2111.86787 17.29113 

Sparse Mean 4318.5208 31.5972 

Std. Deviation 2167.63713 28.58042 

Total Mean 4277.7448 31.2500 

Std. Deviation 2125.20751 23.45583 

Total Dense Mean 4161.3438 29.3403 

Std. Deviation 1960.96104 18.18815 

Sparse Mean 4242.3542 33.6806 

Std. Deviation 1986.97616 26.67281 

Total Mean 4201.8490 31.5104 

Std. Deviation 1967.51711 22.85218 

 
 

Raw statistics from SPSS for Wedge evaluation study.
Summary of means for Avoid Task.
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Avoid Task - Percent Correct 
 

Descriptive Statistics 

 Mean Std. Deviation N 

CorrectYN_mean.Halo.Corner.Dense .6910 .17291 36 

CorrectYN_mean.Halo.Corner.Sparse .6285 .18295 36 

CorrectYN_mean.Halo.Side.Dense .6840 .17800 36 

CorrectYN_mean.Halo.Side.Sparse .6771 .24344 36 

CorrectYN_mean.Wedges.Corner.Dense .7222 .19159 36 

CorrectYN_mean.Wedges.Corner.Sparse .6424 .24848 36 

CorrectYN_mean.Wedges.Side.Dense .6910 .17291 36 

CorrectYN_mean.Wedges.Side.Sparse .6840 .28580 36 

 

Multivariate Testsb 
Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .015 .541a 1.000 35.000 .467 

Wilks' Lambda .985 .541a 1.000 35.000 .467 

Hotelling's Trace .015 .541a 1.000 35.000 .467 

Roy's Largest Root .015 .541a 1.000 35.000 .467 

Position Pillai's Trace .020 .699a 1.000 35.000 .409 

Wilks' Lambda .980 .699a 1.000 35.000 .409 

Hotelling's Trace .020 .699a 1.000 35.000 .409 

Roy's Largest Root .020 .699a 1.000 35.000 .409 

Density Pillai's Trace .095 3.654a 1.000 35.000 .064 

Wilks' Lambda .905 3.654a 1.000 35.000 .064 

Hotelling's Trace .104 3.654a 1.000 35.000 .064 

Roy's Largest Root .104 3.654a 1.000 35.000 .064 

Viz * Position Pillai's Trace .004 .157a 1.000 35.000 .694 

Wilks' Lambda .996 .157a 1.000 35.000 .694 

Hotelling's Trace .004 .157a 1.000 35.000 .694 

Roy's Largest Root .004 .157a 1.000 35.000 .694 

Viz * Density Pillai's Trace .002 .058a 1.000 35.000 .811 

Wilks' Lambda .998 .058a 1.000 35.000 .811 

Hotelling's Trace .002 .058a 1.000 35.000 .811 

Roy's Largest Root .002 .058a 1.000 35.000 .811 

Position * Density Pillai's Trace .112 4.422a 1.000 35.000 .043 

Wilks' Lambda .888 4.422a 1.000 35.000 .043 

Hotelling's Trace .126 4.422a 1.000 35.000 .043 

Roy's Largest Root .126 4.422a 1.000 35.000 .043 

Viz * Position * Density Pillai's Trace .001 .050a 1.000 35.000 .825 

Wilks' Lambda .999 .050a 1.000 35.000 .825 

Hotelling's Trace .001 .050a 1.000 35.000 .825 

Roy's Largest Root .001 .050a 1.000 35.000 .825 

a. Exact statistic       
b. Design: Intercept  
 Within Subjects Design: Viz + Position + Density + Viz * Position + Viz * Density + Position * Density + Viz * Position * Density 

Raw statistics from SPSS for Wedge evaluation study.
Avoid Task, Percent Correct.
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Avoid Task - Time 
 

Descriptive Statistics 

 Mean Std. Deviation N 

Time_mean.Halo.Corner.Dense 4342.8785 2440.43650 36 

Time_mean.Halo.Corner.Sparse 4158.6528 2168.11711 36 

Time_mean.Halo.Side.Dense 4131.8958 2167.35839 36 

Time_mean.Halo.Side.Sparse 4023.7049 2064.14871 36 

Time_mean.Wedges.Corner.Dense 4085.7188 1824.51447 36 

Time_mean.Wedges.Corner.Sparse 4166.1875 1816.14033 36 

Time_mean.Wedges.Side.Dense 4236.9688 2111.86787 36 

Time_mean.Wedges.Side.Sparse 4318.5208 2167.63713 36 

 

Multivariate Testsb 
Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .001 .037a 1.000 35.000 .848 

Wilks' Lambda .999 .037a 1.000 35.000 .848 

Hotelling's Trace .001 .037a 1.000 35.000 .848 

Roy's Largest Root .001 .037a 1.000 35.000 .848 

Position Pillai's Trace .000 .007a 1.000 35.000 .932 

Wilks' Lambda 1.000 .007a 1.000 35.000 .932 

Hotelling's Trace .000 .007a 1.000 35.000 .932 

Roy's Largest Root .000 .007a 1.000 35.000 .932 

Density Pillai's Trace .002 .085a 1.000 35.000 .772 

Wilks' Lambda .998 .085a 1.000 35.000 .772 

Hotelling's Trace .002 .085a 1.000 35.000 .772 

Roy's Largest Root .002 .085a 1.000 35.000 .772 

Viz * Position Pillai's Trace .027 .988a 1.000 35.000 .327 

Wilks' Lambda .973 .988a 1.000 35.000 .327 

Hotelling's Trace .028 .988a 1.000 35.000 .327 

Roy's Largest Root .028 .988a 1.000 35.000 .327 

Viz * Density Pillai's Trace .035 1.284a 1.000 35.000 .265 

Wilks' Lambda .965 1.284a 1.000 35.000 .265 

Hotelling's Trace .037 1.284a 1.000 35.000 .265 

Roy's Largest Root .037 1.284a 1.000 35.000 .265 

Position * Density Pillai's Trace .002 .063a 1.000 35.000 .804 

Wilks' Lambda .998 .063a 1.000 35.000 .804 

Hotelling's Trace .002 .063a 1.000 35.000 .804 

Roy's Largest Root .002 .063a 1.000 35.000 .804 

Viz * Position * Density Pillai's Trace .001 .026a 1.000 35.000 .873 

Wilks' Lambda .999 .026a 1.000 35.000 .873 

Hotelling's Trace .001 .026a 1.000 35.000 .873 

Roy's Largest Root .001 .026a 1.000 35.000 .873 

a. Exact statistic       
b. Design: Intercept  
 Within Subjects Design: Viz + Position + Density + Viz * Position + Viz * Density + Position * Density + Viz * Position * Density 

 

Raw statistics from SPSS for Wedge evaluation study.
Avoid Task, Completion Time.
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Closest Task – Means 
 
Viz Position Density Time ErrorRate 

Halo Corner Dense Mean 4711.9479 49.3056 

Std. Deviation 3626.60539 15.21995 

Sparse Mean 4816.0729 60.0694 

Std. Deviation 4382.54914 20.44580 

Total Mean 4764.0104 54.6875 

Std. Deviation 3994.29220 18.69858 

Side Dense Mean 3603.8819 34.3750 

Std. Deviation 2375.51120 21.83031 

Sparse Mean 4122.2917 27.0833 

Std. Deviation 3240.29371 17.80349 

Total Mean 3863.0868 30.7292 

Std. Deviation 2832.97227 20.11603 

Total Dense Mean 4157.9149 41.8403 

Std. Deviation 3094.60409 20.14032 

Sparse Mean 4469.1823 43.5764 

Std. Deviation 3842.64872 25.26210 

Total Mean 4313.5486 42.7083 

Std. Deviation 3480.02002 22.78184 

Wedges Corner Dense Mean 5067.2569 44.0972 

Std. Deviation 3017.45733 13.85064 

Sparse Mean 5532.5590 50.6944 

Std. Deviation 4158.05535 23.13478 

Total Mean 5299.9080 47.3958 

Std. Deviation 3614.72666 19.22091 

Side Dense Mean 4674.7569 29.8611 

Std. Deviation 2910.22321 17.74768 

Sparse Mean 4465.6667 20.8333 

Std. Deviation 2957.46909 15.52648 

Total Mean 4570.2118 25.3472 

Std. Deviation 2915.10811 17.16893 

Total Dense Mean 4871.0069 36.9792 

Std. Deviation 2950.00284 17.35573 

Sparse Mean 4999.1128 35.7639 

Std. Deviation 3622.60185 24.67264 

Total Mean 4935.0599 36.3715 

Std. Deviation 3292.52154 21.26430 

 
 

Raw statistics from SPSS for Wedge evaluation study.
Summary of means for Closest Task.
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Closest Task - Percent Correct 
 
Descriptive Statistics 

 Mean Std. Deviation N 

CorrectYN_mean.Halo.Corner.Dense .5069 .15220 36 

CorrectYN_mean.Halo.Corner.Sparse .3993 .20446 36 

CorrectYN_mean.Halo.Side.Dense .6563 .21830 36 

CorrectYN_mean.Halo.Side.Sparse .7292 .17803 36 

CorrectYN_mean.Wedges.Corner.Dense .5590 .13851 36 

CorrectYN_mean.Wedges.Corner.Sparse .4931 .23135 36 

CorrectYN_mean.Wedges.Side.Dense .7014 .17748 36 

CorrectYN_mean.Wedges.Side.Sparse .7917 .15526 36 

 
Multivariate Testsb 
Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .120 4.793a 1.000 35.000 .035 

Wilks' Lambda .880 4.793a 1.000 35.000 .035 

Hotelling's Trace .137 4.793a 1.000 35.000 .035 

Roy's Largest Root .137 4.793a 1.000 35.000 .035 

Position Pillai's Trace .854 2.042E2 1.000 35.000 .000 

Wilks' Lambda .146 2.042E2 1.000 35.000 .000 

Hotelling's Trace 5.835 2.042E2 1.000 35.000 .000 

Roy's Largest Root 5.835 2.042E2 1.000 35.000 .000 

Density Pillai's Trace .001 .019a 1.000 35.000 .890 

Wilks' Lambda .999 .019a 1.000 35.000 .890 

Hotelling's Trace .001 .019a 1.000 35.000 .890 

Roy's Largest Root .001 .019a 1.000 35.000 .890 

Viz * Position Pillai's Trace .009 .312a 1.000 35.000 .580 

Wilks' Lambda .991 .312a 1.000 35.000 .580 

Hotelling's Trace .009 .312a 1.000 35.000 .580 

Roy's Largest Root .009 .312a 1.000 35.000 .580 

Viz * Density Pillai's Trace .016 .570a 1.000 35.000 .455 

Wilks' Lambda .984 .570a 1.000 35.000 .455 

Hotelling's Trace .016 .570a 1.000 35.000 .455 

Roy's Largest Root .016 .570a 1.000 35.000 .455 

Position * Density Pillai's Trace .567 45.821a 1.000 35.000 .000 

Wilks' Lambda .433 45.821a 1.000 35.000 .000 

Hotelling's Trace 1.309 45.821a 1.000 35.000 .000 

Roy's Largest Root 1.309 45.821a 1.000 35.000 .000 

Viz * Position * Density Pillai's Trace .006 .225a 1.000 35.000 .638 

Wilks' Lambda .994 .225a 1.000 35.000 .638 

Hotelling's Trace .006 .225a 1.000 35.000 .638 

Roy's Largest Root .006 .225a 1.000 35.000 .638 

a. Exact statistic       
b. Design: Intercept  
 Within Subjects Design: Viz + Position + Density + Viz * Position + Viz * Density + Position * Density + Viz * Position * Density 

 

Raw statistics from SPSS for Wedge evaluation study.
Closest Task, Percent Correct.
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Closest Task - Time 
 
Descriptive Statistics 

 Mean Std. Deviation N 

Time_mean.Halo.Corner.Dense 4711.9479 3626.60539 36 

Time_mean.Halo.Corner.Sparse 4816.0729 4382.54914 36 

Time_mean.Halo.Side.Dense 3603.8819 2375.51120 36 

Time_mean.Halo.Side.Sparse 4122.2917 3240.29371 36 

Time_mean.Wedges.Corner.Dense 5067.2569 3017.45733 36 

Time_mean.Wedges.Corner.Sparse 5532.5590 4158.05535 36 

Time_mean.Wedges.Side.Dense 4674.7569 2910.22321 36 

Time_mean.Wedges.Side.Sparse 4465.6667 2957.46909 36 

 
Multivariate Testsb 
Effect Value F Hypothesis df Error df Sig. 

Viz Pillai's Trace .175 7.399a 1.000 35.000 .010 

Wilks' Lambda .825 7.399a 1.000 35.000 .010 

Hotelling's Trace .211 7.399a 1.000 35.000 .010 

Roy's Largest Root .211 7.399a 1.000 35.000 .010 

Position Pillai's Trace .289 14.231a 1.000 35.000 .001 

Wilks' Lambda .711 14.231a 1.000 35.000 .001 

Hotelling's Trace .407 14.231a 1.000 35.000 .001 

Roy's Largest Root .407 14.231a 1.000 35.000 .001 

Density Pillai's Trace .048 1.764a 1.000 35.000 .193 

Wilks' Lambda .952 1.764a 1.000 35.000 .193 

Hotelling's Trace .050 1.764a 1.000 35.000 .193 

Roy's Largest Root .050 1.764a 1.000 35.000 .193 

Viz * Position Pillai's Trace .009 .304a 1.000 35.000 .585 

Wilks' Lambda .991 .304a 1.000 35.000 .585 

Hotelling's Trace .009 .304a 1.000 35.000 .585 

Roy's Largest Root .009 .304a 1.000 35.000 .585 

Viz * Density Pillai's Trace .035 1.282a 1.000 35.000 .265 

Wilks' Lambda .965 1.282a 1.000 35.000 .265 

Hotelling's Trace .037 1.282a 1.000 35.000 .265 

Roy's Largest Root .037 1.282a 1.000 35.000 .265 

Position * Density Pillai's Trace .016 .556a 1.000 35.000 .461 

Wilks' Lambda .984 .556a 1.000 35.000 .461 

Hotelling's Trace .016 .556a 1.000 35.000 .461 

Roy's Largest Root .016 .556a 1.000 35.000 .461 

Viz * Position * Density Pillai's Trace .087 3.332a 1.000 35.000 .076 

Wilks' Lambda .913 3.332a 1.000 35.000 .076 

Hotelling's Trace .095 3.332a 1.000 35.000 .076 

Roy's Largest Root .095 3.332a 1.000 35.000 .076 

a. Exact statistic       
b. Design: Intercept  
 Within Subjects Design: Viz + Position + Density + Viz * Position + Viz * Density + Position * Density + Viz * Position * Density 

 

Raw statistics from SPSS for Wedge evaluation study – Closest Task,
Completion Time.
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Chi-Square Test 
 
Locate 

 Observed N Expected N Residual 

Wedge 25 17.5 7.5 

Halo 10 17.5 -7.5 

Total 35   

 
Avoid 

 Observed N Expected N Residual 

Wedge 21 17.0 4.0 

Halo 13 17.0 -4.0 

Total 34   

 
Closest 

 Observed N Expected N Residual 

Wedge 18 16.0 2.0 

Halo 14 16.0 -2.0 

Total 32   

 
Test Statistics 

 Locate Avoid Closest 

Chi-Square 6.429a 1.882b .500c 

Df 1 1 1 

Asymp. Sig. .011 .170 .480 

a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 17.5. 

b. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 17.0. 

c. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 16.0. 

 

Raw statistics from SPSS for Wedge evaluation study.
User preferences for each task.
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# ___________ 

 1 

Off-screen Target Study 

 
Age:    under 21   21-25    26-30    over 30     (circle one) 

Sex:    Male  Female    (circle one) 

Which is your dominant hand (the hand you write with)?         Left     Right   (circle one) 

Do you have any visual impairments (including colorblindness)?   Yes     No     (circle one) 

 If so, what? _____________________________________________________________ 

 

 

 

 

 

 

 

 

The following questions correspond to the “Locate” portion of the task.  Where you had to click off-

screen where you thought each item of located. 

 
 

  

During this task, which technique did you prefer? (circle) 

        

           Rings     Wedges    No preference 

 

Please write down any comments you may have regarding 

the Locate task: 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

 

 

  

Questionnaire from Wedge evaluation study. Page 1 of 2.
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# ___________ 

 2 

The following questions correspond to the “Avoid” portion of the task.  Where you were an ambulance 

driver needing to drop a patient off at the hospital (cross) that is farthest away from any accidents or 

constructions zones (flash icons or rings/wedges).  

 
 

During this task, which technique did you prefer? (circle) 

        

           Rings     Wedges    No preference 

 

Please write down any comments you may have regarding 

the Avoid task: 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

 

The following questions correspond to the “Closest” portion of the task.  Where you were asked to click 

the ring/wedge representing the off-screen location closest to the car. 

 

During this task, which technique did you prefer? (circle) 

        

           Rings     Wedges    No preference 

 

Please write down any comments you may have regarding 

the Closest task: 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

 

Questionnaire from Wedge evaluation study. Page 2 of 2.
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Rings 
 
 
 

 
 

Training material given during Wedge evaluation study. Page 1 of 2.
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Wedges 
 
 
 
 

 

Training material given during Wedge evaluation study. Page 2 of 2.
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Wedges Study – Oct 2007 
Page 1/1 

Revision Date:  Oct 8, 2007 

Participant Information 
 

Date / Time: _____________________________________ 
 
Participant Number: ______    Participant Name: _________________________________ 
 

 
Informed Consent Agreement 

Please read this consent agreement carefully before you decide to participate in the study. 
 

Purpose of the research study: The purpose of the study is to evaluate features of a PDA-based map application. 
 
What you will do in the study: You will interact with a simulated PDA on a desktop personal computer using a mapping 
application.  
 
Time required: The study will require about 30-60 minutes of your time. 
 
Risks: There are no anticipated risks in this study.  
 
Benefits: You will receive a 2% mark in COMP1260 in exchange for your participation. 
 
Confidentiality: The information that you give in the study will be handled confidentially. It will be viewable only by 
researchers working on this project, which may involve faculty members and graduate research assistants.  
 
Voluntary participation: Your participation in the study is completely voluntary.  
 
Right to withdraw from the study: You have the right to withdraw from the study at any time without penalty. 
 
How to withdraw from the study: If you want to withdraw from the study, please inform the experimenter and leave the 
room.  There is no penalty for withdrawing. You will still receive full credit for the study.  If you would like to withdraw 
after your materials have been submitted, please contact one of the researchers listed below. 
 
 
If you have questions about the study, contact: 
Sean Gustafson 
Department of Computer Science, E2-445 EITC  
University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 
Phone: +1 (204) 474-8313 
 
Faculty Advisor: Dr. Pourang Irani 
Department of Computer Science, E2-580 EITC 
University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 
Phone: +1 (204) 474-8995 
 
Agreement: 
I agree to participate in the research study described above. 
 
Signature: _____________________________________________  Date:  _____________ 
 

Consent form from the Wedge evaluation study.
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a.3 wedge model study

orbitalBias orbitalLength orbitalWidth  * distance * baseLength 

distance baseLength orbitalBias orbitalLength orbitalWidth 

50 25 Mean -33.7135 23.2950 4.4440 

Std. Deviation 44.78907 24.46630 4.42403 

50 Mean -19.5554 16.7130 3.2775 

Std. Deviation 26.44677 16.79084 2.78338 

100 Mean -13.9651 12.9970 4.3473 

Std. Deviation 26.60330 13.90458 4.62890 

200 Mean -21.2361 17.2430 6.4935 

Std. Deviation 44.22616 19.97530 5.14446 

Total Mean -22.1175 17.5620 4.6406 

Std. Deviation 37.18195 19.45754 4.47130 

100 25 Mean -35.2843 34.8942 6.2876 

Std. Deviation 43.06919 23.38810 4.84078 

50 Mean -28.1571 26.8409 5.4422 

Std. Deviation 38.97869 22.54281 4.08806 

100 Mean -7.1720 20.6557 5.5799 

Std. Deviation 22.30528 14.84928 4.37008 

200 Mean -5.6108 19.0899 7.6893 

Std. Deviation 31.51443 18.43276 6.37531 

Total Mean -19.0560 25.3702 6.2498 

Std. Deviation 37.05266 20.95221 5.05413 

200 25 Mean 48.0012 36.1285 5.7130 

Std. Deviation 50.25033 21.65167 5.31920 

50 Mean 43.3601 40.0275 5.8082 

Std. Deviation 43.59795 24.36577 3.88851 

100 Mean 47.8518 30.8537 6.6107 

Std. Deviation 41.39767 21.55264 4.94224 

200 Mean 35.8287 25.2884 8.0758 

Std. Deviation 31.45966 18.53330 8.64321 

Total Mean 43.7605 33.0745 6.5519 

Std. Deviation 42.31902 22.23358 6.01793 

300 25 Mean 120.8669 39.7005 7.4226 

Std. Deviation 59.18107 25.16720 5.35822 

50 Mean 127.1839 40.3892 6.3335 

Std. Deviation 45.63397 26.48162 3.47755 

100 Mean 125.7222 37.0517 9.2272 

Std. Deviation 49.17359 27.12730 5.98861 

200 Mean 95.9331 30.2258 8.9091 

Std. Deviation 44.14485 18.31042 5.16436 

Total Mean 117.4265 36.8418 7.9731 

Std. Deviation 51.24032 24.74392 5.19300 

Total 25 Mean 24.9676 33.5045 5.9668 

Std. Deviation 81.62583 24.39032 5.09248 

50 Mean 30.7078 30.9926 5.2154 

Std. Deviation 73.57277 24.79234 3.76281 

100 Mean 38.1092 25.3895 6.4413 

Std. Deviation 66.82022 22.03780 5.31192 

200 Mean 26.2287 22.9618 7.7919 

Std. Deviation 59.32308 19.43598 6.51941 

Total Mean 30.0033 28.2121 6.3538 

Std. Deviation 70.92421 23.12826 5.34060 

Means from SPSS for Wedge modeling study. Page 1 of 2.
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orbitalBias orbitalLength orbitalWidth  * distance * legLength 

distance legLength orbitalBias orbitalLength orbitalWidth 

50 4 Mean -42.7245 25.5124 6.0840 

Std. Deviation 51.43170 21.91876 5.10870 

8 Mean -23.9951 18.0403 5.5855 

Std. Deviation 32.54654 17.92235 4.11026 

16 Mean -13.8563 13.8778 4.0878 

Std. Deviation 28.97599 15.59363 4.58192 

32 Mean -7.8943 12.8175 2.8049 

Std. Deviation 18.13058 19.55870 3.15812 

Total Mean -22.1175 17.5620 4.6406 

Std. Deviation 37.18195 19.45754 4.47130 

100 4 Mean -14.7091 32.3419 6.9402 

Std. Deviation 38.49392 25.40955 5.55096 

8 Mean -26.9111 24.3366 6.8962 

Std. Deviation 41.46443 19.01387 5.71924 

16 Mean -19.3666 24.5081 6.2691 

Std. Deviation 35.44178 19.69123 4.80909 

32 Mean -15.2374 20.2941 4.8935 

Std. Deviation 31.42607 17.31560 3.69901 

Total Mean -19.0560 25.3702 6.2498 

Std. Deviation 37.05266 20.95221 5.05413 

200 4 Mean 58.8812 35.7245 7.8625 

Std. Deviation 45.26874 23.45969 8.89303 

8 Mean 57.8970 30.6459 5.3427 

Std. Deviation 32.70544 19.84202 3.97191 

16 Mean 37.6536 31.3765 6.2627 

Std. Deviation 37.40216 20.51842 4.43199 

32 Mean 20.6100 34.5511 6.7397 

Std. Deviation 41.19126 24.73713 5.32237 

Total Mean 43.7605 33.0745 6.5519 

Std. Deviation 42.31902 22.23358 6.01793 

300 4 Mean 129.7223 37.9615 7.5244 

Std. Deviation 57.28039 28.33482 5.17738 

8 Mean 130.5292 38.8360 8.1135 

Std. Deviation 49.23681 27.27479 5.52805 

16 Mean 112.9655 36.7893 8.4933 

Std. Deviation 42.37457 20.24746 4.74042 

32 Mean 96.4892 33.7806 7.7613 

Std. Deviation 48.01792 22.35307 5.33521 

Total Mean 117.4265 36.8418 7.9731 

Std. Deviation 51.24032 24.74392 5.19300 

Total 4 Mean 32.7925 32.8851 7.1028 

Std. Deviation 82.85781 25.22817 6.38690 

8 Mean 34.3800 27.9647 6.4845 

Std. Deviation 76.20518 22.59310 5.00075 

16 Mean 29.3491 26.6379 6.2782 

Std. Deviation 64.37623 20.87173 4.87844 

32 Mean 23.4919 25.3608 5.5499 

Std. Deviation 57.26350 23.00686 4.84877 

Total Mean 30.0033 28.2121 6.3538 

Std. Deviation 70.92421 23.12826 5.34060 

Means from SPSS for Wedge modeling study. Page 2 of 2.
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Model Summary 

Model R R Square Adjusted R Square 
Std. Error of the 
Estimate 

1 .788a .622 .621 43.64892 

2 .788b .622 .621 43.66500 

3 .790c .625 .624 43.49486 

a. Predictors: (Constant), distance 

b. Predictors: (Constant), distance, baseLength 

c. Predictors: (Constant), distance, baseLength, legLength 

 
ANOVAd 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 4198801.744 1 4198801.744 2203.831 .000a 

Residual 2556816.292 1342 1905.228   

Total 6755618.035 1343    
2 Regression 4198824.658 2 2099412.329 1101.110 .000b 

Residual 2556793.378 1341 1906.632   
Total 6755618.035 1343    

3 Regression 4220601.669 3 1406867.223 743.665 .000c 

Residual 2535016.367 1340 1891.803   
Total 6755618.035 1343    

a. Predictors: (Constant), distance 

b. Predictors: (Constant), distance, baseLength 

c. Predictors: (Constant), distance, baseLength, legLength 

d. Dependent Variable: orbitalBias 

 
Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients  

B Std. Error Beta t Sig. 

1 (Constant) -64.594 2.341  -27.598 .000 

distance .582 .012 .788 46.945 .000 

2 (Constant) -64.412 2.874  -22.415 .000 

distance .582 .012 .788 46.928 .000 

baseLength -.002 .018 -.002 -.110 .913 

3 (Constant) -58.781 3.309  -17.766 .000 

distance .582 .012 .788 47.111 .000 

baseLength -.002 .018 -.002 -.110 .912 

legLength -.375 .111 -.057 -3.393 .001 

a. Dependent Variable: orbitalBias 

 
Excluded Variablesc 

Model 

 
Collinearity 
Statistics 

Beta In t Sig. Partial Correlation Tolerance 

1 baseLength -.002a -.110 .913 -.003 1.000 

legLength -.057a -3.394 .001 -.092 1.000 

2 legLength -.057b -3.393 .001 -.092 1.000 

a. Predictors in the Model: (Constant), distance 

b. Predictors in the Model: (Constant), distance, baseLength 

c. Dependent Variable: orbitalBias 

 

Bias regression results from SPSS for Wedge modeling study.
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Model Summary 

Model R R Square Adjusted R Square 
Std. Error of the 
Estimate 

1 .309a .096 .095 22.00377 

2 .353b .125 .124 21.65248 

3 .367c .135 .133 21.53508 

a. Predictors: (Constant), distance 

b. Predictors: (Constant), distance, baseLength 

c. Predictors: (Constant), distance, baseLength, legLength 

 
ANOVAd 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 68642.295 1 68642.295 141.774 .000a 

Residual 649750.652 1342 484.166   

Total 718392.947 1343    
2 Regression 89691.905 2 44845.953 95.655 .000b 

Residual 628701.041 1341 468.830   
Total 718392.947 1343    

3 Regression 96954.974 3 32318.325 69.688 .000c 

Residual 621437.973 1340 463.760   
Total 718392.947 1343    

a. Predictors: (Constant), distance 

b. Predictors: (Constant), distance, baseLength 

c. Predictors: (Constant), distance, baseLength, legLength 

d. Dependent Variable: orbitalLength 

 
Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients  

B Std. Error Beta t Sig. 

1 (Constant) 16.117 1.180  13.660 .000 

distance .074 .006 .309 11.907 .000 

2 (Constant) 21.653 1.425  15.195 .000 

distance .074 .006 .309 12.100 .000 

baseLength -.059 .009 -.171 -6.701 .000 

3 (Constant) 24.904 1.638  15.202 .000 

distance .074 .006 .309 12.166 .000 

baseLength -.059 .009 -.171 -6.737 .000 

legLength -.217 .055 -.101 -3.957 .000 

a. Dependent Variable: orbitalLength 

 
Excluded Variablesc 

Model 

 
Collinearity 
Statistics 

Beta In t Sig. Partial Correlation Tolerance 

1 baseLength -.171a -6.701 .000 -.180 1.000 

legLength -.101a -3.894 .000 -.106 1.000 

2 legLength -.101b -3.957 .000 -.107 1.000 

a. Predictors in the Model: (Constant), distance 

b. Predictors in the Model: (Constant), distance, baseLength 

c. Dependent Variable: orbitalLength 

 

Orbital length regression results from SPSS for Wedge modeling
study.
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Model Summary 

Model R R Square Adjusted R Square 
Std. Error of the 
Estimate 

1 .209a .044 .043 5.22415 

2 .264b .070 .068 5.15519 

3 .282c .080 .078 5.12934 

a. Predictors: (Constant), distance 

b. Predictors: (Constant), distance, baseLength 

c. Predictors: (Constant), distance, baseLength, legLength 

 
ANOVAd 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 1679.482 1 1679.482 61.538 .000a 

Residual 36625.570 1342 27.292   

Total 38305.052 1343    
2 Regression 2666.599 2 1333.300 50.169 .000b 

Residual 35638.453 1341 26.576   
Total 38305.052 1343    

3 Regression 3049.527 3 1016.509 38.636 .000c 

Residual 35255.525 1340 26.310   
Total 38305.052 1343    

a. Predictors: (Constant), distance 

b. Predictors: (Constant), distance, baseLength 

c. Predictors: (Constant), distance, baseLength, legLength 

d. Dependent Variable: orbitalWidth 

 
Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients  

B Std. Error Beta t Sig. 

1 (Constant) 4.462 .280  15.928 .000 

distance .012 .001 .209 7.845 .000 

2 (Constant) 3.263 .339  9.618 .000 

distance .012 .001 .209 7.950 .000 

baseLength .013 .002 .161 6.095 .000 

3 (Constant) 4.010 .390  10.276 .000 

distance .012 .001 .209 7.990 .000 

baseLength .013 .002 .161 6.125 .000 

legLength -.050 .013 -.100 -3.815 .000 

a. Dependent Variable: orbitalWidth 

 
Excluded Variablesc 

Model 

 
Collinearity 
Statistics 

Beta In t Sig. Partial Correlation Tolerance 

1 baseLength .161a 6.095 .000 .164 1.000 

legLength -.100a -3.764 .000 -.102 1.000 

2 legLength -.100b -3.815 .000 -.104 1.000 

a. Predictors in the Model: (Constant), distance 

b. Predictors in the Model: (Constant), distance, baseLength 

c. Dependent Variable: orbitalWidth 

 

Orbital width regression results from SPSS for Wedge modeling
study.
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Wedge Modeling Study – Oct 9-10 / 2008 
Page 1/2 

Revision Date:  Oct 9, 2008 

 
Participant Information 

 
Date / Time: _____________________________________ 
 
Participant Number: ______    Participant Name: _________________________________ 
 

 
 

Informed Consent Agreement 
Please read this consent agreement carefully before you decide to participate in the study. 

 
Purpose of the research study: The purpose of the study is to gather exploratory data regarding people’s ability to 
perceive partially obscured shapes. 
 
What you will do in the study: You will interact with an experimental application running on a standard desktop 
computer. You will be shown a portion of a large triangle and you will be asked to click on the screen where you believe is 
the opposing point of the triangle. You will perform this task repeatedly with several short breaks. 
 
Time required: The study will require about 30-60 minutes of your time. 
 
Risks: There are no anticipated risks in this study.  
 
Benefits: You will receive a 2% participation mark in COMP3020 (up to a maximum of 5% per term) in exchange for your 
participation. 
 
Confidentiality: The information that you give in the study will be handled confidentially. It will be viewable only by 
researchers working on this project, which may involve faculty members and graduate research assistants.  
 
Voluntary participation: Your participation in the study is completely voluntary.  
 
Right to withdraw from the study: You have the right to withdraw from the study at any time without penalty. 
 
How to withdraw from the study: If you want to withdraw from the study, please inform the experimenter and leave the 
room.  There is no penalty for withdrawing. You will still receive full credit for the study.  If you would like to withdraw 
after your materials have been submitted, please contact one of the researchers listed below. 
 
 
If you have questions about the study, contact: 
Sean Gustafson 
Department of Computer Science, E2-445 EITC  
University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 
Phone: +1 (204) 474-8313 
 
Faculty Advisor: Dr. Pourang Irani 
Department of Computer Science, E2-580 EITC 
University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 
Phone: +1 (204) 474-8995 
 
Agreement: 
I agree to participate in the research study described above. 
 
Signature: _____________________________________________  Date:  _____________ 
 

(flip over)

Consent form from the Wedge modeling study. Page 1 of 2.
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Wedge Modeling Study – Oct 9-10 / 2008 
Page 2/2 

Revision Date:  Oct 9, 2008 

 

Instructions 
 
1) Read and sign the consent form. Please print your full name at the space provided at 
the top of the form. This is how we know who to credit COMP3020 marks. 
 
2) Login to the computer if it is not already logged on. 
Username: e2450 
Password: e2450 
 
3) Run: Start  My Computer 
 
4) Navigate to F:\experiment 
 
5) Run the application: ModelApp 
 
6) Enter participant number into the experiment application. Your number is found on 
top of your consent form. 
 
7) Wait until after the administrator has completed the demonstration. Then click 
“Start Experiment”. 
 
8) Perform the experiment by following the prompts on your screen. There is a progress 
indicator in the right side of the screen that shows how many trials you have completed 
so far. 
 
9) The program will inform you when you have completed. That’s it, you can leave.  
 
 

Thank you very much for participating. 
 

Consent form from the Wedge modeling study. Page 2 of 2.
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