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Chapter 1
Introduction

In the last few decades, we have witnessed the creation of an increasing number of net-
work interconnection media and communication protocols. We have also observed a new
trend towards implementing traditional software components as services on embedded
devices. These two factors are putting increasing pressure on the verification process. The
purpose of verification in the context of networking is to evaluate protocol compatibility,
effectiveness, efficiency, and interoperability, as well as implementation correctness.

Two categories of tools are used during the verification step: network simulators and
network emulators. Network simulators are used in the early stage of protocol develop-
ment to select the best suitable protocol for a particular type of application. Simulators
such as Ns2 [5, 27] and OPNET [17] are very comprehensive and flexible. Not only can
they simulate almost any existing protocols, but they can also be quickly used to de-
velop simulation scenarios for new protocols. Despite all those advantages, simulators
are not suitable when more realistic and subjective testing are required. In such situa-
tions, network emulators, with real code implemented on real devices, are used to meet
the necessary requirements. Generally, emulators are less extensible and more expensive
to build compared to simulators. On the other hand, an emulator can often simplify the
verification process because it is fine-tuned and stream-lined out of the box. The users
just need to connect the devices to the emulator; this is much more friendly than having
to script all the needed simulation scenarios.

The objective of my thesis work is to develop a network impairment tool that can em-
ulate common network faults (i.e. packet lost, delay, duplication and reordering) at wire
speed. The tool will allow developers to verify and stress test their products and services
under such faulty conditions. The use of the IXDP425 as an implementation platform will
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Figure 1.1: Network Configuration.

provide a high level of flexibility and efficiency at reduced cost. Figure 1.1 represents the
typical system layout. The packets flow through one port of the impairment platform,
and after being manipulated (impaired), they come out on the other port.

I outline several requirements that any sophisticated network impairment tool needs
to support below:

High performance: Packet manipulation imposes overhead and the overhead needs to
be carefully controlled so that it does not affect throughput and other impairment
requirements. As an example, if a packet takes 50 us to traverse through the im-
pairment module, then any emulation of packet delay smaller than 50 us will not be
possible.

Flexibility: The platform needs to provide a complete set of well-known models for
packet loss, duplicate, reordering and delay.

Transparency: External devices and/or applications should not have to be modified to
use the tool.

Robustness: The impairment platform must be able to run smoothly for a long period
of time, and to support dynamic configuration. Also, the sequence of emulation
events, though randomly generated, must be reproducible.

Low cost: The total cost of the impairment platform should be within a few thousand
dollars, so that it is accessible to both education institutions and small businesses.



My thesis work will specifically focus on the performance, flexibility, and cost aspects,
which are not addressed sufficiently in the current solutions. To this end, I will use the
Intel IXDP425 Network Processor Evaluation Board [15] (I will, from this point
forward, simply refer to this system as IXDP425 BOARD) as the core component. The flex-
ibility, robustness, and efficiency of the IXDP425 BOARD make it an ideal choice for use
as an impairment tool.

The rest of this thesis is organized as follows. The rest of this chapter will describe
in detail the motivation and the related work. Chapter 2 describes the system run-time
environment. Chapter 3 provides a summary of the functionalities of the final impairment
system. Chapter 4 goes into details of the design and implementation of the system; the
reader can safely skip this chapter if desired. Chapter 5 elaborates on the random number
generation implementation and validation. The next two chapters describe the testing
and performance analysis. Finally, chapter 8 summarizes the results of the project and
outlines the future work.

1.1 Problem Statement

Network faults such as packet loss, duplication ,sreordering and delay are common within
anetwork. These faults affect network applications at different levels, ranging from mak-
ing the applications unusable to mildly degrading their performance. To resist network
faults, communication protocols are built with layers of redundancy. The complexity
of these protocols makes it very hard to verify the correctness of their implementations,
especially in heterogeneous systems consisting of different operating systems, intercon-
nection media, devices, and applications.

In this thesis, I will use a network processor to design an impairment tool that can
emulate the above network faults flexibly and cost-effectively at wire speed. The tool
will help to verify and stress test network products and systems. It can also be used to
facilitate subjective evaluation of applications such as voice and /or video codecs. Finally
the impairment tool can be used to emulate the behavior of a wide range of networks, thus
allowing developers to realistically evaluate their products in a controlled environment.

My impairment tool will have improvements over existing tools in terms of flexibility,
robustness, efficiency, and cost. The final impairment platform will support a multi-state
model, the Markov chain [38], to emulate each type of impairments. Formally, the Markov
chain is defined as a finite set S of states that are controlled by a transition probability



Figure 1.2: A 2-state Markov chain.

matrix P. The matrix P associates each pair of states with a value 0 < pi; < 0 to represent
the probability of moving from state i to state j given that the system is currently in state ¢.
Thus, the system will swing between states based on the value in the matrix P. Figure 1.2
illustrates this concept.

Furthermore, the platform will be able to run for a prolonged period of time with-
out degrading the packet throughput. Once the other network devices are hooked up to
the platform, the user can confidently control various emulation aspects remotely from a
web-based console. Finally, with the hardware-accelerated network processing capacity
provided in the IXDP425 BOARD as well as the extensive access library toolkit, the de-
velopment time and the total cost are greatly reduced (many other network impairment
platforms have to build their own hardware from the ground up).

1.2 Related Work

I will first introduce some recent work related to network measurement and modeling.
I will then describe several existing network impairment tools in the industry and acad-
emic communities, along with their basic characteristics.



1.2.1 The Nature of Network Faults

Previously, I identified network faults as packet loss, delay, duplication and reordering.
As one of the uses of network impairment tools is to emulate network faults after real
scenarios, it is essential to be able to accurately model the variable delay, and the pat-
terns of packet loss, duplication and reordering. In this section, I will briefly explain the
causes of the network faults, and then introduce some previous work on network mea-
surement and monitoring. These studies lay out various methods to infer suitable models
of network faults.

The majority of packet losses are caused by buffer overflow in the devices [3, 10]; only
a very small portion is due to bit errors on the transmission links. Additionally, there are
four types of delays of interest: propagation, processing, transmission, and queuing delay.
Propagation delay is dependent only on the distance and the physical medium properties.
The last three delays occur at the switching devices, and of those, queuing delay is the
most variable. Of the above faults, packet duplication is actually a side effect of packet
loss and/or delay, created by the communication protocols. Packet reordering occurs due
to many reasons such as differential service, packet re-transmission, and scheduling. For
more information, please refer to [34, chapters 7, 31, and 49].

Much work has been done to characterize Internet packet behavior. Bolot [3] uses
UDP probes to show that packets are lost randomly. Paxson [28] confirms this result
using TCP probes. His work also indicates that packet reordering is very common and
highly variable from path to path, and that packet delay variations occur primarily on
time scales of 0.1-1.0 seconds. Bi et al. [2] observe that there is a correlation between
packet delay and packet loss. The distribution of packet delay is usually unimodal when
packet loss rate is small. However, this is not the case with increasing loss rate and the
delay distribution is more dispersed. Further, Bellardo and Savage [1] have developed
several methods to measure packet reordering rates. By varying the probe interval, their
method can be used to measure the distribution of the reordering process over time.

Some recent work [24, 37, 38] demonstrates that a Markov model can be used to ap-
proximate network behavior. Wei et al. [37] model Internet packet delay as a continuous-
time hidden Markov model [30]. The specific parameters for the model can be calculated
efficiently after a certain period of network probing. packet For simpler networks, the
distribution of packet delay and packet loss can be calculated from the classic single-
server and finite-buffer queuing systems M/M/1/K [35, chapter 8] with parameters
represented by the packet arrival rates, the processing and transmitting time, the phys-
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ical medium characteristics, and the buffer sizes of network devices. Classical queuing
theory can provide us the average waiting time of packets in the queue and the average
queue size, among other properties. From there, the distributions of packet delay and
packet loss can be derived. In many cases, the packet delay distribution can be as sim-
ple as uniform, or normal models; and the packet loss distribution as the Bernoulli or
Gilbert [12] models. Depending on the packet arrival patterns, a multi-state/hierarchical
Markov model [19, 37] based on time or packets may be used.

The behavior of a complex network is highly unpredictable and cannot be approxi-
mated by a simple model. Besides supplying trivial packet fault models for simple net-
work configuration, a good impairment tool must be flexible enough to emulate the be-
havior of a complex real-world network.

1.2.2  Network Impairment Emulators

Seeing limitations in the final stage of product verification, several simulators have added
support for emulation. The NS2 [5] simulator has recently added an emulation module to
its core. The additional module permits real traffic to pass through the simulator, lever-
aging the comprehensive simulation scenario library on real packet streams. Of course,
tools such as NS2 cannot scale up in terms of throughput when compared to pure net-
work emulators because the simulation core generates a significant amount of processing
overhead.

Other network impairment emulators modify the packet behavior along the commu-
nication stack. NIST NET [6] provides per-flow impairment at the network layer. DUM-
MYNET [32] and NETSHAPER [13] operate at the data link layer. The lower the layer, the
more realistic the emulator is. This is because at higher layers, as in the case of NIST
NET [6], the emulator will need to probe the packet headers; thus increasing the process-
ing time. All these three emulators are similar in the sense that the impairment module is
implemented as part of the operating system (BSD and Linux) kernel. With the exception
of NIST NET, which uses an external clock, these systems are limited by the timer inter-
rupt granularity (usually ten milliseconds). This means that without any tweaking, they
cannot handle packet delays smaller than ten milliseconds. My proposed impairment tool
will also use the Linux operating system. However, since the IXDP425 BOARD can sig-
nal packet-related events as interrupts, the tool will not suffer from the Linux operating
system’s timer granularity limitation.

Instead of specifying a static impairment model, a more realistic approach is to adapt
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the loss and delay models to fit actual traffic patterns. Noble ef al.’s strategy [26] is to
first observe a network, interpret the observations, and finally replay the trace to inject
the packet loss and packet delay. ENDE [39], on the other hand, calculates the packet
delay in real-time. The core component of ENDE has three Ethernet interfaces: two of
them connect to client and server machines, and the third connects to a real network
whose behavior ENDE is trying to emulate. It periodically probes the network to retrieve
real-time packet behavior, and then uses that information to define the emulated delay
between the client and the server. Using this method, the client and the server reside on
the same network but can still experience reasonably accurate Internet packet delays. The
obvious drawback is that ENDE needs to be connected to a real network whose behavior
is neither predictable nor reproducible.

Impairment tools are also very popular in the commercial world. They are typically
powerful but also very expensive. The SPIRENT SX data link simulator [7] is probably
the most popular impairment tool on the market. It supports many pluggable network
interfaces such as DS1, DS3, E1, E3, and SONET. Naturally, for the above features to
function, the SPIRENT SX allows users to plug in an external clock signal. It does not
implement complex probability distributions for the delay and loss; instead, exact values
(in microsecond unit) are used. To make up for this deficiency, SPIRENT SX allows users
to define different parameters for up to 99 steps in a sequence. The minimum duration
of each step is one second. With this feature, the user can observe a real network for
a number of time slots, and then input the impairment parameters into these 99 steps.
Nevertheless, the lack of exact probability distributions is a major limitation. In addition,
packet loss, duplication, and reordering are not supported. Finally, the SPIRENT SX’s
management console is accessible either on the display panel of the box, or remotely
through IEEE-488 or RS-232 interfaces. Even then, the remote control feature is still less
accessible compared to a web-based management console.

In contrast to the SPIRENT SX, Maxwell’s NETWORK IMPAIRMENT SYSTEM (NIS) [21]
is highly flexible in terms of software implementation. Users can develop and deploy
their own packet handling code through a set of published application programming
interfaces. All possible types of packet faults are supported. The NIS can update the im-
pairment parameters automatically in real-time based on the devices’ response rates (sim-
ilar to ENDE). A Java-based management console controls the NIS through the TCP/IP
protocol. The Maxwell’s NIS has dual CPUs running the Linux operating system, and
supports remote access through ssh or telnet protocols. However, it has very limited



probability distributions for the impairment models.

There are also other network impairment tools. Most of them, however, are imple-
mented on traditional personal computers. They are characterized by high packet process-
ing overhead and very simple impairment models. While almost every tool claims that
it can reach the maximum wire speed, what they do not mention is that their high over-
head drives out certain impairment scenarios, where the time granularity is in terms of
microseconds. Further, due to the limited buffer size on the network interface, the higher
the overhead, the lower the packet throughput.

1.3 Network Processors

I will give a brief overview of the general architecture, applications, and some details on
the components of the IXDP425 BOARD.

1.3.1 General Features

With the increase in bandwidth use and rapid development of new network protocols,
comes the need for a general purpose, programmable device that is optimized for packet
processing. These devices, called network processors, have exotic architectures with un-
conventional system architectures, enabling them to process packets at high speed. To
explore these architectures, we first need to understand the nature of packet processing.
Packet processing can be classified into data-plane and control-plane processing. The for-
mer performs operations like packet header checking and forwarding (tasks with a small
number of instructions). Because data-plane operations must be completed in a short
time to prevent packet drop, they are usually handled by multiple specialized process-
ing units. On the other hand, control-plane processing deals with tasks that have long
code segments and are more suitable for execution on a general purpose processor such
as the StrongArm or the various Intel/ AMD processors. Other factors such as the bus
speed, the memory hierarchy, and the level of hardware-supported multithreading also
influence packet processing performance.

On top of all the hardware components, a software development framework in the
form of libraries or domain-specific languages allows the developer to program the net-
work processor. Unfortunately, due to the unusual architectures and the high-throughput
requirement, it is more difficult to design and implement applications for a network
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processor than for a general purpose processor [20]. Developers often have to code in
a mix of low and high level programming languages to maintain high performance.

For more detail on the architectures and the programming models of network proces-
sors, please refer to the recent survey by Peyravian and Calvignac [29].

1.3.2 The Intel IXDP425 Board
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Figure 1.3: The IXDP425 Board Block Diagram [14].

The Intel IXDP425 BOARD (Figure 1.3) is targeted at the LAN/WAN market. It is a
complete board with an XScale RISC processor core running up to 533 MHz, and with up
to 256 MB of SDRAM. Two integrated 10/100 Ethernet NICs are connected to the XScale
core, the SDRAM controller, and a queue manager through a 133-Mhz bus. The queue
manager facilitates packet queuing in hardware for various components. For the Ethernet
module, two queues holding up to 128 packets each are provided. The Ethernet module
also provides a software queue to temporarily buffer packets in case the hardware queues
are full. The software can use interrupts or polling to inquire about the hardware queue
status. Accompanied with the XScale core are three Network Processor Engines (NPEs)
capable of executing instructions in parallel with the main processor. The NPEs help to
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offload common computing intensive operations like IP header inspection and packet
filtering from the XScale core.

In terms of software, the IXDP425 BOARD supports two operating systems: VxWorks [31]
and Linux. The interfacing library toolkit, named access library, consists of multiple lay-
ered modules, providing a rich set of accessible functions. Under Linux, this access library
is implemented as a kernel module which somewhat reduces the level of freedom of the
developer. The public application programming interface (API) is in the form of public
C functions, sharing the kernel-mode memory space. This setting means that in order to
use the API, the application has to be written as another Linux kernel module. Overall,
however, the access library makes the IXDP425 BOARD much easier to program than
many others.

12



Chapter 2
Environment

The run-time environment consists of three main components: the IXDP425 BOARD, a
transmitting source and a receiving station. The three components are directly connected
to each other using cross-over Ethernet cables. This selection saves the need for a hub
in the middle. It is important to emphasize that the IXDP425 BOARD acts as a bridge,
therefore the two ports involved (from here on I will refer to them as PORT1 and PORT2)
do not require an IP address. The transmitting source and the receiving station reside in
an isolated subnet.

2.1 Transmitting Source / Host System

The transmitting source is a regular PC running Mandrake 9.2 operating system. This
machine is also the host system for the IXDP425 BOARD whereby it provides a root file
system through the nfs carrier protocol. Two network cards are present on the machine,
The first network card connects to PORT1 of the IXDP425 BOARD; this connection is used
to transmit test data through the IXDP425 BOARD. The second network card is connected
to the PCI network card on the IXDP425 BOARD and is used to transmit binary images of
the code and other control information. It is used as a way to remotely control the board.

2.2 The IXDP425 Board

The IXDP425 BOARD has two 10 — 100-Mbit hardware-accelerated Ethernet ports. It
also comes with another Ethernet card on one of the PCI slots. The IXDP425 BOARD is

13



loaded with Redhat’s Redboot 1.92 boot loader and MontaVista 2.1 Linux kernel image
(a modified version of Linux kernel version 2.4.17). This kernel version has proprietary
driver for the hardware-accelerated Ethernet ports, as well as optimizations to make the
kernel more real-time friendly. In addition, the kernel is compiled to load the root file
system from the host system. Finally, this is a very bare-bone Linux distribution with
only the absolutely necessary components. Because no standard libraries are provided,
all programs have to be statically linked with the libraries.

The IXDP425 BOARD is accessible through a serial connection. On the host system,

minicom is used to provide this connection.
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Chapter 3
Impairment Capacities

All the impairment modes are equally implemented for both Ethernet ports on the IXDP425
BOARD, permitting separate impairments on the forward path as well as the reverse
path. For the forward path, the packets are impaired within PORT1; for the reverse path,
it is within PORT2. Likewise, statistical data are collected for each port individually.

N ——  Loss —— Duplicate —— Re-order;[—-ﬁ Delay —— out

duplicated packet

dropped
packet

Figure 3.1: Packet traverse path within each Ethernet port.

Figure 3.1 displays the traverse path for each packet in each Ethernet port. Each rec-
tangle box represents an impairment decision node. If the underlying model implies a
YES answer, the impairment is applied. Except for the YES decision in the 1oss emula-
tion where the packet is dropped immediately, packets will continue to traverse to other
impairment decision nodes. In the duplicate box, an exact copy of the packet may be
created. In that case, both the original packet and the duplicated one continue to travel to
the reorder box.

Note that the impairment is done at the data-link layer. As such, there is no support
for individual packet flow (a packet flow is defined as a traffic path from one IP address
to another). The tool is best used in an isolated testing environment. Packet impairment
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emulation at data-link layer has less processing overhead then at higher layers of the
protocol stack.

Statistics are collected on a per-port basis. The information gathered are the number
of packets received, transmitted, dropped, lost, reordered, and duplicated. The statistical
module also provides snapshot information regarding the packet inter-arrival time, inter-
departure time, the targeted packet delay, and the actual packet delay. In addition, the
user can choose to collect a continuous sample of data which includes the emulated delay
time, the packet processing overhead, the internal software queue size, and the inter-
arrival and inter-departure time. This information is useful for model validation and
performance analysis.

Two emulation modes are supported: model-based and trace-based. Each will be
described in more detail below.

3.1 Model-based Emulation

The model-based emulation mode uses probability distributions to approximate the ac-
tual data patterns.

The emulation for packet delay consists of two components: a fixed delay plus a vari-
able delay; both are in units of microseconds. The variable delay can be modeled by the
UNIFORM and NORMAL distributions.

Packet loss and duplication are modeled by a BERNOULLI variate. The inputis a value
in the range (0, 1) to indicate the proportion of packets to be emulated as lost or dupli-
cated. More complex model such as the GILBERT loss model can be created with the help
of the multi-state Markov chain.

Packet reordering has two components. The first one is the underlying BERNOULLI
model similar to the one of packet loss and duplication to decide whether or not to reorder
the packet. The second component is the displacement distance, which specifies
how many positions the packet will be displaced with respect to its original position. The
displacement distance component is modeled in a similar manner to packet delay, i.e. by
a discretized UNIFORM and NORMAL distribution.

The key strength of the modeling system is the multi-state Markov chain. The Markov
chain is characterized by the number of states, the duration and the Impairment specifi-
cations in each state, and the transition probability matrix. The durations in the states are
measured either in units of the number of arrived packets or the amount of elapsed time
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since the beginning of the state. The transition probability matrix is used to calculate the
next state.

Each mode of impairment can have its own Markov chain. Since we have four dif-
ferent impairment types, we could then have up to four different Markov chains in use
concurrently. Nested Markov chain (within another Markov chain) is not supported how-
ever.

Let’s illustrate the Markov chain concept by a concrete example. Consider a simple
bursty loss scenario in which the packet stream has a bursty loss probability of 3%; and
when that happens, 10 consecutive packets are to be dropped. Also, once a bursty loss
occurs, the chance that we have another bursty loss immediately is 1%. We can model the
above requirement using a two-state Markov chain. The first state depicts a usual packet
stream; we set the length of this state to one packet. The second state depicts the bursty
loss, and according to the requirement, we will set the length of the state to ten packets. In
state one, no packet is dropped, thus the loss model’s drop probability is 0%. On the other
hand, in state two, we will have to drop all packets; so we will set the drop probability to
100%. Now we have to specify the transits from one state to another. At the end of each
state (i.e. after the specified number of packets have arrived), the Markov chain model
will decide the next state to move to based on the probability transition matrix. From the
requirement above, we can formulate the probability transition matrix as:

p— D11 P12 . 0.97 0.03
D21 D2o 0.01 0.99
We can emulate more complex models, such as varying the number of packets within

each bursty loss, by adding more Markov states. In fact, any scenario that requires a
nested Markov chain can be re-modeled into one Markov chain with additional states.

3.2 Trace-based Emulation

This mode assumes that the user has collected a set of real data. Each trace entry consists
of the following fields:

port number, loss, duplication, reorder distance, delay time

The range of values are:
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* Port number: 1 for port one and 2 for port two;

* Loss and duplication: 1 to imply a loss or duplication (different fields), 0 otherwise;

Reorder distance: 0 to imply no reordering; non-zero positive value to represent the
displacement distance (in term of packets);

Delay time: 0 to imply no delay; non-zero positive value to represent the delay time
in microseconds.

For instance, the entry|1,0,0,0, 30000] indicates that the associated packet arriving at
PORT1 will be delayed for 30, 000 usec.
The traces are applied in circular order starting with the first trace entry. Each entry is

associated with one packet; when the last entry is reached, the sequence starts again from
the first trace entry. This mode is most applicable in scenarios when the user can get hold
of the traffic log. The user then needs to transform data from the log format to the trace
format outlined above using one of the many available scripting languages. The field
reorder distance is less useful in this mode as it is usually not possible to observe
packet reordering from the traffic log.

18



Chapter 4
System Design and Implementation

Figure 4.1 displays three main components of the system:
1. The impairment core (implemented as a kernel module);
2. The web-based management console; and
3. The user-mode server program.

The major efforts are concentrated in the web-based management console (from now
on I will refer to it as web-app) and the impairment kernel module. They will be described
in detail below. The server program is just a simple application that tunnels messages
from the web-app to the impairment kernel module, hence its detail will be skipped.

IXDP425 BOARD

Web-app Server Application
User I
Space. ( User-to-Kernel W‘ ol
Communication Module

Kernel- .

Space T =

Stats | Model-Based | Trace-Base
Gathering Emu : Emu

l Impairment Codelet I

Figure 4.1: Software components.
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4.1 The Impairment Kernel Module

Linux is a monolithic operating system where all the sub-systems are located within the
kernel. The kernel code runs in a privileged mode (kernel-mode), having direct access
to the system data and hardware. User applications run in the user-mode, and can only
access system functions exported by the kernel. Kernel module is a way to extend the
Linux operating system; hardware drivers and sub-systems are implemented as kernel
modules.

The impairment codelet is built on top of the IXDP425 BOARD’s access library, which
in turn is written as a Linux kernel module. As a result, the impairment core also has to be
developed as a kernel module (it is not possible to access kernel-mode’s functions from
the user-mode). Programming in kernel-mode is more complicated than in the user-mode
because there is a number of limitations on what the programmer can do. The next few
sections describe about some of the issues encountered while developing the impairment

kernel module.

4.1.1 Data Structures

The impairment core has four software queues to implement various impairment modes
(two for each port). One queue stores the delayed packets and the other stores the re-
ordered packets. Packets in the reorder queue are arranged in increasing order based on
the displacement distance, which is decremented each time a packet is transmitted. When
the displacement distance reaches zero, the packet is moved to the delay queue.

Aiwa ol
paAowW
Odid

Small to Large
“Displacement Distance

Re-order Delay
Queue Queue

Figure 4.2: Interaction between the impairment core’s software queues.
The IXDP425 BOARD already has hardware queues to buffer incoming and outgoing
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packets. The access library provides additional software queues to take care of the
case when the hardware queues are full. The software queues in the impairment core
further increase the packet processing overhead. In particular, the semantic of the delay
queues dictates that packets are to be transmitted in strictly FIFO (first-in, first-out) order.
This means that a packet may be delayed longer than it is supposed to. Consider one
particular moment where the delay queue of PORT1 has more than one packet; the first
packet has a delay of 80-usec, and the second of 40-usec. Since the second packet has to
wait for the first one, its delay is actually 80-usec, twice longer than planned. The higher
the number of items in the queue, the more severe the problem.

4.1.2 Issues with Linux Kernel Module Programming

As mentioned earlier, kernel modules are an integral part of the Linux operating system.
They can be loaded and unloaded dynamically at run-time, making the kernel highly
flexible. The general guideline for kernel module programming is to make the code as
simple as possible. This is to reduce further risks that can de-stabilize the kernel. The con-
sequence is that many common programming constructs and tools that the programmers
have taken for granted in the user-mode are no longer available. Most notably lacking
are the standard C library, I/O access, networking stack and floating point operations. In
contrast to this, the IXDP425 BOARD’s access library is a large kernel module. The im-
pairment core is also another big kernel module. In fact, it is more of a regular application
(albeit developed within the kernel-mode) than a hardware driver. As such, many kernel
limitations need to be overcome. They are detailed below.

First, the kernel itself exports only a few number of functions that are accessible to all
kernel modules. The list of these functions can be retrieved using command cat /proc/ksyms.
Each kernel module can choose to export its functions as well. Therefore, the ksyms list
can be different from system to system, depending on which modules are loaded at that
time. Several common routines in the standard C library such as st ring handling have
the equivalent versions in the kernel-mode. Other than that, if the programmer needs a
routine in the standard C library, it should be re-implemented.

The lack of I/O and networking stack are addressed in this project by the user-mode
server program. This program acts as a bridge between the web-app and the impair-
ment kernel module. It listens to incoming commands on a TCP port and then tunnels
the messages through the module’s proc file system. The proc file system is a virtual file
system that is designed to retrieve and to configure the kernel settings at run-time. As this
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is the only viable way to communicate with the impairment kernel module, the proc file
handler is implemented as a stateful communication sub-module. It handles emulation
parameter settings and statistics-related messages, among others.

The next obstacle, no floating point supported in the kernel, is addressed by a soft
emulation library. Hardware-supported float operations cannot be carried out within
the kernel due to the inability to save floating point state during context switch. In any
case, they are not relevant in this thesis because the IXDP425 BOARD does not have a
floating point arithmetic logical unit. However, float operations are unavoidable during
the random number generation process (see chapter 5), thus the use of the soft emulation
library.

The final obstacle with kernel module programming is with the debugging process.
Unlike a user-mode program, when a fatal error occurs, the entire system crashes. Be-
cause of the shared memory space, the impairment module is mangled with other mod-
ules. The most practical way to trace an error is to investigate the list of exported functions
and their addresses in the kernel before it crashes and then cross reference to other binary
symbols of the kernel module in question. Needless to say, this is a time consuming

process.

4.1.3 Interrupt and Tasklet Handlers

Interrupt mechanism in Linux kernel is divided into two parts: the top-half (interrupt
handler) and the bottom-half (tasklet handler). The top-half executes a short code and
returns quickly. Its usual purposes are to acknowledge an interrupt and to transfer any
data into a buffer for processing later by the bottom-half handler. In other words, any
work that requires many CPU cycles is carried out in the bottom-half handler, which is
scheduled at a safer time. The key difference is that during the execution of an interrupt
handler, all interrupts are disabled; but they are enabled during the execution of a tasklet
handler. Thus the use of a tasklet handler enables the processor to service more interrupts
per unit time.

A tasklet handler is used by the impairment core to process incoming packets. Un-
fortunately, in order to address race condition and data corruption, the design requires
interrupts to be disabled within the tasklet handler, defeating the original purpose of the
bottom-half handler. This particular handler takes a long time to execute. With the inter-
rupts disabled, certain side effects are observed and will be discussed at the end of this

section.
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Even though interrupt handlers and tasklet handlers are not scheduled, race condi-
tion and data corruption can still occur, even on a uni-processor machine. Consider the

scenario illustrated in table 4.1.

Time Sequence | packet_received _handler | tasklet_handler
1 See the queue NOT empty
2 See the queue NOT empty
(interrupt occurs)
3 Process the queue
4 Send out all packets in the queue

Table 4.1: An execution scenario that could cause data access violation.

The processor just finishes checking the state of the queue from the tasklet handler
and sees that the queue is non-empty, then an interrupt occurs to process an incoming
packet. The interrupt can manipulate the shared queue in a way such that when the
tasklet handler is executed again, the queue is empty; thus causing the kernel to crash.
Clearly, to avoid access violation, any interrupt and tasklet handlers that access shared
data structures need to disable interrupts.

A long running interrupt handler or a tasklet handler (with interrupts disabled) can
cause many side effects on the system. Consider the simplest case with the clock interrupt.
The system relies on the clock interrupt to keep the time. During the time all interrupts
are disabled, clock interrupts are not processed, causing the system clock to be out-of-
sync. This symptom is observed with the impairment core; the internal clock counter
would lag behind in terms of milliseconds after each cycle of 65 seconds.

4.1.4 Packet Scheduling

Timing granularity is a critical issue in the impairment core because packet delay emula-
tion can require delays as low as a few microseconds. The Linux operating system was
not originally designed as a real-time system; its clock granularity can only go down to
ten milliseconds. Many network impairment implementations rely on the Linux kernel
timer to schedule packets. Those projects address the Linux’s clock granularity problem
by either using an external timing device or by modifying the kernel to respond to the
clock interrupt more frequently, thus reducing the timer granularity. The latter approach
can potentially thrash the system because if the response frequency is too high, the kernel
does not have any time slots left to carry out real work.
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My work employs a different approach. To schedule packets with time granularity of
microseconds, a tasklet handler is used. The frequency with which the tasklet handler
gets executed is directly proportional to the frequency of the interrupts. The nice thing
is that this does not rely only on the clock interrupt; in fact, any other kind of interrupt
would do. In this case, every time a packet is received, an interrupt is generated. Thus
the higher the incoming packet rate, the more frequent the tasklet handler is executed,
and the more accurate the packet’s release time is.

The packet’s arrival and release times are stamped with the IXDP425 BOARD’s in-
ternal clock, which is updated at every bus cycle. Several issues are observed with the
internal clock counter. The clock counter is of type unsigned int, thus its range is from
0 to 2% — 1. With the bus running at 66-Mhz, the counter is reset (after reaching the max-
imum value) at roughly every 65 seconds ((2*2 — 1)/(66 % 1000 % 1000)). So, packet delays
cannot be longer than a minute, which is nevertheless acceptable for most practical uses.
Special care must be taken when the clock value is close to the maximum value, because
the addition of an emulated packet delay to the packet’s arrival time can overflow the

value.
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4.2 The Web-based Management Console

The management console is a web-based application (web-app) written in the Java pro-
gramming language. The web-based management console allows users to remotely man-
age the impairment system. The Java programming language, while generally suitable
for web development, turns out to be a shortcoming in the final stage of the development
of the impairment tool. The software required to run the web-app includes the Java run-
time engine and the Java-based application server. To sever the dependency on the host
machine, these two components must be embedded in the flash memory of the IXDP425
BOARD. This process is much more simple if the web-app had been written in a scripting
language such as perl.

The communication protocol between the web-app and the user-mode server pro-
gram is in ASCIL Thus, re-writing the web-app in another programming language is
trivial.

Below are several screenshots of the current Java web-app. The first two pictures show
the input screen for the model-based emulation mode. On the left, we have the menu for
each individual impairment types. On the central right is the main screen for the currently
selected impairment. Whenever the user changes the probability model, the screen will
update with the new fields. At the bottom of the screen are six small fields representing
the seeds of the multiple recursive random number generator (MRG). Setting these fields
will force the system to use the MRG. Finally, the Synchronize with Server button updates
the interface with the impairment parameters currently set within the impairment box.

25



Network Impairment Emulator

Updated

Emu. Params H Trace ” History H Stats“ Server Info HDebug]

....................

; Port 11) Il)arams i Port 1 - Packet Reorder Help
: eay : Delay , Loss , Reorder , Duplicate

: Loss ;

: Reorder

L. Duplicate ; Distance Model:

Uniform  »|
{Port 2 Params ; Start Range: [ Tpackes
. U9 Fnd Range: [ Ioackes

Loss :
Reorder '

Bernoulii

"'"_I_-I{_;{(;& ----- : Value: : Range: 0 to 1 (inclusive)

....................

Port 1 g

...................

MRG SEEDS

....................

ool 2R : [0 J-[o J-[CoJ-[Co J-[o]-[Co]

Note: Set all fields to zero to use simple random generator

| Reset I[ Sendto Sewer]-l Synchronize with Server I

Figure 4.3: Packet reordering parameter setting for model-based emulation mode.

26



Emu. Paramql Trace lBﬁstory H Stats H Server Infe I

iPort %)Il’amms Port 1 - Packet Delay Help
: s i Delay, Loss , Reorder , Duplicate

‘ Loss :
" Reorder

L. Duplcale ! b, Model: [Markov  _~]
{Port 2 Params | State Count:

Delay Markov Type: lPacket v ]

Loss :
i Reorder . Sif1 packets
i __ Duplicate _; Durations: s2f1 packets

Port 1
Port 2 i Nested Models:

e ] | oxedDelay: D Jus
' Prob Model: ]No Impair || Change |
State 1 2
gazsiﬁn 1 bo llo.o |
obabihty
B 2 00—Joo—]

| Create Linear Sequence |

| Update Packet Delay |

MRG SEEDS

Lo |-l o]-[o][o][o][0o]

Note: Set all fields to zero to use simple random generator

LReset II Send to Server I LSynchronize with Server I

Figure 4.4: Packet delay parameter setting for model-based emulation mode.

27



Network Impairment Emulator

Emu. Param;” Trace ” History”Stats “}'ewer Info“ Debug l

i Port 1 Params !Input each trace entry on a separate line in the following format:

‘ Delay . port #,loss, duplication, reorder distance,delay
Loss gValue Range:
; Reorder ;
: Duplicate Ve port number: 1 or 2
""""""""""" ¢ Joss: 1to drop the packet; 0 otherwise
I;ottZ Par-ams o duplication: ] to duplicate the pack?t; 0 otherwnise R '
Delay P reorder__dz’s;ance: 0 for no re-ordering; non-zero positive number to indicate
' Loss the re-ordering displacement distance

Reorder : . dg!ay: 0 for no delay; non-zero positive number to indicate delay time in
P Duplicate ; microseconds
| Hitory ]
i Snapshot |

Port1 |

oo Port2
| Semples ]

| Send Trace Entries |

Figure 4.5: Trace entries input.

28




Chapter 5

Random Number Generation and
Validation

Random number is an essential instrument in the model-based emulation mode. Within
the scope of this thesis, the random numbers do not need to be truly and highly random;
in fact, they are only required to be good enough. No new algorithm is proposed. Instead,
several existing algorithms are re-implemented to fit the system’s runtime environment.
The emphasis is thus on the correctness of those implementations.

With that insight, this chapter describes various aspects involved in the process of
generating and validating random numbers. The first section explains the rational behind
the selection of the random number generator (RNG)’s algorithm and implementation.
Specifically, I will briefly introduce the two types of RNG. The second section outlines
the methods used to verify the correctness of the RNG implementations, i.e. to ensure
that the generated random numbers really conform to the initial given distribution. For
this purpose, two techniques, the exploratory data analysis from NIST [25] and classical

quantitative, are used.

5.1 Generation
Random number generation is a complex task. The process requires two steps:

1. Generate a uniform random number over the interval (0,1); and

2. Apply transformations to the above number to imitate an arbitrary distribution.
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The difficult work lies in the first step. Although true random numbers can be gener-
ated from physical events such as atomic decay or thermal noise, these methods, how-
ever, have several deficiencies such as the high cost, and the inability to reproduce the
sequence. The more practical approach is to use algorithms to produce pseudo random
numbers.

In this thesis, the objectives are to generate reasonably random numbers in the shortest
time possible, and to make the random number stream reproducible. The speed require-
ment is obvious, because any unnecessary delay, even in terms of microseconds, can cause
a packet to fail to meet the required parameters. Reproducible random number streams
mean that given the same initial seeds, the generator will produce exactly the same se-
quence of random numbers. Reproducibility is necessary to repeat a sequence of run,
which is useful during the develop-debug-refactor-test cycle.

Since the impairment core is written as a kernel module, there is no access to the usual
user-mode C' functions rand and srand. However, one of the kernel module exports
an alternative version, net _random. Net_random is a weak feedback random generator,
based only on an initial entropy and the system jiffies (a unit of time in microseconds).
It is not possible to reproduce a sequence of random numbers using this function. On
the other hand, net_random is very fast; the function requires only one multiplication,
one addition, one XOR operation, and finally one division to transform an integer to a
uniform random number in the range (0, 1). From here on, the term net random will be
used to refer to both the C function as well as the algorithm implemented by the function.

To support reproducible random number stream, an alternative version based on
L’Ecuyer’s algorithm [22] is implemented. The algorithm is a combined multiple recur-
sive random (MRG) number generator with period length of about 2205, i.e. it takes that
many numbers until the random number sequence repeats.

An MRG of order £ is based on a kth-order linear recurrence of the form:

Tn = (Q1Tn_1 + -+ + axTp_t + b) mod m;

Up = Tp/m

where m and & are positive integers, while b and a; are integers in the range {0,...,m—1}.
A combined MRG is then simply a combination of more than one MRGs. The detail of
the algorithm is, however, out of the scope of this thesis.
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This particular algorithm uses 31-bit fixed number operations. Fischer et al. [11] pro-
posed a faster algorithm based on floating point operations with longer bit length (result-
ing in longer period length); however, with the soft emulation library, the new algorithm
is actually slower than the fixed-number version.

The implementation based on L’Ecuyer’s algorithm is better than the build-in net_random
function, not only because of its reproducibility but also in terms of randomness. It is,
however, more expensive in terms of computing. To gauge their performance, each func-
tion is timed to produce one million uniform random numbers. The result: net random,
takes a total of 1.28-sec and the other 2.04-sec, more than 1.5 times slower. To generate a
single random number, the associated time required are 1.28-usec and 2.04-usec, respec-
tively.

Both functions are supported in this thesis, with net_random, is the default algorithm.
The user can select the desired algorithm from the graphical user interface. In the case
of L'Ecuyer’s algorithm, the user also needs to specify a set of six integers for the initial
seeds. Whenever the random number generator is changed, the set of pooled uniform and
normal random numbers are re-generated (for performance purposes, a million random
numbers of each types are pooled and cycled through).

5.2 Validation

The verification step validates whether the RNG algorithms have been implemented cor-
rectly. We wish to show that the generated uniform numbers are adequate to uniformity
and the normal numbers are adequate to normality. To that end, both the exploratory
data analysis (EDA) [25] as well as the classical quantitative test techniques are used. As
the name implied, EDA techniques employs graphical plotting heavily to explore the pat-
terns of data, whereas classical quantitative goodness-of-fit test techniques use numerical
analysis to test a hypothesis. These two methods are complementary with each other. For
a hypothesis to hold, the results of both methods have to agree.

5.2.1 Exploratory Data Analysis

EDA techniques assume that the measured data behaves according to the following four
properties:

1. random drawings;
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2. from a fixed distribution;
3. with the distribution having fixed location; and

4. with the distribution having fixed variation.

Given those assumptions, EDA then provides the following four simple graphical
techniques to validate the assumptions.

1. run sequence plot;
2. lag plot;
3. histogram; and

4. normal probability plot.

The run sequence plot draws the data in the sequence of occurrences. The X-axis
contains the index of the data and the Y-axis the value of the data at the given index. The
run sequence plot can easily pin-point any shift in the location and the variation of the
data, as well as any outliers. The level of variation is indicated by the highest and lowest
data point relative to the vertical axis. If the variation is fixed then the highest data points
should form a relatively straight line, and the same thing for the lowest data points; i.e.
we should not see irregular patterns such as a long series of low data points followed by
another long series of high data points.

The 1ag plot demonstrates the evenness property expected of random data. A lag
is a fixed displacement between the observed data. Given a set of data Y, a lag plot of z
consists of coordinates (Y;_,,Y;) for 7 from z to the last index of the data. If the data are
random, then the points on the lag plot will not form any recognizable shape. Lag plot is
usually used with the lag value of 1.

The histogram groups data into a given number of buckets. The horizontal axis
contains the buckets and the vertical axis the frequencies. The histogram diagram shows
the center, the spread, the skewness as well as the outliers of the data.

Finally, the normal probability plot indicates whether or not the data is ap-
proximately normally distributed, in which case, the plot will resemble a straight line
from the left to the right. The vertical axis of the plot contains the ordered response val-
ues, and the horizontal axis contains the normal order statistic percentiles.
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5.2.2 Quantitative Techniques

The Kolmogorov-Smirnov [25, section 1.3.5.16] and the Jarque-Bera [18] tests are used
to test for goodness-to-fit to the uniform and normal distributions, respectively. Both
tests are in the general category of hypothesis tests, which’s format includes the
following components:

o Null hypothesis (Hy): the original statement to be tested
e H;: the alternative hypothesis

o Significant level (c): the degree of certainty regarding the conclusion. For example, a
value of a = 0.05 means that the hypothesis is rejected wrongly 5% of the time

e Critical region: The region containing the values of the test statistics that directly lead
to the rejection of the hypothesis.

In this case, the null hypothesis is that the data has the uniform or normal distribution.
The detail of the two tests can be explored further in the associated references. I will just
briefly describe them below.

With the Kolmogorov-Smirnov test, besides the data under test, the user has to sup-
ply the cumulative distribution function (CDF) for each data point. The Kolmogorov-
Smirnov test is based on the maximum distance between the theoretical CDF curve and
the empirical CDF curve. On the other hand, the Jarque-Bera test determines if the data
follows a normal distribution based on the sample skewness and kurtosis. This test does
not require the mean and standard deviation to be specified.

Matlab is used to perform these two tests. The built-in functions, jbtest and kstest [16],
return 0 if the hypothesis cannot be rejected or 1 otherwise, at the significant level of 5%.

5.3 Uniform Distribution

Figure 5.1 shows the four plots for a sample of 1,000 uniform random numbers having
values in the range (30, 100), generated by the net_random algorithm. The run sequence
indicates that there is no shift in the location and variation of the data. The lag plot shows
that the data are uniformly distributed within the rectangle. The histogram indicates that
the frequencies are quite flat across the range of data. Finally, the normal probability
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affirms that the data cannot be approximated by a normal distribution. Thus, all EDA
techniques indicate that the data are in fact uniform.

Similarly, figure 5.2 displays 1,000 numbers generated using I'Ecuyer’s algorithm.
The various plots also indicate that the set of data is truly uniform.

In both cases, the readers can notice that the histograms are a bit uneven at the bottom
left of the screen. The reason is quite simple: we do not have enough data. Another test
shall be required to confirm that the histograms really represent data from a uniform dis-
tribution. The chi-square test for standard deviation [25, §1.3.5.8] is used for that purpose.
I make use of an existing matlab chi-square test implementation [33], and run it with the
interval parameter of 70 for the first RNG and 50 for the second RNG at the significant
level of 5%. Both results indicate that the hypothesis that the data come from a uniform
distribution does hold.

Matlab’s Kolmogorov-Smirnov test returns 0, which also means that the data really
follows a uniform distribution.
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5.4 Normal Distribution

Unlike other distributions where the invert [9, section 3.2] method is usually used to
create a random number, there is no exact equation for computing normal random num-
bers in this method. Instead, Leva’s [23] quadratic-bound fast normal random generator,
based on ratio of uniform deviates method, is used in this thesis. This algorithm is one
of the fastest normal random generators, consuming on average 2.74 uniform numbers
to generate one normal number. When choosing the algorithms, the following factors are
considered:

e the speed of the algorithm; and

e the level of complexity.

Since normal random variates are not correlated with each other, they can be mass pre-
generated at start-up time. Subsequent normal random number requests will be retrieved
from the pre-generated pool. Thus, the speed constraint listed above is not the most
critical requirement. In fact, one has to be careful between the trade-off of complexity and
speed. Several algorithms, such as Brent’s [4] or Wallace’s [36], are noticeably faster but
are more complicated to implement. Particularly, kernel-mode execution environment
also favors simple algorithms. Within the kernel-mode, the programmer does not have
access to the math library; as a result, any math related functions such as log or sqrt
have to be re-implemented.

The pseudo code of Leva’s algorithm [23] is shown below:

L. Generate numbers v and v in the interval (0, 1) using a uniform random
number generator. Set v = 1.7156(v — 0.5). This scales v to be uniform in
(—=r,7), where r = /2/e = 0.8578.

2.8¢tx =u—s9 = |v] -t Q = 2>+ y(ay — bz). The point (s,t) =
(0.449871, —0.386595) is the center of the quadratic form. The remaining
parameters are a = 0.19600 and b = 0.25472.

If @ < 0.27597 go to step (6).
If @ > 0.27846 go to step (1).
If v* > —4u?ln(u) go to step (1).

A L

Return v/u as the pseudorandom number.
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Figure 5.3 displays four plots used by the EDA method to validate the correctness of
the algorithm. In the run sequence, there are a few data points reaching above and below
the average vertical plane, but over all the data location and variation are relatively stable.
The lag plot does not resemble any particular shape; the data are correctly distributed
around the mean. The histogram is of a bell shape but rather distorted in the middle.
Again, the reason is because of the small number of intervals as well as the small amount
of data. However, unlike the previous case of uniform data, the chi-square test for the
standard deviation does not conclude as the range of the data is too small. Finally the
normal probability plot is a relatively straight line (the line is not continuous since the
data are discretized). Hence, the data sample is of a normal distribution.

It should be noted that here we are actually testing the algorithm to transform a uni-
form random number into a normal random number. The tests assume that the uniform
random number generator functions correctly. As a result, only one set of data is required,
instead of each for the net_random and L'Ecuyer’s algorithms.

On the quantitative technique side, with the same set of data, the Jarque-Bera tests
returns H = 0, which indicates that the hypothesis that the sample has a normal distrib-
ution cannot be rejected at significant level of 5%.
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Chapter 6

Multi-state Discrete Markov Chain

The objective of this chapter is to provide some preliminary evaluation on the correctness
of the Markov chain implementation. For detail description of the Markov chain, please
refer back to section 3.1. I will introduce two test cases, one for the markov chain with the
durations in the units of number of packets arrived, and the other one for durations in the
units of time elapsed. For each test case, I will first use analysis to arrive at the theoretical
latency values, and then use actual runs to compute the empirical values. The Markov
chain implementation is correct if the theoretical numerical values are closely matched
with the empirical values.

To analytically calculate the theoretical latency, one has to calculate the state probabil-
ities at stationary. The state probabilities are at stationary when the transition matrix
does not have any effect on the current state probabilities.

Let 7 be the number of states, 7 = (vl vy ... vi) be the state probabilities at a par-
ticular time, and P be the transition matrix.

Div Pz . Du

Then the discrete Markov chain is in stationary if:

T=0x P
: (6.1)



Solving the above set of linear equations will give us the stationary state probabilities,
and from there, the theoretical latency.

6.1 Test 1: Packet-based Discrete Markov Chain for Packet

Delay
State 1 State 2
Duration 200 packets 100 packets
Var. Delay | Uniform(20, 20) Uniform(50, 50)
Trans. Prob. (0.4,0.6) (0.8,0.2)

Table 6.1: Packet delay parameters for PORT1.

The packet delay parameters are displayed in table 6.1. This scenario is a bit more
complicated because the duration of the first state is twice as long as that of the second
state, which alters the stationary state probabilities. We can convert the parameters into
standard form (i.e. all states have the same duration) by introducing another state having
duration of 100 packets. The state transition matrix is then:

0 1 0
P=10 04 06
0.8 0 0.2

Using the set of equations (6.1), the stationary state probabilities are calculated to be
v = (0.25,0.43,0.32). Since the first two states have the same delay impairment para-
meters, the theoretical packet delay is then ((0.25 + 0.43) x 20usec) + (0.32 x 50usec) =
[ 6j0ec

The PING command is used to verify the implementation of the Markov chain. The
approach is to first ping flush the network when the system is in NO impairment mode
to collect the base round time trip (RTT). Then the system is ping flushed again with
the packets being impaired; the output RTT is deducted from the base RTT to get the
emulated delay. Finally, the inferred emulated delay is compared against the theoretical
calculations.
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BASE RTT:

[root@hpham hpham]# ping -f -c¢ 100000 10.3.1.5
PING 10.3.1.5 (10.3.1.5) 56(84) bytes of data.

--— 10.3.1.5 ping statistics —---—
100000 packets transmitted, 100000 received, 0% packet loss, time 14136ms
rtt min/avg/max/mdev = 0.099/0.104/1.558/0.011 ms, ipg/ewma 0.141/0.104 ms

IMPAIRED RTT:

[root@hpham hpham]# ping -f -c 100000 10.3.1.5
PING 10.3.1.5 (10.3.1.5) 56(84) bytes of data.

-——- 10.3.1.5 ping statistics —--—=-
100000 packets transmitted, 100000 received, 0% packet loss, time 17529ms
rtt min/avg/max/mdev = 0.117/0.134/1.605/0.016 ms, ipg/ewma 0.175/0.126 ms

The base RTT is about 104-usec and the impaired RTT is around 134-usec; thus the

average delay is inferred to be 134—104 = which is very close to the theoretical
one, 29.6-usec.

6.2 Test 2: Time-based Discrete Markov Chain for Packet

Loss
State 1 State 2
Duration 5 seconds | 5 seconds
Duplicate Probability 0.1% 100%
Trans. Prob. (0.8,0.2) | (0.9,0.1)

Table 6.2: Packet duplication parameters for PORT1.

We now evaluate the implementation of the time-based discrete Markov chain for
the duplication impairment mode. The parameters are show in Table 6.2. Using equa-
tion (6.1), the stationary state probabilities are calculated as 7 = <O.82 0.18). The overall
duplication probability is then (0.82 x 0.001) + (0.18 x 1) = 0.18.

Below is the output after ping flush the network for five minutes.
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[root@hpham hpham]# ping -f -w 300 10.3.1.5
PING 10.3.1.5 (10.3.1.5) 56(84) bytes of data.

-—— 10.3.1.5 ping statistics —--—-

1938179 packets transmitted, 1938179 received, +350642 duplicates,
0% packet loss, time 299991ms

rtt min/avg/max/mdev = 0.100/0.113/5.664/0.016 ms, pipe 2,
ipg/ewma 0.154/0.120 ms

The actual percentage of duplicated packets is 350, 642/1,938, 179 = which agrees
with the theoretical calculation.
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Chapter 7
Performance Analysis

The goal of the performance analysis phase is to show that the system, consisting of the
entire IXDP425 BOARD as a black box, performs correctly and with adequate response/ through-
put. The focus will be on the manipulation of incoming network traffic whereby the sys-
tem is expected to be able to impair packets at wire speed. In particular, the analysis is
based on the following two metrics: the packet passthrough rate and the packet impair-
ment processing overhead.

I will evaluate the system under various impairment scenarios. In addition to the
parameters specific to each impairment mode, each scenario is examined under the same
set of workload parameters, which are the packet size and the packet rate. The three
packet sizes chosen are: 64B, 7598, and 1, 518B. This selection covers the minimum and
maximum packet sizes allowed by the Ethernet standard. Then for each of those sizes,
three packet rates are selected: at 10%, 50%, and 100% of the maximum bandwidth. Note
that the maximum wire speed is 100Mbit/s and that the packet rate is directly influenced
by the packet size. Hence, for each test scenario, there are a total of nine runs.

The IXIA400 [8] traffic generator is used to inject packets into the system. It is capable
of generating traffic at the maximum wire rate (for 100-Mbps, at packet size of 64-KB,
the transmission rate is 148,809 pkts/s). Due to various system overheads, a typical PC
cannot generate this kind of traffic.

The packet processing overhead is calculated using two different methods: by mea-
surements internally within the IXDP425 BOARD, and by measurements externally on
the IX14400 traffic generator. The measurements start at small packet size and low trans-
mission rate and then at gradually increased packet size and transmission rate.

For internal measurement, the packet’s arrival time is stamped when the kernel mod-

44



ule receives a notification interrupt from the hardware queues, i.e. the packet has been
queued in the hardware queues. The packet’s release time is stamped just before it is
transferred from the kernel module into the hardware queues for transmission. Hence,
this method measures the time spent within the impairment core only; waiting times in
the hardware queues are not considered. Semantically, to act as a bridge, the driver has
to transmit the received packet from one port to the other port for re-transmission. In the
baseline case, where no impairment is imposed, the total time to perform such operation
is considered to be zero. When factoring in the impairments, the packet processing over-
head can be calculated by subtracting from the packet release time the sum of the arrival
time and the emulated delay (if any). The result is the actual packet processing overhead
with respect to the baseline case. For each test, a sample of 10,000 continuous packets
are collected after the initial 5-second interval. The min, max, mean, t rimmed mean and
standard deviation of the processing overhead are calculated from the collected sample.
The trimmed mean of the sample is computed by first discarding 5% of the lowest and
highest values and finally calculating the mean from the middle 80% of the data. Of the
two means, the trimmed mean is more resistant to extreme values. Hence, it will be used
whenever there is a comparison between two sets of data.

Start T End 5
Time| | v1A 400 | Time § IXDP425Board
I § P1Receive P2 Transmit
e - § Queue Qusue
. Start _%Tm;a‘irn;;r; End
Time | _core |  Time
‘ J

Figure 7.1: External latency measurement ( left) and internal overhead measurement
(right).

External measurement of the packet processing overhead relies on the latency mea-
surement capacity of the IXIA400 traffic generator. Packets are transmitted one-way
from the input port to the output port. The average latency is measured over a sam-
ple of at least 50,000 packets, and is carried out in the store and f orward mode, i.e.
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from the time the last bit of the input frame reaches the input port to the time the first
bit of the frame reaches the output port. In the baseline case, no impairment is imposed,
and the overhead is considered to be zero. The overheads for other impairment settings
are calculated by subtracting the associated mean latencies by the baseline mean latency.
Thus, unlike the internal measurement method, not only the IXDP425 BOARD overhead
but also the transmitter and the receiver’s overheads are considered in the measurement.
Nevertheless, the packet processing overhead calculated by either method should be pro-
portional to one another.

For all internal overhead measurements, the packet is created of frame type Ethernet-
I and of protocol TCP/1P. However, in order to measure latency on the 1x14400 traffic
generator, the frame’s data link layer protocol must be set to ‘None’, i.e. no protocol
specific handling is performed. It is observed that for this setting, the internal processing
overhead is almost double that of Ethernet-II frames (an average of 6.09 usec vs. 3.73
psec at packet rate of 15,000 pkts/sec, packet size of 64B and no impairment imposed).
The possible cause is that the IXDP425 BOARD does not recognize the frame header and
has to do some extra look-ups, or perhaps for Ethernet-II frame, it can perform some
optimizations. Even though more consistent results can be obtained by specifying the
same frame header for both the internal and external overhead measurement, Ethernet-II
is still chosen for internal overhead measurements as it is the most common frame type
on the Internet.

Table 7.1 displays the time required to execute the code block of each act i ve impair-
ment mode. An impairment mode is active if its impairment model is set to anything but
the null mode. The values are measured internally within the IXDP425 BOARD with null
model parameters:

e Uniform delay with start range of 0 usec and end range of 0 usec;
¢ Normal delay with mean of 0 usec and standard deviation of 0 usec;
e Loss and duplication impairments with occurrence probability of 0%; and

* Reordering with occurrence probability of 100% and displacement distance of 0.

These code blocks are executed by the central processor XScale at clock 533 MHz. Al-
though both the standard uniform and normal variates are pre-generated, the required
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Delay
Uniform | Normal | Loss | Reorder | Duplication

[Time | 261 [ 102 [168| 359 | 168 |

Table 7.1: Amount of time (usec) required to execute each impairment mode.

time for the uniform delay is a larger because its transformation algorithm has one ad-
ditional float operation than that of the normal delay. For the loss, reordering and du-
plication path, a new standard uniform random number is generated (not pooled). The
reordering path also invokes the uniform/normal random number generator function
to retrieve a value for the displacement distance. By adding up the numbers together,
it would seem that the impairment core requires too much execution time. This is true
when no delay impairment is set. However, as the reader will see, even a 10 usec delay
will hide away most of the execution time.

The sections below further investigate the packet overhead under different impair-
ment settings. I will initially consider the overhead for one-way traffic, and then move on
to bi-directional traffic at the end of this chapter. It is expected that, the overhead will be
a bit higher for round-trip traffic as the XSCALE processor has to handle twice the work
load.

7.1 No Impairment

The purpose of this test scenario is to first perform a check to ensure that the system does
route packets from one port to the other. Secondly, the test measures the latency imposed
on the passing-through packets. The system is expected to be able to accept the packet
stream at the maximum transmission rate without dropping packets. Also, the latency
should be consistently proportional to the packet rate.

Table 7.2 summarizes the packet processing overhead (in unit of microseconds) when
there is no impairment, i.e. traffic is in the pass—through mode. Note that in column
seven, C.I. stands for the confidence interval. As expected, the data indicate that the
packet processing overhead is proportional to the transmitted packet rates. The sequence
diagrams in figure 7.2 show that the overhead variation is small most of the time. This
overhead is caused by the internal packet queuing in the impairment module. The higher
the transmitted rates, the larger the number of items in the queues, and thus the higher
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the overhead. Certainly, if a fast-path is implemented to skip the software queues,
then the overhead will be somewhat reduced.

Pkt Size | Rate BW || Ext. Mean Int. Processing Overhead

(Byte) | pkt/s % Latency || Mean | Std | 95% C.lofy | Min | Max
64 14,881 | 10% 14.2 4.59 | 0.86 4.58 - 4.61 3.00 | 12.00
64 74,405 | 50% 19.0 13.65 | 4.74| 13.55-13.74 8.00 | 45.00
64 | 148,809 | 100% 133.6 168.51 | 30.00 | 167.92-169.10 | 75.00 | 271.00
759 1,605 | 10% 17.1 469 | 0.85 4.67-4.71 3.00 | 15.00
759 8,023 | 50% 17.2 4.60 | 0.82 4.58 - 4.62 3.00 | 10.00
759 16,046 | 100% 19.1 459 | 0.84 4.58 - 4.61 3.00 | 11.00
1,518 813 | 10% 17.1 4.62 | 0.86 4.60 - 4.64 3.00 9.00
1,518 4,064 | 50% 16.9 4.59 | 0.80 4.58 - 4.61 3.00 | 11.00
1,518 8,127 | 100% 19.1 459 ] 0.82 4.57 -4.60 3.00 | 24.00

Table 7.2: TCP/IP packet processing overhead (in usec) when no impairment imposed.
Estimates from n = 10, 000 packets for internal overhead; n = 50, 000 for external latency.

7.2 With Delay

Let d be the targeted emulation delay of a packet, and let # be the allowable processing
overhead margin, such that d > 0 and 6 > 0. Then the targeted emulation delay objective
is said to be achievable if and only if the amount of time the packet is held in the impair-
ment system is within the range (d, d + ). As an example, let d = 10usec and = 0.5usec.
The emulation parameters are achievable if the holding time of all packets (within the
impairment system) is in the range (10usec, 10.5usec).

I will first compare my system’s result from a particular test run with NIST.net; and
then perform additional tests with constant delay parameter and non-constant delay pa-

rameter.

7.2.1 Comparison with NIST.net

One of the network impairment tools  have mentioned earlier in section 1.2 is NIST.net [6].
In that paper, the authors publish the packet processing overhead values from a test run
of 1.1Mbit/sec packet stream of 64-byte packets ( 1,645 pkt/s). I use the same workload
parameters to perform the test on my system. The result is displayed in table 7.3.
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Actual Packet Delay vs i — No Impairment
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Figure 7.2: Actual packet delay time when no impairment is imposed; samples of 1,000
continuous packets.

The packet processing overhead at each delay setting is calculated by subtracting the
associated mean latency by the sum of the imposed delay (first column) and the base-
line mean delay (first row). Note that the baseline case is when the system routes traffic
without imposing any delay (0 — msec).

Recall that external latencies are measured at the 1x1a400 traffic generator. For the
delay setting of 100 and 1,000 msec, the packet rate is reduced to 1,200 and 100 pkt/s
respectively. This is because at that rate, all the available buffers are queued in the soft-
ware queues. To receive a packet, the hardware queue must get hold of a free buffer. If
it cannot do that, the packet is dropped; in this case the buffers are replenished back to
the hardware queue at a lower rate than the packet arrival rate. It shall be noted that the
processing packet rate can be increased somewhat by extending the number of buffers;
however, due to limited resources, eventually the system will reach a point where it can-
not keep up with the incoming packet streams. This is natural if one looks at the system
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Delay || Mean Latency | Overhead || NIST.net Mean Latency | NIST.net Overhead
msec psec psec msec pusec
0 14.3 0.0 17.9 0.0
1 1,014.0 0.0 1,064.4 46.5
10 10,014.0 0.0 10,097.8 79.9
*100 100,020.0 5.7 100,063.4 45.5
*1,000 || 1,000,036.0 21.7 1,000,081.5 63.6

Table 7.3: Comparison of external latencies for various constant delay settings at 1,645
pkt/s and packet size 64B vs NIST.net’s (* denotes that some packets are dropped.)

while taking into account the number of packets currently on the wire. As the delay time
increases but the transmitting rate stays the same, the number of packets on the wire will
keep increasing and the sum of the packet sizes gradually approaches the wire’s maxi-
mum bandwidth.

The reader can notice in table 7.3 that the latencies under the delay settings of 1-msec
and 10-msec are slightly less than that of the baseline case (the first row of table 7.3). The
explanation lies in a common code block that any packet going through the impairment
core has to traverse through (no matter whether the system is in the pass-through mode or
whether there are some impairments set). Let ¢ denote the amount of time to execute that
common code block. Now, in the baseline case, when there is no impairment imposed
on the packet stream, ¢ is then part of the packet latency. However, if there is a delay set,
the arrival time and release time of a packet are stamped before and after the execution
of the common code block, respectively. Thus not all of ¢ makes up the packet latency
since part of ¢ (or all of it in the case the delay is greater than t) is within the delay. This
diminishing overhead symptom is more clear under the internal measurement method
where the overhead is measured from the arrived time to the release time of the packet.

7.2.2 Constant Delay

The delay impairment parameter is constant if its value never changes during the time
the test is carried out. The opposite to this is the non-constant delay modeled using the
packet-based or time-based Markov chain, which will result in different delay parameters
on the same packet stream. For this test, two delay values are chosen: 10-usec and 100-
msec. The former is used to gauge the system’s performance near the extreme end, while
the later is within a latency range usually observed in many connection mediums. In both
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cases, the packet processing overhead is expected to be rather uniform.

Figure 7.3 displays the internal and external packet processing overhead for 64, 759,
and 1,518-Byte packet streams when they are impaired with a 10-usec delay; data is
shown in table 7.4. For each packet size, the tests are ran at 10%, 50% and 100% of the
associated maximum packet rate. The achieved packet rate is plotted against the y axis
on the right side. Except for the case of 64-Byte packets at 100% bandwidth (148, 809
pkt/s), the overhead is very low. Figure 7.4 shows the sequence plot of the targeted delay
and the actual delay for one thousand 759-Byte packets at packet rate of 16,046 pkt/s.
The standard deviation is low, 0.55 usec. Also, no packet is released pre-maturely. At 10-
psec delay, the impairment system can sustain transmission rate at up to 125,000 pkt/s
(tested by going from maximum packet rate and then reducing it until there is no packet
dropped).

Both figures thus indicate that very small packet delay is achievable at packet rate of
less than 16, 046 pkt/s.

Pkt Size | Rate BW Ext. Mean Int. Processing Overhead (usec)

(Byte) | pkt/s Y% Overhead 7 Std 95% Cl of u | Min Max
64 14,881 | 10% 2.1 1.16 0.68 1.15-1.17 0.00 7.00
64 74,405 | 50% 19,9 25.90 | 12.29 | 25.65-26.14 7.00 | 90.00
64 | 148,809 | 100% 831.9 611.89 | 106.93 | 609.78 - 613.99 | 399.00 | 769.00
759 1,605 | 10% 1.2 1.16 0.67 1.15-1.17 0.00 5.00
759 8,023 | 50% 1.3 4.60 0.82 4.58 - 4.62 3.00 | 10.00
759 16,046 | 100% 1.6 1.21 0.79 1.19-1.22 0.00 | 11.00
1,518 813 | 10% 1.0 1.17 0.69 1.15-1.18 0.00 6.00
1,518 4,064 | 50% 1.7 1.16 0.64 1.14-1.17 0.00 6.00
1,518 8,127 | 100% 0.4 1.19 0.77 1.18-1.21 0.00 | 10.00

Table 7.4: TCP/IP packet processing overhead (in usec) under 10-usec constant delay.

When testing under the 100-msec emulated delay, the processing overhead values are

almost similar in all cases. The reason is because, under such delay model, the impair-
ment box can only accept incoming traffic at the rate of about 1, 300 packet per seconds.
The cause of this problem is explained in detail in § 7.2. In the tests, the IXIA400 traf-
fic generator keeps bombarding the system at the specified transmission rate. For any
real world system, the transport layer protocol (such as TCP) would have reduced the
transmission rate when packet loss is detected.
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Processing Overhead & Achievable BW vs Bandwidth Percentage
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Figure 7.3: Internal and external measured packet processing overhead and achieved
bandwidth for various packet size when running at 10 psec delay.
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Figure 7.4: Sequence plot of one thousand continuous 759- -Byte packets at 16, 046 pkt/s
and 10 psec delay.

Pkt Size | Rate BW Ext. Mean Int. Processing Overhead (usec)

(Byte) pkt/s Yo Overhead | 4 | Std | 95% C.L of & | Min | Max
64 14,881 | 10% 9.29 1.40 | 1.47 | 1.37-143 | 0.00 | 22.00

64 74,405 | 50% 10.30 2.73 1 2.88 | 267-278 | 0.00 | 20.00

64 | 148,809 | 100% 10.60 3.1313.26 | 3.07-3.20 | 0.00 | 40.00
759 1,605 | 10% 2.78 1.09 1093 | 1.07-1.10 | 0.00| 4.00
759 8,023 | 50% 2.96 1.08 | 0.63 | 1.07-1.10 | 0.00 | 8.00
759 16,046 | 100% 4.28 1.09 1065 | 1.08-1.10 | 0.00| 9.00
1,518 813 | 10% 3.12 1.08 1 0.66 | 1.07-1.09 | 0.00| 6.00
1,518 4,064 | 50% 2.60 1.10 | 1.13 | 1.08-1.12 | 0.00 | 39.00
1,518 8,127 | 100% 1.67 1.08 | 0.62 | 1.07-1.09 | 0.00| 6.00

Table 7.5: TCP /TP packet processing overhead (in usec) under 100-msec constant delay.
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Internal Packet Processing Overhead vs Bandwidth Percentage
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Figure 7.5: Mean packet processing overheads for constant 50-usec, UNIFORM(0-psec, 100-
psec), and NORMAL(50-usec, 10-usec) delay at various packet sizes.

7.2.3 Non-constant Variable-delay

In this section, I measure the side effect of non-constant delay. For comparison purpose,
the mean packet overheads of the UNIFORM packet delay of range (0 usec, 100 usec) and
of the NORMAL delay of mean 50 psec and standard deviation 10 psec are plotted along
with the mean processing overhead of constant packet delay of 50 usec in figure 7.5 (also
refer to table 7.6). Note that for both the uniform and normal delays, the mean targeted
delay is 50 usec. Each mean is computed from a sample of 10,000 continuous packets
using internal measure. Figure 7.5 shows that in most test cases, the mean overhead is
higher than the values computed in the constant 50-usec delay model. When compared
against the constant 50-usec delay model, the means in the NORMAL model are less vari-
able than those of the UNIFORM model. This is due to the nature of the NORMAL distrib-
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P Size | BW Constant 50 usec Uniform 0 — 100 ugsec Normal 50 — 10 usec

(Byte) % " Std ClLofpu " Std Clofp " Std Clofp
64 10 1.07 0.69 1.05-1.08 3.80 5.60 3.69 - 391 2.05 2.98 1.99-211
64 50 25.26 15.83 249-256 753.58 | 474.41 | 744.2-762.9 249.01 | 377.17 | 241.6-256.4
64 100 572.46 | 106.70 | 570.4-574.6 548.67 | 114.96 | 546.4-550.9 572.33 | 105.93 | 570.2-574.4

759 10 1.09 0.65 1.08-1.11 1.60 1.90 1.56 - 1.64 1.08 0.66 1.07-1.10
759 50 1.10 0.61 1.09-1.11 1.60 1.88 1.56 - 1.64 1.09 0.67 1.07 - 1.10
759 100 1.25 1.38 122-127 4.96 6.95 4.83-5.10 3.31 4.21 3.23-3.39
1,518 10 1.09 0.60 1.08-1.10 1.59 1.88 1.55-1.63 1.08 0.63 1.07-1.09
1,518 50 1.09 0.66 1.08-1.10 1.59 1.87 1.55-1.63 1.10 1.22 1.07-1.12
1,518 100 1.15 0.80 1.13-1.16 2.00 2.40 1.96 -2.05 1.14 0.84 1.12-1.15

Table 7.6: Internal packet processing overhead (in usec) for various delay settings.

ution whereby the majority of data is clustered close to the mean value.

The use of non-constant packet delay creates an unavoidable amount of packet process-
ing overhead. To see this problem clearly, consider a constant packet delay model. Pack-
ets arrive in chronological order; because of the constant delay, their release times are
in increasing order with the first packet in the queue having the smallest release time.
Thus, assuming that the first packet in the queue is popped out on time, then subsequent
packets are also removed from the queue at the correct time slot. This is not the case for
non-constant delay however. Even though the second packet in the queue arrived after
the first one, its generated delay value could be less than that of the first packet. Therefore,
the queue’s FIFO (first in first out) policy forces the second packet to be transmitted later
than it should be. The direct consequence is that packets are released in burst; their inter-
departure time has one large value followed by a number of small values. This pattern is
well presented in figure 7.6.

This undesired delay overhead only exists when the average queue size is greater
than one, which implies that the transmitted packet rate must be very high and/or the
targeted delay value is big. For example, in figure 7.7, under the same set of data we
used earlier, we can see that the empirical CDF almost overlaps with the theoretical CDF.
However, when the packet rate doubles (64-B packet at 14, 881 pkts/s in figure 7.8), there
is a noticeable bump between the empirical and theoretical CDF.

Figure 7.9 displays the overhead gap between the targeted delay and the actual delay
for 64-Byte packets at transmission rate 74, 405 pkts/sec. Each vertical line connects the
targeted delay to the actual delay of a particular packet. It is easy to observe the rela-
tionship between the overhead of the current packet and the overhead and targeted delay
time of the previous packet. Let’s consider a sample interpretation from the left plot of
figure 7.9. The second vertical bar has a targeted delay of about 95-usec. The next packet
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Figure 7.6: Inter-departure time for 759-byte packets under UNIFORM(40-msec, 100-msec)
delay (left) and NORMAL(70-msec, 20-msec) delay (right).

has a targeted delay of 25-usec, much lower than the previous one. As a result, you can
see that the third vertical line is very long, implying that the delay for that packet is much
higher than desired. This strong correlation between the packets significantly distorts the
initial theoretical model. In this case, the large delay difference between two packets is

the cause.
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Theoretical CDF vs Empirical CDF for non—-constant delay
759-B Packets at 8,023 pkis/sec
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Figure 7.7: Theoretical vs Empirical CDF for 759-B packets at 8,023 pkts/s under delay
settings of UNTFORM(0-usec, 100-usec) (left) and NORMAL(50-usec, 10-usec) delay (right).

Theoretical CDF vs Empirical CDF for non-constant delay
64-B Packets at 14,881 pkts/sec
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Figure 7.8: Theoretical vs Empirical CDF for 64-B packets at 14,881 pkts/s under delay
settings of UNIFORM(0-usec, 100-usec) (left) and NORMAL(50-usec, 10-usec) delay (right).
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Gap between Targeted Packet Delay and Actual Packet Delay vs i
64-byte Packets at 74,405 pkis/sec
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Figure 7.9: The overhead gap between targeted delay and actual delay for UNIFORM(0-
psec, 100-psec) and NORMAL(50-usec, 10-usec) delay models; samples of 50 packets.

58



7.3 With Duplication

Figure 7.10 displays the mean and standard deviation processing overhead as well as the
effective output bandwidth at different duplication probabilities. The initial packet rate
is 30% of the maximum bandwidth; as the reader can see, due to the duplication, the
effective output bandwidth increases linearly along with the duplication probability. The
mean overhead plot indicates that the amount of time required to duplicate a packet is
roughly 25 psec (from the last data point at 100% duplication probability). Keep in mind
that the mean overhead is calculated from both duplicated and regular packets. That is
why the mean overhead plot increases gradually along with the duplication probabilities
rather than a flat line at the value of 25 psec. The duplication time is illustrated more

clearly in figure 7.11.
Mean and Std Deviation of Packet Processing Overhead
759-Byte packets at 30% Bandwidth
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Figure 7.10: Packet processing overhead at different duplication probabilities.

Let be the incoming packet rate and p be the duplication probability. To avoid packets
being dropped, the output packet rate j = i x (1 4 p) must be smaller than the maximum
packet rate.

Presently, there is a shortcoming within the Access Library and the impairment im-
plementation such that buffers for duplicated packets are not re-claimed if the packets
are dropped. This memory leak eventually crashes the IXDP425 BOARD. The only work
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Figure 7.11: Packet processing overhead for 759-Byte packets at 30% maximum band-
width and at duplication probabilities of 10%.

around is to make sure that the output packet rate is lower than the maximum packet

rate.

74 With Reordering

The reorder impairment is tested with 759-Byte packets at packet rate of 16,046 pkt/s
and reorder probability of 20%. Figure 7.12 shows the packet processing overhead for
each packet displacement distance. The packet’s delay time increases proportionally to
its displacement distance. However, the data is highly variable at each reordered packets
with some values spike up above 300 psec. This is an ongoing problem that is currently

being investigated.

7.5 The Effect of Reordering on Packet Delay

In this section, I will discuss the relationship between the reordering model and the delay
model. Recall the packet flow in figure 3.1, the reorder module is in front of the delay
module. Thus, the reorder module can influence the work of the delay module, BUT not
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759--Byte packets at 100% Bandwidth
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Figure 7.12: Packet processing overhead at 20% reorder probability and displacement
distance from 1 to 5.

the other way around.
Let’s start off with a quick review of the implementation. There are two software

queues involved here; one for the reordering and the other for the delay module. The
system reorders a packet by holding it within the reordering queue until a specific number
of packets behind it has been processed. The reorder queue must necessarily be a priority
queue ordered by the displacement distance of the packets.

On the other hand, the delay queue must necessarily be a FIFO (first in first out queue),
so as to preserve the order of packets. One may be tempted to sort the packets in descend-
ing order based on the targeted delay to further reduce the undesired overhead. This will
work perfectly, save for the fact that we are altering the incoming order of the packets
which is strictly disallowed (unless this impairment is specifically requested).

The duration a packet is held in the reorder queue depends on the packet rate. The
faster the packet rate, the less time the packet is held in the queue. Thus, if a packet is
associated with both reordering and delay modeling, the actual time the packet will be

delayed are influenced by four factors:
1. The targeted delay time,
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2. the packet rate.
3. the displacement distance, and

4. the targeted delay for the packets behind the current one.

I will clarify the last one. Say a packet named A is to be reordered by a displacement
distance of three packets; i.e. it will be held in the reorder queue until three packets after
it (B, C, D) have exited the reorder module. Once packet A exits the module, it will be
placed after the above packets in the delay queue, assuming that they haven’t been sent
out. The content of the delay queue could potentially be like this: B - C - D - A. There, you
can see why the actual delay of A also depend on the delay of the three packets before it.

When dealing with non-constant packet delay, we have to worry not only about the
reordering effect (if set), but also about the non-deterministic nature of the delay. Added
to this is the overhead defiency in the reordering module I have mentioned in a previ-
ous section. The end effect is that with these two combined, we have some very wildly
unexpected output, compared to the input model.

Figure 7.13 shows the theoretical and empirical CDF for the scenario of delay only (on
the left side) and for the same delay setting along with the reordering probability of 0.2%
and reorder displacement distance of 2. We can see that on the right plot, the tail of the
CDF is extremely bent. That is because it is associated with reordered packets where the
overhead is high. Keep in mind that in that figure, the delay is set at low values (tens
of micro seconds). With large delay (in terms of milliseconds), the cost of reordering is
largely hidden. As shown in figure 7.14, there is not much difference between the two
plots.
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Theoretical CDF vs Empirical CDF for non~constant delay and re-order
1518-B Packets at 4,064 pkis/sec
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Figure 7.13: Theoretical vs Empirical CDF for 1518-B packets at 4,064 pkts/s under delay
UNIFORM(50-usec, 100-usec) (left) and addition reorder settings of probability 20% and

displacement distance 2 packets (right).
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Figure 7.14: Theoretical vs Empirical CDF for 1518-B packets at 4,064 pkts/s under delay
UNIFORM(10-msec, 30-msec) (left) and addition reorder settings of probability 20% and

displacement distance 2 packets (right).
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7.6 Bi-directional Traffic

The impairment box’s packet processing rate is greatly reduced in the presence of bi-
directional traffic. Table 7.7 shows the maximum packet rate the impairment box can
accept in the pass-thru (no impairment) mode. Note that the packet rate is for each

direction.

| | 64B | 759B [1,5188]

Max. Theoretical Rate || 148,810 | 16,046 | 8,127
Max. Achievable Rate 80,000 | 16,046 | 8,127

Table 7.7: Maximum achievable packet rate for bi-directional traffic in pass-thru mode.

To fully maximize bandwidth for bi-directional traffic, the test equipments must be
set with auto-negotiate option on and 100-Mbps full duplex enabled. The IXDP425
BOARD turns on auto-negotiate by default; upon receiving no message, it will automati-
cally go back to half-duplex mode, which reduces the bandwidth by half.

Figure 7.15 compares the packet processing overhead between uni-directional and bi-
directional traffic at 8, 127 pkts/s and no impairment. Note that 8, 127 pkts/s happens to
be the maximum packet rate for 1, 518-byte packets. Under bi-directional traffic, the soft-
ware queue occasionally has more than one packets queued concurrently. That explains
the sudden spike in the graph (please note that if the test has been carried out at all pos-
sible discretized packet size values, you will not see this spike; instead the overhead will
gradually increases along with the increase in packet size).

7.7 Trace-based Emulation

This emulation mode uses the same engine as the model-based emulation mode. The only
difference is the way the various impairment values are retrieved. Figure 7.16 gives an
overview of the packet processing overhead for various types of impairment under this
mode. Each value point is the trimmed mean of a 10, 000-item sample. The trace entries
are purposedly formed so as to finally arrive at the impairment parameters shown in the
graph legends.
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Overhead comparison bw uni and bi-directional traffic (8127pkt/s)
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Figure 7.15: Packet processing overhead comparison between uni-directional and bi-
directional traffic at packet rate of 8, 127 pkts/s and no impairment.

7.8 Overview Discussion

In this chapter, a series of performance tests have been carried out at various packet sizes
and different incoming packet rates. The packet processing measurements are done both
internally within the IXDP425 BOARD and externally at the end points. I first started out
with the trivial case of simply bridging traffic between the two ports (i.e. no impairment),
and then gradually moved on to each impairment mode.

The test result indicated that with no impairment imposed, the system can bridge
uni-directional trafficatany packet size and packet rate. However, with bi~directional
traffic, in the extreme case (packet size of 64B), the system can only handle 53.7% of the
maximum packet rate (148,810/s). The major limitation is the packet rates (which is di-
rectly influenced by the packet size). At high packet rate, the internal packet queues are
filled up very quickly, causing delay and consequently dropping packets.

With the existence of constant delay, the packet processing overhead is rather low, and
within expectation. However, with non-constant delay, the processing overhead is non-
deterministic. The duplication also performs well as planned. The reordering module,
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Figure 7.16: Packet processing overhead for various impairment when operated under
TRACE mode at 4, 000 pkts/s.

on the other hand, is having some performance problem. The packets are reordered cor-
rectly according to the schedule, but in most cases, they are delayed much more than they
should be (the overhead in many cases reaches 300-usec).

Regarding the non-constant delay impairment, there is no guarantee that the distribu-
tion of the actual packet delay time will conform to the initial input model (e.g.: the input
model is UNIFORM(10-msec, 50-msec), but the CDF is no where resembling a UNIFORM
CDF. One may argue that the system could somehow foresee the non-deterministic delay
effect, and shape the packet delays accordingly, so as to arrive at the outgoing distribu-
tion closely matches up with the input. This is a great amount of work that may not be
feasible; I have decided not to follow up on it. Instead, the user should be aware of this
effect when inputting the model.
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Chapter 8
Conclusion

In this project, I have designed and developed a network impairment tool. The tool can
inject packet loss, duplication, reordering, and delay at two different emulation modes:
model-based and trace-based.

The final impairment system has proved to be quite flexible. Besides the simple mod-
els such as UNIFORM and NORMAL, the packet-based and time-based Markov chains are
powerful tools to model complex system behaviors. In addition, the trace-based emula-
tion mode gives the user another approach to examine the network devices under test.
The various tests carried out in chapter 7 has indicated that the packet processing over-
head is very small; negligible in most impairment scenarios. Except for the case of bi-
directional traffic at packet size smaller than 120-Byte, the impairment system is capable
of processing packets at wire speed. The system is also very reliable; no deficiency is ob-
served after running continuously for several days. Thus, it can be concluded that most
of the targeted requirements have been satisfied.

The work remained to be done is to resolve several problems with packet duplication
and reordering that were mentioned previously in chapter 7. Another major task is to
embed all the software components within the flash memory of the IXDP425 BOARD.
Once done, the impairment system will be self-contained within the IXDP425 BOARD,
eliminating its dependency on an external host system.
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