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ABSTRACT

“Collision-induced light scattering (CILS) refers to the
Rayleigh and Raman spectral features forbidden by the symmetry of
a free molecule, but which appear in the scattering from dense media
through molecular interactions.

In order to avoid complications from allowed rotational
Raman lines, molecules of high symmetry (spherical top) were chosen
for the present study.

The two- and three-body (CILS) spectra of both pure
octahedral molecules (SF6), and tetrahedral molecules (CF4) at 295 K
have been determined experimentally. As well, the two-body spectra
of these systems perturbed by inert gases have been measured.

Classical Tine shape calculations were performed for the
free-free interactions (translational spectrum), and a model was
used to calculate the effects of bound dimers. Comparison between
the two-body experimental and theoretical spectra showed a very good
agreement at low frequency shifts where the collision-induced
rotational Raman scattering has a negligible effect. This agreement
was best in the cases of SF6 mixtures with inert gases because of
the availability of good intermolecular potentials.

At higher frequency shifts, higher order polarizabilities
played a role, the dipole-octopole polarizability E in the case of
octahedral molecules, and both the dipole-quadrupole A and the dipole-
octopole £ polarizabilities in the case of tetrahedral molecules.
The intensity and the shape of the rotational spectra were accounted

for well by theory. The values of the polarizabilities found were

(i1)



E=10.7 + 2.5 A° for SFe»and A = 2.5 £0.3A% E=2.5+0.38 #or

CF The CILS spectrum of SF6=Xe, together with both the values

4
of the diffusion coefficient and the second virial coefficient, were
used in developing a new M2SV intermolecular potential for SF6-Xe.

A temperature study of the CILS of CH4 was performed in
the range 130-295 K. The model for the pair polarizability anisotropy
with no adjustable parameters still holds at lower femperatures.
Calculations for both the induced translational and rotational
scattering worked well over this wide temperature range. Values

of the dipole-quadrupole polarizability A of 0.88 *+ 0.03 A4 and  the

dipole-octopole polarizability E of 2.5 + (.26 As were found.

(ii1)
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CHAPTER 1
INTRODUCTION

Raman scattering is named after the Indian scientist
C.V. Raman, who first observed this phenomenon in liquids in 1928.

In the spectrum of the inelastically scattered radiation
from molecules, the new frequencies constitute Raman }inés, or bands.
Raman bands at frequencies less than the incident frequency 30 are
referred to as Stokes (30=3u) bands, and those at frequencies greater
than the incident frequency as Antistokes (30+3u) bands. The scatter-
ing of vradiation without change of frequency is called Rayleigh
scattering.

The scattering radiation in general has polarization
characteristics different from those of the incident radiation, and
both the intensity and the polarization of the scattered radiation
depends on the direction of observation.

Collision induced 1ight scattering (CILS) refers to the
Rayleigh and Raman spectral features forbidden by the symmetry of
a free molecule, but which appear in the scattering from dense media
through molecular interactions. In case of only two interacting
molecules, the electric field of the incident light induces a dipole
moment 1in one molecule of the pair; the total field acting on its
neighbour, to the first order, is the field of this induced dipole
plus the external field, which is called the dipole-induced-dipole
interaction. CILS was discovered in 1967 by Thibeau (Thibeau, 1968).

The first experiments on interaction induced Raman scattering

(Tabisz, 1979) were performed in the mid-seventies (Holzer and leDuff,



1974; Holzer and Quillon, 1971, 1976) on the molecules of CF SF

4> ~'6
and COZ' »?hey explained their observation of the depolarized component
of the V1 vibrational bands by a dipole-induced-dipole (DID) mechanism.
Thibeau et al. (1977) elucidated this mechanism, making a thorough
and general comparison between the depolarization ratio for Rayleigh
and for Raman scattering by a fluid compoéed of 1isotropic molecules.
Such an approach, however could not explain the observation of
completely forbidden vibrational bands.

Samson, Pasmanter and Ben-Reuven (1976; Samson and
Ben-Reuven, 1976) proposed a theory to account for these which formally
included effects due to dipole-quadrupole 5 and electric dipole-
magnetic dipole G polarizabilities. This theory has not been developed
to the point at which it is useful for analysis of experiments. At
this time, Buckingham and Ladd (1976) extended the theory of
collison-induced absorption 1in the far infrared region to include
the contribution of the dipole moment induced in a molecule by the
gradient of the field due to the permanent multipole moments 6f its
neighbours. A theory of induced pure rotational scattering was then
developed by Buckingham and Tabisz (1977, 1978}. A recent computer
search (Frommhold, 1987}, showed that 500 papers dealing with the
collision induced Rayleigh and Raman spectra by gases and condensed
matter have appeared from 1967 until the end of 1987.

Collision dinduced 1light scattering (CILS) 1is a general
effect; it appears in the spectra of isotropic and anisotropic
molecules in the gas, liquid, and solid state phase. The interest
in CILS 1lies in the fact that it exists because of collisions and

is, in principal, a source of information on molecular interactions

and dynamics in dense media.



The purpose of this thesis is to study the CILS for spherical

top isotropic molecules in the gas phase {octahedral molecules (SF6),

and tetrahedral molecules (CF4 and CH4)), and to deal with some of

the persisting problems that one has in investigating the spectra

of those molecules. Some of these problems are as follows:

(1)

There is perhaps no adequate poﬁentia] to describe SF6-S,F6
interactions. |

The existence in the literature of two sets of parameters
for a potential for SF6-Kr mixture.

There is no good potential for SFs-Xe mixture.

A discrepancy between the theoretical calculations and
the experimental spectrum 1in the case of CF4 (measured
previously 1in this laboratory) -exists possibly because
of an impurity in the sample.

Detailed study of CILS as a function of temperature has
never been done systematically.

A number of experiments are conceived and performed in

this study in order to deal with these problems:

(1)

(2)

The spectrum of SF6=SF6 is measured twice to obtain a
reliable experimental spectrum to compare with various
calculations using different potentials.

Spectra are taken for 8?6 mixtures:

(i) SF6~Xe
(i1) SFG—KF
(ii1) SFG-AP



(3) The spectra of CF4 to re-investigate the CF4 problem are

recorded, these are

(i} CF4—CF4

(i1) CF4-Ar.

In addition, experiments were performed in Firenze (Italy) by the
group at CNR. In particular, spectra for CH4 were studied as a
function of temperature from 295 K to 130 K. These data are compared
with a series of calculations.

In the case of SF5-SF6, an HFD form is fit to the MNeumann
numerical potential, and calculations performed with it agree well
with the experimental data (see Chapter 4). There are good potentials
available for SF6-Kr, SFG-Ar, SFG-Ne from the Pack group which help
to obtain a firm value for the dipole-octopole polarizability (E)
for SF6. In the case of SFG-Kr, we do the calculations using the
two available sets of parameters, compare the theoretical spectra
with the experimental one, and are able to make a distinction between
these potentials.,

In the case of SFG-Xe, through cooperation with Pack and
the use of available data (virial coefficient, diffusion coefficient
and the CILS spectrum as a third property), a new potential is
developed for SFG-Xe.

In the case of CF4, the new series of experiments enable
us to obtain better agreement between the theoretical and experimental
spectra, especially at high frequency shifts. This spectrum together
with the CF4=Ar spectrum, enable us to find refined values for the

dipole-quadrupole A and the dipole octopole E polarizabilities for



CF,.

In the case of CH4 as a function of temperature, two models
are tried to explain the induced translational spectrum, one of them
works well. The dimer contribution as a function of temperature
is studied. A model to explain the rotational scattering works well
over the entire temperature range. Values of the dipole-quadrupole
and the dipole-octopole polarizability for CH4 are détermiﬁed. |

This thesis is divided into eight chapters:

Chapter 1. Introduction.

Chapter 2. The theory of collision-induced translational
and rotational scattering 1is discussed 1in detail; the dimer
calculations are described and the different forms of potentials
used in the calculations are presented.

Chapter 3. The experimental set-up, data collection and
data analysis for both pure and perturbed molecular interactions
are detailed.

Chapter 4. The generation of theoretical spectra and
the comparison between the theory and experiments for both pure and
perturbed octakedral molecules are discussed.

Chapter 5. The development for an M2SV potential for SF6=Xe
is described.

Chapter 6. Calculations of theoretical spectra and
comparison between the theoretical and experimental spectra for both
pure and perturbed tetrahedral molecules form the subject here,

Chapter 7. Detailed calculations and analysis for CH4
spectra in the range 130-295 K are presented.

Chapter 8. Conclusions.



CHAPTER 2
THEORY OF COLLISION INDUCED SCATTERING

In the study of molecular interactions, we are normally
concerned with the difference between the energy of a group of
molecules (usually a pair) and the energy of separate molecules for
fixed molecular positions and orientations.

This interaction energy is wusually small compared to the
molecular electronic and vibrational energies, but it may be much
larger than the difference between the rotational energy Tlevels;
the rotational and translational motions of interacting molecules
can, therefore, be very different from those of the free molecule.
The basic problem is the evaluation of the energy as a function of
relative molecular positions and orientations. When this has been
solved, the effects of the interaction can be determined by considering
the translational and rotational motions.

In some cases this is a formidable task but often the
occupied states have energy separations that are small compared to
kBT and a classical treatment suffices.

This chapter is concerned with the interaction of molecules,
as perceived through features of their scattered Tight spectrum.

The chapter will be divided into three sections:

1. Translational spectrum.
2. Dimer or long-lived cluster spectrum.

3. Rotational spectrum.



2.1 THE TRANSLATIONAL SPECTRUM

He consider the collision-induced 1light scattering by a

pair of molecules, neglecting the internal degrees of freedom of

the interacting molecules.

2.1.1 The Pair Polarizability

The polarizability of a pair of widely separated molecules
has the value (a01 + aOZ) where agrs gy Are the polarizabilities
of the two isolated molecules. However, when the separation of the
two molecules is small enough, the polarizability will be different
from the sum of the isolated molecular polarizabilities due to the
interaction. The dominant interaction leading to this effect is

the so-called dipole-induced-dipole (DID) mechanism.

2.1.1a The Dipole-Induced-Dipole Hodel (Tabisz, 1979; Silberstein,

1917)

The electric field of the incident Tight induces a dipole
moment in one molecule of the pair. To first order, the total field
acting on its neighbour is then the field of this induced dipole
plus the external fie]d; The 1interaction may be taken to higher
orders, wherein the field of the dipole induced in molecule 2 acts
back on molecule 1, etc. This effect can be described as follows

and the situation is shown in Fig. 2.1:



M,y = dipole __ |
A induced in 2 due to 1

X

Figure 2.1

For a spherical molecule, the dipole moment u is given by
b= ag fo {2.1)

where ag is the polarizability of the isolated molecule and FO is
the external field.

In cases of two non-interacting molecules:

w=agy Fg *ogp b (2.2)

If the two molecules are interacting, the dipole moment will be given

by,
W=ag By ta, Fy (2.3)

where @1, @y are different from @100 %99 and the total field acting

on each molecule will be given by

(2.4)



where F,, is the field at 1 of the dipole induced in 2 and is given

by

U ) -

F12 3 (2.5)
r
and Nyy 1s the unit vector pointing from 2 to 1.
Similarly
3ns {4y - nyy) - u
- =12 *=1 * 12 =1
Far = 3 (2.6)
r
P - e F = (2.7)
Fio = — and Io1 " ™3 :
12 -3 21 3
where Hy = o E2 s Uy = oy El . (2.8)

The polarizability in a direction parallel to the incident field is given

by (Silberstein, 1917)

. =§_=“15:“252
fo Fo
(2.9)
=0,1+a2+4a1a2 (6r‘3+a1+u2)
roo- 4&1 ay

For 921J= EO’ the polarizability in a direction _L to the incident

field is given by

o T oy ta, - 5 , (2.10)
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In case of two similar molecules

4aé 8o lﬁug
a, = 2u. + + + + (2.11)
i 0 r3 r6 r9

Zag 2&8 2&3
a, = 2ap - + - + ... (2.12)
1 0 r3 r6 r9

where r 1s the distance between the two molecules; then the isotropic

and the anisotropic parts of the pair polarizability tensor are given

by
L g dof  lag
oc(r‘)=—~——————=2a0+-——6-+—9+... (2.13)
3 r r
(r) Bag 6ag ozg ( )
g{r) =« -g, T —+—+ 18 =+ ... 2.14
| L r3 rﬁ r9
To first order the incremental polarizability, aa(r) =
@1y - Ay = Ay, is completely anisotropic where %o is the total

polarizability of the interacting molecules; 8{(r} = 5ag/r3, which pro-

vides a major (usually the principal)} contribution to aa(r) for gases.

2.1.1b Other Contributions to Molecule-Holecule Interactions

(1) Electron Overlap Interaction: The distortion of the electron

clouds during close collision of molecules gives a negative
contribution to the total incremental polarizability. Because the
volume occupied by the electrons will be reduced when the electrons
are more tightly confined, they move less in response to an applied
field and hence the polarizability is reduced. 0'Brien et al. (1973)

completed Hartee-Fock calculations on (He)2 at several intermolecular
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distances. They found that aL(r) - zaHe is always negative and
decreases with increasing r and that «, (r) - 2“He is positive over

the range of r studied, initially increasing and then decreasing

with decreasing r. The incremental anisotropy, oy (r) al(r) is
2

nearly zero beyond r = 8 a.u.; they find that [B(r) - Efg ] has  an
3
r

exponential form.

(i1) Electron Density Fluctuations: The term in the molecular pair

polarizability due to electron density fluctuations is analogous
to the London dispersion which arises because the electrons are not
static within the molecule. At any given moment the electron density
distribution within the molecule may differ from its time-averaged
value, with the result that the net dipole moment of the atom
fluctuates rapidly about zero. The instantaneous dipole moment on
the atom tends to induce a parallel dipole moment in any neighbouring
molecules. Two parallel dipoles always attract and the time-averaged
effect of the correlated fluctuations is a net attraction between
the charge distribution.

Certain and Fortune (1971) apply variational methods to

obtain the coefficients in the r'6

term for (He)2 and got different
values than the classical values for both a and 8 (Egns. 2.13 and72.14).
To account for both contributions R(r) has been written

as

bog 6
B{r) = —= + Ar - B exp («r/ro) (2.15)
r

WS Mo

A, B and ro are constants which can be determined using the three
lowest even experimental moments of the spectral profile of the

resultant light scattering.
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Work has been done for Ar (Bafile et al., 1983), Kr, and
Xe (Barocchi et al., 1983) and CH4 (Meinander et al., 1985), and
it seems that the numerical values of the three parameters are very
sensitive to the input values of the moments, but the corresponding
functions 8(r} are really very similar, except for very small values
of r. Therefore a new model was developed in which two of the

parameters are fixed by theoretical considerations.

2.1.1c A New Model for g(r) and The Scaling law (Meinander et al.,

1986 )
A simple model for the parameter (A) of model (2.15), has
been derived by Buckingham (1956)
- 3 6
where vy is the hyperpolarizability and 06 is the first dispersion

force coefficient.

The value of A for the noble gases and for CH4 using Egn.
{2.16) is within the range of the A values obtained by model (2.15)

using different experimental data (Barocchi and Zoppi, 1978).

Tha value of A can therefore be fixed as determined by
the model of Buckingham.

r
The value for X0 = 79 has been fixed at the value X0 =
m
0.09531, where L. is the separation at which the intermolecular

potential energy attains its minimum value, using the ab initio
calculations of B(r) for He by Dacre (1982). We are thus left with
only one adjustable parameter in our model for g{r), the parameter
B, which we determine using the first few even moments of the measured

spectrum.



- Brr>
"t ic nf dnterest that the reduced parameter B* = —I ¢

2
6u0

very similar for Ne, Ar, Kr, Xe and CH, (Meinander et al., 1986).
Within the uncertainties, a common reduced value of B* = 2600 = 200
would seem to be applicable to all five systems and perhaps can be

used for other gases. The final form for the anisotropy 1is then

6GS 3,7 C6 -6 iy 608 ’ r
Blr) = —5 + (bog + ) - (2600) (—3) exp (———)
r 3a0 L 0.09531 "
(2.17)

where all the parameters are known.

2.1.2 Line Shape Analysis (Meinander and Tabisz, 1986}

At moderate pressures, the €ILS spectrum is determined
by binary interactions only and 1is proportional to the Fourier

transform of the pair correlation function c(t):
Dy (w) o 5 dt exp (~iwt) c(t) (2.18)

with c(t) = <ap{t) a, (0) >

where o__(t) =

< (r(t)) is the xz component of the polarizability

“xz
tensor of the interacting molecular pair in a space fixed coordinate
system. This function can be expressed in terms of the dependence
of the pair polarizability anisotropy 8(r), and on the motion of
the atoms, which is governed by the intermolecular potential U(E)'
The time dependence of axz(t) can be explicitly described by specifying
the functional dependence r(t}. The function r(t) can be evaluated

by transforming the two-body problem to an equivalent one-body problem

as follows.

13
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If we consider the encounter of two masses m, and my whose coordinate
vectors in the laboratory frame are Tq» and ry, then the vector for
the centre of mass r. is

m_r_ +mr
a -a b -b
r = . {2.19)
=C m + my

1
“3

]
-

We may introduce the separation vector r Ly = Iy-  The situation is

as shown in Fig. 2.2.

r b
i
Ca/ i
i
i r {
b
I ra 1
! J e
| \\\ !
| ’ e I
| ’ el
/ ~ .
| 7/ - -
/ ===
/ -
Ié“"
Figure 2.2

Applying Newton's equations of motion to each particle

we have
dC
= _-a
E= My ~dt
(2.20)
dC
-F = —=b

=3
o
=%
ot
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assuming a spherically symmetrical potential.
Here ¢, and gb are the respective velocities of a and

b. It is clear from £qgns. (2.19) and (2.20) that

2
_9 _dre
i
dt dt
that is, the centre of mass moves with a constant velocity QC- The

relative acceleration of the two particles can be written using

Ean. (2.20) as

d dr e ode, dg, 11 F -
@ w ww W) (2.21)

where p is the reduced mass of the system.

Eqn. (2.21) defines the relative motion of a and b, which
is confined to a plane containing both particles and their centre
of mass. In the centre-of-mass frame, the relative motion of the
two particles is thus equivalent to the motion of a single particle
of mass i in the central force field F, 1i.e. under the influence

of the potential U(r), (Fig. 2.3).

Figure 2.3
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The vector r Jjoins the centre of mass O to the position
of the particle of mass p, which follows the trajectory Y. The angle
between fiand the initial direction of motion is called the orientation
angle a. This has the value 9y at the distance of closest approach.
The 1impact parameter b, is the distance of closest approach in the
absence of the potential U(r) and, hencehlin the absence of any
deflection.

The dynamics of this collision may be described by

considering the conservation of both energy E and angular momentum

L in the system as follows:

L

i 7Hulr)  (2.22)
ur

.2

1 2 _1
- hudebuteun bR

—
H]
=
g
[as]
1]

u b Yo (2.23)

where Yo is the initial velocity.

Solving Egns. (2.22) and (2.23), one can get

55 = [1 - ()2 . Uy (2.24)

. by :

by (2.25)
r

These equations can be integrated to obtain r(t).

Once r(t) is known, together with U(r), the explicit time
dependence of the polarizability o(t) can be found. The incident
light is along the x axis with its electric vector polarized in the
z direction and observations are made in the 2z direction. The
differential scattering cross-section for a single similar pair of

interacting molecules per unit frequency and unit solid angle is
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given by (Bafile et al., 1983)

L= 2K K S dtexp (-iat) <a

(t) « (0) > (2.26)

XZ XZ

where K0 and KS are the wave vectors of the incoming and scattering

light respectively, and

Ca () e (0)>= f dv £ db ¢

2 (t) oy, NAETS L iy.py @ POV P(BLr(e))

axz(t+r) axz(r) (2.27)
where P(v)dv is the probability that the relative velocity is

between v and v+dv

P(b, r{r)) db dr is the probability that the impact parameter
is between b and b+db where the initial distance
of the pair is between r(cr) and r(t)+dr and the
integration is extended to all possible r(r) on

the trajectories y(v,b).

For a system of volume V at thermal temperature T, P(v)

is the Maxwell distribution of the relative velocity v, and

P(b, r(z)) db dr = gﬂvgl dr db (2.28)

Using Eqns. (2.27), (2.28) and the convolution theory, Egn. (2.26)

becomes
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2 3
d7g|, ZKO KS

dQ'd\)s - v

o

Of dv Ply) 6 db 27 by

xR

|1 dt exp(-int) o (t)]? (2.29)

Rewriting Eqn. (2.29) using the intrinsic variables r(t) and a(t)

of the colliding pair and defining the depolarized spectrum Dy (w)

as
dzo“

D” (w) =V m\)—-s— (2.30)
ve get

Dy, (w) = 2= K, K2 s dv P(v) s db 27 b I(s) (2.31)

1] 15 70 s g g w :
where

Mw) = 1.5 { Ofm g(t) cos [26(t) + wt] dt}2

(2.32)

fe:]

£ 0 8(t) cosut dt12 + 1.5 | Ofm a(t)

cos [20(t) - wt] dt}2

The computation (Bafile et al., 1983) of the CILS can be performed
using Eqns. (2.31) and (2.32).

The integrations in Eqn. (2.32) are performed along the
trajactory of the interacting molecules, starting from the point

of closest approach a, which is a solution of the equation
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0=1- —2-2- U(a) (2.33)

my

The accuracy of the trajectories was checked by comparison with the

function

r - - L
o(r) = b s dr 7% [1 - b7 7% - Urd 9% | (2.34)
. |

The integrands of Eqn. (2.32) are computed as products
of slowly varying functions fi(a,e) with sin(wt) or cos(wt) (Meinander
et al., 1986). For time steps at < n/w, seventh degree interpolation
polynomials reproducing the integrands and their first three time
derivatives at the end points, are integrated analytically. For
higher frequencies at >> my, the time steps are divided into
sub-intervals of n/w. The dintensity at w = 0 is obtained easily
during the calculations of the trajectories by setting w = 0 in Egn.
(2.32).

Classical spectral line shapes are symmetric, i.e.

D(-w) = D{w) (2.35)

Usually the wings of induced spectra extend to energies greater than
thermal energies, i.e. hw 2 kéT, where kB and T are the Boltzman
constant and the temperature. Accordingly, the principle of detailed
balance (Pol11, 1980; Borysow and Frommhold, 1983) causes observed
profiles to be asymmetric, i.e.

- . w) (2.36)
Dexp(°w) = exp { ﬁw/kgT) Dexp( )
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[t is believed that this defect of the classical profile <calculation
can be corrected by desymmetrizing (Borysow and Frommhold, 1983;
Pol1 and Hunt, 1981) classical Tline shapes for comparison with

measurements, by multiplying the classical profile by the factor

2 [1 - exp [-hh/kBT]]‘l

which Jleaves the even moments of the profile unchangéd and valid
for the first order in h (Barocchi et al. 1982). The even spectral

moments are given by

MZN = [ Do) »° dw (2.37)
With n = O; 1’ 2! L

which we use as a check for the correctness of the calculated profile,
by comparison with the theoretical moments obtained from the sum
formulae (see section 2.2).
It should be noted that calculations, using Egn. (2.32),
do not include the contributions from bound or semi-bound trajectories.
The computation of the intensfty at 40 different frequencies
(Stokes side) requires about 17 minutes of CPU time on the Amadahl

470/V8 Computer.

2.1.3 The Intermolecular Potential U{r)

The intermolecular potential 1in general includes both

isotropic and anisotropic interactions, but in our purely translational

spectrum we will be dealing with spherical top molecules, for which
the anisotropic part (as in CH4) is small. We fit the total potential

to an isotropic form (as will be discussed in detail in Chapter 7).
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The interaction potentials used in our computation can
be expressed by an analytical function. For the present calculations
the following potential functions were used.

In the case of SF6, CF4 and their mixtures, isotropic

potentials were used.

(i) SFG-SF6 Interactions - Two different intermolecular potentials

were tested.’

(1) Lennard-Jones 28-7 - The potential is given by

4/3
Upgy(r) = B e (9% L9y ) (2.38)

where (1) o 4.999 A, e/kB= 439 K (McCoubrey and Singh, 1959).(MC)

(i) " 5.4305 A, E/kﬁf 404 K (Powels et al., 1983).(PS)

(2) Neumann Potential - Since there were numerical data available

for a site-site potential that Pleich had used to determine the value
of the dipole-octopole polarizability E, (Neumann, 1984), we decided

to employ this potential as well.

The data are 1isted in Table 2.1.

Fitting the data to the Hartree-Fock (HFD) form, namely
A =-A

U(x) = Ay x le 2% (cg x™® + g x™8 ¢, x719) F(0) (2.39)
where
F(D) = 1 xzD=1.28
= e"(ligﬁ - 1)2 X <D
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=

NSO OTONO AT OITGICICTIGTICIOTOT T 5 S S P P
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Neumann Potential Data for SF.-SF

U(r)
{K)

4195.
2797.
1809.
1109.
622.
288.

-94.
-199.
-267.
-309.
-332.
-340.
-337.
-327.
-312.
-292.
-271.
-248.
-225,
-203.
-182.
-164.
-147.
-132.

-118.
-106.
-86.
-77.

-70.
-63.

TABLE 2.1

[V ) .
OCOWWOWWWWWWWIWOO DO OO0 00 Q0 0O~~~ =~~~

OO~ RPWMNEREOWONAUT R WMNEOWRSNOU S WM

6
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and using a library program (ZxSsQ), which employed a

Levenberg-Harquardt method, we find the constants

p=J
1}

0.147976 x 10’ K

0
Ay = - 0.114067
A, = 14.50061

Cc = 0.6776507 K
Cg = 0.7963240 K
Cio = 0.3656460 K

which fit the data very accurately as shown in Fig. 2.4.

(ii) For SF6-Kr, SFS-Ar, and SF6—Ne Mixtures: Pack et al. (1982,

1984) have reported the most accurate interatomic potentials yet

for these systems. In the M3SV form, (the potential is shown in

Fig. 2.5) viz:

réro i=1
Ui(r) =€ {exp[~2ai (r—rmi)] —2exp[-ai (r-rmi)]} rosrsr, 1= 11
rmérérl i=1I1
(2.40)
Upy = By * (x=xq) {8y + (x-x,) [Bg + (x-x;) 841} rysrsr,
-6 -8 -10
Where EII = EIII = ¢

oIl T Tmill T 'm
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B S
_ = -1
ro Y‘m"CtII Tn2
rmI B r0 * aEI In2
x =L
min
ro=r 44l 1n2
1 m I
By = U(Xl)

and

"1 "1 EBU

(gmxy )= L Ty, = 821 - 83

By (XZ"XI)
The data for the isotropic potential 1is given in Table

2.2. (The dimensions of the first seven parameters are in Hartree

a.u., the last two are dimensionless).

(1i1) SF6-Xe Mixture - For this mixture there was no potential

available. We tried the combination rules given by Pena et al. (1982)

for two L-J (12-6) potentials for SF6 and Xe.

The combination rules are

(1, + 1,) 6
"?2= 61 3 : L B8, <8
2(51 82 Ul 02 Il Iz)
(2.41)
6 6 1
6 2018y 01 051 Tp)
12 ©

3
(I *+ L))oy,
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TABLE 2.2
The Parameters of M3SV Potential for SF6-Kr, SF6-Ar, and SF6~Ne
SF6 Kr
Parameter SF6 Ne SF6 Ar D S
¢ (3.52:0.02)x10"% (7.5:0.1)x107% (8.620.1)x107% (8.0+0.1)x107%
Fm 8.12820.005 8.390.02 8.72x0.02 8.81+0.02
arToaqs 0.88x0.01 0.97%0.03 0.84%0,02 0.89+0.02
eyl 0.85%0.02 0.88+0.03 0.84%0.02 0.890.02
C6 76.4%13 25210 32010 2778
Cg 1505 6100 9000 9000
Cio 34000 180000 270000 270000
Xq infl. pt. infl. pt. infl. pt. infl. pt.
X 1.55 1.4 1.4 1.4

Il’ I2 are the ionization potentials for SF6 and Xe and are equal

to 19.3 and 12,127 e.v. respectively.

For Xe  )/Rg 222.43 K o, = 4.105 A
For SFg  ep/k= 182 K 5, = 6.631 A
= (e 113 by = (e, SAH1/13 (2.42)
In our case
B> = VB, B, (2.43)
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; i = 4.997875 A e (=
which gives oy, 997875 A, Lle/kg 190.72522 K
and 5 .
_ “12y12 %126
This method provided a potential which yielded spectra in poor
agreement compared with the experiment. Cooperation with Pack to
develop an M3SV potential for this system ensued and will be discussed

in Chapter 5.

{(iv) CF4-CF4 Interaction - A L-J (12-6) potential was used in the form

ur) =4 [ (- @b (2.44)
e/ks= 152.5 K, o = 4.7 A (MacCormack and Schneider,
1951)

(v) CF4-Ar Mixture - Two potentials were used:

(1) A simple combination rule gives

+ o

o1 * 9, |
e = Ve, ¢ ¢ = (2.45)

(2} The combination rules by Pena et al. {(1982) were tried for two
L-J (12-6) potentials for CF4 and Ar.

The parameters required are:

= = A
For"CF4 El/kB 152.5 K o = 4.7
For Ar sz/kEf 123.29 K g = 3.41169 A
I(Ar) = 15.775 e.v. I(CF4) = 17.8 e.v.

These give (1) g1p = 4.0558 A, 612/k§= 137.119 K

(2) G1o = 4.0056 A, elz/kB= 136.62 K



27

(vi) CH4-CH4 - An HFD modified potential (Meinander and Tabisz,
1983) had been developed in this laboratory and was used to construct

an isotropic effective potential at different temperatures.

2.2 DIMER CONTRIBUTION

In this thesis, the term dimers refers to a metastable

bound pair of motecules held together by van der Waals forces.

Our computer code, which is based on classical physics,
at present does not include the effects of bound dimers in the
calculation of the spectral profile. The contribution from these
states to the spectrum is small at room temperature for rare gases
and limited to low frequency shifts. The spectrum can conveniently
be established from calculation of the spectral moments of these
contributions.

The first four even moments for the two-body interaction
including the dimer contribution have been calculated from the
following expressions (Barocchi and Zoppi, 1980). The first three

are quantum mechanically corrected (Barocchi et al., 1981).

A Y
Mo = 35 K5 < g2 >

0
”IZ’ZVT_;'“TEK2<(B')2+6§_§>0
Hé-—']%vxg{('f%)zutsﬂ)zwi'?ﬂ—"-1z%+3z(%)2 -
.46
~96%+120-§-§ >0-=2k%7<”,;3" (8" + 2 & «5-;%>0

H |2
+ <) > )
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2V 4 YT\ 3 2 8" 2
" K3 (g*) < [15(8™)¢ + 360 ( 12 + 3648 (55)2 + 9000 (f%)z

8, 68t
1584 £ & 4 176 el 10992 21 s = 115 (62 + 102 (——)2
kT

H

- 144 B —— ] + [5 B'8"] + ( ég

n
15 1'.

m, =15 Ly

2n 2_Kg an

Here 8(r) may be obtained from Egn. (2.17) and U(r) from section
2.1.3. The primes indicate first, second and third derivative with
respect to the pair distance r. kB is the Boltzman constant, T is
the temperature and [ is the reduced mass of the pair of atoms or
molecules. The averages indicate:

“dr v g (r)

i
<o Dp = ol dr r go(r (2.47)

0 0

where the pair distribution function is taken in zeroth order, go(r)
= exp («U(r)/kBT).
The difference between these moments and the moments

calculated from the translational spectrum I{w) using Eqn. (2.37)

“gives the dimer contribution. Prengel and Gornall (1976) have shown

that the dimer spectrum for CH4 is roughly gaussian at low frequencies
with a long high frequency tail. Recently Leduff et al. (1987)
observed a maximum in the Xe spectra at 153 K at low frequency shifts
which 1is due to the contribution of dimers. This is difficult to
detect due to the stray light at low frequencies. Accordingly, we
have estimated the dimer spectrum associated with these moments by

fitting the different moments to a gaussian plus an exponential.
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H{w) = L exp(=A1w) + 1, exp(=2\2mz) (2.48)

Using the first four even moments MO’ MZ’ M4 and M6, one can find

Il, Ay 12, Ao and the approximate form of the dimer spectrum.

2.3 COLLISION INDUCED ROTATIONAL SCATTERING

In the first part of this chaptér, we considered collision
induced 1ight scattering by a pair of molecules, neglecting the
internal degrees of freedom of the interacting molecules. In this
part we will now consider the way 1in which higher order
polarizabilities can lead to a rotational Raman spectrum from colliding
isotropic molecules. The mechanism we will present is essentially
the result of the work done by Buckingham and Tabisz (1978), which
explains why higher intensities are observed in experiments than
predicted by the DID model, especially at high frequency shifts.
We will be dealing with isotropic spherical top molecules (SF6, CF4 and
CHy).

The total dipole moment u(i), quadrupole moment 9 (1)
and octopole moment Q(i) of a single molecule i in .an external field
F and field gradients F', F", can be written as follows {Buckingham,
1967)

@y - o Gy L1 ) 1 (i)
M, T K * “ag FB ¥ 2 BaBy FB FY * 6 YuByG FS FY FG

1,08) pv L1 (1)
3 AaSY FBY ¥ 15 EOIB\((S FBY5
(2.49)

. (1) . .
o0) . (o) (1) (i) ¢
N A + AG;Y FY + CGBY5 Fy& o



30

The subscripts refer to components of the tensors in a Cartesian

reference frame. The superscript zero denotes a permanent moment,

and

¢ is the dipole po!arizabiTity; previously referred to

as the polarizability.

o

ByXs o etc. are hyperpolarizabilities describing departures
from a Tinear polarization Taw.

A is  the dipole-quadrupole polarizability, determining
both the dipole dinduced by a field gradient and the
quadrupole induced by a uniform field.

E is the dipole-octopole polarizability.

£ is the quadrupole-quadrupole polarizability.
For the present case (spherical top molecules)

{a) In the case of tetrahedral molecules

“cgo) - 952’ =0

A S A (i PP . .
aBy (1a Ig kY i JY kB + Ty JY ka + g J, kY + 1Y 3, kB
+i 0§, k)
Yy Y8 Ta (2.50)
) P i +k k. k k 2.51
EaSYG 2 E [1a o Ty Ts T Ja Jg Iy Js s By 8 ( )
1
"5 (g Sy ¥ Suy Sas ¥ Sas SBY) ]
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(b) In the case of octahedral molecules

' uéO) = ©0) _q(0)

aB afy =0

A =0

aBy ) EaBYS is given by Egn. (2.51) {2.52)

We will write the expressions for spherica?ltop'molecu1es; énd take the

tetrahedral and octahedral molecules as special cases.

The field
and its gradients are given by
Fo = Tg, W +.
sy Taye M - (2.53)
Fovs = Tayon My *
where T (r_l) = (41?{.; )-] vV ¥ ¥ 7 (Y‘-l) (2 54)
aBy...v 0 a By Yy !
and
-1, _ n =1
aBy...v (rlz) (-1) aBy. . v(rZI)
n
where v = 3/ar
a a
, . -1 _
For convenience we will take (4ﬂso) =1
From Egns. (2.49), (2.50), (2.53) and (2.54), one can

rewrite the equation for the total dipole moment as
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. (1) (2)
Hy = Wy ¥ "y

. (2) , 1 (2) 1 (2)

T % (Ea * TaY " * ays v 15 'ayée v8e )
1,(1) (2) _ 1 (2) _ 1 (2)

*3 Aasy ( ByS T8 3 TBySE EBGE " 1% TBYSSB Ysea )
1 (1) (2) .1 (2) .1 (2)

* 15 EaBY(‘S (TBY(SE ue * 3 TSYGea ee'a + 15 TByGea_n Qang )

(2.55)
(1) 1 (1y .1 (1)

* “2 (Ea ¥ Tay UY T3 Tayﬁ E)yﬁ * 15 TaYée QY5€ - )
1,(2) (1) _ 1 (1) , 1 (1)

* 3 Asy Tays Hs 3 Tayse eas * 15 Toyses Pgen -
1 -(2) (1) _1 (1y .1 (1)

* 5 EaByG (T8Y5€ " 3 TBYéeB E)EB 1 TByGean Qang ta)

where gq 1s the external field.

The 1light scattering is conventionally described in terms

of the pair polarizability tensor o

- a
“aw  3E (al * GZ) Gam * 2a1 “2 Tam

A o 2o D 1y ) D)

= o

3 lays ‘%1 Py T %2 Asu
15 Tayse (2 Eiggw *tay Ew(fggm) * 15 Taysn (o1 %(535 *tay E§§35>
i 0D 2 -
Pl G @, @

225 "BySedn ‘TaByS “ednw aByS ednw
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1 (1) Ll2) _ (2) (1)
* 45 T8Y658 (EaBYé Asaw EaBYé Aeau)
1 (1) (2 (2) (1)
T TSszB (Eﬁeam AaSy Eéeaw AaSY)

The scattered intensity is dependent on <aaw N > where the angular
brackets denote an average aver all orientations of molecule 1 and

2 and of the intermolecular vector r.

_ 2
<aam au'w'> B (a1+a2) Gam Sa'w1 * 2(a1+a2) @1 % <6amTa'w‘

+

single A transition term (2.57)

+

single E transition term

+

double A transition term

AE transition term (evaluated here for the first time)

+

double E transition term (evaluated here for the first time)

+

We will derive the first four terms, and give the values for the rest.
The first term gives the polarized Rayleigh scattering.

The second term is equal to

T =9 v plol0 u _ow (2.58)
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3R R 8
T > —F— - —3>
o FS r|3
31/3 8w Saw
- T - —3°0 (2.59)
r r

The third term represents the translational DID spectrum. The
isotropic part of the multiplication of'_ two second-rank tensors

can be written in the form

<Taw Ta;m.> = A S Su'w! T A 8y Syt t A3 80w’ Su'y (2.60)
If o =qa' w = w'

0= 9A1+3A2+3A3 (i)
Ifa = w' o' T uw

<Tuw Tum> =3 4 9A2 + 3A3 (i)
fa=u o =,

T T = 3, + 3R, 4 %R, - (i)

where Al’ Az, and A3 are constants.

Solving (i), (ii), (iii) and using

<T T > =(ﬁ)_.}_ ru(2n+2)
aBy...n aBy...n 2n
n
CALTE L
'<Taw a'm’> - (22 r) 30 (-2 sam 6a’w' * 36&&' 6ww'+ 36um‘6u'w)

Then the DID term will be equal to
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6 2 2 -6
4 30 % %2 7 (- aw a'w' ¥ 36&&' wa' * 36aw' 6a’w)
_4 2 2 -6
TH AT (-Zéaw éa'w' ¥ 36&&' Smw’ * 36aw' Sa'w) t1]
where ;:_ =5 ¢ p2 e“U(P)/kéT dr
0

The fourth term (single A) 1is the first induced rotational

contribution and is equal to

12 (2) ,(2)
=gop LT g T Bocs Ao g
(2) ,(2)
(2.61)
(2) 5(2) (2) ,(2)
<AC[B'Y AC&;IB“Y’> + <TB T ] |5g> <A8'YQ AY|6|UJ|> }

+ %.ag { similar terms with (2) & (1)}

We can see that the first and the third terms are similar
and that the second and the fourth terms are similar too. We will
calculate the first term using the identities

(2) . (2) - 52) . . (2}
<AaBY Aa'B'Y'> 12A <1a L JB JB. kY ky.> + 24A

SH igidg g kY kY.> (2.62)

where
8 1

<fa 1a‘ jg jB* kY kY!> ) Tﬁg'ﬁaa’ 6381 SYY' TR aa

+ 1 i + ] 1 H + 6 I 5 ]
( s 6B Y) 688 (sa‘f 8 ay )

GBY Gqut By
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1
I + 1
* (SY\," (638 a'g' *o B 680& )} 105 {5a6 6&'7 68 Y
+ 5 1 1
+ 8 e 5&' I 581 + 60£S! (SOLiY 8YI + 6(!81 6(1' 1 68Y SUY a's 08 Y
+ § 6u|8| 68 A 6&'8 65' + 4 IIGaIBI GB }

- and a similar expression for <1'Ot jB’ jB J k kv’> ; from Egns.

a' Ty
(2.61) and (2.62) the first term can be rewritten in the form

Tos Torpigs? <A£$g Ai?3.6.> - 12A€2) { s - 28
Tose To'ys” * (18;5' %) Taws Ta'w's” ¥ (%8? %é') Tow's Tatws”
(2.63)

As in Egn. (2.60), one can write

<Taw$ Ta'm'6 > = A1 Gaw Satpt * AZ Sact 6mw’ ¥ A3 S St

Using the same method, one can get

<Tuw6 Ta'm'6> ) (ig%l‘;:é).%_ (-26aw Ga'w'+ 3aaa' S’

* 36, Ga.m) (2.64)

and with the identity

(n+1) (2n1) (n+2) R_ Rn+nR2 S

<TaBY...v TnBY...v > = on+l ( r2n+6 )

n n
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- JisIeN}
TwYS Tm Y6 23 ( :8- ) (2.65)
- 308, 8
win
By substituting Eqns. {2.64) and (2.65) into Eqn. (2.63) we get
2 ——————

W<T T <A A =128t B0 o
oaysd o'y 6 wyd wy & 105 aot ww!
+57 5 s - S }

105 cuw otw! 105 ow' o'w
Mow, the 1lst term + 3rd term = 241.\62) r‘8 { 102 s . §
105 "aa' Tww
57 48
* Eﬁg-aaw Ga'w' h Eﬁg-Sam' Ga'w}
Similarly, we can show that the 2nd term is equal to
(2 =
- 1op(2) 7B 48 57_ 102
1A r 7 U108 Saa! Suw' ¥ 105 Sow Sa'n' ¥ 105 Sa'w Saw' !
and the 2nd term + fourth term
(2) =
- pqal2) 7B -8 57 102
24A r {'105 aaa' 6ww' * 105 éaw Sa'w' * 105 Ga'w Guw’ }
Then the contribution from the single A term
(2) ;
1 2 2 8 54 114 54
= ) al (24) A r { 105 60,02' 50)0.)! + 105 Saw (Salwl + 105 (SO‘.EUJ (SO:UJ!}
2
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. 2 2
- 18- 8 (o} al2) 4 “5 all)y (96, 8,0 + 961 6
+198 8, ,} (11)
W s
Similarly, one can evaluate the contributions from the single E
term, double A term, AE term and the double E term.
Contribution from single E term:
1 2 24 _~10
9 [(alEZ) * (GZEl) Ir (306aw 6a'w' ¥ 116&0' aww'
+ llaw. 5alm) (I11)
Contribution from double A term:
_ 64 2 =10 _ 472 983
5 (AIAZ) r ( 8945 “ou a'w' * 945 (Scmi wa'
983
* §z§-6aw' Ga'm) (1v)
Contribution from AE term:
_o.=12 .2 .2 2 2, ;232 232
=T {Al E2 * AZ El} { 21 Gau' 6uwl * 21 aum' Ga'w
40
- _7.Gaw aa'w'} (v)
Contribution from doubie E term:
= 14 22 22 17589 17589 9405
=r Ey E5 (2i282 4 20297 - 22 .
152 5375 Syn Sunt T TI05 Saw' Satw T 315 Saw Su'w')
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[f we consider a particular scattering geometry, in which the incident
Tight 1is along the x-axis with its electric vector polarized in

the z direction and observations are made in the z direction, then

our interest will be 1in <a§z> :

a =o' =X w3 w =z
and
5(1&. = aww, =1 (2.66)
§ =8, =§ =§,,=0
[s£51} o w L oW
2 . 12 276, 48 2 2. -8
Cag” = 75 (o 0p)™ P b 5 [lag AT+ (ay AT 1
11 2 2, =10 , 62912 2 -1
+ [(a1 EZ) + (az El) ]r + 177% (Al AZ) r (2.67)

Of course, in this equation the first term is the first order DID.

A fuller description of the pure translational includes the r'6

&axponential terms in Egqn. (2.17).

This is a general expression for the interaction of two tetrahedral

molecules, neglecting all the polarizabilities of higher order than

the dipole-octopole polarizability.
It is of interest to determine the depolarization ratio

- 2 2
p <axz>/<azz>.

. . .. . 2
First, one can write a similar expression for <azz>
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@l s oy +ap? +28 (a2 v P e e n ) s (e, 82 B
() E)? + (ay £)2] ¢710 4+ 33816 ()2 710 (2.68)
+ 351 LAy Ep)% + a, €7 5 (€ £p)° RS
For the tetrahedral-atom interaction
Ay = E, =0
ot = ey wp)? e B a)? o )2 10
(2.69)
Gyl = oy )+ 2E oy ap)? 17+ B ey )7 P
+—5% (o, El)2 P10 (2.70)
For the octahedral-octahedral interaction
AL = A, =0
@l =22 (0 )28 e (o )%+ oy £)2 P10
#2883 (g 6% r L (2.71)
<6l = oy + ag)® (o) ap)® 170 + 28 [lay Ep)°
+ (o, E))7 w10, 88 (g, E2 i L (2.72)
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For the octahedral-atom interaction

A =0
AZ = E2 =0
2 _ 12 2 56, 11 2 -10
a > = ~§-(a1 az) ret g (az EI) r + (2.73)
2 - p 14 2 -6 52 2 =10
<azz> = (al + az) +—€ (al a2) rot =5 (a2 El) r + ...{2.74)

op = 3 302 = 52 = 0.243
op =I5 5 = 0.212
opn = B2E ZTE - 0.658
ope = 2 AL - 0.6744

- 2863 105_ . 4 6804

PEE 105 8591

where op is the depolarization ratio considering the oA term only,

and so on.

2.3.1 5Still Higher Order Polarizabilities

This section will put some Tight on still higher order
polarizabilities (higher than the dipole-octopole polarizability
E), and their effect.

Egn. (2.55) can be rewritten to dinclude higher order
polarizabilities, and the dipole moment will be given {in a symbolic

manner, with the neglect of numerical coefficients) by
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i -3 -4
U (Ctlaz)r +(A132+a1f\2)¥‘ +(a2E1+A1A2+alEZ)T‘
2 -6
+(&2F1+E1A2+A1E2+ale+ala2)r‘
# (ay Hy + Fo AL+ E. E, + A Fo o+ o Ho + a2 A + A ) e
271 7172 T t1 2 T T T2 T M T T ey Ry TR
+ {a; aq Ch + a, a, C, + ) r-8 + (2.75)
1712 27271 e S
where F is the dipole-hexadecapole polarizability

H is the dipo]e-Z5 pole polarizability, and

C is the quadrupole-quadrupole polarizability

Fieschi and Fumi (1953), using the inspection method, found
that F has 10 independent non-zero elements for tetrahedral symmetry,
and H has 31 independent non-zero elements for both tetrahedral and
octahedral symmetries. It is known that C (Buckingham, 1967) has
2 independent non-zero components for both symmetries of interest
here. So, instead of including contributions of F, H, and C which
will hake the actual analysis of data impossible, one can try to
calculate the effect of neglecting them.

We will take octahedral molecules, where F = 0, and include

terms to H in Egn. (2.72), getting

12 5 11 2 2, ~T10
yp> =7 (ag ap)™ r 7+ S5 [lag E5)7 + oy E)] r
(2.76)
5863 .2 .2 2. T13
t{pr EjEp + L [(m2 Hz) + (0‘2 Hl) Tt r
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Calculation showed that the double E spectrum is a broad flat feature,
The spectrum of the oH function will have aJ = 5 and ad = 6 branches;
its major effect is at frequencies higher than those at which intensity

could be detected in our experiments with octahedral molecules (higher
1).

than 100 cm™ Assuming that the two coefficients of r~ 1% are equal,
the effect of including the oH term is about 1% of the induced

rotational intensity.

In the case of tetrahedral molecules (especially CH4),
where the spectrum is very broad = 600 cm'l, the ratio of (oA term) is
(«F term)

about 103, assuming that A and F have the same order of magnitude and
almost constant for the temperature range (130-295 K). So, the neglect
of F and H does not affect our calculations of the rotational intensity
by more than 1%.

The  quadrupole-quadrupole polarizability C has the
16

coefficient r~ and its effect is smaller than that of F and H at

temperatures of 300 K and below.

2.3.2 Rotational Spectrum

In the calculation of the spectral distribution, we must
consider the rotational states of the two molecules. The transition

probabilities are given by the matrix elements:

| 3]s Iy o, | 9ps 9y > |2 (2.77)

where g is the pair polarizability and Ji s J% represent the initial
and final rotational states of the i-th molecule. The normalized

symmetric-top wave function (Rose, 1958} for a molecule in a

rotational staté J is
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J'k
mk

2J+1

8ﬂ2

D

Yok = (2) | (2.78)

where D%k (2) is the Wigner rotation matrix, m is the quantum number
associated with the projection of the angular momentum of J on the
space-fixed axis and k is the quantum number associated with the
projection of J on the molecule-fixed axis.. Both k and m havé (2J+1)
components and each rotational state J is thus (2J+1)2 degenerate
(in the rigid-rotor approximation). To evaluate the matrix elements,
the pair polarizability is written in a spherical tensor form using
the Stone expressions (Stone, 1975, 1976). The terms in Eqn. (2.67)
that depend only on the isotropic polarizabilities @, do not give

rise to a rotational spectrum. For example, the single A transition

term gives rise to a matrix element of the form

* *
<y 3y D2 (2,) - D3

; -z (25) 197 921 (2.79)

from which one obtains the following inequalities and selection

rules

Y 2 -
<015 95 95 9P1° # 0> ady = 0

3% (2.80)

1 1 3*
<91 931 Dig (95 = O @501 g 4,12 £ 0 - B, 50, 51,22, 53,

v

‘J. + J.
(JJ 3 3)

Similarly, the single E transition term gives rise to a matrix element

of the form

Y 4* 4% a*
<3} Jy |.% [pl%) Do (8)F Dpg (@) + Dy o (@) Jy 95> (2.81)
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from which one obtains the selection rules
AJi =0 ad. =0, £1, 22, £3, £4 (Jj + Jé > 4). (2.82)

~ For double A, the selection rules are

(2.83)
=0, r1, t02, % J.+Jb 2 3
AJJ 0, +1, £2, 3 (JJ ; )
For AE transition term, the selection rules are
6y =0, 21, £2, 3 (J; + Ji 2z 3)
(2.84)
, = + + + + J. +J) = )
AJJ 0, £ 1, £2, £3, t4 ( 3 3 4)
For double E transition term, the selection rules are
AJT =0, 1, £2, +3, £4 (Ji +J: 2z 4)
(2.85)
Ad, =0, £1, 2, £3, £4 L+ J 2 4),
; (JJ JJ )

The different selection rules lead to different rotational Raman

shifts
Bupoy = LFIP) = F(IT - TF(95) - F(3,)] . (2.86)
For spherical top molecules in the rigid rotor approximation

F(J) = B J(J+1) (2.87)

and
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coduyoe = By LTI - 0 (3] - B,LUp(d541) - 35(3,+1)]

The spectral intensity (Stokes) resulting from rotational transitions

Ji, Jé - Jl’ J2, is proportional to

r(35s 9ps 9y Jy) = w§ (20 + 1) (205 + 1) (20, + 1) (20, + 1)

xexp (- Jy{J; +1) B + J,(d, + 1) By) ‘hC/kBT} | (2.88)
where wp = wy - Aw

wg is the frequency of the incident light, and Bi is the rotational
constant of molecule 1.
To obtain the spectral distribution from the selection

rules and the expression for F(Jl, JZ’ Ji, Jé), - We compute the

positions (according to Egn. (2.86)) and the relative intensities
of all the spectral lines arising from a given term of <a2>, and
then normalize the 1intensity of their sum to the experimental
spectrum. Finally, we must remember that because of the dependence
of the pair polarizability on the intermolecular separation r, each
Tine will be broadened by the translational motion of the molecules.
Posch (1982) has computed the shape of the translational broadening
function associated with an interaction characterized by a tensor
of rank ¢ and varying with r'(£+1); the broadening increases in
width with increasing 2. Taking the experimentally estimated
exponential decay function for the r"3 interaction of the pure

translational spectrum, and through the calculations of Posch, we

estimate the corresponding decay constants for single A(r"q), and
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double A and single E(r°5) transitions. Corresponding decay constants

for the mixture spectra were determined from their 7%—dependence.



Figure 2.4

Neumann intermolecular potential data and the fitted HFD potential.
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Figure 2.5

The M3SV intermolecular potential
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CHAPTER 3
EXPERIMENT AND DATA ANALYSIS

3.1 EXPERIMENT

The experiment consists in sending a beam of light,
generated by a laser, through a sample of gas and measuring (with
a spectrometer) the intensity and spectral distribution of the Tight
scattered at right angles to the beam direction. The experimental
set-up is almost the same as that reported previously in the theses
of Shelton (1979), Penner (1983) and myself (E1-Sheikh, 1985) and
is as shown in Fig. 3.1.

The 1ight beam is generated by an Ar-ion laser [1]. The
taser has a prism in the resonant cavity to force operation on one
1ine. Power is of the order of 3.0 watts at a current of 35 amperes.
A half-wave plate [2] is used to rotate the polarization of the
beam to the correct orientation and is followed by a Nicol prism
[2] which removes the unwanted polarization component. The beam
is then reflected vertically upwards by a prism and focused by a
10 cm focal lens placed just below the cell [9].

The light scattered by the gas is collected and focused
oﬁ the entrance slit of the spectrometer using two 20 cm focal length
collection and focusing lenses mounted on a translating stage [3].

The spectrum 1is scanned by a tandem Czerny-turner double
monochromator [8] (Jarrell-Ash series 25-100) as shown in Fig. 3.2.
The two monochromators are mounted one above the other and the light
path in the second monochromator is the same as in the first, but

in the opposite direction; this system improves stray-light rejection

52
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over a single monochromator. Light enters through sl1it (A) and
passes to a collimating mirror (B) where it is reflected as parallel
Tight tora plane grating (C). The dispersed 1ight, still parallel,
but with separate wavelengths diverging, is reflected back to the
camera mirror (D). Here light is deflected 90° by mirror (E), through
the intermediate slit (F) to an additioﬁal 45° mirror (G) where
it is deflected to the 1lower monochromator (which is’ mainly the
same as the upper one) and finally to the exit slit. The light
emerging from the double monochromator s focused on to the
photocathode of an RCA (31034 photomultiplier tube [4]. The pulses
from the photomultiplier tube are amplified and stored in a

multi-channel analyzer [5] from which the spectra are obtained by
counting the number of photons received at each frequency. The

equipment for filling the sample cell is contained in the area [71.

3.2 IMPURITIES

The reason for repeating the two experiments on SFG-SF6
and CF4—CF4 which were done previously in our laboratory (Shelton,
1979), is that the impurities in these early experiments were high.
Some of these 1impurities came with the sample and one was added
to the sample for intensity normalization. For example, CF4 was
contaminated with 0.2% air. This air impurity has a rotational
band due to 02 and N2 scattering at 60 cm°1 which could affect the
rotational wing of the induced spectrum. As well, these impurities
in the molecules could interact with CF4 molecules to give a
contribution to the intensity of the total induced spectrum.

In the present work, the air impurity was less than 0.03%,
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which was almost ten times less than before.

In the earlier work another impurity (HZ) was added before
to the sample for intensity normalization. Again, this could interact
with CF4 to affect the intensity.

In this work, the intensity normalization procedure did
not require an internal foreign calibration standard (see Section
3.3.1a). | |

The purities of the samples used in the present study
are: SF6 99.99%, CF4 99.9%, Xe 99.99%, Kr 99.995%, Ar 99.9995%
and Ne 99,999%.

3.3 RAW DATA AND DATA ANALYSIS

The experiment has two conflicting goals: measurement
of the very weak spectrum at high frequency shifts and measurement
of the spectrum near w = 0 in spite of the bright Rayleigh 1line.
To obtain the CILS spectrum near w = 0, one must use a narrow spectral
s1it width so that only a small portion of the spectrum is obliterated
by the instrumentally broadened Rayleigh line. Since the detected
signal increases as the square of the spectral slit width, measurement
at large frequency shifts will be favoured by wide slits. So, the
only way to reconcile these conflicting requirements is to make
separate scans with narrow and wide slits, for the small and large
frequency shift regions of the spectrum, respectively.

Seven different experiments have been performed in our
1, at different

laboratory, in the range of frequency shifts 0-100 cm

pressures.
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In this thesis, pressures are given in p.s.i.:
1 p.s.i. = 0.68027 kPa

The total pressure range investigated in the experiment is 150 p.s.1,

to 600 p.s.i. = 100 kPa to 400 kPa.

3.3.1 Similar Molecules

(1) SF6—5F6
Scans were taken in the range 0-100 r:m"1 with a 2 cm"1

s1it width, in the range 0-30 et with 0.75 e

1

slit, and in the
range 475-565 cm for intensity normalization purposes. This
experiment was done twice, in order to gauge the 1limits of the
experimental error, and the possible sources of that error. Shelton
and Ulivi (1988) had measured carefully the intensity ratio of

the v SF6 vibrational band at 525 cm"1 to the S{(1) line for H2.

5

The ratio was used hereafter for intensity normalization.

(a) SF6 (I) - The experiment was performed in the pressure range 167-
288 p.s.i.

(b) SF6 (II) - The experiment was performed in the pressure range

165-309 p.s.i.

(i1) CF,-CF,

The same spectral parameters as for SF6 were used, except
that the range 590-710 cm'1 was recorded for normalization.
The experiment was done at the pressures: 363, 343, 327,

307, 283, 268, 252, 227, 210 and 187 p.s.q.
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The densities were calculated using the second and third

virial coefficients (Dymond, 1969) from the virial equation

. RT B.C
P“ V[1+v+;—2—+,_.] (3.1)

where
%—= p is the molecular density 1n'm01es/cm3
P = the pressure in atm.
T = the temperature in K
B and C = the second and the third virial coefficient of the gas
in cm3/m01e and cm6/m01e2 respectively, and
R = the universal gas constant.
Then
- 2 3 .
P =355.089 [p +Bp~ + Cp~ + ...] p.s.i.
where
for SF6
B = -282 cm/mole ¢ = 21.4 x 10° cm®/mote?
and for CF4
- 3 _ 6 2
B = -88.3 cm”/mole C = 6070 cm /mole”.

The densities corresponding to the pressures used were as follows:

For SF5

(a) the range was 0.56-1.15 mole/1itre, and
(b) the range was 0.545-1.3 mole/litre.
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For CF4, they were

1.13, 1.06, 1.01, 0.94, 0.86, 0.81, 0.76, 0.68, 0.6 and 0.55

mole/litre,

3.3.1a Normalization of Data

Since experimental conditions vaky from day toiday, causing
changes 1in 1line intensities, data taken for the spectrum under
experimental consideration must be normalized. For this purpose,
the intensity of the depolarized Vg vibration line at 525 crn'1 Was
used in the case of SF6, and the Vg vibration line at 631 cm"l in
the case of CF4. The area of these lines were checked at every
pressure, and to calibrate the spectrum on an absolute scale, the
560 cn™' S(1) Vine for H, was used.

We will take SF6 as an example. The same procedure is
followed for CF,. The intensity of an allowed line 1is proportional

4
to the density, so one can write the following equation:

3
(500)  wglwg + 500)” Qgr oo
6 ~ 6 6 _ K

A

3 1
r1, (560)  wylug + 560) U, o

2 2

where wg is the frequency of the incident light, and

2

_(041) (ge2) F
W, " D 2 00 ")

and g, = 0.316 A% for the S(1) Tine J = 1 and n(1) = 0.6585.
2

From Eqn. (3.2)
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3 o
walwy + 560) H
0 = K, 00 oy 2 (3.3)
) 6 uo(wo + 500) 2 OSFG
For a CILS run at density oy
fleg (CILS)  wolon + 01y <) 3Qer (CILS) Flo )
SF6 0'*¥0 CILS SF6 » Py :
= =K, . (3.4)
3 2
J‘ISF6 (500) wo(wo + 500) QSF6 oy
From Eqns. (3.3) and (3.4)
3
( ) (wo + 560) Qx QH2 DH2
Qgp (CILS) = Ky K (3.5)
172 3 :
6 (wo + CILS) Pop
6
From Eqns. (3.4) and (3.5)
3 °H,
I (CILS) = wnlwn * 560)° Q, o. K, K, —=— . (3.6)
SF6 00 H2 x 1L 72 pSFs

Egqn. (3.6) is used to put the intensity on an absolute scale.

3.3.1b Data Analysis

The normalized intensities at different freguency shifts
were plotted as a function of density to check if the intensity
varied smoothly with density within experimental error. As a result
of this test, data at several pressures were not used further in
the analysis.

Reasons for these points falling off the curve are probably

related to the fact that the experimental conditions change with

time. For example, the laser power beam position could have shifted.
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1t was therefore felt that it was not appropriate to use the defective
points for the analysis.
| For example, in the case of SFG-SF6, the following densities

only were used

(1) 1.15, 1.0, 0.72, 0.64, and 0.56 mole/litre.

(11) 1.3, 1.16, 1.02, 0.88, 0.65, and 0.545 mq]e/]itre.
In the case of CF4, all the runs were used.

The intensity I(w) at each frequency « for densities Tless
than 2 mole/litre, may be expressed by a virial expansion as a

function of density, in the form
o) = 18(0) 02 + 13 (0) 03 + ... (3.7)

The 92 term describes the two-body correlation spectrum and the

p3 term describes the three-body correlation spectrum. So, fitting

our 2 cm'1 spectra with the above equation in the range 6-70 cm'l,
one can separate contributions of two and three body interactions.

To obtain information near w =0, we used both 2 c¢m

1

and 0.75 cm ~ spectra in the range 6-20 cm'l. Analysis shows that

the ratio of intensities of the two sets of measurements in that
range follows a straight 1line, with different constants at each
pressure.

Extrapolating the 0.75 em! spectra using the constants
at each pressure enables us to obtain the two-body spectrum within
2 cm'1 from the laser line. A gaussian is then fit to the data within
5 cm'l from the laser line to determine the spectrum until w = 0.

The two-body spectrum for SF6 and CF4 is shown in Figures

3.3 (a,b) and 3.4, and 1listed 1in Tables 3.1 (1,I1) and 3.2

respectively.
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COOOODOOOOLOOOOOOOOOOOLOOOOCOOOODOOOOOO

The Two-Body Spectrum of SF

TABLE 3.1 (I)

Intensity

(R8)

COOODOOOLOOOQLOOOLOOOOOOLDOLOOOOOOCO

168 x 1072
.1293
.9654 x 10~3
.6909
.4871
.3421
.2453
.1881

. 1497
.1150

.93 x 10-4
.7583
.6428
.5314

. 4459
.3703
.3005
.2586
.2049
.1793
.1491

127

.959 x 10-5
.8164

751

.6055

.559

.5

.379

.369

.292

6

-SF¢ (1)

Frequency

(cm~1)

38.
39.
40,
41,
42.
43.

- . e . .
OO0 OOOOODOOOOOODDOOOD -

60

Intensity
(R6)

OO0 OOODOOO OO

. 251
.239
.2052
.1874
.1703
. 1524



Frequency

(cm~1)

1

N
[=)]
CO0COTCOOOUOOODO0OO0OO0OOOLOOOOO0OO

TABLE 3.1 (II)

The Two-80dy Spectrum of SF-SFe (11)

[ntensity

(A&

OOQOOOOOOOOOOOOOOOOOCJOOO

.1618 x 10 2
.942 x 10-3
.4746

.257

.152

.1008

.661 x 10-4
.45 '
.305

.2162

.1643

.1186

.8673 x 10-5
.5773

.5029

. 3569

.2997

.258

.1289

.9628 x 10-6
.763

.482

.39

.312
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TABLE 3.2

The Two-Body Spectrum of CF4

~CF

4

Intensity
(A6)

.203 x 107
1835
.9942 x 10-4
.6183

. 4499

.314

.2082

.1442

.997 x 10-5
.482

.387

OO0 OOODOLOOOOLOOOOOOOD

3
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The three-body of the first run for SF6 was available

in a larger frequency range and was taken for further analysis.

Figures. 3.5 and 3.6 show the three-body spectrum for

SF6 and CF4 respectively.

3.3.2 Hixtures

The two-body spectra for the five following mixtures -

(1) SF6 - Xe
(1) SFg - Kr
(i11) SF6 - Ar
(iv) SF6 - Ne
{v) CF4 - Ar

have been obtained using the following procedure. Three different
spectra needed to be taken for each mixture. For example, in the
case of SF6=Ar, a SFG-SFé, Ar-Ar and SF6~Ar mixture spectra were
taken. The pressure for SF6 was fixed and different pressures for
Ar were used for analysis. To determine the number density of Ar
in the SF6-Ar mixture, a small filling apparatus was used to fill

the cell as shown in Fig. 3.7.

At the start, Ar, at a pressure Xl atmospheres is in the
cell, while valves 2 and 3 are closed. Then all the valves are closed
except valve 3 which is opened to evacuate the system. Then valve
4 only is open and the pressure of the gauge changes to X2. From
1 and X2 and the virial coefficients for Ar, one can find Py and

P and then the ratio of volumes of the cell and the tubes
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Pressure Gauge

C:j%f) Valve 4
. Cell

Valve | l
I
— -
inlet1
Valve 2 Vol;_e 3 To Vacuum Pump
o T I
intet 2
Figure 3.7
v D
R=—bes oLy (3.8)
cell P2

This is done four times and an average taken for R. Once this is
done, Ar is let out of the system and valve 3 is opened to evacuate
the system.

SF6 is let into the cell, at a certain known pressure,
through vailve 1, and then all the valves are closed except valve
3 to evacuate the system.

Ar is let into the system through valve 2 at pressure (PArl)'
Valve 4 1is then opened and closed quickly, allowing some of the Ar
gas to enter the cell and mix with SF6. The reading of the gauge
is reduced to (PArz)'

From R, Pm.1 and PArz’ the number density of Ar in the

cell can be found as follows:
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QArl andpArz are determined from the virial coefficients for
Ar, and the number density of Ar atoms that pass

into the cell

- pArl Viubes - pAr2 Y+ ubes

Thus the number of Ar atoms in the cell is given by

) VtUbeS
Ar v

Ar 1 2" Veer

and so on. Increasing the pressure of Ar in the tubes and opening
V4 to let more Ar in, we can do the experiment at different densities
of Ar.

Scans were taken for:

1 with a 2 cm'=1 slit width,

1

(i) SFg-SFe in the range 0-100 cm”
in the range 0-30 em!

with a 0.75 cm = slit width,

and in the range 475-565 cm“'1 for normalization.

1 1

(1) Ar-Ar (perturber) in the range 0-100 cm™* with a 2 cm”

1 1

s1it width, and in the range 0-30 cm = with a 0.75 cm”
slit width,

(ii1) SFg-Ar in the same ranges as (1).

The densities for the systems studied were as follows:
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(1) SF_.-Xe

_ SF6 - SF6 at pressure 192 p.s.1.
Xe - Xe at pressure 310 p.s.i.

SF6 - Xe  the densities for Xe were 0.065, 0.103, 0.151,
0.220, 0.280, 0.32,.0.422, 0.53 and 0.616

mole/litre.

(i1) SFG—KP

SFG - SF6 at pressure 192 p.s.i.

Kr - Kr at pressure 270 p.s.i.

SF. - Kr  the densities for Kr were 0.058, 0.092, 0.158,

0.214, 0.226, 0.269, 0.316 and 0.363 mole/Titre.

6

(111) SFS-Ar

SF6 - SF6 at pressure 192 p.s.i.

Ar - Ar  at pressure 556 p.s.i.

SF6 - Ar the densities of Ar were 0.324, 0.445, 0.538,
0.697, 0.823, .836, 0.942, 0.974, 1.016 and
1.065 mole/litre. '
(iv) SFG—Ne

In this case we used wider slits (3 cm'"l rather than
2 cm“l), because the intensity of the scattering from Ne was very

weak.
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SF. - SF. at pressure 192 p.s.i.

Ne - Ne at pressure 373 p.s.i.

SF,. - Ne the densities for Ne were 0.127, 0.258, 0.306,

6
0.350, 0.417, 0.480, 0.567, 0.626 and 0.677
mole/litre. '
{v) CFq-Ar
CF4 - CF4 at pressure 187 p.s.i.

Ar - Ar at pressure 363 p.s.i.

CF4 - Ar  the densities for Ar are 0,048, 0.121, 0.168,
0.212, 0.259, 0.303 and 0.350 mole/litre.

3.3.2a Data Normalization

We followed similar procedures, as for the scattering

by 1ike molecules, for normalization.

3.3.2b pData Analysis

The intensity of the mixture is due, not only to the

interaction of like molecules, but to the interaction of different

molecules also. We can write the total intensity as

Tigt. = (I(z)pi + 1(3)p§) +(I(2')p§ *1(31)93)
+ (1(2”) pl 92 + 1(3“) 91 Qg + 1(33”)02 02) ool (3‘9)
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where 1(2) and 1(3) are the two and.three-body for molecule 1
1(21) and I(3I) are the two and three-body for molecule 2

I(ZH) is the two-body interaction of molecules 1 and 2.

The last two terms in the third bracket are the interaction between

one molecule of the first kind and two md]ecu]es of the second kind
and vice versa.

Eqn. {3.9) can be rewritten in the form

Lot - (1(2)p§ +I(3)9§) °(I(2)Dg +I(3)pg)
f1 72
(3.10)
- 102 4 3" Py * 1(3“3)01 S S

1]
I(2 ) is the two-body spectrum of the mixture.

31! "ui
13" and 108" coutd not be identified in the analysis

because of Tlimits on the numerical precision of the experiments.
These terms were neglected for further analysis. Some theoretical
justification is given in Chapter 4 in the case of SFG’ and in Chapter

6 in the case of CF4.

The two-body spectra for SFB-Xe, SF6=Kr, SFs—Ar, SFG-Ne,
and CF4-Ar are shown in Figs. 3.8-3.12 and listed in Tables 3.3-3.7

respectively.



TABLE 3.3

The Two-Body Spectrum of SF6—Xe

Frequency Intensity
_femly (A6)

6.0 0.9503 x 10-3

8.0 0.537

10.0 0.338

12.0 0.235

14.0 0.162

16.0 0.115

18.0 0.71 x 10-4

20.0 0.576

22.0 0.417

25.0 0.263

26.0 0.245

28.0 0.165

30.0 0.1465

32.0 0.1087

34,0 0.905 x 10-5

36.0 0.734

38.0 0.47

42.0 0.302

44,0 0.228

46.0 0.1741

48.0 0.125

50.0 0.1008

54.0 0.669 x 10-6



Frequency
(em-1)

~
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TABLE 3.4

The Two-Body Spectrum of SF6—Kr

Intensity
o]
(Ab)

OO OO0 OODOOODOOOO

.69 x 10-3
.484 _
. 3305

.2

132

.806 x 10-%
.6067

413

.278

.2175

131

.892 x 10-5
.573

.45

.367

.3

. 238

.196

.168

.133

124

.1009

.6105 x 10-6
.45

.345
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TABLE 3.5
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The Two-Body Spectrum of SFeaAr

Intensity
Q
(A8)

COOOOOOOOODOOTOOODOOOOODOOODOOOO



Frequency
(cm-1)
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(A~

TABLE 3.6
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The Two-Body Spectrum of SFB—Ne

Intensity
(AB)

COOOOOODOOODOOOOOOO

.6842 x 10-5
. 4964

. 447

.222

.199

.1324

.901

.735 x 10-6
.609

. 402

.303

. 250

.213

.15

.1104



Frequency
(em-1)

E=

OO OOOOOOOOODOOOOUOOOOO0OOD

TABLE 3.7

The Two-Body Spectrum of CF

4

=Ar

Intensity
(AS)

OO0 OO0OODOOOCOOOOOODOOOOD

.6197
L4722
.37
.2919
. 2422
. 2025
.1658
.1264
9702
.76
.6051
. 4669
. 267
.194
. 1448
.1189
.9307
.6542
.5628
.525
.4153
.298

x 10-4

x 10-5

x 10-6
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Figure 3.1

The set-up of the experiment.
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FIGURE 3.1




Figure 3.2

The spectrometer (double monochromator).
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3.2

FICURE




Figure 3.3a
Figure 3.3b
Figure 3.4

78
Figures 3.3a, b, and 3.4
The experimental two-body spectrum of SFg-SFg (I).

The experimental two-body spectrum of SFg-SFg (II).

The experimental two-body spectrum of CFg-CFg.
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Figure 3.5
Figure 3.6

Figures 3.5-3.6

The experimental three-body spectrum of SFg-SFg.

The experimental three-body spectrum of CF4q-CFg.
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CHAPTER 4
OCTAHEDRAL MOLECULES

In molecular gases, the intensity of the collison induced
Tight scattering 1is proportional to the square of the anisotropy
8{r), and is larger than predicted by the DID model where B(r) s
given by Egn. (2.14), or the anisotropy corrected for electron
overiap given by Egn. (2.17). Buckingham and Tabisz (1978)
proposed a mechanism which is a generalization of the DID effect,
The intensity of CILS is given by Egn. (2.67), the first term
corresponds to the first order DID effect, which gives the dominant
contribution to the scattered intensity at low frequency shifts,
the rest of the terms correspond to the intensity of the induced
rotational scattering. Since octahedral molecules have a centre
of symmetry, the dipole-quadrupole polarizability A vanishes, and
the dipole-octopole effect gives the main contribution to collision
induced rotational Raman scattering.

Our interest in this chapter is the dipole-octopole
polarizability E of SFG. As mentioned in Chapter 2, one can calculate
the translational spectrum using Eqns. (2.31) and (2.32)once the
anisotropy and the intermolecular potential are known.

Table 4.1 shows the parameters that were used in calculating
the translational spectra for SF6—SF6, SF6—Kr, SFﬁnAr, and SFG-Ne.

The moments from the translational spectra (TR) and from
the sum rules (SR) can be evaluated using Egns. (2.37) and (2.46)
respectively (the first three even SR moments are quantum mechanically

corrected).
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TABLE 4.1

The Values of the Polarizability and Hyperpolarizability
for SFB’ Kr, Ar, and Ne

o (A% v (e Mt 734 10762
SF6 4,549 Watson and Ramaswamy, 12.0 Kielich (1969)
{1936) B
Kr 2.54 Meinander et al. 14.0 Shelton (1986)
(1985)
Ar 1.679 Dalgarno and Kingston 7.3 Buckingham and Dummer
(1960) (1968)
Ne 0.3989 Meinander et al. 0.44  Shelton and Lu (1988)
{1985)

Table 4.2 shows the values of the moments, using the
different potentials mentioned in Chapter 2.

It is clear from Table 4.2 that the moments calculated
from the sum rule are higher than those of the translational spectrum.
This result is expected since the sum rule expressions for the moments
include the dimer contribution. In fact, the difference between
those moments gives the moments due to the dimer interactions. One
can use that difference with Eqn. (2.48) to calculate the dimer spectra
for the different species. If the two spectra are added, translational
plus dimer, and compared with the experimental spectrum, one will
find an excess in intensity of the experimental spectrum, especially
at high frequency shifts which is due to the collision induced
rotational spectrum. (In this case, it 1is mainly due to the

dipole-octopole polarizability g).
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TABLE 4.2

The First Four Even Moments Calculated from the Translational
Spectrum and from the Sum Rule for SF6~SF6, SF6~Kr,
SF_-Ar, and SF.-Ne

6 6
My(A%) M, (A%Ps™2) My (A%s™4) M (A%ps76)
SFe-SFe  HFD TR 712.35  986.09 0.1017759 x 10°  0.1010342 x 10
SR 1058.33  1143.21 0.1107228 x 10°  0.1055745 x 10’
MC TR 656.67  949.36 0.135154 x 10°  0.1082222 x 10’
SR 1167.03  1302.44 0.1854561 x 10°  0.17994157 x 10’
PS TR 554.80  794.58 0.1578177 x 10° 0.2194837 x 10
SR 931.11 1013.49 0.1890082 x 10°  0.2394980 x 107
SFe-Kr D TR 322.78  884.35 0.2253744 x 10°  0.2335921 x 107
SR 448.25  993.91  0.2413713 x 10°  0.2435917 x 10’
S TR 309.28  781.713 0.1873883 x 10° 0.192513 x 10’
SR 402.70  851.05 0.198975 x 10°  0.200795 x 10’
SF-Ar TR 159.85  769.73  0.3873442 x 10°  0.9140079 x 107
SR 202.22  831.98 0.4190311 x 10°  0.9678816 x 10’
SF-Ne TR 9.78  72.75 0.4043358 x 10 0.7450079 x 10°
SR 10.91  82.90 0.5652674 x 10°  0.1432258 x 107

Figs. 4.1-4.7 show  the translational, dimer, and the
experimental spectra for SFG—SF6 (HFD, MC, PS), SFG—Kr (D, S), SF6=Ar,
and SFS-Ne respectively.

[t is clear from the figures that the dimer has an effect
only at low frequency shifts (s 30 cm'l).

The vrotational spectrum (normalized to unity) can be
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calculated using Egns. (2.87) and (2.88). The rotational constant
for SF6 is B = 0.095 cm“l, so the rotational lines are closely spaced,
Each rotational s-function is broadened (Posch, 1982) with a

translational broadening function associated with an interaction
-5

characterized by a tensor of rank 4 and varying as r . The width
of the lines due to E were  estimated from  the experimental
exponential decay function for the r’?_ interaction of the pure

translational spectrum and scaled to 8 through the calculation

1

of Posch. A gaussian of HWHM of 5 cm =~ was thus used for the

broadening function; the widths were assumed to vary as 7% for the

mixture cases.

[f one multiplies the normalized spectrum with the factor:

2 r-lO 4 -14

2z 2 E*"r 77, (mentioned in Egn. (2.71)),

—gaE

no

in the case of SFG'SFG’

and with the factor

2 =10
1

1 r , (mentioned in Egn. (2.73)),

9

fum—y

2
azE

in the case of mixtures, one can get the value of E by fitting the
rotational spectrum to the difference between the experimental and
the sum of the (translational + dimer) spectrum.

Different cases will be treated separately in the next

section.

4.1 OCTAHEDRAL-OCTAHEDRAL INTERACTIONS (SFG—SFG)

In the case of SanSFG, we performed the experiment twice

and found about 4% difference between the intensities of the two-body
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spectra. Both were separately used for analysis and the individual

values of E were then averaged.

4.1.1 HFD Potential

Figs. 4.8 and 4.9 show the translational, rotational, total
theoretical, and the experimental spectra for both experiments (I)

and (II) respectively. The values of E obtained were as follows:

(I) E =9.6+18 Ao
(1) E,=9.2+ 1.5 A°
o5

The average of E is 9.4 £ 1,65 A~.
The error mentioned above includes both the experimental

and the statistical errors.

4,1.2 KL Potential

Figs. 4.10 and 4.11 show the same spectra for this case.

The values of E obtained were:

(1) E,=6.2+1.8 FE
(1) E,=5.9+ 1.7 e

The average is E = 6.05 = 1.75.

4.1.3 PS Potential

Again Figs. 4.12 and 4.13 show the spectra for this case.

The values of E were as follows:

(1) €, =8.8¢2 Ad
(11) Ey=8.2%2#°
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The average of E is 8.5 + 2 35.

To compare these three potentials, we calculate a measure
of success of the fit between the experimental and the theoretical
spectra, in the frequency range where the potential is a crucial
factor in determining the theoretical spectrum (10-25 cm'l), i.e.
a region where the free-free translational spectrum rather than the

dimer spectrum dominates the’profi]e.

n.
J -2

. a (P., -P )2
i

2
§5(CILS) = —= .
i=1 ji 4t W

J n;

(4.1}

where nj is the number of frequencies used, Aji is the experimental

percentage error at each frequency, and (Pji'Pij) is the ratio

(experimenta1-theoretica]
experimental

) for the intensities at a particular
frequency.

A value of & < 1, means that the difference between the
experimental and theoretical spectra 1is less than the experimental
error and the fit is excellent. Table 4.3 shows the values of §(CILS)
for the three potentials.

From Table 4.3 the HFD potential seems to be the best
available potential for SFG’ though we believed at the outset that
there is no truly reffned potential for SFB—SF6 as yet. This
circumstance lay behind the idea of using the SFG mixtures to determine
E since for these there exists the good potentials determined by

Pack.



TABLE 4.3

Comparison of § (CILS) for HFD, Mc, and PS Potentials

s(CILS)

HFD (1) 1.58
(11) - 1.81
M (1) 1.92
(11) 2.04

ps (1) 3.24
(11) 3.5

TABLE 4.4
§(CILS) for the Three Mixtures SF6=Kr, SFG-Ar,
and SFBNe
GfCILS)
SF6=Kr 0 0.957
S 2.5
SF6=Ar 0.8865
- 1.28
SF6 Ne

4.2 OCTAHEDRAL-ATO# INTERACTIONS (SFG—Kr, SFG-Ar, and SFG—He)

Table 4.4 shows the values of §(CILS) for the three

mixtures.
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In the case of SF6-Kr, the theoretical spectra were
calculated using the two available potentials (D and S). We decided
to consider D only for further analysis for two reasons. The first
one is that the value of &6(CILS) for S was very high. Secondly,
the two potentials were determined using two different sets of data
for the interaction second virial coefficient, S, from only the data
of the Santafa group (Santafa, 1978); D from the'data Ef the Dunlop
group (Martin et al., 1982). The latter agrees with the data measured
by B. Schram (Pack et al., 1982). The CILS experiment then could
be regarded as a test for the relfability of an intermolecular
potential.

The actual experimental error in the case of SFG—Ne was
higher than that for SFG-Ar and SF6—Kr, but we used the same error
in calculating 6(CILS) in all three cases for comparison purposes.
Taking that higher experimental error into consideration, the fit
of SFG—Ne is not worse than the other two mixtures.

Figs. 4.14-4.16 show the good agreement between the
theoretical and experimental spectra for the three mixtures. The

values of E obtained were:

25

E=12.9+2A SFg-Kr
=10.2 + 4 A SF-Ar
=11.3+5a° SF-Ne

The wuncertainty 1in the value of E increases as the
polarizability of the perturber decreases, because the signal at

high frequency shifts is weaker and the statistical error is higher.
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In the case of SF6—Xe, there was no intermolecular potential avgi]ab]e.
So, at first, two L-J (6-12) potentials for SFg-SFg {Sigmund et al.,
1972) and for Xe-Xe were used with the combination rules (Pena et
al., 1982), but the difference between the experimental and theoretical
spectra was very high. Hence we developed a new M3SV intermolecular
potential for this mixture which leads to a value of E = 8.3 = 3 E .

The specifying of the potential will be discussed in detail in Chapter

5.

Table 4.5 shows the values of E, obtained in this and other

studies,

Another comparison was made between the total theoretical
and experimental spectra for all cases by calculating the same kind
of & given by Egn. (4.1}, but for the full frequency range of the
spectra (0-70 cm'l). Table 4.6 shows this comparison.

It is clear from Tables 4.3, 4.4 and 4.6 that not only
is the HFD potential for SF6-SF6 better in the range 10-25 cm“l,
but also in the total frequency range. For SFG—Kr and SF6-Ar, the

values are a 1ittle bit higher than for those in the limited frequency

range.

4.3 EXPERIMENTAL MOMENTS

Another measure of agreement between the theoretical and
experimental spectra is the zeroth moment. Since the experimental
spectrum is measured at the Stokes side, we have to calculate the

spectrum at the Anti-Stokes side using the relation:
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TABLE 4.5
Value of |E|
Group Method LE] A°
Present work Experimental
(i) SF6--SF6 ) |
(1) HFD 9.4£1,65
(2) MC 6.05£1,75
(3) PS 8.5%2
(i1) SFg-Xe 8.3%3
(i11) SF6~Kr 12.9x2
(iv) SF6—Ar 10.2z4
(v) SFG-Ne 11.3%5
Average = 10.7£2.5%
Shelton and Tabisz Experimental < 20
(1980)
Buckingham and Tabisz Bond-polarizability 20
(1978) calculations
Neumann (1984) Applequist's atom dipole 9.456
interaction calculations
Pleich (1983) Experiment <9
E1-Sheikh et al. Experiment SF6=SF6 8.5
{1985)

(after revised analysis)

Note

* The L-J and PS cases are neglected in this average because of the
high values of &§{CILS)
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TABLE 4.6
s(total) for SF6-SF6, SF6—Kr, SFG—Ar, and SF6=Ne

d{total

SFg-SFg HFD (1) | 1.059
(2) - 0.944

MC (1) 1.552

(2) 1.358

PS (1) 1.979

(2) 1.775

SFg-Kr 0.024
SF¢-Ar 0.9908
SF-Ne 1.246

I(~w) = exp(-ﬁm/kg) I{w)

Integrating over the available range of the experimental data one

th

can calculate the zeroth experimental moment. The m~ spectral moment

of the n-body spectrum is defined as:

Usually it is possible to determine the zeroth, second,

fourth, and sixth moments for the two-body spectrum. The zeroth

and second moments were calculated for the available three body

spectra.
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To calculate the zeroth moment, extrapolation is necessary
to zero frequency as mentioned in Chapter 3. For higher moments,
extrapolation is needed at high frequency shifts. This can be done
by adding the theoretical translational spectrum plus the rotational
spectrum corresponding to each case. The error is taken as greater

than or equal to the area of the extrapolated portion of the curve.

4.3.1 The Two-Body Experimental Moments

To compare the two-body experimental and theoretical moments,
one has to calculate the total theoretical moment, i.e. the moment
calculated from the sum rule (translational + dimer) plus the moment
due to the rotational spectrum.

The moments due to the rotational spectrum were calculated

using the formula

oo

Moo= 1 Rlw) o du

- 00

where R(w) is the intensity of the rotational spectrum at a frequency
W

Table 4.7 shows a comparison between the experimental and
theoretical zeroth moment.

The error in the zeroth experimental moment was estimated
as one third of the area extrapolated to zero frequency, whereas
the extrapolated area at high frequency shifts have an effect of
less than 0.01% of the zeroth moment.

Table 4.7 shows best agreement between the experimental

and theoretical zeroth moment for the HFD potential in case of SF6-SF6.



103

TABLE 4.7

Comparison Between the Experimental and Theoretical
Zeroth Moment of the Two-Body Spectrum for

SF6—SF6, SF6—Kr, SF6—Ar, and SF6-Ne
My (A%)
Theoretical (SR)  Total Theoretica] Experimental
SF6-SF6 HFD (1) 1058.34 1064.95 ‘ 1048.482222
(11) 1064.43 1037.482221
MC (1) 1167.04 1170.22 1048.47+222
(1n) 1169.83 1037.46+221
PS (I} 931.12 934.38 1048.48+222
(I1) 934.00 1037.47+221
SFG-Kr 448.26 451.63 474.78x108
SF6=Ar 202.22 203.6 206.72+17.5
SFG-Ne 10.91 11.0 10.65+1.9
In the case of mixtures, there is good agreement in all
cases.

Table 4.8 shows a comparison of the same type, for higher

moments.

The effect of collision induced rotational spectrum becomes
more important the higher the order of the moments. The error in
calculating M2 is small, about 10%, which made M2 a candidate for

comparison between the theoretical and experimental spectra. Table

4.8 shows a good agreement in general for MZ'

The error due to high frequency extrapolation is very high

for M4 and M6.
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TABLE 4.9

Comparison Between the Experimental and Theoretical Zeroth and

Second Moments of the Three-Body Spectrum for SF6-SF6
in This and Other Studies

G 29 29 -

roup Method MO(A ) ﬂz( PS
This work Experimental 286,146~ 344.75+30
‘Shelton et al. Experimental 349 =66 373.55£19

{1982)
Shelton et al. (1982) Calculations using 184.36 280.16

Mc potential

4.3.2 The Three-Body Experimental Moment

The zeroth and second frequency moments are compared with
calculations based on a pair-wise additive triplet cluster
polarizability (Barocchi et al., 1977).

Table 4.9 shows a comparison of the zeroth and second moments

if the experimental and theoretical spectra of this and other studies

for SFS—SFG.

Table 4.9 shows reasonable agreement between this work
and the calculations, having in mind that the Mc potential is not
the best available potential for SF6~5F6.

The ratio of M3/MZ is about 20% for SF,-SF..

00 676

This result justifies the neglect of the three-body mixture

spectrum in the data analysis.

In the case of mixtures (Section 3.2.2b), the intensity

)
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of the two-body spectra of any of the mixtures studied is less than
the intensity of the two-body spectrum of SF6—SF6 because GSF6 is
higher than o of the perturbers used.

So too the three-body of any of the mixtures is less intense
than the three-body spectrum of SF6—SF6. The intensity of the
three-body mixture spectrum is thus very small. The procedure of
subtraction used in the analysis of the raw data to obfain the total
mixture spectrum (Eqn. 3.10) resulted in Tlarge statistical ervor
and made the determination of the three-body spectrum of the mixture

impossible within the precision of the experiment.

4.4 CONCLUSIONS
(1) The HFD potential is the best available potential for SFg-SFe
interactions for the following reasons:-
(1} &(CILS) is the best in the HFD case,
(i1) &(total) is the best in the HFD case,
(i11) The value of E obtained with it agrees with the value
calculated by Neumann.
(2) In the analysis of the mixtures, the error due to the full
normalization procedure (like subtraction of three spectra) was
not taken 1into account when calculating &(CILS) and &(total),

which makes the values of § that we got upper limits.

(3) The expression for the quantum mechanical correction for MG
is not available and thus made the calculations of the dimer

spectrum not very accurate at high frequencies.
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The average value of E for SF6 is 10.7 £ 2.5 A . The average
value and the error were calculated from the different values
of £ obtained using different perturbers and different potentials.
The Tower 1imit of the average value of E includes the values

obtained by Neumann and Pleich.
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Figures 4.1-4.3

Figures 4.1-4.3 show the experimental two-body spectra of SFg-SFg (I)
and SFg-SFg (II), with the translational and dimer calculations using
the different potentials HFD, MC, and PS.
The experimental two-body spectrum.
0 The theoretical trans1atfonal spectrum:

o The theoretical dimer spectrum.



‘ o 6
INTENSTITY (R )

-2
10

()

()]

1
ul

-6
10

10

-8
10

FIGURE U.!.a

110

oo HFD
of%
o o
o .
o 0
o)
o .
I o ..
[
u)
o
i 0
Y o
o
)
®
o . o
o)
o)
u
15 30 45 ., 80 -
FREQUENCY (CM )

75



(

INTENSITY

111

FIGURE Y. 1.n

SFB —SFG (I 1)
HF D
ml
m .
-
]
o
o o !
O ul
o
o
)]
o g
®
o
0
15 | us ., 80 T 75

30
FREQUENCY (CM ).



B
INTENSITY (A )

-2
10

o

._.
(]

O

L}
My

!
=

1
[%2]

-6
10

10

-8
10

FIGCURE U.Z2.a

SFB —SFS (1)
MC
o
I,
ul
0] i
o o
o
u)
o
o
0
o

112

13

30 4s ., B0
FREQUENCY (CM )

U1



0

(A

INTENSITY

-2
10

%&@&; SFy -SFg (11)
MC |

10"
10
10

10

FIGURE 4.2.n

113

&
C'Jd]°
e O .
o o
o
- m.
o . .
o m
B o [} |
O
o
]
O
I |
o
B
15 30 4s ., 80 75
FREQUENCY (CM )



o 6
INTENSITY (A )

-2
10

FIGURE U.3.a

114

-

10 é%#: S% —SFB[I]
o . PS
of. .

_Ll o

10 & & .
D.l

-5

10 L
© 0 ..I.
U

-6 © ] -I'-

10 L o -
o o
o u
T

. o

10k o
0
o

-8
10 i | { i

0 15 30 ys ., B0 75

FREQUENCY (CM )



)

&

0
(A

INTENSITY

115

FIGURE 4.3.p

10 —
10@:@%, SFy ~SFg (11
o, PS
o[ﬂ
. ()
oL,
K
-5 .
10 L .
0 o
oo,
" © o
10 & o m
o o
O o j
) o
1071 .,
M
O
10-8 3 I 1 1
0 15 30 45 ., &0 75
FREQUENCY (CM )



116

Figures 4.4-4.7

Figures 4.4-4.7 show the experimental two-body, translational, and
dimer spectra for SFg-Kr (D,S), SFg-Ar, and SFe-Ne respectively.
The experimental two-body spectrum.
n| The theoretical translational spectrum.

o The theoretical dimer spectrum.
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Figures 4.8-4.16 show the experimental two-body, total theoretical,

translational, and rotational spectra.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

SF6-5F6 (I), using HFD potential.
SF6—SF6 (IT), using HFD potential.
SF6—SF6 {I), using MC potential.

SFg-SF (IT1), using MC potential.
SFG—SF6 (I), using PS potential.
SF6-SF6 (Il), using PS potential.
SFS-Kr, using M3SV potential.

SFG—Ar, using M3SV potential.

SF6-Ne, using M3SV potential.

The experimental two-body spectrum.

The total theoretical spectrum.

The theoretical transtational spectrum.

The theoretical rotational spectrum.
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CHAPTER 5
INTERMOLECULAR POTENTIAL FOR SF -Xe

The potential energy function U(r) 1is a way to represent
the force between two molecules {Maitland et al. 1981).

We will start with the simplest-possible situation in which
two atoms, a and b, each composed of a positivé1y cﬁérqed nucleus
surrounded by a negatively charged, spherically symmetric electron
cloud, interact. When the two atoms are infinitely separated, they
do not interact at all and the total energy of the two-atom systems,

Etot’ is just the sum of the energies of the individual atoms.

E = E, * (5.1)

tot (=)

If the atoms are separated by a finite distance r, the interaction
between them provides an extra contribution to the total energy of

the system.

Eror (1) = By * By + U) (5.2)

From Eqns. (5.1) and (5.2) one can get:

U(Y‘) = EtOt (Y‘) - EtOt (°°) (5.3)

The intermolecular pair potential thus describes the
departure of the total energy of the two atom system from its value
when the two atoms are infinitely separated. This energy difference
is numerically equal to the work done in bringing the two atoms from

infinite separation to the separation r and is given by
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(o]

Ulr) = 5 F(r) dr . (5.4)
r

where  F(r) is the force acting between the two atoms at the
separation r.

Fig. 5.1 shows the general form of the intermolecular
potential energy function for atoms.

There 1is a strong repulsive fo;ce'.at short -range and -an
attractive force at long range. In terms of the potential energy
U{r) this behaviour corresponds to large, positive energies at small
separations and negative energies at long range, the two extreme
regions being Jjoined by a function with a single negative minimum.
The separation at which the potential energy is zero is o3 the
separation at which the energy attains its minimum value is fmin’
and the minimum energy itself is -e; ¢ is called the well depth.

In the more general problem of the interaction of two
molecules which Tlack spherical symmetry, the intermolecular energy
depends not only upon the intermolecular separation, but also upon
the relative orientation. Usually the procedure to generate an
intermolecular potential for a certain interaction 1is to assume a
suitable form for the potential for this interaction, with primary
values for the parameters of the potential, and try to calculate
a property that is known experimentally, fitting the parameters to
this property. Accordingly the parameters depend on the type of
experiment used, and if one tries to calculate another property
dependent upon the same interaction, sometimes one will find a
discrepancy between the calculation and the measurement.

It seems that certain regions of the potential are more

sensitive to certain properties than other regions. Fitting all
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known properties simultaneously will generate a potential that can

calculate accurately another unknown property of the interaction.

5.1 SOURCES OF INFORMATION ABOUT INTERMOLECULAR POTENTIALS

Crossed molecular beam measurements of differential cross
sections (DCS), viscosity, pressure virial coefficients (Pack et
al., 1982) and diffusion coefficients (Pack et al., 1984) have been

used by Pack to determine intermolecular potentials for SF6 mixtures.

There was no avajlable intermolecular potential for SFG-Xe,
but the ones developed by Pack for other mixtures were very reliable.
We therefore contacted Dr. R.T. Pack at the Les Alamos WNational
Laboratory, Division of Theoretical Chemistry and together decided
to collaborate to develop a new potential for SFG—Xe. The only
available data for this mixture were the virial coefficient (Martin
et al., 1982) and the diffusion coefficient (private communication
by Pack). Our CILS SF6-Xe data was used as a third property to refine
the potential.

Subroutines to calculate the interaction virial coefficient
and the diffusion coefficient through collision integrals for
octahedral-atom interactions were generously offered by Pack and
sent via BITNET network. These also calculated the value of § for
each property and the total value of &. Together with our program
for the classical line shape calculations, we were able to fit the
three properties simultaneously to obtain the potential parameters

which minimized the value of §.
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5.2 CALCULATIONS

The form of the spherical limit potential used is the same
as in Egn. (2.40). The anisotropic potential is different in that

e and r are angle dependent. Their angular dependence is described

min
by the following equations:

e =e [1+ a, T4 *ag TG +...] - (5.5)

ro = T L1+ by Ty + ag Tg +...] (5.6)
where Tn are the spherical tensors that transform as Alg {the
completely symmetric irreducable representation of the group Oh).

Thus a5, g, b4, and b6 are parameters to be determined.

The number of parameters to be fitted is twelve [¢, 'Fm’ s

arps orpps Cgs Cgs Cqg» 34 ags by» and b6]. The first five usually
are adjusted to obtain a reasonably good fit with the anisotropic
parameters zero. This was done to keep the anisotropy parameters
from serving merely to make up deficiencies in the spherical Tlimit
of the potential. Final adjustment of all parameters were made using
the anisotropic potential form. The properties calculated were as

detailed in the following paragraphs.

5.2.1 Interaction Second Virial Coefficient

The virial coefficients of gas mixtures are related to
the gas composition and to the intermolecular potential energy function
which characterize the different type of interactions which can occur.

For a binary mixture the second virial coefficient is given by:
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- L2 2
B. = X + 2%, X
m - *1F11 1 %2 B * %5 8, (5.7)
where 8 is the virial coefficient of a mixture containing mole
fractions X5 of component 1. 811 and 822 are the second virial

coefficients of the pure components, and 81 the interaction second

virial coefficient, is related to the pair potential Ulz(r) by:

B (T) =5/ dr (1= exp [-Upp(r) / k1] (5.8)

The interaction second virial coefficient Byo is sensitive to the
size - and to the volume of the attractive well of the potential

(Pack et al., 1982).

5.2.2 Diffusion Coefficient

The binary diffusion coefficient D12 is an important
transport property for the investigation of intermolecular forces,

and is defined by Fick's Tlaw

12—3? (5.9)

where J1 is the number flux of species 1 in an isothermal binary
mixture subject to a gradient of the number density, nys of species
1. It can be shown that the diffusion coefficient is given in a

first order by the expression (Parker and Pack, 1978).

D = [k, T/ 16y @ gféé)] (5.10)

A,BC
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Here u is the reduced mass of the two species, and the collision

integral Qﬁléé) is given by (Monchick et al., 1963, Monchick and Green,

1975 and Hirschfolder et al., 1954)

k, T a -e/k T
n,s _1,B % 1 S+1 B ' n
QF\,BC 2 (2u TT) (k T)S+2 Jode e e Q (<)
B : (5.11)
. h2 K2 n . .
where ¢ is the incident kinetic energy = I Q' (e) is given by:
1
Q") =3 £ Q"5 v) d Cos v (5.12)
-1
where
"(e5 ) =2 5 (a41) sin®lng, (v) - 0 (y) ] (5.13)
Q' (es Y Kz N n£+1 Y SLY
o ‘

The diffusion coefficient is most sensitive to the well
of the potential from "m to the point when the potential is repulsive.

5.2.3 CILS Spectrum

The translational and the dimer spectra were calculated
for SF6-Xe as for the other mixtures for SF6 (see Chapter 4).
The CILS data are most sensitive to the region near r =

o (Birnbaum and Cohen, 1975).

5.2.4 Data

(a) Interaction Second Virial Coefficient

The experimental data used were (Martin et al., 1982):
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T(K) Bio (cm3/mo1e)
290.0 71,0
300.0 -157.6
320.0 -133.0

(b) Diffusion Coefficient

The experimental data used were (private communication

by Pack)
T(K) D (cmz/sec)
278.18 0.403
288.28 0.428
300.0 0.460
311.18 0.4895
323.18 0.5287

{c) CILS Data

The absolute intensity of the spectrum as a function of
frequency is shown in Fig. 3.8. The frequency range 10-25 cm-1 was
used for comparison with the calculated spectrum. Here the
intermolecular potential and the form of g(r) are the main factors

affecting the spectrum as explained in Section 4.1.

5.3 PROCEDURE AKD RESULTS

There were too many parameters to try to vary them all

simultaneously (e, P @10 970 OpIp Ce» Cg» Cipv 34 3po b,y and

b We started first by setting all the anisotropic parameters

6)'
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equal to zero (a4 =ag = b, = be = 0), and

@ Tap Tapp Tapgg {MSV potential)

and also by keeping C6’ C8’ and CIO constants, the values of which
were suggested by Pack.

With assumed values for ¢, Em’ and «, the three properties
were calculated at the experimental points. Then, the‘dimensionﬁess

mean square deviation 62, from the jth

experiment, was calculated
from Egn. (4.1). Then an overall dimensionless root mean square

deviation was obtained from

532.11/2 (5.14)

and the calculations were iterated to minimize this overall §. Thus

Fm, £, and a were changed cyclically until a minimum was reached.

Then the anisotropic parameters a b, and b6 were permitted

4 % P4
to play a role. Starting with assumed values we changed their values
until a minimum for & was recorded. Then we returned to change Fm, £,
and « and so on, until we determined that the & obtained was the true
minimum. Finally we changed the parameter scheme to @r= oqg # 117
and repeated the procedure until we got a minimum value for 6.

To prevent improper weighting of one experiment relative

to the others, it is important that the uncertainties aA.. on the

Ji
experimental data be as realistic as possible and contain an estimate
of the maximum systematic error 1limit as well as statistical errors.

The uncertainties used were, for the virial coefficient, * 2 cm3/moie,
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for the diffusion coefficient 0.4%, and for the CILS spectrum, a
variable in the range of 5-10%, depending on the frequency shift.

The parameters obtained for the potentials are listed in
Table 5.1.

The dimensions of_the first seven parameters are in Hartree
a.u., and the last six are dimensionless.

Table 5.2 shows the values of & as defined in Eqn. (4.1)
for the diffusion coefficient, virial coefficient, and for the CILS
experiment and an overall & as defined in Eqn. (5.14).

Another approach was taken, keeping ap = = as
a constant and changing Fm’ and £ only, at first with 8, = a5 = b
= b6 = 0. Then changing the anisotropic parameters Ags Aps b4, and
b6 following the same procedure mentioned before, one gets the
following parameters listed in Table 5.3.

The dimension of the first seven parameters are in Hartree
a.u., and the last six are dimensionless. These parameters give

the values for § as shown in Table 5.4.

In the calculation of the value of §(CILS), the statistical
error was not included. So the value of ¢&(CILS) can be taken as
an upper 1imit, and so also the value of &(total).

| Comparing Tables 5.2 and 5.4, one can see that the M2SV
spherical Timit potential is better than the MSV spherical limit
one, but the MSY anisotropic potential 1is better than the M2SV
anisotropic potential. But from a careful look we see that changing

e and Fm only means that we did not get the absolute minimum and
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TABLE 5.1

The Parameters for the M2SY Potential for SF6~Xe
(see Eqn. 2.40)

€ 0.00101
Fm 8.983
o = oy 0.787
%11 0.808
C6 396.8
C8 10600
ClO 320000
X1 inflection pt.
X2 1.45

3, -0.33
ag 0.38

b4 0.087
b6 -0.011

Note: The dimension of the first seven parameters are 1in Hartree a.u.,

and the Tast six are dimensionless
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TABLE 5.2

The Values of & for the M25V Potential

Spherical Limit Anisotropic
s§{diffusion coefficient) 1.4512 1.4285
s(virial coefficient) : 0.6848 - 0.62226
8(CILS) 0.945 0.945
s{total) 1.07516 1.05211
TABLE 5.3

The Parameters for an MSY Potential for SF6=Xe
(see Eqn. 2.40)

g 0.00101
T 8.98

ap Teqp T oeqqg 0.8

Ce 396.8

Cg 10600

C1o 320000

X1 inflection pt.
X, 1.45

3, -0.47

ag 0.37

by 0.088

be 0.02
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TABLE 5.4

The Values of & for the MSV Potential

Spherical Limit Anisotropic
s{diffusion coefficient) 1.6025 1.347
§{virial coefficient) 7 0.6209 0.6038
§(CILS) 0.857 T
s{total) 1.108 0.9856

the anisotropic parameters were serving to fill the inadequacy of
the spherical limit potential. So, we think the M2SV potential is

the one to use.

The measurement of the total differential cross section
would Tlead certainly to a still improved potential, especially at

small separation.

Figs. 5.2-5.4 show the experimental and the theoretical
values for the diffusion coefficient, virial coefficient, and for

the CILS spectrum for the M2SV potential.
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Figure 5.1

The intermolecular potential energy function for atoms.
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Figure 5.2

Figure 5.2 A comparison between the experimental and theoretical
diffusion coefficient at different temperatures for
SF6=Xe.
The experimental measurement

* The theoretical calculation.
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Figure 5.3

Figure 5.3 A comparison between the experimental and theoretical
calculations for the second virial coefficient at
different temperatures for SF6=Xe.

The experimental measurement,

* The theoretical calculation.
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Figure 5.4

Figure 5.4 A comparison between the experimental CILS and the

total theoretical spectra for SF_.-Xe.

6
The experimental spectrum.

- The total theoretical spectrum.
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CHAPTER 6
TETRAHEDRAL MOLECULES

The collision-induced T1light scattering spectrum arises
from an incremental polarizability induced in a cluster of interacting
molecules. The collision-induced Rayleigh. wing in molecular spectra
is broader than predicted by the DID and overlap contribution Egn.
(2.17). The additional intensity comes from rotational contributions
as indicated in Eqn. (2.67), where the first term corresponds to
the first order DID interaction and the rest of the terms represent
the collision induced rotational scattering by tetrahedral molecules.
Our interest in this chapter is in both the dipole-quadrupole
polarizability Q and the dipole-octopole polarizability g for CF4.
Two experiments have been done in our laboratory, namely, CF4--CF4
and CF4-Ar. The first system had been studied before in our laboratory
(Shelton and Tabisz, 1980). The reason for repeating this experiment
is that the air impurity in the gas was high at that time, and the
difference between the experimental and theoretical zeroth moment
that agreed best was still 60% of the theoretical moment, with the
values of A = 2,2 E and E = 2.2 35.

Gharbi and Leduff (1980) have done the same experiment,
but they calculated only the theoretical translational spectrum. They
had good agreement at low frequency shifts, which encouraged us to
use the same type of potential.

The other experiment, a mixture of CF4 with Ar was done

to provide additional data for refinement of the values of A and

E we got from the CF4—CF4 experiment.
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6.1 THEORETICAL SPECTRA

The translational spectra were calculated using the following
parameters in Eqns. (2.31) and (2.32)

o

acp = 2.937 A3 (Watson and Ramaswamy, 1936)
4

= 6.0 x 10782 ¢4 4 43 (Lﬁ'and,She1ton, 1987)

4

C J

YeF

The values for Ar were mentioned in Table 4.1.
The moments from both the computed translational spectra
and from the sum rules for both CF4—CF4 and CF4=Ar were calculated.

In the case of CF,-Ar, both combination rules were used. Table 6.1

4
sagtrs the vwalues of the zercth, second, fourth and sivth rorents

for CF4-CF4 and CF4~Ar.

TABLE 6.1

The Zeroth, Second, Fourth, and Sixth Moments for
- - 1 - 2
CF4=CF,» CF, Ar(l) | and CF, Ar(2)

g M, M, M
CF-CF, TR 126.54 284.82 5079.1 0.3454617 x 10°
SR 145.72 291.96 5118.8 0.3900088 x 10°
crp-ar() 1R 45.17 169.94 4985.77 0.5310704 x 10°
SR 50.98 173.08 5025. 3 0.5747376 x 10°
cFy-art2) 1R 69.86 368.53  16807.01 0.3034866 x 10’
SR 78.82 376.1 17225.96 0.3099724 x 107

CF -Ar(l) will refer to the simple combination rules.
4

CF =Ar(2) will refer to the combination rules by Pena.
4
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As previously (Chapter 4), the differences in the moments
were used to calculate the dimer spectra.

Figs. 6.1-6.3 show the translational, dimer and experimental
spectra for CF4-CF4, CF4—Ar(1), and CFq—Ar(z) respectively.

The rotational spectra were calculated using the rotational

1 24

constant B = 0.185 cm = for CF4 and the values A = 2.2 A and E =

-Ar, A, = E, = 0 for

4 2 2
Ar, Eqn. (2.67) and Eqn. (2.69) were used for the two cases,

2.2 A%, having in mind that in the case of CF

respectively.
Figs. 6.4-6.6 show the translational, rotational, total

theoretical and experimental spectra for CF4-CF

cf -artl) ang
2} '

4’ 4
CF4—Ar( respectively.
A good fit between the experimental and theoretical spectra

with these values for A and E is obtained in the case of CF,-CF,.

4 7' 4
Values of A = 6 A%, £ = 6 A° for CF,-Ar(1) and & = 2.8 A%, £ = 2.8 2
for CF4—Ar(2) were required to obtain a good fit.

Another check was made by calculating 8{CILS) for all cases

8 (CF4-CF ) - 1.84
G(CF4=Ar(1)) = 3.78
5 (CF -Ar(2)y - 1.96

4

which shows that the use combination rules by Pena are better than
just the use of the simple combination rules,

Table 6.2 shows the values of A and E from this and other
studies.

Another comparison between the total theoretical and exper-

imental spectra is achieved by calculating s(total).



The Values of A and E for CF

Group

This Work CF4—CF4

aetl)
CF4 Ar(
2)
CF4-Ar

. Buckingham and Tabisz
{1978)

Shelton and Tabisz
{1980)

* Values for CFQ—Ar(l

TABLE 6.2

4

Method

Experimental
Experimental

Experimental

*
Average

Bond polarizability

mode

Experimental

) were neglected because of the high value of

in This and Other Studies

[ 3=

2.2
6.0
2.8

2.5 £ 0.3
2.2

2.2

A

§(CILS). The error calculated is the average deviation.

TABLE 6.3

A Comparison Between the Values of s(total) for CF4-CF4,

CF 4-CF

o~

CF,-Ar
CF -Ar(

CF4—Ar(1), and CF

2)

4

-Ar(2)

§(total)

0.893
2.152
1.288

A

154

jea

2.2
6.0
2.8

2.5 + 0.3

10
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Table 6.3 shows this comparison for CF4—CF4, CF4-Ar(1),
and CF@-Ar(Z).

- The fit in the case of CF4-CF4 is very good in total, in
spite of the fact that in the range 10-25 cm'l, where the potential
is the main factor, the value of &(CILS) was not that good. It
is still clear the fit in the case of CF4—Ar(2), where the combination

rules by Pena were used, is better than that obtained by the simple

combination rules.

6.2 EXPERIMENTAL MOMENTS

(i) fhe Two-Body Experimental Moment

The zeroth, second, fourth, and the sixth moments were

calculated for both CF,-CF, and CF,-Ar.

4 74 4
Table 6.4 shows a comparison between the experimental and

theoretical zeroth moment.

TABLE 6.4

A Comparison Between the Experimental and Theoretical Zeroth

Moment of the Two-Body Spectrum for CF ~CF ., CF -Ar(1)

4 4
and CF4—Ar(2),
MO(AQ)
Total
Theoretical (SR) Theoretical Experimental
CF4-CF4
Present work 145,72 149,12 148, 36+25
Shelton and Tabisz 166 266
(1980)
CF4-Ar(1) 50.98 60.11 57.58+ 7.5

CF,-Art2) 78.82 82.63  57.58% 7.5



156

TABLE 6:5

A Comparison Between the Experimental and Theoretical Higher Moments
of the Two-Body Spectrum for CF,-CF,, CF,-Ar{l), and CFQ—AF(Z)

4 74 74
Total
Theoretical (SR) Theoretical Experimental
CF4-CF4 M2 291.98 396.71 497.1t23
M4 5118.78 13996.14 13804.42+2512

Mg 0.2500088 x 108 0.15553 x 107 (0.21731+0.0657) x 10’

. M, 173.08 463.36 364.55+20

M, 5025.96 20857 .56 17908. 15+3800

Mg 0.5743376 x 108 0.37965 x 107 (0.21739%0.1024) x 10’
CF4-Ar(2) M, 376.1 198.1 368.74+26

M, 17225.96 27768.5 19965. 35+6000

7 7

Mg 0.3099724 x 10/ 0.44887 x 10 7

(0.32204%0.208) x 10

Table 6.4 shows the good agreement between the experimental
and total theoretical zeroth moments in the case of CF4-CF4 and CF4-Ar.
Again the difference between the moments of the first two columns
is due to collision induced rotational spectrum.

Table 6.5 shows a comparision the same type for higher
moments.,

In the case of CF4=CF4, the experimental and total
theoretical higher moments agree within the experimental error.

Iin the case of CF4~ﬂr, the agreement is not satisfactory
in general, and the reason is because of applying the combination

rules results in inadequate potentials.
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Still, in general, the combination rules by Pena work better
than using the simple combination rules (§(CILS) and s(total)).

(i) The Three-Body Experimental Moment

For CF4«CF4, Table 6.6 shows a comparison between the
three-body experimental and theoretical zeroth and second moments

for this and other studies.

TABLE 6.6

A Comparison Between the Experimental and Theoretical Zeroth
and Second Moments of the Three-Body Spectrum for

CF4-CF4
. 09 09 _2
Group Method MO(A ) ﬂz(A PS %)
This work Experimental 13.6 + 1.8 34.63 £ 1
Shelton et al. Experimental 28.8 £ 6 60.25 + 18
(1982)
Shelton et al. Calculations using 29.16 32.65
(1982) L-d (6-12)
Potential

Table 6.6 shows good agreement between the second

experimental and theoretical moments in this work, but there is a

) . 3,2
discrepancy between the zeroth moment. Again the ratio of MO/M0

for CF4-CF4

for CF4—Ar (Eqn. (3.10)) is justified as in the SFG-X cases.

is about 9%, so the neglect of the three-body effect

6.3 CONCLUSIONS
(1) In the Case of CF,-CF,

(i) The experimental moments are in good agreement with the total

theoretical ones.



(11)

(2)
(1)

(i1)
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The total fit is good (&(total)), but still s{CILS) is a little
bit high, which 1is reason to believe that the L-J (6-12)
potential is not the best type to explain the interactions
between the CF4 molecules.

In the Case of CF4=Ar

The combination rules by Pena are better than the simple
combination rules (8(CILS) and s{total)).

Attempts should be made to develop a potential for CF4-Ar,
instead of wusing two different potentials and a combination

rule,
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Figures 6.1-6.3

Figures 6.1-6.3 The experimental two-body, translational, and dimer

spectra for CF4—CF CFq—Ar(l), and CF4=Ar(2) respectively.

4,
The experimental two-body spectrum.
a The theoretical translational spectrum.

@ The theoretical dimer spectrum.
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Figures 6.4-6.6
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Figures 6.4-6.6 The experimental two-body, total theoretical, trans-

lational, and rotational spectra for CF4

and CF4~Ar(2) respectively.

The experimental two-body spectrum.

- The total theoretical spectrum.

-CF

0] The theoretical translational spectrum.

The theoretical rotational spectrum.

45

CF4=Ar

(1),
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CHAPTER 7

§§4 AT DIFFERENT TEMPERATURES

CH4 is the ideal candidate to study collision-induced light
scattering, since the translational and rotational motions can be
studied separately. In the case of SF6 ~and CF4, there 1is almost
total overlap between the two components. For CH4 ‘the spectrum
consists essentially of an intense pure translational component and
a weaker induced rotational wing.

CILS spectrum of gaseous CH4 has been studied as a pure
gas (Shelton and Tabisz, 1980) and in mixture with Ar and Xe (Penner
et al., 1985) at room temperature in this laboratory. A consistency
in the magnitude of the dipole-quadrupole polarizability A of CH4 was
found in analyzing both pure and mixture spectra, a value of A =
0.88 + 0.05 A%,

Nevertheless, scattering by gases has never been
systematically studied as a function of temperature before.

This chapter will analyze the measurement of the spectrum
of CH4 in the range 130-295 K (performed in Firenze {Italy)) through
calculations done here. The translational spectrum was calculated
using two methods, the classical line shape (described in Chapter 2),
which requires the pair polarizability and the intermolecular potential
to Vbe identified, and the Birnbaum-Cohen model for Tine shape of
the collision-induced absorption spectrum (Birnbaum and Cohen, 1976).
As before, the spectrum of bound dimers appears as a low frequency
feature. Prengel and Gornall (1976) have given a detailed discussion

of the CH, dimer spectrum at 300 K and 115 K.

4
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7.1 EXPERIMENT

The experiments reported here were performed by A. Guasti,
M. Zoppi, and F. Barocchi at the Istituto di Elettronica Quantistica
del C.N.R. 1in Firenze and the apparatus used is described in detail
elsewhere (Bafile et al., 1988); the gas sample was contained in
a pressure cell (Mazzinghi and Zoppi, 1983) housed in an Air Products
cryogenic cooling system. Excitation of the spectra was achieved
with an argon ion laser operating at 1 w at 5145 E. Experiments were
performed in the depolarized geometry as the geometry used in Chapter
2.

A common procedure (Tabisz, 1979; Shelton et al., 1982)
is to record spectra at a number of densities and then apply a virial
expansion of the intensity at a large number of frequencies to separate
two-, and three-body correlation components of the total spectrum,
Such an approach was impractical in the present case. The necessity
to record precise data for an extremely broad spectrum, frequently
under low signal conditions, requires long observation times. This
circumstance, coupled with the stability problems with the crystal
system at low temperature, prevented collection of data for a thorough
density analysis. Consequently, another approach was adopted; gas
pressures were chosen s0 that the experiment was always performed
in a thermodynamic state, for which the intensity varied essentially
as the dénsfty square and thereby the two-body correlation spectrum
was measured directly.

For example, at T = 295 K, the spectra were recorded from
4-15 cnf1 with a gas pressure of 10 bar. At high frequency shifts,

10-130 cm“l, pressures were increased to 40 bar and to 90 bar for
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100-550 cm™ L.

The same approach was applied to the spectra recorded
at lower temperatures, 250, 208, and 163 K.

The spectrum at 130 K was that of the saturated vapour
pressure 3.48 bar. Confidence in the procedure was gained from the
fact that the two- and three-body spectra were known to behave
similarly (Barocchi et al., 1977; Shelton et al., 1982). Also the
three-body spectrum contributes only at low frequencies (Barocchi
et al., 1977},

Spectra were recorded at different pressures in overlapping

frequency regions to ensure continuity in intensity calibrations

as well as quadratic density dependence.

The spectral slit widths were 0.6 em ! (4-10 cm'l), 1.0 cm” 1

1 (10-600 em™!).

(4-20 cm™t), and 2.4 cm”

To calibrate intensities 1in absolute terms, low pressure
H2 was used as an external intensity standard and the light scattered
at 20 cm™ from CH, was compared to the intensities of the SO(O) and
So(l) lines of HZ’

1 4t different

Table 7.1 shows the intensities at 20 cm”
temperatures.
Figures 7.1-7.5 show the experimental spectra for

temperatures 295, 250.5, 203, 163.4 and 130.8 respectively.

7.2 THEORETICAL SPECTRA

Two different approaches were wused, both under the
assumption that there 1is no translation rotational coupling. We

will discuss each method separately.
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TABLE 7.1

Intensity D, at 20 emL Frequency Shift

T(K Dy (107% &)
295 5.4 +0.3
250.5 5.6 * 0.2
203.0 5.8 + 0.5
163.4 5.9 * 0.3
130.8 5.85 + 0.3

7.2.1 Classical Line Shape Analysis

Egns. (2.31) and (2.32) were used as before to calculate
the intensity of tie translational spectrum as a function of frequency
for different temperatures. The quantum nature of the collision
dynamics are expected to become increasingly important with decreasing
temperature. The spectra can be calculated once the intermolecular
potential U(r) and the pair polarizability g(r) are known.

Dimer spectra were calculated as mentioned in Section 2.2.
Again the effect of bound dimers relative to the translational
component increases with decreasing temperature, and can be calculated

using Egns. (2.46) and (2.48).

7.2.1a The Pair Polarizability 8(r)

The model for the pair polarizability anisotropy 8(r)
(Meinander et al., 1985) was derived from the first four even classical

moments of the depolarized pure translational spectra of the inert
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gases and CH4 at room temperature, the formula used is in Eqn. (2.17).

The values of the parameters for CH4 are

2.642 A3 : v = 19.2 x 10782 ¢ pt 53

H

C J

“0

[ep]
]

129.6 a.u. and B* = 2580

7.2.1b The Intermolecular Potential U(r)

An‘ intermolecular potential was derived for CH4 molecules
by Righini et al. (1981) using solid state data, the second virial
coefficient, and the known Jlong-range dispersion forces. It was
modified by Meinander and Tabisz (1983), who added the first
anisotropic dispersion term to the model and modified the repulsive
C-C interaction parameters so the experimental second virial
coefficients were reproduced. This modified RMK-potential was used
to construct an effective isotropic potential (Reed and Gubbins,
1973), which reproduces the angular average of the pair distribution

function g(r) at 295 K (Penner et al., 1985).

g(r) = exp (-Ugee (r) AT)

1
(4r)

7 /0 exp (-Ulr, 91,0,) /A&T) da; da,. (7.1)
This numerical d{sotropic potential was described in the

HFD form, namely,

-8

Y -6 -10
e {C X~ exp (-AX) = F(X) (C6x + ng + C10X )

1]

U(x)

exp [-(D/X - 1)%] x <D
=1 X >D (7.2)

where f(X)
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and X = Y’/Y'm:ln'

This potential was used at all temperatures, at first,
with the parameters calculated at 295 K to calculate the theoretical
spectra. However an effective intermolecular potential at each
experimental temperature was found necessary. The parameters at

each temperature are shown in Table 7.2.

7.2.1c Rotational Spectra

CH4 is a tetrahedral molecule, where the dipole-quadrupole
A and the dipole-octopole (g) polarizabilities are non-zero. The
rotational lines due to A and E at 295 K were broadened with gaussians
of HWHM of 20 and 25 cm™! respectively; the widths were assumed
to vary as /T for lower temperatures. The rotational spectrum was
added to the (translational + dimer) one, and the values of A and
E were adjusted to produce agreement with the experimental intensity
in the range where the rotational spectrum is dominant.

Comparison Between the Experimental and Theoretical Spectra

Figs. 7.6-7.10 show the comparison between the experimental profiles
and the calculations. Overall the agreement is very good and the
principal behaviour of the experimental data is reproduced. The

low frequency translational profile 1is well vreproduced at all

1

temperatures, except from 0-30 cm ~ at 295 K and 250 K.

At high frequency shifts where the induced rotational

component dominates, the experimental intensity is well reproduced

1 1

at 295 K, 400 cm = for

1

over very broad frequency ranges to 560 cm

1

250.5 and 203 K, 300 cm - for 163.4 and 100 cm = for 130.8 K. The

effect of using the effective potential appropriate to each temperature
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may be seen by comparing Figs. 7.10 and 7.11. In Fig. 7.11 the profile
is calculated for 130 K using the 1isotropic potential derived for
295 K; the agreement is clearly worse.

To compare the experimental and theoretical profiles in
detail we will consider the comparison in three different regions,
low frequency shifts, mid frequencies and high frequency shifts.

1. Low Frequency Shifts

The low frequency spectrum has a large contribution from
dimers. This can be appreciated from Table 7.3 where the moments
from the translational spectrum, the sum rules and the quantum
mechanical corrected Wigner-Kirkwood terms are shown. The difference
between the moment calculated from the sum rules and the translational
spectrum increases with decreasing temperature, especially for the
zeroth moment. This difference 1is 86% at 130 K. The quantum
mechanical corrections produce further changes, especially for higher
moments.

Figs. 7.12-7.16 show clearly the difference between the

experimental data and the free-free profile and hence show the

importance of the dimer spectrum. The effect of dimers is negligible

1

beyond 30 cm ~ at all temperatures.

2. Mid Frequency Range

The Tleast satisfactory agreement between theory and
experiment occurs at mid frequencies for temperature < 295
(40-160 cm'l) for several possible reasons. First, this {is the region
where quantum mechanical corrections to higher moments are important
and are available only up to the fourth moment. Secondly, the

parameters, especially B and o in the scaling law were calculated
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TABLE 7.3

Calculated Spectral Moments

T My M, M, M
(K) (102 49) (103 A9 ps=2) (105 A9 ps~4) (108 A9 ps-6)
295.0 a) 1.81 3.87 6.71 4,24
b) 2.14 (18%) 4.00 { 3%) 6.76 ( 1%)  4.25 (0.1%)
c) 2.13 (18%) 4.02 { 4%) 7.10 ( 6%)
250.5 a) 1.82 3.44 5.40 3.15
b) 2.26 (25%) 3.63 { 6%) 5.50 ( 2%) 3.15 (0%)
c) 2.26 (25%) 3.65 ( 6%) 5.88 ( 9%)
203.0 a) 1.83 3.00 4.18 2.21
b) 2.50 (36%) 3.30 (10%) 4.35 ( 4%) 2.22 (1%)
c) 2.48 (35%) 3.33 (11%) 4.82 (16%)
163.4 a) 1.85 2.65 3.33 1.61
b) 2.86 (55%) 3.11 (17%) 3.60 { 8%) 1.65 (3%)
c) 2.84 (54%) 3.14 (19%) 4.18 (26%)
130.8 a) 1.86 2.36 2.73 1.23
b) 3.46 (86%) 3.08 (31%) 3.16 (16%) 1.31 (7%)
c) 3.42 (84%) 3.13 (33%) 3.95 (44%)

at 295 K, and are now used for Tower temperatures. Thirdly, the
use of an effective isotropic potential instead of the true anisotropic
potential can affect the collision dynamics and consequences of the

line shape. A full quantum mechanical calculation could settle these

questions.

3. High Frequency Shifts

The rotational spectrum dominates this region. Table 7.4
will show the values of A and E in this and other studies.
The average values of this work agree with the work done

before in this laboratory.

[t is evident from Figs. 7.6-7.10 that some intensity remains

beyond the £ spectrum and possibly the multipole series should be
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This work

Buckingham and
Tabisz (1978)

Shelton and Tabisz
{1980)

Penner et al.
(1985)

Isnard et al.

(1976)

Rajan and Lalita
(1974)

Buck et al. (1981)

TABLE 7.4

The Values of A and E

Method

Experimental

*
Average

Bond Polarizability
model

Experimental

Virial coefficient

N.HM.R.

Molecular beam
scattering
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* The error mentioned is the average deviation.

taken to higher terms.

As a result,

may be considered as an upper limit.

Table 7.5 shows the values of &(CILS) and &{total)

each case.

It seems from Table 7.5 that the whole model

all temperatures,

especially at T =

295,

163.4,

T (K) (ah (A5)
295 0.83 2.00
“250.5 0.9 2.42
203.0 0.9 2.56
163.4 0.86 2.65
130.8 0.9 3.

0.88+0.03 2.5%0.26

1.0 -1.0
295 1.0 2.5
295 0.88+0.08

2.35

2.71

0.88

0.89

2.67

the value of E reported here

for
works for
and 130.8 K. To
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TABLE 7.5

The Values of §(CILS) and s{total)

T(K) § (CILS) §(total)
295 1.619 1.28
250.5 4.64 ' 2.73
203 4.54 2,56
163.4 2.95 1.92
130.8 2.49 2.01

improve the model, one could change B and ro as parameters in the
fit, since they describe the overlap interaction, which 1is very

temperature sensitive.

7.2.2 Birnbaum-Cohen (BC) Model

A very useful model for the line shape in pressure-induced
absorption has been developed by Birnbaum and Cohen (1976), and has
been previously shown to be capable of approximating the line shape

closely. The model correlation function is given by

Cly) = exp [x]" [ty - (15 + ¥ T (7.3)

where y = (t2 - igh i:)!/2

The model line shape at frequency w' = s e t w is given by

S| (m'iqu Yy
r{w) = f e C(y) dy

-0
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2 2 ?
where T T ﬁ% T3 T T, + Ty
T
and = 3 /1+(T1 m')z
T

Kl(Z) is the modified Bessel function, with the asymptotic properties

ZK1(2)+1aSZ+0

Z as Z » o

and K (Z) » ﬁg% e
The model was applied to the translational absorption spectrum of
He-Ar, the S(0) rotational 1line of H2 at 77 K, and the unresolved
rotational band of N2 (Birnbaum and Cohen, 1976). In all cases,
the theory fits the spectra and accounts for the spectral features.
Also for HéHe {Borysow and Frommhold, 1983) collision-induced
absorption was fitted with satisfactory agreement at temperatures
from 50-300 K.

Significant improvements are possible by combining the

BC and so-called KO model in the form (Borysow and Frommhold, 1983)

(0) = S (<1 exp (<2) [X Ky (X)] + ex
Set) T TR (L7280 (T 1 3
i) 'L'l
'3 1
% exp (;Z) KO(Y)) = (7.5)
T 1 T L
where X =2 (1?57, y = = (10? Tg)2 )
Tl 1 1'4

Gcz(w) is the classical spectral line shape,
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KO’ K1 are modified Bessel functions
and the parameters Tys Tor Tgs Ty € and S are adjusted to

-match the classical line shape.

This model is not prefered for systems that have considerable
dimer contributions because the spectrum has to be cafculated for
each interaction (free-free, free-bound, and bound-bound). Moreover,
there are many parameters to adjust, and our philosophy is to decrease
the number of parameters as much as possible in order to compare
in a physically meaningful way the theoretical spectrum with the
experimental, not just to fit it to the experimental spectrum.

As a test, the BC model was wused to calculate the
translational spectrum where Ty and T, can be calculated using the

following equations

o

fT {w) de =1 (7.6)
n o
M= (-i)" é__E%Xl | tsg ° {m W' T (w) do - (7.7)

3y

With Egns. (7.3) and (7.4) one can find

5 = #, (7.8)
2
| 1, 1,0
MZ - T1To (1+ (Tl * Tz) Ty ) MO (7.9)
TR L.
3
My=lZ3+18 57 +6—373+6—7%
T1T2 T2 T2 T2
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T4 T2 T4 T4
0 3 0 0 0

+15 ¢+ —3 + 18 g+ 15 t = 7) My » (7.10)
1Tz T172 T1t2 1% T1%2

So, if the values of the first three even moments are known, S, T
and T, can be determined.

To make it easier, instead of starting by solving an equation
of the 7th order, one can start by solving for T and Ty classically

at first, to the first order in h, where

T P 3 T, * T
Cly) =1+1i ¢t 0t _1 ,;¢ T % 3 2
172 2 M1%2 2 6t

1°2

4 1, +1
+1.'__..];___2..+._' (7.11)

8 Tz T3
1°2

%]
—

2 (7.12)
HO TITZ
M T, + 1
a_,"1 77
ﬁa 35— (7.13)
172
Solving Eqns. (7.12) and (7.13), one can find
2 M atet
1 M2 3 ME
‘ 2
M
PR (7.14)
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Starting from these values for Ty and To, and using Eqns.
(7.7} and (7.8), one can find the values of T, and Ty by iteration.
Once these three parameters are known, Eqn. (7.2) can be used to
calculate the spectral line shape.

For comparison with the experiment, the rotational spectra
used in the previous line shape analysis, with the values of A and
E kept the same as before for different temperatureé, were added
to the translational spectra.

Figs. 7.17-7.21 show that this method gives satisfactory
results only at 203 K, but in general the line shape calculated by
this method was higher than the experimental one, especially at
mid-range frequencies. Here we believe that M6 begins to have an
effect on the profile while only MO, Mz and M4 were used to calculate
the spectrum. The relative importance of the various moments change

with temperature and could explain the good fit at 203 K.

7.3 EXPERIMENTAL MOMENTS

Since calculations wusing classical 1line shape analysis
works better than using the BC model, we will compare the experimental
moments with the calculated spectrum from the first method.

Table 7.6 shows a comparison between the experimental and
theoretical zeroth moments for each temperature.

The experimental and total theoretical zeroth moments agree
in general for all cases, but better for T = 250.5 and T = 203 K
than for the rest of the cases. But that does not mean a better
fit, §(total) is the better overall measure of agreement.

The induced rotational moments are higher, the lower the
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TABLE 7.6

A Comparison Between the Experimental and Theoretical
Zeroth Moments for CH

4
My (A%)
T(K) Theoretical (SR}  Rotational Total Theoretical Experimental
295 213.13 1.67 - 214.77 192.24 £ 10
250.5 224.36 2.41 226.77 227.42 £ 16
203 246.12 2.5 248.63 244,62 = 20
163.4 279.26 2.76 282.02 272.4 £ 24
130.0 326.67 3.91 330.58 340.66 £ 33

temperature, but the contribution of the rotational moment is small
in general for the zeroth moment. |

Table 7.7 shows a comparison of the same type for higher
moments.

The error in M4 and M6 is very high at T = 163.8 and 130 K,
so we have little to say about them.

The agreement in M, is best at T = 163.4 K (= 2%) and worst
at T = 130.8 (33%) and about 12% for the rest. The values of the
higher moments are higher than expected at T = 163.4, but the reason
is obvious (Fig. 7.4) from the bump at high frequency shifts, but

the experimental error was very high.

7.4 CONCLUSIONS
(1) Models for both the induced pure translational and rotational
scattering work well over a range from room temperature

to that of the saturated vapour.



295

250.5

203.0

163.4

130.8

TABLE 7.7
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A Comparison Between the Experimental and Theoretical

Higher Moments for CH

Theoretfca] (SR) Total

Theoretical

4

4018.

.7100149x10
.4245418x10

.5760191x10
.3056436x10

.4538272x10
.2037772x10

.14434x10

. 34689x10
.0000726x10

34
6

9

07
6

9

32
6

9

86

.3806209x10°

9

9

6
9

6127.

.90413x10

.110925x10

.77901x10
.38928x10

.27006x10

.67762x10

87
7

.58367x1011

61

,680225x1011

73
7

11

11
7

.63881x10

11

52
7

.24431x101!

8

Experimental

5310.07%65
(0.6860767%0

(0.3720344:0,

5811.26+44
0.7541836+0

(0.4181184+0,

5003. 38+23

(0.4508614=0.
(0.1890966:0.

5356.02+832

(0.2139319+0.
(0.1347149+0.

4242.89

(0.2823266+0.

(0.7421259+0

,0592)x10’

05806)x10!

.046)x10’

06816)x1011

0156)x10’

0209)x10% 1

209177)x10°

13469)x101°

2307)x107

.71824)x1010
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It was essential to use an effective potential appropriate

to each temperature to reproduce the profile well. For

-example, at 130 K, the discrepancy between theory and

experiment 1is as much as 40% if the effective potential
is not employed. These results provide an important test
of the RMK-potential for CH4 over a range of reduced
temperature from 0.7 to 1.6.

The values of the three parameters in the pair polarizability
giving the translational scattering have not been adjusted
in calculations. As a result, the validity of the scaling
of the parameter B has been shown to hold approximately
over this wide temperature range.

A4

The fact that the values of A = 0.88 A 5

and E = 2.5 A
result in a reproduction of the induced rotational spectrum
at all temperatures unequivocally confirms the applicability
of the long-range model of the induction mechanism.

Although a rough model was employed to represent the bound
state profile, the agreement with the experiment with no
adjustable parameters is impressive up to a dimer population

which changes the zero moment by 86%.



185

Figures 7.1-7.5

The experimental spectra for CH4=CH4 at T = 295, 250.5, 203, 163.4,

and 130.8 K respectively.
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Figures 7.6-7.10

Figures 7.6-7.10 The experimental, total theoretical, (translational

*+ dimer), and rotational spectra for CH.-CH at

4 74
temperatures of 295, 250.5, 203.0, 163.4, and

130.8 K respectively.

The experimental spectrum.
- The total theoretical spectrum.
n| The theoretical translational plus dimer spectrum,

* The theoretical rotational spectrum.
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Figure 7.11

The experimental spectrum at 130.8 K with theoretical calculations
performed with an effective potential appropriate to 295 K.
The experimental spectrum,
- The total theoretical spectrum.
—— The theoretical translational plus dimer spectrum.

- - The theoretical rotational spectrum.
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Figures 7.12-7.16

Figures 7,12-7.16 The experimental, total theoretical, and translational
spectra in the range (0-50 cm™), at T = 295, 250.5,
203.0, 163.4, and 130.8 K respectively,
The experimental spectrum,.
- The total theoretical spectrum.

The translational spectrum.
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Figures 7.17-7.21

Figures 7.17-7.21 The experimental, total theoretical, translational,

and rotational spectra at T = 295, 250.5, 203,
163.4, and 130.8 X respectively, where the theor-
etical spectra were calculated using the Birnbaum-
Cohen model.
The experimental spectrum.

- The total theoretical spectrum.

O The translational spectrum.

* The rotational spectrum.
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CHAPTER 8
CONCLUSIONS

The spectrum of collision-induced 1light scattering of
molecules can be accounted for by the free-free interactions which
contribute most to the low and mid frequency ranges, the bound-bound
interactions which have a narrow feature at low freguency shifts,
and the collision-induced rotational scattering which accounts for
the intensity and shape of the spectrum at high frequency shifts.
There could be a strong overlap between the translational and
rotational spectra as in the case of SF6, a moderate overlap as in
the case of CF4 or as in the case of CH4, the rotational wing can
clearly extend beyond the translational component over a broad

frequency range.

This thesis dealt with the three kinds of interactions
in the different frequency ranges and these are our conclusions:

1. Line shape calculations for collision-induced translational
{free-free) scattering worked very well at room temperature whereas
at Tower temperatures, it held only approximately because some
of the parameters can be temperature dependent.

2. The bound-bound scattering spectrum was calculated roughly but
the agreement with the experiment 1is impressive, even at Tlower
températures where the dimer intensity contribute about 45% of
the total intensity of the spectrum.

3. The higher order polarizability tensors that were taken to

calculate the <collision-induced rotational spectrum accounted
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well for the intensity and shape of the rotational spectrum,
higher order polarizabilities were not usually necessary.

The spectrum of collision-induced 1light scattering of molecules
can play a role 1in developing intermolecular potentials, as for
the case of SFﬁ-Xe.

As mentioned before, the theoretical calculations depend

on two important factors, the pair polarizability, and the form of

intermolecular potential. More detailed conclusions regarding both

can be formulated.

1.

The model for the pair polarizability with no adjustable parameters
worked very well at room temperature for all species.

Af lTower temperatures (CH4), the model for B(r) still worked,
but there was some discrepancy between the theoretical and
experimental spectra because some of the parameters, B and o
were fixed, while it is believed both can be temperature dependent.
The HFD potential is a suitable form of SF6.

The form and parameters of the intermolecular potential have
to be known for different kinds of interactions in order to
determine high order polarizabilities accurately, as in the case

of SF.-Kr, SFGBAr, and SFG—Ne.

6
In calculating the theoretical spectra at different temperatures,
it is important to refine an isotropic effective potential at
each temperature as in the case of CH4.

It is not recommended to combine two different potentials for
two different molecules to get a potential for the mixture, but

if there is no other option, the combination rules by Pena work

better than just the simple combination rules.
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A summary of the properties and potential quantitatively

specified in the thesis is as follows:

(1)

(2)

(4)

(1)

(2)

The average value of the dipole-cctopole polarizability for

SF. is E = 10.7 + 2.5 A2,

6
A new M25V intermolecular potential for the SFS—Xe mixture has
been developed.

The average values of the dipole-quadrupole polarizability A

=2.5+0.3 A4, and the dipole-octopole polarizability E = 2.5
+ 0,3 A5 for CF4, agree with the values obtained in this

laboratory and give a spectrum which fits well the experimental
spectrum,

The average value of the dipole-quadrupole polarizability A
= 0.88 = 0.03 R for CH4, which agrees with the values reported
earlier in this laboratory and with the ab initio calculations;
the average value of the dipole-octopole polarizability E =

2.5 + 0.26 A°

for CHQ, agrees with the value obtained earlier
in this laboratory.

A§ for future work, we recommend:
Quantum mechanical trajectory calculations of the spectrum are
necessary at Tower temperatures.

More refined potentials are needed for tetrahedral molecules

and their mixtures as done for the cases for SF6 mixtures.
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