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Abstract

Without any doubts, the most important objects in complex analysis are the analytic

functions. In this thesis we will consider and investigate the properties of analytic

functions via their behavior near the boundary of the domain on which they are

defined.

The first part of the thesis (Chapter 1) is an introduction of the hyperbolic metric

on the domain and range of an analytic function. Depending on the shape of the

domain, the Euclidean metric ceases to be the most natural metric to consider and

the hyperbolic metric becomes the best choice, in some sense. For example, every

analytic function is a compression with respect to the hyperbolic metric [Schwarz-

Pick Lemma].

Further, in Chapter 2 we will look at the the hyperbolic distortion and the hyper-

bolic derivative, which are the main tools we use to explain the boundary behavior

of analytic functions. Classical results state that the hyperbolic derivative is also

bounded from above by 1, and we will consider in Section 3.1 the case when it is

bounded from below by some positive constant. Boundedness from below implies

some nice properties of the function near the boundary. This is described in the first

three sections of Chapter 3. For instance, if the function is defined on a nice enough

domain, then boundedness from below of the hyperbolic derivative implies that the

function has an analytic continuation across the boundary. We extend one of the

results given in [9] and state it as Theorem 3.20 and Theorem 3.21.

As for the last section, we consider a characterization theorem of Bloch spaces

in the case of a simply connected hyperbolic planar domain. Almost all of the

functions that we are considering in this thesis belong to the Bloch space, a space

iv



which is deeply connected with the notions of pull-back metric and general distortion.

The characterization Theorem 3.27 is given in the same format as a corresponding

theorem from [16] for the case of bounded homogeneous domains in Cn, and is a

special case of the results proven in [12] for Riemann surfaces. We give a simple

proof of this theorem by using the behavior of the hyperbolic derivative and some

techniques that were introduced in the previous sections.
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Chapter 1

Preliminaries

1.1 Basic facts about the hyperbolic metric

The hyperbolic metric is a specific metric on hyperbolic domains. The simplest

hyperbolic domain is the unit disk, and we will start by describing the hyperbolic

metric on the disk. In this thesis the hyperbolic metric plays a significant role because

it explains some fundamental results of complex analysis from a geometrical point

of view. It is also deeply connected with the Bloch-type spaces, and the behavior

of self-maps of the unit disk near the boundary. This chapter is mostly based on

Beardon and Minda’s paper [1] and almost all of the results and their proofs are

taken from there.

Through the thesis I will be using the notion of conformal map, by which I mean

a map φ, such that φ′ 6= 0 in the domain of φ. By a conformal mapping I will mean

a univalent analytic function.

First of all, a metric on some domain will be just a positive real-valued function

that is twice differentiable which can be interpreted as a density of some distance

function. In this chapter I will consider a metric on the unit disk D = {z : |z| < 1}.

Definition 1.1. The hyperbolic metric on D is defined by λD(z) =
2

1−|z|2
.

Note, that usually a metric is meant to be a symmetric non-negative function

ρ : X×X → [0; +∞] on a metric space X , that satisfies the triangle inequality. The
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metric we have defined is just a density of a metric in usual sense. We can define a

length of a vector u with initial point a ∈ D in a metric λD by

||u||λD = |u| · λD(a).

Then for any two points z and w in D and any smooth curve γ : [a, b] → D that

joins z and w, define the hyperbolic length of γ by

lD(γ) =

∫

γ

λD(z)|dz| =
∫ b

a

||γ′||λDdt.

Then we come up with a distance function on D, induced by the hyperbolic

metric:

dD(z, w) = inf
γ
lD(γ),

where the infimum is taken over all smooth curves that join z and w.

It can be easily verified that dD(z, w) satisfies all of the requirements for a distance

function. It is nonnegative, symmetric and it satisfies the triangle inequality.

Let us consider isometries of both the hyperbolic metric and the hyperbolic dis-

tance.

Definition 1.2. An analytic function φ : D → D is called an isometry of the metric

λD(z) if for all z in D,

λD(φ(z))|φ′(z)| = λD(z), (1.1)

and φ is called an isometry of the distance dD if, for any z and w from D,

dD(φ(z), φ(w)) = dD(z, w). (1.2)

The definition of isometry for the hyperbolic distance is more or less intuitive.

However, it is not obvious, why we have such a definition for an isometry of the

hyperbolic metric. This can be explained by the fact that if φ is an isometry of

the hyperbolic metric, then for any curve γ we have lD(γ) = lD(φ ◦ γ). The next

theorem states that two classes of isometries coincide and that they are just the

conformal automorphisms of the unit disk. The most general form of a conformal

automorphism of the unit disk onto itself is

φ(z) = eiθ
z − a

1− āz
, θ ∈ R, a ∈ D.
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The set of all conformal automorphisms of D is denoted by Aut(D). Note that

Aut(D) is a transitive group on D under the operation of composition.

Theorem 1.3. For any analytic map φ : D → D the following are equivalent:

(a) φ ∈ Aut(D).

(b) φ is an isometry of the metric λD.

(c) φ is an isometry of the distance dD.

To prove that (b) implies (a), we will need Schwarz’s Lemma (see [3], page 130):

Theorem 1.4 (Schwarz’s lemma). For any analytic function f : D → D such that

f(0) = 0 there are two possibilities:

(a) |f(z)| < |z| for every nonzero z ∈ D, and moreover |f ′(0)| < 1 or

(b) f is a rotation, namely there exists a real number θ such that f(z) = eiθz.

We present the proof of Theorem 1.3 as given in [1].

Proof. (Theorem 1.3) Let us prove that (a) implies (b). If φ is a conformal automor-

phism of D, then

φ(z) = eiθ
z − a

1− āz

for some a ∈ D and real θ. Then

φ′(z) = eiθ
1(1− āz)− (z − a)(−ā)

(1− āz)2
= eiθ

1− |a|2
(1− āz)2

.

Moreover

1− |φ(z)|2 = |1− āz|2 − |z − a|2
|1− āz|2 =

(1− āz)(1 − az̄)− (z − a)(z̄ − ā)

|1− āz|2

=
1 + |z|2|a|2 − |z|2 − |a|2

|1− āz|2 =
(1− |z|2)(1− |a|2)

|1− āz|2 .

So, we can write that

λD(φ(z))|φ′(z)| = 2|φ′(z)|
1− |φ(z)|2 =

2

1− |z|2 = λD(z),
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which finishes the proof (a) implies (b).

Now let us prove that (b) implies (a). Suppose that φ is an isometry of the

hyperbolic metric. Let ψ be a conformal automorphism that maps φ(0) to 0. Then

set µ = ψ ◦ φ with µ(0) = ψ(φ(0)) = 0. We have that µ is an isometry of the

hyperbolic metric as ψ and φ are isometries. Then (1.1) implies

λD(µ(0))|µ′(0)| = 2|µ′(0)| = 2 = λD(0).

So, µ is a self-map of D, it fixes the origin and |µ′(0)| = 1. Applying Schwarz’s

Lemma we get that µ is a rotation. That is why φ = ψ−1 ◦ µ is a conformal auto-

morphism.

Proof of (a) ⇒ (c). Let φ ∈ Aut(D). Then φ is an isometry of the hyperbolic

metric. So, for any smooth curve γ in D,

lD(φ ◦ γ) =
∫

φ◦γ

λD(w) =

∫

γ

λD(φ(z))|φ′(z)| = lD(γ).

This implies that for any z, w ∈ D, we have dD(φ(z), φ(w)) = dD(z, w) as any curve

η can be written as φ ◦ γ.
Proof of (c) ⇒ (a). Let φ be analytic and a dD-isometry. Let ψ ∈ Aut(D),

mapping φ(0) to 0. Set µ = ψ ◦φ. Then µ is a dD-isometry, and an analytic self-map

of D with µ(0) = 0. That is why

dD(0, µ(z)) = dD(µ(0), µ(z)) = dD(0, z).

Consequently, |µ(z)| = |z| . According to Schwarz’s Lemma µ(z) = eiθz , i.e. µ is

a conformal automorphism. Thus, φ = ψ−1 ◦ µ is also conformal automorphism of

D.

The next theorem gives an explicit formula for the hyperbolic distance. Before

stating that theorem, we need to define the pseudo-hyperbolic distance.

Definition 1.5. The pseudo-hyperbolic distance pD(z, w) is given by the formula

pD(z, w) =

∣

∣

∣

∣

z − w

1− zw̄

∣

∣

∣

∣

.
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Theorem 1.6. The hyperbolic distance dD(z, w) in D is given by

dD(z, w) = log
1 + pD(z, w)

1− pD(z, w)
= 2 tanh−1 pD(z, w). (1.3)

We present the proof as given in [1].

Proof. We will start with the case when both z and w are real. Let γ be any smooth

curve joining z and w in D and let γ(t) = u(t)+ iv(t) be the decomposition of γ into

real and imaginary parts (0 ≤ t ≤ 1). Then

lD(γ) =

∫ 1

0

2|γ′(t)|dt
1− |γ(t)|2 =

∫ 1

0

2
√

((u′(t))2 + (v′(t))2)dt

1− u(t)2 − v(t)2
≥
∫ 1

0

2u′(t)dt

1− u(t)2
.

By evaluating the last integral we get that

lD(γ) ≥ log

(

(1 + w)

(1− w)

(1− z)

(1 + z)

)

= log

(

1+w−z−zw
1−wz

1−w+z−zw
1−wz

)

=

log

(

1 +
(

w−z
1−wz

)

1−
(

w−z
1−wz

)

)

.

As equality holds for γ(t) = z + t(w − z), we see that (1.3) is true for real z and w.

Next, let z and w be any two points in D. We know that any rotation is an

isometry, so dD(0, z) = dD(0, |z|). Now consider f(z) = (z − w)/(1− zw̄). Then f is

a conformal automorphism and therefore, it is an isometry of the distance dD(z, w).

Thus,

dD(z, w) = dD(f(z), f(w)) = dD(f(z), 0) = dD(|f(z)|, 0) = dD(pD(z, w), 0),

which finishes the proof as pD(z, w) is real and we can use formula for dD with real

arguments:

dD(pD(z, w), 0) = log
1 + pD(pD(z, w), 0)

1− pD(pD(z, w), 0)
= log

1 + pD(z, w)

1− pD(z, w)
.

From the proof of the theorem we can conclude that the hyperbolic geodesic (the

curve that has the least hyperbolic length) that connects two points −1 < x < y < 1

is an interval that connects x to y. As conformal automorphisms of the unit disk

map circles into circles and preserve orthogonality, we get the following.
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Definition 1.7. The hyperbolic geodesic that connects two points z and w in D is

γ ∩ D, where γ is the circle or a straight line that passes through z and w and is

orthogonal to the circle ∂D.

Here is an example how the hyperbolic geodesic can look like (geodesics that

connect v1, u1, v2, u2 and v3, u3):

bO

b
v1

b
u1

bu3

bv3

bv2

bu2

Figure 1. Hyperbolic geodesic in D

The unit disk D with the hyperbolic metric, which is also sometimes referred to

as Poincaré metric, is called the Poincaré model of the hyperbolic plane. The name

“hyperbolic” comes from the fact that in this type of metrics the sum of interior angles

of any triangle will be less than π (on the contrary, an elliptic metric is a metric with

the sum of interior angles of any triangle being greater then π). The hyperbolic plane

is an example of non-Euclidean geometry, where the Parallel Postulate is removed.

That means that there exist plenty of “lines” in the hyperbolic geometry, that are

parallel to each other. One can see that if γ is a hyperbolic geodesic in D and a ∈ D

is a point not on γ, then there are infinitely many geodesics that pass through a and

do not intersect with γ.

The lines in this plane are the geodesics which are either Euclidean lines or circles,

the angle between two hyperbolic lines is just the Euclidean angle between the two

tangent lines at the point of intersection. This model satisfies all axioms of the

Euclidean geometry, with the exception of the Parallel Postulate.

The hyperbolic distance has a lot of nice properties, however the formula (1.3)

for dD is not simple. Why not using the pseudo-hyperbolic distance pD(z, w), which
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has almost the same properties and is much easier to evaluate? The answer is the

following: from the next theorem, given in [1], we can see that the hyperbolic distance

is additive along the geodesics, but that this is never true for the pseudo-hyperbolic

metric.

Theorem 1.8. Let u, v, w be three consecutive points on a hyperbolic geodesic in D,

then

dD(u, w) = dD(u, v) + dD(v, w).

In contrast for any three distinct points u, v and w in D,

pD(u, w) < pD(u, v) + pD(v, w).

Proof. Choose three points u, v, w which lie in this order on some geodesic. Then

consider an isometry f that maps this geodesic to the real interval (−1, 1) of D, with

f(v) = 0. Set x = f(u) and y = f(w), so that −1 < x < 0 < y < 1. It is sufficient to

show that dD(x, 0) + dD(0, y) = dD(x, y). According to Theorem 1.6, we can write

dD(x, y) = log

(

1 + y−x
1−xy

1− y−x
1−xy

)

= log

(

(1− x)(1 + y)

(1 + x)(1− y)

)

=

= log

(

(1− x)

(1 + x)

)

+ log

(

(1 + y)

(1− y)

)

= dD(x, 0) + dD(0, y).

In order to show that pD is a distance function, we will only show that the triangle

inequality holds for pD(u, v). The other properties of a distance are easy to verify.

So, for any distinct u, v and w,

pD(u, w) = tanh
1

2
dD(u, w)

≤ tanh
1

2
(dD(u, v) + dD(v, w))

=
tanh 1

2
dD(u, v) + tanh 1

2
dD(v, w)

1 + tanh 1
2
dD(u, v) tanh

1
2
dD(v, w)

< tanh
1

2
dD(u, v) + tanh

1

2
dD(v, w)

= pD(u, v) + pD(v, w).
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The first inequality follows because tanh(x) is a monotone increasing function.

For the second we used the formula

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
.

As for the third, one can see that tanh(0) = 0 and the fact that tanh(x) is a monotone

increasing function imply

1 + tanh
1

2
dD(u, v) tanh

1

2
dD(v, w) > 1.

Moreover, we have shown that there is always a strict inequality in the triangle

inequality for pD for any three distinct points.

Another unexpected but beautiful result is the following:

Theorem 1.9. The Euclidean topology and the topology derived from the hyperbolic

distance are the same. However, the unit disk equipped with the hyperbolic distance

is a complete metric space.

Proof. Note that the distance function dD is not equivalent to the Euclidean distance.

To start, let us show that any hyperbolic disk is also an Euclidean disk. First of all,

all of the disks DdD,r = {z ∈ D : dD(0, z) < r} with a radius r and center 0 are just

Euclidean disks with the same center and radius tanh(1
2
r). Really,

dD(0, z) < r ⇐⇒ 2 tanh−1 pD(0, z) < r ⇐⇒ |z| < tanh(
1

2
r).

Now, any hyperbolic disk DdD with a center at a is mapped onto a hyperbolic disk

DdD,r by a hyperbolic isometry φ = z−a
1−zā

. Then DdD = φ−1(DdD,r) and, since φ
−1 is a

conformal automorphism of D, it maps the Euclidean disk DdD,r into the Euclidean

disk DdD.

On the other hand, if D is an Euclidean disk, then there is a conformal mapping

φ, such that φ(D) is a Euclidean disk with a radius R, that implies φ(D) = DD,r for

r = 2 tanh−1R. Since φ−1 is a hyperbolic isometry we get that D = φ−1(DdD,r) is a

hyperbolic disk. Since disks are the base for the topology, the hyperbolic topology

is the same as the Euclidean one.
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Now, let us prove that D with the hyperbolic distance is a complete metric space.

Let {zn} be a Cauchy sequence in (D, dD). It is a bounded sequence, therefore there

is a subsequence {znk
} that converges to some z ∈ D. Suppose, that z ∈ ∂D. Then,

for any n0 and for k → ∞,

pD(zn0 , znk
) =

|zn0 − znk
|

|1− zn0znk
| → |zn0 − z|

|1− zn0z|
=

|zn0 − z|
|1− zn0z| · |z̄|

=
|zn0 − z|
|zn0 − z| = 1.

Therefore dD(zn0 , znk
) = 2 tanh−1(pD(zn0 , znk

)) → 2 tanh−1(1) = +∞. So we get a

contradiction with {zn} being a Cauchy sequence with respect to dD. Therefore

z ∈ D and we can write

dD(zn, z) ≤ dD(zn, znk
) + dD(znk

, z).

Taking k → ∞, and n→ ∞ we get that dD(zn, z) → 0. Therefore, zn converges to z

in (D, dD).

The Euclidean metric is obviously not complete on D. The important property

of the hyperbolic metric dD is that lim|z|→1 dD(0, z) = +∞, which informally means,

that ∂D is infinitely far away from any point a ∈ D in the hyperbolic metric. So,

in many cases it is more convenient to use the complete metric dD when considering

the domain D.

To end this section, we introduce an illustration of the disks in the hyperbolic

metric. The hyperbolic disks with the same radius have different Euclidean size,

which depends on the center of the hyperbolic disk. For instance in this Figure 2 all

of the hyperbolic disks have the same radius 1.
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bO

Figure 2. Hyperbolic disks in D with radius 1.

1.2 Schwarz-Pick lemma

We stated Schwarz’s Lemma in the previous section. One of the conditions in

Schwarz’s Lemma is that f(0) = 0. In terms of the hyperbolic geometry, all points

in D are the same and 0 is not special. That gives the idea that there should be a

Schwarz-type result with possibly some other fixed point a. Pick in 1915 noticed that

actually we can drop the condition that f has a fixed point. Here is Pick’s invariant

formulation of Schwarz’s Lemma.

Theorem 1.10. (The Schwarz-Pick Lemma) Suppose that f : D → D is an analytic

function. Then there are two possibilities:

(a) f is a hyperbolic contraction, i.e.

dD(f(z), f(w)) < dD(z, w), λD(f(z))|f ′(z)| < λD(z) (1.4)

for all z, w ∈ D, or

(b) f is a hyperbolic isometry, and

dD(f(z), f(w)) = dD(z, w), λD(f(z))|f ′(z)| = λD(z) (1.5)

for all z, w ∈ D. That means that f ∈ Aut(D).
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Proof. According to Theorem 1.3, f is an isometry if and only if either of the condi-

tions in (1.5) hold. Now suppose f is analytic, but not a conformal automorphism

of D. Then, let us prove inequality (1.4) for two distinct points z1 and z2. Denote φ

to be a conformal automorphism of D that maps f(z1) to 0 and ψ to be an automor-

phism that maps 0 to z1. Then we can apply the Schwarz Lemma to the function

φ ◦ f ◦ ψ and get |(φ ◦ f ◦ ψ)(z)| < |z|. Therefore, we get that

dD(0, (φ ◦ f ◦ ψ)(z)) = dD(0, |(φ ◦ f ◦ ψ)(z)|) < dD(0, |z|) = dD(0, z).

Now we can put z = ψ−1(z2) and using the fact that φ and ψ−1 are isometries for dD

we will get

dD(0, (φ ◦ f ◦ ψ)(z)) < dD(0, z) ⇒

dD(φ(f(z1)), φ(f(ψ(z)))) < dD(ψ
−1(z1), z) ⇒

dD(φ(f(z1)), φ(f(z2))) < dD(ψ
−1(z1), ψ

−1(z2)) ⇒

dD(f(z1), f(z2)) < dD(z1, z2).

That gives us the first inequality in (1.4). To get the second, let us use the Schwarz

Lemma for the function φ(f(ψ(z))) to get |φ(f(ψ))′(0)| < 1. That implies

|φ′(f(ψ(0))) · f ′(ψ(0)) · ψ′(0)| < 1,

or in other words

|φ′(f(z1)) · f ′(z1) · ψ′(0)| < 1,

Now,

|ψ′(0)|λD(ψ(0)) = λD(0),

|φ′(f(z1))|λD(ψ(f(z1))) = λD(f(z1)),

since ψ and φ are isometries of the hyperbolic metric. As ψ(0) = z1 and φ(f(z1)) = 0,

we get

|ψ′(0)| = λD(0)

λD(z1)
,

|φ′(f(z1))| =
λD(f(z1))

λD(0)
.
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Therefore,

1 > |φ′(f(z1)) · f ′(z1) · ψ′(0)|

=

∣

∣

∣

∣

λD(f(z1))

λD(0)
· f ′(z1) ·

λD(0)

λD(z1)

∣

∣

∣

∣

=

∣

∣

∣

∣

λD(f(z1))

λD(z1)
· f ′(z1)

∣

∣

∣

∣

.

And finally we get

|λD(f(z1)) · f ′(z1)| < λD(z1)

for any z1 ∈ D, which finishes the proof of the second inequality (1.4).

Note that the Schwarz-Pick Lemma says that every analytic self-map f of the

unit disk is a contraction with respect to the hyperbolic metric. Or, one can write,

dD(f(z), f(w)) ≤ dD(z, w),
λD(f(z))|f ′(z)|

λD(z)
≤ 1. (1.6)

Of course, we can get rid of the expression dD in the Schwarz-Pick Lemma, get a

precise “algebraic” inequality and restate the Schwarz-Pick Lemma in the following

form:

Corollary 1.11. (The Schwarz-Pick Lemma, “explicit” version) Let f be self-map

of D and z1, z2 be two distinct points in D. Then

∣

∣

∣

∣

∣

f(z1)− f(z2)

1− f(z1)f(z2)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

z1 − z2
1− z1z2

∣

∣

∣

∣

,

and for any z ∈ D,

|f ′(z)| ≤ 1− |f(z)|2
1− |z|2 .

If the first equality holds at least for one pair of distinct points z1 and z2, or the

second holds for some point z, then both inequalities hold for any points z1, z2, z and

f is a conformal automorphism of D.
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Proof. The second inequality follows directly from the fact that any analytic map

is a contraction with respect to the hyperbolic distance. The first inequality can be

restated as

pD(f(z1), f(z2)) ≤ pD(z1, z2).

Now using the fact that tanh−1 is a monotone function and equation (1.3) we will

get that the inequality is equivalent to

dD(f(z1), f(z2)) ≤ dD(z1, z2).

The equality part follows directly from the Schwarz-Pick Lemma.

Another significant fact about the hyperbolic metric is that it is a unique metric,

up to a multiplication by a scalar, that makes every analytic self-map a contraction,

and every conformal automorphism an isometry.

Theorem 1.12. For any metric ρ(z) on the unit disk D the following are equivalent:

(a) ρ(f(z))|f ′(z)| ≤ ρ(z) for all analytic f : D → D and z ∈ D.

(b) For any conformal map f : D → D and all z ∈ D we get equality in (a), namely

ρ(f(z))|f ′(z)| = ρ(z).

(c) ρ(z) = cλD(z) for some c > 0.

Recall that by a conformal map we mean a map f with f ′(z) 6= 0 on D.

Proof. (a) ⇒ (b): Suppose f ∈ Aut(D). By the assumption, we have that

ρ(f(z))|f ′(z)| ≤ ρ(z).

As f is a conformal self-map of D so is also its inverse function g = f−1. For g we

get

ρ(g(w))|g′(w)| ≤ ρ(w).

Using w = f(z) and the fact that g′(f(z)) = 1
f ′(z)

we get

ρ(z)| 1

f ′(z)
| ≤ ρ(f(z)),
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or in other words

ρ(z) ≤ |f ′(z)|ρ(f(z)).

Therefore, ρ(z) = |f ′(z)|ρ(f(z)).
(b) ⇒ (c): We will find the constant c from the equation ρ(0) = cλD(0). Let f be

a conformal automorphism of D, that maps 0 into a ∈ D. Then according to (b) and

the fact that conformal automorphisms are isometries for λD we get that

ρ(a)|f ′(0)| = ρ(f(0))|f ′(0)| = ρ(0) = cλD(0) = cλD(f(0))|f ′(0)| = cλD(a)|f ′(0)|.

As |f ′(0)| is nonzero, we get ρ(a) = cλD(a) for all a ∈ D.

(c) ⇒ (a): Follows directly from the Schwarz-Pick Lemma.

1.3 Hyperbolic derivatives and distortions on D

The hyperbolic metric is a natural metric to study the properties of the analytic self-

maps of the disk. Therefore one should also use derivatives that are compatible with

the hyperbolic metric. To do that we will need to define the hyperbolic difference

quotient and the complex pseudo-hyperbolic distance, as it is defined in [1].

Definition 1.13. The expression

[z, w] =
z − w

1− w̄z

defines the complex pseudo-hyperbolic distance between any two points z and w in D.

Note that in Section 1.1, we denoted the pseudo-hyperbolic distance by pD(z, w) =

|[z, w]|. Considering the complex pseudo-hyperbolic distance as an analogue of ordi-

nary distance on the real line, one can define the difference quotient for a self-map

of D. In this section we will consider some properties of the hyperbolic difference

quotient and the hyperbolic derivative as given and described in [1].

Definition 1.14. Suppose that f : D → D is an analytic map, then for any two

distinct points z, w ∈ D we define the hyperbolic difference quotient f ∗(z, w) by

f ∗(z, w) =
[f(z), f(w)]

[z, w]
.
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If we combine equation (1.3), the fact that tanh is monotone increasing, and the

Schwarz-Pick Lemma, we get the following

dD(f(z), f(w)) ≤ dD(z, w) ⇒ tanh−1 pD(f(z), f(w)) ≤ tanh−1 pD(z, w)

⇒ pD(f(z), f(w)) ≤ pD(z, w),

for any z, w ∈ D. Moreover, if equality holds for one pair z and w of distinct points,

then f is a conformal automorphism of D and then equality hold for all z and w. We

get that either f is a hyperbolic isometry with |f ∗(z, w)| = 1 for all z and w, or f is

not an isometry and |f ∗(z, w)| < 1 for all z and w.

For our further discussion we will need to introduce the notion of finite Blaschke

product.

Definition 1.15. A finite Blaschke product B : D → D of degree k is defined by

B(z) = ξ

k
∏

i=1

z − ai
1− zāi

,

where ξ ∈ ∂D and ai ∈ D.

Remark 1.16. A conformal automorphism of D is a Blaschke product of degree 1.

The next Theorem gives us a general description of finite Blaschke products.

Theorem 1.17. B is a finite Blaschke product if and only if B is analytic in D,

continuous in D and |B(z)| = 1, for each z ∈ ∂D.

Proof. The “only if” part is just trivial, as we have the following for |z| = 1,

|B(z)| =
∣

∣

∣

∣

∣

ξ
k
∏

i=1

z − ai
1− zāi

∣

∣

∣

∣

∣

= |ξ|
k
∏

i=1

∣

∣

∣

∣

z − ai
1− zāi

∣

∣

∣

∣

= 1.

Now let us prove the “if” part. If B has no zeroes in D, then by the Minimum

Modulus principle, B is a constant, which must be of modulus one. Now suppose

that B does have a zero in D. Note that if B(z) has an infinite number of zeroes in

D, then there is a sequence of zeroes that converge to a point w ∈ D. If w ∈ D, then

B(z) is not analytic at w, if w ∈ ∂D, then B(w) = 0 since B(z) is continuous in D.
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Therefore B(z) can only have a finite number of zeroes in D, say a1, ..., ak, which are

written with their multiplicities, and the function

B1(z) = B(z)/

∣

∣

∣

∣

∣

k
∏

i=1

z − ai
1− zāi

∣

∣

∣

∣

∣

is also analytic in D, continuous in D and it maps ∂D onto itself. Moreover, B1 has

no zeroes in D. Therefore applying the Minimum Modulus Principle to the function

B1, we get

B1(z) = ξ,

for some ξ ∈ ∂D and that ends the proof.

Also let us consider the automorphism of D

φ(z) =
z − w

1− w̄z
,

and the Blashcke product

B(z) = ξ

k
∏

i=1

z − ai
1− zai

of degree k. Then the function φ(B(z)) is also a Blaschke product, with all zeroes

in D. Really, one can get

φ(B(z)) = 0 ⇒ B(z)− w = 0 ⇒

ξ

∏k
i=1(z − ai)− (w/ξ)

∏k
i=1(1− zai)

∏k

i=1(1− zai)
= 0.

As the degree of the numerator is k, that means that φ(B(z)) has exactly k zeroes,

and all of them are in D. Therefore φ(B(z)) is a Blaschke product of degree k. Or,

in other words, the degree of a Blaschke product is preserved under a composition

with a conformal automorphism of D.

Now we turn to the behavior of the hyperbolic difference quotient. Some of the

basic properties are given in the following result in [1].

Theorem 1.18. Let f : D → D be analytic, and w be some point in D.

(a) The function f ∗(z, w), as a function of z, is analytic in D.
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(b) Whenever f is not a conformal mapping D onto itself, |f ∗(z, w)| < 1 for any

z, w ∈ D.

(c) The map z → f ∗(z, w) is a conformal automorphism of D if and only if f is a

Blaschke product of degree 2.

(The proof is taken from [1] with some modifications).

Proof. To show part (a), note that w is a removable singularity for f ∗(z, w) as a

function of z since

f ∗(z, w) =

(

f(z)− f(w)

z − w

)

(

1− f(w)f(z)

1− w̄z

)−1

.

The function z → f ∗(z, w) is obviously analytic everywhere except possibly the point

z = w. However, when z → w, we get

f ∗(z, w) → f ′(w)

(

1− f(w)f(w)

1− w̄w

)−1

=
|f ′(w)|λD(f(w))

λD(w)
<∞.

Therefore we conclude that the point z = w is a removable singularity of f ∗(z, w) as

a function of z.

As noted before, if f is not a conformal automorphism of D, then we have that

|f ∗(z, w)| < 1 and this gives us (b).

Note that that there are conformal automorphisms φ and ψ of D (depending on

w ) such that

f ∗(z, w) =
φ(f(z))

ψ(z)
.

More precisely, we can take

φ(z) =
z − f(w)

1− f(w)z
,

ψ(z) =
z − w

1− w̄z
.

Therefore we can write

f(z) = φ−1(f ∗(z, w)ψ(z)).

We will use this to show part (c). If f ∗(z, w) is a conformal automorphism, then

f ∗(z, w)ψ(z) is a Blaschke product of degree 2 and f(z) = φ−1(f ∗(z, w)ψ(z)) is
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a Blaschke product and its degree is equal to two since the composition with a

conformal automorphism preserves the degree of a Blaschke product.

On the other hand, if f is a Blashcke product of degree two, then B(z) := φ(f(z))

is also a Blaschke product of degree two, and f ∗(z, w) = B(z)
ψ(z)

. Since we know

that f ∗(z, w) is analytic in z and B(z) is a product of two automorphisms, we get

that there is a conformal automorphism ψ1 such that B(z) = ψ(z)ψ1(z) and so

f ∗(z, w) = ψ1, which finishes the proof.

Using the hyperbolic difference quotient we can generalize the Schwarz Lemma

and derive the so-called three-point Schwarz-Pick Lemma, which, as stated in [1],

includes all presently known variations and extensions of the Schwarz Lemma.

Theorem 1.19 (Three-point Schwarz-Pick Lemma.). Suppose that z, w, v ∈ D are

some not necessary distinct points and f : D → D is analytic, but not an automor-

phism of D. Then

dD(f
∗(z, v), f ∗(w, v)) ≤ dD(z, w).

Moreover, if equality holds for some z, w and v then equality holds for any choice of

z, w with fixed v and f is a Blashke product of degree two.

Proof. Assuming that f is analytic in D, and is not an automorphism, according to

Theorem 1.18(b) we have that |f ∗(z, v)| < 1 and |f ∗(v, w)| < 1, which shows that

the expression

dD(f
∗(z, v), f ∗(w, v))

is defined. Applying the Schwarz-Pick Lemma to the map f ∗(z, w), we get the in-

equality from the three-point Schwarz-Pick Lemma. Moreover, the Schwarz-Pick

Lemma also tells us that equality holds if and only if f ∗(z, w) is a conformal au-

tomorphism of D which only happens when f is a Blaschke product of degree two

(Theorem 1.18(c) ).

As was claimed above, this theorem is an improvement of the Schwarz Lemma.

From the Schwarz Lemma we get that f(z)
z

lies in D and that |f ′(0)| < 1. On the
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other hand if we take w = 0 and v → 0 in the Three-point Schwarz-Pick Lemma, we

get a stronger result which says that f(z)
z

lies in the hyperbolic disk with center f ′(0)

and radius dD(0, z).

Now, using the hyperbolic difference quotient, we will define the hyperbolic

derivative as it is done in [1].

Definition 1.20. Suppose that f : D → D is analytic. The hyperbolic derivative

fh(w) of f at w in D is

fh(w) = lim
z→w

f ∗(z, w) = lim
z→w

[f(z), f(w)]

[z, w]
=

(1− |w|2)f ′(w)

1− |f(w)|2 =
λD(f(w))f

′(w)

λD(w)
.

The hyperbolic distortion of f at w is

|fh(w)| = lim
z→w

dD(f(z), f(w))

dD(z, w)
=

(1− |w|2)|f ′(w)|
1− |f(w)|2 =

λD(f(w))|f ′(w)|
λD(w)

.

Note that, by the Schwarz-Pick Lemma, we have that for f : D → D analytic

either |fh(w)| < 1 for every w ∈ D, or |fh(w)| = 1 for all w ∈ D and f is an

automorphism of D.

We will need the notion of the hyperbolic derivative later on, when we are consid-

ering the connection between the hyperbolic derivative of f and a possible analytic

extension of f across the unit circle.

1.4 Angular derivatives

For some of the further results and discussions, we will need to define the angular

limit at a point on the boundary. For a function f : D → C and a point ξ ∈ ∂D we

can consider the unrestricted limit

lim
z→ξ

f(z),

where z approaches ξ without any restrictions in D. In some cases, it is convenient to

separate different types of approaches, namely a tangential approach and an angular

approach.
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Definition 1.21. For a point w ∈ ∂D and α > 1, a non-tangential approach domain

at w with angle α is defined by

Γ(w, α) = {z ∈ D : |z − w| < α(1− |z|)}.

The term “non-tangential” refers to the fact that near the point w, Γ(w, α) is a

sector that is bounded by two straight lines in D meeting at w and symmetric about

the radius to w.

Definition 1.22. An analytic function f : D → C has a non-tangential (angular)

limit L at w if the limit of f(z) exists in each non-tangential domain Γ(w, α). In this

case we will write

L = ∠ lim
z→w

f(z).

The main fact about non-tangential limits is stated by the following theorem (for

the proof see [15]):

Theorem 1.23 (Julia-Wolff-Caratheodory Lemma). Suppose f : D → D is analytic,

ξ ∈ ∂D. Then the following statements are equivalent:

(a)

lim inf
z→ξ

1− |f(z)|
1− |z| =: d(ξ) <∞,

where the limit is taken as z approaches ξ without any restrictions in D.

(b)

∠ lim
z→ξ

f(z)− η

z − ξ
=: ∠f ′(ξ)

exists for some η ∈ ∂D. The value ∠f ′(ξ) is called the angular derivative of f

at the point ξ.

(c) ∠ limz→ξ f
′(z) exists, and ∠ limz→ξ f(z) = η ∈ ∂D.

Moreover,

(i) d(ξ) > 0 in (i).

(ii) The boundary points η in (ii) and (iii) are the same.

(iii) limz→ξ f
′(z) = ∠f ′(ξ) = ξ̄ηd(ξ).



Chapter 2

Classical Ahlfors Lemma

2.1 The hyperbolic metric on simply connected

domains

In this section we will consider the hyperbolic metric on different simply connected

domains, restating the basic properties of this metric. Recall that a domain is an

open, connected subset of C.

We first define the notion of conformal equivalence of two different domains.

Definition 2.1. Two domains Ω1 and Ω2 are conformally equivalent if there is a

conformal mapping φ of Ω1 onto Ω2.

Also, we will need to use the main result about simply connected domains - the

Riemann Mapping Theorem (see [3] page 160).

Theorem 2.2. (The Riemann Mapping Theorem) Let Ω be a proper simply connected

subdomain of C and a be any point in Ω. Then there is a unique conformal mapping

f from Ω onto D, such that f(a) = 0 and f ′(a) is real and positive. Therefore, any

simply connected domain in C is either C itself, or it is conformally equivalent to the

unit disk D.

Now, using the Riemann Mapping Theorem we can transfer the hyperbolic metric

from the unit disk to any simply connected proper subdomain Ω of C. Actually, using

22



23

the conformal mapping φ : Ω → D we will “pull” the hyperbolic metric from the unit

disk back onto the domain Ω.

Definition 2.3. For any semimetric ρ(w) on the domain Ω2 and analytic function

f : Ω1 → Ω2, the pull-back of ρ(w) by f at point z ∈ Ω1 is provided by the formula:

f ∗(ρ)(z) = ρ(f(z))|f ′(z)|.

The pull-back metric f ∗(ρ)(z) is also a semimetric on Ω1 whenever f is not a

constant function.

The next theorem says that all of the pull-backs by the conformal mappings

φ∗(λD) are the same and they denote the hyperbolic metric on Ω. The following

theorem can be also considered as a theorem of existence and uniqueness of the

hyperbolic metric on simply connected domains.

Theorem 2.4. There is a unique hyperbolic metric λΩ defined on a simply connected

domain Ω, properly contained in C, such that for any conformal mapping φ : Ω → D

we get

λΩ(z) = λD(φ(z))|φ′(z)| = φ∗(λD)(z).

Proof. First of all, let φ : Ω → D be any conformal mapping provided by the Riemann

Mapping Theorem. Then, define the hyperbolic metric λΩ(z) = λD(φ(z))|φ′(z)|. Let
us show that the definition of λΩ is valid, namely that it is independent of the choice

of φ and that it is determined only by Ω. Any conformal mapping from Ω onto D

can be written as µ ◦ φ, for some µ ∈ Aut(D). Since every element of Aut(D) is an

isometry for λD, we get:

λD(w) = λD(µ(w))|µ′(w)|.

Now, for a conformal mapping ψ = µ ◦ φ that maps Ω onto D, we get:

λD(ψ(z)) · |ψ′(z)| = λD(µ(φ(z))) · |µ′(φ(z))| · |φ′(z)| = λD(φ(z)) · |φ′(z)|.

The last equations show that the value λΩ(z) is independent of the choice of the

conformal mapping φ from Ω onto D.
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Now, we want to define the hyperbolic distance on Ω. We can do that in two

different ways. On one hand, from the Riemann Mapping Theorem, we get a con-

formal mapping φ from Ω onto D. Using this map, we define the hyperbolic distance

on Ω by dΩ(z, w) = dD(φ(z), φ(w)). One can easily verify that dΩ satisfies all the

properties of a distance function and it does not depend on the map φ. Really, any

other conformal automorphism ψ : Ω → D can be written as ψ = µ ◦ φ for some

µ ∈ Aut(D). Then

dD(ψ(z), ψ(w)) = dD(µ ◦ φ(z), µ ◦ φ(w)) = dD(φ(z), φ(w)),

since µ is a hyperbolic isometry. Therefore the definition of dΩ(z, w) is correct.

On the other hand, we can do the same procedure as we did when defining the

hyperbolic distance on D. The hyperbolic length of a curve γ in Ω is given by

lΩ(γ) =

∫

γ

λΩ(z).

Then the distance function between two points z and w in Ω will be

dΩ(z, w) = inf lΩ(γ),

where γ is any piecewise smooth curve that connects z and w in Ω. It is easy to

see that, in both cases, we get the same distance function. And, same as for the

hyperbolic distance on D, the hyperbolic distance dΩ is complete on Ω. Namely, let

{zn} be a Cauchy sequence in a metric space (Ω, dΩ). Let φ be a conformal mapping

of D onto Ω. Then {φ−1(zn)} is a Cauchy sequence in (D, dD), since

dΩ(zn, zk) = dΩ(φ(φ
−1(zn)), φ(φ

−1(zk))) = dΩ(φ
−1(zn), φ

−1(zk)).

Therefore, {φ−1(zn)} converges to some w ∈ D and {zn} converges to φ(w) ∈ Ω.

The most important consequence of the definition is that the Poincaré’s model of

the hyperbolic plane D transfers to any simply connected domain of the plane with

its own hyperbolic metric. For example, the set of all automorphisms of Ω is just

the set of isometries of Ω. Also, one can adopt the Schwarz-Pick lemma for the case

of simply connected domains by following [1].

Before doing that let us expand the definition of a hyperbolic isometry.



25

Definition 2.5. A map f : Ω1 → Ω2 is said to be a hyperbolic isometry between two

simply connected regions Ω1 and Ω2 if for any z, w ∈ Ω1

λΩ1(z) = λΩ2(f(z)) · |f ′(z)|,

dΩ1(z, w) = dΩ2(f(z), f(w))

Then the following statement holds.

Theorem 2.6. (Conformal Invariance) Any conformal mapping φ between Ω1 and

Ω2 - two simply connected proper subdomains of C, is a hyperbolic isometry between

Ω1 and Ω2.

Proof. Let ψ be a conformal mapping from Ω2 onto D. Then µ = ψ◦φ is a conformal

mapping from Ω1 onto D. But then λΩ1 and λΩ2 are just pull-backs of λD by the

maps µ and ψ. Therefore,

λΩ1(z) = λD(µ(z)) · |µ′(z)| = λD((ψ ◦ φ)(z)) · |ψ′(φ(z))| · |φ′(z)| =

= λΩ2(φ(z)) · |φ′(z)|.

Moreover,

dΩ1(z, w) = dD(µ(z), µ(w)) = dD(ψ ◦ φ(z), ψ ◦ φ(w)) = dΩ2(φ(z), φ(w)).

Hence, φ is a hyperbolic isometry between Ω1 and Ω2.

Theorem 2.7. (Schwarz-Pick Lemma for Simply Connected Domains) For any two

proper simply connected subdomains Ω1 and Ω2 of C and any analytic map f : Ω1 →
Ω2 the following holds:

dΩ2(f(z), f(w)) ≤ dΩ1(z, w),

λΩ2(f(z))|f ′(z)| ≤ λΩ1(z),

for all z and w in Ω1. If equality holds in any of inequalities at least for one choice of

z and w, it holds for any choice of z and w, and moreover f is a conformal mapping

of Ω1 onto Ω2.
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Proof. This theorem just says that any analytic map from Ω1 to Ω2 is either a

hyperbolic contraction, ar a hyperbolic isometry. If f is a conformal mapping, then

the statement is just a consequence of the Conformal Invariance Theorem .

Now suppose that f is not a conformal mapping from Ω1 onto Ω2. Let φ be a

conformal mapping from D onto Ω1 and ψ be conformal mapping of Ω2 onto D. Then

for any point w in D we get

λD(w) = λΩ1(φ(z))|φ′(z)|,

and for any point u in Ω2,

λΩ2(u) = λD(ψ(z))|ψ′(z)|.

Since the map ψ ◦ f ◦ φ is a self-map of D and it is not a conformal automorphism,

we can use the Schwarz-Pick Lemma for this function and get:

λD(ψ(f(φ(w)))) · |ψ′(f(φ(w)))| · |f ′(φ(w))| · |φ′(w)| < λD(w).

The left side of this inequality can be rewritten as

λD(ψ(f(φ(w))))·|ψ′(f(φ(w)))|·|f ′(φ(w))|·|φ′(w)| = λΩ2(f(φ(w)))·|f ′(φ(w))|·|φ′(w)|.

The right side of the inequality is just equal to λΩ1(φ(w)) · |φ′(w)|. So we obtain that

λΩ2(f(φ(w))) · |f ′(φ(w))| · |φ′(w)| < λΩ1(φ(w)) · |φ′(w)|.

Put z = φ(w) and cancel |φ′(w)| on both sides to get

λΩ2(f(z))|f ′(z)| < λΩ1(z).

This gives us the second inequality. The first is obtained by integrating the strict

inequality for the hyperbolic metrics.

Now, we are ready to expand the definition of the hyperbolic derivative as it was

done in [1]. With the analogue to the definition from Section 1.3 we get:
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Definition 2.8. For any analytic f : Ω1 → Ω2 let us define the hyperbolic derivative

of f by

fh(z) =
λΩ2(f(z))f

′(z)

λΩ1(z)

at any point z ∈ Ω1. The hyperbolic distortion is defined by

|fh| = λΩ2(f(z))|f ′(z)|
λΩ1(z)

.

Then the Schwarz-Pick Lemma can be restated in terms of hyperbolic distortion

as follows: For any analytic function f : Ω1 → Ω2 either the distortion of f is strictly

less then 1, or if the distortion is equal to 1 at a single point z ∈ Ω1, then f is a

conformal mapping from Ω1 onto Ω2. That means that distortion is bounded from

above in Ω1. The main results of the next chapter give some answer on what happens

with f near the boundary of Ω1 if the distortion is bounded from below.

Let us note that C and the extended plane C∞ = C∪{∞}, have another analogue
to the hyperbolic metric in the sense that the metric is invariant under the group

of conformal automorphisms. For more details see [1], page 27-28. In the case of

C, the Euclidean metric is the one that is invariant under the group of conformal

automorphisms. As for C∞, the spherical metric λC∞
(z) = 2

1+|z|2
(λC∞

(∞) = 0) is

preserved under conformal automorphisms of C∞.

Let us consider two examples of the hyperbolic metric on some proper simply

connected domains (both examples appear in [1]).

Example 2.9. (Disk) Consider DR = {z : |z − z0| < R} and φ(z) = (z − z0)/R , a

conformal mapping of DR onto D. Then we get

λDR
(z) =

2R

R2 − |z − z0|2
.

Example 2.10. (Half-plane) Let H be the upper half-plane {x + iy : y > 0}. Then
ψ(H) = D, with ψ(z) = (z − i)/(z + i). Then

ψ′(z) =
2i

(z + i)2
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and we get the hyperbolic metric at a point z = x+ iy in H by the formula

λH(z) = λD(ψ(z)) · |ψ′(z)| = 2

1−
∣

∣

z−i
z+i

∣

∣

2 ·
∣

∣

∣

∣

2i

(z + i)2

∣

∣

∣

∣

=
4

(

1−
∣

∣

z−i
z+i

∣

∣

2
)

· |z + i|2
=

4

|z + i|2 − |z − i|2

=
4

(z + i) · (z − i)− (z − i) · (z + i)
=

4

2i(z − z)

=
4

2i(x− iy − x− iy)
=

4

2i(−2iy)
=

1

y
.

So H has a hyperbolic metric

λH(z) =
1

y
=

1

Imz

Moreover, if H is any open half-plane, then

λH(z) =
1

d(z, ∂H)
,

where d(z, ∂H) denotes the Euclidean distance from z to ∂H.

2.2 Curvature, pull-back metrics and classical Ahlfors

Lemma

One of the most important properties of a metric is its curvature. In this section, we

will consider the notion of curvature, and discover some of its properties.

Recall that curvature is one of the main characteristics of a curve. Having a

surface S, one can define a Gaussian curvature at a point a ∈ S as a product of

principal curvatures at a. It is surprising but true that the Gaussian curvature of a

metric given on a complex domain has a nice and simple formula.

First of all, one can define curvature for metrics with a continuous density. A

semimetric on a domain Ω in C is a continuous function ρ : Ω → [0;∞) such that

{z : ρ(z) = 0} is a discrete set in Ω. We can define the notion of a curvature of a

semimetric ρ at points where ρ is positive and twice continuously differentiable.
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Definition 2.11. For any semimetric ρ(z) on a domain Ω, define the Gaussian

curvature by

κρ(a) = −∆ log(ρ(a))

ρ2(a)
,

at any point a ∈ Ω, such that ρ(a) is nonzero and ρ is twice continuously differentiable

at the neighborhood of a.

In this definition ∆ is the Laplacian operator, namely

∆ =
∂2

∂x2
+

∂2

∂y2
.

Further on, we will simply use the word curvature instead of Gaussian curvature.

In computing the Laplacian it is convenient to use the fact that

∆ = 4
∂2

∂z∂z̄
= 4

∂2

∂z̄∂z
,

where the complex derivatives are given by

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,

∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

Note that for f analytic we have that

∂

∂z̄
f(z) = 0,

∂

∂z̄
f(z) = f ′(z)

This is true because of the Cauchy-Riemann equations for the functions f and f̄ .

Let us introduce the following example, which we will use later on.

Example 2.12. Let f be analytic function and f(z) 6= 0. Then the function log |f(z)|
is harmonic. That means that

∆(log |f |)(z) = 0.

That is because

∆(log |f |)(z) = ∆(
1

2
log f f̄)(z) = ∆

1

2
(log f · log f̄)(z) = ∆

1

2
(log f)(z) + ∆

1

2
(log f̄)(z)

= 2
∂

∂z

∂

∂z̄
(log f)(z) + 2

∂

∂z̄

∂

∂z
(log f̄)(z) = 0,

since log f is analytic.
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Let us also introduce the chain rule for the differentiation in the complex plane.

For continuous functions f and g, such that g is differentiable at z and f is differen-

tiable at g(z) we have the following:

∂

∂z
f(g(z)) =

∂f

∂z
(g(z))

∂g

∂z
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z
(z),

∂

∂z̄
f(g(z)) =

∂f

∂z
(g(z))

∂g

∂z̄
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z̄
(z),

Here are the first three simple examples of curvature for the Euclidean metric,

the hyperbolic metric and the spherical metric.

Example 2.13. (Euclidean Plane) The curvature κρ = 0 for C taken with the Eu-

clidean metric ρ(z) = 1. That is because log(ρ(z)) = 0 for any z ∈ C.

Example 2.14. (Disk) Recall that the hyperbolic metric of D is given by the formula

λD(z) =
2

1− |z|2 =
2

1− zz̄
.

Then we get

∆ log λD(z) = ∆ log
2

1− zz̄
= −4

∂2

∂z̄∂z
log(1− zz̄)

= 4
∂

∂z̄

z̄

1− z̄z
=

4

(1− z̄z)2
= λ2

D
(z).

So, κλD(z) = −1 for all z ∈ D.

Example 2.15. (Spherical Plane) Let ρ(z) = 2
1+|z|2

be the spherical metric on C. Then

with the same argument as in the previous example we get that κρ(z) = 1 for any

z ∈ C. Or in other words, the spherical metric has constant curvature 1.

An important fact about curvature is that it is invariant under the pull-back of

the metric. We have already used the notion of a pull-back and here let us prove

the composition property for the pull-back. Let f : Ω1 → Ω2 and g : Ω2 → Ω3 be an

analytic functions and ρ is a semimetric on Ω3. Then at any z ∈ Ω1

(f ◦ g)∗(ρ)(z) = g∗(f ∗(ρ))(z).

That is because

(f ◦ g)∗(ρ)(z) = ρ(f(g(z)) · |f ′(g(z))| · |g′(z)| = f ∗(g(z)) · |g′(z)| = g∗(f ∗(ρ))(z).
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Example 2.16. Set Ω2 = C with ρ(w) = 1. Then the pull-back of ρ will be

f ∗(ρ)(z) = |f ′(z)|.

In the last section we will consider the Bloch space

B(Ω) = {f : Ω → C : sup
z∈Ω

f ∗(ρ)(z)

λΩ(z)
<∞},

or in other words, the space of analytic functions whose pull-back of the Euclidean

metric is bounded by the hyperbolic metric.

Let us choose Ω1 = Ω2 = D and ρ = λD. Then the Schwarz-Pick Lemma states

that the pull-back metric f ∗(λD) is less or equal to λD.

Usually we will write just f ∗(ρ) to denote the pull-back semimetric on Ω1. Note

that for a simply connected domain Ω, the hyperbolic metric λΩ on it is a pull-back

of λD under the map f : Ω → D from the Riemann mapping theorem. Note also

that according to the definition of hyperbolic distortion, the hyperbolic distortion at

z ∈ Ω1 is just the ratio of the pull-back metric of the function f and the hyperbolic

metric at z.

Now, we can state the following well-known result, which says that the curvature

is invariant under taking a pull-back.

Theorem 2.17. (Invariance of the Gaussian curvature) Let f be an analytic map

between two domains Ω1 and Ω2, and let ρ(w) be a semimetric on Ω2. Then for any

z ∈ Ω1 such that f ′(z) 6= 0, ρ(f(z)) > 0 and ρ is of class C2 at f(z) we have

κf∗(ρ)(z) = κρ(f(z)).

Proof. As defined above, f ∗(ρ)(z) = ρ(f(z))|f ′(z)| and so for f ′(z) 6= 0 :

log(ρ(f(z))|f ′(z)|) = log(ρ(f(z))) + log |f ′(z)|

Let ∆z be the Laplacian operator taken with respect to the z variable. Then we

can write according to Remark 2.12:

∆z(f
∗(ρ)(z)) = ∆z(log ρ(f(z))) + ∆z(log |f ′(z)|) = ∂

∂z̄

(

∂

∂z
log ρ(f(z))

)

.
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Using the Chain rule and taking w = f(z), we have that

∂

∂z
log ρ(f(z)) =

∂

∂w
(log ρ(w))

∂w

∂z
=

∂

∂w
(log ρ(w))|f ′(z)|.

Next,

∂

∂z̄

(

∂

∂z
log ρ(f(z))

)

=
∂

∂z̄

(

∂

∂w
(log ρ(w))|f ′(z)|

)

=
∂

∂z̄

(

∂

∂w
(log ρ(w))

)

· f ′(z),

since f ′(z) is analytic and ∂
∂z̄
f ′(z) = 0.

Furthermore using the Chain rule again, one gets

∂

∂z

(

∂

∂w
(log ρ(w))

)

· f ′(z) =
∂

∂w̄

(

∂

∂w
(log ρ(w))

)

· ∂w̄
∂z̄

· f ′(z)

=
∂2

∂w̄∂w
(log ρ(w)) · ¯f ′(z) · f ′(z)

=
∂2

∂w̄∂w
(log ρ(w)) · |f ′(z)|2,

since ∂w̄
∂z̄

= ∂
∂z̄
f(z) = f ′(z).

Hence,

∆z(log(ρ(f(z)))) = ∆w log(ρ(w))|f ′(z)|2,

and we can write

κf∗(ρ)(z) = −∆z(log(ρ(f(z)))|f ′(z)|)
ρ2(f(z))|f ′(z)|2

= −(∆w log ρ)(w)|f ′(z)|2
ρ2(w)|f ′(z)|2 =

(∆w log ρ)(w)

ρ2(w)

= κρ(w) = κρ(f(z)).

Now we are ready to calculate the curvature for the hyperbolic metric on a simply

connected proper subdomain in C, , which is yet another interesting and well known

result about the simply connected proper subdomains of C.
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Theorem 2.18. The curvature of the hyperbolic metric on a simply connected do-

main Ω of C is equal to -1 at any point of Ω.

Proof. Recall that the curvature of the unit disk with the hyperbolic metric is equal

to -1, as shown in Example 2.14. Now the general case for a simply connected domain

Ω follows from the previous theorem, considering a conformal mapping φ : Ω → D.

Since φ∗(λD)(z) = λΩ(z), for z ∈ Ω, we get that

κλΩ(z) = κφ∗(λD)(w) = κλD(φ(z)) = −1.

An important result of Ahlfors states that if the curvature of a metric is bounded

by the curvature of the hyperbolic metric, the metric itself is bounded by the hyper-

bolic metric.

Theorem 2.19 (Ahlfors Lemma). Let λΩ is a hyperbolic metric on a simply con-

nected proper subdomain Ω of C and let ρ(z) be any C2 semimetric on Ω such that

κρ(z) ≤ κλΩ(z) = −1, whenever ρ(z) > 0. Then ρ ≤ λΩ on Ω.

Proof. First, let us note that the general case follows from the case Ω = D. Indeed,

for general Ω consider a conformal mapping φ : D → Ω. Then σ(z) = φ∗(ρ)(z) is a C2

semimetric on D with κσ(z) ≤ −1, for all z such that σ(z) > 0. Since the curvature

is preserved under a “pull-back” by the map φ, we get

σ(z) = ρ(φ(z))|φ′(z)| ≤ λD(z) = λΩ(φ(z))|φ′(z)|,

and so for w = φ(z) we have ρ(w) ≤ λΩ(w). Since φ is a conformal automorphism,

w is an arbitrary point in Ω.

Now, let us prove the theorem for the case when Ω = D. For some r > 1 consider

a semimetric on D given by ρr = ρ( z
r
). Then

κρr = −∆ log(ρ( z
r
))

ρ2( z
r
)

= −∆ log(ρ)( z
r
)

r2ρ2( z
r
)

= κρ(
z

r
) · 1

r2
.

Then, consider the function

fr(z) =
ρr(z)

λD(z)
,
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defined on D. This function is continuous on D.Moreover fr(z) ≥ 0 and lim|z|→1 f(z) =

0. That means that fr attains a maximum in an interior point z0 ∈ D. Suppose

ρr(z0) 6= 0. Then log fr(z) has a local maximum at z0, which means all of the sec-

ond order partial derivatives of the function log fr(z) at the point z0 are negative.

Therefore,

0 ≥ ∆(log fr)(z0) = ∆(log ρr)(z0)−∆(log λD)(z0)

= −κρr(z0)ρ2r(z0) + κλD(z0)λ
2
D
(z0)

= − 1

r2
κρ(

z0
r
)ρ2r(z0) + κλD(z0)λ

2
D(z0)

≥ 1

r2
ρ2r(z0)− λ2

D
(z0).

Hence,

fr(z0) ≤ r2.

Since z0 is a maximum for fr, we get fr(z) ≤ r2 for all z ∈ D. Note that, for any

fixed z ∈ D we have that fr(z) → f1(z) =
ρ(z)
λD(z)

, as r → 1 to get that

ρ(z)

λD(z)
≤ 1.

The Schwarz-Pick Lemma is a simple consequence of the previous theorem. For

f : Ω1 → Ω2 analytic and not a constant, set ρ(z) = f ∗(λΩ2)(z), for z ∈ Ω1. Then we

have that κρ(z) = κλΩ2
(w) = −1 (or κρ(z) = 0 if f ′(z) = 0). Therefore κρ(z) ≤ −1

and ρ(z) ≤ λΩ1(z) on Ω1, i.e.,

ρ(z) = λΩ2(f(z))|f ′(z)| ≤ λΩ1(z),

for all z ∈ Ω1. That means that for the analytic function f : Ω1 → Ω2 the bounds on

the curvature of the pull-back hyperbolic metric imply bounds on the hyperbolic dis-

tortion. We will see this again in Chapter 3, when we consider further generalizations

of the Ahlfors Lemma.

We have considered the hyperbolic metric on different simply connected sub-

domains of D. But we never considered C itself. As a matter of fact, there is no

hyperbolic metric on C.
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Theorem 2.20. There is no C2 semimetric ρ(z) on C for which κρ(z) ≤ −1 when-

ever ρ(z) > 0.

Proof. We will prove this by contradiction. Let ρ(z) be such a semimetric and let

ρ(z0) > 0 for some z0. Then consider the hyperbolic metric

λr(z) =
2r

r2 − |z|2

on the disk Dr with a center 0 and a radius r > |z0|. Then κλr(z) = −1 ≥ κρ(z) for

any z ∈ Dr such that ρ(z) > 0. Therefore, according to the Ahlfors Lemma

ρ(z0) ≤ λr(z0) =
2r

r2 − |z0|2
.

Again, take limit as r → ∞ on both sides of this inequality. We get ρ(z0) ≤ 0, which

is a contradiction.

Before ending this chapter, we will show how using some of the properties of the

curvature we can also give a very short and nice proof of Liouville’s theorem. Recall

that entire function is just an analytic function defined on the whole C.

Theorem 2.21 (Liouville). There are no bounded entire functions, except for con-

stant functions.

Proof. Let f be a non-constant bounded entire function. Suppose that |f(z)| < r

for all z ∈ C and let λr =
2r

r2−|z|2
. Then f ∗(λr)(z) would be a semimetric on C with

curvature at most -1. This contradicts the previous theorem.

2.3 Hyperbolic metric on general hyperbolic do-

mains

Later in the thesis, we will consider the hyperbolic metric, defined not only on simply

connected domains of C. Basically, in this section, we will construct the hyperbolic

metric on almost arbitrary subdomain of C by following [1]. In order to define the

hyperbolic metric on an arbitrary domain by again using the unit disk, we need a
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generalization of the Riemann Mapping Theorem. For this reason, we will need to

introduce the notion of a topological covering which is an extension of the notion

of a conformal mapping. For the general theory of topological covering spaces and

more details, we refer to [10].

Definition 2.22. Let f : Ω1 → Ω2 be an analytic function. f is called an analytic

covering if for any point a ∈ Ω2 there is a open neighborhood U, such that f−1(U) =

∪α∈AUα - disjoint union of open sets Uα, such that the restriction of f on each Uα

is a conformal mapping from Uα onto U.

Obviously, any conformal mapping f : Ω1 → Ω2 is an analytic covering.

Example 2.23. For any positive integer n, the function f(z) = zn : C\{0} → C\{0}
is an analytic covering. Let w be any point in C\{0} with θ = arg(w). Let U =

C\{rei(θ+π) : r ≥ 0}, and Ui = {z : (θ+π)
n

+(i−1) (θ+2π)
n

< arg(z) < (θ+π)
n

+ i (θ+2π)
n

}
for any integer i between 1 and n. Then the restriction of f on any Ui is a conformal

mapping from Ui onto U.

Definition 2.24. Any domain Ω in C∪∞ that omits three distinct points in C∪∞
(i.e. C ∪ {∞}\Ω contains at least three points) is called a hyperbolic domain.

We want to construct the hyperbolic metric on any hyperbolic domain Ω. To do

that, we will need a “nice” map from Ω onto D to pull-back the hyperbolic metric on

D. The existence of such a map is provided by the following theorem. It is just an

analogue for the Riemann Mapping Theorem if one replaces the conformal mapping

by an analytic covering.

Theorem 2.25. (Planar Uniformization Theorem) For any hyperbolic domain Ω

and any point a ∈ Ω there is unique analytic covering f : D → Ω such that f(0) = a

and f ′(0) > 0.

We refer to [17] for a proof of the Planar Uniformization Theorem. Note that

the Riemann Mapping Theorem is just a consequence of the Planar Uniformization

Theorem since any analytic covering from D onto a simply connected domain Ω is

a conformal mapping. We will also need the fact that if f : D → Ω is an analytic
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covering, then all of the analytic coverings from D onto Ω are of the form f ◦h, where
h ∈ Aut(D). Now we are ready to transfer the hyperbolic metric from the disk onto

any hyperbolic domain Ω in the same way as we did it for simply connected regions.

The next theorem and its proof are as in [1].

Theorem 2.26. On any hyperbolic domain Ω, there exists a unique hyperbolic real

analytic metric λΩ with curvature −1 such that for any analytic covering h : D → Ω,

the pull-back metric h∗(λΩ) will be the hyperbolic metric on D.

Proof. First, we will construct the hyperbolic metric locally. Let Ω be a hyperbolic

domain and h be an analytic covering of D onto Ω. For a simply connected neigh-

borhood U of a point w0 ∈ Ω, consider the branch of the inverse function H = h−1

defined on U. Then the hyperbolic metric at a point w ∈ U is given by

λΩ(w) = λD(H(w))|H ′(w)|.

This metric has curvature −1 in U . Now, we need to verify that the metric defined

locally matches on the intersection of the neighborhoods. Let U1 and U2 be two

simply connected neighborhoods of w0 with non-empty intersection. Let H1 and H2

be two conformal branches of h−1 defined on U1 and U2 respectively. Then there is

g ∈ Aut(D), such that H2 = g ◦H1. Using the fact that g is an isometry of λD we

get:

H∗
2 (λD)(z) = (g ◦H1)

∗(λD)(z) = |g′(H1(z))| · |H ′
1(z)| · λD(g(H1(z)))

= |H ′
1(z)| · |g′(H1(z))| · λD(g(H1(z))) = |H ′

1(z)| · g∗(λD)(H1(z)) = H∗
1 (g

∗(λD))(z)

= H∗
1 (λD)(z).

Therefore, we have proven that the hyperbolic metric on Ω is defined properly at

any point w0 and it is independent on the choice of the branch of h−1. Moreover,

h∗(λΩ) = λD. We need also prove that the hyperbolic metric on Ω does not depend

on the choice of the analytic covering. Let k : D → Ω be another covering from D

onto Ω. According to the remark after the Planar Uniformization Theorem, k = h◦g
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for some g ∈ Aut(D), and therefore

k∗(λΩ)(z) = (h ◦ g)∗(λΩ)(z) = |h′(g(z))| · |g′(z)| · λΩ(h(g(z)))

= |h′(g(z))| · λΩ(h(g(z))) · |g′(z)| = |g′(z)| · h∗(λΩ)(g(z)) = g∗(h∗(λΩ))(z)

= g∗(λD)(z) = λD(z)

for any z ∈ D.

It is also easy to see that the hyperbolic metric λΩ is real analytic, as it is just

a product of an absolute value of an analytic function and λD. The curvature of λΩ

is −1 because the curvature of λD is preserved under taking a pull-back by the map

h.

We can also define a hyperbolic distance on the hyperbolic domain Ω in the same

way as we did it for simply connected domains.

dΩ(z, w) = inf lΩ(γ),

where the infinum is taken over all piecewise smooth curves that connect z and w

in Ω. The analytic coverings are no longer the isometries of the hyperbolic distance.

But, we still have that for any f : D → Ω and z, w ∈ D that

dΩ(f(z), f(w)) ≤ dD(z, w).

This holds because any curve γ that joins z and w will be mapped to the curve

η = f(γ) that joins f(z) and f(w). Equality does not hold, because generally not

every curve η can be represented as f(γ).

However, we can adapt the Conformal Invariance theorem for the analytic cov-

erings and use it to get a very general version of the Schwarz-Pick Lemma, as it is

shown in [1].:

Theorem 2.27. (Covering Invariance) The analytic coverings are local isometries

of the hyperbolic domains. Namely, for any analytic covering f : Ω1 → Ω2 of the

hyperbolic domains and any z ∈ Ω1

f ∗(λΩ2)(z) = λΩ1(z).
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Proof. Choose h : D → Ω1 to be any analytic covering provided by the Planar

Uniformization Theorem . Then k = f ◦ h : D → Ω2 is an analytic covering and

therefore

λD(z) = k∗(λΩ2)(z) = (f ◦ h)∗(λΩ2)(z)

= h∗(f ∗(λΩ2))(z).

Hence, f ∗(λΩ2) is a metric on Ω1. Its pull-back by the map h is λD. By Theorem

2.26, we can conclude that f ∗(λΩ2) is the hyperbolic metric on Ω1.

Another expected property of the hyperbolic metric on the hyperbolic domain is

its maximality.

Theorem 2.28. (Schwarz-Pick Lemma - the most general version) Let f : Ω1 → Ω2

be an analytic map between two hyperbolic domains. Then

f ∗(λΩ2)(z) = λΩ2(f(z))|f ′(z)| ≤ λΩ1(z)

for every z ∈ Ω1. If equality holds at least for one point in Ω1, then f is a covering

and equality holds for every point in Ω1.

Proof. Choose k to be an analytic covering from D onto Ω1 and h to an analytic

covering from D onto Ω2. Then, let F be an analytic self-map of D such that (f ◦
k)(w) = (h ◦ F )(w) for all w ∈ D. We get the following

k∗(f ∗(λΩ2)) = (f ◦ k)∗(λΩ2) = (h ◦ F )∗(λΩ2)

= F ∗(h∗(λΩ2)) = F ∗(λD) ≤ λD = k∗(λΩ1).

The inequality holds, because of the Schwarz-Pick Lemma for the function F. The

inequality

k∗(f ∗(λΩ2)) ≤ k∗(λΩ1)

implies the inequality

λΩ2(f(z))|f ′(z)| ≤ λΩ1(z),
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because k is surjective and a local bijection. f is a covering if and only if F is a

conformal mapping. This means that if for any point z ∈ Ω1 we get

f ∗(λΩ2)(z) = λΩ2(f(z))|f ′(z)| = λΩ1(z),

then F ∗(λD) = λD and F is a conformal mapping. This implies that f is also a

covering.

To end this chapter, let us note that the existence of a hyperbolic metric on Ca,b =

C\{a, b} will be used later in Section 3.1 in order to get a more general extension

of the Ahlfors Lemma. We used extensively the Riemann Mapping Theorem and

the Planar Uniformization Theorem to get hyperbolic metrics on different domains.

However, sometimes it is really hard to construct the map f : D → Ω. For the case

Ω = Ca,b this function f is a modular form - a class of analytic functions that have

a huge impact in Number Theory.



Chapter 3

Boundary version of Ahlfors

Lemma

3.1 Boundary Ahlfors lemma for the unit disk

The results in this chapter are mostly based on the paper of Kraus, Roth and

Ruscheweyh [9]. We will consider the boundary behavior of an analytic map con-

nected to the hyperbolic derivative and the curvature of the metric induced by this

map via the pull-back metric.

One of the main results for the boundary behavior of an analytic function on the

unit disk is the following theorem, which was stated and proved in [9] :

Theorem 3.1. For any analytic self-map f of the unit disk and any open arc Γ ⊆ ∂D

the following conditions are equivalent:

(a) For every ξ ∈ Γ,

lim
z→ξ

f ∗(λD)(z) = lim
z→ξ

2|f ′(z)|
1− |f(z)|2 = +∞.

(b) For every ξ ∈ Γ,

lim inf
z→ξ

f ∗(λD)(z)

λD(z)
= lim inf

z→ξ
(1− |z|2) |f ′(z)|

1− |f(z)|2 > 0.

41
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(c) For every ξ ∈ Γ,

lim inf
z→ξ

f ∗(λD)(z)

λD(z)
= 1.

(d) For every ξ ∈ Γ,

lim
z→ξ

|f(z)| = 1.

(e) f has an analytic extension across the arc Γ with f(Γ) ⊆ ∂D.

Here and further on, when we say that f : Ω → Ω has an analytic extension

across Γ ⊆ ∂Ω we mean that there is an open set U , such that Γ ⊂ U and f extends

analytically from Ω to Ω ∪ U.
Basically, Theorem 3.1 says that if λ is a pull-back of the hyperbolic metric λD

by f and if

λ(z) = f ∗(λD)(z) =
2|f ′(z)|

1− |f(z)|2
’blows up’ on some arc Γ, then λ grows exactly as fast as λD(z) as z → ξ on the arc

Γ. Also, if
f ∗(λD)(z)

λD(z)

is bounded away from 0 as z → ξ, then f has an analytic extension across the arc Γ

with f(Γ) ⊂ ∂D.

Recall that the hyperbolic distortion of f at z is

|fh(z)| = λD(f(z))|f ′(z)|
λD(z)

=
f ∗(λD)(z)

λD(z)
.

Thus, Theorem 3.1 connects the behavior of the hyperbolic distortion of f close to Γ

with the boundary behavior of f on Γ. Namely, the fact that |fh(z)| is bounded away

from 0 close to Γ is equivalent to the fact that f is analytic across Γ with f(Γ) ⊂ ∂D.

Note that the implications “(e) ⇒ (d)” and “(c) ⇒ (b) ⇒ (a)” in Theorem 3.1

are trivial.

The implication “(d) ⇒ (e)” is nothing else, but the classical Schwarz-Carathéodory

reflection principle which states the following (see [2] for more details).

Theorem 3.2 (Reflection principle). Let f : D → D be an analytic function and let

Γ be an open arc on ∂D. If the modululus of f has a continuous extension to Γ with

|f(Γ)| = 1, then f has an analytic continuation across Γ.
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The implication “(e) ⇒ (a)” is also simple enough since when |f(ξ)| = 1,

lim
z→ξ

|f ′(z)|
1− |f(z)|2 = lim

z→ξ

|f(ξ)− f(z)|
(1− |f(z)|2)|z − ξ|

≥ lim
z→ξ

|f(ξ)| − |f(z)|
(1− |f(z)|)(1 + |f(z)|)|z − ξ|

= lim
z→ξ

1

(1 + |f(z)|)|z − ξ| = +∞

The main parts of the proof of Theorem 3.1 are the implications “(a) ⇒ (c)” and

“(b) ⇒ (d)”. The implication “(a) ⇒ (c)” can be restated only in terms of metrics.

We will not provide the proof of this implication in the thesis. For the proof, we

refer to [9]. This result is called the Boundary Ahlfors Lemma.

Theorem 3.3 (Boundary Ahlfors Lemma). Suppose λ and µ are two metrics on the

unit disk, such that for any z ∈ D and some positive constants Cµ and cλ we have

that κλ ≥ −cλ and κµ ≤ −Cµ. Furthermore, let Γ be an open arc of ∂D, such that

lim
z→ξ

λ(z) = +∞

for every point ξ ∈ Γ. Then

lim inf
z→ξ

λ(z)

µ(z)
≥
√

Cµ
cλ

for every ξ ∈ Γ.

We see that the condition that the metric λD is unbounded at the boundary arc is

very important. One can prove the following generalization of the Classical Ahlfors

Lemma. This is a version of the Boundary Ahlfors Lemma in the case, when Γ = ∂D.

Theorem 3.4 (Ahlfors Lemma). Suppose λ and µ are two metrics on the unit disk,

such that for any z ∈ D and some positive constants Cµ and cλ we have that κλ ≥ −cλ
and κµ ≤ −Cµ. Furthermore, let

lim
|z|→1

λ(z) = +∞,

then
λ(z)

µ(z)
≥
√

Cµ
cλ

for every z ∈ D.
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The proof of this version of Ahlfors Lemma is very similar to the proof of the

classical Ahlfors Lemma from Section 2.2, and we will not include it here. (See [9],

Theorem 2.1)

Note that in Theorem 3.1, it is insufficient to consider restricted limits. For

example, the implication (d) ⇒ (e) is no longer correct under the weaker assumption

∠ lim
z→ξ

|f(z)| = 1

for every ξ ∈ Γ, where ∠ limz→ξ is a limit over any nontangential approach (see

Section 1.4). In fact, Heins [5] provides an example of an infinite Blaschke product

B(z), such that the zeroes of B have 1 as an accumulation point and B has an

angular limit equal to 1 at z = 1. Therefore, the angular limit of the modulus of B

is equal to 1 on ∂D, but B has no analytic extension to a neighborhood of ∂D, since

ξ = 1 is a singularity for B.

Moreover, we can produce an explicit example of an analytic function f without

analytic extension in the neighborhood of 1, but such that ∠ limz→ξ |f(z)| → 1, as

z → ∂D. The main tool is the result of Frostman (see [4] for details), which asserts

that the Blaschke product

f(z) =

∞
∏

j=1

zj
|zj |

· zj − z

1− zjz

has an angular limit of modulus one at a point ξ ∈ ∂D if and only if

d(ξ) =
∞
∑

j=1

1− |zj|
|ξ − zj|

<∞.

Note that if zj → ξ, as j → ∞ and d(ξ) < ∞, then for any other ζ ∈ ∂D we get

d(ζ) < d(ξ) <∞, because |ζ − zj | > |ξ − zj | starting from some j. That means that

the angular limit of |f | would exist and would be equal to 1 at any point ζ ∈ ∂D.

However, f will not have an analytic continuation in the neighborhood of ξ,

because ξ is an accumulation point for the zeroes of f.

To see this, we construct a sequence {zj} such that zj → ξ = 1 and d(1) < ∞.

Suppose that each zj ∈ ∂D(1
2
, 1
2
) = {z : |z − 1

2
| = 1

2
}. Then for any zj = rje

iφj we
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have that
1− |zj |
|1− zj |

=
1− cos(φj)

sin(φj)
→ 0,

as φj → 0. Then choose φj in such a way that

1− |zj|
|1− zj|

=
1

2j
,

leading to d(1) = 1. Therefore, as we proved before, for any ζ ∈ ∂D,

∠ lim
z→ζ

|f(z)| = 1,

but f has no analytic extension in the neighborhood of ξ = 1.

Another application of Theorem 3.1 can be written as follows. In the case when

Γ = ∂D, we get the following corollary of Theorem 3.1.

Corollary 3.5. Let f : D → D be an analytic function. Then, the following condi-

tions are equivalent:

(a) lim|z|→1
|f ′(z)|

1−|f(z)|2
= +∞.

(b) f is a finite Blaschke product.

Part (a) of the Corollary is part (a) in Theorem 3.1 with Γ = ∂D. Hence (a)

holds if and only if |f(z)| = 1 on ∂D and f has an analytic extension across ∂D.

Thus Theorem1.17 implies that f must be a finite Blaschke product.

The corollary is also related to a result of Heins from [6], which was originally

proved by using completely different methods.

Theorem 3.6. An analytic function f : D → D is a finite Blaschke product if and

only if

lim
|z|→1

(1− |z|2) |f ′(z)|
1− |f(z)|2 = 1

Therefore Theorem 3.1 can be also considered as a localized form of Heins’ result.

A special case of Theorem 3.1 is when f is not only analytic in D, but is a rational

function. In this case we can state even more: if infinitely many points of the unit

circle are mapped on the unit circle, then f must map D onto D. We consider the

following proposition.
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Proposition 3.7. Suppose f is a non-constant rational function that maps D into

itself. Let f(ξ) ∈ ∂D for infinitely many ξ ∈ ∂D. Then f(z) must be a finite Blaschke

product.

Proof. Suppose that f(z) has zeroes a1, a2, ..., ak inside D. Then the function

h(z) =
f(z)

∏k
i=1

z−ai
1−āiz

also is rational and maps infinitely many point from ∂D onto ∂D. Therefore, we

can assume that f has no zeroes in D. The fact that f(ξ) ∈ ∂D for infinitely many

ξ ∈ ∂D means that

f(ξ)f(ξ) = 1

for infinitely many ξ ∈ ∂D. But then, the function f(z)f(z) can be written as g(z) 1
zl

for z ∈ ∂D for some rational function g and integer l. Indeed, one can write

f(ξ)f(ξ) =

∑n

k=0 akξ
k

∑m
k=0 bkξ

k
·
∑n

k=0 akξ
k

∑m

k=0 bkξ
k

=

∑n

k=0 akξ
k

∑m

k=0 bkξ
k
·
∑n

k=0 ak(
1
ξ
)k

∑m

k=0 bk(
1
ξ
)k

=

∑n

k=0 akξ
k

∑m

k=0 bkξ
k
·

1
ξn

∑n
k=0 akξ

n−k

1
ξm

∑m

k=0 bkξ
m−k

=

∑n
k=0 akξ

k

∑m

k=0 bkξ
k
·
∑n

k=0 akξ
n−k

∑m
k=0 bkξ

m−k
· ξm−n = g(ξ) · ξm−n.

This is true because ξ = 1
ξ
for ξ ∈ ∂D. Therefore, for l = n−m,

g(ξ)
1

ξl
= 1

and

g(ξ) = ξl

for infinitely many ξ ∈ ∂D. Two different meromorphic functions can coincide only

on a finite set, therefore

g(z) = zl
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for all z and

f(z)f(z) = 1

for all z ∈ D. So, f must be a constant according to the Minimum Modulus principle.

3.2 Proof of (b) implies (d)

Here we will present the proof of Theorem 3.1 that involves the implication “(b) ⇒
(d)”, as given in [9]. The proof is broken into two Lemmas.

Lemma 3.8. Suppose that f is a self-map of D that fixes 0, λD is the hyperbolic

metric on D and Γ is an open subarc of ∂D, such that, for any ξ ∈ Γ,

lim inf
z→ξ

f ∗(λD)(z)

λD(z)
> 0.

Then, the function

g(z) =
zf ′(z)

f(z)

has a meromorphic extension to a neighborhood of Γ, such that Im(g(ξ)) = 0 or

g(ξ) = ∞ for any ξ ∈ Γ.

Proof. We can apply the Schwarz Lemma to the function f and get |f(z)| ≤ |z|.
Therefore,

1− |f(z)|2
1− |z|2 ≥ 1

for any z ∈ D. Hence, for any ξ ∈ Γ,

lim inf
z→ξ

|f ′(z)| = lim inf
z→ξ

(1− |z|2) |f ′(z)|
1− |f(z)|2 · 1− |f(z)|2

1− |z|2

and therefore,

lim inf
z→ξ

|f ′(z)| ≥ lim inf
z→ξ

(1− |z|2) |f ′(z)|
1− |f(z)|2 > 0.

Fix ξ ∈ Γ. Then there is c > 0 and a neighborhood U of ξ, such that |f ′(z)| > c for

any z ∈ U ∩ D. Denote Γ1 = U ∩ ∂D and U(ξ) = U ∩ D. Then the function

h(z) =
1

g(z)
=

f(z)

zf ′(z)
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is analytic in U(ξ). We want to show that h has an analytic extension in the neigh-

borhood of Γ1. Suppose that ξ1 ∈ Γ1. Then there are two possibilities:

lim inf
z→ξ1

1− |f(z)|
1− |z| = d(ξ) = ∞,

and then

lim inf
z→ξ1

|f ′(z)| = lim inf
z→ξ1

(1− |z|2) |f ′(z)|
1− |f(z)|2

1− |f(z)|
1− |z|

1 + |f(z)|
1 + |z| = ∞.

Hence, limz→ξ1 h(z) = 0. On other hand, if

lim inf
z→ξ1

1− |f(z)|
1− |z| = d(ξ) <∞,

then we can apply the Julia-Wolff-Carathéodory Theorem stated in Section 1.4. We

get

∠ lim
z→ξ1

f(z) = ∠f(ξ1) ∈ ∂D,

∠ lim
z→ξ1

f ′(z) = ∠f ′(ξ1) ∈ C,

and ∠f ′(ξ1) = ξ̄1∠f(ξ1)d(ξ), or in other words

∠
f ′(ξ1)ξ1
f(ξ1)

= d(ξ) ≥ 1,

The inequality d(ξ) ≥ 1 holds, according to the Schwarz Lemma. Then, define

∠h(ξ) = 1
dξ

∈ (0, 1).

In both cases, the analytic function h(z) has an angular limit at ξ1 ∈ Γ1 and this

limit is real. According to the classical Schwarz-Carathéodory reflection principle

(see [7], page 87), we may conclude that h has an analytic extension to the neigh-

borhood of Γ1 which is real on Γ1. Therefore, h has an analytic extension for some

neighborhood of Γ, and g(z) has a meromorphic extension to the neighborhood of Γ

that is real (or equal to ∞) on Γ.

Now we are ready to prove the implication “(b) ⇒ (d)” in Theorem 3.1.



49

Lemma 3.9. Let f be an analytic self-map of D and let Γ be an open subarc of ∂D.

If we have that

lim inf
z→ξ

f ∗(λD)(z)

λD(z)
= lim inf

z→ξ
(1− |z|2) |f ′(z)|

1− |f(z)|2 > 0

for every ξ ∈ Γ, then f has an analytic extension across Γ and

lim
z→ξ

|f(z)| = 1

for every ξ ∈ Γ.

Proof. First, the expression
f ∗(λD)

λD(z)

does not change if we consider f◦φ instead of f , where φ is a conformal automorphism

of D. Therefore, without loss of generality we may assume that f(0) = 0. According

to Lemma 3.8,

g(z) =
zf ′(z)

f(z)

has a meromorphic extension to a neighborhood of Γ, which is real on Γ.

The main part of the proof is the fact that g(z) is not only meromorphic, but

even analytic in some neighborhood of Γ.

If g has an analytic extension in the neighborhood of Γ, then the function f is

the solution of the complex ODE

y′ = (g(z)/z)y

and it also has an analytic extension to a neighborhood of Γ. (Namely, f(z) =

exp(
∫ z

z0

g(t)
t
dt).) Hence, for any ξ ∈ Γ the limits

lim
z→ξ

|f(z)| = |f(ξ)|

and

lim
z→ξ

|f ′(z)| = |f ′(ξ)|

exist. If |f(ξ)| < 1, then the expression

lim inf
z→ξ

(1− |z|2) |f ′(z)|
1− |f(z)|2 = (1− |ξ|2) |f ′(ξ)|

1− |f(ξ)|2 = 0,
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which contradicts the assumption of Lemma 3.9. Since f maps D into D we get that

|f(ξ)| = 1 for any point ξ ∈ Γ.

Now, let us prove that g(z) is analytic in some neighborhood of Γ. Assume to

the contrary that g has a pole of order N ≥ 1 at some point ξ ∈ Γ. Note, that if we

compose f with a rotation then the expression f∗(λD)(z)
λD(z)

does not change as far as we

have the condition f(0) = 0. Hence, we can assume that ξ = −1 and write

g(z) =
h(z)

(1 + z)N
,

where h is some function that is analytic at z = −1 and, moreover h(−1) 6= 0. There

is some neighborhood U of −1, that contains no other pole of g. Set Γ1 = U ∩Γ. We

have that g is real on Γ1 and therefore

g(
1

µ̄
) = g(µ),

for µ ∈ Γ1\{ξ} and so

h(
1

µ̄
) =

h(µ)

µN
.

Now, since h is analytic at −1, let µ → −1 to get

h(−1) = h(−1)(−1)N .

Multiplying the last equality by (−1)Nh(−1) we get that |h(−1)|2(−1)N = h2(−1).

Therefore, h(−1)2 is real and

h(−1) ∈







R\{0}, if N is even

iR\{0}, if N is odd.

We expect to get the formula for f(z) by solving the ODE

g(z) =
zf ′(z)

f(z)
.

Consider a Laurent expansion of g(z)
z

near the point z = −1

g(z)

z
=

+∞
∑

j=−N

cj+N+1

(1 + z)−j
.
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Note that then c1 = −h(−1). Then, we get that in D∗ := {z ∈ D : Rez < 0}

f(z) = exp

(
∫ z

z0

g(u)

u

)

=

= exp

( −h(−1)

(1−N)(1 + z)N−1
+

c2
(2−N)(1 + z)N−2

+ · · ·+ cN log(1 + z) + . . .

)

,

where z0 is some point in D∗ near −1, log is the principal branch of the logarithm.

To get a contradiction with a fact that g has a pole at z = −1, we will approach

−1 in different ways. To do that, it is necessary to consider three cases:

(N is even) Then h(−1) ∈ R\{0}, and for any x in the interval (−1, 0) we have

that

|f(x)| =

exp

( −h(−1)

(1−N)(1 + x)N−1
+

Re(c2)

(2−N)(1 + x)N−2
+ · · ·+ Re(cN) log(1 + x) + . . .

)

.

Suppose that h(−1) > 0, then

|f(x)| = exp

( −h(−1)

(1−N)(1 + x)N−1

)

· exp
(

a1(1 + x) + a2(1 + x)2 + · · ·+ an−1(1 + x)n−1 log(1 + x) + an(1 + x)n + . . .
)

for some real coefficients {ai}. Therefore,

lim
x→−1

|f(x)| = lim
x→−1

exp

( −h(−1)

(1−N)(1 + x)N−1

)

· 1 = +∞.

But, f is a self-map of D, therefore lim infx→−1 |f(x)| ≤ 1. A contradiction follows.

Suppose that h(−1) < 0, then by the same argument as in the previous case

lim
x→−1

|f(x)| = lim
x→−1

exp

( −h(−1)

(1−N)(1 + x)N−1

)

· 1 = 0.

Then

lim
x→−1

|f ′(x)| = lim
x→−1

|g(x)
x

|·|f(x)| = lim
x→−1

| h(x)

x(1 + x)N
|·| exp

( −h(−1)

(1−N)(1 + x)N−1

)

| = 0,

since

lim
x→−∞

e−x

x−n
= 0
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for every negative n. Then, we get a contradiction with assumption of Lemma 3.9.

(N ≥ 3 is odd) In this case h(−1) ∈ iR\{0}. Then approach −1 along a ray.

Choose η = e
iπ

2(N−1) and let ζr = −1 + rη for r ∈ (0, 1). Then

|f(ζr)|

= exp

(

ih(−1)

(1−N)rN−1
+ Re

(

(c2)

(2−N)(rη)N−2

)

+ · · ·+ Re(cN log(rη)) + . . .

)

,

With the same argument as in the previous case−ih(−1) > 0 leads to limr→1 |f(z)| =
∞, and for −ih(−1) < 0 we have limr→1 |f(z)| = 0, and limr→1 |f ′(z)| = 0. In any

case we get a contradiction.

(N = 1) In this case h(−1) ∈ iR\{0}. Set γ = −ih(−1) ∈ R\{0}. We will

approach −1 along a suitable arc of the circle ∂D = {z : |z + 1
2
| = 1

2
}. In this case

the function has the following form

f(z) = exp(−iγ log(1 + z)) exp(h̃(z)),

where h̃ is an analytic function in some neighborhood of z = −1 and arg(z) is an

argument function of z with a range (−π, π).
Then,

|f(z)| = exp(γ arg(1 + z)) exp(Reh̃(z)).

Suppose that γ < 0 and set zφ = −1
2
+ 1

2
eiφ with φ ∈ (−π; −π

2
). This is an ap-

proach along the lower arc of the circle ∂D. Then γ arg(1 + zφ) > 0, and there-

fore exp(γ arg(1 + zφ)) > 1. Then, since |f(z)| < 1 for all z ∈ D, we get that

exp(Reh̃(zφ)) < 1 and Reh̃(zφ) < 0. Letting φ→ −π we get Reh̃(−1) ≤ 0.

If γ > 0, then set zφ = −1
2
+ 1

2
eiφ with φ ∈ (π

2
; π). This is an approach along the

upper arc of the circle ∂D. Then again γ arg(1+zφ) > 0, and therefore Reh̃(−1) ≤ 0.

This means that Reh̃(−1) ≤ 0 does not depend on the sign of γ. Now, again consider

two cases.

If γ > 0, then zφ = −1
2
+ 1

2
eiφ with φ ∈ (−π;−π

2
) and

lim
z→−π+

|f(zφ)| ≤ exp
(

−γπ
2

)

< 1.
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Therefore, we get

lim inf
φ→−π

(1− |zφ|2)
f ′(zφ)

1− |f(zφ)|2

= lim inf
φ→−π

(1− |zφ|2) ·
|f(zφ)| · | − iγ/(1 + zφ) + h̃′(zφ)/(1 + zφ)

2|
1− |f(zφ)|2

= lim inf
φ→−π

(

1− |zφ|2
|1 + zφ|2

)

·
(

|f(zφ)| · | − iγ(1 + zφ) + (1 + zφ)
2h̃′(zφ)|

1− |f(zφ)|2

)

= 0.

This is because the first multiplier is equal to 1, and the second tends to 0. Really,

we get that the triangle with vertices at −1, 0 and zφ is a right triangle. Then

|1 + zφ|2 + |zφ|2 = 1 according to the Pythagorean theorem.

If γ < 0, then set zφ = −1
2
+ 1

2
eiφ with φ ∈ (π

2
; π). Then

lim
z→π−

|f(zφ)| ≤ exp
(

γ
π

2

)

< 1

and we can get as before that

lim inf
φ→−π

(1− |zφ|2)
f ′(zφ)

1− |f(zφ)|2
= 0.

Both cases contradict assumption of the Lemma.

Basically, this Lemma also provides a proof of the implication “(b) ⇒ (e)”.

We finish this section with two examples from [9] which demonstrate that Theo-

rem 3.1 does not hold in general if the arc Γ is replaced by a single point.

Example 3.10. The analytic function f : D → D given by

f(z) =

√
1− z√

1− z +
√
1 + z

has no analytic extension to a neighborhood of z = 1. But the condition (a) of

Theorem 3.1 is satisfied at z = 1. However,

lim
z→1

|f ′(z)| = +∞ and lim
z→1

|f(z)| = 0.

Hence, the implication “(a) ⇒ (e)” and “(a) ⇒ (d)” both fail if Γ is a single point.
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Example 3.11. The function f : D → D given by

f(z) = T−1(
√

T (z)),

where T (z) = (1 + z)/(1 − z), satisfies condition (d) of Theorem 3.1 at z = 1,

although it has no analytic extension to any neighborhood of z = 1. Moreover, f

satisfies condition (a) of Theorem 3.1. It does not satisfy condition (b), because for

the points

zφ =
1

2
+

1

2
eiφ,

we get

lim
φ→0

(1− |zφ|2)
|f ′(zφ)|

1− |f(zφ)|2
= 0.

In particular,

lim inf
z→1

(1− |z|2) |f ′(z)|
1− |f(z)|2 = 0.

Therefore the implications “(d) ⇒ (b)” , “(a) ⇒ (b)” and “(d) ⇒ (e)” of Theorem

3.1 are no longer true if Γ is replaced by a single point.

3.3 Further extensions of Ahlfors Lemma

We have considered a few versions of the Ahlfors Lemma so far. The classical Ahlfors

Lemma was considered is Section 2.2 as Theorem2.19. The Boundary Version of

Ahlfors Lemma was given in Section 3.1 as Theorem3.3 as part of the proof of

Theorem 3.1. Here we will show the connections between the generalized distortion

of self maps of some general domains Ω, and the behavior of f near the boundary ∂Ω.

More precisely, we will see the connection between the boundedness of the curvature

of some metrics on Ω from above and below, the boundness from above of the general

distortion of analytic functions f : Ω → Ω near the boundary of Ω and the boundary

behavior of these analytic maps.

Also, we will introduce some new results that were not stated in [9]. Those are

contained in Theorem 3.20 and Theorem 3.21, which could be considered as a version

of Ahlfors Lemma for the case of domains with “not so good” boundaries.
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We first extend the Ahlfors Lemma to domains in C with “nice” boundaries. Let

us begin with a definition of a smooth boundary subset of a domain in a complex

plane.

Recall that by Jordan curve we mean a continuous injection from ∂D into C. We

say that the domain Ω is Jordan if its boundary is a Jordan curve.

Definition 3.12. A Jordan domain Ω is said to be smooth if and only if there is

a conformal mapping φ from D onto Ω, such that |φ′(z)| extends continuously to a

nonzero function on ∂D.

An example of a smooth Jordan domain is a domain bounded by a Dini-smooth

curve (see [13]). Note that a smooth Jordan domain is not just a Jordan domain with

a smooth boundary. For a counterexample we refer to [13], page 46. Also note that

according to the Carathéodory extension principle, φ extends to a homeomorphism

between D and Ω. The following definition is a localized form of the previous one.

Definition 3.13. A subset Γ of the boundary of a proper domain Ω is called smooth

if for any point ξ ∈ Γ there is an open set U ⊆ C and a smooth Jordan domain

Φ ⊆ Ω such that ξ ∈ ∂Φ ∩ U ⊆ Γ.

Now we have the following extension of the Boundary Ahlfors Lemma for a

smooth Jordan subset Γ, as stated and proven in [9].

Theorem 3.14 (Boundary Ahlfors Lemma for Jordan domains). Let Ω be a domain

with a smooth boundary set Γ. Suppose that λ and µ are two metrics on Ω, such that

for some positive constants cλ and Cµ we have that κλ(z) ≥ −cλ and κλ(z) ≤ −Cλ
for any z ∈ Ω. If

lim
z→ξ

λ(z) = +∞,

for every ξ ∈ Γ, then

lim inf
z→ξ

λ(z)

µ(z)
≥
√

Cµ
cλ

and

lim
z→ξ

dλ(z0, z) = +∞

for every ξ ∈ Γ and every z0 ∈ Ω.
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Proof. In order to prove the first statement, consider a point ξ ∈ Γ and a smooth

Jordan domain Φ ⊆ Ω, such that ξ ∈ Φ ∩ U ⊆ Γ, for some open neighborhood U of

ξ. Note that ∂Φ ∩ Γ ⊂ Ū . Let φ be a conformal mapping from D onto Φ that has a

continuous extension to a homeomorphism from D onto Φ̄ with φ′ 6= 0 on ∂D. Then,

there is an open arc Γ0 ⊆ ∂D, such that φ(Γ0) ⊆ Γ and φ(ξ0) = ξ for some ξ0 ∈ Γ0.

We want to apply the Boundary Ahlfors Lemma for Γ0 and for the pull-back metrics

φ∗(λ)(z) and φ∗(µ)(z). Since the curvature is preserved under the pull-back, we get

that κφ∗(λ) = κ(λ) ≥ −cλ and κφ∗(µ) = κ(µ) ≤ −Cµ. Since |φ′| 6= 0 on ∂D, it obtains

its minimum in ∂D and |φ′(z)| ≥ c for some c > 0 and therefore

lim
z→ξ1

φ∗λ(z) = lim
z→ξ1

λ(φ(z))|φ′(z)| ≥ c · lim
z→ξ1

λ(φ(z)) = +∞

for any ξ1 ∈ Γ0. So we can apply the Boundary Ahlfors Lemma (Theorem 3.3) and

get that for ξ0 ∈ Γ

lim inf
z→ξ0

φ∗(λ)(z)

φ∗(µ)(z)
≥
√

Cµ
cλ
.

Using the fact that φ∗(λ)(z) = λ(φ(z))|φ′(z)| and φ∗(µ)(z) = λ(φ(z))|µ′(z)|, and
substitution w = φ−1(z) with φ−1(ξ0) = ξ we get that

lim inf
w→ξ

λ(z)

µ(z)
≥
√

Cµ
cλ

for any ξ ∈ Γ.

Now let us prove that any boundary point ξ ∈ Γ is infinitely far from any other

point z0 ∈ Ω. Let Φ be the same smooth Jordan domain as in the proof of the first

part. Let Γ1 be an open arc containing ξ, such that Γ1 ⊆ ∂Φ ∩ Γ. Now consider

µ = λΦ the hyperbolic metric on Φ with a fixed curvature −1. From the first part

of the proof we get some neighborhood U of a point ξ that does not contain z0 and

such that λ(z) ≥ cµ(z) for some constant c. Therefore

dλ(z, z0) ≥ c · min
w∈∂U

dµ(z, w).

As far as µ is complete near ξ, the expression dµ(z, w) → ∞ as z → ξ. Hence

dµ(z, z0) → ∞ as z → ξ.
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The next Corollary from [9] shows the characterization of locally complete met-

rics for smooth boundary sets in terms of the boundary behavior of their density

functions.

Corollary 3.15. Let Ω ⊂ C be a domain, let Γ be a smooth subset of ∂Ω and let λ(z)

be a metric on Ω with κλ ≥ −cλ for some positive constant cλ. Then the following

are equivalent:

(a) λ(z) is locally complete near Γ,

(b) limz→ξ λ(z) = +∞ for every ξ ∈ Γ.

Now, combining Ahlfors Lemma and Theorem 3.1, we can prove the following

generalization of the statements “(a) ⇔ (b) ⇔ (e)” for the unit disk D. This can be

considered as a type of Ahlfors Lemma that involves an analytic map f which is a

self-map of D.

Define here the generalized derivative of f : (D, µ) → (D, λ) at z as

fλ,µ(z) =
λ(f(z))f ′(z)

µ(z)
,

and the general distortion of f at z as

|fλ,µ(z)| = λ(f(z))|f ′(z)|
µ(z)

.

Then the next theorem (see [9]) states that the boundedness of the general distortion

from below near the boundary set Γ is equivalent to f having an analytic extension

across the boundary arc Γ.

Theorem 3.16. Suppose that f is an analytic self-map of D and µ is a metric on

D with κµ ≤ −Cµ. If Γ is an open arc in ∂D, such that

lim
z→ξ

µ(z) = +∞

for any ξ ∈ Γ, then the following conditions are equivalent.

(a) For some semimetric λ(z) such that −cλ ≤ κλ ≤ −Cλ, we get that for every

ξ ∈ Γ

lim
z→ξ

f ∗(λ)(z) = +∞.
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(b) For some semimetric λ(z) such that −cλ ≤ κλ ≤ −Cλ, we get that for every

ξ ∈ Γ

lim inf
z→ξ

f ∗(λ)(z)

µ(z)
≥
√

Cµ
cλ
,

(e) The function f extends analytically across the boundary arc Γ with f(Γ) ⊂ ∂D.

Proof. (a) ⇒ (b) Take the same λ in (b) as given in (a). Then this is just a simple

consequence of the Boundary Ahlfors Lemma, i.e. Theorem 3.3 stated in Section 3.1.

Moreover this is true even if we only assume κλ ≥ −cλ.
(b) ⇒ (e) Applying Theorem 3.4 for metrics λ1 and µ1, where λ1(z) = λD(z) and

µ1(z) is λ(z) and using the fact that κλD = −1, we get

λD(z) ≥
√

Cλ
1
λ(z)

near every point ξ ∈ Γ.

Then f ∗(λ)(z) ≥
√

Cµ

cλ
µ(z) near every point ξ. So, the fact that µ(z) → +∞ as

z → ξ ∈ Γ implies

lim
z→ξ

λD(f(z))|f ′(z)| ≥
√

Cλ
1

lim
z→ξ

λ(f(z))|f ′(z)| ≥

√

Cλ · Cµ
cλ

lim
z→ξ

µ(z) = +∞,

and the statement (e) follows from Theorem 3.1, since

λD(f(z))|f ′(z)| = |f ′(z)|
1− |f(z)|2 .

(e) ⇒ (a) We get the result by choosing λ(z) = λD(z) and applying part (e) → (a)

from the Theorem 3.1.

Thus, Theorem 3.16 says that for an arc Γ and a metric µ with curvature bounded

from above by a negative constant, the existence of a metric λ such that the general

distortion of f with respect to λ and µ is bounded from below near Γ is equivalent

to the fact that f has an analytic extension across Γ, and it is equivalent to the fact

that the pullback metric f ∗(λ) tends to ∞ on Γ.
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One can ask the following:

Question 1: Under the assumptions of Theorem 3.16, is the generalized distor-

tion bounded from above? Or, in other words, does there exist c > 0 such that

λ(f(z))|f ′(z)|
µ(z)

≤ c

for all z ∈ D?

In the case when µ = λ = λΩ - is the hyperbolic metric on Ω, we can choose c = 1

since by the Schwarz-Pick Lemma

λ(f(z))|f ′(z)|
µ(z)

=
λΩ(f(z))|f ′(z)|

λΩ(z)
≤ 1.

However we don’t know the answer to this question in the general case.

Another natural extension of the Ahlfors Boundary Lemma is an extension for

more general domains. The following result was proven in [9] in a general version for

Riemann surfaces. The original statement was called Ahlfors Lemma on a Riemann

surface. However we give a prove, modifying it for domains in C.

Theorem 3.17. Let Ω be a simply connected domain in C with analytic boundary

∂Ω. Let Γ be an open arc of ∂Ω and let λ(z) be a complete metric with curvature

bounded below and above by negative constants −cλ and −Cλ, respectively. If f is an

analytic self-map of Ω, then the following conditions are equivalent.

(a) f has an analytic extension across Γ with f(Γ) ⊂ ∂Ω.

(b) For every ξ ∈ Γ

lim
z→ξ

λ(f(z))|f ′(z)| = +∞.

(c) For a semimetric µ on Ω with κµ ≤ −Cµ and such that for every ξ ∈ Γ

lim
z→ξ

µ(z) = +∞,

we get the following

lim inf
z→ξ

f ∗(λ)(z)

µ(z)
≥
√

Cµ
cλ

for every ξ in Γ.
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To prove this Theorem we will need to state few additional Theorems which can

be considered as a generalization of the Carathéeodory extension principle.

Theorem 3.18. For any simply connected bounded domain Ω with analytical bound-

ary, there is a conformal mapping φ from D onto Ω, such that φ extends analytically

to a conformal mapping defined in the neighborhood of D with φ(∂D) = ∂Ω.

The proof is rather simple application of the Reflection principle and can be found

in [13].

The next Theorem shows a crucial connection between the boundary behavior of

an analytic function and its extension outside the region on which it is defined.

Theorem 3.19. Suppose that Ω is a simply connected domain with analytical bound-

ary equipped with a complete metric λ, such that −Cλ ≥ κλ ≥ −cλ for some positive

constants cλ and Cλ. Then, for an open subarc Γ of ∂D and an analytic map from D

onto Ω

lim
z→ξ

f ∗(λ)(z) = +∞

for every ξ ∈ Γ if and only if f extends analytically in the neighborhood of Γ with

f(Γ) ⊆ ∂Ω.

Proof. Suppose that φ is a conformal mapping from D onto Ω provided by Theorem

3.18. Then, φ has a conformal extension in the neighborhood of D. Consider a

pull-back metric on D that is given for any z ∈ D by the formula

µ(z) = φ∗(λ)(z).

Since the curvature is preserved under taking the pull-back, we have −Cλ ≥ κµ ≥
−cλ.Moreover, µ(z) is a complete metric because φ is conformal in the neighborhood

of D. Therefore, according to Corollary 3.15, we get

lim
|z|→1

µ(z) = +∞.

Also define a self-map g of D by g = φ−1 ◦ f. Then, we have the following connection

between the pull-back of the metrics λ and µ by the maps f and g :

f ∗(λ)(z) = (φ ◦ g)∗(λ)(z) = g∗(φ∗(λ))(z) = g∗(µ)(z).
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Now suppose that f has an analytic extension with f(Γ) ⊆ ∂Ω. Therefore, g also

has an analytic extension in the neighborhood of Γ, because it is a composition of

two analytic functions that are analytic in the neighborhood of Γ.

Moreover, g′ 6= 0 on Γ. To prove that, let us consider the conformal mapping ψ

of D onto itself, such that ψ(g(0)) = 0. Then define an analytic self map of D by

h : D → D := ψ(g(z)). Note that h(0) = 0, and h(Γ) ⊂ ∂D. Suppose that g′(ξ0) = 0

for some ξ0 ∈ Γ. Then h′(ξ0) = 0. That means

lim
z→ξ0

h(z)− h(ξ0)

z − ξ0
= 0.

Choose z0 = rξ0 ∈ D for some 1 > r > 0, such that
∣

∣

∣

h(z0)−h(ξ0)
z0−ξ0

∣

∣

∣
< 1 or in other words

|h(z0)− h(ξ0)| < |z0 − ξ0|. On the other hand, one can get

|h(z0)− h(ξ0)| ≥ |h(ξ0)| − |h(z0)| = 1− |h(z0)| ≥ 1− |z0| = |z0 − ξ0|.

The last inequality holds because of Schwarz Lemma. Therefore we got a contradic-

tion and with g′(ξ0) = 0.

Note that for ξ ∈ Γ when z → ξ we have that f(z) → f(ξ) ∈ ∂Ω, and conse-

quently g(z) = φ−1(f(z)) → φ−1(f(ξ)) ∈ ∂D. Therefore

µ(g(z)) → ∞,

when z → ξ. Finally we get that

f ∗(λ)(z) = g∗(µ)(z) → ∞,

as z → ξ.

Now, suppose that g∗(µ)(z) = f ∗(λ)(z) → ∞ for every ξ ∈ Γ. Then cλ ≤ κµ ≤ Cλ

and we can apply the Boundary Ahlfors Lemma for the metrics λD and µ. For any

ξ ∈ Γ we get for some constant c > 0 that cµ ≤ λD in some neighborhood of ξ.

Therefore,

lim
z→ξ

λD(g(z))|g′(z)| ≥ c · lim
z→ξ

λD(g(z))|g′(z)| = ∞.

Hence, according to Theorem 3.18, we get that g extends analytically to the neigh-

borhood of Γ with g(Γ) ⊆ ∂D. Then, f = φ ◦ g also has an analytic extension in the

neighborhood of Γ with f(Γ) ⊆ ∂Ω.
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Now, we are ready to prove Theorem 3.17 and get the most general version of

the Ahlfors Lemma.

Proof of Theorem 3.17. Let φ be a conformal map from D onto Ω provided by The-

orem 3.18. Then, let Γ1 ⊆ ∂D be such that φ(Γ1) = Γ. Again, instead of working

with f, we introduce two functions g = f ◦ φ : D → Ω and h = φ−1 ◦ f ◦ φ : D → D.

Also, for ξ ∈ Γ let ξ1 be such that φ(ξ1) = ξ. Let us prove that “(a) ⇒ (b)”. f has an

analytic extension across Γ with f(Γ) ⊆ ∂Ω implies that g has an analytic extension

across Γ1 with g(Γ1) ⊆ ∂Ω. Therefore for ξ1 ∈ Γ1

lim
z→ξ1

g∗(λ)(z) = ∞,

according to Theorem 3.19. Now, suppose that {un} ⊂ Ω converges to ξ. Then the

sequence {zn = φ−1(un)} converges to ξ1. As far as φ′ obtains a maximum on D,

there is c > 0, such that |φ(z)| < c for every z ∈ D. Hence,

f ∗(λ)(un) = λ(f(un))|f ′(un)| = λ(f(φ(zn)))|f ′(φ(zn))|

≥ 1

c
· λ(f(φ(zn))) · |f ′(φ(zn))| · |φ′(zn)| =

1

c
λ(g(zn))|g′(zn)| =

1

c
g∗(λ)(zn),

and so

lim
u→ξ

f ∗(λ)(u) ≥ 1

c
lim
z→ξ1

g∗(λ)(z) = +∞.

Let us prove “(b) ⇒ (c)”. Let µ(z) be a semimetric on Ω, such that κµ ≤ −Cµ.
Pulling back µ(z) with the conformal map φ, we get

φ∗(µ)(u) = µ(φ(u))|φ′(u)|,

which defines a semimetric on D with curvature κφ∗(µ) ≤ −Cµ. Then, according to

the Boundary Ahlfors Lemma, we get that for ξ ∈ Γ

lim inf
u→ξ

λ(f(u))|f ′(z)|
µ(u)

= lim inf
z→ξ1

λ(g(z)) · |f ′(φ(z))| · |φ′(z)|
µ(φ(z)) · |φ′(z)|

= lim inf
z→ξ1

g∗(λ)(z)

φ∗(µ)(z)
≥
√

Cλ
cλ
.
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Finally, here is the proof of (c) ⇒ (a).Define on D the metric φ∗(λ)(z) = λ(φ(z))|φ′(z)|,
with −Cλ ≥ κφ∗(λ) ≥ −cλ. Note that

φ∗(λ)(h(z))|h′(z)| = λ(φ(h(z)) · |(φ′(h(z))| · |h′(z)| = λ(g(z))|g′(z)|

for z ∈ D. Hence, by the assumption for ξ ∈ Γ,

√

Cµ
cλ

≤ lim inf
u→ξ

λ(f(u))|f ′(u)|
µ(u)

= lim inf
z→ξ1

λ(f(φ(z))) · |f ′(φ(z))| · |φ′(z)|
µ(φ(z)) · |φ′(z)|

= lim inf
z→ξ1

λ(g(z))|g′(z)|
φ∗(µ)(z)

= lim inf
z→ξ1

φ∗(λ)(h(z))|h′(z)|
φ∗(µ(z))

.

Note that φ∗(µ)(z) → ∞, as z → ξ1, because |φ′| is bounded and limu→ξ µ(u) = ∞.

Therefore φ∗(λ)(h(z))|h′(z)| → ∞, as z → ξ1. Then, we can use the Boundary

Ahlfors Lemma for the metrics λD and φ∗(λ) and get

lim inf
z→ξ1

λD(z)

φ∗(λ)(z)
≥
√

Cλ,

and therefore

lim
z→ξ1

λD(h(z))|h′(z)| ≥
√

Cλ lim
z→ξ1

φ∗(λ)(h(z))|h′(z)| = +∞

for every ξ1 ∈ Γ1. By Theorem 3.1, h has an analytical extension in the neighbor-

hood of Γ1 with h(Γ1) ⊆ ∂D, therefore f also has an analytical extension in the

neighborhood of Γ with f(Γ) ⊆ ∂Ω.

It is natural to consider the following question: knowing that the pull-back metric

λ(f(z))|f ′(z)| → ∞ on some arc Γ of the boundary of the domain Ω, how much can

we say about the behavior of the f near the boundary?

If Ω has an analytic boundary, then Theorem 3.17 says that we can extend f

analytically across the arc Γ. If we take Ω to be a domain which is “a little bit

worse”, say a smooth Jordan domain, and λ(z) to be the hyperbolic metric on the

domain Ω, then we get the following result:
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Theorem 3.20. Let Ω be a smooth Jordan domain and Γ be an open arc of ∂Ω. Let

λΩ(z) be the hyperbolic metric on Ω and let f : Ω → Ω be an analytic function. If

lim
z→ξ

λΩ(f(z))|f ′(z)| = +∞.

for every ξ ∈ Γ, then f(z) and f ′(z) have a continuous extension on Γ, and f(Γ) ⊆
∂Ω.

Proof. As Ω is a smooth Jordan domain, there is a conformal mapping φ of D onto Ω,

such that it can be extended to a homeomorphism between D and Ω with φ′(z) 6= 0

for z ∈ ∂D. Then we can write

λΩ(w) = λD(φ
−1(w))

∣

∣

∣

∣

1

|φ′(φ−1(w))|

∣

∣

∣

∣

.

That is because λΩ can be considered as a pull-back metric of λD under the map φ−1.

Then, we can write, for φ(z) = w,

λΩ(f(w))|f ′(w)| = λD(φ
−1(f(w)))

∣

∣

∣

∣

1

|φ′(φ−1(f(w)))|

∣

∣

∣

∣

· |f ′(w)|

= λD(φ
−1(f(φ(z))))

∣

∣

∣

∣

1

|φ′(φ−1(f(φ(z))))|

∣

∣

∣

∣

· |f ′(φ(z))|.

Here, define the function g : D → D by

g = φ−1 ◦ f ◦ φ.

Since φ′(z) 6= 0 on ∂D, and |φ′| is continuous on D, φ′ obtains its minimum on D and

the minimum is equal to c > 0, since φ is a conformal mapping on D. Therefore,

|φ′(z)| ≥ c > 0 for any z ∈ D. Let φ−1(Γ) = Γ1 ⊂ ∂D, set ξ1 = φ−1(ξ), for any ξ ∈ Γ.

Then, for any ξ1 ∈ Γ1 we can write

lim
z→ξ1

λD(g(z))|g′(z)| = lim
z→ξ1

λD((φ
−1 ◦ f ◦ φ)(z))

∣

∣

∣

∣

1

|φ′(φ−1(f(φ(z))))|

∣

∣

∣

∣

· |f ′(φ(z))| · |φ′(z)|

≥ c · lim
z→ξ1

λD((φ
−1 ◦ f ◦ φ)(z))

∣

∣

∣

∣

1

|φ′(φ−1(f(φ(z))))|

∣

∣

∣

∣

· |f ′(φ(z))|

= c · lim
w→ξ

λΩf(w)|f ′(w)| = +∞.

Therefore, we can apply Theorem 3.16 for the map g and the arc Γ1. We get that

g has an analytic extension across Γ1. This implies that the map φ−1 ◦ f ◦ φ has an
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analytic continuation across Γ1 and so, that f and f ′ have continuous extensions to

Γ. Moreover, as g(Γ1) ⊆ ∂D, we get that f(Γ) ⊆ ∂Ω. This finishes the proof.

Note that, in Theorem 3.20, it is necessary to consider Ω as a smooth Jordan

domain. It is not sufficient to consider domains which are bounded by a smooth

Jordan curve. (A counterexample can be found in [13], page 46.)

Another extension of Ahlfors Lemma for analytic functions can be obtained as

a combination of Theorem 3.20 and of the Boundary Ahlfors Lemma for Jordan

domains.

Theorem 3.21. Let Ω ⊂ C be a domain and let Γ be a smooth subset of ∂Ω.

Further, let λΩ(z) be the hyperbolic metric on Ω and let µ(z) be a semimetric on Ω

with κµ ≤ −Cµ for some positive constant Cµ. Let f : Ω → Ω be analytic. If

lim
z→ξ

λΩ(f(z))|f ′(z)| = +∞

for every ξ ∈ Γ, then

lim inf
z→ξ

λΩ(f(z))|f ′(z)|
µ(z)

≥
√

Cµ

for every ξ ∈ Γ.

Moreover, f(z) and f ′(z) have continuous extension on Γ, and f(Γ) ⊆ ∂Ω.

Proof. According to the Boundary Ahlfors Lemma for Jordan domains applied to

µ(z) and f ∗(λΩ)(z), we have κµ ≤ −Cµ,

κf∗(λΩ) = κλΩ = −1

and

lim
z→ξ

λΩ(f(z))|f ′(z)| = lim
z→ξ

f ∗(λΩ)(z) = +∞.

Therefore,

lim inf
z→ξ

f ∗(λΩ)(z)

µ(z)
= lim inf

z→ξ

λΩ(f(z))|f ′(z)|
µ(z)

≥
√

Cµ
cλΩ

=
√

Cµ.

The second statement follows directly from Theorem 3.20.
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Hence this Theorem states that that if f ∗(λΩ) tends to ∞ on some boundary set

Γ, then the general distortion is bounded away from 0 near Γ and, moreover, f and

f ′ have continuous extension on Ω ∪ Γ with f(Γ) ⊆ ∂Ω.

To finish this section we will state one more open question (at least we do not

see an easy solution):

Question 2. In Theorem 3.21, can we consider a general metric λ with some

curvature conditions, instead of the hyperbolic metric λΩ and still get the same type

of result?

3.4 Bloch-type spaces on unbounded simply con-

nected domains

In this section we will consider the Bloch spaces and their extensions on different

domains. In 1980 (see [16]), Timoney considered several equivalent characterizations

of Bloch functions. In the same paper, he extended the notion of Bloch space to

bounded homogeneous domains in Cn. Note that the generalized Bloch spaces and

similar type of characterizations of Bloch functions were considered by many other

authors beside Timoney. See for example, [11], [8], [12].

Here we will consider the Bloch space on a simply-connected, but possibly un-

bounded domain of C, and will prove an analogue of Timoney’s theorem. First of

all, let us define the classical Bloch space.

Definition 3.22. An analytic function f : D → C is called a Bloch function if

||f ||B(D) = sup
z∈D

|f ′(z)|(1− |z|2) <∞.

We will see that the Bloch space is directly related to the ideas of the previous

sections. Recall that in Example2.16 we already introduced the Bloch space: Set

ρ(w) = 1 to be the Euclidean metric on C and λD to be the hyperbolic metric on D.

Then the pull-back of ρ is

f ∗(ρ)(z) = |f ′(z)|,
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for z ∈ D. Therefore,

B(D) =
{

f : D → C : sup
z∈D

f ∗(ρ)(z)

λD(z)
<∞

}

,

or in other words, B(D) is the space of analytic functions whose pull-back of the

Euclidean metric is bounded by the hyperbolic metric.

Recall that the curvature of the Euclidean metric κρ(z) = 0 for all z ∈ C, and

even though f(D) = Ω2 might be a simply connected proper subdomain of C, we

cannot consider any Schwarz-Pick type results for f in such a case. Namely, the

generalized distortion |f ρ,λD(z)| can be unbounded, and so f might not belong to

B(D) (See example 3.23 below). On the other hand, if f(D) is a bounded subdomain

of C, it is not to hard to show that f must belong to B(D).
In particular, if we consider f : D → D, then we can use the Schwarz-Pick Lemma

to get that
f ∗(λD)(z)

λD(z)
≤ 1,

since

|f ′(z)|(1− |z|2) ≤ 1− |f(z)|2 ≤ 1.

This proves that all of the self-maps of D are in the Bloch space.

Let us also consider an example of a function which is not in the Bloch space.

Example 3.23. Consider

f =
1

1 + z
.

The function f has a derivative

f ′(z) =
−1

(1 + z)2
.

Looking only for the real supremum

sup
z∈D, Imz=0

|f ′(z)|(1− |z|2) = sup
z∈D, Imz=0

∣

∣

∣

∣

1

(1 + z)2

∣

∣

∣

∣

(1− z)(1 + z)

= sup
z∈D, Imz=0

∣

∣

∣

∣

1− z

1 + z

∣

∣

∣

∣

= ∞.

Therefore the function f is not in the Bloch space. Note that f maps D onto the

half plane {z : Re(z) > 1
2
}, i.e. onto an unbounded domain.



68

As we said before, none of the Ahlfors type lemmas can be applied to the Eu-

clidean metric ρ, since κρ = 0, and so we turn to different geometric characterizations

of the functions in the Bloch space. One such example is Timoney’s characterization

via schlicht disks which in the case of the unit disk has been given in [14] and in the

case of Riemann surfaces, including general planar domains, in [11], [12].

To state the theorem of Timoney we will also need the definition of a schlicht

disk.

Definition 3.24. Let f : Ω → C be an analytic function, where Ω is a domain in

C. A disk

D = {w ∈ C : |w − w0| < r} (w ∈ C, r > 0)

is called a schlicht disk in the range of f if there exists an analytic function g : D → Ω

so that f ◦ g maps D bijectively onto D.

Now we are ready to state the theorem as given in [16]:

Theorem 3.25. Let f : D → C be an analytic function. Then, the following condi-

tions are equivalent:

(1) The function f is a Bloch function.

(2) The radii of the schlicht disks in the range of f are bounded above.

(3) As a function from the metric space (D, dD) to the metric space (C, Euclidean

distance), the function f is uniformly continuous.

(4) The family {f ◦ φ(z)− f ◦ φ(0) : φ ∈ Aut(D)} is a normal family on D.

(5) The supremum

sup{|(f ◦ φ)′(0)| : φ ∈ Aut(D)}

is finite.

(6) The family

{Σnj=1aj(f ◦ φj)(z) : n ∈ N, φj ∈ Aut(D), aj ∈ C,Σnj=1|aj| < 1}
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is a normal family on D. (This family is the absolute convex hull of the orbit

of f under Aut(D).).

Note that for Example 3.23 the radii of the schlicht disks are not bounded above,

since {z : Re(z) > 1
2
} is unbounded region and contains disks of unbounded radii

and 1
1+z

is a univalent function in its domain.

We can restate this theorem for a function f : Ω → C in the case when Ω is a

simply connected domain of C. To do that, we need to define the Bloch space on Ω,

which will be denoted by B(Ω).

Definition 3.26. An analytic function f : Ω → C is called a Bloch function on the

simply-connected domain Ω if

||f ||B(Ω) = sup
z∈Ω

{ |f ′(z)|
λΩ(z)

}

<∞.

As it was discussed before in this chapter, using that for λC(z) = 1, where λC is

the Euclidean metric, and for λΩ(z) being the hyperbolic metric on Ω we have that

||f ||B(Ω) = sup
z∈Ω

{f ∗(λC)(z)

λΩ(z)

}

<∞.

So the Bloch space is the space of functions f : Ω → C with bounded generalized

distortion |fλC,λΩ(z)|.
An interesting problem, regarding the similar fact for D, is the following:

Question 3. If Ω is a Jordan domain, does this imply that any self-map f of Ω

is in the Bloch space B(Ω)? As far as we know, this is an open problem.

We noted that Theorem 3.25 can be further extended for the Bloch spaces. There

have been a number of generalizations of parts of Theorem 3.25, such as the ones

in [11], [12] or [16]. We will present a simple proof of one of the generalizations

in [12], in the case when Ω is a simply connected domain in C.

Theorem 3.27. Let Ω be a simply connected hyperbolic domain and let f : Ω → C

be an analytic function. Then the following conditions are equivalent:

(1) The function f is a Bloch function on Ω.
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(2) The radii of the schlicht disks in the range of f are bounded above.

(3) As a function from the metric space (Ω, dΩ) to the metric space (C, Euclidean

distance), the function f is uniformly continuous.

(4) The family {f ◦φ(z)− f ◦φ(a) : φ ∈ Aut(Ω)} is a normal family on Ω for any

a ∈ Ω.

(5) The supremum

sup{|(f ◦ φ)′(a)| : φ ∈ Aut(Ω)}

is finite for any a ∈ Ω.

(6) The family

{Σnj=1aj(f ◦ φj)(z) : n ∈ N, φj ∈ Aut(D), aj ∈ C,Σnj=1|aj| < 1}

is a normal family on D. (This family is the absolute convex hull of the orbit

of f under Aut(D).).

Proof. The main idea is the following: as a metric spaces (Ω, dΩ) and (D, dD) are the

same, i.e. they are isometric. The conformal isometry h : Ω → D is provided by the

Riemann Mapping theorem. Note that we can also use that for some point a ∈ Ω we

have that h(a) = 0 and h′(a) > 0. Furthermore, that isometry between (Ω, dΩ) and

(D, dD) can be viewed as an isometry between the Bloch spaces on Ω and D. This

can be proved in the following way.

Any analytic function g : Ω → C can be considered as g = g ◦ h−1 ◦ h, where
f = g ◦ h−1 is an analytic function from D to C. On the other hand, having that

f : D → C is analytic, construct an analytic function g : Ω → C by the formula

g = f ◦ h. Now using Theorem 2.6 for the map h and the Chain Rule we can write

the following for any z ∈ Ω:

|g′(z)|
λΩ(z)

=
|f(h(z))′|

λD(h(z))|h′(z)|
=

|f ′(h(z))||h′(z)|
λD(h(z))|h′(z)|

=
|f ′(h(z))|
λD(h(z))

.
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As z varies through all of Ω, h(z) varies through all of D. That is why one can write:

||g||B(Ω) = sup

{ |g′(z)|
λΩ(z)

: z ∈ Ω

}

= sup

{ |f ′(h(z))|
λD(h(z))

: h(z) ∈ D

}

= sup

{ |f ′(w)|
λD(w)

: w ∈ D

}

= ||f ||B(D).

This shows that h is an isometry between Bloch spaces on D and on Ω.

Let us prove that (2) for g is equivalent to (2) from Theorem 3.25 for f . We have

that D is a schlicht disk for f if there is an analytic k : D → D, such that f ◦ k
is a bijection from D to D. Therefore for g there is a map s = h−1 ◦ k, such that

g ◦ s = f ◦ h ◦ h−1 ◦ k = f ◦ k is a bijection from D onto D. And vice versa : if D is a

schlicht disk for g, then there is s : D → Ω, such that g ◦ s is 1-1 and onto. Then, for

f consider k = h ◦ s, such that f ◦ k = f ◦ h ◦ s = g ◦ s is 1-1 and onto. Therefore,

D is a schlicht disk for f if and only if it is also a schlicht disk for g, and items (2)

from Theorem 3.25 and 3.27 for f and g respectively coincide.

Now let us prove that (3) in Theorem 3.27 for g = f ◦ h is equivalent to (3) in

Theorem 3.25 for f . Condition (3) in theorem 3.27 just means that for every ǫ > 0

there is δ > 0, such that for every z, w ∈ Ω we get

dΩ(z, w) < δ ⇒ |g(z)− g(w)| < ǫ,

or in other words , that for every ǫ > 0 there is δ > 0, such that for any t = h(z), u =

h(w) in D

dD(t, u) < δ ⇒ |f(t)− f(u)| < ǫ,

as h is an isometry and g = f ◦ h.
So we get that (1) and (3) from Theorem 3.27 are equivalent, because (1) and

(3) are equivalent in Theorem 3.25.

To prove that (4) and (5) are equivalent to (1) we will need to use that there is

a homeomorphism H between Aut(Ω) and Aut(D), given by the formula H(φ) =

h ◦ φ ◦ h−1.

Now let us prove that (4) in Theorem 3.27 for g = f ◦ h , as above, is equivalent
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to (4) in Theorem 3.25 for f . We have

{g ◦ φ(z)− g ◦ φ(a) : φ ∈ Aut(Ω)}

={f ◦ h ◦ φ(z)− f ◦ h ◦ φ(a) : φ ∈ Aut(Ω)}

={f ◦H(φ) ◦ h(z)− f ◦H(φ) ◦ h(a) : φ ∈ Aut(Ω)}

={f ◦ ψ(z)− f ◦ ψ(0) : ψ ∈ Aut(D)},

and the family stays normal after composing each element with a conformal map.

Also, part (5) is equivalent to part (5) from Theorem 3.25 because of the following:

sup{|(g ◦ φ(a))′| : φ ∈ Aut(Ω)} = sup{|(f ◦ h ◦ φ(a))′| : φ ∈ Aut(Ω)}

= sup{|(f ◦H(φ) ◦ h(a))′| : φ ∈ Aut(Ω)}

= sup{|(f ◦ ψ ◦ h(a))′| : ψ ∈ Aut(D)}

= sup{|(f ′(ψ(h(a)))||ψ′(h(a))||h′(a)| : ψ ∈ Aut(D)}

= |h′(a)| sup{|(f ′(ψ(0))||ψ′(0)| : ψ ∈ Aut(D)}

= |h′(a)| sup{|(f(ψ(0))′| : ψ ∈ Aut(D)}.

The same idea as in the proof of the equivalence of the statements (4) from

Theorem 3.25 and 3.27 works for the equivalence of the statements (6). Therefore

we have proved that the statements from Theorem 3.27 are the same as for Theorem

3.25, when one considers a composition with a conformal map h. That is why

Theorem 3.25 implies Theorem 3.27.

Let us state some consequences of Theorem 3.27 for the case when Ω is an un-

bounded domain. For instance, f ∈ B(Ω) only if limz→∞ |f ′(z)| = 0. That is because

if sup{ |f ′(z)|
λΩ(z)

} = C <∞ and λΩ(z) → ∞, as z → ∞, then

|f ′(z)| ≤ C

λΩ(z)
→ 0,

as z → ∞.

For example, as a consequence of that we get the following: the Bloch space on

some unbounded domains Ω does not contain any polynomials.
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One of the special cases is when Ω is an open half-plane. Then, according

to Example 2.10, the Bloch space B(Ω) is just a space of functions, such that

supz∈Ω d(z)|f ′(z)| <∞, where d(z) is the distance from z to ∂Ω.

There are a number of articles that show the connection between λD(z) and d(z)

for different type of domains. For instance, in 1988, Minda has actually shown that

the spaces with supz∈Ω d(z)|f ′(z)| < ∞ and supz∈Ω |f ′(z)|/λΩ(z) < ∞ coincide not

only for the half-planes, but for any planar domain (see [11] for details). Results

describing the connection between d(z) and λD(z) in the case of simply connected

hyperbolic domains are given in [8]. Minda also considered the characterization of

normal families of functions with respect to different metrics in [12].
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