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ABSTRACT

Prostate cancer is a leading cause of death in men. Magnetic Resonance

Spectroscopic Imaging (MRSI) has been demonstrated to be beneficial for the diagnosis,

staging and past treatment follow-up of prostate cancer. During the MRSI acquisition,

segmentation of the prostate images is required, in order to allow the maximum volume

of the prostate to be considered while reducing signal contribution from outside the

prostate which may impact accuracy of the MRSI. Manual segmentation is a time

consuming job; hence, a semi-automatic method was investigated, which segments the

prostate on the magnetic resonance images acquired in the same imaging session as the

MRS images. The algorithm evaluates the curve of the prostate boundary in an

orientation-based fiamework. Once the directional field of the pixels in the prostate

region is calculated, a statisti cal averuge mask follows the direction of low-density pixels

around the prostate, using prior knowledge of the prostate's shape. This knowledge is

obtained through user selection of four points in the prostate region along with the prior

knowledge of the shape of the prostate and its neighbouring organs. Compared to manual

segmentation by an expert, the initial results of our algorithm are promising. Currently,

accurate segmentation has not yet been achieved and the development of a completely

automatic and accurate method remains an interesting research topic.
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CHAPTER 1

Intnoduction and Objectives

Concerning cancer related illnesses in males, prostate cancer is the second leading

causes of death [1]. Magnetic Resonance Imaging (MRÐ is one of the primary choices

for the diagnosis, staging and follow-up of prostate disease. Accurate segmentation of

prostate magnetic images is required, in order to allow the maximum volume of the

prostate to be considered in both diagnosis and treatment. This work presents a semi-

automatic method, which segments the prostate magnetic resonance images. Due to poor

image contrast, low signal to noise ration (SNR) of the acquisition system and many

other reasons, reconstructing a geometric representation of prostate on MR Images is a

difficult task; to date, neither an accurate segmentation nor the development of an

automatic method has been achieved.

This work is organized as follows. In chapter 1 prostate anatomy, cancer and

imaging techniques, the objectives and the literature background are discussed. Chapter 2

introduces the data set and describes the research methodology in detail, including the

general algorithm, important functions and a comprehensive discussion concerning the

orientation image. Chapter 3 presents the results and discussions. Lastly, in Chapter 4 the

conclusions and the fufure work are discussed.



1.1 Prostate Anatomy

The prostate gland forms part of the male reproductive system. One of the most

important functions of this gland is to secret a slightly alkaline fluid that is found in male

seminal fluid. The prostate is located in front of the rectum surrounding the neck of the

bladder and urethra (the tube that carries urine from the bladder). The gland is made up of

three lobes (a central lobe with an adjacent lobe on each side) which are composed of

partly muscular and partly glandular tissue with ducts opening into the prostatic of the

urethra.

1.2 Prostate Cancer

Prostate cancer is the second leading cause of cancer related deaths in males. It

constitutes approximately 27Vo of all male cancers and it is the cause of I37o of male

cancer related deaths [1].

Surveys conducted in western populations show that the occurrence of prostate

cancer has increased noticeably over the past 35 years; hence, the diagnosis and

supervision of prostate cancer have become important health concerns. Currently, an

average of 13500 new prostate cancers are diagnosed each year in the UK l2l.In Canada,

this number has been estimated at20700 per year [55].

In general, cancer is thought to be a result of damage to gerles that control cell

reproduction. Normal somatic cells unclergo a predictable cycle of growth and rcnewal;

as old cells die off, new cells form to replace them. When genes become darnaged, cells

may begin to grow and reproduce in an uncontrolled manner. These cells are cancerous

and can occur is many tissues in the body. Prostate cancer is a group of tliese abnormal



cells localized in the male prostate. Prostate cancer rnay spread via the blood supply or

the lymphatic system. If prostate cancer spleads distantly beyond the prostate gland,

metastasis is said to occur.

While the cause of prostate cancer remains unknown, several risk factors have

been identified. These include uncontrolled factors such as age, race and family liistory,

as well as controllable factors such as diet.

Stage, grade and pre-treatment prostate specific antigens (PSA) are the three most

important prognostic indicators [53]. PSA's are produced by the prostate and released into

the blood. The levels of PSA tend to increase in prostate cancer patients. To define which

treatment modality is best and for whom, adequate information is required.

Clinical staging of the primary tumour is determinedby digital rectal examination

along with imaging studies [53]. Digital rectal examination and transrectal ultrasound, as

an imaging modality ¿ìre poor in predicting disease extent at the surgery time [53].

Therefore, there has been intensive interest in providing more precise staging information

considering more complicated imaging techniques.

The utility of a staging CT scan is limited in most patients in the early clinical

stage with the low risk features [53].

Recent improvementin MRI have shown promise in improving clinical staging,

especially in predicting local extension ofdisease beyond the gland by using endorectal

coil. These studies have presented remarkable outcomes in low to intermediate risk

patients [53].



Due to the relative inaccuracy of clinical staging using digital examination and

available imaging modalities, histogram tumour grade and pre-treatment PSA levels are

valuable auxiliary techniques by which local tumour extension can be assessed [53].

In the developed cases, radio isotopic bone scanhas been advocated as part ofthe

staging, because the skeleton is the most common distant metastatic site for prostate

cancer [53].

There are many different methods for treating cancer as well. Radical

prostatectomy with bilateral pelvic lymph node dissection migbt be appropriate for

patients diagnosed with an organ-resficted disease [2]. However, once the tumour has

extended behind the gland (Figure 1.1), radical radiotherapy becomes the best option.

For developed cases, hormone deprivation, radiotherapy and chemotherapy can all be

important treatments.

Tumor

Fig.1.1. Prostate gland and extended tumour.



1.3 Imaging for Prostate Cancer

As mentioned in the previons subsection, different non-invasive methods of

imaging are available in orcler to diagnose, follow up and treat prostate cancer, these

methods include: Ultrasound, CT and MR Imaging.

Ubra sound Imaging, also called ultrasound scanning or sonography, involves

exposing prostate to high-flequency souncl waves to produce pictures of the gland. Ultra

sound exams do not use ionizing radiation (x-ray). An advantage of ultrasound imaging is

that the images are captured in real-time and therefore immediately show the structure of

the target tissue. Ultrasound imaging is usually a painless rnedical test that helps

physicians diagnose and treat medical conditions.

As part of the diagnosis process, prostate cancer patients can be expected to

undergo additional tests to detenrine if the cancer has spread beyond the prostate. These

tests may include a CT scan. CT scan, also called CAT scan, stancls fol Computerized

Axial Tomography. A machine revolves around the patient, generating a series of images

that are then translated by a computer. These images contain anatomical cross-sections of

the prostate [-57].

Magnetic resonance imaging (MRÐ is another volumetric form of imaging, which

provides an accurate non-invasive way of viewing soft tissues like prostate without the

use of x-rays. MRI uses a magnetic field and radio waves together with a computer to

create cross-sectional pictures of prostate. Detailed MR images allow physicians to better

evaluate parts of the body that may not be visible with other imaging methods such as x-

ray, ultrasound or computed tomography (CT). MRI has proven valuable in diagnosing a

broad range ofconditions, including cancer [57].



MR Images of the prostate exhibit excellent soft tissue conffast, but they suffer

from distortion and slice thickness error [4]. Distortion may change the relationship

between a displayed voxal and the real part of the patients' body. Therefore, MR Images

are typically not the exclusive source of information.

In most individuals, prostate cancer is not detectable by routine imaging

modalities such as ultrasound, CT and MRI. It has been shown that MRI combined with

proton MRSI as a complementary technique, might be more suitable for examination of

anatomical and metabolic processes of tumours and provide better information about the

location and spatial extent of cancers within the peripheral zone of the prostate gland

[55]. Standardized proton magnetic spectroscopic imaging was developed for routine

assessment of human brain tumours initially. It was extended for examination of prostate

and breast cancer later [55].

1.4 ObjectÍves

MRI provides 3D anatomical information of the prostate, which is commonly

displayed as 2D transverse for axial slices. The main goal of this research is to investigate

these 2D axial images and segment the prostate organ. Instead of traditional manual

segmentation, the goal is to develop a semi-automatic method to deiineate the prostate

boundary for each of the slices, in a fast and accurate way.

Medical image segmentation algorithms are faced with difficult challenges; for

example, poor image contrast due to missing or diffused boundaries because of blending

with the surrounding tissues, patient movement, low SNR of the acquisition system and

many other reasons. The shape and signal intensity pattem of the prostate can vary with



time, as cancer develops, and between individuals [2]. Under these difficult conditions

and without having a prior model to constrain the segmentation, most algorithms are

prone to errors [22].

The algorithm presented here is based on orientation information obtained from

the MRI, which is used to calculate the direction of a tracing curve. The location of four

points within the boundary of prostate are defined by the user d priori. This information

is used together with the prior knowledge of the object shape in order to define the

trajectory of a 3 x 3 mask. The mask will be used to trace the channel around the prostate

gland. This is a semi-automatic method for segmentation of the prostate MRI.

L.5 Literature Review

In general, medical image segmentation methods can be divided into two basic

groups:

1) Non model-based methods, which do not imply any pre-knowledge of the

object.

2) Model-based methods, which consider an object shape model, appearance

model or a combination of these two.

An example of the first group is the Kass approach, which employs a deformable

contour in order to fit the shape of interest in the image [4]. This algorithm constitutes a

general technique of matching a deformable model onto an image by means of energy

minimization within a 2D or 3D image. However, most of the recent approaches are

based on the model-based methods [8]; more specifically, a shape-based model. In [5], a

shape-based approach for segmentation of medical images with a known object type in



3D is proposed. In order to evaluate the curve, a parametric model was derived for an

implicit representation of the segmentation curve, as a geometric active contour.In this

way, active contours (explained earlier in this subsection) are represented implicitly as

level set of functions defined on higher dimensional manifolds in a Eurelian formulation

t591. These models have been extracted using a collection of signed distance

representations of the training data. This method has been applied to two medical

applications [5], one of which is 3D segmentation of prostate MRI. Pictorial results show,

working in 3D space, utilizes the full 3D structural information of the prostate for

segmentation and does not display any of the "step-like" artefacts that mar the

radiologist's 3D rendition of the prostate gland. However, there is no quantitave

comparison available. Dryden and Mardia [6] described statistical models of shape.

Ladek Ul used a model-based Discreet Dynamic Contour (DDC) for prostate

segmentation from ultrasound images.

In a recent approach, Freedman uses both the shape and appearance of objects

(pixel intensity) in a model-based approach, in order to achieve segmentation [8]. Since

this more complete approach combines both shape and appearance models, it can

overcome some challenges specific to medical images, such as objects of the same shape

with similar intensity profile, and interest and non-interest in a tiny area of the image.

The pictorial results for a couple of slices are promising. However, there is no statistical

analysis of the outcomes included.

Another interesting and recent approach by Zwiggelaar employs a semi-automatic

polar transform method (starting point somewhere inside the prostate), using scale space

ridge detection. As the learned shape of the prostate on the 2D axial slices are assumed to



be circles, this method is classified as a model-based method [1]. Other simple techniques

like line detection and non-maximum suppression are used to track the boundary of the

prostate in the above method. Accuracy analysis of the results is promising for a limited

group of the middle slices.

Our novel method can be considered a 2D model-based method, which considers

a predefined shape for the prostate, a valid area of search and that the 4 starting points are

in the boundary; hence, the object ofinterest can be traced and extracted.



CHAPTER 2

Materials and Methods

2.L Image Data Set and Gold Standard

Our data set consisted of two MRI volume sets, each one containing 19 axial

slices. The first volume set was obtained using an inflated endorectal coil, which will be

referred to as the inflated set; the second set was obtained using a deflated endorectal

coil, which will be referred as the deflated set. The deflated set is not clinically common

used except in deformation studies. The purpose of using inflated endorectal coil is to

help establish evidence of extra-capsular extension in prostate cancer, when it

incorporates magnetic resonance imaging. The endorectal coil is a receive-only coil,

which is mounted inside a latex balloon; once inflated in the patient's rectum, its diameter

is about 4-6 cm. Filling the coil with a certain amount of air is called inflating. In this

clinical experiment, the coil is filled with approximately 100 cc of air. This enables a

more detailed image of the prostate gland to be taken by improving SNR and providing

sufficient image contrast. However, using the coil deforms the prostate by pushing it

superiorly and anteriorly.

All images were obtained on a 1.5 Tesla magnet (Genesis-Signa, GE Medical

Systems, Milwaukee, USA) using an endorectal coil. The field of view was 14 x 14 cm,

10



the image size was 5l2x 512 pixels, the slice thickness was 3.5 mm with an inter-slice

gap of 3.9 mm, the TR (Repetition Time) was 3600 ms, and the TE (Echo Time) was 106

ms with the resolution3.657 pixel per squared millimetres. Figure 2.1 shows two typical

examples from the data set. In both cases, the prostate can be found in the centre of the

image. Typical acquisition times were 5-6 minutes. The patient was placed in a supine

position for the imaging examination. We propose to design a semi-automatic method,

which would help the radiation oncologist to extract the boundary of the prostate for both

data sets, in a more efficient manner.

(a) (b)

Fig. 2.1. Two typical images from the MR prostate data set: (a) slice number 10
of the inflated data set; and (b) slice number 10 of the deflated data set.

In order to obtain a "Gold Standard" data set to validate our methods, a single

expert radiation oncologist manually contoured the prostate in the two MRI data sets, 10

times with the contouring sessions separated by some time delay. The average DSC (it is

a metric of accuracy that is described in subsection Q.a.D) of the Gold Standard data set

11



were 0.913 (inflated) and 0.924 (deflated) respectively [39]. These two numbers indicate

the intra-operator accuracy that shows the limit of accuracy of the Gold Standard by

itself. After post-processing the annotated results, the Gold Standards take the form of

binary images, as illustrated in Figure 2.2; note that these Gold Standard images

correspond to the images in Figure 2.1.

Fig. 2.2. Two typical images from the MR prostate Gold Standard data set: (a)
slice number 10 of the inflated data set; and (b) slice number 10 of the deflated data set.

2.2 Image Processing Concepts

The proposed segmentation algorithm is based on two important ideas: ridgeline

tracing, orientation image, and the shape model. The main idea is ridgeline tracing: after

a user initializes the four starting points, the algorithm is able to trace the prostate

boundary (i.e. the ridge curve in the original MR Image) without any more user

interactions. This concept was inspired by research done by D. Maio on fingerprint

classification [9]. Two important definitions were used in [9]: the gradient direction and

the local maxima of the grey scale fingerprint image, which allowed tracing the direction

of the ridges for minutiae detection.

(a) (b)

t a

72



In order to define the starting points, a square-mesh grid is superimposed on the

image, each one defining a starting point in the dark area. After choosing the starting

point(/", j"), the algorithm finds the gradient direction Q, for the current point. In the

length 2o+l neighbourhood of (¡,, j,) contained in the intersection of perpendicular

plane at the gradient direction in the spot, the local maxima are then estimated. There is

usually more than one local maximum; the maximum that is closest to the previous

detected direction is the one selected for the next movement. By moving p pixels from

(¡,,j,) along the direction Q, at each step, a new point (¡,,j,) is computed. The

algorithm keeps following the ridgelines until they intersect other ridgelines or terminate.

Eventually a labelling strategy is used to examine each ridgeline only once and the

intersection between ridgelines is located. Depending on the average thickness of the

ridgelines, the parameters /.t and o can be optimized. An overview of how this method

works is depicted in Figure 2.3.

I

I

L___,

(a) (b)

Fig. 2.3. Direct grey-scale ridge tracing for a fingerprint: (a) fingerprint grey scale
image with concentration on the ridges (dark areas) and valleys (light areas); and (b)
ridgeline following steps. Reprinted with permission from Springer-Verlag t111.

13



According to the above explanation, the tracings obtained using the local maxima

define the ridge. Finally, by connecting these maxima in order, a ridgeline is obtained

that is approximated by a polygon. Comparing the prostate boundary with the fingerprint

image motivates the idea that the boundary of the prostate can be considered as a locally

oriented pattern (Figure 2.4).

\l
l/

(a) (b)
ßig.2.4. A pictorial comparison between the orientation images of: (a) a.

fingerprint; and (b) a prostate MRI with inflated endorectal coil (T2-weighted). Small bars
in the above image represent the orientation of ridge-valley structures.

However, the ridge patterns in the grey level image of a fingerprint comparing

with the boundary of the prostate are more complicated. The ridge patterns in a

fingerprint image are almost isolated from each other, with the minima of the edge

patterns located in between. Conversely, the boundary of the prostate is a thick ridge

area, with a number of tiny ridge patterns surrounding it; these ridge patterns originate

from both inside and outside the prostate. In addition, the thickness of the boundary

around the prostate is not consistent, which makes choosing p and o an adaptive
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problem. Lastly, this method of tracing is very pixel-based and noise-sensitive.

Considering these issues, the method of detecting the direction used in tracing

fingerprints is not appropriate for tracing the boundary of the prostate; therefore, a

coarser method is needed to estimate the boundary curve direction in prostate MRI. As

well, an orientation image, which aids in structure direction estimation, can be used

instead of finding the maxima directions.

The orientation image for a fingerprint, first introduced by Grasselli [10], is a

two-dimensional (2D) matrix. Each element: a) encodes the local orientation of the

fingerprint ridges; b) corresponds to one node in a square-meshed grid, which is located

over all pixels; and c) denotes the average orientation of the fingerprint ridges, in the

neighbourhood of an individual pixel [1 1].

Once the starting points are initialized, the local tracing of the boundary can be

performed in a straightforward manner by computing the orientation image, also known

as the directional field (DF), of the MR images. The orientation image is an inherent

property of the image and it is the second important idea that our algorithm is based on; it

can help us to provide estimations for the direction of the ridges and valleys in the image

and it is described in more details in subsection (2.2.2). Therefore, using averaging and

moving windows will allow for extraction of a coarse direction identifier of the ridges

and valleys. However, the surrounding organs could still be problematic for the tracer;

thus, constraints must be identified which will prevent the tracer from potential errors due

to these distracting factors. One approach is to define correct and incorrect curve

directions in the different areas of the prostate boundary. In the proposed segmentation

algorithm, based on the location of four initial inputs, four different quadrants of the

15



boundary are defined. According to the specific shape of the curve in each quadrant and

the fact that the shapes in each volume set follow a similar curve change pattern, an

estimation of the valid curve direction corresponding to each quadrant can be evaluated.

These concepts are briefly explained in subsection (2.2.3) where the shape model

concepts as the last important idea are discussed.

2.2.1 Ridgeline Tracing Concepts

As previously mentioned, our algorithm is founded on two important concepts:

ridgeline tracing and the use of an orientation image. The prostate boundary is

determined by following the ridgelines of interest in the grey scale axial image of the

prostate; this tracing is based on the orientation image (or DF) of the prostate MR.

In order to define the ridgelines, we first obtain I, a 2D grey level image, where

l(t, j) indicates the grey level of pixel(i, j), with i=I,...a and, j=1,...6. Bright pixels are

associated with grey levels neaÍ zero and dark pixels are associated with grey levels near

g-1, where g denotes the number of grey levels in the image. Then, the prostate ridgelines

correspond to surface ridges and the spaces between the ridgelines corespond to surface

edges or valleys (Figure 2.5).
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Fig. 2.5. A surface S, corresponding to a small area of the fingerprint. Reprint
with permission from Spring-Verlag [11].

Note that gradients provide the same information as orientation images do, but at

the pixel

structures.

level; the orientation image describes the orientation of the ridge-valley

Hence, the

During computation of the orientation image,

resulting information is not pixel based; it

gradient information. Although not all of the gradients in

the resulting orientation is parallel, since the averaging

orientation of these partial areas (Figure2.6) 1131.

a region of pixels is covered.

is a coarse scale comparing

individual pixels are parallel,

operators are to calculate the

t¡¿. ., r:!.^i.., .', iir, . . ¿ l',, : I .\\\\\\\\\\\\\\\\\\\\\\\tsJ
, i ¿ - - . /,!.i . : : .: :,"¡ ¿. .' . a.t-a,'t r\ \ \\ \\ \-\S\\-\\\T\-\\\\\\\\l,-:<- - , ..tr"::-:

,.¿/t-.r... r-rt¿ , . raL.:,..i.:i:¿¿¿, . '/: i,\\\t\rrrr¡.trl\fl{\\\\\\\\\
,.1 ;., ¿t/ ¿ .' /.t-.. :t,:1..¿tr, \\\\\\\\\\\\\\t.s.\\\\\\\\\\
l!. :...". . rf¿,¿-ri' . a/r t t, !\\\\\\\\\\\\\\\\\\\\\\\\.¡ t?.,../¿. , t7...,-:..-, ll /. \\{\\\\\\\\\\\,i\.rJ\\\\\\\\.t.¿:,..¿¿.. .
. t .'..:,.)1 

",, \. . 4r-a.. ... ! !I r\\\.{\\\\\\\\\\\\\:\\\V\\s
. -':.t..',:.)l¿"., \ r t,' " :' :'' . ì \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \\\-\-\\\'\l

: 

":!,,a 
;... :i;l- : ;ii;./, t..¿ l', .¡j \ \ \ \ \ \ \ \.\ !r:\ \ \ \i \\ \\\S-\\\\.i

:'i,.,!.1 :l:,i^lc ---'.ì-,-,, "rti,i-,t\.\\\\\ti\:\\-\_\,lr{:\\\\\\\Nl... - . t a.l.t-; - ¿'t t: ;.¿ ¿ . . r ¿:t.j 1 i i \ \ \ \ \ t"t.\ \ \\ ^\:\\\i*\ \ \\\,\\\J:..-- -, ¿ " ;> - r tj,.. i.¿. . ¿/..,:I\\\\ \ \I\tt:r\t\\l\:i\\\\\.\\\r.¿¿. . -ri.-l-a 2:va...¿¿ - .,^i I\\\\ \\\ \.\.\\\\\:'\\\\\\\\\\11
i ;r -.. . ;ir-il¿¿ ¿ . ¿. :-t ;..¿ - . . /: r \ \ \ \ \ \ \ \ \l\\ \ \ \1,,t\\:\\\\\\ì
lil:-: ;=ít.:.r- . t.:ra ; :.¿ / ¡,, i\ \ \ 1 \ \:\{:\.\\\\\:\ì{l\\\\\\\\:::J-:-. ::lt;.-.: . r.^..:;a - rltl{.:t¡a,r'\r\{tlç'a;Ài.\r\\

(a) (b)

Fig. 2.6. Detailed area in a fingerprint: (a) the gradient; and (b) the average
directional field. Reprint with permission from A. M. Bazen [12]. Anows in (a)
represents pixel gradient direction while bars in (b) represents ridge-valley orientation.
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In theory, once the averaging operations are performed on the individual pixel

gradients in a given neighbourhood, we should be able to extract the orientation image;

however, this is not always the case. In some local neighbourhoods, opposite gradient

vectors cancel each other out, even though they indicate the same ridge-valley

orientation. This happens when the ridge-valley structures rotate over 180 degrees [13];

in this case, they remain unchanged. Since the gadient orientations are distributed over a

periodic space from zero tolr, another method of determining the average orientation is

by computing the " tT -periodic cyclic mean."

According to [14], a solution to this problem can be obtained by doubling the

gradient vector angles prior to averaging them. Afterwards, opposite gradient vectors will

indicate the same direction and will therefore augment each other; nevertheless,

perpendicular gradients will still cancel each other out. All of these steps must be

considered when computing the orientation image as will be described in subsection

(2.3.2.3).

2.2.2 Orientation Image Concepts

Several methods for computing the orientation image are proposed in the

literature; for example, match filter approaches were used in [15], [17] and micro patterns

methods were used in [16]. When compared to gradient-based methods, these approaches

provide less accuracy, particularly when the main purpose is to follow the flow lines [12].

The gradient phase angle presents the direction of the maximum intensity change.

Therefore, the direction Q, of a hypothetical edge that crosses the region centred on pixel
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(¡.,, j,) is orthogonal to the gradient phase angle on (i., ;, ). Atthough this method appears

simple and efficient, it suffers from nonlinearity due to the computation of the gradient

phase angle and a discontinuity around 90 degrees [11]. Hence, generally for gradienr

based methods, a window is applied or the consideration of a pixel neighbourhood is

suggested. In a method proposed by Kawagoe and Tojo [16], a 2x2 pixel neighbourhood

was considered. In order to extract a rough directional estimate, a straight comparison

against four edge templates was made. Then, after averaging over a large region, a more

distinct estimate was obtained. Similar approaches were followed in [18] and [19], where

the tangent direction was evaluated based on pixel alignments relative to the fixed

number of reference directions. The result was then averaged over a local window, using

the least squares minimization for noise control. In a following subsection, we

concentrate on the oriented direction, which is a necessary definition for boundary tracing

of the prostate.

The techniques used to compute the tangent directions are efficient and robust.

However, they can become computationally expensive if the local windows are large

(greater than 19 pixels) or the number of directions to be computed is very high [ 1]. A

more efficient implementation can be obtained by pre-computing the directional image

over a discrete grid, followed by estimating the direction ø, using Lagrangian

interpolation [9].

As previously explained, the orientation is logically and practically specified for a

block of pixels. ln øveraged squared gradients approach, an image is split into a set of

W xW non-overlapping blocks and a single local ridge orientation is defined for each

block. In a prostate image, there is no difference between local opposite ridge
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orientations; for example, in a local neighbourhood, the ridges oriented at 90 degrees and

the ridges oriented at 270 degrees cannot be differentiated from each other. The same is

true for the other opposite directions.

The calculation of the orientation of each image block, using a small

neighbourhood of a generic pixel [12], is described below. According to the Average

Squared Gradient (ASG) method lLzl, if Lf ,fl it a generic pixel in the boundary of the

prostate image, the local ridge'orientation at W,y]i, the angle that the boundary ridges

form with the horizontal axis. In order to compute the orientation, a small square

neighbourhood of pixels centred at W,yl is involved in the computation.

From an analytical point of view, the gradient vector at W,yl tor a grey scale

image l is defined as:

(2.r)

Since "doubling the angle and squaring the length of a vector" is equal to "square a

complex number", we have:

G,,r * j.G,,y = (c r + ¡.cr)' = (q - G)* ¡.þc rcr),

using the following terms:

W,Vß)= "*'o'Ntcv'ù

Gzr

Gry

G,,

(2.2)

(2.3)

(2.4)

(2.s)

=Lc',
w

=Lc',
w

=ZGrG,
w
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and averaging equation (2.2) using

rcr-!n. r.!o is defined by:22

window W, the average gradient direction ø

(2.6)

, is perpendicular to a; :

(2.7)

I tan'Qly)
] tun-' (zly)* "
Itan-'(71fl- n

I rto
4f.0ny20.
lr.o ^y<o

a¡=Lz(cZf-c1ry,zc7y)

Then the average ridge-valley direction d, with-] x . e.!ø22
0= a¡+L

2'
where Áã,ù is defined as:

(2.8)

2.2.3 Shape Model Concepts

In many medical image interpretation problems, there is a vital need for an

automated system. This suggests the use of models, which can describe and label the

expected structure of the image. In some cases, image interpretation is almost impossible

without prior knowledge of the anatomy especially when dealing with complex and

variable structures, or images that suffer from noise and incomplete evidence 1221.

Potential difficulty caused by structural complexity, noise and missing data can be

solved by acquiring enough prior knowledge of the problem, and applying model-based

methods in image analysis. We would like to apply knowledge of the expected shapes of

prostate contours model to restrict our automated system to acceptable interpretations.

In addition, variability in an image of a biological object within and between

subjects must be dealt with. This leads to the idea of deformable models. These models
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maintain the essential characteristics of the class of objects they represent, but can deform

to fit a range of examples. In order to obtain specific models of the variable objects, we

need to know how objects vary.

Among different model-based methods, generative models can significantly

complete and generate possible images of target objects. One example would be a face

model capable of generating convincing images of any individual and tracking their

gesture. Using such a model, image interpretation can be described as a matching

problem [22].

Providing statistical models for the shape and appearance of the desired objects in

the given images, through learning their variation from a suitably annotated training set,

is considered a powerful approach. We need a training set of images in which

corresponding 'landmark' points have been marked on every single image. These data

can be used to compute a statistical model of shape. Also by considering suitable pixel

based feature such as texture, intensity or colour of the pixels within the shape's interior

an appearance model of the object can be extracted. With enough training examples,

these models are able to synthesize any image of normal anatomy. By obtaining the

parameters that optimize the match between a synthesized model, original image and

target image, the algorithm can locate all the structures represented by the model.

The empirical shape model used by this algorithm is described in subsection

2.3.4. This model is based on the four user input points, defining 4 quadrants of the shape

which is incorporated with the pre-knowledge of the curve change in each of the

quadrants.
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2.3 AlgorithmDescrÍption

2.3.1 Overview

A general flowchart of our algorithm is presented in Figure 2.7. Note that several

steps needs to be used only once during the entire tracing procedure (modules 1,2 and3),

while the remaining steps are being used as many times as the tracer runs around the

prostate boundary (modules 4,5,6,7 and 8).The following subsections explains each

module in detail.

2.3.2 Image Pre-Processing

Image pre-processing consists of three important steps: 1) image enhancement,

which increases the contrast of the original dark image, where the objects are hardly

recognizable; 2) statistical normalization, which provides a low variation in the grey-

level values for the whole image; and 3) orientation image calculation, which helps the

tracing algorithm to follow the prostate boundary.
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IMAGE PRE-PROCESSING

OBTAIN USER INPUTS

EMPIRICAL SHAPE MODEL
BOUNDARY DEFINITION

BOUNDARY DIRECT¡ON
ESTIMATION

VALIDITY CHECK

QUADRANT UPDATE

END OF TRACING CHECK

Fig. 2,7 . General flowchart of the algorithm
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2.3.2.1 Image Enhancement

In the images involved in this work, we want to distinguish the prostate boundary.

Slice 10 of the original inflated set is shown in Figure 2.8; it is difficult to distinguish

where the prostate boundary is located. According to the original histogram (Figure 2.8),

the number of high intensity pixels is quite few compared to the number of low intensity

pixels. In order to achieve a better general view of the image, from which the initial

points will be selected, we propose two modifications. First, the inversion of the original

image should be found. Then the quality of the image should be modified using contrast

stretching which is often called normalization.

The main purpose of contrast stretching is to change the range of pixel intensity

values. This is the general equation of contrast stretching:

(2.e)

Before the stretching can be performed, it is necessary to specify the upper and

lower pixel value limits over which the image is to be normalized. Here we suggested 0

as the lower limit a and 255 as the upper limit b. In addition, the highest and the lowest

pixel values currently present in the image a¡e 65536 as d and 0 as c respectively.

Consequently, each pixel P is scaled using the following function:

Po,,, =(1^-r'l?)*,
\d-c)

pou, =(p,n{**) (2.10)
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(a1)

(c1)

(b1)

(d1)

Fig. 2.8. Histograms of the enhancing process: (al) original image histogram;
(b1) inverted image histogram; (cl) normalized histogram of non-inverted image; and
(d1) normalized histogram of inverted image.

The images and histograms illustrating the original, intermediate and final steps

are displayed in Figures 2.8 and 2.9. Note that after inversion, the original ridges become

image valley structures, which are being followed by the tracing. As shown in Figure 2.8,

the normalized inverted image gives the improved visualization.
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2.3.2.2 Statistical Normalization

A grey-level prostate image I

represents the intensity of the pixel at

variance of / are defined as [21]:
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Fig. 2.9. Images of MR prostate enhancing process: (a1) original image; (b1)
inverted image; (c1) normalized non-inverted image; and (d1) normalized inverted
image.
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M and VAR denote the estimated mean and variance of / respectively; and

C(¡, j) denotes the normalized gray-level value at pixel(;,;). fne normalized image is

then defined as [21] :

where M, and VAR, are the desired mean and variance values, which are 0

respectively. Therefore, the above formula can be simplified to:

(2.13)

and 1

(2.r4)

The main purpose of normalization is to reduce variations in the graylevel values

along the ridges and valleys, which facilitates the subsequent processing steps.

Normalization is a pixel-wise operation; therefore, it does not change the clarity of the

ridge and valley structures.

G(t, T) = M o r rl 
g rz' Y¡ 

-- -!'L>2 
v¿'no

þQ,ù- ¡ø)2
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Fig. 2.10. Images and histogams for: (a1) (b1) enhanced; (a2) (b2) general
statistical normalization.

2.3.2.3 Orientation Image Calculation

To determine the orientation estimation, we used the "Average Squared Gradient

Method" [12]. A general block diagram of this module is presented in figure 2.11. Due to

the presence of noise and the comrpted ridge and valley structures in the input image and

slowly variation of the local ridge orientation in a local neighbourhood, low-pass filters in

the form of Gaussian filters are used three times, in the whole process of computation.

These Gaussian filters can not be combined together, due to the nonlinear operators

which are involved in between. The image initially is divided into 7x7 non-overlap

of Normal¡zed lmage w¡th Mean=o and STD=1
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windows, as the same size of the first group of the Gaussian

window is dependent on the size of the structure to be extracted

the image resolution. This size is practically selected by trial and

filters. The size of the

(prostate boundary) and

error criterion.

DIVIDED IMAGE INTO
NON-OVERLAP
WINDOWS 7X7

Grr

Gyy

Gzy

_\-_L
w=I
w=I

c27

avy

GrGr

2D GAUSSIAN
FILTERS 7x7
WITH STD=1

NON.LINEAR ASG
OPERATOR

WEIGHTED
SUMMATION USING 2D

GAUSSIAN FILTER
31X31 with STD=3 ,=|.(cç -cyy,zc7y)

NON.LINEAR OPERATOR
ANGLE EXTRACTOR

WEIGHTED
SUMMATION USING 2D

GAUSSIAN FILTER
31X31 with STD=3

ORIENTATION IMAGE

Fig. 2.11. General block diagram of the orientation image calculation.



Given a normalized image G, the main steps of the algorithm are as follows:

1) Generate a 7x7 Gaussian filter, with a standard deviation of one. Compute

the gradient of the Gaussian filter in the x and y directions.

2) Compute rhe gradients Ar(;,,r) and ðr(i,7) at each (;,;) using rhe above

Gaussian filters. Computation of the orientation is being performed over the

7x7 block.

3) Obtain the covariance data for the image gradients, which ar"ð ,,r(i, i),

a r,r(i,j) and a ,,r(i,j) at each pixel (;, 7).

4) Using a 31x31 Gaussian core with a standard deviation of five, the above

results are smoothed, i.e. a weighted summation of the data.

5) Estimate the local orientation of each block 7x7 centred at pixel (;,7) using

the following equation:

ûti i =l øn-r(Gr'l-GY'T)')r 2 ZGl,y Q.I5)

6) Smoothing is again performed using the same Gaussian core as step 4.

7) The angle 0 is extracted (with a 90-degrees difference) when the orientation

image is obtained.

Computing the local ridge orientation at (;,7) using this algorithm, a smooth

orientation field estimate is obtained. In Figure 2.I2, the effect of removing both of the

filters in steps 4 and6, applied after nonlinear operators and their effect size on the clarity

31



\/\*-/ f,/\-
--l\ I /;t:t:t;\1
.l l. \:=->{r-\l\l\ilrll/-1,
, l:-- l -ì 1. / /..1 .{

'l nb.{;r:'
-:\ '
\t

';þ:?.:t_j\.r Irl \:'.Is I.

,. I ¡'' sT:
i l:=\'i
l)l ¿il+.
r:f{rj'ç.*a¡;it;\i

^ 
4.1,-=¿- '

!\ /'¡i I i1,, .i
íl -\J..1 ;.¡ l

l\ lsi/il 't-,-\t'tlll 1.

\/ I \i\t-rl|.Il:1..1:t:.'t 4t¿t¿,\
-J4\:1.-\.\/\ )ti11\ :

I I I l:11:ll;
/ -r /.¡,ll*,1.:/ -r /.¡,ìit;
- \- t":r¡Ëilr
l://líl1l
| /\t.\-,\-\l l/l

of the orientation image are verified. According to the results,

achieved after increasing the filter size to 31x31 with STD=5.

no improvement will be

ßig. 2.12, Images showing the effects of the smoothing filters after non-linear
operators and their size effect: (a) no smoothing filter; (b) filter size 19 and STD=3; (c)
filter size 25 and STD=4; (d) filter size 31 and STD=S.

Figure 2.13 shows an example of the output of the gadient operator (linear),

covariance matrixes (nonlinear operators as AGS components) and angle extractor

(nonlinear). Note that mathematically, this angle represents the direction that is

orthogonal to the domain direction of the Fourier spectrum of the W xW window [21].
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Note that the smoothing operation is performed at the block level.

Fig. 2.13. Images showing outputs of different steps of orientation image
computation, assuming G are the image and block levels of size 7 x 7: (a1) G* : (a?)Gv ;

(b1) G)c{ ; (b2)Gn; þ3) Gr.. ; (c1) gradient directions in block level; and (c2) directional
field in block level.
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2.3.3 User Inputs

Our proposed shape model is an estimation of the valid search area around the

object of interest and a prediction of the valid curve change in specific areas of the object

boundary. As previously mentioned, the user needs to select four pixels in the

neighbourhood of the prostate boundary on each slice; a rectangular area is then

consffucted based on these four points, which covers the entire prostate as tightly as

possible.

As long as the four points are located in the approximate middle of the prostate

boundaries on each side, which represent the furthest extreme of the prostate, the

resulting empirical shape model is reliable. The main reason this characteristic is defined

for our shape model is to prevent the tracing algorithm from being distracted by the other

neighbouring organs, e.g., the bladder (superior), the rectum (posterior), and the leg

bones (left and right). These bound restrictions prevent the tracer from moving beyond

these limits. Figure 2.I4 depicts a sample boundary for slice 9 of the inflated data set.

The other aspect of our empirical shape model is explained in the following

subsection.

ßig.2.14. Estimation of the valid boundary area, which uses definedpoints shown
on A, B, C, D and quadrants I,2,3,4.
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2.3.4 Empirical Shape Model Definition

The empirical shape model is presented in Figure 2.15. The worst case where all

the organs surrounded the prostate and the high chance of the tracer being distracted by

the neighbouring organs considered in this method. According to this shape, the valid

direction of the prostate boundary curve in each quadrant (defined using the four initial

input points) is mapped in a corresponding look up table. The boundary direction

estimation module uses this information.

Fig. 2.L5. Empirical shape model of prostate

2.3.5 Boundary Direction Estimation

Recall the fingerprint classification research developed by Maio, which applied a

direct ridgeline tracing method [9]. At each step, the algorithm computed a new point

(¡,, j,) by moving p pixels from the cunent point (i., j.) along the direction/";this

represents the ridgeline local direction and can be computed as the tangent to the ridge at

(i,,j"), by taking the closest local maximum in a specified area along the previous

direction.

l¡r:rí rl¡rr¡ncl

î/tl
'{ t.g uono

lr'.urtnr.
Virtual clrann
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We have modified Maio's approach. Instead of relying on the deñnitions of local

maxima and ridges in each step, which provides a very fine scale for the ridgeline

surrounding the prostate, the orientation image is computed only once at the beginning.

Then, a 3x3 (selected based on trial and error) moving window is used, which finds the

average DF corresponding pixels; from these, the direction of the tracing curve can be

estimated. Figure 2.I6.c illustrates the above concept; note that this orientation is not

directed.

Once the direction is estimated, the results need to be interpreted in order to

estimate the corresponding orientation. Using the coordinates of the four initial inputs,

the prostate's centre of mass is estimated. According to the location of the four points and

the centre of mass, the four quadrants of the prostate are defined (Figure 2.16.a). A look

up table is defined, which presents the valid and invalid directions in each quadrant and

the appropriate maps of the movement pattern at the pixel level (Figure 2.16.d). This look

up table has been estimated according to the general shape of the prostate and considering

the effects of the other organs surrounding it. Using this look up table, the tracer can

follow the ridgeline quite closely. The results are located inleO",+90"]. Altogether,

thirteen different directions with equal steps have been defined. Figure 2.16.d illustrates

how a unique direction can be interpreted from different patterns of pixel movements,

according to its spatial location.
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(a) (b)

(c)

-90 -75 -60 -45 -30 -15 0 +15 +30 +45 +60 +75 +90

AA
e1 1 1 / / )r -t + NA NA NA NA NA NA

Q2 NA NA NA NA NA NA + \I \ \ \ \ J

IQ3 + J / / /{ +- r-- NA NANA NANA

Q4 NA NA NA NA NA.r +r\ \ \ \ I I

(d)

Fig.2.16. Estimation of the boundary direction: (a) definition of quadrants, initial
points and centre of mass; (b) the average of the pixel field direction covered by the mask
is used for calculating the new position; (c) emphasising the concept of orientation
without direction; and (d) a complete look up table showing the orientation patterns based
on the quadrant location.
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2.3.6 Mask Movement

According to the output of the previous module, that estimates the curve direction

of the prostate boundary in the spot, the window mask moves to a new location. The map

of the next direction is defined in the form of the number of pixels in the direction of x-

axis and y-axis.

2.3.7 Quadrant Update

As the tracer runs along the boundary of prostate, its current location in the form

of quadrant information needs to be updated. This is important for the boundary direction

estimation module in order to refer to the relevant look up table.

2.3.8 End-of-Tracing-Change

The algorithm runs until the stop criterion is true. At each step, it updates the

quadrant label looking for the fourth quadrant. When the tracer is close to the starting

point (about some pixels) selected in quadrant one, the entire boundary has been traced

(Figure 2.17).

(a) (b) (c)

Fig.Z.l7. The completion of the tracing procedure: the algorithm continues to
trace the boundary until the tracer moves into the neighbourhood of the starting point in
quadrant four: (a) end of tracing in quadrant 3; (b) tracing in quadrant 4; (c) end of
tracing in quadrant 4 or end of the tracing procedure.
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2.4 Ferformance Evaluation

Using MRI as the selected imaging modality provides essential information. This

information allows us to obtain quantitative pathologic and clinical evaluations [29].

Accurate segmentation in medical imaging is important, due to its direct impact

on disease detection, target definition for treatment and monitoring of disease progression

for response 129). High performance evaluation of the segmentation can be achieved by

two key concepts: reproducibility, or statistical validation and accuracy.

In order to conduct the performance evaluation of the image segmentation, a

'Gold Standard' is required. This Gold Standard is defined using a simple binary truth,

which indicates the true (target) tissue class per voxel. Manual segmentation of the

prostate on the both deflated and inflated data set was provided by an expert radiologist

(explained earlier in details in subsection (2.1)) which is considered as the Gold Standard.

2.4.1 Dice Similarity Coefficient

To measure accuracy, one of the simplest spatial overlap metrics is the Dice

Similarity Coefficient (DSC) t301. It is both a spatial overlap index and a reproducibility

validation metric, frequently use in observer performance studies [35]. Flesis termed it

the "proportion of specific agreement" [31]. The DSC value ranges from zero (no spatial

overlap between two sets of binary segmentation results) to one (complete overlap). It has

been adapted to validate the segmentation of the peripheral zone of the prostate gland in

prostate brachytherapy in [35]. The DSC is used to assess the accuracy of the segmented

prostate in this work. Other metrics for statistical validation of accuracy include the

Jaccard similarity coefficient [32], odds ratio [33], receiver operating characteristic
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analysis [33], [34], mutual information L341,l35l and distance-based statistics 1361,1371.

The validation test method used in this work is briefly explained in the following

paragraph.

The DSC measures the spatial overlap between two segmentations A and B. It is

defined asDSC(A,A)=Z(eOA)l@+B), where the numerator is the intersection between

the two segmentations. It can also be defined as [53]:

DSC = 2A

2a+b+ c'

where a is the area correctly classified as the prostate, b is

as the prostate, and c is the area incorrectly classified as the

(2.r6)

the area incorrectly classified

background (Figure 2.18).
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Fig. 2.18. DSC calculating procedure: The above flowchart indicates the

procedure for calculating DSC using the Gold Standard and the result of suggested semi-
automatic segmentation method.

Our goal was to validate segmented boundary of prostate in both of the inflated

and deflated data sets in 10 trials. In each trial, for each single slice, the user selects four

different input points. Therefore, we can verify how much the segmentation is depended

on the selection of the initial points. Two different approaches were considered to

evaluate the accuracy and reproducibility performance of our semi-automatic

segmentation method.
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2.4.2Mean and Variance Analysis

The first statistical method finds the mean of D,SC for each slice in a trial of N

samples, as follows:

where DSC, is the average D,SC over all N trial corresponding each individual slice and

DSC ¡ is the spatial overlap conesponding each single slice of a trial. Then its uncertainty

can be estimated by the standard deviation of the D^SC¡ around DSC, as:

DSC, = (2.t7)

(2.re)

(2.20)

(2.18)

In this work, the number of trials, N, is equal to 10. The overall mean and the overall SZD

per data set, representing the intra-operative accuracy of the segmentation can be

calculated as following:

STDDSC,=@

r 19-
DSCo,,,ott =+t DSC¡ ,reã

f, 19 ,- 

- 

\.
STD *o*^, = 

l, ã \DSC o,",o,, - DSC t )' .
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2.4.3 Statistical Ranking Analysis

A box plot is useful because a number of robust estimates of the median and data

spread can be shown in a single plot. This concept is based on rank statistics. Compared

to mean and variance analysis, it is more robust and less sensitive to extremely large or

small values in the data set. We are applying both of the analysis (Mean and Variance,

and Statistical Ranking) to compare the results of analysis together.

To explain the related concepts and definitions, consider the results of semi-

automatic segmentation of the previously mentioned data set, consisting of 10 trials for

each of our clinical data sets (each data set has 19 slices). A 2D array of data is provided,

with the rows representing the slice number and a box being plotted for each column. The

positions of the box and the lines extending from it (the whiskers) are based on rank

statistics. First, the values in the data set are ordered and then the median of n samples is

calculated; the line in the middle of the box represents the median (50'r'percentile). The

upper and lower edges of the box are placed atthe 25't' and 75'h percentiles, respectively

while the middle percentile or median lying in the middle of the box. ln other words, the

first and last 25'h percentiles lie above and below the box, respectively. Lastly, the

whiskers are drawn at a distance from the median of 1.5 times the inter-quadratic range

(difference between tbe 25't' and 75't' percentile), or to the object furthest away; this is

dependent on which value occurs first. All objects falling outside the whiskers are drawn

separately as outliers. Figure 2.17 presents a sample box plot.

Regarding accuracy, for DSC = 1 there is perfect overlap and for DSC =0 there

is no overlap between the 'Gold Standard' and semi-automatically segmented regions.
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CHAPTER3

Results and Discussions

The various aspects of the developed segmentation technique are evaluated in this

chapter. A qualitative comparison between the semi-automatic approach and the manual

segmentation is provided. Results from single trial segmentation are presented, as the

obtained boundaries along with their corresponding manual segmentations projected back on

the enhanced images; refer to Figures 3.2 and 3.3 for illustration. Subsequently, we consider

the method's accuracy and robustness (qualitative comparison) with respect to the four

manually dffirent selected initial inputs required to perform the segmentation as they meet

the algorithm requirements for the input points in ten trials. A single user performs the

segmentation algorithm 10 times for each of the slices in each data set. The outcome of this

approach is compared with the corresponding Gold Standard on a slice-by-slice basis in 10

trials using DSC.

In order to calculate the DSC value, three quantities of interest are specified. ln the

subsection (2.4.1), we referred to these variables at, b and,c, corresponding to the area of

intersection, the area of prostate segmented as background, and the area of background

segmented as prostate; refer to Figure 3.i for illustration. This figure shows each of the

above three areas in a binary image, which aids the auxiliary algorithm to calculate these

three variables according to conesponding number of pixels.
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The mean and variance of the DSC are calculated, per slice for each trial of i0

mentioned before. In order to display the results, two graphs showing the per slice DSC mean

and corresponding DSC variance are considered (Figures 3.4 and 3.5). Furthefinore, the per

slice median of the DSC, along with the graphical display of the DSC values located around

the median values, are depicted using box plots in Figure 3.6.

(a)

(c) (d) (e)

Fig. 3.1. Pictorial show of DCS components for performance evaluation: (a) filled
contour of Gold Standard; (b) filled contour of segmented prostate; (c) area of intersection;
(d) area of prostate segmented as background; and (e) area of background segmented as

prostate. Images correspond to the inflated set, slice number 10.

(b)
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3.1- Qualitative Comparisons

Typical results are displayed for the inflated and deflated data set in Figures 3.2 and

3.3 respectively. The prostate boundaries segmented by our semi-automatic method are

depicted in blue and the corresponding results obtained manually by the radiation oncologist

are depicted in red.

The first group of pictures correspond to the inflated data set (Figure 3.2). The results

show that the slices located in the middle of the data set (slices 6 through 16) comply very

closely with the manual results. For the most inferior and superior slices of prostate, the

algorithm had difficulty following the boundary wall. In the inferior slices, due to image

contrast artifacts introduced by the endorectal coil the right and left side boundaries are

confusing (note that the inferior slices of prostate correspond to the inferior end of the coil

where there is a very little inflation compared with middle slice); in the superior slices, the

prostate was located very close to the bladder, resulting in a confused boundary to be

segmented. These results also show that the algorithm generally overestimates the boundary

for most of the slices, however, the amount of the overestimation is not consistent where the

search area is not tight enough.

A simiiar outcome is true for the second data set, where a deflated endorectal coil was

used (Figure 3.3). However, the number of the slices for which the segmentation

substantially deviates from the Gold Standard is greater than for the first group. Similar to the

first group, the non-consistent overestimated boundary is one of the obvious results. Overall,

the pictorial results show our algorithm works with better accuracy for the inflated data set.
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3.2 Quantitative Comparisons

As previously discussed in section (2.4), two different techniques were used to

quantitatively estimate the accuracy and reproducibility of the proposed method; in the first

approach, the mean and variance of DSC were extracted for each of the ten-segmented

prostate, on each individual slice. These results are displayed in two separate graphs,

corresponding each data set (Figures 3.4 and 3.5). Recalling subsection (2.4.2), the mean and

the variance of individual slices are calculated using formula (2.17) and (2.18).

The overall mean DSC values are 0.90 (ranged 0.834-0.952 in figure 3.5) for the

inflated set and 0.88 (ranged 0.700-0.965 in figure 3.4) for the deflated set. The

corresponding overall variance values are 0.001 for the inflated set and 0.004 for the deflate

set. These results show that the mean value of the DSC for the inflated set is higher than for

the deflated set and its variance is lower. Considering this statistical analysis, the introduced

segmentation method is more accurate and reliable for the inflated set. Also referring to the

DSC variance results in the same figures, slice number 19 in the deflated set and slice

numbers 1 in the inflated set show the most variations in DSC values, when they are

subjected to the change of the initial points.

Box plots can give another graphical depiction of these results. Figure 3.6 shows this

concept for each of the data sets. The resulted DSC medians in both of the graphs comply

almost the same as the previous analysis. According to the graph for the inflated set, all of

the median values are located between 0.84 and 0.95 while the other data set ranged between

0.73 to 0.97.This shows that the results of the algorithm are more accurate for the inflated set.

The same slices (slice number 19 in the deflated set and 1 in the inflated set) represent the

worst DSC variance similar to the previous analysis.
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Referring to the box plot outcomes, the number of the slices with the DSC outside the

whisker bounds in the inflated set is more than the deflated set (about 3 times); however, the

size of the boxes is almost the same in both sets. It demonstrates that the method is highly

dependable on the initial points in the deflated set especially for inferior and middle slices;

however, for the superior slices, the resulting boundaries appear more random. This

illustrates that the developed technique for the deflated set yielded more robustness

concerning the initial points.

Comparing all these observations, our semi-automatic method worked better for the

inflated set regarding accuracy and was more reproducible for the deflated set. Recalling

section (2.1), the average DSC obtained manually by a single expert, was 0.91 for the

inflated set and 0.92 for the deflated set; our algorithm approaches the above average DSC

values. Therefore, the suggested algorithm can approach the uncertainty of the radiation

oncologist ability to draw prostate boundary consistently.
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DSC MEAN FOR INFLATED SET
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CHAPTER.4

Conclusions and Future Work

4.1 Conclusions

Due to inter-patient variability intrinsic in biological structures, medical image

analysis can be a very difficult task. Over the last decade, there has been significant

interest in methods that use shape/appearance models to segment images. Using a model

confines the solutions to valid instances of the structures; note that they should be

modelled with a robust performance.

To date most of the prostate segmentation methods consider ultrasound and CT as

the imaging modality. Recently, segmentation has been extended to include MR imaging.

For example, Tsai et al. l5l applied a modei-based curve evaluation technique for the

segmentation of 3D prostate MRI. In addition, Freedman et aI.l8l demonsffated a model-

based distribution-matching method to segment 3D images of prostate MRI. To the best

of our knowledge, only one attempt has been published (Zwiggelaar et aI. lll), which

covers the (semi-) automatic segmentation of prostate MRI. Since the corresponding

ffaining sets and the developed algorithms of the above methods are not available

currently, a direct comparison between these various methods is not possible.
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In summary, we presented a novel semi-automatic method for the segmentation of

the prostate in T2-weighted MR images. On this method, information from the

orientation image and also four user-selected initial input points used in an empirical

shape model of the prostate, which allows the boundary of prostate to be traced in 2D .

The ftaced boundary is one pixel wide and can be projected back onto the original

prostate images. A direct comparison with manual segmentations shows a good

correlation, however, the semi-automatic approach overestimated the size of the prostate;

the amount of overestimation was not consistent along the boundary. For some particular

cases, such as the first and last slices, in which the variation of the gland shape is

extremely large and prostate edge is more difficult to be distinguished because of the

proximity of the other organs to the prostate, this approach failed to perform well.

As a semi-automatic technique, four parameters need to be selected at four

different positions in the boundary of the prostate of each slice. It was shown that the

developed technique was robust with respect to variations in these parameters when the

result of ten times segmentation of each slice with four different input points in each trial

was discussed. According to the results of statistical ranking analysis, the method's

robustness regarding the four initial inputs is better for the deflated. Conversely, the

method's accuracy is better for the inflated set with the minimum DSC, estimated 0.90 in

average, where the same results for the deflated set is close to 0.88. This result is

promising for the applications such as prostate definition for MRSI acquisition (where the

prostate boundary is used to place lipid saturation bands, as well as defining a physical

boundary around tissue from which the MRS signal is acquired). Also for applications

such as radiation treatment planning where the accuracy of prostate segmentation is more
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critical, the presented algorithm's accuracy is nearly as good as intra-operator accuracy

(i.e. the ability of radiation oncologist to consistently segment the prostate).

The developed approach uses simple computer vision techniques in the Cartesian

space of the original MRI data. Once the four initial inputs are determined, the

segmentation process completes in less than 5 seconds. In the two clinical applications,

we observed generally satisfactory but variable validation results.

4.2 Future Work

Investigating the development of a fully automatic method including the

automatic estimation of the four initial points would be a beneficial extension of this

work. Further research could also be done to improve the empirical shape model.

Incorporating a trace modification capability to help the expert apply the necessary

changes in the segmentation results is very useful.

Combining the active contour approach with the segmentation results of the

middle slices in each of the volume sets is a worthwhile extension. According to the

previous chapter, the outcome of this segmentation method for the middle slices in both

of the clinical sets was the most accurate. On the other hand, the middle slices are the

largest slices. Therefore, their extracted boundary could be used for deformable object

segmentation (also known as active contours), as the initial contour which should

converge to the boundary of the other smaller slices of the volume set.
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