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ABSTRACT

Ischemic heart disease, especially myocardial infarction (MI), is the major cause

for congestive heart failure (CHF). Cardiac remodeling is considered to contribute to the

development of CHF and activation of the renin-angiotensin system (RAS) is known to

play an important role in cardiac remodeling. We have therefore employed an angiotensin

converting enzyme (ACE) inhibitor (imidapril) and an angiotensin II (Ang II) type I

receptor (ATrR) antagonist (losartan) to explore the therapeutic potential of RAS

blockade in preventing CHF due to MI. To understand remodeling of myofibrils, the

contractile "motor" of cardiomyocytes, we examined myof,rbrillar Ca2*-stimulated

ATPase activities, mRNA level and protein content of ø-myosin heavy chain (a-MHC)

and B-myosin heavy chain (6-MHC) in CHF due to MI induced by coronary artery

ligation in rats. The control and 3 week infarcted rats were treated with or without

different drugs for 4 weeks; hemodynamic assessment was performed at 7 weeks

following ML The myofibrillar Ca2*-stimulated ATPase activities, mRNA level and

protein level of a-MHC and B-MHC were examined in the viable left ventricle (LV)

tissue and right venhicle (RV). The infarcted hearts exhibited depressed rates of LV

pressure development (57 + 2.4o/o reduction) and pressure decay (55.5 t 1.6% reduction).

LV myofibrillar Caz*-stimulated ATPase activity, unlike the RV, was decreased in the

infarcted animals compared with controls (6.8 + 0.4 vs. 10.3 + 0.6 pmol Pi/mglhr). MHC

a-isoform levels were decreased by 47o/o and 4lo/o whereas those of the MHC pisoform

were increased by 823% and 1200o/o respectively in the LV and RV due to MI. These

results indicate that reduced cardiac myofibrillar Ca2*-stimulated ATPase activities are
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due to a shift in myosin isozymes from ø-MHC to B-MHC and these changes may explain

impaired the LV function in infarcted rats.

To investigate the role of Ang II in myofibrillar remodeling, rats at 3 weeks of MI

were treated with imidapril (L mglkglday), an ACE inhibitor for 4 weeks. Imidapril

treatment partially prevented changes due to MI in LV function (rate of pressure

development, 24 + 2.3%o reduction and rate of pressure decay, 14 + 1.8% reduction),

myofibrillar Caz*-stimulated ATPase activity ( 81 * 4.lo/o reduction), myosin heavy chain

(MHC) protein content (a-MHC, 24%o reduction and f.l|.lHc, 525% increase) and MHC

gene expression (ø-MHC, 18yo reduction and B-MHC , 75o/o increase). The results suggest

that the beneficial effects of ACE inhibition on the failing heart are associated with

improvements in myofrbrillar Ca2*-stimulated ATPase activities as well as prevention of

changes in MHC isozyme protein contents and their gene expression. To explore whether

the therapeutic effects of imidapril are due to blockade of the RAS, another series of

experimental studies were performed in MI induced CHF model. For the purpose of

comparison and studying the effects of a combination of ACE inhibitor and AT¡R

antagonist, three groups of rats at 3 weeks of MI were treated for 5 weeks with enalapril

(10 mg/kg/day), losartan (20 mglkglday) and combined therapy enalapril plus losartan.

Alterations in myof,rbrillar Ca2*-stimulated ATPase activity as well as MHC protein

content and gene expression in the failing heart were similar to that observed in earlier

studies. Treatment of animals with enalapril, losartan or a combination of enalapril and

losartan partially prevented the Ml-induced changes in LV function, myofibrillar Caz*-

stimulated ATPase activity, MHC protein expression and MHC gene expression. No

additional benef,icial effect of the combination therapy was identified. The results suggest

that blockade of RAS may produce beneficial effects on cardiac function and myofibrillar



temodeling in heart failure due to MI and that combination therapy with enalapril and

losartan does not produce any additional effect.

Due to their multiple functions in regulating myofibrillar Ca2*-stimulated ATPase

in the normal heart, alterations of protein kinase C (PKC) and/or protein kinase A (PK,{)

may have important roles in MI induced heart failure. The activities of cardiac PKC were

examined in hemodynamically assessed rats subsequent to ML Both Ca2*-dependent and

Ca2*-independent PKC activities increased significantly in LV and RV homogenates at l,

2, 4 and 8 weeks after MI was induced. PKC activities were also increased in cytosolic

and particulate fractions of both LV and RV from 8 week infarcted rats. The relative

protein levels of PKC-a, -p, -e and -Ç isozymes were significantly increased in LV

homogenate, cytosolic (except PKC-ø) and particulate fractions from the failing rats. On

the other hand, the protein levels of PKC-a, -p and -e isozymes, unlike -( isozyme, were

increased in RV homogenate and cytosolic fractions whereas the RV particulate fraction

showed an increase in the PKC-a isozyme only. These changes in the LV and RV PKC

activities and protein contents in the infarcted animals were partially corrected by

treatment with imidapril (1 mg/kg/day). No changes in PKA activity and its protein

content were seen in the 8 week infarcted hearts. The results suggest that the increased

PKC activity in cardiac dysfunction due to MI may be associated with an increase in the

expression of PKC-a, -p and -e isozymes, and the improvement of heart function and

myofibrillar ATPase activity in the infarcted animals by the RAS blockade may be due to

partial prevention of changes in PKC activity and isozyme contents.
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I. LITERATURE REVIEW

Congestive heart failure (CHF) has been recognized for more than a thousand

years ', and still is a significant public health problem with an unacceptably high

morbidity and mortality. It is estimated that more than 5 million people are diagnosed

patients with CHF in the United States, while there are over 550,000 new cases 
2 and

250,000 deaths 3 annually. From different epidemiology studies, this number is most

likely increasing greatly at present, because more patients are surviving acute myocardial

infarction (MI). Despite the trend for a decrease in mofality rate due to coronary heart

disease, hospitalizations for acute MI and subsequent CHF have remained high 2'a.

Therefore, the combination of increased survival post MI and increased longevity in

Western countries has enhanced the increase in overall prevalence of heart failure s. Heart

failure following the loss of contractile tissue as a result of MI evokes a constellation of

responses that act to maintain systemic perfusion. These compensatory mechanisms

include an activation of the sympathetic nervous system, alterations in regional vascular

resistance, sodium and water retention, and activation of the renin-angiotensin system

(RAS) 6, To study heart failure, different experimental models including tachycardia-

induced heart failure model'have been utilized. In regarding of MI as the major reason

of heart failure in the society, the MI rat model produced by coronary artery ligation has

been used extensively to study the remodeling process 8'e.



A. Pathophysiology of Contractile Dysfuncion in Heart Failure

Heart failure is considered as a clinical syndrome in which the cardiac ouþut is

inadequate to meet the metabolic needs of the body 10. Essentially, it is a pathological

state in which impaired cardiac pump activity decreases ejection of the blood and

impedes venous return. The pathologic stimuli for the occurrence of heart failure can be

categorized as follows: i) conditions which lead to the development of pressure or volume

overload, ii) conditions which produce abnormal cardiac muscle contraction and

relaxation, and iii) conditions which limit venhicular fillingll. Various cardiovascular

diseases (Table 1) including ischemic heart disease, valvular heart disease,

cardiomyopathy, septal defects, hypertension and pericardial disease can result in heart

failure t'-tt. The occurrence of heart failure is 1-3Yo of the population in Western

countries and the incidence and prevalence are increasing 2'16-18. Thus a better

understanding of the pathophysiologic mechanisms involved in the genesis of heart

failure is necessary in order to have a clear rationale for pharmacologic treafment and

development of new agents and procedures to increase survival and improve quality of

life.

The sequence of the main pathophysiological processes (Figure 1) which

contribute to the development of heart failure includes neurohumoral activation and

ventricular chamber remodeling 'e. The heart adapts to the augmented load placed on the

myocardium by increasing contractility (systolic reserve) and cavitary volume (diastolic

reserve). When the overload on the heart becomes excessive in magnitude and duration,

these compensatory mechanisms are exhausted and disparate changes in ventricular mass,

cavitary volume, and stiffness become evident. These alterations are considered to result



Table 1. Types of Heart Failure

Types of Heart Failure

Pressure overload

Volume overload

Primary myocardial disease

Secondary myocardial abnormalities

Impaired ventricle filling

Causes

Aortic stenosis

Systemic arterial hypertension

Aortic or mitral regurgitation

Congenital heart disease

Thyrotoxicosis

Cardiomyopathy

Myocarditis

Ischemia (coronary heart disease)

Inflammation

Infiltrative diseases

Constrictive pericarditis

Restrictive



Pathophysiological
stimulus

Neurohumoral
activation

Myocyte hypertrophy Interstitial fibrosis

Ventricular remo deling

Imparied cardiac function

Heart failure

Figure 1. Mechanisms influencing myocardial remodeling in heart failure
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in mechanically disadvantageous and compromising ventricular performance 6.

Accordingly, it is proposed to discuss different processes to gain some insight into

remodeling of the ventricle and changes in the subcellular organelles such as myofibrils,

sarcolemma (SL), and sarcomplasmic reticulum (SR) as well as extracellular matrix in the

failing heart.

Activation of the sympathetic nervous system is the first response to left

ventricular dysfunction. Sympathetic actívation initially compensates for the loss of

cardiac ouþut by increasing heart rate and venous return. However, it may also contribute

to myocardial cell loss and fibrosis in the chronic phase of heart failure 20'21. Particularly,

high levels of plasma catecholamines for a prolonged period of time have been shown to

modulate the function of the þadrenergic receptor pathway 22. In fact, the failing heart

shows a reduced response to adrenergic stimulation which is associated with alterations in

the þadrenergic signal transduction pathway. Such changes include downregulation of

p¡adrenoceptors, uncoupling of padrenoceptor from adenylyl cyclase, and an increase in

the functional activity of inhibitory guanine nucleotide-binding proteins (G,¡ 22-24. The

density of þadrenoceptors has been reported to be decreased in CHF due to idiopathic

cardiomyopathy, ischemic cardiomyopathy, as well as MI, and the degree of

downregulation is related to the severify of heart failure "''u.The decrease in B1-receptor

density and downregulation of the signal tranducing mechanism padrenoceptors

probably accounts for much of the decrease in inotropic response of the failing heartz7 .

On the other hand, the density of þaüenoceptors was repofted to be increased in CHF

due to aortic constriction in guinea pigr tt. Furflrermore, some investigators have reported

both an increase and a decrease in the density of ø-adrenoceptors in a hamster model of
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CHF due to genetic cardiomyopathy 2e'30. Other studies have shown either an increase or

no change in the density of padrenoceptors in CHF in cardiomyopathic hamsters and in

patients with heart failure of various etiologies 't-". Th" results from these investigations

suggest that the changes in adrenergic receptors in the myocardium may depend on both

the etiology of CHF and the stage of the heart failure.

It should be pointed out that the activation of the slrnpathetic nervous system is

accompanied by the activation of the renin-angiotensin-aldosterone system and the

release of vasopressin leading to vasoconstriction, retention of sodium, increase of body

fluid and formation of edema 3a-36. Angiotensin II (Ang II) has also been shown to

increase catecholamine synthesis, produce ventricular hyperlrophy and expand the

ischemic area due to its vasoconstrictive properties. It has also been reported that

chronically elevated endothelin-1 level and subsequent activation of its receptor may play

a role in the progression of heart failure 37'38. On the other hand, afrial natriuretic peptide

(ANP) is released in the circulation in CHF and this may exert diuretic and vasodilatory

effects which are beneficial to heart failure 24.

B. Cardiac Remodeling in Heart Failure

The Ml-induced nt CHF model is well established for studying

pathophysiological mechanisms and pharmacologic effects of different medications 3e-43.

It resembles the pathophysiological condition of CHF following MI in human. The most

significant change after MI is the formation of scar. There are multiple methods for

monitoring the infarct size, however, scar weight is the most convenient one. Scar weight

has a direct relationship to the total left ventricle (LV) wall ar and the total LV mass aa. It
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should be pointed out that this method may underestimate the true percentage of the

infarcted LV, due to the edematous condition of viable myocardium, which is not overt in

.^a
scar fibrous tissue *. In the early period of necrosis, edema and vascular congestion after

a large transmural MI, the LV may dilate as a result of infarct expansion without any

mechanical advantage to the impaired ventricle as. The scar size ranges from lYo to 5Io/o

following the ligation of coronary artery 
46. Alterations in the infarcted wall are the result

of myocyte slippage or a decrease in the number of cells across the wall 47 , and the viable

myocyte size is increased by about 3I%o at 6 weeks after MI 08. The length of an isolated

cardiomyocyte from a CHF group was about 10% longer than that of control at 6 weeks

after MI; however, cell width and sarcomere length did not change greatly ae. It has also

been reported that myocardial transverse diameter was significantly greater in the

infarcted group than that in the control heart s0. As necrotic tissue is resorbed and a thin

scar is formed, collagen fibers form a strong structural network to timit the infarct

expansion sl. Hypertrophy of the residual viable myocytes takes place, increasing

contractile mass to near norrnal levels in small to moderate infarcts, but not in large

infarcts 46'sz's3.In the chronic phase, after the healing process is complete and a discrete

scar is formed, changes in ventricular mass and volume may continue. In small infarcts,

the ratio of cavity volume-to-mass remains normal, suggesting a normalization of wall

stress. On the other hand, in moderate to large infarcts, volume is increased out of

proportion to mass as the f,rlling pressure rises, suggesting that the stimulus to volume

enlargement is still present e's4. Ventricular dilatation may become mechanically

disadvantageous in that an augmented shortening load may be sustained throughout

ejection because chamber volume is reduced relatively little while ventricular pressure is

rising s5.
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Heart failure is characterized by an increase in myocardial mass, an increase in

ventricular volume and a change in ventricular shape and interstitial growth s6's7. Several

mechanisms are involved in the structural changes which occur in cardiac remodeling.

Cardiac muscle undergoes remodeling by increasing its length (dilatation) or volume

(hypertrophy) rather than increasing the cell numbers t8. Si.rce adult cardiac myocytes

cannot divide to increase their numbers, heart chamber enlargement occurs by

hyperhophy of cells and is marked by an increase in the number of intracellular

sarcomeres. Ventricular dilatation can be due to myocyte slippage between fiber bundles

as in cardiomyopathy and in non-infarcted segments after MI produced by activation of

collagenase that disrupts the collagen myocyte supports se'60. Ultimately, collagen growth

including deposition of new collagen and expansion of pre-existing collagen occurs. This

collagen overgrowth reduces ventricular distensibility and compliance. Myocardial

interstitial fibrosis occurs in heart failure due to both ischemic and dilated

cardiomyopathies 61. Ventricular remodeling is considered to be triggered by mechanical

and biochemical factors, including neurohormones, such as norepinephrine, Ang II and

vasopressin as well as cardiac growth factors and fibroblast growth factors. In early heart

failure, dilatation may increase cardiac performance but chronic enlargement often

worsens cardiac function. Although cardiac hyperhophy is a better adaptation than

myocardial dilatation for improving ventricular contraction, severe cardiac hypertrophy

lasting for a long period results in a loss of contractility. Several surgical treatments have

been employed to arest or reverse the ventricular remodeling. Partial ventriculectomy is

performed to remove a substantial portion of the lateral wall to make the dilated heart

smaller 62. L"ftventricular assist devices have been shown to unload the failing ventricle,

improve systemic blood supply and thereby decrease neurohumoral activation 63. Lastly,
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dynamic cardiomyopiasty (wrapping the heart with skeletal muscle) has been reported to

limit cardiac dilation 6a.

Recently, the role of programmed cell death (apoptosis) in ventricular remodeling

and the development of heart failure has gained much attention 6s'66. Olivetti et al. 2t in a

study of human tissue showed that both necrosis and apoptosis cause cell death in patients

with ischemic and idiopathic heart failure, Reduced coronary blood flow and increased

wall stress are the potential triggers of apoptosis in the failing heartza. However, the role

of apoptosis is usually questioned on the basis of the fact that the number of myocytes so

affected (0.2 to 3.0%) at any given time is too low to account for the impairment of

cardiac performance seen in heart failure. Nonetheless, myocardial remodeling is initially

compensatory but finally myocardial structure is changed so that the pumping efficiency

of the heart is further impaired and the contractility is decreased. Accordingly, cardiac

remodeling is critical to the development of progressive heart failure 13. In advanced

cardiac failure secondary to both ischemia and dilated cardiomyopathy, myocyte loss is a

feature of the myopathic process and may occur by either necrosis or apoptosis 67.

Apoptosis involves cell shrinkage, condensation of chromatin and fragmentation of

chromosomal DNA 6t. It has been demonstrated that apoptosis occurs in constituent

myocytes of failed explanted human hearts and in animal hearts with induced heart failure.

As well, cardiac myocytes in acute MI, in the hypertrophied heart and in the aging heart,

also undergo apoptosis 6e. Furthermore, the p53 gene, which is involved in apoptosis, has

been observed in the failing heart and tumour necrosis factor- a, an inducer of apoptosis,

is increased in heart failure s6.
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Subcellular Remodeling in Heart Failure

There is a general agreement that Caz+ handling by cardiomyocytes is altered both

in failing human hearts as well as in animal models of heart failure. Abnormal

inhacellular Caz* handling is one of the major causes of both systolic and diastolic

dysfunction 3e'70. The mechanisms of this abnormal Ca2* handling are still unclear,

however, possible factors include alterations in SL L-fype Ca2* channels, SL Na*/Ca2*

exchanger, SL Ca2*-pump, SR Caz*-pump and SR Ca2* release channels, which

participate in the regulation of Ca2* movements. Different studies have shown decreased

SR Ca2* uptake in a variefy of animal models of heart failure and in humans; abnormal

Ca2* release from SR in dilated cardiomyopathy and prolonged duration of intracellular

Ca2* hansients have also been observed in hypertrophied myocytes tt-73. However, other

investigators have found either no change or upregulation in SR Ca2* uptake 74'7s. Thus,

several other factors such as defects in SL membranes may contribute to the

abnormalities of Ca2* homeostasis in failing myocardium 76. Finally it has been suggested

that the contractile dysfunction in failing hearts may actually be due to attenuated

sensitivity of myofibrils to Caz*. These studies suggest that different subcellular

organelles such as SL, SR and myofibril may become remodelled in heart failure.

The status of SL Caz* channels in the failing heart may depend on the type of

heart failure 14. Reports of increased density of Caz* channels from genetic

cardiomyopathic hamster hearts imply that the occuïïence of inhacellular Caz* overload

through augmented SL Ca2* influx may be the mechanism of pathological alterations in

these heafis77-1e. However, it has been shown that Caz* channel binding densities are

reduced in ischemic heart disease induced by global ischemic or hypoxia-reoxygenation
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injury to'8'. Likewise, the density of L-type Ca2* channels is decreased in CHF in rats

following MI and in dogs with myocardial failure following intracoronary

microembolization 82-84. Jn addition, a significant decrease in mRNA encoding SL Caz+

channels has been reported in the LV of patients with heart failure due to dilated and

ischemic cardiomyopathy 8s-87. Finally, in one study the number of Ca2* channels in the

hyperhophied right ventricle (RV) of rats with CHF secondary to a large left ventricular

MI was not changed compared with control value 82.

Alterations in SL Na*/Ca2* exchanger and SL Ca2*-pump activities have been

observed in several experimental animal models of heart failure. Decreased Na*/Ca2*

exchanger and Caz*-pump activities have been seen in 120-180 day old cardiomyopathic

hamsters 88'8e. These findings suggest that a depression in Na*/Ca2* exchanger activify

may result in a reduced, Caz* efflux from the myocardium, which may contribute to the

occurrence of intracellular Caz* overload. Many studies have investigated the status of SL

Na*/K* ATPase enzyme in both human and experimental heart failure. Na*/K* ATPase

activity has been observed to be reduced in the failing human heart, in UM-X7.1

cardiomyopathic hamster hearts, in rabbit hearts with left ventricular hypertrophy, in rat

hearts with ischemia-reperfusion injury and in the viable LV of rats with CHF due to MI

'70'e0-e3. 
These observations have indicated that a reduction in SL Na*/K* ATPase in heart

failure is important for contractile dysfunction, generation of arrhythmia and for the

effectiveness of digoxin treatment ea. However, increased Na*/K* ATPase activity has

been observed in the BIO 14.6 strain of cardiomyopathic hamsters and in canine hearts

with volume or pressure overload es-e7. Furtherïnore, SL Ca2*-pump activity was not

altered in the failing hearts due to MI e3. Therefore, the biochemical changes in heart
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failure reflecting remodeling of the SL membrane seem to depend on the etiology of the

disease.

The SR plays the most important role in regulating cytoplasmic Caz* during

cardiac contraction and relaxation. Calcium is released through the Caz*-release channel

(ryanodine receptor) whereas calcium is taken up by the SR via Ca2*-pump ATPase

which is regulated by phospholamban. The calcium inside the lumen of the SR is stored

in a bound form with calsequestrin. The ATP-dependent Ca2+ sequestration rate is

reduced in the animal model of the failing heart from a variety of etiologies including

hypertrophy, ischemia, pacing-induced, genetic, diabetic and drug-induced 3e'e8-10s. 'Ihe

status of SR Ca2*-pump ATPase has been studied in different animal models of

myocardial failure. A decrease in SR Ca2*-pump ATPase protein level was observed in

failing guinea pig hearts following banding of the descending aorta as compared to an

age-matched sham group and the attenuation in SR Ca2*-pump ATPase activity was moïe

than the reduction in protein levels e8'106. Decreased gene expression of SR Ca2*-pump

ATPase in Syrian hamsters with hereditary cardiomyopathy has also been observed 107. In

a rat model of MI, SR Ca2*-pump ATPase mRNA and protein levels decreased in parallel

to the severity of CHF and in the left ventricular myocardium from rats with ascending

aortic banding, a decrease in SR Ca2*-pump ATPase mRNA level occurred in failing

animals '08. Furthermore, it has been reported that the mRNA levels of SR Ca2n-pump

ATPase are reduced in the failing heart as compared to the non-failing human heart l0e'110.

However, it has been observed that SR Ca2*-pump ATPase mRNA levels did not change

significantly from the baseline despite development of pacing tachycardia-induced heart

failure I ll.
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There are indications that ryanodine receptor function may or may not be altered

in heart failure. The density of ryanodine receptors was decreased in a rat model of

pressure overload cardiac hyperhophy whereas a normal ryanodine receptor protein level

was observed in the failing human heart lt2'113. Both reduction and no change in mRNA

levels have been observed in dilated cardiomyopathylla'Irs. The results concerning

mRNA levels in failing human hearts are somewhat contradictory and appear to be

related to the etiology of heart failure. The mRNA and protein levels of phospholamban

have been found to be decreased in human heart failure but one sfudy showed a small

decrease in phospholamban protein levels relative to total protein in the failing heart due

to dilated cardiomyopathyl16-ltr. A decrease in phospholamban could be a compensatory

change that would relieve inhibition of the SR Ca2*-pump ATPase in the failing hearts. A

reduced phosphorylation of phospholamban could decrease the rate at which Ca2* is

sequestered by the SR, and thus result in prolonge d, Cf* ûansients and delayed relaxation

in the failing heart 120'121. In left ventricular biopsies from dogs with tachycardia-induced

heart failure, no change in phospholamban nRNA levels was observed at the onset of

clinical heart failure compared to the baselinettt. The calsequestrin content of the heart

appears to be unchanged in heart failuret22-126. Studies in the failing human myocardium

consistently showed unchanged mRNA and protein level calsequestrin as compared to the

nonfailing myocardium 8s'll3'll8'125. These observations show differential changes in the

expression of SR genes and proteins but indicate a great deal of specificity in term of

remodeling of the sR membrane during the development of heart failure.

Cardiac myofibrils are composed of repeating contractile units known as

sarcomeres 127 and their activity is the ultimate determinant of cellular dynamics and

force r28. Cardiac sarcomeres consist of thick and thin filaments t2e and muscle
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conhaction involves sliding of the thick filaments (myosin) past the thin filaments (actin)

inside the cardiomyocyte 130. Therefore, myofibrils are the contractile machinery of the

cardiac cell and are controlled by the interactions of several myof,rbrillar proteins l3l

through "cross-bridge" cycling which plays an integral role in determining the dynamic

properties of the heart 128. For the biochemical process of contraction, ATP is hydrolyzed

and chemical energy is liberated. The myofibrillar proteins undergo physicochemical

changes that are manifested by tension development and shortening; all of these reactions

are controlled by Caz+ 
t2e'131 . Removal of Ca2* from myofibrils causes relaxation of the

cardiomyoc yt" "' .

The thick filament is made of myosin, and the myosin heavy chain (MHC) is

regarded as the "molecular motor" of contaction t'e. MHC has two portions: rod and head.

The rod portion of myosin constitutes the carboxyl-terminal half of the molecule and

serves to integrate MHC into an organized thick filament. The coiled-coil conformation

of the filamentous tail confers rigidity to the molecule, which strengthens the aggregated

myosin tails in the backbone of the thick filament. The head portion of MHC interacts

directly with the thin f,rlament for contraction and relaxation of muscle. The MHC head

has the ATPase function units, and two smaller protein subunits, myosin light chain

(MLC), which bind to each MHC head r2e. Another "back bone" part of thick filament is

titin, which is a 3,000-3,700 kD protein, and due to its connection wìth the end of

sarcomere and thin f,rlament, it is considered as a third filament system 127.

For the thin filament, the major component is actin 127, which is directly involved

in force generation t". There are two actin isoforms, ø-skeletal and ø-cardiac, in human

heart; a-cardiac actin is dominant. In myocardial hypertrophy and cardiomyopathies with
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the exception of idiopathic dilated cardiomyopathy l3a, the amount of a-skeletal actin was

significantly increased and expressed in all layers of ventricular myocardium, In the thin

filament, both tropomyosin molecules and troponin complex are also present; these

interact with each other 127'133. Tropomyosin lies in the grooves that run longitudinally

between the two strands of actin in the thin filament. It adds structural rigidity to the thin

filament and, more importantly, interacts cooperatively with the other proteins of the thin

filament to allow Caz* to activate excitation-contraction coupling. Tropomyosin regulates

the interactions between actin and myosin l3s, and the most important function of

tropomyosin is to inhibit the activation of myosin cross bridges by actin in the thin

filaments. The inhibition of tropomyosin is reversed when cytosolic Ca2* concentration

increases and allows Caz* to activate muscle contraction 127'133.

The hoponin complex includes the following three proteins: troponin C (TnC;

-18 kD) contains the regulatory Ca'* binding site; troponin I (TnI; -21 kD) inhibits actin

filaments to activate MHC ATPase and thereby produce force and movement; and

troponin T (TnT; -30.5 kD) binds with tropomyosin and may be responsible for the

attachment of the troponin complex to the thin filament tt6 
. TnI, alone is a weak inhibitor

of actin-myosin interaction; however, it becomes a powerful regulator when combined

with tropomyosin. Cardiac and skeletal muscles contain two isoforms of TnI, one is

embryonic TnI, while the other is adult slow skeletal muscle TnI. Switching of TnI has

been implicated in developmental changes involving Caz* and pH sensitivity of the

contractile system and responseto ftadrenergic stimulation 137'138. Cardiac TnI contains a

serine at position 20 which is not found in fast skeletal TnI, but is phospholated by cyclic

AMP-dependent protein kinase (PKA) '". Whrn phosphorylated, cardiac TnI induces



l6

cooperative interactions in the thin filament that reduce the Ca2+ affinity of TnC, and

accelerates relaxation when the heart is exposed to ftadrenergic agonists l3e. Other

protein kinases also phosphorylate cardiac TnI, but the functional significance of these

phosphorylations remains unclear. In stunned myocardium following ischemia, the most

likely damage to contractile regulatory proteins is the proteolysis of TnI, which increases

the Ct* concentration requirement 132.

TnT is the largest of the three troponin components, and has been called the

"glue" that holds the regulatory proteins of the thin filaments to one another, especially

since it binds the troponin complex to hopomyosin 133'136. The allosteric effects of TnT

within the thin filament influence the Cazn sensitivity for tension development.

Furthermo¡e, an abnormal TnT isoform (T2) is produced in advanced heart failure lao. On

the other hand, TnC with its Ca2*-binding potential transmits the signal to the thin

filament 136. Cardiac muscle contraction is under the intracellular Ca2* control via the

TnC Ca2*-specific sites rar. TnC is a highly conserved protein; only two isoforms, cardiac

and skeletal TnC, have been identified in striated muscle. Both contain two Caz*-specific

sites and Ca2*-Mgz* sites, As the concenfration of ionized Mg2* in muscle is several

orders of magnitude higher than that of Caz*, the Ca2*-Mg2* sites are normally occupied

by Mgt* and so do not play a role in excitation-contraction coupling la2.

It is now well established that hydrolysis of ATP by actomyosin ATPase provides

energy for contraction. Thus any derangements in the organization of the contractile

apparatus as well as in myofibrillar ATPase and Ca2* binding activities can lead to the

development of dysfunction of myocardial contraction and relaxation. Structural changes

in actin, myosin, tropomyosin and the troponin complex remain to be carefully evaluated
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in different fypes of heart failure. A marked loss of myofibrillar protein was observed in

electron micrographs of the failing human heart and this reduction of contractile units

seems to form the basis for the depression of both systolic function and ejection fraction

and the prognosis of heart failure la3.

The f,rbroblasts slnthesize and degrade f,rbrillar collagen, types I and III, the major

skuctural proteins of the heart. Weber and Brilla laa showed that the relative proportions

of myocardial cells change in pathologic hyperhophy, with collagen concentration rising

disproportionately. The extracellular matrix is a flexible, supporting structure that

surrounds the cell tt''os. Although cardiomyocytes occupy 70 to 85Yo of the volume of the

myocardium, 65yo of the cells of the heart are fibroblasts, vascular endothelial cells, and

smooth muscle cells 146'1a7. 
Changes in the extracellular matrix during the development of

heart failure include increases in fibronectin, laminin and vimentin contents, as well as

deposition of collagen fibers I, III, IV, and VI in the myocardium 148't4e. There is an

increase in collagen concenfration in the rat ventricular free wall after MI and fibrosis

remote ffom the infarct site is regarded as "the major cause of ventricular remodeling" in

ischemic cardiomyopathy 150'151. Cardiac remodeling, which occurs after MI ls2 and in

hypertension tt', is associated with excessive accumulation of extracellular matrix

components, including collagen, and with a reduced activity of the extracellular collagen

degradative pÍocesses, The resulting increase in extracellular matrix proteins promotes

myocardial stifÍ?ress and thus impairs contractile activity ls2. Disruption and discontinuity

in collagen fibers have also been observed during the development of dilated

cardiomyopahty both in animal models and in patients and the equilibrium between

proteinase, which is capable of breaking down the extracellular matrix, and antiproteinase

is also altered following heart failure 154'1s6. In addition, Zellner et al. ts7 have found a



D.

18

reduction in myocyte attachment to the basement membrane proteins laminin, fibronectin

and collagen IV in tachycardia-induced heart failure. All these extracellular matrix

changes can lead to a loss of force transmission via the ventricular free wall and to an

alteration in cardiomyocyte alignment which would cause fiber slippage and ventricular

free wall thinning la6.

Cardiac Contractile and Regulatory Proteins

Myosin, the major protein of the thick filament of muscle, is an elongated

molecule whose rigid tails are woven in the backbone of this filament. The globular heads,

which project as cross bridges, interact with actin in the thin filaments and contain an

actin-activated ATPase whose cycling rate is closely correlated with the maximal

shortening velocity of the unloaded intact musc le t27 
'136 . Myosin molecules consist of two

MHC and four MLC proteins. Myosin has a molecular weight of -220,000 and heads of

the myosin molecule are paired structures made up of the two MHCs. The ability of heart

to generate contractile force is primarily dependent on the myofibrillar Ca2+-stimulated

ATPase which is located at the head of MHC ls8; both the atria and ventricles contain two

MHC isoforms that differ in their intrinsic ATPase activities. The so-called ø-myosin

heavy chain (ø-MHC) has a higher ATPase activity and faster contractile velocity than

that of the pmyosin heavy chain (BMHC; t3o'tsa'tse. while differences in the primary

structure of myosin isozymes have been identified with peptide mapping and

immunological analysis, complementary DNA and genomic DNA cloning experiments

have demonstrated that myosin isozyrnes are coded by two separate genes that are linked

4 kilo-bases apart in the rat genome 160. Both a-MHC and pMHC proteins '6' form
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homodimers and heterodimers with each other resulting in three distinct MHC complexes

(MHC isoforms), Vr (two ø-MHCs, ø-MHC homodimer), V2 (one ø-MHC and one p

MHC, ø-MHC/þMHC heterodimer), and V3 (two pMHCs, pMHC homodimer).

Therefore, Vl contracts fastest with increased energy expandure than V2, while V2 is

faster than that of V¡ 130'162. The human venkicle contains mainly the lower-ATPase p

MHC, the so-called V3 form, which is similar to the fetal isoform that predoninate in the

embryonic heart. However, the higher-ATPase ø-MHC, or V1 is also present in the

human ventricle tu3. Adult rodent ventricles, on the other hand, contain mainly the higher-

ATPase isoform, V1, along with small amounts of a hybrid myosin the so-called Vz.

Selective expression of genes that encode the slow &I|I4HC isoform plays an important

role in the adaptation of cardiac performance to chronic overload. There exists an inverse

correlation between ATPase activity of MHC and energetic cost to accomplish a given

workload ''n. Itt heart, myosin contains two pairs of MLC, the regulatory MLC (MLC-z)

and the essential MLC (MLC-1). MLC-1 is about 16-27 kD protein, and it is necessary for

stability of the myosin head, while MLC-z is an 18,500 kD proteint6o. However, skeletal

muscle myosin is believed to have 3 kinds of MLC ls8.

Myosin has two important biological properties, the first being its ATPase activity

for releasing the chemical energy. The second biological property is responsible for

contraction of the thick and thin f,rlaments 127. It is quite clear that muscle contraction

speed is directly related to the myosin ATPase activity ls8. Besides the regulatory function

of thin filament, MLC is regarded as thick filament regulatory compenent "8. In the heart,

MLC-z does not bind Caz+ and thus does not play a central role in excitation-conhaction

coupling; horvever, it is a substrate for MLC kinase, a Ca2*-dependent protein kinase l6s,



20

Phosphorylation of the MLC-z modifies force development, possibly by bringing the

cross-bridges closer to the thin filament 166. The human ahia and ventricles contain at

least five different MLC isoforms. Reversal to the fetal phenotype in the overloaded

ventricle is accompanied by reappearance of the atrial isofonn, which replaces the

ventricular isoform l6t. Expression of the atrial MLC-1 isoform in the hyperhophied

human ventricle increases cross-bridge cycling and contractilify. It is suggested that

MLC-r acts as a MHC/actin tether 168'16e.

In heart failure, alterations in the contractile proteins appear to include an initial

increase in protein synthesis in response to ventricular overload and a shift to fetal forms

of myosin with an ultimate reduction in protein synthesis. A shift in myocardial isozyme

content from Vr (aa, fast, high ATPase activity) toY3 (Bp, slow, low ATPase activity)

has been documented in different models of experimental heart disease and is believed to

occur at the transcriptional level 170-173. In response to stimulation of crl-adrenoceptors in

neonatal rat cardiomyocytes, it has been shown that hyperhophy in these cells is

characterized by selective upregulation of early developmental contractile protein

isogenes, including those for &}y'rHctta. This shift is not important in humans, since

human ventricles contain primarily the Bp isoform. Howevet, a shift from aa to þþ

isoforms does occur in the human atrium in heart failure r7s'176. Several functional

changes in the failing heaft can be explained by an increase in the synthesis of V3 myosin

isozyme with a characteristic derived from ATP used for the depressed rate of myocardial

contraction may be beneficial to the failing heart t77 .In addition, changes of contractile

proteins are not confined to the MHC because in human heart failure, a marked decreased

in the MLC content has also been reported t78'17e. However, the atrial form of MLC-r has
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been shown to increase in other investigations t80. Morano et al. t68 have demonstrated

that in the isolated human myocardium, force development and Ca2* responsiveness were

profoundly affected by the interaction between MLC and actin. Therefore, alterations in

MLC in heart failure may be of functional consequence for contractile activation l8l.

The identification of myosin isoform explains the molecular heterogeneity of

sarcomere and distinctive functional properties of myofibers t8', and shifts involving the

contractile proteins have been described in experimental heart failure. The most extensive

study of these responses reveals a shift to the fetal isoform of myosin, where chronic

overload causes the high-ATPase ø-MHC to be replaced by the slower þIl'lHC. These

alterations have been observed in animal models of both cardiac hyperhophy and heart

failure, where there was a shift of Vr to V¡ MHC isoforms 183'184. This isoform shift

reduces myof,rbril ATPase activity 162, and conhactility in human atria r8s'186 and to a

lesser extent, in the failing human ventricle 163, while V3 is correlated with a reduction in

the maximum velocity of sarcomere shortening ttt. It is clear now that in the nonfailing

human heart there is significant amount of ø-MHC mRNA, while in heart failure no a-

MHC mRNA was detected r63. In different model of failing rodent heart, the shift from a-

MHC to pMHC was obvious t'8. On the other hand, some researchers did not find

myofibrillar changes in failing heart due to MI. Six weeks after MI, there were no

significant alteration in the myofilament responsiveness, as measured by fura-2 ratio and

mechanical shortening relationship ae. Isoform shifts have also been found in the MLC l6e

and TnI t88. Wheteas no change of tropomyosin has been found in the failing human heart

'6e. Th" status of TnT remains unclear, as reversal to the fetal phenotype has been found

by some 140'l8e but not all groups leO, possibly because this isoform shift varies among
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individual patients. Altered phosphorylation of TnI, a post-hanslational modification that

differs fundamentally from the isoform shifts caused by changes in gene expression, has

been observed in the failing heart lel.

E. Protein Kinase C in Heart Function

In view of the fact that protein kinases play a crucial role in intracellular signalling

pathways, it is important to explore the biological and pathophysiological functions of

protein kinases. In the heart, protein kinases are involved in the regulation of cation

transport, cardiac contractility, myocardial metabolism, gene expression, cell growth and

apoptosis le2. Because serine/threonine kinases, paticularly protein kinase C (PKC); are

known to mediate a-adrenergic, þadrenergic, muscarinic, as well as endothelin and Ang

II receptor-generated signals in the myocardium, the functional implications of these

protein kinases in regulating cardiac performance are readily evident. Alterations in the

activities of PKC in cardiac hypertrophy, heart failure, cardiomyopathy and ischemic

heart disease seem to depend on the stage, species and type ofthe disease. The presence

of PKC in different isoforms offers a great challenge for the development of specifrc

therapeutic interventions for the manipulation of signal transduction mechanisms in the

heart in health and disease.

PKC, a multifuilctional protein, is known to play a crucial role in signal

transduction; both rat and human tissue homologues appear to exhibit similar isoform

expression le3. PKC isoforms are physiologically activated by neurohoûnones that bind to

G protein-coupled receptors le4'1e5. Activation of different receptors, including ø1-

adrenergic receptors, P2-purinergic receptors, endothelin receptors, ml-muscarinic
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receptors and Ang II receptors, most likely activate the Go-coupled phospholipase Cp

(PLC-P) te6-200, which results in the breakdown of phosphatidylinositoibisphosphate

(PIP2), generating both isositol triphosphate (IP3) and diacylglycerol (DAG), whereas

DAG is a powerful activator of most PKC isoforms 'ol. In addition, phospholipase D

(PLD) is considered to be activated via G protein by different stimuli, including growth

factors. It should be noted that PLD hydrolyzes phosphatidylcholine with the formation of

phosphatidic acid, and DAG is subsequently produced through the action of

phosphatidate phosphohydrolase; this complements the formation of DAG through the

PLC pathway (Fig. 2)'o'.Activation of PKC may influence the activity of a variety of

cation channels with inohopic consequences. Mg'*, Kn, Na* andCaz* channels have been

reported to be modulated by PKC (Figure 2) zo3-zrr; whereas the first well identiflred

cardiac-specific PKC substrate is a membrane-bound 15 kD protein, phospholem^antt'.

It has also been suggested that PKC-induced modif,rcation of the Na*/H* exchanger is

responsible for cellular alkalization 213-21s. PKC-induced phosphorylation of

phospholamban increases SR Ca2*-stimulated ATPase activity, which in turn stimulates

Ca2* uptake from the cytosol and thus promotes the relaxation of cardiac muscle 216.

Contractile proteins are among the best substrates for cardiac PKC because the thick

filament proteins (C protein and MLC) and thin filament proteins (TnI and TnT) are

targets for this endogenous enzyme tet'2t7 . Phosphorylation of TnI and TnT by PKC in

reconstituted actomyosin ¡esults in a decrease of Ca2*-stimulated Mgz*-ATPase activity,

and this is reversed by dephosphorylation 2r8. It is reported that PKC plays a role in the

myosin isoform shift, which is related to decreased myofîbrillar ATPase activity 218'21e.

Kariya et a\.220 demonstrated that þly'IHC is activated preferentially by PKC. On the
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other hand, PKC is known to phosphorylate a number of cellular proteins mediating þ

adrenergic receptor signalling and conhactility in the heart. PKC has been reported to

phosphorylate contractile proteins 221, 
and to alter calcium homeostasis222 and adenylyl

cyclase activity "'. It was also shown that PKC can phosphorylate and activate þ

adrenergic receptor kinase 224 andthat the B1-adrenergic receptor can be desensitized by G

protein-coupled receptor kinases "t. Ang ll-induced PKC activation decreased the

responsiveness of the rat heart to p1-adrenergic stimulation, and this PKC activation may

differ from that by phorbol esters 
226.

In cultured ventricular myocytes, a variety of agonists have been found to

stimulate hypertrophy. These are agents such as endothelin-1, ø¡-adrenergic agonists and

Ang II, which are coupled toPLC-| for increasing the formation of DAG and activation

of PKC 727'238. Activation of PKC, in turn, appears to be one of the events that can initiate

a hyperhophic response in cardiomyocytes through the activation of mitogen activated

protein kinase (MAPK) z3e. In addition, endothelin-l-induced development of

hyperhophy via activation of distinct PKC isozymes may be initiated not only by PLC,

but also by the PLD signaling pathwuy'oo.It should be noted that the hypertrophic

process is associated with a genetic program that consists of the expression of immedíate

early genes (c-myc, c-fos, c-jun and egr-l) within 30 to 60 min followed by expression of

fetal genes such as skeletal a-acTin, þMHC and ANP 241'243. Finally, hyperhophy is

accompanied by an overexpression of constitutively expressed MLC-z and cardiac a-actin

genes, and by an assembly of contractile proteins into sarcomeric units. PKC has been

shown to play a role in this genetic program 'oo. It is pointed out that PKC does not

directly couple the neurohumoral receptor with gene expression, but rather that it belongs
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to a cascade of kinases including Raf, tyrosine kinase and MAPK, which are also

activated during the hyperlrophic proce ss 244'247 . Gu and Bishop 248 found a quantitative

increase of PKC in the cytosolic, particulate fractions as well as in the nuclear-

cytoskeletal fraction of hypertrophied rat left ventricular myocardium. Cardiac PKC-P

and PKC-¿ were increased due to pressure overload, which suggested that during the

development of hypertrophy PKC plays an important role in the regulation of cardiac

growth and function, and that individual isozymes may perform different functions in

response to pathological stimuli.

By increasing myofibrillar protein content and sarcomere assembly in individual

myocytes, myocardial hyperhophy provides an adaptive response to hormonal and

mechanical stimuli, which increase demand for contractile work. Virtually every

phenofypic feature of the hyperhophic response has been shown to be induced by chronic

stimulation with phorbol esters. These include an increase in the rate of transcription of

rDNA, which leads to an increase RNA content and an increase in the capacity for protein

synthesis 2ot. These changes are followed by rapid and transient induction of immediate

early gene expression, transcriptional activation of several fetal genes, accumulation of

contractile proteins, assembly of contractile proteins into organized sarcomeric units and

an increase in cell size zoe. It has been suggested that PKC-ø and. PKC-| act

simultaneously to induce the central members of the immediate early gene program

expression, c-þs and c-jun, which heterodimerize and bind the consensus activator

protein-l sequence in the promoter region of phorbol ester-inducible genes, thereby

exerting regulatory effects on gene transcription244'248. The studies implicate PKC in

responses leading to myocardial hyperhophy upon transaction of early immediate genes
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and contractile protein genes for an enhanced protein synthesis following hormonal or

mechanical stimuli 250.

Not much information is available in the literature regarding changes in protein

kinases in different types of cardiomyopathic hearts. Some investigators have shown that

cardiac PKC activities were significantly increased in l80-day-old cardiomyopathic

hamsters and that PKC potentiated cAMP-dependent phosphodiesterase activity in

hypertrophic cardiomyopathy zst'zsz.In diabetic rat cardiomyopathy, it has been reported

that cardiac PKC activity is elevated, but changes in different PKC isoforms have not

been explored2s3'2s4.Increased cardiac PKC activity may cause excessive accumulation

of intracellular Caz* in the myocardium, and this may play an important role in the

pathogenesis of cardiac dysfunction in diabetic cardiomyopathy "t. It has been reported

that reduction in Na*/Ca2* exchanger activity in the diabetic heart may be caused by

impaired translocation of PKC-p and/or by activation of PKC-a in the diabetic heart 256.

Recently, Ventura et al 2s7'2s8 provided evidence that cardiomyocytes express the

prodynorphin gene, a candidate gene for pathological processes involving an impairment

of myocardial cell contractility, growth and differentiation, and that this opioid gene is

transcriptionally stimulated by PKC activation. The expression of PKC-a, PKC-á and

PKC-á, as well as PKC activity, were increased in cardiomyopathic myocytes compared

with controls, and it was suggested that PKC activation may be one of the major

signalling mechanisms in the induction of the prodynorphin gene in cardiomyopathic

cells 25e-t6l 
.

Transgenic mice with the specific overexpresssion of PKC-82 isoform in the

myocardium were established to evaluate the effect of PKC-pon cardiac functions. These
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transgenic mice showed left ventricular hypertrophy, cardiac myocyte necrosis,

multifocal fibrosis and decreased left ventricular performance, which indicated that these

specific cardiac cellular and functional changes due to the activation of PKC-þ may lead

to cardiomyopathy 262. Rouet-Benzineb et a\.263 and Mohammadi et al.26a showed that

PKC activity and Ca2*-dependent PKC isoforms are decreased in adult rabbit heart failure

induced by aortic insufficiency followed by aortic stenosis. These results are different

from those reported by Gu and Bishop 248, who demonstrated that PKC activity was

increased in the early phase of rat heart failure induced by pressure overload. Such a

discrepancy in results may be due to species differences and the fact that the latter study

was performed in young developing rats. In view of the availability of very few reports

regarding changes in PKC activity or PKC isoforms in heart failure, extensive studies in

the failing heart, especially in CHF following MI are required to make any meaningful

conclusion.

F. Protein Kinase A in Heart Fucntion

Over the past 20 years, many laboratories have focused their investigations on the

þadrenergic mediated regulation of cardiac contractility through phosphorylation of

cellular proteins by PKA. There is now general agreement that PKA-mediated protein

phosphorylation has an important role in heart function. Stimulation of cardiac myocytes

by catecholamine and other þadrenergic agonists produces an elevation of the

intracellular concentration of Ca2*; this occurs primarily through PKA-mediated

phosphorylations at SL Ca2* channels and the SR Ca2* pump regulatory protein

phospholamb aî26s-268. The resulting increase in the availability of Caz* to the contractile
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apparatus augments the force of cardiac contraction. Direct phosphorylation of the

contractile machinery by the activation of PKA itself is also recognized as having an

important modulatory role in the cardiac contraction-relaxation cycle. It is also well

established that þadrenergic stimulation of either intact hearts or isolated myocardial

cells results in PKA-mediated phosphorylation of C protein and TnI in the thick and thin

myofilaments, res¡iectiv 
"ly'u' 

.

In its holoenzyme state, PKA is an inactive tetramer composed of a regulatory (R)

subunit dimmer and two catalytic (C) subunits. Each of the PKA subunits consists of a

regulatory subunit, which binds two molecules of cAMP and a catalytic subunit,

Combination with oAMP causes the R2C2 complex to dissociate and release the active C

monomers tto. When oAMP is elevated in the heart by ftadrenergic stimulation, the

holoenzyme is activated. Four molecules of cAMP bind the R subunit dimer causing the

release of the C subunits, which phosphorylate a wide variety of substrates such as cation

channels, contractile proteins and metabolic enzymes (Fig. 3) z6t'ztt. The two major

classes of holoenzyme, PKA I and PKA II, are present in the heart but their relative

abundance is species-dependent; PKA II is by far the most abundant isozyme in bovine

heart, whereas PKA I is the predominant isozl'rne in rat heart 272. PKA is known to

regulate a variety of proteins (Figure 3), such as K*, Na* and L-type Ca2* channels,

phospholamban, and the TnI and TnT subunits 273-27s. Regulation of padrenergic

stimulation of Na*/K* pump current in guinea pig ventricular myocytes is via PKA 276.

Functional and biochemical studies suggest that direct phosphorylation of the q subunit

is involved in modulation of cardiac and skeletal muscle L-type Ca2* channel channel

function by PKA '7' . Fo, myofibril proteins, TnI and TnT are the substrates of PKA 278.
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Two serine residues in the amino terminus of the TnI subunit are believed to be

phosphorylated by PKA on stimulation by pagonists, resulting in decreased sensitivity of

myofibrits to Ca2* by increasing release of Ca2* from the TnClCaz* complex. Furthermore,

it was found that phosphorylation of cardiac TnI by PKA results in decrease in the Ca2*

sensitivity for muscle contraction t'e . It has been shown that increased dissociation of

Ca2* from TnC coupled with faster uptake of Caz* by the SR following PKA-dependent

phosphorylation of phospholamban can account for the faster relaxation seen in the

inotropic response of the heart to catecholamines 278'280.

The role of PKA in cardiac hyperlrophy has been analyzed in different

hypertrophic animal models. There may be different biochemical intracellular

mechanisms for different models of experimentally induced cardiac hypertrophy. It was

reported that cardiac PKA activity from rats with aortocaval shunt increased signif,rcantly

throughout the study (56 days) with a maximum value at day 7, and decreasing thereafter

but remaining higher than the control values '8t. The increase in cardiac PKA activity in

this volume overload model may be explained by mechanical stretch, cell deformation or

activation of a series of neural and hormonal systems 'o'. By using perfused rat hearts,

studies on the cAMP hansduction pathway provide evidence for stretch-induced

activation of adenylate cyclase and PKA in the regulation of protein synthesis and

ribosome formation. There are a few reports relating to PKA activity in hypertension.

Coquil and Hamet 282 studied PKA activity in spontaneously hypertensive rats (SHR) and

found a progressive decrease during five weeks but it was unaltered at 18 weeks

compared with normal rat hearts. On the other hand, ventricular PKA activity did not

change significantly with respect to the sham group after induction of pressure overload.
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For the MI model, ventricular PKA activity increased only seven days after infarction, but

it had no relation with the development of cardiac hyperhophy induced by MI 26e. In

conclusion, the volume overload model of cardiac hypertrophy exhibits increased

inhacellular cAMP concentration and a consequent activation of PKA activity, which

could be due to increased plasma levels of catecholamines '83. In contrast, in the pressure

overload model of cardiac hyperlrophy, it seems that Ang II could play a primary role,

activating PKC rather than PKA 242. The MI model also may share some common

intracellular mechanisms with the above two models of hyperhophy because there are

both volume and pressure overload sfresses during MI284.

Although the sympathetic drive is increased in heart failure, the cells of the failing

heart become desensitized to the increased level of a-adrenergic receptor agonists 26e'28s.

þadrenergic receptor density is decreased in response to isoproterenol (ISO) exposure,

which is accompanied by a decreased stimulation of adenylyl cyclase by the agonist.

These effects of high doses of ISO are thought to mimic the in vlvo situation in heart

failure, where the circulating levels of catecholamines are elevated to maintain ventricular

function. There is some evidence that the level of stimulatory guanine nucleotide-binding

protein (G) is reduced, whereas that of inhibitory guanine nucleotide-binding protein (G)

is increased, in cardiomyopathic hearts 2s'73'286-2et. All these changes may contribute to

reducing the contractility and ability of the failing heaf to respond to exercise. In heart

failure the increase in atrial and ventricular filling pressures results in cardiopulmonary

and arterial baroreceptor dysfunction, with a subsequent increase in the activity of the

sympathetic nervous system. Therefore, it is quite possible that continued increases in

atrial and ventricular filling pressures lead to a rise in plasma catecholamines, with an
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increase in cAMP and PKA activation in cardiac tissue 242'286'2e2. In addition to

phosphorylation of proteins involved in the regulation of cardiac contractility, PKA has

been shown to play a role in the regulation of þadrenoceptor function 2e3.

Phosphorylation of padrenoceptors by ftadrenoceptor kinase occurs at higher agonist

concentrations, whereas ftadrenoceptor phosphorylation by PKA occurs at low agonist

concenhations; the functional consequence of this phosphorylation is an uncouplingof þ

adrenoceptots 'eo. Itr the failing heart, þadrenoceptor uncoupling has been well defined,

and it appears that increased PKA activity may contribute to þadrenoceptors uncoupling

in the failing myocardium. However, it was reported that oAMP concentrations were

reduced in the particulate fraction in failing human hearts due to ischemic

cardiomyopathy and in the soluble fraction in dilated cardiomyopathy, but there was no

change in PKA activity. Phospholamban levels and cAMP-dependent phosphorylation of

phospholamban were similar in nonfailing and failing myocardium 267. However,

alterations in PKA activity and content of its isoforms during the development of heart

failure remain to be investigated for a full appreciation of defects in signal transduction

mechanisms in the failing heart.

G. Renin-angiotensin System and the Heart

RAS is one of the major mechanism for the regulation of cardìovascular system,

especially in conholling of blood pressure and cardiac remodeling zes. RAS is composed

by several compenents, involving the following series endocrine actions: renin secreted

by the kidney acts on angiotensinogen released by the liver. The resulting angiotensin I

(Ang I) is cleaved by angiotensin converting enzyme (ACE) to generate circulating Ang
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II, which binds to its receptors and produces specific biological effects zes. 

^n 
increase in

the gene hanscripts for angiotensinogen and ACE in the ventricular myocardium has been

demonstrated in animal models of pressure overload 2e6,tachycardiaze7 and MI induced

heart failur e 2e8'2ee . Despite the evidence that expression of angiotensinogen and ACE

mRNA in the heart is at least 20-fold lower than in the liver and lung, generation of Ang

II occurs in response to a functional overload of the heart, which suggests a potentially

important linkage between the cardiac RAS and workload 2ee'300. An elevation of ACE

activity has been observed in hypertrophied LV of rats with aortic banding 2ee'300, in the

residual viable myocardium after MI 2e8, 
and in hearts following ISO infusion '0'. ACE

activity is increased within the first few days of a MI and remains elevated during the

following 80 days 3o'. Which cell types within the heart are responsible for the generation

of ACE are not well known, but there is increasing evidence that the coronary vascular

endothelium may be the major source of cardiac ACE 303. The activation of RAS plays an

important role in the genesis of cardiac remodeling, in terms of stimulation of cardiac

myocyte hypertrophy, and modulation of collagen synthesis and degradation. Therefore,

great attention has been paid to block RAS, both in research and clinical practice.

ACE inhibitors were first introduced in early 1980 as novel agents for the

treatment of hypertension. Twenty years later, ACE inhibitors have become the mainstay

for the treatment of CHF, and investigational indications contìnue to expand as

understanding of the pharmacology of these drugs increases 300. In addition to their

vascular effect, ACE inhibitors have multiple functions, especially since they play an

important role in the progression of cardiac remodeling tot. It is worth noting that the

effects of ACE inhibitors are dose-dependent as seen in the SHR 153. The process of

ventricular remodeling after MI can be modif,red by the long-term administration of an



35

ACE inhibitor 306'307. Following coronary artery ligation in rat, 3 months of therapy with

an ACE inhibitor captopril, reduced venhicular volume. In rats with large infarcts, the

reduction in cardiac mass by captopril was proportional to the attenuation in ventricular

dilation. In contrast, therapy of animals with moderate infarcts led to a reduction in mass

that was less than the attenuation in volume 6. These alterations in cardiac mass and

cavitary volume were associated with a more favorable ventricular performance and a

prolongation in survival 306.

ACE inhibitors are effective as afterload and preload reducing agents. The

formation of Ang II, the potent peripheral arterial vasoconstrictor, is greatly reduced by

ACE inhibitors, and this relaxes the vascular system 3. These agents lower LV filling and

systemic arterial pressures and decrease systemic vascular resistance but maintain or

increase cardiac ouþut without changing the heart rate when administered acutely or

chronically in heart failure. ACE inhibitors are arterÌal vasodilators, but their ability to

lower filling pressure post-infarction and to prevent degradation of bradykinin have been

attributed to the additive production of venodilatation 305'308. In patients of hypertension,

intracoronary injection of enalapril, an ACE inhibitor, improved the active relaxation,

accompanied by a decrease in left ventricle end-diastolic pressure (LVEDP) and LV end-

diastolic volume 30e. The rat model of MI has been used to study the short- and long-term

hemodynamic effects of ACE inhibitors, and the survival trials with these agents have

been successful 306'310.

The effectiveness of ACE inhibition in reducing cardiac mass and volumes,

maintaining cardiac ouþut in hypertension and MI has sparked considerable interest in

the role of the RAS in cardiac remodeling 'ou. S"rr"rul studies have indicated that

exogenous or locally generated Ang II has a role in altering cardiac gene expression as
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Ang II was observed to induce early response genes involved in growth and

differentiation in neonatal and adult rat cardiomyocytes 233'311'312. This induction appears

to be mediated via activation by Ang II of the phospholipid-mediated second messenger

system, such as PLC and PKC, through the angiotensin II type I receptor (AT1R) 233'312.

Within 6 hr in isolated neonatal cardiomyocytes, Ang II induced the late genes expression,

including skeletal a-actin and ANP, and resulted in the upregulation of the genes for

angiotensiongen and transforming growth facfor-p (TGF-þ); these observations suggest a

posítive feedback mechanism for the regulation of cardiac hyperhophy 233. In

hyperhophied hearts induced by banding of the ascending aorta, cardiac ACE activity is

increased, as well as ACE mRNA level and protein contents 2ee, while ACE inhibitors

reduced the intracardiac conversion of Ang I to Ang II in this model 2ee'300. An increased

expression of c-myc and c-jun has also been demonstrated in surviving myocytes of RV

and LV of rats 2 to 3 days following MI, a time by which an increase in myocytes volume

has been documented 284. Mediation of cardiac hypertrophy by the AT1R and

upregulation of its gene and that of TGF-phave also been shown in rats with coarctation

of the abdominal aorta 3t3. In SHR and tr¡¿o-kidney renal one-clip renovascular

hypertensive rats, ventricular AngII mRNA levels and ATIR densities were increased

three- and two- fold, respectively 3la. Furthermore, exogenous Ang II has been shown to

increase protein synthesis in embryonic and neonatal cells 315 and to reduce atrophy in

denervated transplanted rat heart ''u. On the other hand, ACE inhibitors such as enalapril

reduced cardiac hyperhophy as indicated by the reduction in ratio of LV to body weight

in SHRrs3.
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Human clinical trials of ACE inhibitors in the early post-infarction period began

when laboratory studies in animal models found that these agents reduced LV dilation

after MI. The clinical and hemodynamic benefits of ACE inhibitors in patients with CHF

were also established 3't. Therapy with ACE inhibitors improved clinical signs and

symptoms, as well as exercise tolerance in patients with moderate to severe CHF 304'318.

ACE inhibitors also slowed the onset of symptomatic CHF and its clinical progression in

patients with milder symptoms 3te'320.In addition, ACE inhibitors prolonged survival in

patients with CHF, including asymptomatic and symptomatic patients as well as those

with symptomatic left ventricular dysfunction in the setting of acute MI32t'322.

Although the first Ang II receptor antagonist octapeptide, saralasin, was identified

early in 1970s, the process of clinical availibify of antiotensin II receptor antagonistwas

very slow zes. At the beginning of 1990s, nonpeptide ATrR antagonists losartan, also

named as DuP 753,or MK-954 became available 323'324.It is a competitive antagonist of

the AT1R, which has undergone extensive clinical testing in patients with essential

hypertension, and was the first nonpeptide Ang II receptor antagonist inhoduced in 1995

for clinical utilization zes. Losartan has been developed to overcome potential limitations

of ACE inhibitors, e.g. insufficient control of tissue Ang II production and bradykinin-

related side effects. The clinical study of losartan in heart failure showed that losartan

produced dose-dependent vasodilatation and neurohormonal effects 32s'326.In the rat MI

model, hemodlmamic studies confirmed that reduction in filling pressure by losartan was

sustained during chronic therapy. AT1R antagonists exert beneficial hemodynamic and

neurohormonal effects in human heart failure 325.

Both ACE inhibitors and ATrR antagonists increased the circulating levels of

renin and Ang I, and reduced the level of aldosterone and the activity of sympathetic
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system. However, these agents produced opposite effects on Ang II levels: ACE

inhibitors decreased it and AT1R receptor antagonists increased it 2e5. When losartan was

compared to captopril in the MI rat, the agents were found to be equally effective in

attenuateing the impairment of LV, reducing LVEDP and LV end-diastolic volume index

as well as increasing venous compliance 30s. Losartan reduced LV hyperhophy and

completely prevented interstitial collagen accumulation in the myocardium 324. For the

prevention of collagen accumulation in SHR" losartan showed a similar effect as enalapril,

and was even much better at lower dose ls3. Losartan was regarded to have comparable

eff,rcacy and tolerability with enalarpil in the short-term treatment of moderate or severe

CHF 327.

The difference between the two designated sites of action of ACE inhibitors and

ATrR antagonists makes the drug interaction in RAS an interesting issue for both therapy

and research 2e5. The pharmacological target of ACE inhibitors is the formation of Ang II,

the first step in RAS activation, while that for ATIR antagonists is to block the receptor.

These two are not co-localized together, but are tissue specific 'nt. On the other side, the

existence of an alternative pathway for the production of Ang II bypasses the effect of

ACE inhibitor, unlike ATrR antagonist. Due to these reasons, combination of therapy

with ACE inhibitors and AT¡R antagonists has been investigated in different models and

clinical trials. Konstam's group 328 found that combination therapy with enalapril and

losartan limited the increase in heart weight/body weight ratio in MI rat. From the clinical

hial, echocardiologic studies showed that the combination of enalapril + losartan is more

effective than enalapril alone in improving myocardial function both at rest and after

stress. The effect is detectable after six weeks of treatment, and it is believed that the

combined therapy is perhaps attributable to escape of the "escape phenomenon", which is
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common in monotherapy with ACE inhibitors, due to the convertion from Ang I to Ang II

by chymase 32e. These observations suggest that the blockade of RAS has beneficial

effects in CHF.
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II. STATEMENT OF THE PROBLEM AND HYPOTHESES

TO BE TESTED

Differences in myosin ATPase activities from different sources have been

attributed to the presence of different amounts of two MHC isozymes namely a-MHC and

f,-}/'HC 130'lse. While differences in the primary structure of myosin isozl,rnes have been

identified with peptide mapping and immunological analysis, complementary DNA and

genomic DNA cloning experiments have demonstrated that myosin isoz)'rnes are coded

by two separate genes that are linked 4 kilo-bases apart in the rat genome 160'330. Atthough

on the basis of electrophoretic mobility myosin Vl, Vz and V¡ isozymes have been

identified 331, these isozymes were found to contain a-MHC and B-MHC with identical

MLC composition. Myosin Vr is a aa homodimer and has the highest ATPase activity

whereas myosin V: is a BB homodimer with the lowest ATPase activity; myosin V2 is a

aBheterodimer l6'. Thus a shift in the composition of myosin isozymes with respect to a-

MHC and B-MHC contents can be seen to depress the myosin ATPase as well as

myofibrillar Ca2+-stimulated ATPase activities, and conhactile function of the

myocardium lse'332-33s 
. A wide variety of changes in the distribution of myosin isozymes,

myosin ATPase activity and myofibnllar Caz+-stimulated ATPase activity have been

reported in cardiac dysfunction and different types of failing hearts 14,l3l'1s8,336-33e.

Although some investigators have examined changes in myosin isoz)¡mes as well as

myosin ATPase activities in cardiac hyperhophy and heart failure due to MI, the results

are conhoversial. For example, Geenen et al.3a0'3at have reported a shift in the myosin

isozyme distribution and depression in the actomyosin ATPase activity in the heart at 3
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weeks of MI in rats; however, the changes in myosin isozyrnes were found to be region

specif,rc. Although a decrease in ø-MHC and an increase in B-MHC contents were seen in

the LV at 4 to 5 weeks following MI in rats, a-MHC, unlike P-MHC, was not responsive

to treatment with thyroid hormones 342. Alterations in mRNA levels for both a-MHC and

B-MHC in LV as well as RV were seen in rats at 4 weeks following MI 343-34s and these

changes were prevented by treatment with Ca2*-antagonists 343'344. On the other hand, an

increase in mRNA level for d-I|ldIlC in the LV from infarcted rat was detected at 3 days

but was not evident at 3 weeks following MI 346. 
Some investigators 3o' have reported no

change in myofilament function as assessed in the RV skinned trabeculae at 4 weeks after

inducing MI in rats whereas others 3a8 have failed to detect any change in MHC isoforms

in the LV of rabbit at 3 weeks following ML These differences in results from various

studies may be due to differences in infarct size, duration of coronary occlusion and

different species employed for experimentation. In view of such scattered and conflicting

information concerning changes in myosin isozymes, mRNA levels and myosin ATPase

activity, it is difficult to make any conclusions regarding the significance of changes in

cardiac contractile proteins in congestive heart failure due to MI.

Accordingly, the present study is proposed to examine changes ìn LV myosin

isozymes, nRNA levels for a- and p-myosin isozyrnes and myofibrillar ATPase activities

in a hemodynamically assessed rat model of CHF 'n't'. Sin.. the behaviour of the RV in

this experimental model has been reported to be different from that of the LV $'34e, RV

was also used for biochemical analysis for the purpose of comparison. Because treatment

of the infarcted animals with ACE inhibitors such as captopril and imidapril, has been

shown to exert beneficial effects on CHF 3s0'3s2, we have employed imidapril-heated

animals for studying the beneficial effects of ACE inhibitors in CHF. The selection of
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imidapril for this study is mainly due to the fact that this long-acting agent has been

reported to reduce mortality in a small coronary artery diseased animals to a greater

extent than other ACE inhibitors 3s3.

The ability of cardiac muscle to generate contractile force is primarily dependent

upon myofibrillar Caz*-stimulated ATPase activity 't8. Furth".-ore, it is known that the

myofibrillar ATPase activity is determined by different amounts of MHC isozymes,

namely ø-MHC and fMHC in the myocardium 130'lse. A shift in the composition of

myosin isozymes with respect to a-MHC and þ};/.HC contents has been shown to depress

myosin ATPase as well as myofibrillar Caz+-stimulated ATPase activities and contractile

function in different models of cardiac hyperhophy and heart failure tse,332-33s'3s4.

However, the mechanisms of such a change in the molecular composition of myofïbrils

(myofibrillar remodeling) in CHF due to MI are not understood. Since the RAS is

activated in CHF and its blockade has been shown to prevent cardiac remodeling

(changes in cardiomyocyte size and shape) and improve heart function in CHF due to MI

in humans 3le'3ss, 
and animal models 4t'42'3s0'3s2'3s6, it is likely that myofibrillar remodeling

in the failing heart is prevented by the blockade of RAS. Therefore, it is planned to

examine the effects of imidapril treatment in infarcted rats on LV function and

myofibrillar Ca2*-stimulated ATPase activity as well as changes in MHC protein and

gene expression 42. In order to test if the effects of imidapril are mediated through the

blockade of RAS, we have used enalapril, a widely used ACE inhibitor, and losartan, an

ATIR antagonist. It should be noted that although these agents have been reported to

produce beneficial actions on cardiac remodeling and heart failure 41'3s7'3s8, the effects of
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enalapril and losartan on changes in myofibrillar Ca2*-stimulated ATPase and MHC

isoforms in CHF have not been examined previously.

The objectiie of the present study therefore is to investigate if improvement of

cardiac function is associated with prevention of changes in myosin isozymes, and gene

expression for ø-MHC and fMHC as well as myofibrillar Ca2*-stimulated ATPase

activities in the failing heart upon treatment with enalapril or losartan. In order to test if

the effects of losartan are additive, infarcted animals were treated with a combination of

both drugs.

Among a wide variety of protein kinases present in mammalian cells, two

multifunctional protein kinases, PKC and PKA, are thought to mediate several

phosphorylation reactions in the myocardium 3se-361. Both of these protein kinases are

known to regulate cation transport, contractile force development, metabolic processes,

gene expression, and cellular growth in the heart 360'361. Molecular cloning studies 360'362

have indicated that PKC exists as a family of at least 12 distinct isoforms. The

conventional PKC isoforms (a, þ, and y) contain a Ca2*-binding domain which accounts

for their activation by Caz*. The novel PKC isoforms (4 ¿ q, and 0)tackthe putative

Ca2*-binding domain and do not require Ca2* for maximal enz4atic activation. Atypical

PKC isoforms ((, l, and r) are distinguished from other members of the PKC gene family

by the presence of only a single copy of cysteine-rich motif. Activation of Ang II

receptors, øl-adrenergic receptors, and endothelin-1 receptors has been shown to

stimulate PKC via Gq-coupled PLC-P le6'360'36r. In conhast, pKA is activated by

catecholamines through G"-coupled þadrenergic receptors 26s'360. Previous work from our

laboratory 363 has demonstrated increased activities of cardiac PKC and PKA due to CHF
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in cardiomyopathic hamsters. Increased cardiac PKC activity has also been shown in

pressure-overloaded cardiac hyperhrophy in the rat 248 and pressure overloaded heart

failure in guinea pigs tuo, as well as in human failing hearts 36s. varying degrees of

changes in PKC activities have been observed in cardiac dysfunction due to diabetes

2s3'366-36e. Furthermore, transgenic mice with cardiac overexpression of PKC-p or PKC-¿

were found to exhibit gross cardiac hyperlrophy and diminished ventricular function

262'370. The PKA activity has also been observed to increase in cardiac hyperhophy due to

volume overload in rats 281. Transgenic mice with overexpression of PKA in the heart

have been repofed to develop dilated cardiomyopathy and reduced cardiac contractility;

however no changes in PKA activity were seen in failing human heart or in MI 267'26e.

Although cardiac hypertrophy, heart failure and cardiac dysfunction are known to occur

as a consequence of MI3e'82'284'3st'3s2, no information regarding changes in PKC activities

in the infarcted heart is available in the literature. Accordingly, this study was undertaken

to examine the status of PKC activities during the development of CHF in a rat model of

ML Some experiments were also carried out to examine whether the changes in PKC

activities in the failing heart are due to corresponding changes in the contents of PKC

isozymes. It should be pointed out that PKC is activated by Ang II through the PLC-B-

mediated mechanisms in cardiomyocytes 3ót. Furthermore, Ang ll-induced activation of

PKC has been demonstrated to result in the stimulation of cardiac gene expression, cell

growth and remodeling of the myocardium 360'361'37r. Accordingly, the stimulation of RAS

is considered to play a critical role in the activation of PKC that regulates the

hypertrophic process and cardiac performance 36a. Because the RAS is activated in CHF

372 and treatment of infarcted animals with ACE inhibitors has been shown to produce
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benef,rcial effects on heart function and attenuate changes in PLC activities 3st'3s2, it was

planned to test the effect of imidapril on PKC activities and PKC isozyme contents in the

failing heart. PKA activity and content of the Ml-induced failing hearts with or without

imidapril heatment were also maintained to test whether changes in PKC are of a specific

nature.
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III. METHODS AND MATERTALS

A. Experimental Model

Experiments were conducted in accordance with the "Guide to the Care and Use

of Experimental Animals" issued by the Canadian Council of Animal Care, and all

experimental protocols were approved by the Animal Care Committee of the University

of Manitoba following guidelines established by the Canadian Institutes of Health

Research. MI was induced in male Sprague-Dawley rats (175-2009) by occlusion of the

left coronary artery as described earlier 3e'82'34e'3s2. Rats were anesthetized with

isofluorane and the heart was exposed by opening the chest upon performing left

thoracotomy. The left coronary artery was ligated at about 2 mm from origin of the aorta

with 6-0 silk suture. The heart was repositioned in the chest and the incision was closed

with a purse string suture. A mixed isofluorane with 95o/o oxygen and 5o/o carbon dioxide

was supplied to the animal under positive pressure during surgery. Mortality of

experimental rats was 30-35% within 48 hr. Sham-operated rats were heated in the same

way except that the coronary artery was not ligated. Electrocardiography was performed

before, and after open-chest to test the success of operation, and also performed at 3

weeks following MI. All animals were fed regular rat chow and were provided water ad

Iibitum, and then maintained for I,2, 4,7 and 8 week after the coronary artery ligation

before the assessment of cardiac function and biochemical changes.
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B. Protocol for Drug Treatments

In one series of experiments (for myosin gene expression), the sham-operated and

MI rats were treated at 3 weeks after the surgical operation with or without imidapril

hydrochloride (1 mglkglday) for 4 weeks; imidapril was dissolved in distilled water (1

mglml) and administered once a day by gavage whereas the untreated animals received

distilled water. All these animals were assessed hemodynamically and then examined for

biochemical changes 7 weeks post-surgery. For PKC isoforms experiment, some sham

and myocardial infarcted rats were divided into untreated and treated groups at 4 weeks

after the operation. The untreated infarcted animals received distilled water whereas

treated animals were given ìmidapril hydrochloride dissolved in distilled water at a

concentration of 1 mg/ml once a day by gavage at a volume of 1 ml/kg/day for 4 weeks.

In another series of studies, the experimental animals were randomly divided into 5

groups: sham operated (Sham), infarcted (MI), enalapril heated infarcted (ENP), losartan

treated infarcted (LOS), and combined enalapril and losartan treated infarcted (COM).

Three weeks after the operation, enalapril (10 mglkg/day) and/or losartan (20 mgkglday),

or tap water were given orally via a gastric tube to sham and infarcted groups for 5 weeks.

The selection of the doses for these drugs was based on our previous study showing the

beneficial effects of these agents on the SR protein and gene expression in this

experimental model ar. Imidapril was kindly supplied by Tanabe Seiyaku (Osak, Japan).

Enalapril and losartan were supplied by Merck Research Laboratories (Rahway, NJ,

usA).
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C. Hemodynamic Studies

All animals were assessed hemodynamically before sacrif,rce. The animals were

anesthetized with an intraperitoneal injection of a mixture of ketamine (60 mg/kg) and

xylazine (10 mg/kg). The right carotid artery was exposed and a cannula with a microtip

pressure transducer (model SPR-249, Millar Instruments, Houston, TX) was introduced

through proximal arteriotomy 3e'82'34e. The catheter was advanced carefully through the

lumen of the carotid arfery, until it entered the LV, and then was secured with a silk

ligature around the artery. The readings were taken using a computer program

(AcqKnowledge for Windows 3.0., Harvard Apparatus, Montreal, Canada). The left

ventricular systolic pressure (LVSP), LVEDP, heart rate, rate of pressure development

(+dP/dt), rate of pressure decay (-dP/dÐ and mean arterial blood pressure (MAP) were

measured in these anesthetized animals according to the procedure described earlier

39,82,349,352

General Assessment and Tissue Preparation

At the end of the hemodynamic measurements, the hearts were removed, and the

LV (including septum) and RV as well as the scar tissue were quickly dissected, weighed

and frozen in liquid nitrogen and stored at -70"C. The lung weldry wt ratio, an index of

pulmonary congestion, as well as the heart wt/body wt ratio (including both ventricles and

infarct scar), an index of cardiac hypertrophy, were measured in these animals. The

removal of scar from the LV was necessary to obtain the noninfarcted myocardium

(viable LV tissue including septum) for biochemical studies. Since scar wVtotal LV wt

(including septum and infarcted tissue) ratio was found to exhibit a Tinear relationship

D.
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with infarct size (as measured morphometrically) 3s0, the scar wt was used as a marker to

determine the extent of scar size3e'41'82'34e'3s2.It should be pointed out that about 10% of

untreated and treated animals showed small infarct (scar wltotal LV ratio < lsyo

corresponding to scar size < 30yo of the free LV wall). Thus the hemodynamic data from

the animals showing smali infarct were not included and the cardiac tissue from these

animals was discarded. Furthermore, in view of the lack of clear demarcation befween the

adjacent area to the infarcted zone and the remote area, the adjacent segment and remote

LV were not separated and thus the noninfarcted LV (including septum) and RV tissues

from the infarcted animals were employed in this study. The average scar wlLV wt ratio

in the untreated and treated animals were 24.4 + 0.8 and 23.6 + 0.6, respectively; these

values were not statistically different (P > 0.05) ffom each other and corresponded to

infarct size of about 40% of the free LV wall area.

Myofibrillar Mg2*-stimulated ATPase and Ca2*-stimulated

ATPase Activities

Myofibrils were isolated according to the procedure employed earlier 337. The

myofibrillar fi'action was suspended in a final solution containing 100 mM KCl, 20 mM

Tris-HCl (pH 7.0). Mg2*-dependent ATPase activity was determined at 30oC in a medium

containing 20 mM imidazole (pH 7.0), 2 mM Mgcl2, 2 mM Na2ATp, 10 mM NaN3, 1.6

mM Ethyleneglucol-bis(paminoethylether)N,N,N',N'-tetraacetic acid (EGTA) and 50

mM KCl. Myofibrillar protein concentration varied from 400 to 700 pglml; blank tubes

did not contain myof,rbrillar proteins. Total ATPase activity was determined in the same

medium except that EGTA was replaced by 1 pM of free Ca2*. Ca2*-stimulated ATPase

E.
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activity was taken as the difference between values obtained for total and Mgz* ATPase

activities. All reactions were terminated after 5 min by the addition of I ml of l2o/o

trichloroacetic acid. These samples were centrifuged and the phosphate in the protein-free

supernatant was determined 332'338.

F. Relative Protein Quantification of Cardiac Myosin

Relative protein content of cardiac MHC and MLC was determined by Western

blot. Cardiac muscle homogenate was prepared from 10 mg pieces of ventricles from

each experimental group, i.e. sham, imidapril-treated sham, infarcted and imidapril-

treated infarcted ratheart. Another series of experiments included tissues from Sham, MI,

ENP, LOS and COM. The muscle was homogenized using a Brinkmann homogenizer

with Kinematica STlPolyhon PTA 7K1 for 4 - 6 s in homogenizing buffer (100 pl buffer

per 2 mg of muscle), containing 60 mM KCl, 1 mM cysteine, 20 mM imidazole (pH 6.9),

1 mM MgCl2, 1 mM ouabain, 10 mM NaN3, 1 mM CaClz,0.0l% leupeptin, 250 pM

phenylmethyl-sulfonylfluoride and 1 mM dithiothreitol (DTT). The homogenization

procedure was carried out at 4oC. The concentration of protein in the homogenate was

adjusted to I mglml with the homogenizing buffer. The sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer, which contained 0.25 M

Tris-HCl (pH 6.8), 8% (wlv) sodium dodecyl sulfate (SDS), 45%o glycerol, 20o/o ft

mercaptoethanol, and 0.006% bromophenol blue, was added into the homogenate buffer

(1 part of loading buffer to 3 parts of homogenate) 160. The samples were boiled for 5 min

at 95oC. The proteins in homogenate separated by SDS-PAGE were electroblotted to

Immobilon-P transfer membrane (Millipore Company, Bellerica, MA, USA) in a transfer
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buffer that contained 25 mM Tris-HCl, 120 mM glycine and 20Yo methanol (v/v) for the

analysis of cardiac MHC with immunoblotting analysis. Then the transferred membranes

were shaken for 2 hr in blocking buffer, which contained Tris buffered saline (TBS, 10

mM Tris-HCl, 150 mM NaCl) and 5o/o fat-free powdered milk, then incubated for 1 or 2

hr at room temperature with monoclonal anti-MHC mouse antibody (1:1000, Sigma

Immuno Chemicals, St. Louis, MO, USA), anti-MLC mouse IgG antibody (1:1000,

Sigma Immuno Chemicals, St. Louis, MO, USA), or anti-Tnl antibody (1:1000, Sigma

Immuno Chemicals, St. Louis, MO, USA). The transferred membranes were subsequently

incubated with biotinylated anti-mouse IgG (1:1000, Amersham Biosciences Inc, Baie

d'Urfe, Quebec, Canada) for 40 min and then finally with strepdavidin conjugated

horseradish peroxidase (HRP, 1:5000, Amersham Biosciences Inc, Baie d'Urfe, Quebec,

Canada) for 40 min. The blots were rinsed in the TBS-T (10 mM Tris-HCl, 150 mM NaCl

and 0.2o/o Tween 20) 3 times (5 min each time) between each of the preceding steps. For

chemiluminescent detection, the membrane sheets were developed on Hyperf,rlm-ECl

(Amersham Biosciences Inc, Baie d'Urfe, Quebec, Canada) to visualize proteins. The

normal exposure times ranged from 30 sec to 5 min. The relative protein content was

determined by a GS-670 Imaging Densitometer (Bio-Rad Laboratories Canada Ltd,

Mississauga, ontario, canada) with the Image Analysis software version 1.0.

G. Analysis of Cardiac Myosin Heavy Chain Isoforms

Cardiac MHC isoforms were determined under denaturing conditions. The a-

MHC and þMHC isoforms in the SDS-PAGE samples were separated by 4% SDS-

PAGE as described 333'33e. The separating gel contained 3.g75% (wlv) acrylamide and
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0.025% (w/v) bisacrylamide (T : 4o/o, C: 0.6250/o, where T : total acrylamide and C :

bisacrylamide concentration as a percentage of total). The height of the stacking gel was

reduced to 1 cm. Gels were cast to a thickness of 0.75 mm in glass plates previously

silanized on the inner surfaces with dichloromethylsilane to prevent gel adherence. A

maximum of 2 - 4 pg of a lmglml protein sample was loaded. Electrophoresis was

carried out at a constant 220 V for 3 - 3.5 hr with cooling between 13 and 17oC and

continuous stirring of bottom tank buffer. The gels were stained with Coomassie brilliant

blue R250 for 2 hr and were destained withT% acetic acid by diffusion. Relative amounts

of isoforms were estimated by Imaging Densitometer (GS-670, Bio-Rad Laboratories

Canada Ltd, Mississauga, Ontario, Canada).

H. Preparation of Tissue Extract for Enzyme Determination

The preparation of tissue extract for PKC analysis was carried out by the method

described earlier 363'367 ' all procedures were carried out at 4oC. The ventricular tissue (50

mg) was minced in i ml of buffer A (50 mM Tris-HCl,0.25 M sucrose, 10 mM EGTA, 4

mM EDTA,20 pglml leupeptin, 200 U/ml aprotinin, pH 7.5) and homogenized (Polytron

PT3000, Brinkmann Instruments; Mississauga, Ontario, Canada) at a setting of 8 for 2 x

30 sec and sonicated for 2 x 15 sec. In one set of experiments, the homogenate was

incubated with 1% Triton X-100 (Sigma Immuno Chemicals, St. Louis, MO, USA) on ice

for 60 min to solubilize PKC enzyme which is bound with subcellular structures. This

Triton X-100-treated homogenate was then centrifuged at 100,000 x g for 60 min in an

ultracentrifuge (model L70, Beckman Instruments Canada Inc; Mississauga, Ontario,

Canada), and the supematant obtained was labeled as the homogenate fraction. In another
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set of experiments, the homogenate without Triton X-100 treatment was centrifuged at

100,000 x g for 60 min to separate the soluble and particulate-bound enzyme. The

resulting supernatant was labeled as the cytosolic fraction, whereas the pellet was

resuspended in 1 ml of buffer A with 1% Triton X-100 and incubated on ice for 60 min.

The resuspended pellet was centrifuged at 100,000 x g for 60 min and this supernatant

was labeled as the particulate fraction. For preparation of tissue extract for PKA

determination, -50 mg of ftozen cardiac tissue were homogenized in I ml buffer B at pH

7.4 containing (in mM) 5 histidine-Hcl, 0.1 phenylmethylsulphonyl fluoride, 50 KHzPO+,

25 NaF, 10 EDTA, 750 KCI and 0.2 DTT. After gentle mixing, the homogenate was

centrifuged at 100,000 x g for 60 min at4oC and the supernatant was used for analysis of

PKA activity and protein level 267'281.

I. Assays of PKC and PKA Activities

PKC activities in small samples of nonpurified homogenate, cytosolic and

particulate fractions from the ventricular tissue \Mere measured in the presence of okadaic

acid, a highly specific inhibitor of type 1 and type 2A phosphatases 373'374, by following

methods described elsewhere 363'367. The Ca2*-dependent PKC activity was determined

with a PKC assay kit (Upstate Biotechnology; Lake Placid, NY, USA) in the reaction

buffer C containing (in mM) 20 3-[N-morpholino]propanesulfonic acid (MopS), pH 7.2,

25 ftglycerol phosphate, I sodium orthovanadate, 1 DTT and 4 CaClz. Substrate cocktail

containing 500 pM PKC substrate peptide in buffer C, inhibitor cocktail containing 2 pM

PKA inhibitor peptide in buffer C, and lipid activator containing 0.5 mg/ml phosphatidyl

serine and 0.05 mglml diglyceride in buffer C was used. The Ca2*-independent PKC
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activity was determined in a reaction buffer D containing (in mM) 20 MOPS, pH 7 .2,25

þglycercl phosphate, 1 sodium orthovanadate, 1 DTT, and 1.25 EGTA. Subshate

cocktail (specif,rc for PKC-a and -( isozymes; Qualify Controlled Biochemicals;

Hopkinton, MA, USA) containing 500 7-rM PKC subshate peptide in buffer D, inhibitor

cocktail containing 2 pM PKA inhibitor peptide in buffer D, and lipid activator

containing 0.5 mg/ml phosphatidyl serine and 0.05 mg/ml diglyceride in buffer C was

used. The sequence of the peptide substrate (Upstate Biotechnology; Lake Placid, NY,

USA) used for PKC activity assay was QKRPSQRSKYL. The reactions for both Ca2+-

dependent and Ca2*-independent PKC activities were initiated by the addition of [y-

3tPlATP (10 pl) and allowed to proceed at 30oC for 10 min. The incorporation of 32P

from [y-32P] into a synthesized substrate, which is a more specific substrate for PKC than

Histone H-1 protein 2s3'36e, was measured as described elsewhere 363'367. On the other

hand, PKA activify was determined by using the PKA assay kit (Upstate Biotechnology;

Lake Placid, NY, USA). The reaction \ilas initiated by adding ¡y-32e1ete (1 part of [f-

"P1ATP in 9 parts of kit ATP solution). The PKA activity was assayed as described

earlier'u'by measuring the incorporation of 32P from [y-"p] ATP into the substrate26T'281.

J. Analysis of PKC Isozyme and PKA Protein Content

The relative protein content of PKC-ø, -þ, -€, and -( isozymes was obtained by

running SDS-PAGE of samples on 70%o minigels followed by Western blot analysis with

homogenate, cytosolic and particulate fractions 363'367. The SDS-PAGE loading buffer

contained 0.25 M Tris-HCl (pH 6.8), 8% (wlvol) SDS, 45% glycerol, 20% Ê

mercaptoethnol, and 0.006% bromophenol blue. The proteins in both fractions separated
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by SDS-PAGE were electroblotted to Immobilon-P transfer membrane (Millipore

Company, Bellerica, MA, USA) which were incubated with polyclonal anti-PKC-ø, -þ, -€,

and -Ç isozyme antibodies (Sigma Immuno Chemicals, St. Louis, Mo, USA) for t hr at a

concentration of 1:1000, respectively, and were subsequently incubated with biotinylated

anti-rabbit IgG (l:5000; Amersham Biosciences Inc, Baie d'Urfe, Quebec, Canada) for 40

min and then finally with streptavidin conjugated HRP (1:5000; Amersham Biosciences

Inc, Baie d'Urfe, Quebec, Canada) for 30 min. It should be pointed out that a recombinant

standard (Bio-Rad Laboratories; Hercules, CA, USA) was run on SDS-PAGE with each

sample to confirm molecular weight of PKC isozymes. Ponceau staining of the blots was

performed to ensure no difference befween control and experimental samples with respect

to protein loading and protein transfer. The content of PKC isoz)'rne was determined with

an imaging densitometer (model GS-670, Bio-Rad Laboratories Canada Ltd, Mississauga,

Ontario, Canada) with the Image Analysis Software Version 1.0. The relative protein

content for each experimental sample was expressed as a percentage of the respective

control value (band density of the sham control sample was considered as 100%). The

information about the cross-reactivity of PKC isoform antibodies (GIBCO-BRL Life

Technologies, Burlington, Ontario, Canada) indicated that antibodies directed against

PKC-(recognize PKC-a and to a lesser extent PKC-P. Nonetheless, the bands for PKC-a,

PKC-P and PKC-Ç were distinguished on the basis of molecular weight. Because the

antibody against PKC-P did not distinguish PKC-ÉI and PKC-BII, the band for PKC-P

was considered to be due to both BI andBII isoforms.

To quantitate the levels of PKC isoforms in the heart, the samples were run on the

SDS gels along with recombinant PKC-a and PKC-| (calbiochem; La Jolla, CA, USA).
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The membranes were incubated with polyclonal anti-PKC-a and anti-PKC-B (Calbiochem;

La Jolla, CA, USA) for t hr at a concentration of 1:1,000. Different amounts of PKC-a

and PKC-p (20, 40 and 60 ng) and different exposure times were used for obtaining

standard curves for these isoforms; the optimal time period exposure for PKC-a was 30

sec whereas that for PKC-P was 3 min. The relative protein content of PKA was obtained

by running 12% SDS-PAGE and Western blotting 363. The anti-PKA polyclonal antibody

was from Transduction Laboratories and the concentration of 1:1,000 was utilized for the

primary antibody. Cell lysates (5 pl) derived from a pituitary tumor of a female Wistar-

Furth rat (supplied along with the anti-PKA antibody purchased) was used as a positive

control in Western blotting experiments

RNA Isolation

Total myocardial RNA preparation was isolated from the LV and RV of sham,

imidapril-treated sham, infarcted and imidapril-treated infarcted rats by guanidinium

thiocyanate method established by Chomczynski and Sacchi 37s at 7 weeks after the

surgery. Briefly, the fresh tissue was washed twice with a solution containing 10 mM

MOPS and 10 mM sodium ethylenediaminetetraacetate (EDTA) and frozen in liquid

nitrogen. The frozen samples were ground with mortar and pestle while immersed in

liquid nitrogen. Powdered samples were suspended in solution D (4 M guanidine

isothiocyanate,25 mM sodium citrate (pH 7.0), 0.5% N-lauroylsarcosine and 0.1 M 2-

mercaptoethanol) and subjected to polytron homogenization. Tissue homogenates were

tleated with 0.1 volume of 2M sodium acetate (pH 4.0), equal volume of water-saturated

phenol and 0.2 volumes of chloroform-isoamyl alcohol mixture @9:I) and mixed by

K.
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inversion. The mixture was cooled on ice for an additional 15 min and was centrifuged at

6,000 x g for 20 min at 4oC. The RNA-containing aqueous phase was transferred to a

fresh tube, mixed with an equal volume of isopropranol and kept at -20' C for 60 min.

RNA was sedimented at 10,000 x g for 20 min and resuspended in solution D. In another

series of experiments, total myocardial RNA preparation was extracted from the viable

LV of sham, MI, ENP, LOS, and COM rats by the acid guanidinium thiocyanate-phenol-

chloroform method (TRIzol reagent, GIBCO-BRL Life Technologies, Burlington,

Ontario, Canada) according to the manufacturer's instructions. Re-precipitation of RNA

by isopropranol was carried out at -20o C for t hr and the RNA pellets were suspended in

75% ethanol (molecular biology grade diluted with DEPC-treated water). After

sedimentation, RNA pellets were washed second time in ethanol and vacuum dried.

Samples were dissolved in DEPC-heated water and the RNA concentration was

calculated from the absorbance at260 and 280 nm.

Northern BIot Analysis

Steady-state levels of ø-MHC and ft}l4.HC mRNA were determined by Northern

hybridization analysis; 20 pg of total RNA was denatured 1n 50Yo formamide, 7o/o

formaldehyde,20 mM MOPS (pH7.4),2 mM EDTA (pH 8.0),0.1% SDS and was

subjected to electrophoresis in a t.2o/o agarose/formaldehyde gel to size fractionate the

mRNA transcripts. The fractionated RNA was transferred (capillary) to a 0.45 mm

positive charge-modif,red nylon filter (Zeta-Probe membrane, Bio-Rad Laboratories

Canada Ltd, Mississauga, Ontario, Canada). Aîter 24 hr, the filter was removed and

nucleic acids were covalently crosslinked to the matrix using [fV radiation (LIV

L.
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Shatalinker 2400, Shatagene, Cedar Creek, TX, USA). Each membrane \ryas hybridized

with 32P-labeled oDNA probes at 42"C. Cardiac MLC, ftactin, as well as

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) oDNA probes (American Type

Culture Collection, Rockville, MD, USA) were labeled by random primer DNA labeling

system with Klenow fragment 376. The a-MHC probe was a 39-mer oligonucleotide

derived from the 3'-untranslated region of the rat ø-MHC gene as follows: 5'-GGG ATA

GCA ACA GCG AGG CTC TTT CTG CTG GAC AGG TTA-3'. Similarly, the cardiac

d-i|l4}Jc probe was derived from the 3'-untranslated region of the gene (rat genome) and

was 5'-CAG GCA TCC TTA GGG TTG GGT AGC ACA AGA-3'. Filters were exposed

to x-ray film (Kodak X-OMAT) at -80oC with intensiffing screens. Results of

autoradiographs from Northern blot analysis were quantified by densitometry (GS-670,

Bio-Rad Laboratories Canada Ltd, Mississauga, Ontario, Canada). The signals of ø-MHC,

P-MHC, MLC, and þactin mRNA were norrnalized to that of GAPDH mRNA to account

for differences in loading and,/or transfer. The signal for GAPDH mRNA in infarcted

heart did not change when normalized with respect to that for the 18S or 28S.

M. Data Analysis

Data are expressed as mean + SE. The differences among various groups were

evaluated statistically by one-way ANOVA followed by the Newman-Keuls test. A P

value < 0.05 was taken to represent a significant difference.
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IV. RESULTS

A. Modification of Myofibrillar ATPase Activity and Myosin

Isozymes in Failing Heart by Imidapril

Occlusion of the left coronary artery resulted in scar formation in the LV, The

viable cardiac muscle (both LV and RV) in the 7 week infarcted animals underwent

hypertrophy; this was indicated by increased ventricular weight (wt) and ratio of the heart

wt to body wt compared with sham control values (Table 2). There was a significant

increase in wet-to-dry wt ratio of the lungs indicating the presence of pulmonary edema in

MI rats. The increase in LVEDP and depression in contractile function with respect to

both +dPldt and -dPldl were observed in the 7 week MI group. All these parameters in

general characteristics and hemodynamics were partially prevented by treatment with

imidapril (Table 2). No significant changes in the above mentioned parameters were

observed in sham control animals treated with imidapril.

The relative protein content of MHC was derived from immunoblots using a

monoclonal anti-MHC (a mixture of a- and pisoforms) antibody. No significant

alteration in the total protein level of MHC was observed in rats with MI irrespective of

the treatment (Figure 4). It should be noted that during polyacrylamide gel electrophoresis

in the presence of SDS, the MHC pisoform exhibited a higher electrophoretic mobility

than the MHC ø-isoform. The MHC ø-isoform was the dominant (> 9O%) isoform in

both LV and RV of untreated and imidapril-treated sham rats. In LV and RV of untreated

infarcted animals, the MHC a-isoform was markedly reduced while the MHC pisoform

was increased (Figure 5). The percentage of MHC pisoform was significantly increased



Table 2. General characteristics of the sham control and infarcted rats with or without imidapril treatment

Body wt (g)

Heart wt (me)

Right ventricular wt (mg)

Scar wt (mg)

Heart wt/body wt (mg/g)

Lung weVdry wt ratio

LV +dPldt (mm Hg/sec)

LV -dPldt (mm Hg/sec)

LVEDP (mm Hg)

Sham

495 + 8.6

II32 + 41.6

274 + 16.6

ND

2.35 + 0.tI

4.31 + 0.15

8856 + 834

9027 + 822

4.1+0.3

Sham + IMP

Results are mean + SE of 12 animals for each group. MI: infarcted; IMP: imidapril; ND: not detected; LV: left ventricle; +dP/dt'. rate

of pressure development; -dPldt: rate of pressure decay; LVEDP: left ventricular end diastolic pressure. IMP (1 mgkglday) was given

orally for 4 weeks starting at 3 weeks after inducing MI. + P < 0.05 compared to Sham operated conhol; nP < 0.05 compared to

infarcted group.

468 + 8.8*

ll4t +71.8

250 +20.1

ND

2.4t L0.09

4.52+0.2

7918 + 540

9tt2 + 322

3.9 +0.2

MI

487 + 18

1558 + 59.8*

605 +29.3*

233 L22.5

3.08 + 0.06*

5.4I +0.24*

3812+252*

4021+2tl*

17.6 +2.I*

MI + IMP

463 + 15.6

t267 r34.5#

420 +28.2#

202+ 13.4

2.65 + O.O7#

4.gg + o.2g#

6382 + 552#

7813 + 64f

7.4 + 0.6#
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Figure 4. Typical immunoblots and relative protein contents of myosin heavy chain

in left (a) and right (b) ventricles from sham, imidapril-treated sham,

infarcted and imidapril-treated infarcted rats. Relative protein contents of
myosin heavy chain were determined by the electrophoresis and

immunoblotting assay with monoclonal anti-myosin heavy chain antibody.

IMP: imidapril; MI: infarcted; iMP (1 mglkglday) was given orally for 4

weeks starting at 3 weeks after inducing MI. The blots from #1 to 4 refer

to sham, sham * IMP, MI and MI + IMP, respectively. Values are means *
SE of 6 animals for each group.
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Figure 5. Myosin heavy chain a- and ftisozymes in left (a) and right (b) ventricles

from sham, imidapril-heated sham, infarcted and imidapril-treated

infarcted rats. The figure shows typical eletrophoresis for myosin heavy

chain a- and ftisozymes and the results for laser densitometric analysis.

MHC: myosin heavy chain; IMP: imidapril; MI: infarcted. iMP (1

mglkglday) was given orally for 4 weeks starting at 3 weeks after inducing

MI. The blots from #I to 4 refer to sham, sham * IMP, MI and MI + IMP,

respectively. Values are means + S.E. of 6 animals for each group. + P <

0.05 vs Sham;nP < 0.05 vs ML
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from 5% to 50o/o in the LV and ftom 3o/o to 43% in RV of infarcted rats. By contrast, the

MHC ø-isoform decreased from 94o/o to 50%;o in the LV and from 97o/o to 57o/o in the RV

of the infarcted rats. The imidapril treatment partially prevented the shift in MHC

isoforms in both LV and RV (Fig, 5).

Myof,rbrils isolated from the LV of infarcted hearts exhibited a lower (6.3 t 0.4

¡tmolPilmglhr) Ca2+-stimulated ATPase activity compared with sham-operated rats (10.3

t 0.6 ¡-¿mol Plmg/hr). Imidapril administration to the infarcted rats greatly normalized the

activity (8.3 t 0.42 ¡tmol Pi/mg/hr). In sham-operated rats, the imidapril treatment did not

significantly alter the myofrbrillar Ca2+-stimulated ATPase activity (Fig. 6). There was no

significant change in myofibritlar Ca2*-stimulated ATPase activity in the RV.

Furthermore, no alterations of myofibrillar Mg2* ATPase activity were found among

different groups.

In order to examine the significance of changes in the LV myofibrillar Ct*-

stimulated ATPase activity with respect to development of heart failure, we determined

the myof,rbrillar ATPase activities in both LV and RV at l, z, 4,8 and i6 weeks of

inducing ML It should be pointed out that studies from our laboratory 3e'82'34e with this

experimental model have revealed that the infarcted animals at 4, 8 and 16 weeks of

coronary occlusion are at early, moderate and severe stages of congestive heart failure,

respectively, whereas those at I and2 weeks are atpre-failure stage. The data in Table 3

indicate a progressive decrease in LV myofibrillar Ca2*-stimulated ATPase activity at 4,8

and 16 weeks whereas no change in this parameter was observed at 1 and 2 weeks

following MI. On the other hand, myofibrillar Ca2+-stimulated ATPase activity in the RV
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n Mgr*-ATPase

Sham Sham+ IMP M1 MI+IMP

Figure 6. Changes in myofibrillar Mg2*- and Ca2*-stimulated ATPase activities of

the left (a) and right (b) ventricles from sham, imidapril-treated sham,

infarcted and imidapril-treated infarcted rats. IMP: imidapril; MI: infarcted.

IMP (1 mglkg/day) was given orally for 4 weeks starting at 3 weeks after

inducing MI. Values are means + SE of 6 animals for each group. + p <

0.05 vs Sham; #P < 0.05 vs MI.
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Tabte 3. Myofibrillar Ca2*-stimulated ATPase activities in left and right ventricles from sham control and

infarcted animals at different intervals following occlusion of the coronary artery

I week

2 weeks

4 weeks

8 weeks

16 weeks

Sham

Each value is a mean + SE of 6 animals for each group. Values for myofibrillar Mg2* ATPase in the left venhicles varied between 3.2

to 3.8 pmol Pi/mg protein/hr whereas those in the right ventricle varied between 2.8 to 3.7 ¡tmol Pi/mg protein/hr and there was no

statistical difference between sham and infarcted animals. * P < 0.05 in comparison to respective Sham control.

Left ventricle

i0.4 + 0.51

10.1+ 0.44

10.4 + 0.38

10.8 + 0.41

10.6 + 0.34

Infarcted

70.7 +0.42

9.6 + 0.38

9.0 +0.27*

7.2 + 0.39*

5.8 +0.24*

Sham

Right ventricle

ó5

9.0 + 0.34

9.3 + 0.40

8.7 +0.28

8.9 + 0.35

8.4+0.28

Infarcted

9.1 + 0.27

9.2 + 0.36

8.1 + 0.33

8.0 r 0.38

7.3 +0.23*
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showed no change at l, 2, 4 and 8 weeks but was depressed at 16 weeks following

coronary occlusion.

The mRNA abundance of MHC ø-isoform and pisoforrn was determined by

Northern blot analysis (Fig. 7 and 8). The mRNA abundance of the MHC ø-isoform and

pisoform was expressed as MHC ø-isoform/GAPDH and MHC pisoform/GAPDH ratio,

respectively. The MHC a-isoform mRNA was decreased by about 35% to 55%o and MHC

pisoform mRNA was increased by about 30%o to 50o/o in LV and RV from the infarcted

rats, respectively, and these changes were partially reversed by treatment with imidapril

(Fie. 8).

Effects of Enalapril or Losartan on Myofibrillar ATPase and

Myosin Isozymes in Failing Heart

In this series of experiments, occlusion of the left coronary artery also resulted in

scar formation in the LV, while the viable cardiac muscle in the 8 weeks infarcted

animals underwent hypertrophy as indicated by increased venkicular wt compared to

sham control values (Table 4). A signif,rcant increase in wet wldry wt ratio of the lungs

indicated the presence of pulmonary congestion in MI rats. The liver wet wldry wt ratio

was not altered. An increase in LVEDP and depression in contractile function with

respect to both +dPldt and 4Pldt were observed in the 8 weeks untreated MI group

(Table 5). A1l these parameters in general characteristics and hemodynamics were

partially prevented by treatment with enalapril, losartan or combination of enalapril and

losartan. It was interesting to observe that the combination therapy did not produce

additive effects as these values were not different from those obtained by treatments with
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Figure 7. Typical Northern blots showing mRNA abundance for myosin heavy chain

c¿- and þisozyme from the left (a) and right (b) ventricles from sham,

imidapril-treated sham, infarcted and imidapril-treated infarcted rats. IMP:

imidapril; MI: infarcted. IMP (I mglkglday) was given orally for 4 weeks

starting at 3 weeks after inducing MI. cr-MHC: mRNA blot for myosin

heavy chain c¿-isozyme; B-MHC: mRNA blot for myosin heavy chain B-

isozyme; GAPDH: 'RNA blot for glyceraldehyde-3-phosphate

dehydrogenase. Values are means + SE of 6 animals for each group.
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Figure 8. Densitometric analysis for mRNA abundance for myosin heavy chain a-

isozl'rne and þisozyme in the left (a) and right (b) ventricles from sham,

imidapril-treated sham, infarcted and imidapril-treated infarcted rats. The

mRNA abundance of myosin heavy chain q- and þisozymes \ /ere

expressed as ratio of these isozymes mRNA and GAPDH mRNA levels.

All other details are same as in Fig. 7. Values are means + SE of 6 animals

for each group, * P < 0.05 vs Sham; # p < 0.05 vs MI.



Table 4. General characteristics of myocardial infarcted rats with or without enalapril, and/or losartan

treatment for 5 weeks starting at 3 weeks after coronary occlusion.

Body weight (g)

Heart weight (mg)

Scar wt (mg)

Heart wt/B\V (me/g)

Lung wet/dry wt

Liver wet/dry wt

Sham

505 + 11

l2I0 + 90

ND

2.40 !0.12

4.35 + 0.1

3.16 + 0.3

Values are mean + SE of 7 animals in each group. ENP: myocardial infarcted treated with enalapril; LOS: myocardial infarcted treated

with losartan; MI: myocardial infarcted; COM: myocardial infarcted treated with both enalapril and losartan; ND: not detected; * P <

0.05 compared with Sham group; n 
P < 0.05 compared with MI group.

MI

503 + 13

1610 + ii0 *

230 + 15

3.20 + 0.25 *

5.51 + 0.33 *

3.26 + 0.22

ENP

499 + 19

r42r + 6g#

23t + t8

2.g5 + 0.22#

4.85 t 0.18 #

3.2t + 0.t6

LOS

ó9

505 + 22

1387 t28#

228 + II

2.74+ 0.13 #

4.go + 0.30 #

3.19 + 0.20

COM

500 + 23

t34r t27 #

229 ! t6

2.6g t 0.20#

4.95 + 0.31 #

3.34 + 0.16



Table 5. Hemodynamic parameters in myocardial infarcted rats with or without enalapril, and/or losartan

treatment for 5 weeks starting at 3 weeks after coronary occlusion.

Heart rate (bpm)

LVSP (mm Hg)

LVEDP (mm Hg)

+dP/dt (mm Hg/sec)

-dP/dt (mm Hg/sec)

MAP (mm Hg)

Sham

265 t9

122 + 6.5

4.2 + 0.3

tt228 r 850

12518 + 1050

102+ 9

Values are mean + SE of 7 animals in each $oup. ENP: myocardial infarcted treated with enalapril; LOS: myocardial infarcted treated

with losartan; COM: myocardial infarcted treated with both enalapril and losartan; LVEDP: left ventricular end diastolic pressure;

LVSP: left ventricular systolic pressure; MAP: mean arterial pressure; MI: myocardial infracted; * P < 0.05 compared with sham

group; u P.0.05 compared with MI group.

MI

270 ! 13

118 + 4.6

r8.9 + 4.6 *

8409 t 687 *

8524 + 950 *

100 + 10

ENP

272 + 79

115 + 8.5

g.g + r.2#

g52r + 459#

10057 + 1ot2#

95+7

LOS

258 + 15

116 + 9.5

9.0 t 0.7 #

9362 + 562#

g8g5 + 762#

101 +7

COM

267 ! 15

114 + 8.6

g.5 + 0.6 #

9533 + 625#

gg5g t72r#

97+5
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either enalapril or losartan alone (Table 4 and 5). The scar wt in the untreated MI group

was not different from the treated groups.

Myofibrils isolated from the viable LV of infarcted hearts exhibited a lower (7 .I !

0.4 pmol Pi/mglhr) Ca2*-stimulated ATPase activity (P < 0.05) compared with sham-

operated rats (10.8 + 0.4 pmol Pi/mg/hr). Blockade of R,A.S with enalapril and/or losartan

partially normalized the activity (8.3 I 0.65,7 .9 + 0.52, and 8.4 + 0.58 pmol pilmgÆrr) in

ENP, LOS and COM groups, respectively (Fig. 9). The values for Ca2*-stimulated

ATPase activity in COM group were not different from that in ENP or LOS groups.

Furthermore, no alterations of myofibrillar Mg2*-stimulated ATPase activity were found

among different groups (Fig. 9).

The relative protein content of MHC was determined from immunoblots using a

monoclonal anti-MHC (a mixture of a-MHC and pMHC) antibody. No significant

alterations in protein contents for MHC, MLC and TnI were observed in rats with MI

with or without any drug treatments (Fig. 10). It should be noted that during

polyacrylamide gel electrophoresis, pMHC exhibited a higher elechophoretic mobility

than ø-MHC which was the dominant (>90%) isoform in sham group (Fig. 11). In MI

group, protein content for ø-MHC was reduced signif,rcantly while that for pMHC was

increased markedly (Fig. 1l); þMHC content was increased from 6.5 to 29o/o of total

MHC in the viable tissue of LV whereas a-MHC content was decreased from 93.5 to

71.0% of total MHC. Blockade of RAS with ENP, or LOS partially prevented the

increase in pMHC as well as the decrease in ø-MHC due to MI. Furthermore, the

combination therapy did not show any additive effects (Fig. 1l).
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Figure 9. Myofibrillat Mg'*- and Ca2*-stimulated ATPase activities of the left

ventricles from Sham, infarcted (MI), enalapril treated infarcted (ENP),

losartan treated infarcted (LOS), and combined enalapril and losartan

treated infarcted (COM) rats. ENP and/or LOS were given orally for 5

weeks starting at 3 weeks after inducing ML Values are means + SE of 7

animals for each group. * P < 0.05 vs Sham; n p < 0.05 vs ML
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Figure 10. Typical immunoblots and relative protein contents of myosin heavy chain

(MHC) (A), myosin light chain (MLC) (B), and rroponin I (TnI) (c) in the

left ventricles from Sham, infarcted (MI), enalapril treated infarcted (ENp),

losartan treated infarcted (LOS), and combined enalapril and losartan

treated infarcted (COM) rats. ENP and/or LOS were given orally for 5

weeks starting at 3 weeks after inducing MI. Values are means + SE of 7

animals for each group. t p < 0.05 vs Sham; # p < 0.05 vs MI.
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Figure 11. Myosin heavy chain a- and þ isozymes (ø-MHC and ÉMHC) in left

ventricles from Sham, infarcted (MI), enalapril treated infarcted (ENp),

losartan treated infarcted (LOS), and combined enalapril and losafian

treated infarcted (COM) rats. The figure shows fypical electrophoresis for

myosin heavy chain a- and þ isozyrnes and results for laser densitometric

analysis. %o of total MHC is calculated as density of a- or þMBcdivided

by sum of a- and þMHC. ENP and/or LOS were given orally for 5 weeks

starting at 3 weeks after inducing MI. Values are means + SE of 7 animals

for each group. * p < 0.05 vs Sham; # p < 0.05 vs ML
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The mRNA levels for a-MHC and pMHC were determined by Northern blot

analysis (Fig. 12). The ø-MHC mRNA level was decreased by 39% and that for pMHC

mRNA was increased by I25o/o in LV from the infarcted rats. These changes were

partially reversed by treatment with ENP, LOS and COM. The mRNA levels for MLC in

the sham group were not different from those in the untreated and drug treated MI groups

(Fig. 12).

C. Protein Kinase Isozymes in Heart Failure

As discussed earlier, coronary occlusion in rats resulted in extensive LV infarction

and the noninfarcted cardiac muscle underwent significant hypertrophy at I,2,4 and 8

weeks after the operation. These changes are reflected by the presence of large scar

(average infarct size varied from 38 to 42o/o of the LV free wall corresponding to the

average values in the range of 19 - 2lo/o for scar wt-to-total LV wt ratio in different

groups) and increased ratio of heart wt-to-body wt ratio at all time points (Table 6). These

values for infarct size in animals used in this study are comparable to those reported by

others 377. The RV wt and viable LV wt were increased at 2,4 and 8 weeks after MI was

induced compared with the respective sham control animals. There \,vas a significant

increase in the wet wt-to-dry wt ratio of the lungs in 4- and S-weeks infarcted animals,

indicating the presence of pulmonary edema (Table 6). An increase in LVEDP and a

decrease in both +dPldt^u* and -dPldt-ax were observed in 1,2,4 and 8 weeks myocardial

infarcted animals (Table 6). These results are consistent with earlier observations in this

experimental model 3e'82'34e 
) which have indicated that the experimental animals at 4 and 8

weeks after the coronary occlusion are at early and moderate stages of CHF,
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Figure 12. Typical Northern blots showing mRNA abundance for myosin heavy chain

a-isozyme (A), myosin heavy chain þisozyme (B), and myosin light chain

(C) in left ventricles from Sham, infarcted (MI), enalapril treated infarcted

(ENP), losartan treated infarcted (LOS), and combined enalapril and

losartan treated infarcted (COM) rats. ø-MHC: mRNA blot for myosin

heavy chain ø-isozyme; þMHC: mRNA blot for myosin heavy chain ft
isozyme; MLC: mRNA blot for myosin light chain; GApDH: mRNA blot

for glyceraldehydes-3-phosphate dehydrogenase; 28S/18S: the quality of

mRNA preparation is evident from the ethidium bromide staining of the

28S and 18S ribosomal RNA. Values are means + SE of 7 animals for

each group. * P < 0.05 vs Sham; # p < 0.05 vs MI.

C: MLC



Table 6. General and hemodynamic characteristics and cardiac homogenate PKC activity of infarcted rats
1,2, 4 and 8 wk after left coronary arterv lisation

Body wt (g) 279 + 8.5 273 + 15.6 297 + 8.5 298 + 13.7 378 t 13.9 393 + 12.2

RV(mg) 157 +13.7 181 t 10.1 163l-5.2 216x17.2* t7Z+12.6 306t33.1*
viable Lv (mg) 672 + 2l.l 669 + 25 660 t25.3 705 + I1.6* 77t + 37.8 867 + 24.7x

Scar wt (mg) ND 156 + 13.4 ND tB4 t 14.2 ND 207 + 11.2

Heart rtlBody wt 2.92t0.06 3.67 t0.73* 2.79 + 0.12 3.71 + 0.1* 2.49 !0.07 3.5 t 0.17*
ratio (mg/g)

Lung wefdry wt 5.23 + 0.07 5.36 r 0.15 5.28 + 0.19 5.17 + 0.05 5.01 r 0.08 5.47 + g.96,r

ratio
+dPldt(mmHg/sec) 9438!341 6227 + 436* 9922+ 576 6882+ 447* 9102x579 6910+336*
-dP/dt(mmHg/sec) 10259+527 6639+303* 9908+575 1361+638* 10065+562 7182+344x
LVEDP (mm Hg) 8.4 + 9.9 18 + 1.2x 9.8 + 2.7 19.8 + 2.6* 8.6 + 0.8 77 + 2.3*

Ca2*-dependent PKC activity (pmol/min/mg)
LV 177X15.4 179+6* 10419 187r5.6* 87.4+4 128+12.4*
Rv 99 t 6.3 r52 + 9.3x 126 + 4.i 156 +15.3* 98.7 t 6.8 132 + 13.4x

Ca2*-independent PKC activity (pmol/min/mg)

Sham

1 week

MI Sham

Lv 82.9+10.i tzz+8.5* 84.4t9.5 159+r5.1* 66.7+4.9 86.7x6.7* r45+r0.2 437+30.2*

2 weeks

RV 93.1+4.1 737+4.4* 118+4.9 746x8.9* tO6+2.6 t37!4.7* 70.5+5.2 23g+1g.5*
These observations are means + SE of 6 animals for each $oup. MI: myocardial infarction; RV: right ventricle; LV: left ventricle;
LVEDP: left ventricular end-diastolic pressure; +dP/dt: rate of pressure development; -dp/dt: rate of pressure decay; ND: not
detectable; PKC: protein kinase C; *: Significantly different from Sham-control group (P < 0.05). Left ventricular pressure was not
altered in the failing heart.

MI Sham

4 weeks

MI Sham

8 weeks

497 + 7.5 482 + 12.7

278 + 17.1 600 r 19.8*

861 + 27.3 942 ! 39*

ND 237 +27.4

2.33 + 0.12 3.7+ 0.1*

4.58 + 0.25 5.32 + 0.15*

8763 + 412 5468 + 389*

8906 r 501 6574+ 409*

8.1 + 0.9 19 !2*

110 t 7.5 285 + 18.3*

93.5 + 6.4 t84 + 14*

MI
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respectively. The Ca2*-dependent PKC activity \ /as increased by 53,79,47 and,l59o/o in

the LV homogenate, whereas the Ca2*-independent PKC activity was elevated by 47, 88,

30 and 201% in the LV homogenate at 1,2,4 and 8 weeks of MI compared with control

values, respectively (Table 6). On the other hand, the Ca2*-dependent PKC activity in the

RV homogenate was increased by 54, 24, 34 and 97%ó and the Ca2*-independent pKC

activity was augmented by 4J ,24, 29 and z3B% of confrol values at 1,2, 4 and, g weeks

of MI, respectively.

The beneficial effects of imidapril treatment on heart function and cardiac PKC

activities were tested by heating the 4-week experimental animals with imidapril for 4

weeks. The results in Table 7 indicate cardiac hyperhophy, lung congestion, elevated

LVEDP, depressed +dP/dt and -dPldt as well as increased Ca2*-dependent and. Cazn-

independent PKC activities in both LV and RV homogenates in the 8-weeks infarcted

animals. All of these changes were partially normalized by treatment with imidapril.

Treatment of sham control animals with imidapril did not show any significant effect on

any of these parameters (Table 7). The values for LVSP and MAP in the untreated and

treated groups were not different from each other. Furthermore, the average scar wt-to-

total LV wt ratio in the untreated and treated animals were 20,3 + 0.08 andZ2.B + 1.1;

these values correspond to infarct size of -41 and 46%o of the free LV wall area and were

not different (P > 0.05) from each other.

To determine the contribution of the cytosolic and particulate fractions to the

increased homogenate PKC activity in infarcted rat hearts, PKC activities from cytosolic

and particulate fractions were determined in the failing LV and RV from sham,

imidapril-treated sham, untreated-infarcted and imidapril-heated infarcted rat hearts 8



Table 7. General and hemodynamic characteristics and homogenate

without imidapril treatmentfor 4 weeks starting at 4 weeks

Body wt (g) 495 !8.6
RV (mg) 274+ 16.6

Viable LV (mg) 858 t 32.1

Scar wt (mg) ND
Heart wtlBody wt (mg/g) 2.31 t 0.15
Lung weldry 4.69 X0.24
+dPldt (mm Hglsec) 8019 + 554
-dPldr (mm Hgisec) B3t9 + 622
LVEDP (mm Hg) j.g + 0.6
LVSP (mm Hg) t2t + 5.4
MAP (mm Hg) tj4t7
Caz*-dependent PKC activity (pmoVmin/mg)
LV 1021 8.1

RV gt.6 + 5.6

Ca2*-independent PKC activity þmoVmin/mg)
LV ßg + 9.4
RV 65.3 + 5.7

Sham

Values are means + SE of 6 animals for each group. Sham + IMP: imidapril treated Sham; MI: myocardial infarcted; MI + IMp:
imidapril treated myocardial infarcted; RV: right ventricle; LV: left ventricle; +dPldt: rate of pressure development; -dpldt: rate of
pressure decay; LVEDP: left ventricular end diastolic pressure; LVSP: left ventricular systolic pressure; MAp: mean arterial pressure;

ND: not detectable; * Significantly different from sham-control group (P < 0.05); n p < 0.05 compared with MI group.

Sham + IMP

486 t 8.6

270 + 20

87t + 28.5

ND

2.43 + 0.09

4.47 X0.19

7125 + 461

8054 + 467

8.2+ 0.7

114 + 8.1

95+8

1011-4.4

89.8 + 6.2

t48 + 12.3

65.8 + 6.5

PKC activity of MI rats with or

after coronary occlusion.

MI

481 t 18

605 + 29.3*

946 + 41.2*

241 + 25

3.68 + 0.07*

5.37 + 0.21*

5321 + 470*

6296 + 302*

18.2+ 1.1*

t13 + 9.7

101+ ll

295 + 20.3*

t77 ! 10.6*

442 + 29.6*

246 + 16.9*

MI + IMP

480 t 15

402 + 28.2i

834 + 39.4#

247 + 18

3.15+0.11#

4.96 + 0.27n

6435 + 594#

7810 + 569#

10.3 + 0.9#

107+ 3.6

97+8

220 + 18.4#

l2g + g.g#

305 + 28.9#

1 17 + 5.1#
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weeks after the operation. As shown in Fig. 13, panels A and, B, the ca2*-dependent pKC

activities were increased by I50To and 80% in cytosolic fraction and,I92o/o and, l90yo in

particulate fraction from LV and RV of the infarcted animals compared with sham

controls, respectively. Likewise, the Ca2*-independent PKC activities were increased by

186%o and 80% in cytosolic fraction and 170%o and,247Yo in particulate fraction of LV

and RV from the infarcted animals 8 weeks after coronary ligation compared with the

values of sham controls (Fig. 13, Panels C and D). The increase in both LV and RV

cytosolic and particulate fractions due to MI were significantly attenuated by imidapril

treatrnent (Fig. 13). There was no signifîcant difference between sham and imidapril-

treated sham animals with respect to Ca2*-dependent PKC and Ca2*-independent pKC

activities in LV and RV cytosolic and particulate fractions.

To examine if the observed changes in PKC activities in the homogenate,

particulate, and cytosolic fractions from the untreated and treated infarcted animals are

due to alterations in the protein concentrations of these fractions, the protein yields in

different fractions were determined. The results in Table 8 indicate no difference in the

LV homogenate, particulate, or cytosolic fractions obtained from the untreated and

imidapril-treated animals.

The relative protein contents of pKC-ø, -8, -e and -Ç isozymes in homogenate,

cytosolic, and particulate fractions of the LV and RV from 8-week sham, imidapril-

treated sham, infarcted and imidapril-treated infarcted animals were determined by

western blot analysis. The typical bands representingpKC-a, -þ, -e and, -Çisozymes in

these ffactions of rat hearts are shown in Figs. L4-16. Polyclonal antibodies to pKC

isozymes detected proteins at 76 kDa for a- isozlnne, 77 kDa for þisozyme, 83 kDa for
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Figure 13. Protein Kinase C (PKC) activities in cytosolic and particulate fractions in

left (LV) and right (RV) venhicles from sham-control (Sham), imidapril

treated sham (Sham + IMP), myocardial infarcted (MI) and imidapril

treated myocardial infarcted (Mt + IMP) rats 8 weeks after operation. A:

Ca2*-dependent PKC activity in cytosolic fraction; B: C**-dependent

PKC activity in particulate fiaction; C: Caz*-independent PKC activity in

cytosolic fraction; D: Caz*-independent PKC activity in particulate fraction.

values are means + sE of 6 experiments in each group. + p < 0.05,

significantly different from sham-control; # P < 0.05, significantly different

from ML



Table 8. Protein concentration per unit of heart tissue in homogenate, cytosolic and particulate fractions

isolated from myocardial infarcted rats with or without imidapril treatment for 4 weeks starting at

4 weeks after coronary occlusion

Homogenate

Cytosolic

Particulate

Values are means + SEi n= 6 animals for each group. Sham + IMP: imidapril treated Sham; Ml: myocardial infarcted; Ml +

IMP: imidapril treated myocardial infarcted.

Sham

52.2t + 4.36

26.13 + 1.32

t9.76 + 1.65

Sham + IMP

53.08 + 2.18

25.56 + 2.03

19.48 r 1.40

MI

52.72+ 3.82

25.04 + 2.71

19.07 + 0.98

MI + IMP

51.89 + 4.17

24.87 + 1.85

19.6M.07
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Figure 14. Typical immunoblots (top) and analysis of results (A-D) for the relative

protein contents of cardiac PKC isoforms (a, þ, e and e in homogenate

fraction in left ventricle (LV) and right ventricle (RV) from sham-control

(Sham), imidapril-treated sham (Sham + IMP), myocardial infarcted (MI)

and imidapril treated myocardial infarcted (MI + IMP) rats at 8 weeks after

surgery. Values are means + SE of 6 experiments in each group. * p <

0.05, significantly different from sham-control; n P . 0,05, significantly

different fr om myocardial infarcted.
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Figure 15. Typical immunoblots (top) and analysis of results (A-D) for the relative

protein contents of cardiac PKC isoforms (d, þ, s and O in cytosolic and
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€-isozyme and 67 kDa for (-isozyrnes. There was a nonspecific band at -80 kDa below

the bands for e iso4rme in Figs. 14-16; however, because its identity is unknown, this

band was not included in the densitometric analysis. In LV homogenate, the relative

protein contents of PKC-ø, -þ, -e and -Ç isozt¡mes were signif,rcantly elevated, whereas in

RV homogenate, only PKC- ü, -þ, and -e isozymes were increased in the infarcted

animals (Fig. 1a). The relative protein contents for PKC-ø, -8, -e and -( isozymes were

also increased in LV cytosolic and particulate fractions in the infarcted animals except

PKC-a isozyme content in the cytosolic fraction was unaltered (Fig. 15). On the other

hand, PKC-G, -P and -e isozymes, unlike PKC-(isozyme, the contents were increased in

the RV cytosolic and particulate fractions from infarcted animals, except that no changes

were seen in the RV particulate fraction (Fig. 16). The Ml-induced increases in PKC

isozymes in both LV and RV cytosolic and particulate fractions were attenuated by

imidapril treatment, which showed no effect on the sham-control animals (Figs. 14-16).

Although from the Western blots (Figs. 14-16) it appears thatPKc-f expression is

equal to or slightly greater than the expression of PKC-a in the LV and RV fractions,

these data should be interpreted with a great deal of caution. In this regard, it is pointed

out that the relative protein content for each of the PKC isozymes \ilas determined in the

untreated sham, sham * imidapril-heated, untreated infarcted, and infarcted + imidapril-

heated animals under identical conditions where the densitometric intensity value for

each isozyme band in the untreated sham control was taken as 1OO%. Thus the relative

protein content for one isozyme should not be compared with that of another in any of the

fractions from different groups. To better evaluate the significance of changes in PKC

isoforms in the experimental group, we have measured the absolute levels of
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PKC-a and PKC-B isoforms in the control myocardium. The results shown in Fig. i7

indicate that PKC-a content is -50 times of PKC-B in the LV and -17 times in the RV. In

view of the relatively low value for PKC-P content in the normal heart, the observed

increase in the relative protein content for PKC-B isoform in the failing heart as well as its

reduction by imidapril treatment are significant findings.

The activity and relative protein content of PKA were examined in homogenate

from the LV and RV of sham, imidapril-treated sham, untreated infarcted, and imidapril-

treated infarcted animals. The results showed that there were no significant changes in LV

and RV PKA activify and protein content in the infarcted animals (Fig. 18). Imidapril

treatment did not affect PKA activity and protein content in the sham or infarcted animals

compared with values from untreated animals.
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89

5000

U'o^
= .E 4000>o)
Eõ(sã
( o 3000
o¡E
ú1¡ \õ.c
v € 2ooo

-opã
Ë g 1000

0

V
o_

o
c^
.9õ
aÊ()O
g<)pb
O-oäù
o)

ñ
q)
É.

vvvz
N
I

Sham
Sham+lMP
MI
MI+IMP

140

120

100

80

60

40

20

o

.- 
40 kDa

LV

Figure 18. Cardiac PKA activities and relative protein content in left ventricle (LV)
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infarcted (Mt + IMP) rats 8 weeks after operation. Values are means * SE

of 6 experiments. Bottom, fypical immunoblots for PKA protein are also

shown. No change was found in these groups.



90

V.

A.

DISCUSSION

Modification of Myofibrillar ATPase Activity and Myosin

Isozymes in Failing Heart by Imidapril

In this study we have shown that levels of a-MHC protein were decreased

whereas those of p-MHC were increased in both LV and RV from the 7 week infarcted

animals. Such changes in the ø-MHC and B-MHC contents may not be due to proteolysis

or some other degradative process because the total MHC content in both LV and RV

were unaltered in the 7 week infarcted animals. Since mRNA levels for a-MHC were

decreased and those for B-MHC were increased in both LV and RV from the 7 week

infarcted animals, it appears that the observed changes in both a-MHC and B-MHC

contents are due to alterations of their genes expression in the myocardium. Similar

changes in nRNA levels for a-MHC and p-MHC proteins in the 4 weeks infarcted rats

have been reported by other investigators 343-34s. Furthermore, we have observed that

myofibrillar Ca2+-stimulated ATPase activity in the LV, unlike that in the RV, was

decreased in the 7 week infarcted animals. Regional variations in rat cardiac myosin

isozymes and ATPase activities due to MI have also been reported by Geenen ,¡ o¡ 3a03at 
.

In view of the functional signif,rcance of both a-MHC and B-MHC in terms of ATpase

activities 15e'332-33s, a shift from ø-MHC to p-MHC protein content may explain the

depressed myofibrillar Ca2*-stimulated ATPase activity in LV of the 7 week infarcted

animals. However, such an explanation for alterations in myofibrillar Ca2+-stimulated

ATPase activities on the basis of a shift in the a-MHC and p-MHC proteins may not hold

good for the RV because no changes in myofibrillar Ca2*-stimulated ATpase activity
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were observed in the RV from 7 week infarcted animals. In view of the f,rnding that MLC

kinase-mediated phosphorylation, which has been shown to increase the actomyosin

ATPase activity 378, was decreased and increased in the LV and RV from 7 weeks

infarcted rats, respectively 37e, the observed differences between the LV and RV

myofibrillar Ca2*-stimulated ATPase in the 7 week infarcted animals may partly be due to

differences in the MLC phosphorylation. Other mechanisms 130'158 such as the interaction

of actin with myosin as well as the interaction of Caz* with hoponin underlying the

difference between LV and RV myofibnllar Caz+ ATPase activities in the infarcted

animals remain to be explored.

The results described in this study indicate that myofibrillar Ca2*-stimulated

ATPase activity in the LV, unlike that in the RV except at 16 weeks, from the infarcted

animals was lower than that in the LV from the sham control animals. Such changes in

the LV may be of some specific nature because neither the myofibrillar Mg2* ATpase

activity nor the total MHC content in the experimental LV and RV were different from

their respective sham control values. These differences between the LV and RV fiom

infarcted animals with respect to contractile proteins and Caz*-stimulated ATpase activity

may be due to differences in the behaviour of these ventricles during the development of

congestive heart failure following occlusion of the coronary artery. This view is

supported by previous studies on adenylyl cyclase 3ae, G-protein content tto, SR Cur*_

transport 3e, MLC phosphorylation 37e 
as well as antioxidant responses and content 381,382,

have revealed differences between LV and RV following MI in rats. The biochemical

differences between LV and RV in the MI model may also be due to the fact that the LV

is subjected to changes in wall stress with an alteration in geometry whereas the RV is

experiencing pressure overload. Depressed myofibrillar Ca2*-stimulated ATpase activity
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in the RV from the 16 weeks infarcted animals appears to suggest that contractile

dysfunction in the RV may become evident at late stages of congestive heart failure in

this MI rat model. Nonetheless, differences between the LV and RV cannot be explained

on the basis of changes in the circulating levels of hormones and other factors but instead

may be due to differences in the basal regulatory mechanisms present in these ventricles.

This suggestion is supported by the fact that the characteristics of the adrenergic nerves

present in the LV and RV from the infarcted animals were found to be dramatically

different from each other 383.

Since the magnitude of cardiac contractile force is linearly related to myofibrillar

Ca2+-stimulated ATPase activity 'tt, the observed decrease in myofibrillar

Ca2+-stimulated ATPase activity in the LV from the infarcted animals would result in

depression of cardiac function. A progressive decrease in LV myofibrillar Ca2*-stimulated

ATPase activity at 4,8 and 16 weeks of inducing MI was seen in this experimental model

exhibitirig early, moderate and severe stages of heart failure 3e'82,34e. Furthermore,

treatment of infarcted animals with an ACE inhibitor, imidapril, was found to improve

heart function partially and attenuate the depression in myof,rbrillar Ca2*-stimulated

ATPase activity in the LV. Alterations in a-MHC andB-MHC protein content and mRNA

levels in both LV and RV from the infarcted animals were also corrected partially upon

treatment with imidapril. Attenuation of Ml-induced changes in heart function, cardiac

hypertrophy, different clinical signs of heart failure and phospholipase C activify by

imidapril has also been observed previously "'. Treatment of infarcted rats with an ACE

inhibitor, perindopril, was reported to partially prevent changes in the MHC isozyme

composition in the non-infarcted hyperhophied LV 384. Since other ACE inhibitors such

as captopril, enalapril and trandolapril were shown to produce beneficial effects on
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cardiac performance in this experimental model of heart failure 3s0'3s2,3s6, it is likely that

the observed effects of imidapril are due to ACE inhibition per se. However, the role of

bradykinin, which is known to be accumulated in the cell upon treatment with ACE

inhibitors and produce benef,tcial effects in the heart 385'386, cannot be ruled out with

respect to the action of imidapril. Nonetheless, treatment of infarcted animals with

angiotensin II receptor antagonists, candesartan, losartan, has also been shown to partially

prevent changes in heart function due to MI 34s'347,3s8,38t. Thus it is likely that the

beneficial effects of imidapril in attenuating Ml-induced changes in heart function as well

as contractile protein content and gene expression are partly due to the blockade of

renin-angiotensin system in congestive heart failure due to ML The partial attenuation of

Ml-induced changes by imidapril is in agreement with the view that other mechanisms

such as the activation of syrnpathetic nervous system and elevated levels of several

hormones in addition to angiotensin II play an important role in the development of

cardiac dysfunction in this experimental model of congestive heart failure 14,388,38e.

in this study, we have shown changes in myofîbrillar caz* ATpase, MHC

isoforms and cardiac function upon inducing MI in rats and have observed attenuation of

these biochemical alterations and improvement of cardiac filnction upon treatment with

imidapril. We have attempted to explain the impairment as well as improvement of

cardiac function on the basis of corresponding changes in myofibrillar Ca2* ATpase

activities; however, it is possible that the biochemical alterations as seen in this study are

the consequence of changes in heart function. In this regard, improved function of LV by

decreasing the LV afterload as a consequence of altered remodeling and that of RV by

decreasing passive pulmonary hypertension as a consequence of decreased LVEDp by

ACE inhibition can be seen to produce beneficial effects on both LV and RV myosin
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isozyme expression upon treating the MI animals with imidapril. Nonetheless, the

observed alterations in MHC isozyme proteins and mRNA levels as well as myofibrillar

Ca2* ATPase activity in both untreated and imidapril-treated hearts suggest that there

occurs a dramatic defect in the contractile machinery of cardiomyocytes in heart failure

due to MI. However, measurement of mechanical activity of cardiomyocytes from rats

with MI has revealed controversial data as some investigators 3e0'3el have observed

contractile abnormalities whereas others 3e2'3e3 have faìled to do so. Such conflicting

results from different laboratories may by due to differences in the techniques employed

for the isolation of cardiomyocytes, infarct size, duration of MI or the stage of congestive

heart failure in the experimental animals. It may be noted that no changes in LV

myofibrillar Cazn ATPase activity were apparent in 1 or 2 week infarcted animals whereas

significant depression in RV myof,rbrillar Ca2* ATPase became apparent only at 16 weeks

of inducing ML Although our observations, partìcularly with respect to changes in

myosin isozyme shift, in a rat model of heart failure should be exhapolated with some

caution, similar changes in MHC gene expression have been shown to occur in patients

with heart failure 3e4'3es.

Effects of Enalapril or Losartan on Myofïbrillar ATpase and

Myosin Isozymes in Failing Heart

As described earlier, we have observed depressions in both +dPldt and, -d,pldt

whereas LVEDP was markedly increased in the infarcted animals in this series of

experiments. In addition, a decrease in myofibrillar ATPase activity, an increase in MHC-

p prolein and gene expression, as well as a decrease in MHC-ø protein and gene

B.
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expression were also evident in hearts following ML These hearts were hypertrophied

because the heart wt/body wt ratio was increased and the animals showed signs of CHF

because the lung wet wldry wt ratio was increased. These results, showing depressed

cardiac function and myofibrillar ATPase activity as well as changes in MHC protein and

gene expression, aÍe in agreement with our results reported previously in this

experimental model 42'43'340'34t.In view of the critical role of a-MHC and ÉMHC in

determining the velocity of cardiac confaction 130'ls8'lse'332, it is likely that the depressed

myofibrillar Cazn-stimulated ATPase activity in the failing heart may be due to the

observed increase in pMHC protein content and a decrease in ø-MHC protein content.

Since the protein content of total MHC was not altered, it appears that there occurs a shift

in MHC isozFnes in the failing myocardium. Such a change in the protein contents of

MHC isozymes seems specif,rc because the protein content of both MLC and TnI in the

failing hearts was unchanged. Nonetheless, the observed alterations in the protein

contents of MHC isozymes can be seen to result in changes in the composition as well as

molecular st¡ucture of myofibrils and thereby represent the process of myof,rbrillar

remodeling during the development of heart failure. This process of myofibrillar

remodeling in the failing heart may be occurring at the level of gene expression because

the mRNA levels for a-MHC were decreased and those for øMHCwere increased.

Treatment of infarcted animals with enalapril, an ACE inhibitor, was observed to

partially prevent alterations in cardiac hypertrophy, lung congestion, heart function,

myof,rbrillar ATPase activity and a shift in MHC isozyme protein and gene expression.

Since neither enalapril nor losartan affected the protein contents and mRNA levels for

MLC, it is evident that the observed effect of these drugs in MHC protein and gene
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expression is specific in nature. These results are consistent with the beneficial effects of

imidapril, an ACE inhibitor, described earlier in this experimental model. Since the effect

of both enalapril and imidapril were simulated by losartan, an AT1R antagonist, it appears

that the beneficial actions of both enalapril and imidapril on heart function and cardiac as

well as myofibrillar remodeling are due to the blockade of RAS in animals with heart

failure. Both enalapril and losartan as well as other ACE inhibitors such as captopril and

trandolapril have also been shown to partially prevent cardiac remodeling and changes in

sarcoplasmic reticular function, protein content and gene expression in the failing hearts

3s2'3e6'3e7. Furthermore, treatment of infarcted animals was found to partially prevent

changes in sarcolemmal phospholipase C isozyme expression 3t'. Since ACE inhibitors

are also known to prevent the breakdown of bradykinin 38s'38ó, it can be argued that the

beneficial effects of both enalapril and imidapril are mediated through the actions of

bradykinin. Although we have not carried out any experiment to rule out this possibility,

this mechanism in the experimental model used may not be of any major significance.

Based on our observation, the combination therapy with both enalapril and losartan did

not produce an additive effect on heart dysfunction or myofibrillar remodeling.

C. Protein Kinase Isozymes in Heart Failure

In this study, we have observed an increase in both Cazn-dependent and

Ca2*-independent PKC activities in the viable LV as well as LV dysfunction in l-,2-, 4-,

and 8-weeks infarcted animals. Because the activation of PKC by phorbol esters has been

shown to exert a negative inotropic effect on the heart due to phosphorylation of troponin

I and T and subsequent inhibition of myofibrillar ATPase activity 3e8, it is possible that
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the sustained increase in PKC activity may be involved in depressing the LV function on

inducing MI. Stimulation of PKC by phorbol esters has also been shown to produce

changes in cytosolic Caz* and negative inotropic effect in cardiomyocytes 222. Although

the activation of PKC by phorbol esters has been reported to decrease cardiac SR Ca2*-

transport 3ee and can explain the depression in LY +dP/dt and -dPld,t in the infarcted

hearts, the mechanism of decrease in SR Caz* uptake by the activation of PKC are not

clear. Nonetheless, increased PKC activities and cardiac dysfunction have also been

observed in diabetic animals 366-368. Furthermore, attenuation of both increased PKC

activities and LV dysfunction in the infarcted animals was found to occur on treatment

with imidapril, which has been reported to produce benefîcial effects as a consequence of

ACE inhibition in this model of heart failure 3sl. Increased PKC activities have also been

obsewed in failing human hearts 36s 
as well as in different experimental models of heart

failure 263'363'364. Thus in view of such observations, it appears that a sustained increase in

PKC activities may be involved in the genesis of contractile dysfunction in heart failure.

This suggestion is further supported by the fact that overexpression of PKC isozymes

resulted in diminished heart function in transgenic mice t6'. Wher"us the attenuation of

increased PKC activity and depressed cardiac function by treatment of MI animals with

imidapril can be explained on the basis of suppression of the RAS, imidapril treatment

was found to exert no effect in the control animals. Such results may indicate that both

cardiac function and PKC isozymes in normal physiological conditions may not be under

the influence of RAS.

The increased PKC activities in the LV homogenate in infarcted animals does not

appear to be due to translocation of cytosolic enzyme to the particulate compartment of

the cell because the PKC activities in both LV cytosolic and partìculate fractions were
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increased due to MI. Such an increase in PKC activities in the LV is likely to be due to

increase in the expression of PKC-a, -þ, -e and -(isozymes in the myocardium because

the relative contents of these isozymes (except cytosolic PKC-a content) were increased

in LV homogenate, cytosolic and particulate fractions on inducing MI. Furthermore,

treatment of infarcted animals with imidapril not only partially prevented the increase in

LV PKC activities, it also had similar effect on the isozyme contents in the LV

homogenate, cytosolic and particulate fractions. Whether the observed increase in LV

PKC isoz)rynes is due to translational or transcriptional changes in the myocardium

remains to be investigated. However, it should be pointed out that PKC-e isozyme, a

predominant isoform in cardiomyocytes ooo, ha, been shown to be associated with

sarcomeres on activation aol and be responsible for the phosphorylation of troponin I

368'3e8. On the other hand, PKC-p isoforms have been reported to stimulate the promoter

of /-myosin heavy chain in the myocardium 220. Accordingly, it seems possible that the

depressed LV function in the infarcted heart may be due to increases in both PKC-c and

PKC-P isozyme contents. Because the role of PKC-a and -( isoforms in altering the

function of any subcellular organelle or metabolic site in the myocardium has not been

well established at present, it is diffîcult to speculate on the exact functional significance

of increased PKC-a and -( isozymes in failing LV from the infarcted animals. However,

the translocation of PKC-ø and PKC-e has been reported to occur in failing hearts due to

aortic banding in guinea pigs and this change was attenuated by treatment with ramipril,

an ACE inhibitor 364.

PKC isozymes are known to serve in the signal transduction mechanism and thus

play a crucial role in the development of cardiac hypertrophy 20t'370'400,402. Transfection of

cardiomyocytes with constitutively active PKC was demonstrated to activate genes for
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atrial nahiuretic factor and B-myosin heavy chain, which are associated with cardiac

hypertrophy 220'403'404 
. Previous studies 2a8 have shown that the expression of both PKC-B

and -e isozymes is increased in cardiac hypertrophy induced by aortic banding in rats.

Furthermore, mechanical stretch has been reported to increase PKC-e, but not PKC-ø, and

induce cardiac hypertrophy aOs. It is thus possible that cardiac hypertrophy observed in the

LV due to MI may be caused by an increase in the content of PKC isozymes including

content of PKC-¿. This view is consistent with the observations that treatment of infarcted

animals with imidapril was found to not only reduce the extent of LV hypertrophy but

also the level of LV PKC isozymes.

Whereas the Ca2*-dependent and Ca2*-independent PKC activities were increased

in both LV and RV homogenates on inducing MI, some differences between LV and RV

were appffent with respect to changes in PKC isozyme contents. For example, the

infarcted LV showed an increase in PKC-( content in homogenate, cytosolic, and

particulate fractions, but no such changes were seen in the RV. Furthermore, unlike RV,

no increase in cytosolic PKC-a content was detected in the LV. On the other hand, no

changes in particulate PKC-P and -e isozyme contents were seen in the RV, whereas the

contents of these isoforms were increased in the LV after MI. Such differential changes in

the LV and RV in the infarcted heart indicate that PKC isozymes in different regions of

the heart may be regulated differentially. Differences in the behaviour of LV and RV with

respect to changes in SR Ca2*-pump as well as adenylyl cyclase activities have also been

reported during the development of CHF due to MI 'n''on. Non.theless, the increase in

PKC activities as well as PKC isozlrnes in both LV and RV in the infarcted animals may

be of some specìfic nature because neither the PKA activities nor PKA protein contents

were altered in both LV and RV upon inducing MI. Although activation of PKA has been
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shown to represent a growth promoting signal 281'406, our data are in agreement with other

reports that PKA activity had no relation to the development of cardiac hyperhophy due

to MI or pressure overload 26e. Furthermore, unlike PKC, no change in PKA activity was

observed in the failing human heart 267, as observed in our study. Therefore, the

relationship of Ang II and PKA is not clea¡ in Ml-induced CHF model.

Taken all together, the data in this study are consistent with the view that the

increased PKC activities in the hyperhophied and failing heart subsequent to MI are due

to increased expression of PKC isozymes and that the sustained increase in PKC activity

may be involved in cardiac dysfunction on occluding the coronary artery. However, it

should be recognized that the observed changes in cardiac function in the Ml-induced

heart failure mây not be entirely due to cardiomyocyte-specific adaptation in PKC

signalling because the contribution of alterations in PKC activity from other cell types

such as fibroblasts 407 cannot be excluded. Furthermore, in spite of the association of

increased PKC activity and cardiac dysfunction in the failing heart, the exact significance

of the observed changes in PKC isozymes in heart failure due to MI remains to be

established by the use of PKC inhibitors in this experimental model. The partial

prevention of changes in cardiac PKC isozyrnes and cardiac dysfunction in heart failure

due to MI by an ACE inhibitor, imidapril, indicates that mechanisms other than those

mediated by increased formation of Ang II in heart failure may also be implicated in the

genesis of cardiac dysfunction. Although ACE inhibition is generally considered to confer

beneficial effects on the failing heart by reducing afterload, we did not observe any

changes in the MAP in the MI animals on treatment with imidapril for a period of 4 wk.

Also, this study does not provide any information regarding the cause-and-effect

relationship between changes in heart function and PKC isoz)ryne expression.
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responsible for the observed increase in PKC

heart failure due to MI as well as for the partial

failing hearts on treatment with imidaprit require

D. Inter-relationships Among Studies

From the foregoing discussion, it is clear that cardiac remodeling due to MI in rats

is associated with remodeling of myofibrils and increase of PKC activity. In view of the

role of PKC in signal transduction mechanisms, it is likely that both cardiac hyperhophy

and depressed myofibrillar Ca2*-stimulated ATPase activity in the infarcted heart due to

increased PKC activity. Such a role of PKC may be of some specific nature because the

activity of PKA, which is also known to be involved in signal hansduction, was unaltered

in the failing hearts. Furthermore, it appears that activation of PKC may also result in

cardiac dysfunction due to a depression in myofibnllar Caz*-stimulated ATpase activity

in the failing heart. Since cardiac hypertrophy, increased PKC activity, depressed

myofibrillar Ca2*-stimulated ATPase and cardiac dysfunction in the infarcted hearts were

partially prevented by treatment with imidapril, an ACE inhibitor, it is suggested that

activation of RAS may play a critical role in the activation of PKC, depression in

myofibrillar Ca2+-stimulated ATPase, heart dysfunction and cardiac remodeling in heart

failure due to MI.

This study has revealed that the augmented PKC activity may be due to increased

expression of different PKC isozl,rne contents in the failing hearts. On the other hand, the

increased PKC activity does not seem to be due to translocation of the pKC isoforms
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because the increase in the PKC isozyme contents was evident in the homogenate,

particulate and cytosolic fractions from the infarcted hearts. This study has also shown

that depressed myofibrillar Ca2+-stimulated ATPase activity may be due to a shift in the

expression of MHC proteins in the failing hearts. Since changes in mRNA for the MHC

proteins were associated with corresponding changes in MHC proteins, it is evident that

remodeling of myofibrils may occur at the molecular level during the development of

CHF due to MI.

It was observed that heatment of infarcted animals with imidapril prevented

change in PKC activity, proteín isoform content, myofibrillar Ca2+-stimulated ATPase

activity, shift in MHC protein content and gene expression for MHC proteins in the

failing hearts. Since cardiac remodeling, heart dysfunction and remodeling of myofibrils

were partially prevented by treatment of infarcted animals with enalapril, an ACE

inhibitor, it appears that the beneficial effects of imidapril on heart function, cardiac

remodeling and myofibrillar remodeling may be due to blockade of the RAS in CHF.

This view is further substantiated by our observations that the beneficial effects of both

imidapril and enalapril in infarcted hearts were simulated by losartan, an AT¡R blocker.

Partial prevention of MI induced changes in cardiac remodeling, heart function,

myofibrillar remodeling and PKC protein contents in the failing heart by the blockade of

RAS seems to suggest that other mechanisms in addition to RAS may be involved in CHF

due to MI.
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VI. CONCLUSIONS

This study was undertaken to test the beneficial effects of imidapril on cardiac

remodeling, heart function, myofibrillar remodeling and PKC activation in CHF due to

MI in rats. From the results obtained in this study, the following conclusions can be made.

1. Cardiac remodeling, heart dysfunction, and changes in myofibrillar Caz*-

stimulated ATPase activity may be due to an increase in PKC activity in CHF.

2. Alteration in PKC activity may be due to increased expression of PKC isozyme

contents rather than changes in the translocation of PKC isozymes.

3. Heart dysfunction in the infarcted animals may partially be due to a depression in

myofibrillar Caz+-stimulated ATPase activity.

4. Depressed myofibrillar Ca2*-stimulated ATPase activity in the failing heart

appears to be due to a shift in MHC isozymes. The alterations in MHC isozymes

may be due to corresponding changes in gene expression of MHC isozymes in

CHF.

Treatment of infarcted animals with imidapril prevented the Ml-induced changes

in cardiac hypertrophy, heart function, myofibrillar remodeling and pKC

activation partially.

The beneficial effects of imidapril were simulated by enalapril and/or losartan

indicating the involvement of RAS in the Ml-induced CHF.

5.

6.
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