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Abstract

Anderson localization is a wave interference phenomena. The single-particle wave

functions become localized for an arbitrary amount of disorder for one-dimensional

disordered systems in the thermodynamic limit. The localization characteristics of

disordered systems allows us to measure the sensitivity of time reversal in the

presence of small perturbations, namely the Loschmidt echo, which indirectly

shows dynamical phase transitions via the return rate function. For single-particle

non-interacting problems, calculating the Loschmidt echo for large system sizes

is straightforward. For many-particle interacting problems, however, it is compu-

tationally a�ordable only for small system sizes. Using both single-particle and

many-particle Hamiltonian approaches, we numerically investigate the disorder-

averaged Loschmidt echo and dynamical phase transitions for quantum quenches

in the disordered SSH model and the disordered XXZ spin model where analytical

solutions are not attainable. We show that dynamical phase transitions persist for

weakly disordered systems and �nite system sizes.
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Chapter 1

Introduction

In the past few decades, the �eld of quantum condensed matter physics, which deals

with the macroscopic and microscopic physical properties of matter, has shown

rapid ongoing development. While it is concerned with �condensed" phases com-

monly seen in liquids and solids, recent interests focus on more exotic condensed

phases, such as superconducting phases at low temperatures [13, 14], ferromagnetic

and antiferromagnetic phases of spin systems [15, 16], and the Bose-Einstein con-

densates found in the experimental realization of ultra-cold atomic gases [4, 17, 18].

Semi-classical non-interacting theories for solid-state systems can be attributed

to an underlying principle of adiabatic continuity1 and fundamental symmetries.

Perturbation theory works particularly well in a wide range of systems, in which

elementary �quasi-particle" excitations are assumed as non-interacting, single par-

ticles. As the historical development of condensed matter physics gradually shifts

attention from semi-classical solid state systems to strongly interacting quantum

systems, semi-classical approaches for single-particle non-interacting systems be-

come inadequate. Complication arises at a phase transition in interacting systems,

where symmetries and adiabatic continuity are broken. In the symmetry-broken

1The principle of adiabatic continuity states that in the absence of an electronic phase transi-
tion, a non-interacting ground state evolves smoothly or adiabatically into the interacting ground
state if the perturbation acting on the system is slow. A particle that starts from the nth eigen-
state remains in the nth eigenstate simply picks up a phase factor [19].
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phase, elementary excitations may represent a collective mode, a new kind of ex-

citation involving the collective motion of particles very di�erent from those of

the initial non-interacting phase. Modern experimental developments in inter-

acting quantum systems present formidable challenges to theorists. Theoretical

approaches to various many-particle problems conceive the realm of quantum �eld

theory in many particle physics, which constitutes the theoretical foundation for

explanations of the many-particle, low-energy phenomena. On a truly microscopic

level, all forms of quantum matter can be formulated as a many-particle Hamilto-

nian encoding the fundamental interactions of constituent particles, and quantum

�eld theory successfully decodes all the information embedded in the Hamiltonian

by means of the second quantization technique and quantum statistical mechanics.

The quantum �eld theory description provides a vehicle to systematically identify,

isolate and develop a set of low-energy theories of the collective �eld, including

perturbation theory, mean-�eld theory, linear response theory, the renormalization

group, topology and more [19, 20].

Quantum many-particle systems can be roughly divided into two subcategories:

ordered and disordered systems. Ordered systems show certain types of symme-

try, such as translational symmetry or magnetic ordering. Macroscopic ordered

systems are commonly known as thermalizing systems, which upon varying the

system temperature, break internal symmetries and turn into di�erent phases of

matter; for instance, a water droplet breaks the symmetry upon cooling and turns

into an ice crystal. A phase transition has occurred during the process of turn-

ing gas into liquid or liquid into solid. Magnetic ordering takes place in strongly

correlated systems when an internal magnetic �eld develops, leading to a so-called

ferromagnetic order parameter. The concept of order parameter, introduced by
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Lev Landau [21], is the central ingredient in understanding how complex systems

transform themselves into new states at low temperatures. It has provided funda-

mental explanations for phase transitions which take place in thermalizing systems

and strongly correlated systems near the critical point, including Ising ferromagnet,

super�uid, superconductor, Heisenberg ferromagnet and Higgs �eld [20]. Thermal-

izing systems are temperature-driven systems which are in contact with external

reservoirs. These systems can be described in thermodynamic equilibrium by sta-

tistical ensembles (i.e. canonical or grand-canonical ensembles), which are used to

derive thermodynamic observable quantities from statistical mechanics, such as en-

tropy, speci�c heat and free energy. A phase transition in this case corresponds to

a discontinuity in derivatives of the free energy at the critical temperature, and the

ergodic hypothesis holds. The ergodic hypothesis says that given a su�ciently long

time the system can fully explore its own phase space2 [22]. Strongly correlated

systems are interacting many-body quantum systems. Although weakly interacting

systems can be treated semi-classically by means of statistical ensembles, compli-

cation arises in interacting systems due to interactions among particles. This can

lead to the presence of quantum magnetism in low dimension, interaction-induced

frustration, superconductivity or topological properties. Studying and classifying

physical properties in strongly correlated systems has been a grand enterprise for

condensed matter physicists [23�28].

While studying ordered systems has been the mainstream of modern research,

in recent years disordered quantum systems have also attracted much attention

from researchers much owing to the wave-interference phenomenon known as the

2A phase space is a mathematical space where each point corresponds to position and momen-
tum of a state in the system, with all points in the phase space representing all possible states
of the system.



4 Chapter 1. Introduction

Anderson localization, in which the electron states are localized due to strong dis-

orderness present in the system [29]. Disordered systems, in a broad sense, are

quantum systems in absence of some symmetry or correlation. We can have a

disordered system in a heat bath, and such system can thermalize. In the present

context, however, disordered systems are isolated and often non-ergodic, local-

ized systems which never thermalize. The classical Drude model treats electrons

as a homogeneous gas of non-interacting, mobile charge carriers capable of de-

livering electricity upon applying an external �eld, but it failed to explain why

electrons can travel over long relaxation time before being scattered o� of lat-

tice ions [30, 31]. In quantum mechanics, the scattering behavior of electrons, as

explained with the Bloch's theorem, was due to the periodic potential being dis-

turbed [32]. The sources of disturbance are mainly due to the static or dynamic

source, and the resulting scatterings are known as ionized impurity scattering or

lattice scattering, respectively. Lattice scattering leads to temperature-dependent

electrical resistivities in metals. On the contrary, the ionized impurity scattering

leads to temperature-independent resistivities in semiconductors, which can gener-

ate free charge carriers by doping exotic atoms known as impurities ([32, 33]). The

more heavily a semiconductor is doped, the higher the probability that a charge

carrier will collide with an ion in a given time, the smaller the relaxation time

between collisions, and hence the lower the conductivity. Semiconductors serve

as the controllable medium for electron transportation (and thermal conduction),

and electron scattering can easily be envisaged as zigzagging between impurities

[34�36].

The development in both condensed matter physics and random matrix theory

laid solid foundations for the success of Anderson's localization theory. The linear
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combination of atomic orbitals (LCAO) method, which was used to describe the

intermolecular bonding of diatomic molecules, was among the �rst signs of quantum

approach in solid-state systems [37�39]. Bloch's theorem set the foundation for the

principle of electronic band structure and theories in crystals, in understanding

how electrons behave in solids from the quantum level, such as x-ray emission

bands of metals [40, 41]. The tight-binding model is an oversimpli�ed model which

assumes electrons in the Bloch wavefunction. Not only does the TB model make

possible the intermolecular calculations by reinforcing translational symmetry in

crystal lattices, but it also works particularly well in cases where the bandwidth is

small and the electrons are strongly localized in insulators [42]. It also provides a

basis for many-particle problems, where interactions between atomic sites can be

treated as perturbations. In the 1950s, an experiment performed by George Feher's

group discovered the strange existence of long relaxation time of electron spins�and

hence low conductivity�in highly-doped semiconductors. It was strange because by

increasing the concentration of impurities the internal structure of the lattice would

be randomly disordered, and from classical approaches the di�usive and transfusive

motion of electrons was rather expected to increase than to decrease [3]. This

experiment contradicts the classical theory that a high concentration of impurities

would drastically stop electrical conduction. In 1958 Philip W. Anderson published

a famous article about di�usion processes in disordered lattices, and using the TB

model combined with a disordered potential distribution, he was able to explain

fundamentally how electrons are localized and electrical conduction is absent if the

degree of disorder is su�ciently large in the lattice [29].

Disordered systems are a simple application of the random matrix theory, which

originates from the concept of a random walk but reaches far beyond the current
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context. In 1905 Albert Einstein explained that the Brownian motion of large

pollen grains in water is the consequence of countless random collisions from water

molecules [43�45]. The process in which each successive step is statistically indepe-

dent and continuous gives rise to the concept of the continuous-time random walk

(CTRW). The CTRW provides good background for studying Markovian processes,

Tauberian theorems and resistance networks in disciplines such as chemistry, neu-

rology, �nance and others [46, 47]. Particle movement in solid-state systems can

also be modelled using the CTRW, assuming the presence of intermolecular hop-

pings between lattice sites and on-site energy potential [48]. Experimental advances

of the CTRW include nuclear magnetic resonance (NMR) spectroscopy, which mea-

sures atomic and electronic structures in crystals by applying an external magnetic

�eld [49, 50]. Theoretical advances of the CTRW include quantum random walk on

graphs, which leads to the random matrix theory (RMT) and quantum statistics

in disordered systems [51�53]. The RMT was �rst introduced by Eugene Wigner

in 1955 to model the system of nuclei of heavy atoms, in which the on-site poten-

tials due to heavy atoms could resemble the eigenvalues of a random symmetric

matrix [54]. In subsequent theoretical studies for disordered systems, random ma-

trices have often been used to model disordered Hamiltonians in the mean �eld

approximation [55]. Anderson localization can be veri�ed using ultra-cold atoms

experiments for disordered systems [17, 56].

The Loschmidt echo is de�ned as the overlap between quantum states evolved

with di�erent Hamiltonians and measures the sensitivity of quantum evolution to

perturbations [10]. The concept of the Loschmidt echo comes from the idea of

statistical time-reversibility proposed by the Austrian physicist Joseph Loschmidt.

He suggested that by reversing velocities of all particles in a system, one would
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reverse the entire system from the current state to the previous state, seemingly

decreasing the entropy and violating the second law of thermodynamics. Even

though reversing velocity is impossible due to the fact that time �moves" in the

forward direction, simply reversing the sign of the system Hamiltonian in quantum

systems, with few degrees of freedom, provides a quantum implementation of the

Loschmidt echo. The Loschmidt echo is more of a tool than a concept, and the main

focus of using the Loschmidt echo is to understand many-body localized phases

and quantum decoherence in many-particle, non-ergodic problems [57]. Because

information is lost from a system into the external reservoir, decoherence is a key

feature in thermalizing systems. The dynamics are non-unitary and irreversible

[58]. For systems isolated from any environment, typically by sophisticated cooling

procedures in ultra-cold atoms experiments, the system's energy is conserved and

the dynamics are unitary. No information is lost and the entire dynamics can be

reversed by �ipping the sign of the system's Hamiltonian, achieving Loschmidt's

proposal [59]. Aside from the trivial case just mentioned, it is more interesting to

use the Loschmidt echo in systems that experience quantum quenches � a sudden

change in the system so that the �nal Hamiltonian is di�erent from its initial one.

While the �rst Loschmidt echo experiment owes much to the Spin echo experiment

in 1955 [60], both theoretical and experimental advances in studying the Loschmidt

echo are manifold, including the Bose-Hubbard model, XXZ model, optical lattices

and more [61�63]. It has been suggested that decoherence in certain systems sets

limitations for quantum computing [64]. Since the Loschmidt echo measures the

stability of time-reversal processes, it can potentially contribute to the development

of quantum computing [63, 65].
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With this introductory background, we will discuss more in detail in subse-

quent chapters. To prepare for the discussion of the Loschmidt echo in disordered

systems, we begin in Chapter 2 by deliberating the notions of thermalization and

localization. In Chapter 3 we discuss in detail the two models for the research

project � the Su-Schrie�er-Heeger (SSH) model and the XXZ model. The SSH

model is a topological model which shows edge states, while the XXZ model is an

interacting spin system in which anisotropic spin-spin interactions are present [66].

We will introduce disorderness in the models and investigate the Loschmidt echo.

We include a brief introduction to both static and dynamical phase transitions

in Chapter 4 because the Loschmidt echo indirectly provides information about

dynamical phase transitions. We present a formal and detailed introduction to

the Loschmidt echo in Chapter 5. While the generalized Loschmidt echo formula

allows to solve many-particle problems, there is another formula which we can use

to evaluate single-particle physics in large system size. We provide veri�cation of

two Loschmidt echo formulae in single-particle and many-particle problems. Last

but not least, we present our research results in Chapter 6, for the purpose of

understanding dynamical phase transitions in interacting disordered systems and

non-interacting ones.
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Chapter 2

Disordered System

In condensed matter physics, an ordered system usually refers to the presence of

certain symmetries or correlations in systems. The degree of freedom that is or-

dered can be translational (crystalline ordering), rotational (ferroelectric ordering),

or a spin state (magnetic ordering). Examples of translationally ordered systems

include ideal crystals at low temperatures, where the atoms of the material in the

ground state show ordered lattice arrangement. In statistical thermodynamics, an

ordered quantum statistical system can be either an open or a closed system. An

open system is a quantum system that is in contact with its environment. Upon

heating the system with an external reservoir, each atom gains kinetic energy and

the system becomes disordered. This is the typical example of order-disorder tran-

sition commonly used to describe phase transitions among solids, liquids and gases

due to the change in temperature. Not only can phase transitions take place in

open systems, they can also occur in closed systems.

A closed (isolated) quantum system is a quantum statistical system that is

isolated from external reservoirs so that there is no energy �uctuation or particle

exchange. If a closed system reacts to an arbitrary local perturbations, under the

unitary time evolution, the state of an ergodic system leads to thermalization, and

the system becomes thermal and conducting. On the other hand, ergodicity can be

simultaneously broken in localized systems due to strong disorder potential, and
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the system becomes insulating. Localized systems are of interest for possibilities

of storing quantum information for they can retain local details of the initial state,

whereas thermalization hides information about the system's initial state, mak-

ing it inaccessible after long times [1]. Anderson localization is a single-particle

localization interference phenomenon for closed quantum systems, and it is in con-

trast to many-body localization where interactions among particles are taken into

consideration.

The historical development of Anderson localization originated from the fact

that electron conduction is absent in insulators. Classical theory predicts that the

electronic conductivity is proportional to the mean free path, and the electrons

are envisaged as zigzagging between impurities. The more impurities, the smaller

the mean free path, so the lower the conductivity. The wave character of elec-

trons, therefore, persist and electrons behave di�usively. However, the truth is

that beyond a critical amount of impurities in a crystal, or the degree of disorder

in the lattice is su�ciently large, the di�usive motion of electrons is completely

absent. This phenomenon is known as Anderson localization [29]. This sudden

reduction in conduction is associated with the localization of the electronic wave-

function. In 1977, Anderson was jointly awarded the Nobel Prize for the theoretical

breakthrough of the electronic structure of disordered systems. For an interacting

many-body, ergodic system, one expects a phase transition between an ergodic

and a localized phase. In this chapter, we will focus on the discussion of Anderson

localization and many-body localization but �rst brie�y discuss thermalization.
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2.1 Thermalization

Quantum statistical mechanics relates the thermodynamic quantities of a system

to the Hamiltonian H of the single-particle or many-particle assembly. In the

general, the grand canonical statistical ensemble describes open systems in con-

tact with external reservoirs at thermodynamic equilibrium. For open systems,

particles can enter or exit the system and energy exchange with the reservoir is

allowed. The grand canonical ensemble is characterized by both chemical potential

µ and temperature T = 1/kBβ, where kB is the Boltzmann's constant. The grand

canonical partition function ZG is de�ned as

ZG ≡
∑
N

∑
j

e−β(Ej−µN) = Tr(e−β(Ĥ−µN̂)),

where j denotes the set of all states for a �xed number of particles N , and the

sum implies that the trace is over both j and N . Ĥ is the Hamiltonian operator

representing observables in the system, and N̂ is the occupation number operator.

The partition function is directly related to the thermodynamic potential Ω via

Ω(T, V, µ) = −kBT lnZG, which allows us to compute all the macroscopic equi-

librium thermodynamics, such as entropy, pressure, number of particles, etc. [67].

The corresponding statistical operator ρ̂G is given by

ρ̂G = eβ(Ω−Ĥ−µN̂).

For any operator Ô, the ensemble average 〈Ô〉 is given by

〈Ô〉 = Tr(ρ̂GÔ) = Tr(e−β(Ω−Ĥ−µN̂)Ô) =
Tr(e−β(Ĥ−µN̂)Ô)

Tr(e−β(Ĥ−µN̂))
.
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Therefore, a quantum system in thermodynamic equilibrium can be fully charac-

terized by a small number of parameters (temperature, chemical potential, etc.).

For a closed quantum system, the chemical potential is zero (µ = 0) and energy

exchange with the reservoir is absent. The quantities above can be described by

canonical ensembles

Zc = Tr(e−βĤ), ρ̂c = eβ(Ω−Ĥ), 〈Ô〉c =
Tr(e−βĤÔ)

Tr(e−βĤ)
.

Thermodynamic quantities can be approached by quantum statistics, and the

time evolution of a quantum system can be treated using the formalism of probabil-

ity [68]. To understand how the system evolves, one can de�ne the time evolution

operator as

U(t) = e
−iHt

~ .

Here we set ~ = 1 from henceforth. If the system is prepared in an initial state |ψ0〉

at time t = 0, then the system state at an arbitrary later time t can be described by

|ψ(t)〉 = U(t) |ψ0〉. If the Hamiltonian H is both time-independent and hermitian,

U(t) is known as the unitary time operator, meaning that the total probability

must remain �xed as the state of the system evolves in time: U(t)†U(t) = 1. The

probability operator ρ(t) that describes the time evolution process is de�ned as

ρ(t) = e
−iHt

~ ρ(t = 0)e
iHt
~ , with i~

dρ

dt
= [H, ρ].

Because the probability of the existing quantum system does not change in time,

the total probability of all time-evolved states is conserved: Tr{ρ} = 1. Since all

other operators Ô are assumed to be time-independent, the expectation value at
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time t of an observable O with the corresponding operator Ô is 〈Ô〉t = Tr{Ôρ(t)}.

As a side note, the commutation property of the Hamiltonian H is non-trivial in a

closed system. Although H is a sum of local operators1 in a closed system, H only

commutes with a complete linearly independent set of operators, which consists of

global operators projecting onto the exact many-body eigenstates of H, known as

projection operators. That is, H does not commute with global or local operators,

but only the linear combination of projection operators. Particle number N , for

instance, may not commute with H, but a larger conserved quantity consisting of

N may commute with H.

Quantum thermalization is the process of a closed quantum system going into

thermal equilibrium after an arbitrarily long time. The problem associated with

thermalization is that this process erases the system's memory and all other details

about its initial state. The method of unitary time evolution described above,

moreover, can hide the memory of the local properties of the system's initial state

if the system thermalizes, so that the information about the initial state at a long

time is inaccessible. This is the process of decoherence. One way to thermalize a

closed system is to split the system into two subsystems A and B. For a closed

system characterized by only temperature T , thermalization means that at long

times the state of subsystem A is as if it were at thermal equilibrium in contact

with a reservoir B, which contains all the degrees of freedom not in A [1]. If we

de�ne the degrees of freedom within A by k-local operators with �nite k, then the

number of degrees of freedom in A goes to zero when we take the thermodynamic

limit on the number of degrees of freedom in B (long time and large system size).

1A k-local operator is an operator Ôk in which k of the entries are not identity operators, and
a global operator is a k-local operator in which k is of order N [1].
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Figure 2.1: Left: The closed system that undergoes unitary time evolution.
Right: The partition of the closed quantum system into a subsystem A and
everything else B. If the system quantum thermalizes, then the region B is able
to act as a reservoir for the subsystem A. Republished with permission of [Ye
Cheng Chen], from [Many-body localization and thermalization in quantum
statistical mechanics, Rahul Nandkishore and David A Huse, Annu. Rev.
Condens. Matter Phys., Vol. 6, 2015]; permission conveyed through Copyright
Clearance Center, Inc.

Fig. 2.1 shows the partition of a closed system split into a subsystem A and

everything else B.

By taking the thermodynamic limit on B, there is a sequence of systems and

their Hamiltonians, with the number of degrees of freedom increasing without limit.

For a set of initial states of each system in the sequence, ρ(t = 0), they thermalize

to a given temperature T . At thermal equilibrium, each system has an equilibrium

expectation value of the total energy 〈H〉T and a Boltzmann probability opera-

tor ρ(eq)(T ) at temperature T . Since the probability operator ρA(t) of subsystem

A at time t is de�ned as the partial trace over all of the degrees of freedom in

B, ρA(t) = TrB{ρ(t)}, the closed system thermalizes for this temperature in the

thermodynamic limit so that ρA(t) = ρ
(eq)
A (T ) = TrB

{
ρ(eq)(T )

}
.

There are two immediate consequences for a closed system that thermalizes:

the eigenstate thermalization hypothesis (ETH) and the entanglement entropy.

Consider an eigenstate |Ψα〉 of the Hamiltonian H with energy Eα = 〈H〉Tα at
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thermal equilibrium. The ETH states that the expectation value 〈Ψα|Ô|Ψβ〉 of a

local operator Ô, in an eigenstate |Ψα〉 of the Hamiltonian H with energy Eα, of a

large interacting many-body system equals the thermal average 〈O〉 (Eα) [69�71]:

〈Ψα|Ô|Ψβ〉 = 〈O〉 (Eα).

The ETH has two strong implications. First, it asserts that in the thermodynamic

limit the subsystem A is at thermal equilibrium: ρ
(α)
A = ρ

(eq)
A (Tα). Secondly, be-

cause the expectation value of a local operator in eigenstates looks thermal, the

ETH implies that every eigenstate implicitly contains a thermal state. That is,

since an eigenstate is a pure state and not a mixed state, there is no time evolution

of the system: ρ(t) = ρ(0). If the system is initially prepared in an eigenstate, then

thermalization of all such initial states implies that all many-body eigenstates of

H are thermal.

For a closed system thought to be in its pure state ρ = |Ψ〉〈Ψ|, the von-Neumann

entropy is de�ned as S(ρ) = −Tr(ρ ln ρ). The entanglement entropy (EE) for the

subsystem A is the von-Neumann entropy of the reduced states, given by

S(ρA) = −Tr(ρA ln ρA),

where |Ψ〉 is an eigenstate of H, and ρA = TrB{|Ψ〉〈Ψ|} is the reduced density

matrix of ρ on subsystem A. Let the volume of the subsystem A denoted by Ld.

The subsystem A is said to be maximally entangled when all 2L
d
coe�cients are

of equal weight, leading to volume-law entanglement SA ∼ Ld. In the case of

thermalization, the entanglement entropy between A and B in this eigenstate of
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Figure 2.2: Entanglement entropy for the open XX chain for di�erent system
size N with box potential weak disorder W = 0.1. Reprinted (�gure) with
permission from [2] as follows: [Y. Zhao et al., Entanglement entropy of
disordered quantum chains following a global quench, Phys. Rev. B,
93(20):205146, 2016.] Copyright (2019) by the American Physical Society.

the full system is equal to the equilibrium thermal entropy of the subsystem A.

Each system in the sequence behaves as a maximally entangled state [72]. The EE

in thermalizing systems obeys volume-law scaling (whereas in localized systems it

obeys the area-law scaling). For 1D systems, the EE is expected to obey the linear-

law scaling in the thermodynamic equilibrium limit, but it is impossible to test

numerically the many-body eigenstates of the system's Hamiltonian using exact

diagonalization for large system size, not even for systems in the thermodynamic

limit. Fig. 2.2 shows that the EE is indeed linear increasing with respect to the

system length l in the regime vt < l, where v is the velocity of the excitations. For

vt > l, EE then saturates due to system size being �nite. It is nearly impossible

to prepare exact eigenstates of H in the laboratory as initial states, but pure state

of the system can be prepared by utilizing a Bose-Einstein condensate of 87Rb

(rubidium) atoms in optical lattice [73]. The entanglement entropy is minimized
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if the system is in a non-degenerate pure ground state.

In short, if a closed system thermalizes, the memory of initial states are hidden

in global operators at long times, the ETH is true in both the thermodynamic limit

and for small regime in �nite systems, and the entanglement entropy is maximized.

On the other hand, as we will discuss in the following, for localized systems, some

memory of local initial conditions are preserved in local observables at long times,

the ETH fails, and the electron conductivity is absent.

2.2 Anderson Localization

In the original tight-binding model formulated by Philip W. Anderson, electrons

are able to tunnel between neighbouring lattice sites, and the system is subject

to an external random potential modeling the random environment. Consider a

three-dimensional periodic lattice of potential wells, the time-dependence of the

probability amplitude ψj for a particle on site j is described by the Schrödinger

equation

i~ψ̇j = Hjψj,

where the Hamiltonian Hj is given by

Hj = Ej +
∑
j 6=k

Vjk.

Here Ej is an independent random potential uniformly distributed in a disorder po-

tential box [−W,W ], and Vjk the overlap (interaction) matrix element that allows

electron hopping from one site to the next. In the second quantization representa-

tion, the Hamiltonian H is described by the operator Ĥ for a tight-binding model
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Figure 2.3: Hopping electrons or scattered waves. Top: Extended
wavefunction of electrons due to quantum tunnelling. Bottom: Random on-site
disorder potential results in localization of wavefunction which decays
exponentially in space (the horizontal axis). Figure reproduced from [Alain
Aspect and Massimo Inguscio, Anderson localization of ultracold atoms,
Physics Today, Vol. 62 (8):30-35, 2009], with the permission of the American
Institute of Physics.

with nearest-neighbor hopping and random on-site potential

Ĥ = J
∑
j,k

(ĉ†j ĉk + h.c.) +
∑
j

µj ĉ
†
j ĉj, (2.1)

where µj is a static random on-site potential drawn from [−W,W ] withW measur-

ing the disorder strength, J 6= 0 is the nearest-neighbour hopping amplitude, and

c†j (cj) creates (annihilates) a particle on site j. h.c. stands for hermitian conjugate

of other terms.

If one neglects the contribution from the disorder potential, µj = 0, then the

hopping behavior of electrons can have wave characteristics. The Schrödinger
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equation yields a stationary-state solution of an extended wave function, which

describes electrons as entities propagating freely in a crystal. The extended wave

function is also known as the Bloch wave, ψn = exp(ikn), for k ∈ [−π, π]. The

energy spectrum is given by the dispersion relation E(k) = 2J cos k.The electron

eigenstates are known as extended states [74]. On the other hand, starting with

ψ0 localized at site n at initial time t = 0, Anderson was interested in how fast

the probability distribution |ψ|2 spreads by considering the disorder strength W .

He found that for three-dimensional lattice systems, �if V (rjk) falls o� at large

distances faster than 1/r3, and if the average value of V is less than a certain

critical Vc of the order of magnitude of W ; then there is actually no transport at

all, in the sense that even as t→∞ the amplitude of the wave function around site

n falls o� rapidly with distance, the amplitude on site n itself remaining �nite"

[29]. This is the original theorem of the Anderson localization. Fig. 2.3 shows

both the extended and localized states of hopping electrons.

The scaling theory of localization generalizes the localization transition in �-

nite, open media. Edwards and Thouless put forward the scaling theory with a

dimensionless scale parameter g that de�nes the average conductance [75]. Later

Abrahams et, al presented the the scaling function β(g) that describes how average

conductance g grows with system size L for a disordered system [76],

β(g) =
d log g

d log L
.

For a system in d-dimension, the conductance is given by G(L) ∝ LD−2, so β(g) ∝

d−2 for large g. The beta function is positive for d = 3, zero for d = 2 and negative

for d = 1. Fig. 2.4 shows the schematic diagram of the scaling theory. The sign of
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the beta function changes from positive to negative as we transition from extended

states to localized states. For d ≤ 2, electron eigenstates can only appear to be

quasi-extended or localized; for d = 1, any particle state is localized. For d = 3,

β(g) moves from log g > 0 to log g < 0 either by increasing size L (always positive)

or decreasing conductance g, and the electron eigenstates move from extended

states to localized states. This is the essential criterion for Anderson localization

which asserts that electron eigenstates are localized for the average conductance

log g < 0.

Figure 2.4: Scaling theory of localization. Figure taken from Ref. [3]. Figure
reproduced from [A. Lagendijk et al., Fifty years of Anderson localization,
Physics Today, Vol. 62(8):24-29, 2009], with the permission of the American
Institute of Physics.

Localization is possible in 1D, 2D and 3D systems when the average conduc-

tance is below certain threshold log g < 0. Anderson localization has the following

rami�cations:

• For 1D or 2D systems with an arbitrary disorder strength W , and for D ≥ 3
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and su�ciently large W , the electron eigenstates are all exponentially local-

ized. The wave function ψα(r) of an eigenstate α corresponding to a given

energy is localized and has the following asymptotic form

|ψα(r)|2 ∝ exp

(
−|r−Rα|

ξloc

)
,

where Rα is the position where state α is localized. ξloc is the localiza-

tion length at which an electron is localized, and it depends on the disorder

strength and the energy [1, 77]. For 1D system with �nite system size L,

all electron eigenstates are localized if the system length is longer than the

localization length: L > ξloc.

• If D ≥ 3 and W is small, then

|ψα(r)|2 ∝ 1

V
,

where V is the volume of the system [77].

• Using diagrammatic perturbation theory and transfer matrix techniques, one

can show that the 1D localization length is given by [78]

ξloc =
12(4− E2)

W 2
, (2.2)

where E(k) = 2J cos k is the dispersion relation of the single-band model

(2.1). Fig. 2.5 shows the localization length ξ as a function of disorder

parameter W and energy E, where ξloc is described by the power law ξloc ∝

W−2.
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Figure 2.5: The plot of localization length ξ in 1D as a function of disorder
parameter W and dispersion relation E (inset) using Eq. (2.2).

Because electrons repel each other and are a�ected by lattice vibrations � a kind

of disorder that is not static and cannot produce Anderson localization � experi-

mental observation of Anderson localization was not realized until recent advances

in experimental techniques. Localization has been experimentally reported in mi-

crowaves [79, 80], sound waves [81], electron gases [82], and matter-waves [83]. Here

we look at Anderson localization of ultracold atoms. Ultracold atoms, typically

a quantum gas of bosons, can be cooled down to near absolute zero temperature,

and interactions among particles can be tuned by using a static magnetic �eld,

known as the Feshbach resonance [4, 84]. Those bosons occupy the ground state

where kinetic energy is minimized, and microscopic wavefunction interference can

be observed macroscopically: Many independent atoms appear in the same single-

atom wavefunction. This is known as the Bose-Einstein condensate (BEC). Fig.

2.6 shows the Anderson localization of ultracold atoms. The Bose-Einstein con-

densates are con�ned by a matter waveguide transverse to the z-axis, in which
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they are allowed to move freely. When a laser beam creates a disordered intensity

pattern that varies rapidly along z, the atoms stop moving after a short time. A

stationary density pro�le with exponentially decaying wings con�rms the Anderson

localization [4].

In short, Anderson localization is a single-particle localization phenomenon in

disordered systems, and it is con�rmed using ultracold atoms experiments. Having

introduced the concepts of thermalizing systems and localized systems, we can

now tell the di�erence between them. For a closed system to become localized,

the ETH fails for the initial state, so it is impossible to thermalize the system.

If we transform Eq. (2.1) into a Hamiltonian in the basis of eigenstates which

are non-interacting many-particle eigenstates corresponding to product of single-

particle eigenstates, then for systems in which at least some of the single-particle

states are localized, almost all of the many-particle states violate the eigenstate

thermalization hypothesis (ETH).

Figure 2.6: Anderson localization of ultracold atoms. The semilog plots of
the pro�les at times 0.8 s, 1 s, and 2 s con�rm the localization. Figure
reproduced from [4]. Figure reproduced from [Alain Aspect and Massimo
Inguscio, Anderson localization of ultracold atoms, Physics Today, Vol. 62
(8):30-35, 2009], with the permission of the American Institute of Physics.
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2.3 Many-body Localization

Many-body localization (MBL) is the generalization of Anderson localization to dis-

ordered interacting many-particle systems. The physics of the MBL phenomenon

is most simply exposed in the context of spin models. A spin-1/2 model of MBL

arises in a system governed by the spin Hamiltonian

H =
∑
ij

Jijσσσi · σσσj +
∑
i

µiσ
z
i (2.3)

The on-site disorder potential µi are static random variable drawn from a continu-

ous probability distribution of widthW > 0, and the spin hoppings and interactions

Jij are short range in real space.

At J = 0 the system is fully localized. For none-zero J , in the regime J << W ,

the many-body eigenstates of Eq. (2.3) on di�erent sites are weakly characterized

by J but subject to strong disorder W . Hence, for strong disorder, DC spin

transport and energy transport are absent, quantum thermalization therefore does

not occur, and all of the eigenstates violate the ETH [85]. This is the MBL phase.

For weak disorder, the high-energy entropy eigenstates of Eq. (2.3) do obey the

ETH, and the eigenstates are at the thermal phase. There is a quantum phase

transition between the thermal phase and the MBL localized phase by varying

the disorder strength. Questions about the nature of this phase transition remain

open.

The main di�erence between the single-particle localization and many-particle

localization is dephasing and the spreading of entanglement. The following argu-

ment follows from Ref. [1]. One can use Eq. (2.3) to describe a system of N -local,

two-state degrees of freedom {σσσi}. These are called p-bits and represent physical
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many-particle localized states in real space. For strong disorder, the Hamiltonian

can be in the fully many-body-localized (FMBL) regime, where all the many-body

eigenstates of the Hamiltonian are localized and can be described by a set of local-

ized two-state degrees of freedom {τττ i}. These many-particle localized eigenstates

in an eigenbasis are called l-bits. Fig. 2.7 shows dynamical behavior of the l-bits.

Localized l-bits exist for FMBL systems, and the overlap between each such l-bit

and a distant p-bits is exponentially small [1, 86�88]. Eq. (2.3) written in the new

variables takes the form

H = E0 +
∑
i

τ zi +
∑
ij

Jijτ
z
i τ

z
j +

∞∑
n=1

∑
i,j,{k}

K
(n)
i{k}jτ

z
i τ

z
k , . . . , τ

z
knτ

z
j , (2.4)

where each term in the sum appears only once, E0 is an o�set irrelevant to the

system's dynamics, and Jij and K
(n)
i{k}j are magnitudes of interactions [1].

Each l-bit precesses around its z axis at a rate set by its interactions with all

other {τ zi }. Because all the {τi} are out of phase in a generic state, this precession

produces dephasing. Dephasing is a process of lossing coherence caused by pertur-

bations, upon which the system returns to its state before perturbation. Since {τi}

has no dissipation, dephasing of {τ zi } can be reversed by spin-echo procedures, such

Figure 2.7: Dynamical behavior of the l-bits. Figure taken from Ref. [1].
Republished with permission of [Ye Cheng Chen], from [Many-body localization
and thermalization in quantum statistical mechanics, Rahul Nandkishore and
David A Huse, Vol. 6, 2015]; permission conveyed through Copyright Clearance
Center, Inc.
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as Loschmidt echo (discussed in Chapter 5). For single-particle localized states,

there is only one state with a certain phase, so there is no dephasing or dissipation

in p-bits. Reversing the dephasing of a particular l-bit is experimentally challeng-

ing, because one can only access the p-bits instead of l-bits; however, it is possible

through high-�delity spin-echo measurements for weakly interacting systems [89].

The spreading of entanglement (SE) for single-particle localized systems is ab-

sent because there are no interactions between l-bits. In thermalizing systems, if

p-bit A interacts with p-bit B, then they are entangled. When B interacts with

C, this interactions produces entanglement not just between B and C but also be-

tween A and C. Entanglement spreads ballistically in thermalizing systems, which

hence obey power-law spreading of entanglement from non-entangled initial condi-

tion. However, this ballistic spreading is absent in the FMBL phase. In localized

systems, interactions between two l-bits can only produce entanglement between

themselves, and all other interactions have no entanglement e�ect on these two

l-bits, because the l-bit Hamiltonian Eq. (2.4) has no dissipation. One can de�ne

an e�ective interaction J(L) between each l-bits, so that this interaction is not only

expected to fall o� with the distance L between each l-bits, J ∼ J0exp(−L/ξ), but

also entangles all of them after time t, J · t ≥ 1, from the non-entangled initial con-

dition. The result is that all the l-bits are entangled within a distance L ∼ ξ ln J0t

of each other. Therefore the entanglement for a MBL system obeys the logarithmic

law of spreading [1, 90�92].

We conclude this chapter by including a list of properties of the thermal phase,

the single-particle localized phase, and the many-body localized phase in Table

2.1. Because localization is wave phenomenon, we are able to investigate phase

transitions for both single-particle and many-particle systems, typically the SSH
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model and the XXZ model, using the spin-echo technique known as the Loschmidt

echo. We will discuss the models in Chapter 3 and the Loschmidt echo in Chapter

5.

Thermal phase Single-particle localized Many-particle localized

Memory of initial conditions Some memory of local initial Some memory of local initial

hidden in global operators at conditions preserved in local conditions preserved in local

long times observables long times observables long times

ETH true ETH false ETH false

Possible non-zero Zero DC Zero DC

DC conductivity conductivity conductivity

Continuous local Discrete local Discrete local

spectrum spectrum spectrum

Entanglement entropy
EE with area-law EE with area-law

with volume-law

Power-law SE
No spreading

Logarithmic SE

from non-entangled
of entanglement

from non-entangled

initial condition initial condition

Dephasing No dephasing, Dephasing

and dissipation no dissipation but no dissipation

Table 2.1: A list of properties for the thermal phase, single-particle localized
phase, and the MBL phase. Table taken from Ref. [1]. Republished with
permission of [Ye Cheng Chen], from [Many-body localization and
thermalization in quantum statistical mechanics, Rahul Nandkishore and David
A Huse, Annu. Rev. Condens. Matter Phys., Vol. 6, 2015]; permission
conveyed through Copyright Clearance Center, Inc.
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Chapter 3

Models

In this section, we will introduce the models used for this research, namely the

Su-Shrie�er-Heeger (SSH) model and the XXZ model. The SSH model is of a

topological system whereas the XXZ is of a spin system. We will discuss several

properties of a topological system, such as the dispersion relation, bulk-boundary

correspondence, and edge states. For the XXZ model, we will discuss magnetic

phases and the Jordan-Wigner transformation. We also include the discussion of

exact diagonalization for these models with disorder.

3.1 The Su-Shrie�er-Heeger Model

Polymers are large molecules formed in long chains, and polyacetylene is a simple

isomeric chain of a linear conjugated polymer which consists of bonded CH groups.

According to the nearly-free electron theory, one might expect the half-�lled con-

duction band of a polyacetylene chain to be metallic. However, the energy of a

half-�lled band of a one-dimensional system can always be lowered by imposing a

periodic lattice distortion of the correct wavelength to open up an energy gap at

the Fermi energy, known as the Peierls instability [19]. That is, polyacetylene is

an insulator. Using a simple one-dimensional (1D) tight-binding model, where the

hopping matrix elements represent alternating o�-diagonal tunnelling strengths,
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Figure 3.1: The lowest Bloch bands of a dimerized one dimensional
Polyacetylene lattice. Energy gaps appear in ka = ±π/2 as a result of the
Peierls instability.

Su, Shrie�er and Heeger were able to explain the unusual electronic conductiv-

ity of polyacetylene and the Peierls instability [93]. As shown in Fig. 3.1, the

Peierls distortion is inevitably frustrated when the number of lattice sites is odd,

and as a consequence the polymer chain must accommodate a topological exci-

tation�topologically protected solitonic defects free to move along the polymer

chain. The excitation is said to be topological because the defect cannot be re-

moved by a smooth continuous deformation. Even if the number of sites is even,

one can create low energy topological excitations in the system either by doping or

by the creation of particle�hole excitations of the system. The Su-Schrie�er-Heeger

(SSH) model has served as the standard model of a 1D system characterized by

charge fractionalization and topological properties [94, 95]. We will discuss several

key features of the model, including the second quantization representation of the

Hamiltonian, the dispersion relation, the bulk-boundary correspondence, and most

importantly its connection to our research.
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3.1.1 The SSH Hamiltonian

The SSH model describes spinless fermions hopping on a one-dimensional lattice

with staggered hopping amplitudes. As shown in Fig. 3.2, the chain consist of N

unit cells, and each unit cell has two sites: one on sublattice A and another on sub-

lattice B. The lattice structure of the SSH model has only one conduction electron

attached to each carbon atom, so each unit cell of the fermionic chain can only

have one particle. This situation, called half-�lling, can only happen for fermionic

systems with zero chemical potential, and all fermions specifying all negative en-

ergy eigenstates are singly occupied as the ground state of the Hamiltonian. Such

a state is a preferable initiate state of a closed system to investigate localization

phenomena.

For a system with N unit cells, there are L = 2N lattice sites and N eigen-

states satisfying half-�lling. The hopping amplitudes are assumed to be real and

nonnegative; v, w ≥ 0. Due to the absence of interaction and on-site potential, the

SSH model can be described by the single-particle Hamiltonian operator,

Ĥ = v
N∑
n=1

(|ψn,A〉〈ψn,B|+ h.c.) + w
N−1∑
n=1

(|ψn+1,A〉〈ψn,B|+ h.c.). (3.1)

Here |ψn,A〉 and |ψn,B〉, with n ∈ {1, 2, ..., N}, denote the state of the chain where

the electron is on unit cell j, in the sublattice site A, and B, respectively; h.c.

stands for hermitian conjugate. v is intracell hopping amplitude, and w is the

intercell hopping amplitude [5]. Eq. (3.1) is the �rst quantization representation

of the single-particle SSH Hamiltonian.
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Figure 3.2: Geometry of the SSH model. Filled (empty) circles are sites on
sublattice A(B), each hosting a single state. Hopping amplitudes are staggered:
intracell hopping v (double lines) is di�erent from intercell hopping w (single
lines). Figure taken from Ref. [5]. Republished with permission of [Ye Cheng
Chen], from [A Short Course on Topological Insulators, János K. Asbóth et al.,
Vol. 919, 2019]; permission conveyed through Copyright Clearance Center, Inc.

The single-particle operator Ĥ is diagonal in the basis {|ψn,l〉}, where l = A,B

is the sublattice index. For L = 2N lattice sites, we can use the indices

|ψ2j−1〉 = |ψn,A〉 , |ψ2j〉 = |ψn,B〉 .

The second quantization representation of Eq. (3.1) acting on |ψj〉 can therefore

be expressed as

Ĥ =
L∑
j

〈ψj|Ĥ|ψj+1〉 c†jcj+1 + h.c.,

where c†j and cj are the fermion creation and annihilation operators on site j. The

matrix H = 〈ψj|Ĥ|ψj+1〉 has the following single-particle expression

H =



0 v 0 0 . . . w

v 0 w 0 . . .
...

0 w
. . . . . . . . .

...

... . . .
. . . . . . w 0

... . . . 0 w 0 v

w . . . 0 0 v 0


, (3.2)

for periodic boundary conditions (PBC). The matrix H for the system with open
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boundary conditions (OBC) omits the intercell hoppings (w) on the upper-right

and lower-left corners in Eq. (3.2).

Let v = J(1 − δ) and w = J(1 + δ), we arrive the second quantization repre-

sentation of the many-particle Hamiltonian for the SSH model

Ĥ = J

L∑
j=1

[(1 + δeiπj)ĉ†j ĉj+1 + h.c.], (3.3)

Here δ ∈ [−1, 1] is the dimerization, and J is the hopping amplitude for nearest-

neighbor sites and is set to 1 for numerical calculations, but we include J in the

formula expressions. For periodic boundary conditions the sum is taken up to site L

and cL+1 = c1 while the sum is taken up to L−1 for open boundary conditions. We

will soon discuss the di�erence between the single-particle and the many-particle

Hamiltonians.

3.1.2 The dispersion relation

Similar to any solid state systems, the chain of the SSH model has a bulk and

a boundary component. The bulk is the long central part of the chain, and the

boundaries are the two ends (edges) of the chain. The bulk chain in the thermo-

dynamic limit N →∞ is independent of how the edges are de�ned, and the bulk

chain can be closed into a ring by imposing PBC and translational invariance. By

including sublattice index A and B, Eq. (3.3) can be written as

Ĥ = J
∑
j

[(1− δ)ĉ†j,Aĉj,B + (1 + δ)ĉ†j,B ĉj+1,A + h.c]. (3.4)
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Using the Fourier transform on the fermionic operators,

ĉj,A =

√
2

N

∑
k

ei2kjck,A; ĉj,B =

√
2

N

∑
k

ei2kjeikck,B,

we can express the Hamiltonian in the momentum space

H =J
∑
k

[
(1− δ)c†k,Ack,Be

ik + (1 + δ)e−ikck,Be
i2kck,A + h.c

]
=J
∑
k

[
(1− δ)[eikc†k,Ack,B + e−ikc†k,Bck,A]

+ (1 + δ)[eikc†k,Bck,A + e−ikc†k,Ack,B]
]

=J
∑
k

[
2 cos kc†k,Ack,B + 2iδ sin kc†k,Ack,B + h.c

]

H =
∑
k

(
c†k,A c†k,B

) 0 2J [cos k + iδ sin k]

2J [cos k − iδ sin k] 0


ck,A
ck,B

.
Therefore, Eq. (3.3) de�nes the bulk-Hamiltonian H(k) in the momentum space k

via [11]

H =
∑
k

Ψ†kH(k)Ψk with H(k) = dk · σσσ. (3.5)

Here σσσ is the vector of Pauli matrices (σx, σy, σz), and after Fourier transform and

a convenient rotation, Ψ†k takes the following form

Ψ†k =

√
2

L

L/2∑
j=1

ei2kj

1 0

0 ei2k


c2j−1

c2j


︸ ︷︷ ︸

=Ψj

.
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From the above derivations, we have H(k) written as

H(k) =

 0 2J [cos k + iδ sin k]

2J [cos k − iδ sin k] 0

, (3.6)

so that

dk = (−2J cos (k), 2Jδ sin (k), 0).

The momenta are k = 2πn/L with n = 1, 2, . . . , L/2.

The dispersion relation E(k) can be obtained by diagonalizing Eq. (3.6) via

det(H(k)− E(k) · 1) = 0,

E(k) = ±2J
√

cos2 k + δ2 sin2 k, (3.7)

where k ∈ [−π/2, π/2] is de�ned as the �rst Brillouin zone. Setting J = 1 with δ =

(w− v)/2, we brie�y illustrate below the notion of bulk-boundary correspondence

by varying v and w.

3.1.3 The bulk-boundary correspondence

For the system in the thermodynamic limit we look at three cases qualitatively

and diagrammatically using Fig. 3.3. The �rst case is for v = w and so δ = 0. The

dispersion relation E(k) = ±2 cos k. For k = −π/2 or π/2, E(k) = 0, so there is

no energy gap at the two ends of the �rst Brillouin zone. The SSH model describes

a conducting phase without staggering1, and there are plane wave eigenstates of

1Staggering refers to sign changes under translation by one lattice spacing; in our case, v 6=
w[19].
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Figure 3.3: Dispersion relations of the SSH model in �rst Brillouin zone for
�ve settings of the hopping amplitudes: (A): v = 1, w = 0; (B): v = 1, w = 0.5;
(C): v = w = 1; (D): v = 0.75, w = 1; (E): v = 0, w = 1. The energy gap closes
up in the direction v: 1→ 0 as w: 0→ 1, or vice versa.

the bulk available with arbitrarily small energy permitting the transportation of

electrons within the bulk (see case (C) in Fig. 3.3).

The second case is when w = 2 and v = 0 so that δ = 1. Then the dispersion

relation E(k) = ±2J describes an energy gap Egap between the conduction and

the valence band for all k ∈ [−π/2, π/2],

Egap = 4J.

The bulk Hamiltonian is said to be fully dimerized, and the system describes a

trivial or insulating phase, where conduction is prohibited (see (A) and (E) in Fig.

3.3).

The third case takes place upon varying v and w, where v > w or v < w. The
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energy gap becomes smaller at the two ends of the Brillouin zone k = −π/2 and

π/2, and it is Egap = 4Jδ for δ > 0 (see (B) and (D) in Fig. 3.3). Even though

the energy gap seems equivalent in the particular cases being considered, there is

an intrinsic, topological di�erence between v > w and v < w. The case v > w

refers to the trivial phase, whereas the case v < w is known as the topologically

non-trivial phase, where there exists eigenstates connecting the valence band to

the conduction band at the two ends. These eigenstates which move along the

boundary of the bulk are known as edge states, which show up numerically for

systems with open boundary conditions. Fig. 3.4 shows the energy eigenvalues of

the SSH model for L = 20 system sites. The two edge states emerge from δ < 0

(v < w) to δ > 0 (w > v). For δ < 0, the energy eigenvalues of these two states

are non-zero and have opposite signs; this is the trivial phase. For δ > 0, the

eigen-energies of the two edge states are slightly above and below zero, known as

the zero edge states; this is the topological non-trivial phase.

In short, we have discussed the SSH model and its relevant properties, such as

edge states and the notion of bulk-boundary correspondence, where phase transi-

tions can take place in the system from the trivial phase to the topological non-

trivial phase.

3.2 The XXZ Model

For an interacting many-body system, the Hamiltonian can be expressed in terms

of kinetic energy of electrons, potential energy of electrons, electron-electron inter-

action, kinetic energy for nuclei and nucleus-nucleus interaction. In such complex

systems, the high-energy degrees of freedom can be �integrated out� to reveal an
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Figure 3.4: Energy eigenvalues of the SSH model revealing the two edge
states.

e�ective Hamiltonian, which can describe a certain subset of the electronic degrees

of freedom at low-energy. This is the fundamental idea of renormalization, and the

Hubbard model was the one introduced by J. Hubbard etc. to study such complex

system [96�99]. From the Hubbard model one can derive the Heisenberg model,

which describes the spin degrees of freedom in a Mott insulating phase, where the

electronic charge degrees of freedom are neglected or �frozen out". The Heisenberg

model is a statistical mechanical model for which one can study critical points and

phase transitions of magnetic systems [100]. The XXZ model is an interacting

Heisenberg model, which consists of a one-dimensional spin-1/2 chain and whose

interactions show an anisotropy along a speci�c direction. The anisotropic coupling

constant J induces di�erent ordering in the system, so that three phases can be

characterised; namely, an antiferromagnetic one, an entirely critical paramagnetic

and a ferromagnetic region. In this section, we will discuss the XXZ Hamiltonian,

the Jordan-Wigner transformation, and the three magnetic phases.
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3.2.1 The Heisenberg Model

The Heisenberg model describes the nearest-neighbour spin interaction of many-

body particles ([19, 100, 101]). The most general Hamiltonian of the Heisenberg

model with nearest-neighbour interaction for N lattice sites is given by

Ĥ = −
N∑
j=1

[
JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
jS

z
j+1

]
. (3.8)

Here Jij is expressed in terms of three spatial components Jx, Jy, Jz. The spin

operators Ŝj live on the lattice sites. Spin components on the same lattice site

obey the standard angular momentum commutation relations

[Sαj , S
β
j ] = i~

∑
γ

εαβγS
γ
j (α, β, γ = x, y, z)

and spins on di�erent site commute with each other. The operators S2
j have eigen-

values S(S + 1) where S is an integer or half-integer. The spin interaction in Eq.

(3.8) is called exchange interaction, and Jij is called a coupling/exchange constant.

The values of Jx, Jy, and Jz gives rise to di�erent cases to consider for the

general Heisenberg model. If Jx = Jy = Jz = J > 0, it is called the isotropic

ferromagnetic Heisenberg XXX model, and Bethe was the �rst to provide analytical

solution to the model [102]. If Jx = Jy = Jz = J < 0, the model is the isotropic

antiferromagnetic XXZ Heisenberg model, and des Cloizeaux and Pearson obtained

the elementary excitations in 1962 [103]. If Jx = Jy = J 6= Jz, it is known as the

XXZ Heisenberg model, analytically solved by Yang and Yang in 1966 [104�106].

The fully anisotropic Heisenberg model is for Jx 6= Jy 6= Jz, and it was solved

by Baxter in 1972 [107, 108]. These are exactly solvable models, and details of
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solutions can be found in many textbooks. We will focus on the spin-1/2 XXZ

model on a one dimensional lattice chain.

3.2.2 The XXZ Hamiltonian

The spin-1/2 one-dimensional Heisenberg XXZ model for N lattice sites is given

by the following Hamiltonian

Ĥ = −J
N∑
j=1

[
Sxj S

x
j+1 + Syj S

y
j+1 +4SzjSzj+1

]
. (3.9)

Here Sαj = 1
2
σαj and σα are the Pauli matrices obeying canonical SU(2) commuta-

tion relations

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

.
The parameter J sets the energy scales, and the parameter 4 denotes the strength

of the uniaxial anisotropy along the ẑ direction. If we let J = 1, the parameter 4

can distinguish a planar regime (|4| < 1) from the axial regime (|4| > 1). There is

no long-range order for |4| < 1, a regime also known as the gapless Luttinger liquid

phase. In the axial regime, we have a ferromagnetic phase along the ẑ direction

for 4 > 1 and an antiferromagnetic phase when 4 < −1. Fig. 3.5 shows the

phase diagram consisting of a ferromagnetic (FM), a Luttinger liquid (LL), and an

antiferromagnetic (AFM) phase. Therefore, 4 = 1 and 4 = −1 correspond to the

ferromagnetic and antiferromagnetic Heisenberg chains, respectively.

There are some symmetries that relates these di�erent phases. In order to

evaluate its ground state and low energy excitations, one can transform Ĥ using a
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Figure 3.5: Schematic phase diagram for the Hamiltonian (3.9). The phase
diagram consist of gapped ferromagnetic (FM) and antiferromagnetic (AFM)
phases as well as a gapless Luttinger liquid (LL) phase.

unitary operator U =exp(iπ
∑N

j=1 jS
z
j )

UĤ(4)U † = −Ĥ(−4).

This means that the energy spectrum of Ĥ(4) can be re�ected upon changing of

sign to obtain the energy spectrum for Ĥ(−4), but the eigenstates of the Hamil-

tonian are independent from the sign of J . Moreover, the magnetization along the

ẑ axis, i.e.

Sz =
N∑
j=1

Szj

is conserved. In the state |0〉 = |↑↑↑ . . .〉 with all spins up, the the con�guration

reaches its maximum value Sz = N/2. A rotation along the x̂ axis leaves the

Hamiltonian unchanged. Morever,

[Ĥ, Sz] = 0,

which can be veri�ed directly using the fundamental commutation relations

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sz, [Sz, Sx] = i~Sz.
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The ground state of the Heisenberg ferromagnet is di�erent from that of the

Heisenberg antiferromagnet. In the case J4→∞, the ground state can be chosen

to be the completely ferromagnetic state |0〉 = |↑↑↑ . . .〉. Low-energy excitations

can be constructed in terms of magnons. On the other hand, for J4 → −∞, the

ground states of the Heisenberg AFM can be expressed as a staggered spin con�gu-

ration, known as the Neél state, where all neighbouring spins are antiparallel. The

low-energy excitations are called spinons. The important feature of the spinons is

that the AFM Hamiltonian Ĥ can now be described by the bipartite lattice, in

which there are two sublattices A and B and each site on lattice A has its nearest

neighbors on sublattice B. The 1D bipartite lattice looks similar to Fig. 3.2. The

Néel state is de�ned as

|ΨN〉 =
∏

|k|<π/2a

d†k |0〉 ,

where |0〉 is the vacuum state and d†k is the particle-hole transformation operator.

The Néel state is two-fold degenerate, |N1〉 ≡ |↑↓↑↓↑ . . .〉 and |N2〉 ≡ |↓↑↓↑↓ . . .〉.

It can be seen as semi-classical representation of the ground state also for 4 < 1,

but it is not the true ground state in the gapless phase.

We introduce the spin-�ip operators,

S+
j = Sxj + iSyj , S−j = Sxj − iS

y
j

which raises or lowers spin states |↓〉 and |↑〉 in the following manner,

S+ |↓〉 = |↑〉 , S+ |↑〉 = 0, S− |↑〉 = |↓〉 , S− |↓〉 = 0.
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The corresponding commutation relations are

[Szj , S
±
j ] = ±S±j′ δjj′ [S+

j , S
−
j′ ] = 2Szj δjj′ .

Using the the spin operators, one can express the Hamiltonian in Eq. (3.9),

Ĥ = −J
N∑
j=1

{
1

2

[
S+
j S
−
j+1 + S+

j+1S
−
j

]
+4SzjSzj+1

}
. (3.10)

The bene�t of Eq. (3.10) is that it allows us to make calculations more conveniently

via the Jordan-Wigner transformation, as we will discuss in the following. In 1931,

Hans A. Bethe provided the exact solution for this model using the powerful ana-

lytical technique known as Bethe Ansatz [102, 109]. The di�culty of the technique

is beyond the scope of this thesis, and interested readers can �nd comprehensive

analyses in the article [110].

3.2.3 Jordan-Wigner Transformation

We can map the Hamiltonian (3.10) to a free fermion Hamiltonian using the

Jordan-Wigner transformation

S+
j = (−1)j ĉ†je

iπφj , S−j = (−1)j ĉje
−iπφj , Szj = ĉj −

1

2

where nj = c†jcj = S+
j S
−
j is the occupation number operator, φj is the phase

factor which contains the sum over all fermion occupations at site to the left of j,

φj =
∑j−1

l=1 nl, and cj(c
†
j) are annihilation (creation) operators of spinless fermions
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at site j. The operator eiφj is known as a string operator. The JWT really means

spin = fermion× string.

This transformation solves a major problem in the Hamiltonian (3.10), where spins

on di�erent sites commute whereas fermion operators anticommute, i.e., S+
i S

+
j =

S+
j S

+
i , but c

†
ic
†
j = −c†jc

†
i . The string operator eiφj anticommutes with all fermions

at all sites l to the left of j, i.e., l < j: {eiφj , c†l} = 0, while commuting with

fermions at all sites to the right l ≥ j: [eiφj , c†l ] = 0 (l ≥ j). Using the JWT, the

spin operators for sites j < k commutes in the following way,

[S±j , S
±
k ] = [ĉ†je

iφj , ĉ†ke
iφk ] = eiφj [ĉ†j, ĉ

†
kĉ
iφk ].

Since c†j anticommutes with both f †k and eiφk , it commutes with their product

f †ke
iφk . Hence, the correct commutation relation is

[S±j , S
±
k ] ∝ [ĉ†j, ĉ

†
ke
iφ] = 0.

Using the JWT, we can express Eq. (3.10) in the following fermionic Hamilto-

nian

ĤJWT = −

[
N∑
j=1

J

2
(ĉ†j ĉj+1 + ĉ†j+1ĉj) + J4(ĉ†j ĉjc

†
j+1ĉj+1 − ĉ†j ĉj +

1

4
)

]

ĤJWT = −J
2

N∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) + J4
N∑
j=1

n̂j − J4
N∑
j=1

n̂jn̂j+1 (3.11)
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Here we omit the term
∑N

j 1/4 = N/4 because it doesn't change the energy spec-

trum [111]. Eq. (3.11) allows us investigate quantum behaviours of spin particles.

3.2.4 The XXZ Model with Fourier Transform

We can perform a Fourier transform of the Hamiltonian into momentum space. It

is convenient to impose periodic boundary conditions: Sj+N = Sj and cj+N = cj.

We can de�ne a Fourier transform via the following

ĉj =
1√
N

2π∑
k

ŝke
ikRj , ŝk =

1√
N

N∑
j

ĉje
−ikRj , [ŝk, ŝ

†
k′ ] = δkk′ ,

where k = 2πm/N, m = 0, . . . , N − 1 is the wave vector, and ŝ†k creates a spin

excitation in momentum space. Hence we have the following transformations

J4
N∑
j=1

n̂j = J4
N∑
j=1

ĉ†j ĉj = J4
N∑
k

ŝ†kŝk

−J
2

N∑
j=1

(ĉ†j+1ĉj + h.c.) = − J

2N

N∑
k

(e−ika + eika)ŝ†kŝk′
∑
j

e−i(k−k
′)Rj

= −J
∑
k

cos (ka)ŝ†kŝk.

Here
∑

j e
−i(k−k′)Rj = Nδkk′ , and a denotes the lattice spacing. The anisotropic

XXZ Hamiltonian via the Fourier transform can be written as

Ĥ =
∑
k

εkŝ
†
kŝk − J4

∑
j

n̂jn̂j+1, (3.12)
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where εk = (J4 − J cos ka) is known as the magnon excitation energy. The 1D

ferromagnetic and 1D antiferromagnetic phases can been described by this trans-

formation. In the ferromagnet, the fermionic spin excitations are magnons which

have spin S = 1. In the antiferromagnetic, on the other hand, the fermonic spin

excitations are spinons which have spin S = 1/2. We will look at two cases in the

following, namely the Heisenberg ferromagnet, the XX model and the Heisenberg

antiferromagnet.

(I) In the case of the 1D Heisenberg ferromagnet, J4 = J , which implies that

4 = 1. The energy spectrum becomes

εk = 2J sin2 (ka/2),

which is positive for J > 0. This means that spin excitations are absent in the

ground state, so the ground state can be written as

|0〉 = |↓↓↓ . . .〉 ,

which corresponds to a state with spontaneous magnetization M = −Ns/2. Ns

means the number of spin excitations. The idea of spontaneous magnetization is

that when a system is subject to external magnetic �eld h, M takes positive value.

By decreasing h to zero, M will not decrease to zero but instead have a certain

value above zero. If we add a magnon at k = 0, since εk=0 = 0, this action of

adding a magnon rotates the magnetization in�nitesimally upwards but with no

energy. The k = 0 magnon is a zero-energy excitation, known as the Goldstone

mode, see Fig. 3.6.
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Figure 3.6: Excitation spectrum of the one-dimensional Heisenberg
ferromagnet. Figure reproduced from [6] as [Introduction to many-body
physics, Piers Coleman, Cambridge University Press, 2015]. Reproduced with
permission of The Licensor through PLSclear.

(II) In the case of the XX model for 4 = 0, the energy spectrum becomes

εk = −J cos ka.

As shown in Fig. 3.7, the energy spectrum has a negative part, and all the negative

energy states are occupied in the region for |k| < π/2a. To create an excitation

on the occupied state, one can add a magnon at wave vectors |k| > π/2a, and

annihilate a magnon to form a hole at wavevectors |k| < π/2a [6]. For free fermions

the particle-hole transformation operator which exchanges the role of creation and

annihilation is de�ned as

d̂†k = (−1)kŝk.

The (−1)k factor takes the value−1 on one sublattice and +1 on the other. Because
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Figure 3.7: Excitation spectrum of the one-dimensional XX model. Figure
reproduced from [6] as [Introduction to many-body physics, Piers Coleman,
Cambridge University Press, 2015]. Reproduced with permission of The
Licensor through PLSclear.

of the particle-hole symmetry ŝ†kŝk = 1− ŝ†kŝk, the fermionic excitation states are

exchanged, and the Hamiltonian (3.12) for the XX model can be written as,

ĤXX =
∑
k

J | cos ka|(d̂†kd̂k −
1

2
),

where the dispersion relation takes the form εk = J | cos ka| [6], see the schematic

diagram in Fig. 3.7. In the region for |k| > π/2a, there are actual particles. For

|k| < π/2a, the magnon states are occupied for the negative energy spectrum,

but the corresponding holes are �re�ected" for the positive energy spectrum. The

energy to form a hole is −εk. The physically observable excitations are actually the

holes rather than the occupied states. Fig. 3.8 shows the experimental evidence of

the antiferromagnet in the high-Tc coumpound LaCuO4.

(III) The Heisenberg antiferromagnet refers to J4→ −∞, or4→ −∞ with J

�xed. For a system of N sites in the AFM, the situation where there are N/2 holes

and N/2 particles is known as half-�lling. Mapping backward from free fermions to



3.3. Disordered Matrices 49

spin operators, holes denote downward spins ↓ and particles upward spins ↑. Due to

the fact that spins are represented by JTW spin-1/2 operators, the energy levels are

split into two degenerate con�gurations, see Fig. 3.7. The ground state in the AFM

are the Néel states occupying the Fermi sea for |k| < kF , and the energy spectrum

can be governed by an operation which adds or removes particles from the Fermi

sea. A threshold momentum is associated with this operation. When we perform

a particle-hole transformation, it leaves the threshold momentum unchanged, so

this fermionic excitation is interpreted as a pair of spinons with opposite spin

orientations ↑ and ↓ [112]. These states which �ll up the �rst Brillouin zone for

k ∈ [−π/a, π/a] are collectively known as spinons, which describe the spin-wave

excitations of the antiferromagnet. To create one of the spinons in the Néel state,

one needs to perform a global rotation of all spins, but the energy costs of this

interaction only lies at the boundary and does not depend on the number of �ipped

spins; hence spinons are collective excitations. In contrast to the ferromagnet, the

AFM spin-wave dispersion displays a linear spectrum in the limit k → 0. As shown

in Fig. 3.8, the integrity of the linear dispersion is maintained.

3.3 Disordered Matrices

To study dynamical phase transitions for disordered systems, we need to evaluate

the mean value of the Loschmidt echo averaged from many calculations with dif-

ferent disordered con�gurations, the so-called disorder-averaged Loschmidt echo.

Each con�guration corresponds to a set of eigenvalues and eigenvectors obtained

by exact diagonalization for a disordered system. To realize a disordered system,

we �rst de�ne the total on-site disorder potential according to Eq. (2.1) in this
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Figure 3.8: Spin-wave dispersion of the high-Tc compound LaCuO4 - an
experimental evidence for the spin-1/2 antiferromagnet. Figure taken from Ref.
[7]. Reprinted with permission from [7] as follows: [R. Coldea et al., Spin waves
and electronic interactions in La2CuO4, Phys. Rev. Lett., Vol. 86, 5377-5380,
2001]. Copyright (2019) by the American Physical Society.

way,
L∑
j=1

µj ĉj ĉj =
L∑
j=1

µjn̂j, (3.13)

where µj ∈ [−W,W ] is the box disorder potential, n̂j = ĉ†j ĉj is the occupation

number operator on site j, and the sum is over the number of lattice sites L =

2N . Each value of µj for a given j is randomly generated and independently

distinguished from any other values µj+1 for j + 1.

The SSH Hamiltonian with disorder potential then takes the form

ĤSSH = J
L∑
j=1

[(1 + δeiπj)ĉ†j ĉj+1 + h.c.] +
L∑
j=1

µjn̂j. (3.14)

The the nearest-neighbor interaction for free fermions can be derived from the

fermionic interacting XXZ model
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V = 4
L∑
j

SzjS
z
j+1

= 4
L∑
j

(ĉ†j ĉj ĉ
†
j+1ĉj+1 − ĉ†j ĉj +

1

4
)

= 4
L∑
j=1

(
n̂jn̂j+1 −

1

4

)
,

where −
∑
ĉ†j ĉj +1/4 = −L/4 and 4L/4 enters the many-particle Hamiltonian for

numerical calculation. The disordered SSH Hamiltonian with nearest-neighbour

interaction can then be expressed as

ĤSSH4 = J
L∑
j=1

[(1+δeiπj)ĉ†j ĉj+1 +h.c.]+
L∑
j=1

µj ĉ
†
j ĉj +4

L∑
j=1

(
n̂jn̂j+1 −

1

4

)
. (3.15)

Neglecting the nearest-neighbour interactions, the free fermionic XXZ model

(3.11) becomes the non-interacting XX model. The disordered XX model with has

the form

ĤXX =
J

2

L∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) +
L∑
j=1

µjn̂j. (3.16)

The full XXZ model with disorder potential then has the following form

ĤXXZ =
J

2

L∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) +
L∑
j=1

µj ĉ
†
j ĉj +4

L∑
j=1

(
n̂jn̂j+1 −

1

4

)
. (3.17)

Here we reverse the signs of J and 4. A rotation around the z axis of every-

other spin followed by the transformation 4→ −4 maps the J > 0 ferromagnetic

case into the J < 0 antiferromagnet and vice versa: (J,−4) = (−J,+4). Hence
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the AFM phase after the rotation corresponds to 4 = 1 instead of 4 = −1, and

we are interested in quenching from the Néel state either into the Luttinger-liquid

phase (4 = 0) or across various interaction strengths 4 in the AFM phase.

While these equations take forms of many-particle Hamiltonians, many-particle

problems can be reduced to single-particle problems by neglecting interactions

among particles. For a single-particle problem, a single-particle state is represented

by a single particle occupying a latice site in real space, but a many-particle state is

usually a linear superposition of an orthogonal set of product states in eigenbasis of

the Hilbert space. The matrix structure of the single-particle Hamiltonian (SPH)

is di�erent from the that of the many-particle Hamiltonian (MPH), and the matrix

element of the disordered matrix Eq. (3.13) varies from SPH to MPH.

The particular way we used to diagonalize both the single-particle and many-

particle Hamiltonians is called the exact diagonalization technique, a computational

technique that constructs the many-particle Hamiltonians by exploiting symmetries

and iterations [113]. A standard Hubbard or Heisenberg model has four states for

single site, so the full Hilbert space has dimension 4L with L being system sites.

Without symmetrization it is practically impossible to go beyond L = 16 system

sites even on the biggest supercomputers. For our fermionic spinless systems, each

site is either empty or occupied, so the dimension of the Hilbert space is reduced to

2L. An occupied site can be represented using the number �1� and an empty site

with �0�. For a system with sites L = 4, a single-particle state with one particle at

site 1 but empty everywhere else can be expressed as |1000〉. If the same system

satis�es the half-�lling condition, then a many-particle state can have the form

|1010〉 for two particles at site 1 and 3 at the same time. Here we demonstrate

the di�erence using the non-interacting disordered SSH Hamiltonian (3.14) as an
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example, where the Hamiltonian matrix is H = 〈ψj|Ĥ|ψj+1〉 and J = 1.

For the SPH with system sites L = 4, the single-particle states are |1000〉,

|0100〉, |0010〉 and |0001〉. We perform creation and annihilation operators ĉ†j ĉj+1

on all these states, but we use |0100〉 for demonstration below.

ĉ†1ĉ2 |0100〉 ⇒ |1000〉, ĉ1ĉ
†
2 |0100〉 ⇒ 0;

ĉ†1ĉ3 |0100〉 ⇒ 0, ĉ1ĉ
†
3 |0100〉 ⇒ 0;

ĉ†1ĉ4 |0100〉 ⇒ 0, ĉ1ĉ
†
4 |0100〉 ⇒ 0;

ĉ†2ĉ3 |0100〉 ⇒ 0, ĉ2ĉ
†
3 |0100〉 ⇒ |0010〉 ;

ĉ†2ĉ4 |0100〉 ⇒ 0. ĉ2ĉ
†
4 |0100〉 ⇒ 0;

ĉ†3ĉ4 |0100〉 ⇒ 0, ĉ3ĉ
†
4 |0100〉 ⇒ 0.

That is, 〈1000|Ĥ|0100〉 = 1 − δ for j = 1, and 〈0010|Ĥ|0100〉 = 1 + δ for j = 2.

The occupation number operator acting on a single-particle state n̂j |ψj〉 gives back

the state |ψj〉 at site j with a random number µj ∈ [−W,W ]. Having performed

the operations on all the states, we have the following form for the matrix H of

the single-particle disordered SSH model with open boundary conditions

Hsp
SSH = 〈ψj|Ĥ|ψj+1〉 =



µ1 1− δ 0 0

1− δ µ2 1 + δ 0

0 1 + δ µ3 1− δ

0 0 1− δ µ4


.

In the many-particle problem, on the other hand, the many-particle states for

fermionic systems with half-�lling requires that each particle state consists of two

particles from di�erent sites. For a MPH with system sites L = 4, the number of

distinct many-particle states is the permutation that 2 particles can be selected

from 4 sites: 4!/(2! · 2!) = 6. The size of the Hamiltonian matrix is the square of 6:
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6× 6. To construct the matrix element of the many-particle Hamiltonian, we per-

form the creation annihilation operations on the many-particle eigenstates: |1100〉,

|1010〉, |1001〉, |0110〉, |0101〉 and |0011〉. We demonstrate the many-particle oper-

ations with the state |1010〉 as an example

ĉ†1ĉ2 |1010〉 ⇒ 0, ĉ1ĉ
†
2 |1010〉 ⇒ |0110〉 ;

ĉ†1ĉ3 |1010〉 ⇒ 0, ĉ1ĉ
†
3 |1010〉 ⇒ 0;

ĉ†1ĉ4 |1010〉 ⇒ 0, ĉ1ĉ
†
4 |1010〉 ⇒ 0;

ĉ†2ĉ3 |1010〉 ⇒ |1100〉, ĉ2ĉ
†
3 |1010〉 ⇒ 0;

ĉ†2ĉ4 |1010〉 ⇒ 0. ĉ2ĉ
†
4 |1010〉 ⇒ 0;

ĉ†3ĉ4 |1010〉 ⇒ 0, ĉ3ĉ
†
4 |1010〉 ⇒ |1001〉 .

The disorder potential for each many-particle state takes the accumulative

disordered e�ect from particles on corresponding sites. The many-particle state

|1100〉, for instance, has particles at sites 1 and 2. The disorder potential for

|1100〉 is the sum of µ1 and µ2. In short, the MPH, Ĥmp
SSH , with disorder has the

following form

〈1100|

〈1010|

〈1001|

〈0110|

〈0101|

〈0011|



|1100〉

µ1 + µ2

1 + δ

0

0

0

0

|1010〉

1 + δ

µ1 + µ3

1− δ

1− δ

0

0

|1001〉

0

1− δ

µ1 + µ4

0

1− δ

0

|0110〉

0

1− δ

0

µ2 + µ3

1− δ

0

|0101〉

0

0

1− δ

1− δ

µ2 + µ4

1 + δ

|0011〉

0

0

0

0

1 + δ

µ3 + µ4


.

Once the Hamiltonian matrix is constructed, solving for the eigenvalues and
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eigenvectors immediately follows. One may notice that the dimension of a single-

particle Hamiltonian is much smaller than the dimension of a many-particle Hamil-

tonian. In numerical calculations, the di�erence becomes signi�cant in evaluating

many-particle systems for large system size. The dimension of a SPH can be as

large as allowed by large portion of the computer memory, such as L = 3200,

but it is impossible to evaluate a MPH with this size. Details will be discussed

in Chapter 6. We have demonstrated the exact diagonalization technique for the

non-interacting SSH model (3.14), and the same can be said for the XX model.

For interacting models, (3.15) and (3.17), Hamiltonians with nearest-neighbour in-

teractions can be constructed in similar way using exact diagonalization, see Ref.

[113] and Appendix (C).

3.4 Summary

In this chapter, we have discussed the models of our interest: the SSH model

and the XXZ model. The SSH model is a non-interacting model, whereas the

XXZ model has the nearest-neighbour interaction in the many-particle ferminonic

Hamiltonian. There are many studies about the dynamical phase transitions

(DPTs) about these models [114, 115]. We are interested in understanding DPTs

for both models, where disorder and nearest-neighbour interaction are taken into

consideration.

We also discussed the exact diagonalization technique used in disordered sys-

tems. For non-interacting systems, the problem reduces to a single-particle prob-

lem, and the Hamiltonian matrix without disorder can take the bipartite form, see

Section (3.3). More importantly, evaluating the Loschmidt echo for single-particle
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Hamiltonians with large system size becomes easily accessible. The inclusion of the

on-site disorder potential turns the bidiagonal matrix into the tridiagonal matrix,

in which
∑

j µj spams the diagonal elements of the matrix. The disordered systems

whose Hamiltonian matrices can take tridiagonal forms are ĤSSH (3.14) and ĤXX

(3.16), and evaluating the LE for these systems is called the single-particle Hamil-

tonian approach (SPHA). For critical disordered systems with nearest-neighbour

interactions, ĤSSH4 (3.15) and ĤXXZ (3.17), evaluating the LE for many-particle

Hamiltonians in small system size is called the many-particle Hamiltonian approach

(MPHA). The two approaches refer to two Loschmidt echo formulae, and we will

discuss them in Chapter 5.
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Chapter 4

Dynamical Phase Transition

Phase transition is the change of state of a substance from a solid, liquid, or gas

state to a di�erent state. Phase transitions which appear in solid-to-liquid or

liquid-to-gas phases are known as the equilibrium phase transition for systems in

thermal equilibrium with their environment. During an equilibrium phase tran-

sition (EPT) of a given system, certain properties of the system change, often

discontinuously, as a result of the change of some external condition, such as tem-

perature or pressure. The description and understanding of EPTs remains one of

the major studies of thermodynamics and statistical mechanics, which are con-

cerned with the average properties of a quantum statistical system. In 1952, Yang

and Lee provided fundamental explanation of phase transitions using theories of

statistical mechanics for the �rst time. They showed that phase transitions are dis-

continuities or non-analyticities of the free energy density function upon varying

the temperature, and these discontinuities are commonly called Yang-Lee zeros.

Michael Fisher later extended the real temperature parameter to the plane of com-

plex temperature through the study of the distribution of the zeros of the canonical

partition function, where the zeros are called Fisher zeros. Fisher's work estab-

lished the foundation to the notion of dynamical phase transitions (DPT). In this

section, we will brie�y discuss the concepts of Yang-Lee zeros, Fisher zeros and

dynamical phase transitions.
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4.1 Yang-Lee Zeros

From a mathematical de�nition, a zero of a function f is a point z0 where f is

continuous in some neighborhood of z0 and f(z0) = 0. A point zi where f is

not continuous or di�erentiable in some neighborhood of zi is known as a point

of discontinuity or non-analyticity. In thermal statistical physics, the �rst-order

phase transitions correspond to points of discontinuity zi where the thermodynamic

free energy function is non-analytic. Yang and Lee showed the existence of this

function by means of grand canonical statistical mechanics [116].

Consider a monatomic gas with interactions in given a volume V and a �xed

temperature T . Each particle is given a �nite impenetrable core, so that interaction

strength among particles is a �nite non-zero value. In the grand canonical ensemble

at chemical potential µ and temperature T = 1/kBβ, the fugacity of system z is

de�ned as

z = e(µ/kBT ).

The grand canonical partition function of the system is given by

ZV (T, z) =
N∑
n=0

Zn(T )zn,

where Zn(T ) is the canonical partition function for n particles, and N is the max-

inum number of particles that can be put in the volume V . ZV (T, z) is therefore

a polynomial of N -th order in the fugacity z.

According to the fundamental theorem of algebra, there are N roots zi = zi(T )

so that ZV (T, zi) = 0 with i = 1, . . . , N . The fact that individual particle has solid
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volume allows one to express ZV (T, z) in an in�nite convergent product,

ZV (T, z) = eg(z)
N∏
i=1

[
1− z

zi

]
,

where eg(z) is some function to be ignored for now. The thermodynamic potential

for ZV (T, z) is de�ned as Ω = −kBT lnZV (T, z) = −PV . In the thermodynamic

limit V → ∞, the �nite-sized pressure P (z) and the local density function ρ(z)

can be expressed as

P (z) =kBT lim
V→∞

(
1

V

N∑
i=1

ln

[
1− z

zi

])
,

ρ(z) = lim
V→∞

(
∂

∂ ln z

)(
1

V

N∑
i=1

ln

[
1− z

zi

])
.

According to Weierstrass theorem, because the coe�cients of all the powers of

z in the expression of ZV (T, z) are real and positive, none of these roots zi can be

real and positive�they appear in complex-conjugate pairs in the complex-fugacity

plane [117]. That is, these roots zi can move about a region R in the complex plane,

but there is a segment of the positive real axis where the roots zi are not de�ned.

Yang and Lee showed that as V → ∞ both P (z) and ρ(z) are analytic functions

with respect to z in the region R. P (z) is a continuous, monotonically increasing

function of positive values of z and independent of the shape of V . However, as

V → ∞, when the roots zi approach the segment of the positive real axis where

the they are not de�ned, ρ(z) has discontinuities at these roots zi. Hence ρ(z)

is discontinuous for all zi approaching the positive real axis in the region R, and

these zi are the zeros of ZV (T, zi).
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(a) (b)

Figure 4.1: Schematic diagram for the analytical behavior at a given
temperature T of the pressure function P (z) in (A) and the local density
function (LDF) ρ(z) in (B) for a system that undergoes two phase transitions.
The transition points z1 and z2 are zeros which approaches the positive real z
axis.

4.2 Fisher Zeros

In a review article written in 1967, Michael Fisher suggested the analysis of the

phase trasitions in the frame of the canonical ensemble, through the study of the

distribution of the zeros of the canonical partition function in the plane of the

complex temperature [118]. In view of the equivalence of the various statistical

ensembles in the thermodynamic limit, one should be able to equally characterize

a phase transition in any of these ensembles [119]. As in the grand-canonical

ensemble, the Fisher zeros lie in the complex-temperature region free of the positive

real temperature semi-axis for a �nite system. As these zeros approach the positive

semi-axis in the thermodynamic limit, a limiting line of zeros will cut the semi-axis

at a point known as the critical point of temperature Tc. Fisher illustrated this idea

on the two-dimensional square lattice Ising model, with isotropic nearest-neighbor

interactions, in the absence of an external magnetic �eld [118].
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The Fisher zeros are much more sensitive than the Yang-Lee zeros to the de-

tails of the interactions (type of lattice, dimensionality), and also to boundary

conditions. Following closely that of the Yang�Lee zeros studies, the concept of

Fisher zeros was rapidly set-up in its general frame, including the relevance of the

thermodynamic limit, the location of the critical point, [120, 121], and the charac-

terization of the transition [122�126]. The underlying assumption of these abstract

studies on the characteristics of the transition is that in the thermodynamic limit

the Fisher zeros fall on smooth, complex-conjugate curves, at least in some vicinity

of the critical point. While these complex zeros have been originally introduced as

a purely theoretical concept, it is worthwhile to emphasize that recently it became

possible to measure them experimentally [127, 128]. Fig. 4.2 shows the Fisher

zeros of noninteracting trapped bosons in a complex plane of inverse temperature.

Figure 4.2: The Fisher zeros for systems of 50 or 100 noninteracting trapped
bosons with a continuous density of states. β = 1/kBT is the inverse
temperature. Figure taken from Ref. [8]. Republished with permission of [Ye
Cheng Chen], from [Fisher zeros of a unitary bose gas, Wytse van Dijk et al.,
Canadian Journal of Physics, Vol. 93, 2014]; permission conveyed through
Copyright Clearance Center, Inc..
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4.3 Dynamical Phase Transition

Dynamical phase transition (DPT) means the phase transitions within a system

as a function of time. The notion of DPT rises from a recent idea to study Fisher

zeros and thus critical points for localizing systems evolving dynamically in time

under a small perturbation due to disorder (see Chapter 1). While the parameter

time t describes the time evolution of a localized system, a thermalizing system can

be parametrized by temperature T . For a closed system, the canonical partition

function of a system at thermal equilibrium is de�ned as

Z(β) = Tr e−βH ,

where Z(β) provides indirect description to temperature-driven (β) phase transi-

tions via the thermodynamic potential, as shown in Yang-Lee Zeros 4.1. Since the

breakdown of the high-temperature expansion indicates a β-driven phase transi-

tion, it is possible to propose the term dynamical phase transition for non-analytical

behavior in time t, which corresponds to �the breakdown of short time expansion

in the thermodynamic limit in a critical time� [129]. LeClair et al. showed that Z

can be de�ned as the partition function with boundary states |Ψi〉 separated by z

[130],

Z(z) = 〈Ψ1|e−zH |Ψ2〉 , (4.1)

where |Ψ1〉 and |Ψ2〉 represent the states at the boundaries, H denotes the bulk-

Hamiltonian of the closed system, and z ∈ C is a complex parameter. For real

z = R, Z(R) is known as the boundary partition function. When z represents the
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imaginary time z = it, the partition function describes the overlap amplitude

Z(z = it) = 〈Ψ1|e−itH |Ψ2〉 , (4.2)

where e−itH is de�ned as the unitary time-evolution operator, and |Ψ1(t)〉 =

e−itH |Ψ2〉. The partition function contains the full information about the sys-

tem's thermodynamic properties, and in the thermodynamic limit one de�nes the

free energy density

f = − lim
N→∞

1

N
lnZ. (4.3)

where N is the number of degrees of freedom. Here Eq. (4.3) indicates the exis-

tence of non-analyticities of the system in the evolution of time � namely, dynam-

ical phase transitions (DPTs). DPTs can be described using Fisher zeros in the

complex time plane, see Fig. 4.3. For �nite size systems, Fisher zeros appear as

points. For systems in the thermodynamic limit, Fisher zeros can coalesce onto

lines often on low-dimensional systems, or they can accumulate to form areas on

higher-dimensional systems. DPTs occur whenever such a line or boundary of an

area hits the real-time axis indicated by the dots along the real-time axis, see Fig.

4.3b. Equations (4.2) and (4.3) therefore serve as the paradigmatic equations for

the study of dynamical phase transitions in localizing systems.

4.4 Quantum Quench

As the complex parameter z transitions from a real-valued temperature β to an

imaginary time it, we transition from thermalizing systems to localizing systems.

To understand how a localizing system evolves in time, we introduce the notion of
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(a) (b)

Figure 4.3: Schematic illustration of Fisher zeros in the complex time plane.
(A) For systems of �nite size, the zeros appear as points in the complex
parameter plane. (B) Upon increasing system size, Fisher zeros start to
accumulate and form structures which can either lines or areas. Figures taken
from Ref. [9]. Republished with permission of [Ye Cheng Chen], from
[Dynamical phase transitions: a review, Reports on Progress in Physics, Vol. 8,
2018]; permission conveyed through Copyright Clearance Center, Inc..

quantum quench. A quantum quench is a parametric switch where, for a closed

quantum system, the initial Hamiltonian H0 evolves dynamically in time under a

new Hamiltonian H1 with a di�erent parametric setting. We will only consider the

so-called global quenches, which will lead to a macroscopic change in the Hamilto-

nian of a system. It is di�erent from the local quenches where the energy change

is not extensive. Consider a system initially prepared in the many-body ground

state |Ψ0〉 of an initial Hamiltonian H0,

H0 = H(g = g0),

where g is some tunable parameter of a more general Hamiltonian H(g), and the

value g0 parametrizes the initial Hamiltonian H0. At time t = 0, the parameter g

is suddenly changed to a new value g1, and the �nal Hamiltonian is now

H1 = H(g = g1).



4.4. Quantum Quench 65

Let the �nal state |Φ1〉 be the many-body eigenstate of the Hamiltonian H1.

The overlap between the initial state |Ψ0〉 and the �nal state |Ψ1〉 after a global

quench g : g0 → g1 is known as the �delity F , de�ned as

F = |〈Ψ0|Ψ1〉|2.

If g1 = g0 and |Ψ1〉 = |Ψ0〉, then this is trivial and F = 1, which it is possible

in �nite size systems. For large size systems reacting to a small perturbation, the

initial state |Ψ0〉 is almost always orthogonal to the �nal state |Ψ1〉, and the overlap

is exponentially small in system size L:

F ∝ e−L.

This is known as the Anderson orthogonal catastrophe. The �delity F is expected

to vanish in the thermodynamic limit L→∞.

The quantum time-evolution of the initial ground state |Ψ0〉 is de�ned as

|Ψ(t)〉 = e−iH1t |Ψ0〉 .

For a system that reacts to a global quench g : g0 → g1, the dynamic overlap

between the initial state |Ψ0〉 and the time-evolved state |Ψ(t)〉 is de�ned as

L(t) = |〈Ψ0|Ψ(t)〉|2 =
∣∣ 〈Ψ0|e−iH1t|Ψ0〉

∣∣2.
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This is known as the Loschmidt echo. Heyl et al. showed that L(t) is a functional

dependence on the number of degrees of freedom N in the large N limit,

L(t) = e−Nl(t),

where l(t) is called the return rate function [129, 131], and it is de�ned as

l(t) = − lim
N→∞

1

N
lnL(t).

Similar to non-analyticities which take place as Fisher zeros closing onto the

real time axis, the non-analyticities of the return rate are determined by the zeros

of the Loschmidt echo. Fig. 4.4 shows the schematic illustration for the Loschmidt

echo L(t) and return rate l(t). The rapid decay of the Loschmidt echo shows that

|Ψ1〉 and |Ψ0〉 are orthogonal to each other. The cusps on the return rate function

l(t) are dynamical phase transitions at critical times tc.

In conclusion, we have shown the development of phase transitions from ther-

malizing systems to dynamical localizing systems. Thermal phase transitions occur

as non-analyticities provided by the free energy function, while the dynamical phase

transitions are non-analyticities from the return rate function.
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Figure 4.4: Schematic illustration of a dynamical quantum phase transition.
(A) The Loschmidt echo decays exponentially and gives no further information.
(B) The return rate l(t) shows non-analyticities as cusps at several critical
times t = tc.
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Chapter 5

The Loschmidt Echo

In the early days of statistical mechanics, Joseph Loschmidt in a discussion with

Ludwig Boltzmann suggested the notion of time-reversal such that molecules could

return to their initial positions after some time. This is quite impossible in classical

mechanics for two reasons. First, according to the second law of thermodynamics,

the entropy of an isolated system can never decrease over time; hence, the fact

that entropy never decreases accounts for the irreversibility of molecules returning

to initial positions. As seen from Anderson's orthogonality catastrophe, moreover,

systems of many-particles, in the thermodynamic limit, possess exponential sen-

sitivity on the variation of initial condition; hence, the initial state of a system

reacting to an arbitrarily small perturbation would shift away and never return to

its initial state. The fact that classical systems show exponential instability can be

attributed to the concept of chaos, which is an intrinsic property in both classical

and quantum systems. The �eld of quantum chaos mainly deals with stationary

properties of classically chaotic systems, but recent studies pay attention to dy-

namical aspects of quantum evolution in chaotic systems, such as reversibility of

quantum evolution and dynamical localization [132�135]. For systems with very

few degrees of freedom, e.g., ideally a few non-interacting particles reacting to a

weak perturbation, it is then possible to observe signs of time-reversal, where the

time-evolved state returns to its initial state after an arbitrarily long time. This
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is possible for closed systems because quantum evolution is unitary and preserves

the short distance between two states; moreover, there is no signi�cant exponen-

tial sensitivity due to the small variation of the initial state. For quantum systems

reacting to strong perturbations or in contact with external reservoirs, the deco-

herence of the many-particle states is so strong that both quantum information is

completely lost and time-reversal of system states is impossible. The question how

stable such a time reversal is with respect to small perturbations is of fundamental

importance to understand decoherence, which sets limits for quantum computation

([115, 136�138]). The measurement of sensitivity to perturbations is known as the

Loschmidt echo, and understanding how sensitive dynamical phase transitions are

due to disorder potential in localizing systems is our primary interest.

5.1 De�nition of the Loschmidt Echo

For a closed quantum system, the time evolution of a quantum system is governed

by a unitary operator U(t) = e−iHt. Applying the unitary operator U(t) on an

initial quantum state |Ψ0〉, the time evolution of the quantum state is |Ψ(t)〉 =

U(t)|Ψ0〉. As a consequence, the initial quantum state can be recovered by applying

the inverse of U(t) on |Ψ(t)〉 such that |Ψ0〉 = U †(t)|Ψ(t)〉.

The Loschmidt echo is de�ned as the measure of the stability of time reversal,

L(t) = | 〈Ψ0|eiH(g2)te−iH(g1)t|Ψ0〉 |2. (5.1)

Here, H(g) is the time-independent Hamiltonian of the system which is a function

of a microscopic parameter g. Eq. (5.1) states that the system is prepared in an
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initial state |Ψ0〉 which is allowed to time evolve during the forward time evolution

for g = g1. Then applying the backward time evolution g = g2 would bring the

quantum state back to the initial state and L(t) = 1 if g1 = g2. In general, one

wants to have g2 di�erent from g1 to see how sensitive the state is from small

perturbations. For g1 6= g2, the system is time-evolved with H(g1) during the

forward evolution and with H(g2) during the backward evolution. L(t) thus is

nothing but the overlap of two quantum states between the time evolution state

with H(g1) and the state with H(g2). Fig 5.1 shows the schematic �ow of the time

evolution for the Loschmidt echo.

Figure 5.1: Schematic �ow of the time evolution for the Loschmidt echo.
Figure taken from Ref. [10] (arXiv License).

To study and classify quenches in closed quantum systems by means of the

Loschmidt echo (LE), we concentrate on the case where |Ψ0〉 is the ground state

of H(g2). In this case, the Loschmidt echo takes the same form as in Sec. (4.4),

L(t) = | 〈Ψ0|e−iHt|Ψ0〉2 , (5.2)

where we have set H ≡ H(g1).

Here we provide a short derivation of Eq. (5.2). Consider a closed system of N

particles. Let |Ψ0〉 be the ground state of H(g2). The hermitian operator Ĥ(g2)

satis�es the eigenvalue equation Ĥ(g2) |Ψi〉 = E |Ψi〉, so that Ĥ(g2) can be written
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in terms its complete set of energy eigenvalues and eigenstates

Ĥ(g2) =
N∑
m

Em |Ψm〉 〈Ψm| , m = 1 . . . N.

It follows that eiĤ(g2)t written in terms of its energy eigenvalues and eigenstates is

eiĤ(g2)t = eiĤ(g2)t · 1 = eiĤ(g2)t
∑
m

|Ψm〉〈Ψm| =
N∑
m

eiEmt |Ψm〉〈Ψm| , (5.3)

where
∑N

m e
iEmt |Ψm〉 〈Ψm| is the complete set of energy eigenvalues on the diagonal

axis and has the matrix form

N∑
m

eiEmt |Ψm〉 〈Ψm| =



eiE1t 0 . . . 0 0

0 eiE2t . . . 0 0

...
...

. . .
...

...

0 0 . . . eiEN−1t 0

0 0 . . . 0 eiEN t


.
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Substituting Eq. (5.3) into Eq. (5.1) , we have

L(t) =
∣∣ 〈Ψ0|eiH(g2)te−iH(g1)t|Ψ0〉

∣∣2
=

∣∣∣∣∣ 〈Ψ0|
N∑
m

eiEmt|Ψm〉 〈Ψm|e−iH(g1)t|Ψ0〉

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
m

eiEmt 〈Ψ0|Ψm〉 〈Ψm|e−iH(g1)t|Ψ0〉

∣∣∣∣∣
2

=

∣∣∣∣∣∣eiE0t 〈Ψ0|Ψ0〉︸ ︷︷ ︸
=1

〈Ψ0|e−iH(g1)t|Ψ0〉

∣∣∣∣∣∣
2

=
∣∣eiE0t

∣∣2︸ ︷︷ ︸
=1

∣∣ 〈Ψ0|e−iH(g1)t|Ψ0〉
∣∣2

∴ L(t) =
∣∣ 〈Ψ0|e−iH(g1)t|Ψ0〉

∣∣2.
Here the orthogonality relation of the eigenbasis is obeyed

∑
m

〈Ψm|Ψ0〉 = δm,0.

By setting H ≡ H(g1), we have arrived the desired Eq. (5.2)

L(t) = | 〈Ψ0| e−iHt |Ψ0〉 |2.

The return rate is de�ned as

l(t) = − lim
N→∞

1

N
lnL(t). (5.4)

For theoretical calculation purposes, it is important to emphasize the basis on

which the calculation for Eq. (5.2) is performed. That is, the choice of the basis
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matters. If |Ψ0〉 is in the general basis, then e−iHt must also be calculated in the

general basis. In contrast to experimental techniques, where one can access the

physical many-particle states in real space, having numerical calculations on the

general basis is very challenging. Instead, once the Hamiltonian matrix is pro-

vided, one can immediately �nd the eigenvalues and eigenstates and calculate the

Loschmidt echo in the eigenbasis. To set the initial state as the ground state of the

system, one can numerically �nd the eigenstate from the Hamiltonian by matching

the eigenvector to the smallest eigenvalue. Calculating the LE in the eigenbasis,

therefore, imposes much convenience. Since |Ψ0〉 is chosen in the eigenbasis, it is

mandatory to transform the unitary time operator e−iHt in the eigenbasis. We can

rewrite the Loschmidt echo (5.2) in the eigenbasis for both the initial Hamiltonian

H(g2) and the �nal Hamiltonian H,

L(t) = | 〈Ψ0| e−iHt |Ψ0〉 |2

=| 〈Ψ0|U†e−iDtU |Ψ0〉 |2

Therefore,

L(t) = | 〈Ψ0|U†e−iDtU|Ψ0〉 |2. (5.5)

Here D and U are the eigenvalues and eigenvectors of H obtained by exact diag-

onalization, respectively. The unitary time operator e−iHt = U†e−iDtU is now in

the eigenbasis of H. If |Ψ0〉 is not the eigenstate of the initial Hamiltonian H(g2),

it is mandatory to project |Ψ0〉 onto the eigenbasis V of H(g2). We can set |Ψ0〉

as the ground state by numerically referring to the smallest eigenvalue of H(g2).

Eq. (5.5) allows us to calculate the LE for both the SSH and the XXZ models at

ease.
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The Loschmidt echo equation (5.2) serves as the general formula both single-

particle many-particle problems. As mentioned in Chapter 3, the many-particle

Hamiltonian can consume much memory for large size systems, making calcula-

tions only feasible for small size systems. Because of the non-interacting character

of initial state of a localized system, the system is non-interacting and the Hamil-

tonian is bilinear and hermitian [139]. Generally, a bilinear Hamiltonian following

Jordan-Wigner transformation (JWT) can be described by the quadratic form in

the free-fermion model. The bilinear Hamiltonian following Jordan-Wigner trans-

formation (JWT) can be described by the quadratic form in the free-fermion model

Ĥ =
∑
i,j

[
ĉ†iAi,j ĉj +

1

2
(ĉ†iBi,j ĉ

†
j + h.c)

]
, (5.6)

where A = Ai,j is a real symmetric matrix due to hermiticity of H and B = Bi,j is

a real antisymmetric matrix which follows from the anticommutation rules of the

the annihilation and creation operators, ci and c
†
i , respectively [111]. An example

of such system is the non-interacting SSH model, whose Hamiltonian is given by

Eq. (3.5)

Ĥ = J
∑
j

[
(1− δ)ĉ†j,Aĉj,B + (1 + δ)ĉ†j,B ĉj+1,A + h.c)

]
. (5.7)

To evaluate the time evolution of the LE, we can rewrite both Hamiltonians in

Equations (5.6) or (5.7) in the following generic quadratic form

H = Ψ†HΨ, (5.8)

where Ψ† =
(
c†1 . . . c

†
N , c1 . . . cN

)
, with ck being the spinless Jordan-Wigner Fermion

operators. H = σ̂z ⊗A + iσ̂y ⊗B is the matrix of the single-particle Hamiltonian.
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The matrix elements of both the non-interacting SSH model (3.14) and the XX

model (3.16) can be expressed in H. The technique was developed by Elliott Lieb

et al. for a 1D Heisenberg XY model , and the complete discussion can be found

in Ref. [111].

The evaluation of LE for single-particle Hamiltonians can then have the follow-

ing formula [140�142]

L(t) = |det(1−C + Ce−iHt)|2. (5.9)

Here H is the matrix of the �nal Hamiltonian H(g1) after the quench during

the forward evolution g1. C is the 2N × 2N correlation matrix whose matrix

elements are simply the two-point correlation functions of the fermionic operators:

Cij = 〈Ψ0|Ψ†iΨj |Ψ0〉. |Ψ0〉 is the ground state of the initial Hamiltonian H(g2).

The symbol 1 is an 2N × 2N identity matrix. The formula is a function of three

ingredients: the two-point correlation matrix C, the exponential matrix e−iHt,

and the determinant form. We will provide an series of robust but comprehensive

derivations to verify that Eq. (5.9) is indeed equivalent to Eq. (5.2) in Appendix

(A); that is,

L(t) = |det(1−C + Ce−iHt)|2 = | 〈Ψ0| e−iHt |Ψ0〉 |2. (5.10)

5.2 The Loschmidt Echo for the Two Models

In this section, we will look at the analytical solution of the LE for both the SSH

model and the XX model. In doing so, we provide analytical solution for the critical
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times tc for systems subject to periodic boundary conditions (PBC). Solutions for

these models have been studied extensively [11, 115, 143].

5.2.1 The SSH Model

The method we use here follows closely the article [115]. We have shown in Chapter

3, the SSH Hamiltonian ofN particles after a Fourier transform on a periodic lattice

takes the form (3.5)

H =
∑
k

Ψ†kH(k)Ψk with H(k) = dk · σσσ,

where the vector dk which parametrizes the system has the following form

dk = (−2J cos (k), 2Jδ sin (k), 0).

The dispersion relation in Eq. (3.7) is obtained by diagonalizing the Hamiltonian,

E(k) = ±2J
√

cos2 k + δ2 sin2 k,

where the momenta k = 2πn/N with n = 1, 2, . . . , L/2 and L = 2N is the total

number of sites. If we quench dk(δ) = d0
k for δ > 0 and d1

k(δ) = d1
k for δ < 0,

the Loschmidt echo amplitude, in a translationally invariant system of the form

H, takes the following form [11, 144],

L(t) =
∏
k

[
cos (ε1k) + id0

k · d1
k sin (ε1kt)

]
,

where d0,1
k = d0,1

k /
√

d0,1 · d0,1
k , ε1k = |dik| = |E(k)| for the SSH model.
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The Fisher zeros occur for Z(z) = 0 in Eq. (4.1), and the solution is given by

tn(k) =
π

ε1k

(
n+

1

2

)
+

i

ε1k
tanh−1(d0

k · d1
k) (5.11)

with n being an integer. In order to observe DPTs, Fisher zeros must be approach-

ing the imaginary axis, which occurs when d0
k∗ · d1

k∗ = 0 for a given k∗. Hence

the imaginary part in Eq. (5.11) vanishes. These zeros lie on the real axis and

therefore give rise to non-analytic behavior for the return rate at critical times [11],

tn =
π

2ε1k∗
(2n− 1), where n ∈ Z (5.12)

If multiple critical time exist, the critical time scale is de�ned as the smallest

critical time tc1 ; in this case, tc1 = π/(2ε1k∗).

For the system subject to open boundary conditions, the return rate in the

large limit N can be expanded in the following form[11]

l(t) ∼ l0(t) +
lB(t)

N
. (5.13)

Here l0 is the return rate from bulk contribution for PBC. lB is the boundary

contribution which contains information about the topologically protected edge

states. A symmetric quench δ → −δ does not a�ect the direction of the quench

for the the bulk contribution l0(t), see Fig. 5.2a. A quench from the trivial phase

(δ < 0) into the topological phase (δ > 0) does strongly a�ect the boundary

contribution lB(t), which shows large jumps at the critical times, see Fig. 5.2b.

Fig. 5.2a shows multiple critical times, and the time scale is t/tc = 1.
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(a)

(b)

Figure 5.2: Return rates for the bulk contribution l0(t) and the boundary
contribution lB(t) for the SSH Hamiltonian. (A) l0(t) for the bulk contributions
for symmetric quenches δ → −δ for δ = 0.3 and δ = 0.95. (B) lB(t) for the
boundary contribution for symmetric quenches from the trivial phase δ < 0 into
the topological phase δ > 0. Reprinted with permission from [11] as follows: [N.
Sedlmayr et al., Bulk-boundary correspondence for dynamical phase transitions
in one-dimensional topological insulators and superconductors. Phys. Rev. B,
97:064304, 2018.] Copyright (2019) by the American Physical Society.

5.2.2 The XX Model

Assume the 1D XX spin chain has an even number of lattice sites N and periodic

boundary conditions. For 4 = 0 and h = 0, the free fermionic Hamiltonian using

the Jordan-Wigner transformation has the following form [115],

Ĥ0 = −J
2

[
N−1∑
j=1

(ĉ†j ĉj+1 + h.c.)− eiπM(ĉ†N ĉ1 + h.c.)

]
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As shown in Chapter 3, we can diagonalize H0 via a Fourier transformation to

ĉj =
1√
N

N∑
n=1

ŝkne
iknRj ,

where kn = 2πn/N , with m = 0, . . . , N − 1, is the wave vector. The Hamiltonian

H0 can be diagonalized as

H0 =
N∑
n=1

(εk − h)ŝ†kn ŝkn

=

N/2∑
n=1

[
(εk − h)ŝ†kn ŝkn − (εkn + h)d̂†kn d̂kn

]

Here εkn = −J cos (kn + a) is the dispersion relation, and a is the lattice constant.

The operator d̂kn is introduced here by folding the band into a reduced Brillouin

zone. We consider the Néel state |↑↓↑↓ . . .〉 as the initial state |Ψ0〉 of H0 and

quench from |Ψ0〉 under the time evolution e−zH . The time evolution of the initial

state e−zH |Ψ0〉 is given by

e−zH |Ψ0〉 =
1√
2

N/2∏
n=1

[(
e−zεkn ŝ†kn − e

zεkn d̂†kn

)]
.

The Loschmidt echo amplitude becomes

Z(z) =
∏
n

cosh (zεkn). (5.14)
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The return rate l(t) = −1/N ln |L(t)|2 now has the form

l(t) = − 1

N

N/2∑
n=1

ln [cos2 (tεkn)] N→∞−→ − 1

2π

∫ π/2

−π/2
dk ln [cos2 (tεk)]. (5.15)

The Fisher zeros happens for the zeros of the LE. The time evolved state has

become orthogonal to the initial state. In the thermodynamic limit N →∞, non-

analyticities are cusps in the return rate l(t), and this happens when cos (t cos (k = 0)) =

0. For systems of �nite size N , the critical times are

tc =
π

2εkn
(2m+ 1), where m ∈ Z, n = 0, . . . , N − 1. (5.16)

For systems in the thermodynamic limit N →∞, the critical times are

tc =
π

2
(2m+ 1). (5.17)

The time scale is tc1 = π/2. Fig. 5.3 shows the return rate l(t) in the thermody-

namic limit. The cusps of l(t) correspond to multiple critical time t = tc in Eq.

(5.17).

In short, we have discussed the analytical solutions for the Loschmidt echo for

systems with periodic boundary conditions. By diagonalizing Hamiltonians via

Fourier transformations, the critical time scales for both the non-interacting SSH

model and the XX model are found analytically. For systems with open boundary

conditions (OBC), �nding analytic solutions is very di�cult, so we numerically

investigate critical times for both models. We will discuss dynamical phase tran-

sitions and critical times for both disordered models with OBC in Chapter 6.
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Figure 5.3: The return rate l(t) in the thermodynamic limit obtained using
Eq. (5.15). The time scale occurs at tc = π/2, and subsequent critical times at
tc1 = π/2(2m+ 1) for m ≥ 1.

5.3 Comparison of the Formulas

In this section, we validate that the two Loschmidt echo equations (5.2) and (5.9)

are indeed equivalent via an exact diagonalization technique for the disordered XX

model with open boundary conditions. The same process also works for the SSH

model. The disordered XX model is given by Eq. (3.16),

ĤXX =
J

2

L∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) +
L∑
j=1

µjn̂j.

We show �rst numerical solutions for the clean (ordered) system with small system

size L = 2 and L = 4. Since any mathematical derivation involving any larger

system would be too lengthy, we will omit them here. We then verify the equations

for the disordered system with system sites L = 14. We choose the many-body

ground state of the initial Hamiltonian H(g2) to be the Néel state |↑↓ . . . ↑↓〉.

There are two implications. First, because the ground state is the Néel state, it

implies that the H(g2) is in the antiferromagnetic phase. Secondly, because the

XX model is in the Luttinger liquid (LL) phase, we quench the system from the
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AFM phase into the LL phase. All that matters, however, is that we know the

Néel state, which enters the equations for calculations. Because we work on the

eigenbasis, we will use Eq. (5.5) for evaluating the many-particle Hamiltonian and

Eq. (5.9) for the single-particle Hamiltonian. We denote the approaches using two

separate equations for the single-particle and the many-particle problems as the

singe-particle Hamiltonian approach (SPHA) and the many-particle Hamiltonian

approach (MPHA), respectively.

5.3.1 The MPHA for L = 2

The �nal MPH Hmp
f of the clean XX model is

Hmp
f =

 0 0.5

0.5 0

 .

The eigenvalues of Hmp
f are

E1 = −0.5, E2 = 0.5. (5.18)

The eigenstates of Hmp
f are

|Φ1〉 =

 −1/
√

2

1/
√

2

 , |Φ2〉 =

 1/
√

2

1/
√

2

 . (5.19)

We use Eq. (5.5) to evaluate the Loschmidt echo,

L(t) = | 〈Ψ0|U†e−iDtU|Ψ0〉 |2.
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For L = 2, the Néel state in the eigenbasis of is

|Ψ0〉 =

1

0

. (5.20)

Using the eigenvalues from Eq. (5.18) and D = {−0.5, 0.5}, we can write the

exponential term e−iDt as

e−iDt =

e0.5it 0

0 e−0.5it

. (5.21)

Using the eigenstates from Eq. (5.19), we can write the eigenbasis as

U =

−1/
√

2 1/
√

2

1/
√

2 1/
√

2

. (5.22)

Projecting the Néel state |Ψ0〉 Eq. (5.20) onto the eigenbasis of Hmp
f gives

|Ψ̃〉 = U |Ψ0〉 =

−1/
√

2 1/
√

2

1/
√

2 1/
√

2


1

0

 =

−1/
√

2

1/
√

2

.
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From Eq. (5.5), we can evaluate the Loschmidt echo in following way

L(t) =

∣∣∣∣∣∣∣
(
− 1√

2
1√
2

)e0.5it 0

0 e−0.5it


−1/

√
2

1/
√

2


∣∣∣∣∣∣∣
2

=

∣∣∣∣12e0.5it +
1

2
e−0.5it

∣∣∣∣2
=

∣∣∣∣12(cos (0.5t) + i sin (0.5t) + cos (0.5t)− i sin (0.5t))

∣∣∣∣2
=

∣∣∣∣12 · 2 cos (0.5t)

∣∣∣∣2
= |cos (0.5t)|2

Therefore,

L(t) = |cos (0.5t)|2. (5.23)

5.3.2 The SPHA for L = 2

The �nal SPH Hsp
f is the same as the �nal MPH for L = 2,

Hsp
f =

 0 0.5

0.5 0

 .

The energy eigenvalues and eigenstates of the �nal Hamiltonian Hsp
f are the same

as in Equations (5.18) and (5.19). The initial state is the Néel state in Eq. (5.20).

From Eq. (5.9), L(t) = |det(1−C + Ce−iHt)|2, we need the correlation matrix C

and the exponential term e−iHt. First, since the Néel state is now in the eigenbasis,

the correlation matrix C = 〈Ψ†iΨj〉 in the corresponding basis takes the matrix

form in Eq. (A.9). For the Néel state (5.20), the two-point correlation matrix
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becomes

C = |Ψ0〉〈Ψ0| =

 1

0

( 1 0

)
=

1 0

0 0

.
Using the diagonal matrix of the energy eigenvalues in Eq. (5.21) and the eigenbasis

in Eq. (5.22), we can evaluate e−iHt in the eigenbasis

U†e−iDtU =


−

1
√

2

1
√

2

1
√

2

1
√

2




−
e0.5it

√
2

e0.5it

√
2

e−0.5it

√
2

e−0.5it

√
2




−

1
√

2

1
√

2

1
√

2

1
√

2



=


e0.5it

2
+
e−0.5it

2
−
e0.5it

2
+
e−0.5it

2

−
e0.5it

2
+
e−0.5it

2

e0.5it

2
+
e−0.5it

2


=

1

2

 e0.5it + e−0.5it −e0.5it + e−0.5it

−e0.5it + e−0.5it e0.5it + e−0.5it


=

1

2

 2 cos (0.5t) −2i sin (0.5t)

−2i sin (0.5t) 2 cos (0.5t)

.
Therefore,

e−iHt =

 cos (0.5t) −i sin (0.5t)

−i sin (0.5t) cos (0.5t)

.
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Using Eq. (5.9), we can evaluate the Loschmidt echo

L(t) =|det(1−C + Ce−iHt)|2

=

∣∣∣∣∣∣∣det

1 0

0 1

−
1 0

0 0

+

1 0

0 0


 cos (0.5t) −i sin (0.5t)

−i sin (0.5t) cos (0.5t)



∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣det

0 0

0 1

+

cos (0.5t) −i sin (0.5t)

0 0



∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣det

cos (0.5t) −i sin (0.5t)

0 1



∣∣∣∣∣∣∣
2

=| cos (0.5t)|2.

Therefore,

L(t) = |cos (0.5t)|2. (5.24)

In short, we have shown that Equations (5.23) and (5.24) give the same explicit

solution for the clean XX model with system size L = 2. Fig. 5.4 shows the

numerical solutions via exact diagonalization and the explicit solution | cos (0.5t)|2,

and they agree with one another.
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Figure 5.4: Numerical solutions obtained by exact diagonalization for (A) the
Loschmidt echo L(t) and (B) the return rate l(t) for the clean XX model with
L = 2 system sites. The red (blue) line refers to numerical solutions using the
SPHA (MPHA), while the yellow line refers to the explicit solution.

5.3.3 The MPHA for L=4

The system size is L = 4 with half-�lling has N = 2 particles , so the size of the

many-particle Hamiltonian is

4

2

 =
4!

2! 2!
= 6,

which obeys the rule of the binomial coe�cient. The clean MPH is obtained by

performing fermionic operators c†jcj+1 on the XX Hamiltonian,

Hmp =



0 0.5 0 0 0 0

0.5 0 0.5 0.5 0 0

0 0.5 0 0 0.5 0

0 0.5 0 0 0.5 0

0 0 0.5 0.5 0 0.5

0 0 0 0 0.5 0


.
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The following calculations were performed using Mathematica, and the complete

programming steps can be found in Appendix (B). The set of eigenvalues of H is

D = {1.11803, 0.5, 0, 0,−0.5,−1.11803}.

The ground state is the many-body Néel state in the eigenbasis

|Ψ0〉 =



1

0

1

0

1

0


,

Using Eq. (5.5) and follow the steps in Sec. (5.3.1) for L = 4, we obtain the

following numerical solution

L(t) =
1

16

∣∣e−1.11803it + e−0.5it + e−0.5it + e1.11803it
∣∣2. (5.25)
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(a) (b)

Figure 5.5: Numerical solutions obtained by exact diagonalization for (A) the
Loschmidt echo L(t) and (B) the return rate l(t) for the clean XX model with
L = 4 system sites. The red (blue) line refers to numerical solutions using the
SPHA (MPHA), while the yellow line refers to the explicit solution.

5.3.4 The SPHA for L = 4

The single-particle Hamiltonian is di�erent from the MPH for L = 4,

Hsp =



0 0.5 0 0

0.5 0 0.5 0

0 0.5 0 0.5

0 0 0.5 0


.

The following calculations were obtained using Mathematica (see Appendix B) for

the complete programming procedure. The set of eigenvalues of H is

D = {0.809017, 0.309017,−0.309017,−0.809017}.
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The single-particle Néel state for system length L = 4 in the eigenbasis is

|Ψ0〉 =



1

0

1

0


.

The correlation matrix in the eigenbasis basis C is

C = |Ψ0〉 〈Ψ0| =



1

0

1

0


(

1 0 1 0

)
=



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


.

Using Eq. (5.9), we can evaluate the LE using the correlation matrix C and the

exponential term e−iHt. The explicit solution obtained using Mathematica is

L(t) =
1

16

∣∣e−1.11803it + e−0.5it + e−0.5it + e1.11803it
∣∣2. (5.26)

As shown from Equations (5.25) and (5.26), the two approaches provide the

same explicit solution for the clean XX model with L = 4. Fig. 5.5 shows both the

numerical solutions and the explicit solution, and they agree with one another.

5.3.5 Comparison for L = 14 with Disorder

Now we verify numerically the Loschmidt echo equations (5.9) and (5.5) are equiv-

alent for both disordered systems with system sites L = 14. Fig. 5.6 shows numer-

ical solutions for the disordered XX model. Fig. 5.7 shows numerical solutions for
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the disordered non-interacting SSH model. Both single-particle Hamiltonian and

many-particle Hamiltonian approaches give the same disorder-averaged solution,

which is averaged over 2000 samples. Therefore, the two Loschmidt echo equations

are indeed equivalent in evaluating the disordered XX systems.

Figure 5.6: Numerical solutions for the evaluation of the disorder-averaged
Loschmidt echo L(t) (left) and the corresponding return rate l(t) (right) for the
XX model with L = 14 system sites. Each result is averaged over 2000 samples.
Top: µ ∈ [−W,W ], with W = 0.05. Bottom: µ ∈ [−W,W ], with W = 0.5.
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Figure 5.7: Numerical solutions for the evaluation of the disorder-averaged
LE L(t) (left) and the corresponding RR l(t) (right) for the disordered
non-interacting SSH model quenching from the trivial phase δ = −0.5 to the
topological phase δ = +0.5 with L = 14 system sites. Each result is averaged
over 2000 samples. Top: µ ∈ [−W,W ], with W = 0.05. Bottom: µ ∈ [−W,W ],
with W = 0.5.
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5.4 Summary

In conclusion, we have discussed the concept of the Loschmidt echo. The gen-

eral equation (5.2) can be used to approach both single-particle and many-particle

problems. Alternatively, due to the non-interacting character of the single-particle

problem, Eq. (5.9) can be used to approach non-interacting systems with large

system size in eigenbasis. We show the analytical solutions in the thermodynamic

limit for the non-interacting SSH model and the XX model with periodic boundary

conditions. We have also provided comparisons for the two Loschmidt echo equa-

tions via exact diagonalization. We conclude that the equations provide equivalent

solutions in evaluating non-interacting systems with �nite system size. We also

provide Mathematica algorithms for the XX model with system sizes L = 2 and

L = 4 in Appendix (B). We will look at the disorder-averaged Loschmidt echo and

investigate dynamical phase transitions for both disordered systems in the next

chapter (6).
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Chapter 6

Results

In this chapter, we will invesitgate the dynamical phase transitions for both the SSH

model and the XXZ model with disorder. To do so, we will evaluate the disorder-

averaged Loschmidt echo L(t) and the disorder-averaged return rate (DARR) l(t).

We will use the single-particle Hamiltonian approach (SPHA) for the disordered

non-interacting models since these Hamiltonians have a bilinear form, and we will

use the many-particle Hamiltonian approach (MPHA) for the disordered interact-

ing models. For the SPHA, we evaluate the Loschmidt echo using Eq. (5.9),

L(t) = |det(1−C + Ce−iHt)|2. (6.1)

For the MPHA, we evaluate the LE in the eigenbasis

L(t) = | 〈Ψ0|U†e−iDtU|Ψ0〉 |2, (6.2)

where |Ψ0〉 is the many-body initial eigenstate of the initial Hamiltonian Hi.

U†e−iDtU is e−iHt in the eigenbasis. The return rate is given by

l(t) = − lim
N→∞

1

N
lnL(t). (6.3)

According to Anderson localization, all one-particle states are localized in one
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dimensional disordered systems for an arbitrary amount of disorder, parametrized

by W . This is true for systems in the thermodynamic limit; however, one-particle

states are not completely localized in �nite size systems, especially in small size

systems. As mentioned in Chapter 2, the localization length of the system is

inversely proportional the disorder strength W 2; the larger the disorder strength

W , the shorter the localization length. For 1D systems in the thermodynamic limit

N → ∞, the slightest disorder can perturb the system, so that the localization

length is always shorter than the system length. For �nite size systems, where the

localization length is sometimes longer than the system size, only for large enough

disorder can we see localization phenomenon. It is expected that dynamical phase

transitions disappear for the presence of a certain amount of disorder for �nite

systems. Having this in mind, we are interested in the following questions for

disordered systems.

1. Does the disorder-averaged return rate show dynamical phase transitions?

2. What is the time scale tc1 at which dynamical phase transitions occur?

3. Because the one-particle states are all localized, is it true that the Loschmidt

echo cannot decay completely?

4. What is the di�erence between interacting and non-interacting disordered sys-

tems?

6.1 The SSH Model

In this section, we will investigate the dynamical phase transitions for the non-

interacting (NI) disordered SSH model and the interacting one. The non-interacting
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disordered SSH model has the following many-particle Hamiltonian

ĤSSH = J

L∑
j=1

[(1 + δeiπj)ĉ†j ĉj+1 + h.c.] +
∑
j

µjn̂j, (6.4)

Here J is the hopping amplitude, δ is the dimerization parameter, L is the number

of system sites, and µj ∈ [−W,W ] with W being the disorder parameter. We use

J = 1 throughout the calculations. The interacting disordered SSH model has the

following form

ĤSSH4 = J
L∑
j=1

[(1 + δeiπj)ĉ†j ĉj+1 +h.c.] +
∑
j

µj ĉ
†
j ĉj +4

L∑
j=1

(
n̂jn̂j+1 −

1

4

)
, (6.5)

where 4 is the nearest-neighbour interaction. Because Hamiltonian ĤSSH (6.4)

can take the bilinear (bipartite) form, we can evaluate the Lochmidt echo using

the single-particle Hamiltonian approach (SPHA). However, due to the presence

of edge states, there is numerical precision problem in the eigenvalues of the edge

states when we evaluate large systems. We will �rst investigate the eigenvalue issue

in the non-critical SSH model, followed by thourough investigations of the DPTs

for the SSH model described above.

6.1.1 Numerical Precision Problem

The problem of the eigenvalues persists in the SSH model with open boundary

conditions. The presence of the edge states is a natural phenomenon in topological

materials, but it limits researchers from obtaining precise numerical results for

large size systems. If we consider the clean SSH model without disorder (W = 0),

the edge states are absent for systems with periodic boundary conditions and
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in the trivial phase for systems with OBC. For the systems with OBC in the

topological phase, the eigenvalues of the edge states (EES) are ideally zero in the

thermodynamic limit. For �nite system size, however, the eigenvalues are expected

to decay exponentially as a function of the system size. The larger the system size,

the smaller the EES. Due to computational limits in double-precision, the smallest

value that Python can handle without much error is 1×10−15. In other words, the

EES cannot exceed this numerical limit, even though calculating the LE for large

system size still possible.1.

Fig. 6.1 shows the return rates for the SSH model with several system sizes.

First, for systems with OBC, where we quench from topological phase δ = +0.5 into

the trivial phase δ = −0.5, the return rates have the same shape as that for systems

with PBC because there is no edge state in the �nal Hamiltonian (see both dashed

and dotted lines). The edge states are absent in systems with PBC, regardless

if we quench from or to the topological phase; hence, such quench direction is

called the symmetric quench. We denote the symmetric quench using the absolute

value of the dimerization |δ|. Secondly, we quench the system from δ = −0.5

into δ = +0.5 for systems with OBC; two edge states are present, see insect of

Fig. 6.1. For system size L = 60, the �rst sharp cusp indicates a genuine DPT,

which correspond to the �rst genuine critical time or time scale. As we increase

the system size, the return rates and DPTs for larger systems theoretically are

expected to be comparable to those for L = 60. However, we see that, for larger

systems, the �rst and second cusps split apart. The splitting of the these dynamical

phase transitions for large systems is because of the numerical precision problem,

1Handling very small digits is possible with a multiprecision library in Python, such as mp-
math.
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Figure 6.1: Return rates for the non-interacting SSH model with di�erent
system sites L. The splitting of the dynamical phase transitions for systems in
OBC are due to numerical precision limits. Solid lines: quench from δ = −0.5
into δ = +0.5 for OBC. Dashed line: quench from δ = +0.5 into δ = −0.5.
Dotted lines: systems with PBC. Insert: eigenvalues λj versus sites j showing
two edge states near zero for system sites L = 60.

for which EES are not resolved numerically.

How fast the eigenvalues of the edge states decay exponentially depends on the

chosen dimerization parameter δ. We look at the absolute eigenvalue of one of the

edge states, |λj| with j = L/2, versus system sites L for systems with OBC, where

we quench systems from the trivial phase δ < 0 to the topological phase δ > 0.

We consider three dimerizations, δ = 0.95, 0.5 and 0.15. Fig. 6.2 shows the linear

log-plots of |λj| versus L for eigenvalues resolved properly within the numerical

precision limit. For δ = 0.95, |λj| quickly reaches the numerical precision limit for

system size L = 20, and eigenvalues on any larger system sizes would not go below

the limit. For δ = 0.5, accurate |λj| survives for up to L = 60, whereas |λj| is

still accurate for L = 200 in the case δ = 0.15. Fig. (D) of (6.2) shows the return

rates for clean systems with various system sizes where EES are resolved properly.
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Figure 6.2: Plots of the log of absolute value of one of the eigenvalues of edge
states ln (|λj |) versus system sites L for systems with OBC quenching from
δ < 0 into δ > 0. (A) δ = 0.95. (B) δ = 0.5. (C) δ = 0.15. Eigenvalues within
the numerical precision limit decay exponentially with system sites. (D) Return
rates for di�erent system sizes quenching with speci�c dimerization.

For L = 18 and δ = 0.95, the return rate shows three periodic dynamical phase

transitions in the short times. For L = 200 and δ = 0.15, the amplitude of return

rate is much smaller, and there is only one DTPs which can barely be identi�ed.

For L = 60 and δ = 0.5, there are two DPTs. For small systems with OBC, we

will consider these system sizes with corresponding dimerizations so that the EES

are resolved numerically.

The main purpose to highlight the numerical problem is to �nd an alternative

route to verify the Anderson localization. Since the EES problem presists in the

SSH model, we are forced to use small size systems, but it is not helpful in verifying
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the Anderson localization for this model. The alternative route we found is to

exploit the fact that the eigenvalue of edge states is not proportional to the system

length L for disordered systems, but it is proportional to the disorder parameterW

for a given system length. For the SSH model with sites L = 60, we can compare

the results where EES are resolved properly. According to the equation in Fig.

6.2B,

ln |λj| = −0.5495 · L+ 0.2916, (6.6)

for the system with L = 800 and |δ| = 0.5, the EES is around 6.1 × 10−192.

No computer in the world can resolve numerically this eigenvalue at this point.

However, due to the on-site disorder potential de�ned in Eq. (6.4), we found that

the disorder-averaged EES |λ∗j | is a log-log function of the disorder parameter W ,

see Fig. 6.3. Here is an example. We look at the system with OBC, where we

quench from δ = −0.5 into δ = +0.5, and the system length is L = 800. For the

clean system, the EES cannot be resolved properly and the LE gives wrong results,

see Fig. 6.1. As we turn on the disorder W for the disordered system, however,

we found that the absolute value of EES ln |λ∗j | versus the disorder parameter W

obeys a linear log-log function, as shown in Fig. 6.2 C,

ln |λ∗j | = 1.0041 · lnW − 0.7314. (6.7)

Fig. 6.3 shows the log-log plots of the |λ∗j | versus W for all three dimerizations.

This means that we can still verify the Anderson localization for the large size SSH

model with OBC; that is, we can use equations (6.6) and (6.7) to show whether

or not there is a disorder regime, corresponds to both the EES and, hopefully, a

very small value of W . At this point the conjecture is still a hypothesis, but we
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Figure 6.3: Log-log �t for the absolute value of EES |λj | versus the disorder
parameter W for large systems with di�erent quenches. Eigenvalues are
averaged over 30 disordered samples.

will soon show that there is a disorder regime for the non-critical disordered SSH

model with system sites L = 800.

6.1.2 The Non-interacting Disordered SSH Model

Following the previous discussion, we would like to invesitigate dynamical phase

transitions and verify the Anderson localization. For �nite systems that are weakly

disordered, not all single-particle states are localized. The localization length is

longer than the system length, and the strong localization phenomena cannot be
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Figure 6.4: Comparisons of return rates between clean non-interacting SSH
models with PBC and those with OBC where the system is quenched from the
topological phase δ > 0 into the trivial phase δ < 0. Left: System sites L = 60.
Right: System sites L = 800.

observed due the disorder strength W being weak. The static localization phe-

nomon is shown in the ultra-cold laser experiment, see Fig. 2.6, and the dynam-

ical localization phenomena can be seen from the disorder-averaged return rates

(DARRs), which are obtained by evaluating the disorder-averaged Loschmidt echo.

For the non-critical disordered SSH model, the problem reduces to the single-

particle problem and the Hamiltonian has the bilinear form; we can evaluate the

LE can using Eq. (6.1). As mentioned before, we will consider the disordered

system with both open and periodic boundary conditions. A set of three dimer-

izations will be used; namely δ = 0.95, 0.5 and 0.15. For systems with OBC, we

quench the system from the trivial phase into the topological phase and consider

both small and large systems. For small systems where the EES are numerically

resolved, we use system sites L = 18 with δ = 0.95, L = 60 with δ = 0.5 and

L = 180 with δ = 0.15. We then consider large system size with sites L = 800

and dimerization δ = 0.5. For systems with PBC in small system size, return rates

do not show DPTs for some dimerizations, because the system size is too small to
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simulate systems with periodic boundary conditions, see Fig. 6.4. We then con-

sider large systems with PBC and small systems with OBC quenching from δ > 0

into δ < 0. Therefore, we consider the following cases:

A.I. small systems with OBC, quenching from δ < 0 into δ > 0;

A.II. large systems with OBC, quenching from δ < 0 into δ > 0;

A.III. small systems with OBC, quenching from δ > 0 into δ < 0;

A.IV. large systems with PBC, symmetric quench |δ|.

To begin with, we consider the �rst case A.I. for three system sizes and dimer-

izations. The �rst disordered system (A) we consider has sites L = 60 and dimer-

ization δ = 0.5. We compare the DARRs l∗(t) and their derivatives in time dl∗/dt

with those for the clean system, see top �gures of 6.5. For a range of disorder

strengths W , such as 1× 10−14 ≤ W ≤ 1× 10−7, the DARRs and the return rate

of the clean system overlap with one another, and dl∗/dt show sharp dicontinuities

across the �rst critical time tc1 , the time scale. For W ≥ 1 × 10−6, the plots of

DARRs show obvious splittings at the �rst cusps, but dl∗/dt is no longer sharp

across the time scale tc1 . The smoothness of dl∗/dt across the time scale is the

indication of the disappearance of the �rst dynamical phase transition. By observ-

ing dl∗/dt, we can, therefore, de�ne the weak disorder potential box as the weak

disorder regime (WDR), where DPTs are as sharp across critical times as those

for the clean system. The strong disorder regime (SDR) is anywhere outside the

weak disorder regime. For single-particle systems, the �rst DPT su�ces to show

the di�erence, and the time scale can be numerically determined. For the system

(i), the weak disorder regime is within the disorder potential box [−W,W ] with
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Figure 6.5: Disorder-averaged return rates l∗(t) (left), and the derivatives
dl∗/dt in the vicinity of the �rst cusp (right), for the non-interacting disordered
SSH model with OBC. The systems are quenched from the trivial phase δ < 0
into the toplogical phase δ > 0. Top: System sites L = 60 and dimerization
δ = 0.5. Middle: L = 18 and δ = 0.95. Bottom: L = 180 and δ = 0.15 for
t ∈ [5.0, 9.0]. Each result is averaged over 2500 random samples.
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W = 1× 10−7, and the regime for W > 1× 10−7 is strongly disordered. The time

scale tc1 is 1.647. The DARRs for system sites (B) L = 18 with δ = 0.95 and (C)

L = 180 with δ = 0.15 are also shown in Fig. 6.5. The weak disorder regimes

correspond to W = 1 × 10−8 for both cases (B) and (C), and the time scales are

2.669 and 7.186, respectively.

We now turn to the second case A.II. for large system size L = 800. We quench

the system with OBC from the trivial phase δ = −0.5 into the topological phase

δ = +0.5. Since eigenvalues of edge states cannot be numerically resolved for large

system size due to numerical precision limit, we are unable to directly compare

DARRs to the return rate of clean system. To �nd the weak disorder regime, we

need four equations. The �rst equation is Eq. (6.6), which gives the EES as a

function of system size. The second equation is Eq. (6.6), which gives the ESS

as a function of disorder strength W for L = 800 and δ: −0.5 → +0.5. The

third equation comes from the observation that the time scale of the DARRs, tc∗1 ,

decrease as we increase the disorder strengthsW ≤ 0.05. Fig. 6.6 shows the log-log

linear �t for tc∗1 and W , and the equation is determined by interpolation to be

ln (tc∗) = −0.0026 · ln (W ) + 0.2134. (6.8)

The localization length is expected to be comparable to or longer than the system

length in the weak disorder regime for large size systems. That is, the disorder

strengths for large size systems are expected to be a very small value, according

to ξloc ∝ W−2 in Eq. (2.2). Moreover, the �rst dynamical phase transition for the

disordered system is expected to be the same as that for the clean system, see Fig.

6.1. To �nd the weak disorder regime, we assume that the time scales of the �rst
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DPT occur at the same time tc1 = 2.669 for both system sizes L = 60 and L = 800.

First, we locate tc1 by referring to system sites L = 60: tc1 = 2.669. Using Eq.

(6.8), we found that ln (W ) = [ln (2.669) − 0.2134]/(−0.0026) = −294.2169 and

W = 1.67× 10−128. Substitute ln (W ) into Eq. (6.7), we get the disorder-averaged

|λ∗j | =exp[1.0041 · ln (−294.2169) − 0.7314] = 2.48 × 10−129. This is the absolute

value of an EES for this case, and the DARR for W ≤ 1.67 × 10−128 overlaps

hypthetically with the clean system.

Figure 6.6: The log-log plot of time scales tc∗ versus disorder parameters W
for system sites L = 800.

Because the system is subject to open boundary conditions, we can not �nd the

localization length by means of constructing an analytical solution. To see if thisW

is a reasonable value, we resort to comparison of numerical solutions and graphical

observations. We �rst notice that for the system with L = 60, the weak disorder

regime is W ≤ 1 × 10−8. Using Eq. (6.7), the disorder-averaged EES is found as

|λ∗j | = 4.46× 10−9, and the clean EES |λj| is 6.42× 10−15. The ratio of |λ∗j |/|λj| is

about 6.94 × 105. Turning back to the system with L = 800, we �nd the ESS of
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the clean system as |λj| =exp(−0.55 · 800 + 0.29) = 1.62 × 10−191. The disorder-

averaged EES is |λ∗j | = 2.48 × 10−129. The ratio in |λ∗j |/|λj| = 1.53 × 1062. To

understand this ratio, we look deeper into the validity of this solution by resorting

to graphical observations.

To see whether this W makes sense, we can locate hypothetically the �rst DPT

for the disordered system with L = 800 andW = 1.67×10−128. We notice that the

tipping points on the DARRs follow a hypothetical straight line, which eventually

converges to the �rst DPT, see Fig. 6.7 A. We found the following equation of this

hypothetical line as

y(tc∗) = 0.5221 · tc∗ − 0.1229, (6.9)

where y(tc∗) is the tipping point of the on the return rate for a given W . Using

Eq. (6.9) and assuming tc1 = tc∗ = 2.669, we �nd that y(tc∗) = 1.271. The

tipping point on the return rate for L = 60 is found numerically as y(tc1) = 1.283.

The ratio is y(tc∗)/y(tc1) = 0.991. Since this ratio is very small, and given the

assumption that tc1 = tc∗ , it is reasonable to believe that the �rst DPT for the

disordered system with W ≤ 1.67× 10−128 would be as sharp across the time scale

as the clean system, by means of graphical observations. The DARR is expected

to overlap with the return rate of the clean system. For the disordered SSH model

with OBC and �nite size, we have seen that the weak disorder regime reduces as we

increase the system size. In the weak disorder regimes, not all single-particle states

are localized, and the Loschmidt echo can decay completely. For such system in

the thermodynamic limit, however, we are expected to see that the single-particle

states must be localized for an in�nitesimally small degree of disorder strength. The

LE cannot decay completely because there is no longer a weak disorder regime.
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Figure 6.7: (A) Disorder-averaged return rates for the non-interacting
disordered SSH model with OBC and system sites L = 800. The system is
quenched from the trivial phase δ = −0.5 into the topological phase δ = +0.5.
(B) Enlargement of the �rst few tipping-points on the return rates. Each result
is averaged over 2500 random samples.

Next, we consider disordered SSH model with OBC quenching quenching from

δ > 0 into the trivial phase δ < 0, see case A.III.. The edge states are absent in this

case, so the problem of almost-zero eigenvalues is worry-free. We can then look at

two systems both with system sites L = 60 but di�erent dimerizations: δ = 0.95

and 0.5. Fig. 6.8 shows the DARRs and their derivatives for the two systems. The
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Figure 6.8: Disorder-averaged return rates l∗(t), and the corresponding
derivatives dl∗/dt of the DARRs, for the non-interacting disordered SSH model
with OBC and system sites L = 60. The disordered systems are quenched from
the topological phase δ > 0 into the trivial phase δ < 0. Top: Symmetric
quench |δ| = 0.95. Bottom: Symmetric quench |δ| = 0.5. Insects: Zoom-in of
the �rst cusp in dl∗/dt. Each result is averaged over 2500 random samples.

system with δ = 0.5 is very susceptible to disorder, for the �rst DPT of the clean

system is already di�erent from that of the disordered system for W = 1× 10−14.

dl∗/dt forW = 1×10−15 overlaps with dl/dt for the clean system; hence, the WDR

for this system is for W = 1 × 10−15, and the time scale is tc1 = 0.81. The WDR

for the system with δ = 0.95 is for W = 0.01 with a time scale tc1 = 1.22.

We now turn to the disordered system with PBC, the last case A.IV. for the

single-particle Hamiltonian. Here we look at three cases: L = 300 with |δ| = 0.95,

L = 300 with |δ| = 0.5 and L = 800 with |δ| = 0.5. As shown in Fig. 6.9, we

observe that disorder parameter W = 0.1 serves as a threshold between the weak
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and strong disorder systems for the three cases here. For systems with W < 0.1,

the DARRs of disordered systems overlap with the return rate of the clean system

W = 0; the DTPs are as sharp as those for the clean system. For systems with

W ≥ 0.1, the return rates become become smooth and DPTs disappear.

Figure 6.9: Disorder-averaged return rates (left), and the corresponding
derivatives dl∗/dt of the DARRs (right), for the non-interacting disordered SSH
model with PBC. (A) System sites L = 300 and symmetric quench |δ| = 0.95.
(B) L = 300 and |δ| = 0.5. (C) L = 800 and |δ| = 0.5. Insets: Zoom-in of the
�rst DPT. The results are averaged over 500 samples.
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In summary, we have investigated the dynamical phase transitions for the non-

interacting disordered SSH model in various cases (A.I.)-(A.IV.). The weak disor-

der regimes are summarized in Table 6.1. There are two key messages to take away

from this model. First, the time scale at which the �rst DPT takes place solely

depends on the dimerization δ for systems with either OBC or PBC. As shown in

Table (6.1), for systems with PBC and symmetric quench |δ| = 0.5, the time scales

take place at 1.24 for both systems sites L = 300 and L = 800. Another example

is for systems with OBC quenching from δ = −0.5 into δ = +0.5, and the time

scales take place at 2.669 for both systems sites L = 60 and L = 800. Secondly,

the localization length for systems with OBC is di�erent from systems with PBC.

Due to the nature of PBC, the localization length of the system ξloc is much longer

than the system size L, so the disorder strength quickly converges to W = 0.1 for

all system size L < ξloc. This can be ascribed to ξloc ∝ W 2. Due to the edge states

present in systems with OBC, the system is very susceptible to disorder. The weak

disorder regime is very small, and it decreases as we increase the system size L.

We can say that the localization length is approximately the same as the system

size: ξloc ≈ L, and single-particle states become localized for the slightest disorder.

The relation ξloc ∝ W 2 no longer holds for this case, but looking for an analytical

solution of the localization length is out of the scope in this project.
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Non-interacting Disordered SSH Model Weak Disorder Time Scale

System Sites L Quench Direction δ Regime [−W,W ] tc1

OBC

18 δ : −0.95→ +0.95 1× 10−8 1.647

60 δ : −0.50→ +0.50 1× 10−8 2.669

180 δ : −0.15→ +0.15 1× 10−7 7.186

800 δ : −0.50→ +0.50 1.67× 10−128 2.669

60 δ : +0.95→ −0.95 0.01 0.81

60 δ : +0.50→ −0.50 1× 10−15 1.22

PBC

300 |δ| = 0.95 0.01 0.81

300 |δ| = 0.50 0.01 1.24

800 |δ| = 0.50 0.01 1.24

Table 6.1: Summary of the weakly disordered regime for the non-interacting
disordered SSH model.
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6.1.3 The Interacting Disordered SSH Model

We now turn to the disordered interacting SSH model and investigate the dy-

namical phase transitions. The many-particle Hamiltonian (MPH) is given by Eq.

(6.6)

ĤSSH = J

L∑
j=1

[(1 + δeiπj)ĉ†j ĉj+1 + h.c.] +
∑
j

µj ĉ
†
j ĉj +4

L∑
j=1

(
n̂jn̂j+1 −

1

4

)
.

In the many-particle system, the energy eigenvalue of a single particle depends on

the energies of all other particles due to interactions, so strictly speaking a single-

particle picture does not exist anymore. In the absence of interactions, however,

the energy eigenvalue of a many-particle state in the Fock space can be taken as

the sum of the eigenvalues of single particles in real space for the semi-�nite chain.

For instance, the eigen-energy of the ground state λGS =
∑L/2

k=1 εk, where εk is the

eigen-energy of the single particle in the real space. Depending on the situation,

the eigen-energy of a many-particle state is either unique or many-fold degenerate.

Edge states are present in the topological non-trivial phase, and their eigenvalues

can be numerically resolved depending on the value of the dimerization δ and

the system size L. Fig. 6.10 shows eigen-energy of the non-interacting (4 = 0)

many-particle states (6.6) with system sites L = 6 in the topological non-trivial

phase δ = +0.95. The ground state is two-fold degenerate as the consequence of

the existence of edge states with zero energy. Consider two particles at energy-

eigenvalue ε = −2. The third particle can go in either of the two zero energy

states, so that the ground state with 3 particles has energy λGS = −4 and is

two-fold degenerate. Alternatively, one can look at the entanglement spectrum

of the interacting many-particle SSH model, which changes upon considering the
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Figure 6.10: The energy eigenvalues of many-particle states residing in the
Fock space in (A), and of single-particles residing in the real space in (B). The
system has 6 system sites.

nearest-neighbour interaction [12].

The major computational challenge in calculating the Loschmidt echo for in-

teracting systems with large system size is the matrix size of the many-particle

Hamitonian. Because the Hamiltonian involves nearest-neighbour interactions, it

can no longer be expressed in the bilinear form. Evaluating the many-particle

Hamiltonian (MPH) with large system size, such as L = 800, is basically impos-

sible due to the size of the Hamiltonian, which requires an enormous amount of

computational memory. In a single-particle Hamiltonian with system sites L = 14,

for instance, there are 14 single-particle states, each occupying a single site and

leaving 13 other sites empty. The Hamiltonian matrix is 14×14. However, because

interacting particles live in Fock space, where there are 2N possibilities, particles

will be distributed permutatively. In the case of system sites L = 14 with 7 parti-

cles and 7 holes, there are 14!
7!·7!

= 3432 distinct many-particle states. The matrix

of the many-particle Hamiltonian, therefore, has the system size of the square of

distinct many-particle states, and it is 3432 × 3432 in our case. Each unit in a
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computation matrix takes 8 Bytes in the double precision �oat (�oat64), so the

total memory for the MPH of L = 14 system sites is 3432× 3432× 8 ≈ 9.2× 106

Bytes or 94.2 Megabytes. Calculating the LE with this Hamiltonian matrix takes

much longer than calculating the LE for the single-particle Hamiltonian, where the

size is only 14× 14× 8 = 1568 bytes. Therefore, we restrict ourselves to small size

systems for critical systems.

We calculate the LE for the critical disordered SSH model using Eq. (6.2),

L(t) =
∣∣ 〈Ψ0|U†e−iDtU|Ψ0〉

∣∣2.
Here |Ψ0〉 is the many-body ground state of the initial Hamiltonian in the eigen-

basis before quenching. D and U are the eigenvalues and eigenvectors of the �nal

Hamiltonian after quenching. U†e−iDtU is the unitary time operator in the eigen-

basis. We provide mathematical derivations for both D and |Ψ0〉 in Appendix (A).

The python algorithm to calclulate the LE for the MPH is provided in Appendix

(C).

The interaction 4 serves as a parameter in addition to the dimerization δ. To

determine which parameters to use for small size systems, we look at di�erent cases

with 4 and δ for the critical SSH model. First of all, we compare the return rates

for the clean system (4 = 0) with di�erent dimerizations for three system sites

L = 12, 14 and 22 on systems with both OBC and PBC, see Fig. 6.11. For small

dimerizations |δ| = 0.15 and |δ| = 0.5, the return rates look completely di�erent

from one system size to another, and dynamical phase transitions occur at di�erent

critical times in di�erent cases. Only for |δ| = 0.95 do we observe similar, periodic

return rates in all three system sizes, so we will quench disordered systems with
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(a) (b) (c)

Figure 6.11: Comparisons of the return rates for the clean SSH model with
three dimerizations for system sites L = 12 (green line), L = 14 (orange line)
and L = 22 (blue line) in absence of interaction, 4 = 0.

dimerization |δ| = 0.95. Since the localization length is not so much di�erent from

one to another in small size systems, L = 12 su�ces to investigate the DPTs.

Secondly, we know that static phase transitions occur in the interacting SSH

model (no disorder) as the interaction strength 4 varies with the dimerization δ

[12]. There is a transition line: Below is the topological phase and above is the

charge-density wave phase. For instance, the transition line is at 4 ≈ 7 with

|δ| = 0.95, see Fig. 6.12. Hence, we can investigate dynamical phase transitions

for the interacting system with di�erent interaction strengths 4 for |δ| = 0.95.

Since the SSH model with OBC has edge states, which is absent from the system

with PBC, we look at return rates for systems with both OBC and PBC. We can

also look at two kinds of systems: (i) one in which we can �x the interaction before

and after the quench, and (ii) another in which we quench from the non-interacting

system4 = 0 to a the interacting system with given4. Fig. 6.13 shows the return
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Figure 6.12: Static phase transitions in the interacting SSH model. U is the
interaction strength. Figure taken from [12] (Copyright obtained).

rates for interacting SSH systems with OBC. For small interactions 4 = 0.01 and

0.1, the return rates look almost identical to one another in cases where (i) we �x

4 before and after the quench and (ii) quench from 0 to 4. For 4 = 0.01, they

show periodicity and the cusps indicate DPTs; whereas there is only one cusp in

the return rate for 4 = 0.1. For strong interactions, the return rates look di�erent

from one another. The same observations can be seen for systems with PBC, see

Fig. 6.14. The return rates for systems with PBC show periodicity, and they show

more cusps for the system in which we quench across the sharp phase transition

4 = 7.0, as shown in (D). Therefore, we will investigate the DPTs by evaluating

the disorder-averaged Loschmidt echo for the interacting disordered SSH model

with system sites L = 12 and the following setting:

B.I. OBC, system with �xed interaction 4 and sytem quenching from δ = −0.95

into δ = +0.95;

B.II. OBC, system with interaction 4 that varies, and system quenching from

δ = −0.95 into δ = +0.95;
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B.III. PBC, system with �xed interaction 4 and symmetric quench |δ| = 0.95;

B.IV. PBC, system with interaction 4 that varies, and symmetric quench |δ| =

0.95;

Figure 6.13: Return rates for the interacting SSH model with system sites
L = 12 and OBC. Blue line: the interaction strength 4 is �xed before and after
the quench. Orange line: 4 is quenched from 0 to a later value.

To begin with, we investigage DPTs for systems with OBC. We look at the

disorder-averaged return rates (DARRs, l∗(t)) for the �rst case in the setting B.I.,

see Fig. 6.15. To identify the weakly disordered regime, we look for complete

overlaps in the DARRs and sharp cusps of DPTs for di�erent disorder parameters

W . For 4 = 0.01, the weakly disordered regime is forW ≤ 1×10−4, as the DARR

is identical to that for the interacting system without disorder. For 4 = 0.1,

the weakly disordered regime is for W ≤ 1 × 10−3. For 4 = 0.01, the weakly

disordered regime is for W ≤ 1× 10−3. For 4 = 3.0, the weakly disordered regime

is for W ≤ 0.01. For 4 = 8.0, the weakly disordered regime is for W ≤ 0.01.
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Figure 6.14: Return rates for the interacting SSH model with system sites
L = 12 and PBC. Blue line: the interaction strength 4 is �xed before and after
the quench. Orange line: 4 is quenched from 0 to a later value.

Since systems with OBC are sensitive due to the presence of edge states, the

regime outside the weakly disordered regime is the strongly disordered regime,

where the cusps become smooth and dynamical phase transitions disappear. The

DARRs show periodic wave forms in weak interacting systems (A) and (B) for

W = 1.0, while they become almost �at in strong interacting systems (C) and (D)

for W = 5.0. The same can be said for the second case B.II., where we quench 4

from 0 to 4, see Fig. 6.16. The exception is that for strong interacting system

(D), the DARR also shows periodicity for W = 1.0.

We now turn our attention to systems with PBC. We look at the disorder-

averaged return rates for the third case B.III., see Fig. 6.17. We see that the

DARRs overlap with one another in all cases of interaction strengths forW ≤ 0.01,

which marks the weak disorder regime. In the disordered regime 0.01 ≤ W ≤ 0.1,

the DARRs still look close to those in the weakly disordered regime; DPTs are still
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present for shorter time durations (i.e. t < 10) in weak interacting systems (A)

and (B). The amplitude of the return rate for W = 1.0 decreases as we increase

the interaction strength 4, but the amplitude of the DARRs for W = 5.0 remain

the same for all 4 considered. The DARRs for W = 5.0 in the weak interacting

systems show periodicity. For systems with strong interaction4 = 8.0, the DARRs

with W = 1.0 and W = 5.0 become �at after a short time and their amplitudes

are close to each other. The system is said to be in the FMBL phase with strong

disorder and interaction. Finally, we now turn to the last case B.IV., see Fig. 6.18.

Similar to the third case, the weak disorder regime is for W ≤ 0.01. The DARRs

show periodicity for W = 1.0 and 5.0 in strong interacting disordered systems (A)

and (B), and they become �at for W = 5.0 in (C) and (D). Unlike Fig. 6.17 D

(case B.III.), the DARR also shows periodicity even for disorder W = 1.0 in Fig.

6.18 D. The reason is that as we quench from 4 = 0 to 4 = 8, we should see

DPTs for the system without disorder, but here the return rate becomes smooth

due to strong disorderW = 1.0. The periodicity indicates that the Loschmidt echo

cannot decay completely, and the system is in the FMBL phase.

In summary, we have investigated the dynamical phase transitions for the in-

teracting disordered SSH model with system sites L = 12. We have included

considerations for systems with OBC, PBC, �xed interaction and quenched inter-

action. The weak and strong disorder regimes are summarized in Table 6.2.
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Interacting Disordered Weak Disorder Time scale

SSH Model Regime [−W,W ] tc1

L = 12 Int. Str. 4 Fixed 4 Quenched 4 Fixed 4 Quenched 4

OBC

0.01 W = 1× 10−4 W = 1× 10−4 1.585 2.2

0.1 W = 1× 10−3 W = 1× 10−3 1.495 1.515

3.0
W = 0.01

0.985 1.03

8.0 2.2 0.645

PBC

0.01

W = 0.01

0.8 0.8

0.1 0.77 0.775

3.0 0.6 0.67

8.0 0.955 0.355

Table 6.2: Summary of weakly and strongly disordered regimes for the
disordered SSH system with nearest-neighbour interactions.
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Figure 6.15: Disorder-averaged return rates for the interacting disordered
SSH model with system sites L = 12 and OBC (case B.I.). The system is
quenched from the trivial phase δ = −0.95 into the topological phase
δ = +0.95. The interaction strength is �xed before and after the quench.
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Figure 6.16: Disorder-averaged return rates for the interacting disordered
SSH model with system sites L = 12 and OBC (case B.II.). The system is
quenched from the trivial phase δ = −0.95 into the topological phase
δ = +0.95. The interaction 4 is quenched from 0 into a given value.



6.1. The SSH Model 125

Figure 6.17: Disorder-averaged return rates for the interacting disordered
SSH model with system sites L = 12 and PBC (case B.III.). The system is
quenched symmetrically |δ| = 0.95. The interaction strength is �xed before and
after the quench.
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Figure 6.18: Disorder-averaged return rates for the interacting disordered
SSH model with system sites L = 12 and PBC (case B.IV.). The system is
quenched symmetrically |δ| = 0.95. The interaction 4 is quenched from 0 into
a given value.
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6.2 The XXZ Model

In this section, we will look at the dynamical phase transitions for both the XX

model and the XXZ model with disorder. The many-particle Hamiltonian of the

XXZ model with disorder potential has the following form,

ĤXXZ =
J

2

L∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) +
L∑
j=1

µj ĉ
†
j ĉj +4

L∑
j=1

(
n̂jn̂j+1 −

1

4

)
. (6.10)

The disordered XX model is a special case of the XXZ model with 4 = 0,

ĤXX =
J

2

L∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) +
L∑
j=1

µjn̂j. (6.11)

6.2.1 The Disordered XX Model

Due to the absence of the nearest-neighbour interaction, the Hamiltonian of the

XX model ĤXX is bilinear, and we can calculate the Loschmidt echo using the

single-particle Hamiltonian approach. The XX model is di�erent from the SSH

model for that there is no edge states in the XX model, and then there are several

immediate consquences. First, the eigenvalues are resolved numerically, so the

eigenvalue problem is worry-free in systems with OBC or PBC. We are able to

evaluate the Loschmidt echo for large size system using Eq. (6.1),

L(t) = |det(1−C + Ce−iHt)|2.

An example of the SPHA is given in Section (5.3). Secondly, due to the absence

of the edge states and nearest-neighbour interaction, evaluating the Hamiltonian

(6.11) with either PBC or OBC using exact diagonalization for large size systems
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Figure 6.19: Comparisons of the return rates for the XX model for small and
large size systems. (A) System with sites L = 100 in both OBC and PBC. (B)
System with sites L = 800 in both OBC and PBC and the analytical solution.
Values are �erased� due to numerical precision limit for L = 1600.

would give initimate eigenvalues; hence, calculating the LE would give similar

results, see Fig. 6.19. For �nite small systems, there are cusps occuring at critical

times tεkn in Eq. (5.16). As we increase the system size to the thermodynamic

limit N →∞, we can evaluate the return rate using the analytical solution (5.15)

and the critical times become periodic, tc = π/2(2m + 1) (5.17). Even though

L = 800 is still �nite in system size, the return rate of this �nite system is fairly

close to the analytical solution l(t). Morever, due to the numerical precision limit,

almost-zero-values of the LE are present for larger size systems, such as L = 1600.

These values are computatinally neglected in the return rate when taking the

natural log lnL(t), see Fig. 6.19. Hence, we will use system size L = 800 to

investigate DPTs in disordered systems. The third di�erence is that the XX or

XXZ model are not topological systems, so the dimerization parameter is absent

from the models. The interaction strength 4 is marked as the point of critical

phase transition for the spin model, and with this in mind, we are able to quench
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back and forth between the Luttinger liquid phase and the antiferromagnet. We

are interested in the speci�c quench direction: from the antiferromagnetic phase

(4 ≥ 1) into the Luttinger liquid phase (4 = 0), where the Hamiltonian ĤXX in

(6.11) is disordered. We choose the initial state as the Néel state in the AFM phase.

To obtain the disorder-averaged Loschmidt echo, therefore, we use the following

setting: system sites L = 14 and L = 800, a variety choice of disorder parameter

W , and 1500 disordered samples.

Figure 6.20: Disorder-averaged return rates l∗(t) and derivatives dl∗/dt for
the XX model with system sites L = 14. Top: System with OBC. Bottom:
System with PBC. Each result is averaged over 2500 random samples.

We calculate the disorder-averaged return rates l∗(t), and the derivatives dl∗/dt,

for the disordered XX model with both small and large systems. For the small size

system, we use sites L = 14, see Fig. 6.20. The reason that we include this
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extra step is for comparing results for the interacting XXZ model with system

sites L = 14. For disordered XX models with both OBC and PBC, the DPTs for

disorder strength W ≤ 1× 10−3 are as sharp across critical times as those for the

clean system, so the weak disorder regimes are W ≤ 1 × 10−3. The critical time

scales are tc1 = π/2. Then we consider large size system with L = 800 sites, see

Fig. 6.21. The derivatives dl∗(t)/dt show that the �rst cusp of the clean system

overlap with that for the disordered system for W ≤ 1 × 10−3, see (B) of Fig.

6.21. The cusps which appears in derivative plots (6.21) is the result of the critical

times tεkn (5.16) due to the system size being �nite (L = 800), see (C) of Fig.

6.21. In the thermodynamic limit, these cusps disappear and the dynamical phase

transitions take place at periodic critical times tc = π/2(2m + 1) for m ∈ Z. The

�rst critical time, or the time scale tc1 , is π/2. For the disordered XX model with

system size L = 800, the weak disorder regime is in the disorder potential box

[−W,W ] for W ≤ 0.001, where the localization length ξloc is longer than then

system length L = 800. With strong enough disorder strength W > 0.001, ξloc

is shorter than L = 800, the single-particle eigenstates are all localized, and the

DPTs are consequently disappeared.
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Figure 6.21: (A) The disorder-averaged return rates l∗(t) for the disordered
XX model. (B) The �rst time-derivative of DARRs, dl∗(t)/dt; inset:
enlargement of the �rst cusp. (C) The DARRs in the small time interval.
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6.2.2 The Disordered XXZ Model

We now turn to the disordered XXZ model and investigate the dynamical phase

transitions. The many-particle Hamiltonian (MPH) is given by Eq. (6.10),

ĤXXZ =
J

2

L∑
j=1

(ĉ†j ĉj+1 + ĉ†j+1ĉj) +
L∑
j=1

µj ĉ
†
j ĉj +4

L∑
j=1

(
n̂jn̂j+1 −

1

4

)
,

and we evaluate the LE using Eq. (6.2),

L(t) = | 〈Ψ0|Ue−iDtU†|Ψ0〉 |2.

Since there is no analytic solution for the XXZ model, calculating the many-particle

Hamiltonian is entirely done by exact diagonalization, see Appendix (C). The

clean system is critical for −2 ≤ 4 ≤ 2, and gapped otherwise. The model (6.10)

has been investigated for the spectral properties of the disordered Hamiltonian by

RSRG-X in Ref. [145] and by exact diagonalizations in Ref. [146]. The entangle-

ment entropy for this model has been discussed using exact diagonalization and

the light-cone renormalization group (LCRG) in Ref. [2]. Here we study the dy-

namical phase transitions by means of exact diagonalization. We choose L = 14 as

the system size, because the localization length would not be too much di�erent

for slightly larger system size. Evaluating the Hamiltnian matrix would consume

too much resources, and calculating the disorder-averaged LE over many random

samples take much a longer calculation time. The many-body ground state |Ψ0〉

is the Néel state in the eigenbasis. We quench the system within the antiferro-

magnetic phase from the Néel state for J4 > 0 across both the weak and strong

interactions 4 = 1, 2 and 8.
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The disorder-averaged return rates l∗(t) and derivatives for disordered systems

with OBC and interaction strengths 4 = 1.0, 2.0 and 8.0 are presented in Fig.

6.22. The dynamical phase transitions for all three cases considered are no longer

periodic or predictable. Comparing l∗(t) for systems with 4 = 1.0 and 4 = 2.0,

we see that there are fewer DPTs for the system with 4 = 2.0. For the system

with 4 = 8.0 andW ≤ 1.0, the DPTs become periodic, but the amplitudes of l∗(t)

are very small in the range [0, 0.0175], see (C) of Fig. 6.22. The derivative plots

show that the weak disorder regimes are disorder potential boxes [−W,W ] with

W ≤ 0.01 for all systems with 4 = 1.0, 2.0 and 8.0, respectively. As the disorder

strength W is increased from 0.1 to 6.0, the amplitudes of l∗(t) are also increased

from ≈ 0.011 to inbetween 0.06 and 0.08, see (D). The behaviour of the increased

amplitude of l∗(t) for strong interaction and disorder strengths is only present in

the XXZ model (absent in the XX model), see Fig. 6.20. The same can be said

for the disordered XXZ model with periodic boundary conditions, see Fig. 6.20.

In summary, we have investigated the dynamical phase transitions for the dis-

ordered XX and XXZ models. We have included considerations for systems with

OBC, PBC, weak and strong nearest-neighbour interaction strengths4. The weak

and strong disorder regimes are summarized in Table 6.3. The localization length

ξloc for the XXZ (XX) model is much longer than system sites L = 800, so that

only large enough disorder strength W > 0.001 would bring the system into the

strongly localized state, where dynamical phase transitions become smooth. The

time scales of the �rst DPT for the XX model is π/2 regardless of the system size

or periodic conditions. Due to the presence of nearest-neigbour interactions, the

time scales of the �rst DPT for the XXZ model are di�erent for di�erent 4 6= 0.
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As shown from Table (6.3), the time scale increases from π/2 to 9.055 as we in-

crease 4; however, after a certain interaction threshold 2 ≤ 4 ≤ 8, the return

rate shows many DPTs, and the time scale becomes 0.43 for system with OBC and

0.385 for system with PBC. This is because many-particle states are all localized

due to strong interactions, and the time evolution of the system would show many

dynamical phase transitions of localized states.

Critical Disordered Weak Disorder Time scale

XX & XXZ Models Regime [−W,W ] tc1

Int. Str. 4 L = 14 L = 800 L = 14 L = 800

OBC

0.0 W = 1× 10−3 W = 1× 10−3 π/2 π/2

1.0

W = 1× 10−3 N/A

3.095

N/A2.0 9.055

8.0 0.43

PBC

0.0 W = 1× 10−3 W = 1× 10−3 π/2 π/2

1.0

W = 1× 10−3 N/A

4.01

N/A2.0 8.175

8.0 0.385

Table 6.3: Summary of weakly and strongly disordered regimes for the
disordered XX and XXZ models.
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Figure 6.22: The disorder-averaged return rates l∗(t) (left) and the
derivatives dl∗/dt (right) for the disordered XXZ model with OBC and system
sites L = 14. (A) Interaction strenght 4 = 1.0. (B) 4 = 2.0; inset: zoom-in of
the DPT at tc1 . (C) 4 = 8.0 for W ≤ 1.0. (D) 4 = 8.0 for W > 1.0.
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Figure 6.23: The disorder-averaged return rates l∗(t) (left) and the
derivatives dl∗/dt (right) for the disordered XXZ model with PBC and system
sites L = 14. (A) Interaction strength 4 = 1.0. (B) 4 = 2.0; inset: zoom-in of
the DPT at tc1 . (C) 4 = 8.0 for W ≤ 1.0. (D) 4 = 8.0 for W > 1.0.
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Chapter 7

Conclusion

In the thermodynamic limit, an interacting disordered many-body quantum sys-

tem can show a phase transition between an ergodic and a localized phase. When

di�erent parts of the Hilbert space are fully explored by energy and particle ex-

change, the unitary quantum dynamics leads to the thermalization of subsystems.

Quantum thermalization is a process of a closed system going into thermal equi-

librium, provided that the system is able to act as its own reservoir. In contrast

to thermalizing systems, localized systems do not act as reservoirs; the long-time

states of subsystems are determined by some local details of the system's initial

state. Quantum decoherence in localized systems is the loss of quantum coherence

in time, and it is of interest to study the stability of time reversal and dynami-

cal phase transitions with respect to small perturbations in disordered quantum

systems.

The Loschmidt echo is the measure of the stability of time reversal. The gener-

alized Loschmidt echo formula L(t) = |〈Ψ0|Ψ(t)〉|2 describes the overlap between

the initial state |Ψ0〉 and the time-evolved state |Ψ(t)〉 = e−itH |Ψ0〉. The zeros of

the Loschmidt echo corresponds to dynamical phase transitions (non-analyticities)

in the return rate function l(t) in the thermodynamic limit. Although the choice

of the initial state of a many-particle interacting system can technically be con-

trolled in experiments, it is convenient to numerically access the initial state from
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the many-body eigenstate of the Hamiltonian in the eigenbasis for calculation pur-

poses. For non-interacting systems, the many-particle problem reduces to a single-

particle problem, and evaluating large system sizes can be easily achieved with the

alternative formula L(t) = |det(1 − C + Ce−iHt)|2. We have described two sets

of numerical algorithms by exact diagonalization to calculate the Loschmidt echo

for the single-particle and the many-particle problems. Using the non-interacting

SSH and the XX models with small system size, we have shown that the two for-

mulae are equivalent in both the clean and the disordered cases. On-site disorder

potentials take random values within a boundary box [−W,W ], so each disorder-

averaged Loschmidt echo for a given disorder parameter W is obtained by taking

the averaged value over many disorder con�gurations.

For a non-interacting one dimensional system with short-range hoppings, it is

well-known that even an in�nitesimal amount of disorder will lead to a localiza-

tion of the single-particle wave functions. This phenomena is known as Anderson

localization. The localization length is described by the inverse power law of the

disorder strength. For a system with �nite system size, one expects to see that

electron eigenstates are localized if the localization length is shorter than the sys-

tem size. With this in mind, we attempt to understand several questions in this

research. Does the disorder-averaged Loschmidt echo (return rate) show dynamical

phase transitions? What is the the time scale at which dynamical phase transitions

occur? Can L(t) decay completely in disordered systems? What is the di�erence

between interacting disordered systems and the non-interacting ones?

In the rest of the thesis, we discussed the above questions with numerical data

from the disorder-averaged return rates for the disordered SSH model with and
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without nearest-neighbour interactions, the disordered XX model, and the disor-

dered XXZ model in cases where analytical solutions are not available. We have

the following conclusion. (1) For systems with �nite system sizes, we showed

that the disorder-averaged return rates show dynamical phase transitions in weak

disorder regimes. For strong disorder strengths, localization lengths are shorter

than system sizes, and we showed that return rates become smooth and dynamical

phase transitions disappear. (2) The time scales at which non-analyticities occur

for systems in weak disorder regimes are summarized in various tables. (3) The

Loschmidt echo can decay completely for �nite system size in the weak disorder

regime. For strongly disordered systems, the Loschmidt echo cannot decay com-

pletely even for small system size. (4) The SSH model shows signi�cant di�erence

between interacting disordered systems and non-interacting ones, but the di�er-

ence between the XX and the XXZ model is not very obvious. We �rst look at

the SSH model. For the non-interacting disordered SSH model in the topological

phase, the system is expected to be very susceptible to disorder due to the presence

of the edge states. Our results showed that the weak disorder regime [−W,W ] is

very small with W ≈ ×10−128 for system size L = 800. For the system in the

trivial phase with symmetric quenches, W = 0.01. Comparing the non-interacting

and the interacting disordered SSH systems, we observed that the weak disorder

regimes are smaller in the former case. The value of W increases as we increase

the interaction strength 4, and we found that the weak disorder regimes [−W,W ]

are the same, W = 0.01, for interacting systems with 4 ≥ 3.0. This result has a

strong implication. Based on the Loschmidt echo, unless we know the time scales

of non-analyticities, we have no access to the initial eigenstate of a strongly disor-

dered system because we cannot know if the system is subject to open or periodic
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boundary conditions. We now turn to the spin model in which we quench from

the Néel state across the antiferromagnetic phase. To begin with, the time scales

agree with the analytical solutions for the XX model. Moreover, we showed that

the weak disorder regimes for both of these models are the same: [−W,W ] with

W = 10−3. This is in contrary to what we expected to see: the weak disorder

regime would be larger in the interacting XXZ model than in the non-interacting

XX model. This result has two implications. First, the localization lengths in both

systems are the same for the same disorder strength W . Secondly, because of the

�rst implication, one can analytically calculate the localization length for the XX

model to determine the localization length for the XXZ model.

In conclusion, we have investigated dynamical phase transitions for the disor-

dered SSH and XXZ models and come to the above conclusion. Not only have our

work provided calculation convenience in evaluating both single-particle and many-

particle systems, but we have also shown an indirect access to many-body initial

state by calculating time scales for disordered systems. For future works related to

the two disordered models, one can prepare the systems in an randomized initial

state and study the dynamics. As a powerful tool to indirectly measure dynamical

phase transitions, the Loschmidt echo can be applied to many strongly-correlated

quantum systems. Meanwhile, the Loschmidt echo can be indirectly used to deter-

mine the system's susceptibility to disorder and distinguish weakly and strongly

disorder regimes. Quantum decoherence due to disorder is the loss of information

in localized systems, and how much information can be retained in the initial state

matters for quantum computing. Hence, one can learn how much information can

be preserved in the initial state under unitary quantum dynamics by investigating

the dynamical many-body correlated functions for disordered systems.
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Appendix A

Mathematical Derivations

We provide a rigorous proof to show that Equations (5.9) and (5.2) are mathemat-

ically equivalent. First, we will provide an expression for the two-point correlation

matrix C = 〈Ψ†iΨj〉 in the eigenbasis. Secondly, we provide a convenient method to

evaluate the exponential term e−iHt. Finally, we show that Eq. (5.10) is true. The

Hamiltonian that we consider here represents single-particle states and is bilinear

and hermitian.

A.1 Correlation Matrix C in Eigenbasis

To change from the general basis to eigenbasis of the initial Hamiltonian Hi before

quenching, it is su�cient to express{ck, c†k} in terms of the normal mode operators

{ηk, η†k} which diagonalize Hi,

ηk =
∑
i

[
φk,i + ψk,i

2
ci +

φk,i − ψk,i
2

c†i

]
, (A.1)

η†k =
∑
i

[
φk,i + ψk,i

2
c†i +

φk,i − ψk,i
2

ci

]
, (A.2)
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where φk,i and ψk,i satisfy the following coupled linear equations

~φk(A−B) = Ek ~ψk,

~ψk(A + B) = Ek~φk,

whose solution permits to �nd the eigenbasis of the Hamiltonian in Eq. (5.6)

([140]). Due to the fact that A is symmetric and B is antisymmetric, the set of all

eigenvalues Ek's are real, and we can choose all the φk's and ψk's to be real and

orthonormal.

To �nd the canonical relations, we can de�ne the following variables

gk,i =
1

2
(φk,i + ψk,i), (A.3)

hk,i =
1

2
(φk,i − ψk,i). (A.4)

For a given index i, the following relations hold

gkgk′ + hkhk′ =
1

2
(φk + ψk)

1

2
(φk′ + ψk′)

+
1

2
(φk − ψk)

1

2
(φk′ − ψk′)

=
1

4
(φkφk′ + φkψk′ + φk′ψk + ψkψk′)

+
1

4
(φkφk′ − φkψk′ − φk′ψk + ψkψk′)

=
1

2
(φkφk′ + ψkψk′)

= δk,k′
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gkhk′ − gk′hk =
1

2
(φk + ψk)

1

2
(φk′ − ψk′)

− 1

2
(φk′ + ψk′)

1

2
(φk − ψk)

=
1

4
(φkφk′ − φkψk′ + φk′ψk − ψkψk′)

− 1

4
(φk′φk − φk′ψk + φkψk′ − ψk′ψk)

= 0

The two canonical relations are then immediately expressed as

∑
i

(gk,igk′,i + hk,ihk′,i) =δk,k′

∑
i

(gk,ihk′,i − gk,ihk′,i) =0,

which serve as the necessary and su�cient condition that {ηk, η†k} be canonical

Fermionic operators with ggT + hhT = 1 and ghT − hgT = 0 being the imposed

constraints.

Equations (A.1) and (A.2) can be expressed using gki and hk,i as

ηk =
∑
i

[
gk,ici + hk,ic

†
i

]
,

η†k =
∑
i

[
gk,ic

†
i + hk,ici

]
,
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We can write the above equations in the compact vector form,

η̂ = g · c+ h · c†, (A.5)

η̂† = g · c† + h · c. (A.6)

By inverting the above Equations (A.5) and (A.6), we can express the fermionic

operators {ck, c†k} in the compact matrix form

c = gT · η + hT · η†, (A.7)

c† = gT · η† + hT · η, (A.8)

Substituting Equations (A.7) and (A.8) into the correlation matrix C , we can

express the correlation matrix C in the eigenbasis as

C =

 hTh hTg

gTh gTg

 .

In absence of pair creation or annhilation, the o�-diagonal elements are all zero,

and hTh = 1− gTg, and we have obtained correlation matrix C in the eigenbasis

C =

 hTh 0

0 gTg

 . (A.9)

A.2 The Exponential e−iHt

We provide a method for the evalution of the exponential term in the formula

e−iHt, where H is the matrix elements of the �nal Hamiltonian H. It is important
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to distinguish the initial and �nal Hamiltonians in the following calculations. We

introduce the vector Γ† = (η†1 . . . η
†
N , η1 . . . ηN), where ηk is the normal mode oper-

ator that diagnoalize the initial Hamiltonian Hi. We then have Ψ = U†Γ, where

U is the eigenbasis of the �nal Hamiltonian H,

U =

 g(f) h(f)

h(f) g(f)

 .

We can readily perform a backward transformation to verify that Ψ =
(
c1 . . . cN , c

†
1 . . . c

†
N

)
.

Ψ = U†Γ =

 gT(f) hT(f)

hT(f) gT(f)





η1

...

ηN

η†1
...

η†N



.

Ψ =



gT(f)η + hT(f)η†

...

gT(f)η + hT(f)η†

hT(f)η + gT(f)η†

...

hT(f)η + gT(f)η†



=



c1

...

cN

c†1
...

c†N


,
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where ck =
∑

i g
T (f)
k,i η

(i)
i + h

T (f)
k,i η

(i)†
i follows from Equations (A.7) and (A.8).

Substituting Ψ = U†Γ in Eq. (5.8), we can express H in the eigenstates which

diagonalize the Hamiltonian

H = Ψ†HΨ = Γ†UHU†Γ ≡ Γ†DΓ,

where D is a 2N ×2N diagonal matrix, whose elements are the energy eigenvalues

of the �nal Hamiltonian H.

D =

E(f) 0

0 −E(f)

 =



Ef
1

. . .

Ef
N

0

0

−Ef
N

. . .

−Ef
1


.

It then follows that

H = U†DU, (A.10)

from which we can easily calculate the exponential e−iHt in the eigenbasis of H

using a transformation

e−iHt = U†e−iDtU. (A.11)
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It is easy to verify the above Equation by substituting H = U†DU the expo-

nential term e−iHt.

e−iHt = e−i(U
†DU)t = eU

†(−iDt)U

=
∞∑
k=0

U†(−iDt)U
k!

= 1+ U†(−iDt)U +
(U†(−iDt)U)2

2!
+ . . .

= U†1U + U†(−iDt)U + U†
(−iDt)

2!
U + . . .

= U†
[
1+ (−iDt) +

(−iDt)
2!

+ . . .

]
U

= U†

[
∞∑
k=0

−iDt
k!

]
U

∴ e−iHt = U†e−iDtU.

A.3 The Determinant Formula

Finally, we show that Eq. (5.10) is valid via an intermediate step. Substituting

Eq. (5.8) into Eq. (5.2), we get

L(t) = | 〈Ψ0| e−iHt |Ψ0〉 |2

=
∣∣∣〈e−it∑j Ψ†jHΨj

〉∣∣∣2 .
Recalling that Ψ† =

(
c†1 . . . c

†
N , c1 . . . cN

)
are the fermionic operators on the

ground state of the initial Hamiltonian Hi. Since 〈Ψ†jΨk〉 = δj,k, and all other

expectation values are zeros, we can use on-site density operators c†jcj in the above
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expression,
N∑
j

Ψ†jHΨj ⇒
2N∑
j

c†jHcj.

From here we will show the derivation for Eq. (5.9), namely

∣∣∣〈e−it∑j c
†
jHcj

〉∣∣∣2 =⇒ |det(1−C + Ce−iHt)|2.

We use the modi�cation of an appraoch originally due to Lieb, Schultz and

Mattis ([111, 147]). It is based on a representation of the correlation function

R(Q, l) of the Equation as the Toeplitz determinant

R(Q, 2N) =

〈
exp iQ

2N∑
j

c†jcj

〉
= det(M (2N))

where M (2N) is an 2N × 2N matrix, and Q is an arbitrary complex value, which

can be set to the individual elements of the �nal Hamiltonian H multiplied by t,

Q = −Hjt.

The following relation holds

eiQc
†
jcj = (c†j + cj)(c

†
j + eiQcj)

which is readily ver�ed in the representation diagonalization c†jcj ([147]). De�ning

Aj = c†j + cj, Bj = c†j + eiQcj,



A.3. The Determinant Formula 149

we have

R(−Ht, 2N) =

〈
exp

(
−it

2N∑
j

Hc†jck

)〉
= 〈A1B1A1B2 . . . B2N−1A2NB2N〉.

By applying the Wick theorem, we are allowed to express the expectation value in

terms of expectation values of products of just two operators. One notices that

〈AjAk〉 = 〈BjBk〉 = 0, j 6= k,

and

〈AjBk〉 = δjk − (1− e−iHt)Cjk,

where Cjk = 〈c†jck〉 is matrix element of the two-point fermionic correlation function

de�ned in Eq. (A.9). The most straightforward contribution is

〈A1B1〉〈A2B2〉 . . . 〈A2NB2N〉

As a result the 2N × 2N , matrix M
(2N)
ij can be expressed in terms of Aj and Bj,

M (2N) =



〈A1B1〉 0

0 〈A1B1〉 0

. . .

0
〈A2N−1B2N−1〉 0

0 〈A2NB2N〉


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M (2N) = 〈A1B1〉 〈A2B2〉 . . . 〈ANBN〉

M (2N) =
[
1− (1− e−iHt)C1,1

]
×[

1− (1− e−iHt)C2,2

]
× . . .[

1− (1− e−iHt)C2N,2N

]
M (2N) =1− (1− e−iHt)C

Therefore,

|R(−Ht, 2N)| =
∣∣∣〈e−it∑j c

†
jHcj

〉∣∣∣ =
∣∣det(M (2N))

∣∣
=
∣∣det[1− (1− e−iHt)C

]∣∣
=
∣∣det(1−C + Ce−iHt

)∣∣.
Therefore, we have arrived Eq. (5.10) as desired

L(t) = | 〈Ψ0| e−iHt |Ψ0〉 |2 = |det(1−C + Ce−iHt)|2.

In short, we have shown that the Loschmidt echo equations are equivalent.

The two-point correlation matrix C in the eigenbasis and the exponential form

e−iHt are crucial components in evaluating the LE for the single-particle problem

where the Hamiltonian is bilinear and hermitian. We have also demonstrated the

equivalence of those equations numerically for both the SSH model and the XXZ

model in Chapter 5.
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Mathematica Algorithm for the XX

Model

MPH Approach: Quench from Neel State for the clean XX Model with L = 2 
and OBC

MH = {{0, 0.5}, {0.5, 0}}

{{0, 0.5}, {0.5, 0}}

MH // MatrixForm


0 0.5

0.5 0


ME = Sort[Eigenvalues[MH], Greater]

{0.5, -0.5}

evol = Exp[-it ME]

ⅇ-0.5 it, ⅇ0.5 it

{MV1, MV2} = Normalize /@ Eigenvectors[MH]

{{-0.707107, 0.707107}, {0.707107, 0.707107}}

U = MV1

{-0.707107, 0.707107}

LE = Abs[Simplify[evol.(U^2)]]^2

Abs0.5 ⅇ-0.5 it + 0.5 ⅇ0.5 it
2
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SPH Approach: Quench from Neel State for the XX Model with L = 2 and 
OBC

SH = {{0, 0.5}, {0.5, 0}}

{{0, 0.5}, {0.5, 0}}

SH // MatrixForm


0 0.5

0.5 0


EV = Sort[Eigenvalues[SH], Greater]

{0.5, -0.5}

ED = DiagonalMatrix[Exp[-it EV ]]

ⅇ-0.5 it, 0., 0., ⅇ0.5 it

{V1, V2} = Simplify[Normalize /@ Eigenvectors[SH]]

{{-0.707107, 0.707107}, {0.707107, 0.707107}}

V = {V2, V1}

{{0.707107, 0.707107}, {-0.707107, 0.707107}}

Ut = Conjugate[V].ED.ConjugateTranspose[V]

CM = {{1, 0}, {0, 0}}

{{1, 0}, {0, 0}}

ID = IdentityMatrix[2]

{{1, 0}, {0, 1}}

M = ID - CM + CM.Ut

R = Det[M]

0.5 ⅇ-0.5 it + 0.5 ⅇ0.5 it

Simplify[Expand[Simplify[R]]]

LE = Abs[%]^2

Abs0.5 ⅇ-0.5 it + 0.5 ⅇ0.5 it
2
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MPH Approach: Quench from Neel State for the clean XX Model with L = 4 
and OBC

MH = {{0, 0.5, 0, 0, 0, 0}, {0.5, 0, 0.5, 0.5, 0, 0}, {0, 0.5, 0, 0, 0.5, 0},
{0, 0.5, 0, 0, 0.5, 0}, {0, 0, 0.5, 0.5, 0, 0.5}, {0, 0, 0, 0, 0.5, 0}}

{{0, 0.5, 0, 0, 0, 0}, {0.5, 0, 0.5, 0.5, 0, 0}, {0, 0.5, 0, 0, 0.5, 0},
{0, 0.5, 0, 0, 0.5, 0}, {0, 0, 0.5, 0.5, 0, 0.5}, {0, 0, 0, 0, 0.5, 0}}

MH // MatrixForm

0 0.5 0 0 0 0
0.5 0 0.5 0.5 0 0
0 0.5 0 0 0.5 0
0 0.5 0 0 0.5 0
0 0 0.5 0.5 0 0.5
0 0 0 0 0.5 0

ME = Simplify[Sort[Eigenvalues[MH], Greater]]

1.11803, 0.5, 1.06254 × 10-16, 0., -0.5, -1.11803

evol = Exp[-it ME]

ⅇ-1.11803 it, ⅇ-0.5 it, ⅇ-1.06254×10-16 it, 1., ⅇ0.5 it, ⅇ1.11803 it

{MV1, MV2, MV3, MV4, MV5, MV6} = Normalize /@ Eigenvectors[MH]

{-0.223607, -0.5, -0.447214, -0.447214, -0.5, -0.223607},

{-0.223607, 0.5, -0.447214, -0.447214, 0.5, -0.223607},

0.5, 0.5, 4.44089 × 10-16, 4.44089 × 10-16, -0.5, -0.5,

-0.5, 0.5, -4.44089 × 10-16, -4.44089 × 10-16, -0.5, 0.5,

0.632456, 2.81452 × 10-308, -0.316228, -0.316228, 6.3195 × 10-16, 0.632456,

{0., 0., 0.707107, -0.707107, 0., 0.}

U = MV4

-0.5, 0.5, -4.44089 × 10-16, -4.44089 × 10-16, -0.5, 0.5

LE = Abs[Simplify[evol.(U^2)]]^2

Abs1.97215 × 10-31 + 0.25 ⅇ-1.11803 it + 0.25 ⅇ-0.5 it +

1.97215 × 10-31 ⅇ-1.06254×10-16 it + 0.25 ⅇ0.5 it + 0.25 ⅇ1.11803 it
2
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SPH Approach: Quench from Neel State for the XX Model with L = 4 and 
OBC

In[118]:= SH = {{0, 0.5, 0, 0}, {0.5, 0, 0.5, 0}, {0, 0.5, 0, 0.5}, {0, 0, 0.5, 0}}

Out[118]= {{0, 0.5, 0, 0}, {0.5, 0, 0.5, 0}, {0, 0.5, 0, 0.5}, {0, 0, 0.5, 0}}

In[119]:= SH // MatrixForm

Out[119]//MatrixForm=

0 0.5 0 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0 0.5 0

In[120]:= EV = Sort[Eigenvalues[SH], Greater]

Out[120]= {0.809017, 0.309017, -0.309017, -0.809017}

In[121]:= ED = DiagonalMatrix[Exp[-it EV ]]

Out[121]= ⅇ-0.809017 it, 0., 0., 0., 0., ⅇ-0.309017 it, 0., 0.,

0., 0., ⅇ0.309017 it, 0., 0., 0., 0., ⅇ0.809017 it

In[122]:= {V1, V2, V3, V4} = Simplify[Normalize /@ Eigenvectors[SH]]

Out[122]= {{0.371748, 0.601501, 0.601501, 0.371748},
{0.371748, -0.601501, 0.601501, -0.371748},
{-0.601501, -0.371748, 0.371748, 0.601501},
{0.601501, -0.371748, -0.371748, 0.601501}}

In[123]:= V = {V2, V4, V3, V1}

In[124]:= Ut = Conjugate[V].ED.ConjugateTranspose[V]

In[126]:= CM = {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 0}}

Out[126]= {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 0}}

In[127]:= ID = IdentityMatrix[4]

Out[127]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

In[128]:= M = ID - CM + CM.Ut

In[129]:= R = Det[M]

In[130]:= Simplify[Expand[Simplify[R]]]

In[131]:= LE = Abs[%]^2

Out[131]= Abs5.55112 × 10-17 - 1.38778 × 10-17 ⅇ-1.61803 it + 0.25 ⅇ-1.11803 it + 1.38778 × 10-17 ⅇ-0.618034 it +

0.25 ⅇ-0.5 it + 0.25 ⅇ0.5 it + 1.38778 × 10-17 ⅇ0.618034 it + 0.25 ⅇ1.11803 it
2



155

Appendix C

Python Algorithms

"""
Created by Ye Cheng (Lewis) Chen and Jesko Sirker
The non-interacting disordered SSH model 
Calculation for Loschmidt echo using SPH and formula |det(1-C+C*exp(-iHt))|^2
"""
import numpy as np
import argparse

# parameters for entanglement calculations
parser = argparse.ArgumentParser(description=
'Calculation of Loschmidt echo for disordered fermions')
parser.add_argument('-L', type=int, default=4,
                    help='# system length L')
parser.add_argument('-W', type=float, default=0.0,
                    help='width box potential disorder')
parser.add_argument('-delta', type=float, default=-0.3,
                    help='# quench parameter delta')
parser.add_argument('-dt', type=float, default=0.01,
                    help='# discrete time interval first part')
parser.add_argument('-tint', type=float, default=0,
                    help='# maximum time range first part')
parser.add_argument('-tmax', type=float, default=20,
                    help='# maximum time range second part')
parser.add_argument('-sample', type=int, default=1,
                    help='# samples')
parser.add_argument('-openbc', type=int, default=1,
                    help='OBC = 1, PBC = 0')
args=parser.parse_args()

# construct Hamiltonian for SSH model with disorder in diagonal elements
# diagnonal elements are random numbers in [-W,W]
def construct_APDW(L,W):
    if args.W != 0.0:
        a = 2*W * np.random.random_sample(L) - W
    else:
        a = np.zeros(L)
    A = np.diag(a,0)
    return A

# construct single-particle Hamiltonian for SSH model
def construct_SPH(delta,L,openbc):
    H = np.zeros((L,L))
    for i in range(0,L-1):
        H[i,i+1]=1.0-delta*(-1)**i
        H[i+1,i]=1.0-delta*(-1)**i
    if openbc == 0:
        H[0][-1]=1.0+delta*(-1)**L
        H[-1][0]=1.0+delta*(-1)**L
    return H

# construct unitary time evolution operator Uexp(-iDt)U*
def construct_U(v,U,t):
    Ut = np.dot(U.conj(),np.dot(np.diag(np.exp(-1j*v*t)),(U.transpose()).conj()))
    return Ut

1
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# construct two point correlation matrix
def construct_CM(U,L):
    m1=np.array([[1,0],[0,0]])
    smat=np.kron(m1,np.identity(int(L/2)))
    CM = np.dot(U,np.dot(smat,U.transpose()))
    return CM

# calculate LE using |det(1-C+C*exp(-iHt))|
def calc_detLE(v,U,CM,t):
    LE=np.zeros(len(t))
    for i in t:
        Ut = construct_U(v,U,i)
        k=t.tolist().index(i)
        LE[k]=np.abs(np.linalg.det(np.identity(args.L)-CM+np.dot(CM,Ut)))
    return LE

# Run the program for both cases
t=np.arange(args.tint,args.tmax+args.dt/2,args.dt)

# calculate single-particle Hamiltonian
SPHi = construct_SPH(args.delta,args.L,args.openbc)
SPHf = construct_SPH(-args.delta,args.L,args.openbc)

Store1=0
for samp in range(int(args.sample)):
    APDW = construct_APDW(args.L,args.W)
    SPHiW = SPHi + APDW
    SPHfW = SPHf + APDW
    vsi,Usi = np.linalg.eigh(SPHiW)
    vsf,Usf = np.linalg.eigh(SPHfW)
    CM = construct_CM(Usi,args.L)
    Store1 += calc_detLE(vsf,Usf,CM,t)

LE1=np.squeeze(Store1/args.sample)
RR1=-2*np.log(LE1)/args.L # return rate

for item in RR1:
    print(item)
    

2
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"""
Created by Ye Cheng (Lewis) Chen and Jesko Sirker
The interacting disordered SSH model 
Calculation for Loschmidt echo using SPH and formula |det(1-C+C*exp(-iHt))|^2
"""
import numpy as np
import argparse
from bisect import bisect_left as findIndex

# parameters for entanglement calculations
parser = argparse.ArgumentParser(description=
'Calculation of Loschmidt echo for disordered fermions')
parser.add_argument('-L', type=int, default=4,
                    help='# system length L')
parser.add_argument('-V', type=float, default=1.0,
                    help='V interaction term')
parser.add_argument('-W', type=float, default=0.0,
                    help='width box potential disorder')
parser.add_argument('-delta', type=float, default=-0.5,
                    help='# quench parameter delta')
parser.add_argument('-tint', type=float, default=0,
                    help='# initial time')
parser.add_argument('-tmax', type=float, default=20,
                    help='# maximum time range')
parser.add_argument('-dt', type=float, default=0.01,
                    help='# discrete time interval')
parser.add_argument('-sample', type=int, default=1,
                    help='# samples')
parser.add_argument('-openbc', type=int, default=1,
                    help='OBC = 1, PBC = 0')
parser.add_argument('-Vfix', type=int, default=1,
                    help='V is fixed = 1, Vary = 0')
args=parser.parse_args()

# State function configurations in spinless fermions
def manyPsi(particle,site):
    a=np.arange(2**site)
    bitcount=np.array([bin(x).count("1") for x in a])
    b=a.compress(bitcount==particle).tolist()[::-1]
    aList=[]
    for item in b:
        a=bin(int(item))[2:].zfill(site)
        aList.append(a)
    return aList

# C+C fermionic operators on Neel configurations
def cpc(l,j,Psi):
    Psi2=Psi.copy()
    for item in Psi2:
        k = Psi2.index(item)
        if item[j-1]=='0':
            Psi2[k]=list(item)
            Psi2[k][j-1]='1'
            Psi2[k]="".join(Psi2[k])
        if item[j-1]=='1':
            Psi2[k]=list(item)
            Psi2[k][j-1]='0'

1
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            Psi2[k]="".join(Psi2[k])
    for item in Psi2:
        k = Psi2.index(item)
        if item[l-1]=='0':
            Psi2[k]=list(item)
            Psi2[k][l-1]='1'
            Psi2[k]="".join(Psi2[k])
        if item[l-1]=='1':
            Psi2[k]=list(item)
            Psi2[k][l-1]='0'
            Psi2[k]="".join(Psi2[k])
    return Psi2

# construct Hamiltonian for SSH model with disorder in diagonal elements
# diagnonal elements are random numbers in [-W,W]
def construct_MPDW(Psi,L,W):
    if args.W != 0.0:
        a = 2*W * np.random.random_sample(L) - W #mu in [-W,W]
    else:
        a = np.zeros(L)
    C = np.zeros(len(Psi))
    for i in range(len(Psi)):
        item=Psi[i]
        for j in range(len(item)):
            if item[j]=='1':
                C[i]+=a[j]
    A = np.diag(C)
    return A

def findMagnetizationStates(length,particlenumber):
    """
    constructs a table with the integer representations of all binaries
    with a given number of 1s
    """
    s = np.arange(2**length)
    bitcount = np.array([bin(x).count("1") for x in s])
    return s.compress(bitcount==particlenumber)

def bit(state,j,length):
    """return value of bit j"""
    return state >> (length-1-j) & 1

def bitFlip(state,j,k,length):
    """flip bits j and k of state if they are unequal"""
    return state ^ (2**(length-1-j)+2**(length-1-k))

# construct many-particle Hamiltonian for clean SSH model
def construct_MPH(V,delta,length,table):
    """construct clean Hamiltonian"""
    nos = len(table)
    h = np.zeros((nos,nos),np.float)
    for b,t in enumerate(table): # loop over eigenstates
        for j in range(length-args.openbc): # loop over sites
            k = (j+1)%length # right neighboring site
            # Heisenberg interaction for equal nearest neighbors
            if bit(t,j,length)==bit(t,k,length):
                h[b,b]+=0.25*V

2
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            # Heisenberg interaction + tunneling for unequal nearest neighbors
            else:
                h[b,b]-=0.25*V
                bp = findIndex(table, bitFlip(t, j, k, length))
                #bp = findIndex(table, bitFlip(t, j, k, length))-1
                h[b,bp]=1.0-delta*(-1)**j
    return h

def calc_LE(vmi,Umi,vmf,Umf,t): # return rate starting from intial state
    """compute time evolution from ground state of MPHi"""
    Uindex=vmi.tolist().index(min(vmi))
    Ui=Umi[Uindex]
    LE = np.zeros(len(t))
    evol = np.exp(-1j*t[:,np.newaxis]*vmf[np.newaxis])
    vv=np.dot(Umf.transpose().conj(),Ui)
    """ |<Psi0|U*exp(-iEt)*U|Psi0>|"""
    LE=np.abs(np.inner(evol*vv[np.newaxis,:],vv[np.newaxis,:]))
    return LE

# Run the program for both cases
t=np.arange(args.tint,args.tmax+args.dt/2,args.dt)

# calculate many-particle Hamiltonian
particlenumber=args.L/2
Psi=manyPsi(particlenumber,args.L)
table = findMagnetizationStates(args.L,particlenumber)
# condition for fixing interaction strength V
if args.Vfix == 1:
    MPHi = construct_MPH(args.V,args.delta,args.L,table)
elif args.Vfix == 0:
    MPHi = construct_MPH(0,args.delta,args.L,table)
MPHf = construct_MPH(args.V,-args.delta,args.L,table)

Store2=0
for samp in range(int(args.sample)):
    MPDW = construct_MPDW(Psi,args.L,args.W)
    MPHiW = MPHi + MPDW
    MPHfW = MPHf + MPDW
    vmi,Umi = np.linalg.eig(MPHiW) 
    Umi=Umi.transpose()
    vmf,Umf = np.linalg.eig(MPHfW) 
    Store2 += calc_LE(vmi,Umi,vmf,Umf,t)

LE2=np.squeeze(Store2/args.sample)
RR2=-2*np.log(LE2)/args.L

for item in RR2:
    print(item)
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"""
Created by Ye Cheng (Lewis) Chen and Jesko Sirker
The disordered XX model (non-interacting)
Calculation for Loschmidt echo using SPH and formula |det(1-C+C*exp(-iHt))|^2
"""
import numpy as np
import argparse

# parameters for entanglement calculations
parser = argparse.ArgumentParser(description=
'Calculation of Loschmidt echo for disordered fermions')
parser.add_argument('-L', type=int, default=4,
                    help='# system length L')
parser.add_argument('-W', type=float, default=1.0,
                    help='width box potential disorder')
parser.add_argument('-dt', type=float, default=0.01,
                    help='# discrete time interval first part')
parser.add_argument('-tint', type=float, default=0,
                    help='# maximum time range first part')
parser.add_argument('-tmax', type=float, default=20,
                    help='# maximum time range second part')
parser.add_argument('-sample', type=int, default=30,
                    help='# samples')
parser.add_argument('-openbc', type=int, default=1,
                    help='OBC = 1, PBC = 0')
args=parser.parse_args()

# construct Hamiltonian for SSH model with disorder in diagonal elements
# diagnonal elements are random numbers in [-W/2,W/2]
def construct_APDW(L,W):
    if args.W != 0.0:
        a = 2*W * np.random.random_sample(L) - W
    else:
        a = np.zeros(L)
    A = np.diag(a,0)
    return A

# construct single-particle Hamiltonian for SSH model
def construct_SPH(L,openbc):
    H = np.zeros((L,L))
    for i in range(0,L-1):
        H[i,i+1]=0.5
        H[i+1,i]=0.5
    if openbc == 0:
        H[0][-1]=0.5
        H[-1][0]=0.5
    return H

# construct unitary time evolution operator Uexp(-iDt)U*
def construct_U(v,U,t):
    Ut = np.dot(U.conj(),np.dot(np.diag(np.exp(-1j*v*t)),(U.transpose()).conj()))
    return Ut
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# construct two point correlation matrix for HD
def construct_CM(L):
    Neel = np.zeros((int(L),int(L/2)))
    for i in range(0,int(L)):
        for j in range(0,int(L/2)):
            if i+1==2*(j+1)-1: Neel[i,j]=1
    CM = np.dot(Neel,Neel.transpose())          # CM in Ising basis
    return CM

# calculate LE using |det(1-C+C*exp(-iHt))|
def calc_detLE(v,U,CM,t):
    LE=np.zeros(len(t))
    for i in t:
        Ut = construct_U(v,U,i)
        k=t.tolist().index(i)
        LE[k]=np.abs(np.linalg.det(np.identity(args.L)-CM+np.dot(CM,Ut)))
    return LE

# Run the program 
t=np.arange(args.tint,args.tmax+args.dt/2,args.dt)

# calculate part the single-particle Hamiltonian
SPH = construct_SPH(args.L,args.openbc)
vs,Us = np.linalg.eigh(SPH)
CM = construct_CM(args.L)

Store1=0
for samp in range(int(args.sample)):
    APDW = construct_APDW(args.L,args.W)
    SPHfW = SPH + APDW
    vsf,Usf = np.linalg.eigh(SPHfW)
    Store1 += calc_detLE(vsf,Usf,CM,t)
    
LE1=np.squeeze(Store1/args.sample)
RR1=-2*np.log(LE1)/args.L

for item in RR1:
    print(item)
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"""
Created by Ye Cheng (Lewis) Chen and Jesko Sirker
The disordered XXZ model 
Calculation for Loschmidt echo using SPH and formula |det(1-C+C*exp(-iHt))|^2
"""
import numpy as np
import argparse
from bisect import bisect_left as findIndex

# parameters for entanglement calculations
parser = argparse.ArgumentParser(description=
'Calculation of Loschmidt echo for disordered fermions')
parser.add_argument('-L', type=int, default=4,
                    help='# system length L')
parser.add_argument('-V', type=float, default=1.0,
                    help='V interaction term')
parser.add_argument('-W', type=float, default=0.0,
                    help='width box potential disorder')
parser.add_argument('-tint', type=float, default=0,
                    help='# initial time')
parser.add_argument('-tmax', type=float, default=50,
                    help='# maximum time range')
parser.add_argument('-dt', type=float, default=0.005,
                    help='# discrete time interval')
parser.add_argument('-sample', type=int, default=1,
                    help='# samples')
parser.add_argument('-openbc', type=int, default=1,
                    help='OBC = 1, PBC = 0')
args=parser.parse_args()

# State function configurations in spinless fermions
def manyPsi(particle,site):
    a=np.arange(2**site)
    bitcount=np.array([bin(x).count("1") for x in a])
    b=a.compress(bitcount==particle).tolist()[::-1]
    aList=[]
    for item in b:
        a=bin(int(item))[2:].zfill(site)
        aList.append(a)
    return aList

# C+C fermionic operators on Neel configurations
def cpc(l,j,Psi):
    Psi2=Psi.copy()
    for item in Psi2:
        k = Psi2.index(item)
        if item[j-1]=='0':
            Psi2[k]=list(item)
            Psi2[k][j-1]='1'
            Psi2[k]="".join(Psi2[k])
        if item[j-1]=='1':
            Psi2[k]=list(item)
            Psi2[k][j-1]='0'
            Psi2[k]="".join(Psi2[k])
    for item in Psi2:
        k = Psi2.index(item)
        if item[l-1]=='0':
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            Psi2[k]=list(item)
            Psi2[k][l-1]='1'
            Psi2[k]="".join(Psi2[k])
        if item[l-1]=='1':
            Psi2[k]=list(item)
            Psi2[k][l-1]='0'
            Psi2[k]="".join(Psi2[k])
    return Psi2

def construct_MPDW(Psi,L,W):
    if args.W != 0.0:
        a = 2*W * np.random.random_sample(L) - W #mu in [-W,W]
    else:
        a = np.zeros(L)
    C = np.zeros(len(Psi))
    for i in range(len(Psi)):
        item=Psi[i]
        for j in range(len(item)):
            if item[j]=='1':
                C[i]+=a[j]
    A = np.diag(C)
    return A

def findMagnetizationStates(length,particlenumber):
    """
    constructs a table with the integer representations of all binaries
    with a given number of 1s
    """
    s = np.arange(2**length)
    bitcount = np.array([bin(x).count("1") for x in s])
    return s.compress(bitcount==particlenumber)

def bit(state,j,length):
    """return value of bit j"""
    return state >> (length-1-j) & 1
def bitFlip(state,j,k,length):
    """flip bits j and k of state if they are unequal"""
    return state ^ (2**(length-1-j)+2**(length-1-k))

# construct many-particle Hamiltonian for clean SSH model
def construct_MPH(V,length,table):
    """construct clean Hamiltonian"""
    nos = len(table)
    h = np.zeros((nos,nos),np.float)
    for b,t in enumerate(table): # loop over eigenstates
        for j in range(length-args.openbc): # loop over sites
            k = (j+1)%length # right neighboring site
            # Heisenberg interaction for equal nearest neighbors
            if bit(t,j,length)==bit(t,k,length):
                h[b,b]+=0.25*V
            # Heisenberg interaction + tunneling for unequal nearest neighbors
            else:
                h[b,b]-=0.25*V
                bp = findIndex(table, bitFlip(t, j, k, length))
                #bp = findIndex(table, bitFlip(t, j, k, length))-1
                h[b,bp]=0.5
    return h
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# find Neel state in eigenbasis
def findNeelstate(length,particlenumber,table):
    """find positions of Neel states in table"""
    assert length==2*particlenumber, "need exactly half filling for Neel state"
    tot = 2**length-1
    N2 = tot//3   # integer representation of the Neel state 010101...
    N1 = tot-N2   # integer representation of the other Neel state 101010...
    return findIndex(table,N1), findIndex(table,N2)

def calc_LE(v,U,Neelpos,tint,tmax,dt): # return rate starting from Neel state
    t = np.arange(tint,tmax+dt/2,dt)
    """compute time evolution from Neel state"""
    vNeel=U[Neelpos[0]].conj()     # Neel state |1010> in eigenbasis |c1 c2 ...>
    LE = np.zeros(len(t))
    evol = np.exp(-1j*t[:,np.newaxis]*v[np.newaxis])
    """ <vNeel*U|U*exp(-iEt)*U|U*Neel>"""
    LE=np.abs(np.inner(evol*vNeel[np.newaxis,:],vNeel[np.newaxis,:]))
    return LE

# Run the program for both cases
t=np.arange(args.tint,args.tmax+args.dt/2,args.dt)

# calculate part the many-particle Hamiltonian
particlenumber=args.L/2
Psi=manyPsi(particlenumber,args.L)
table = findMagnetizationStates(args.L,particlenumber)
Neelpos = findNeelstate(args.L,particlenumber,table)
MPDW = construct_MPDW(Psi,args.L,args.W)
MPH = construct_MPH(args.V,args.L,table)
vmi,Umi = np.linalg.eigh(MPH) 
Umi = Umi.transpose()

for i in range(args.dat):
    Store2=0
    for samp in range(int(args.sample)):
        MPDW = construct_MPDW(Psi,args.L,args.W)
        MPHfW = MPH + MPDW
        vmf,Umf = np.linalg.eigh(MPHfW) 
        Store2 += calc_LE(vmf,Umi,Neelpos,args.tint,args.tmax,args.dt)

LE2=np.squeeze(Store2/args.sample)
RR2=-2*np.log(LE2)/args.L

for item in RR2:
    print(item)
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