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Abstract

Small signal stability analysis (linear analysis) of power systems is a very useful com-

ponent in any power system study. Greater insight into the system can be obtained

by it. It also opens the power systems and its controllers to a large body of knowledge

on linear systems and controls.

It has become the trend of the power system device manufacturers to make avail-

able an as built detailed model of their product. Such a model is usually in the

electromagnetic transient (EMT) simulation domain. The model is made available as

a device that can be connected to a larger power system on a simulation case running

on an EMT software. Due to proprietary constraints, the model may be black-boxed

and only a limited number of outputs and inputs may be available to the user. In

instances it is not black boxed, it is usually a device with complex controllers, making

it a tedious task to determine its mathematical model. In both cases, the complete

mathematical model is not available to the user.

Since it is not possible to linearize the system without the knowledge of all the

devices in the power system, small signal stability analysis is often skipped in a power

system study. This research focuses on using available input and output signals

of black boxed EMT simulation models of power system devices, and utilize other
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available knowledge of the system to determine model data of their linear equivalent

models, in such a way, complete small signal stability studies can be carried out at

any operating point, and connected to any network.

Power system devices can be divided into two main subsystems. (1) The current

injection device, which is operating point dependent. (2) The auxiliary controller,

which is operating point independent within a given operating mode. Dynamic data of

the current injection device subsystem (i.e. synchronous machine, induction machine)

can be considered as a priori knowledge of the system. A Prony Analysis method,

augmented by eigenstructure assignment has been proposed to incorporate the a

priori knowledge of the system to the system identification process. Using a result

derived from Mason’s Gain Rule, the linearized model of the power system device is

divided into the known subsystem of the operating-point-dependent current injection

device; and the operating-point-independent unknown subsystem of the auxiliary

controller. The modes identified from the proposed system identification procedure

at multiple operating points are then used to solve a system of polynomial equations,

for the unknown auxiliary controller transfer functions.
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Introduction

Chapter 1

Introduction

1.1 Power System Simulation

A power system is a dynamic system where devices such as electrical generators are

connected to a transmission network which transfers electric power to loads. At

steady state, the mechanical power given to the generators should be equal to the

sum of active power at the loads and the active power loss in the system. Any change

or perturbation to the power system causes transients. A power system rarely stays

at a steady state as loads and other conditions of a the system frequently change.

Stability of a power system is its ability to achieve a feasible steady state, subsequent

to a perturbation. In order to ensure continuous supply of power to loads, the stability

of the power system is paramount.

As power systems grew into multiple synchronous machines connected to a trans-

mission network that spanned a wider area, the operator needed to understand the

behaviour of the system in detail, so that predictions about the power system’s re-

- 1 -



Introduction

sponse to perturbations could be made. Mathematical models were then developed

for power system components such as generators, transmission lines and loads. The

dynamic system could then be represented by a set of nonlinear first order differ-

ential equations (state space) and a complementing set of algebraic equations. The

behaviour of the power system could be simulated by numerical integration of the

nonlinear state-space, starting from a desired initial condition. For stability of the

simulation, the desired initial condition is always a steady state operating point, at

which the power flow is converged.

Complexity of the mathematical models of power system components grew over

time. The more detailed the mathematical model is, the more accurate the simulation

is. The accuracy is reflected by the frequency contents of the simulation. In order to

represent higher frequency contents, more detailed models have to be used. Also, the

integration time step of the dynamic equations has to be made smaller to simulate

higher frequency dynamics. Electromagnetic Transient (EMT) simulation and tran-

sient simulation are two power system simulation regimes with different simulation

details.

Parameter estimation for the mathematical model too has become more complex

with the complexity of the models. Over the last fifty years, extensive research has

been done in this area and there are well established dynamic equivalent models

for generators, power transmission network and individual loads with equally well

established parameter estimation methods.
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1.2 Linear Analysis of a Power System

Due to the nonlinearities in the power system mathematical model, only time-domain

responses could be obtained from numerical integration of the dynamic equations.

Small signal stability analysis for a power system is performed with the assumption

that a small perturbation would cause the state variables of a power system to vary

only linearly. Small signal behaviour describes the dynamics of state variables of

the power system when subjected to a small disturbance at a specific steady state

operating point of the system. The operating point is defined by the steady state

power flow in the network.

Linearization of a one-dimensional nonlinear function (one state variable) is illus-

trated in Fig. 1.1

t 

x 

t0+Δt 

x0+Δx 

x0 

t0 

linear region around 

the operating point x0 

 

Fig. 1.1: Illustration of linearization of a 1-dimensional nonlinear function

Greater insights to the system dynamics can be obtained from a linear state space.

Theoretically, there could be a steady state operating point of a power system which

is small signal unstable. This means, even if there is a power balance between gener-

ation and loads, a small perturbations could cause the system to collapse. While the
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detailed nonlinear simulations reveal the fast transients between two steady state op-

erating points, small signal stability determines the stability of a steady state (mostly

post-fault) for small perturbations. Such a stability can also be determined by looking

at time-domain responses of a nonlinear simulation. However, small signal stability

analysis gives much more information than variation of a few chosen variables as in

a nonlinear simulation. Therefore, it is an essential part of a power system stability

study.

There are two classes of linear analysis of power systems [2]. Namely:

1. Model based linear analysis

2. Measurement based linear analysis

In model based linear analysis of a power system, the nonlinear dynamic equations

that describe the power system could be linearized around a desired operating point

using Truncated Taylor Series Expansion [3]. A system so linearized can be subjected

to a complete eigenvalue analysis. In order to perform model based small signal sta-

bility analysis, the full mathematical model and parameters should be known for the

power system so that the nonlinear dynamic equations could be linearized. There are

commercially available software to linearize a power system with generic components,

specified by library models. If a power system consists of components whose models

are not included in a generic library, the user must manually linearize the nonlinear

equations and derive the linear model.

In measurement based linear analysis of a power system, system identification is

used to identify transfer functions between inputs and outputs of a power system by

giving a small perturbation to the system. Measurement based analysis provide only
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limited insight to the system. There are advanced system identification methods that

accurately estimate the low damped modal content (eigenvalues) of a power system

at a given operating point. The modal content alone can be used to determine the

proximity of a power system to the stability margin, at a given operating point,

in applications of dynamic security assessments. Since meaningful system matrices

cannot be determined by measurement based methods, the insight one gets from

a model based linear analysis, cannot be obtained from measurement based linear

analysis. Applications in controller design and finding the root cause of low damped

modes (by participation factor analysis) is limited in measurement based analysis. A

brief review of measurement based small signal stability of power systems is presented

in Chapter 3.

1.3 Absence of Mathematical Models and Param-

eters

A power system device can be divided into two subsystems, namely, the current

injection device and the auxiliary controllers. E.g. in case of a synchronous machine:

the turbine-governor, the excitation system and the power system stabilizer (PSS)

are the auxiliary controllers, and the machine, consisting of the stator and the rotor,

is the current injection device.

Current injection devices (i.e. synchronous machines, induction machines, thyris-

tor bridge inverters and IGBT bridge inverters) have well reviewed mathematical

models that were developed over time. Their parameter estimation methods too are

well established.
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The sensors and actuators of the auxiliary controllers have their own dynamics

which are complemented by numerical controller blocks designed by power system

engineers to achieve desired performance of the power system. The industry used to

adopt generic auxiliary controllers for the dynamic devices. Models for these generic

controllers are designed and documented in the public domain by technical standard

committees of professional bodies such as Institute of Electrical and Electronic En-

gineers (IEEE) [4, 5]. These controllers are included in power system simulation

programs as library models [6]. The user of the simulation program can easily in-

corporate them in a simulation study. The design exercise, when using the generic

controllers, is to find the suitable parameters. Small signal stability analysis programs

often have the linear equivalent models of the said library models and are capable of

incorporating them in a small signal stability study [7].

1.3.1 Custom Control Blocks

Instead of using generic control blocks, a power system engineer can design their own

user-written control blocks and implement them in the auxiliary controllers. In such

instances, not only the parameters, but also the entire controller model needs to be

recreated on a simulation software in order to successfully simulate the system.

Most of the EMT simulation software allows the user to design and implement

controllers using fundamental control blocks on the software’s user interface. Some

small signal stability analysis programs too allow incorporating user-written control

blocks to a linearized power system. However, the user-written control blocks are not

interoperable between different software, as there are no common protocols. There-

fore, even if a user-written controller is available for an EMT software, it needs to
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be entirely recreated in the small signal stability analysis program (only if the small

signal program has the facility).

1.3.2 Black-boxed Models

With the advent of complex control strategies for power system devices, controller

structures and parameters of the controllers are not revealed to the public. When

a manufacturer produces a power system component (i.e. a generator), a software

simulation model of the device, usually in the EMT simulation domain, is released

to the customers instead of publishing the mathematical model and its parameters.

This simulation model could be incorporated into a larger power system simulation

case. Typically, the larger system is the actual power system to which the new

device is planned to be connected. The customer (typically the utility) can then

run simulation cases and perform power system studies in the time domain. These

software simulation models are black-boxed for proprietary reasons [8]. A limited

number of output variables are made available to the user in order to observe time

domain response. None of the intermediate controller state variables are available to

the user.

It should be noted that the current injection device of such a black-boxed model

is essentially one of the well-established models (i.e. synchronous machine, induction

machine). Therefore, model data of the current injection device can be assumed as

a priori knowledge of the device. It is the auxiliary controller that is subjected to

proprietary restrictions. Therefore we could expect the manufacturer to reveal the

parameters of the current injection device (the reactances and time constants of the

physical machine) in the simulation model. The focus of this thesis is, conducting
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small signal analysis of a power system in the presence of black-boxed power system

device models.

1.4 Motivation

As described above, the linear equivalent model of the power system cannot be derived

when there is a black-boxed device, as neither its structure nor the parameters are

known to the user, even to manually linearize the system. Almost all new power

system devices are made available as black-boxed EMT simulation models and it has

driven the power system engineers to either omit the small signal stability analysis

and entirely rely on detailed EMT simulations, or incorporate a "typical" controller

and perform eigenvalue analysis, whose results are not reliable.

Confining to EMT simulations in a power system study, limits the number of

operating scenarios that can be studied, as EMT simulations are time consuming. By

observing only the time domain outputs, important dynamics of the system may be

missed. Authors of [1] reiterate the importance of linear analysis of power systems.

An as-built black-boxed EMT simulation model can be connected to any known

power system and be perturbed to observe the variation of certain variables in the

time domain. This allows the model to be subjected to system identification, hence

the title of this thesis, Simulation Based Methods to Determine Linear Equivalent

Models of Power System Devices. Authors of [1] also present a conceptual process of

identifying data generated with a simulation program, as presented in Fig. 1.2.

Measurement based linear analyses are dependent on the operating point at which

the measurements were done and also limited to observing the frequency and the
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Simulation Program

Time Domain Signal

System Identification Program

Linear State Space

Small Signal Stability Analysis

Fig. 1.2: Conceptual process for small signal stability studies from time domain
simulations [1]

damping of only the excited modes of the system. The motivation of this research

is to explore methods to utilize a priori knowledge of a black-boxed power system

device and modal information extracted from system identification methods, to de-

velop system matrices of the linear model of the device. Such system matrices may

be applied in complete eigenvalue analyses, which give reasonably good insight into

a power system.
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1.5 System Identification Methods in Power Sys-

tem Applications

Existing system identification methods applied in power systems were closely studied

as the research sought to extract advantages of both measurement based and model

based linear analysis techniques.

Applications of system identification in power systems found in literature have

three main motivations, namely:

1. Deriving a reduced equivalent model for a large power system.

2. Online monitoring of power system modal contents for dynamic security.

3. Validating existing power system models.

In both 1 and 2, the modal content (eigenvalues) of the system is identified at a

given operating point. The proposed methods are black-box methods and, utilizing

any a priori knowledge of the system is minimal.

In 3, the model structure is known and, the focus is to estimate the parameters

which may have changed due to aging and undocumented adjustments to the system.

A detailed literature review is presented in Section 3.2.

1.6 Research Goal and Objectives

The goal of this research is to estimate the parameters of a linear equivalent model

of a black-boxed power system device, so that the estimated model parameters can

be used for small signal stability analysis at any operating point of the device. The
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generic schematic of a black-boxed power system model is shown in Fig. 1.3. In

order to achieve this, the auxiliary controller transfer functions have to be separately

identified. The first approach of anybody trying to solve this problem would be

to perform simple system identification between inputs and outputs of each auxiliary

controller block. However, the black-boxed EMT simulation models do not always give

access to intermediate controller state variables. Therefore such a simple approach

would not work.

Fig. 1.3: Generic schematic of the black-box model considered in the research

1.6.1 Research Strategy

The strategy followed in this research is of two steps.

1. Identify the modal content (eigenvalues) of a single machine power system.

The as-built EMT simulation model can be connected to any power system

on a simulation software e.g. PSCAD/EMTDC. The dynamics observed by

connecting such a model to an infinite bus through a short transmission line

are the dynamics of the black boxed model only. The small power system can

be brought to a desired steady state operating point by setting the reference
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points of active and reactive power (for example), to desired values. The modal

content observed by giving a small perturbation to the single-machine-infinite-

bus (SMIB) power system would be the composite modal content contributed

by the current injection device and the auxiliary controllers at the operating

point at which the system was perturbed.

2. Determine an auxiliary controller structure that achieves the same modal con-

tent at different operating points.

Depending on the current injection device, the basic structure of the power sys-

tem device can be determined, even though the model orders are not known.

E.g. for a synchronous machine, it could be concluded that an exciter, a power

system stabilizer and a turbine-governor block would constitute the complete

auxiliary controller. This knowledge can easily be utilized to simplify the prob-

lem. The model orders of each control block differs from each other and their

parameters too. The strategy would be to determine the model order and pa-

rameters of individual controller block.

The nature of the problem allows the following to be utilized in this strategy.

(i) The ability to perturb the system at multiple operating points

The reference values of active power and reactive power can be changed in the

simulation case as desired. Available inputs in the black-boxed model can be

used to perturb the system.

(ii) Data of the current injection device

The current injection device is always a well known device whose models are well

documented. Their parameters are not subjected to proprietary restrictions.
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Therefore, the parameters of the current injection device of the black-box such

as, inertia constant, reactances and other time constants of a machine, can be

assumed to be available to the user.

1.6.2 Research Goal

Fig. 1.3 is the structure of a power system device, made available as a black-boxed

EMT simulation model, that is considered in this thesis. All variables and parameters

inside the "black-box" are NOT accessible to the user of the simulation. The model

comes with some variables accessible from outside the black-box for time domain

analyses. The user has access to some inputs to perturb the model. Parameters of

the current injection device inside the black-box are available to the user. Therefore,

current injection device transfer functions can be calculated.

The goal of this research is to identify the auxiliary controller transfer functions

as shown in the block diagram in Fig. 1.4, so that a complete eigenvalue analysis can

be carried out for a power system that includes the given device.

Fig. 1.4: Schematic of linear model of a power system device
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1.6.3 Research Objectives

(i) To come up with a system identification procedure incorporating a priori knowl-

edge, to identify the equivalent linear model of a single-machine-infinite-bus

system of a synchronous machine with auxiliary controllers.

(ii) To come up with a procedure to perform eigenvalue analysis of a multimachine

power system which includes a black-boxed synchronous machine, at a given

operating point.

(iii) To develop a procedure to accurately identify transfer functions for auxiliary

controllers of a synchronous machine i.e. excitation system, governor-turbine

block and power system stabilizer.

(iv) To extend the procedure of (iii) to accurately identify transfer functions for aux-

iliary controllers of a Doubly Fed Induction Generator (DFIG) Wind Turbine

i.e. grid-side controllers and rotor-side controllers.

1.7 Thesis Outline

A procedure for determining auxiliary controller transfer functions of a black-boxed

power system device has been introduced in this thesis. The procedure focuses on

utilizing a priori knowledge of the power system device along with system identifica-

tion results, in order to achieve the goal of determining auxiliary controller transfer

functions. The ability of a power system device to be divided into two main subsys-

tems i.e. the operating-point-dependent current injection device, and the auxiliary

controller which is operating point independent within a given operating mode, was
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also utilized to generate a linear system of polynomial equations that is solved for

auxiliary transfer function polynomials using system identification results from multi-

ple operating points. The methodology to achieve the research goal presented in this

chapter is developed in the following chapters which have been organized as follow:

Chapter 2 introduces small signal stability assessment of a power system. It

describes the importance of carrying out linear analyses in modern power systems

and elaborates on advantages and additional insights gained from linear analyses as

a compliment to nonlinear power system simulation studies. Chapter 2 also presents

the methodology of a software module developed to incorporate small signal stability

to RSCAD® EMT simulation software. The software module is capable of reading

dynamic data of Library Models used in a simulation case and calculate eigenvalues

and eigenvectors of the case.

Chapter 3 reviews existing power system identification methods and explains the

advantages of Prony Analysis over other methods. Conventional Prony Analysis is

a linear system identification method suitable for modal identification in ringdown

situations. Also, conventional Prony Analysis overfits data with spurious modes.

Chapter 3 combines a method of using an exogenous input for Prony Analysis with a

method to use multiple data windows with expanding lengths, in order to overcome

the shortcomings in the conventional method.

Chpater 4 introduces a novel method to utilize a priori knowledge of the system

to improve the system identification result. Using eigenstructure assignment (ESA),

a fictitious controller is designed for the known current injection device subsystem to

achieve the modes and mode shapes identified from the method introduced in Chapter

3.
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Chapter 5 describes the characteristic of a power system device having an operating-

point-dependent current injection device subsystem and an operating-point-independent

auxiliary controller subsystem. Mason’s Gain Rule is utilized to simplify and decom-

pose a Single Machine Infinite Bus (SMIB) system of a Synchronous Machine into

the known and unknown subsystem transfer functions. An important relationship of

MIMO system transfer functions has been presented as a theorem, whose proof is

presented in Appendix D. The system identification results from multiple operating

points, as described in Chapter 4, have been used in the methodology developed in

Chapter 5 to solve the linear system of polynomial equations in order to determine

the operating-point-independent controller transfer functions.

Chapter 6 extends the methods used in Chapter 5 on a Doubly Fed Induction

Generator (DFIG) wind turbine model. The challenges of applying the proposed

methods to a system with greater complexity than a synchronous machine model have

been presented. A procedure to overcome the challenges, too, has been presented in

Chapter 6, suggesting the applicability of the proposed methodology of this thesis to

complex power system device models.

The conclusions, contributions and suggestions for future work are presented in

Chapter 7.
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Chapter 2

Power System Linearization and
Linear Analysis

As described in Section 1.2, power system linear analyses fall into two main classes,

namely, model based method and measurement based methods. This chapter intro-

duces the concept of linear analysis of power systems and its utility and, focuses on

model based linear analysis. The model based methods involve linearization of the

nonlinear dynamic equations that describe a power system. The measurement based

linear analyses are introduced in Chapter 3

2.1 A Mechanical Analogy

Electromechanical dynamics of a power system are described as analogous to dy-

namics of a multi-mass pendulum system, shown in Fig. 2.1 [9]. While, in detail,

the analogy has many discrepancies, it is a good illustration to grasp the concept of

transient stability and small signal stability of a power system.

The pendulum consists of bobs of different masses, suspended from a network

of elastic strings. The bobs are analogous to generators of the power system with
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Fig. 2.1: Multimass pendulum

different inertia. The elastic strings represent the transmission lines of the power

system. The pendulum system at static steady state represents the power system

operating at steady state. Depending on the weights of the bobs and the topology of

the string connections, all the strings are loaded with a tension below their respective

loading limits, representing the loading of transmission lines of a power system. A

disturbance, such as cutting one of the strings, causes the bobs to start moving.

Depending on the initial topology of network of strings and the masses of the bobs,

the the bobs are subjected to coupled motions. Fluctuations in the tensions of the

strings may cause the strings to violate their loading limits, which may cause breakage

of one or more strings. The system may settle to another static steady state point or,

breakage of strings may cascade until all the bobs are disconnected from the system.

This phenomenon is a classic illustration of dynamics of a power system subsequent to

a disturbance, including that of a cascading failure. The simplicity of this pendulum

system helps to grasp the concept of power system stability.

The bobs have oscillatory motions:

(i) when a relatively small disturbance is given to the system.
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(ii) just before settling to a static steady state, subsequent to a large disturbance

(post fault).

Accordingly, the tensions of the strings too fluctuate in an oscillatory manner. This

motion is analogous to the small signal dynamics of a power system. Motion of each

bob contributes to the resultant oscillation with its own frequency and some motions

maybe tightly coupled. These oscillations are referred to as oscillatory modes and are

represented by pairs of complex eigenvalues of a representative linear model of the

system.

The oscillatory modes may be either well-damped (complex eigenvalues with large

negative real part), low-damped (complex eigenvalues with small negative real part) or

negatively-damped (complex eigenvalues with positive real part). Existence of at least

one negatively damped oscillatory mode would cause in an oscillation whose amplitude

would grow over time and cause the system to collapse. If the linear mathematical

model of the system at the static steady state prior to the small disturbance could be

obtained, the eigenvalues of the system can be calculated and the oscillatory dynamics

could be predicted. In order to obtain the linear model of the pendulum system, the

masses of the bobs, lengths of the strings, spring constants of the strings (dynamic

data) and the initial tensions of the strings at the static steady state (operating point

data) are required. Similarly, reactances, time constants and model structures of

devices and controllers (dynamic data) of the power system and power flow (operating

point) data are required to develop the linear system of a power system.
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2.2 Linear Analysis of the Swing Equation

The swing equation describes the electromechanical dynamics of a power system. Eq.

2.1 is the swing equation for a single machine power system.

PT − PG = 2H
ω0

δ̈ +Dδ̇ (2.1)

where

PT = Turbine power (pu)

PG = Generator power (pu)

H =Inertia constant (s)

ω0 =Synchronous speed (rad/s)

δ =Rotor angle (rad)

D =Damping constant for the generator (s/rad)

It is fair to assume that the transient turbine power is constant. However the

transient generator power is governed by Eq. 2.2.

PG = |V ||E|
X ′d

sin(θ) + |V |
2

2

(
1
Xq

− 1
X ′d

)
sin(2θ) (2.2)

where

V = Terminal voltage of the generator

E = Internal voltage of the generator
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X ′d =d-axis transient reactance

Xq =q-axis reactance

θ =Angle between V and E voltage vectors

The angle θ is a function of δ. For example, for the case of a single machine system,

θ = δ. This leads the swing equation to be a coupled nonlinear differential equation.

There is no analytical solution to this problem. There are two main methods to

analyze this problem, namely the indirect method and the direct method

2.2.1 Nonlinear Analysis

Indirect method

The indirect method is numerically integrating the differential equations from an

initial point. A power system simulation software carries out this function. This is

the only practical method to solve a nonlinear coupled dynamic system, especially

considering the practical size of power systems. The stability of the system may be

determined by visually observing the deviations of state variables in time.

Direct method

The direct method of analyzing a nonlinear coupled dynamic system i.e. a power

system, does not actually solve the system. Instead, the features of various energy

based functions are analyzed to determine the stability of a system. The most popular

application of direct methods in power system is the equal-area-criterion which is

essentially applied to a single machine power system only. Lyapunov method and
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Transient Energy Function (TEF) methods are examples for direct methods that

have been used in power system applications [10, 11, 12, 13].

2.2.2 Linearization

An autonomous dynamic system of nth order can be described by n first order differ-

ential equations given by:

ẋ = f(x,u) (2.3)

where x ∈ Rn is the state vector and u ∈ Rr is the inputs vector.

For a steady state operating point

ẋ = f(x0,u0) = 0 (2.4)

where x0 and u0 are the steady state state and input vectors respectively.

Let ∆ represent a small perturbation to the variables from the steady state values.

x = x0 + ∆x (2.5)

u = u0 + ∆u (2.6)

From Eq. 2.3:

ẋ = f(x0 + ∆x,u0 + ∆u) (2.7)

From Truncated Taylor Series Expansion of the ith differential equation, where higher
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order terms of the complete Taylor’s Series are neglected:

ẋi = ẋi0 + ∆ẋi (2.8)

ẋi = fi(x0,u0) + ∂fi
∂x1

∆x1 + ∂fi
∂x2

∆x2 + ...
∂fi
∂xn

∆xn + ∂fi
∂u1

∆u1 + ∂fi
∂u2

∆u2 + ...
∂fi
∂ur

∆ur

(2.9)

Since ẋi0 = fi(x0,u0), from Eq. 2.8 and 2.9

∆ẋi = ∂fi
∂x1

∆x1 + ∂fi
∂x2

∆x2 + ...
∂fi
∂xn

∆xn + ∂fi
∂u1

∆u1 + ∂fi
∂u2

∆u2 + ...
∂fi
∂ur

∆ur (2.10)

Such a linearization yields the linearized state space

∆ẋ = A∆x + B∆u (2.11)

The outputs of the linear model maybe described by the following state-output

relationship.

∆y = C∆x (2.12)

Linearizing the Swing Equation: Example

Several simplifications have been considered, for simpler demonstration of applying

the above linearization technique to the swing equation in Eq. 2.1 for a single machine

system.

Assuming there is no mechanical damping in the system Eq. 2.1 can be written

as:

PT − PG = 2H
ω0

δ̈ (2.13)
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Neglecting the effect of saliency of the machine, Eq. 2.2 can be written as:

PG = |V ||E|
X ′d

sin(δ) (2.14)

From Truncated Taylor’s Series Expansion shown in Eq. 2.10, Eq. 2.13 can be

linearized as:

∆PT −
(
∂PG
∂δ

)
0

∆δ = 2H
ω0

∆δ̈ (2.15)

Further simplifying the model by assuming the bus voltage magnitude |V | and

internal voltage magnitude |E| are constant during the transients:

(
∂PG
∂δ

)
0

= |V ||E|
X ′d

cos(δ0) (2.16)

∆PT −
|V ||E|
X ′d

cos(δ0)∆δ = 2H
ω0

∆δ̈ (2.17)

Also, for first order differential equation representation:

∆δ̇ = ωr − ω0 = ∆ωr (2.18)

∆δ̈ = ∆ω̇r (2.19)

Therefore the complete linearized swing equation, with the simplifications, is:

 ∆δ̇

∆ω̇r

 =

 0 1
|V ||E|ωr0

2HX′
d
cos(δ0) 0


 ∆δ

∆ωr

+

 0
ω0
2H

∆PT (2.20)
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2.3 Complete Small Signal Stability Analysis of a

Multimachine Power System

The linear model of the power system takes the form of Eq. 2.11 and 2.12. Given the

causal property of a power system, the system is strictly proper. For all power system

output variables i.e. generator speeds, voltages and currents, Eq. 2.12 is valid.

2.3.1 Modal Decomposition of the State Space

The system matrix A describes the coupling between all state variables in the sys-

tem. If there exists a matrix Φ that diagonalizes A by a similarity transform, the

resulting similar matrix is the new system matrix of the system with a basis with

states that are decoupled from each other. The diagonal similar matrix would be

the eigenvalue matrix of the system matrix A and, Φ would be the corresponding

right eigenvector matrix. Such a diagonalization of the system is known as modal

decomposition [14]. Each real eigenvalue represents a stationary mode and each pair

of complex eigenvalues represent an oscillatory mode of the system.

The modal decomposition of a typical linear model of a power system is given

below.

Let the right eigenvector matrix be:

Φ = [ φ1 φ2 ... φn ] (2.21)

where the right eigenvector φi and the corresponding eigenvalue λi has the relation-
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ship:

Aφi = λiφi (2.22)

Also, the left eigenvector matrix Ψ is given by:

Ψ = Φ−1 (2.23)

Let

∆x = Φ∆z (2.24)

Then, from Eq. 2.11 and 2.24

Φ∆ż = AΦ∆x + B∆u (2.25a)

∆ż = Φ−1AΦ∆z + Φ−1B∆u (2.25b)

From the relationship in Eq. 2.22, Λ can be defined as the diagonal matrix of

eigenvalues of A.

∆ż = Λ∆z + ΨB∆u (2.26)

From Eq. 2.12 and 2.24

∆y = CΦ∆z (2.27)

where CΦ can be described as the mode observation matrix.
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2.3.2 Mode Shape and Participation Factors

Mode shape is defined as the "relative activity of state variables when a particular

mode is excited" [3]. From Eq. 2.27 it could be seen that right eigenvector gives the

mode shape.

From Eq. 2.24 and 2.23

∆z = Ψ∆x (2.28)

From Eq. 2.28 it could be seen that the left eigenvector ψTi identifies the weight

of the original state variables displayed in the ith mode. Therefore, pki, the product

of elements of the right and left eigenvectors as given by Eq. 2.29

pki = φkiψ
T
ik (2.29)

where

φki = kth element of right eigenvector φi

ψik = ith element of left eigenvector ψTk

gives the measure of the relative participation of the kth state variable in the ith

mode, and vice versa. This relative measure is defined as the participation factor.

Participation factor analysis is an important part of a complete small signal stability

analysis. It allows to identify the following:

(i) Contribution of machines to the oscillations

(ii) Interactions between different machines
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(iii) Modes contributed by systems other than rotors of the machines

(iv) Modes contributed by controllers and their interactions

2.3.3 Relationship Between Modes and States

Fig 2.2 is a block diagram illustration of a generic dynamic system with feedback

control. A set of linearly independent state variables describes the state space of a

dynamic system. The plant, the transducers and the actuators are usually modeled

using the physics that governs their dynamics. Thus the state variables of the plant

have a quantifiable physical interpretation. The controllers maybe digital implemen-

tations of algorithms, whose state variables may not have a quantifiable physical

interpretation. The system matrix A describes the interrelationship between differ-

ent state variables of the system. It is important to note that any similar matrix

of A, given by T−1AT where T is an arbitrary invertible matrix, also describes the

dynamics of the original state space but the state variables do not necessarily have a

physical meaning. They are any arbitrary linear relationship of state variables of the

original state space.

Plant

Controller Transducer

Actuatorinput output

Fig. 2.2: Generic Control System

In a participation factor analysis, it is important to identify which state variable
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contributes to which mode. In analyzing the participation of controllers in modes,

it is sufficient to identify which controller is participating in what mode. The exact

state variable of a controller does not have any significance as controllers are im-

plementations of algorithms where the resulting state variables are fictitious. It is

fair to attribute the dynamics of transducers and actuators too to the dynamics of

the complete controller. This distinction between plant state variables and controller

state variables is utilized in this research.

2.4 Small Signal Stability Analysis Tool for EMT

Power System Simulation Software

EMT simulation software like PSCAD and RSCAD do not have the capability of

eigenvalue analysis incorporated to them. An attempt to include eigenvalue analysis

into PSCAD has been reported in [15]. SSAT by Powertech Labs is a commercially

available standalone software that performs eigenvalue analysis of power systems.

Input to this software is the power flow data in the RAW file format and dynamic data

in the DYR file format. RAW and DYR are well known file formats of the transient

simulation software, PSS/E. DYR file contains parameters of standard power system

models. This lacks the ability to incorporate user-written models which are not

included in the library.

This section presents a demonstration of incorporating small signal stability anal-

ysis to the EMT simulation software, RSCAD, developed by RTDS Technologies. It

is shown that, it is not essential to access internal workings of the software to per-

form a complete eigenvalue analysis. A separate software module, which runs on

- 29 -



Power System Linearization and Linear Analysis

the MATLAB platform, extracts the network and dynamic data from files generated

by RSCAD in the process of compiling the simulation case. The RSCAD user does

not need to arrange the simulation case in any special way for the purpose of us-

ing this software module. The said software module is referred to as the SSSA Tool

throughout this Chapter.

2.4.1 Data Extraction from the RSCAD Simulation Case

RSCAD - An Overview

RSCAD comprises of two main modules, namely, the Draft Module and the Runtime

Module. The Runtime Module allows the simulation to be controlled either manually

by the user or automatically, using scripts. Monitoring of simulation results and

data acquisition is also a function of the Runtime Module. The Draft Module is the

software where the simulation case is defined. It is a graphical interface where the user

can place power system components chosen from the component-library. The library

includes standard power system device and controller models as well as fundamental

circuit components and fundamental control components i.e. integrators and time-

delay blocks. An initial power flow calculation included in the software initializes the

voltages and angles of all buses. The draft case must be compiled before it is passed

to the simulator for real time simulation, which is then controlled and monitored by

RSCAD Run-time Module.

Basic Structure of a Draft Case

The Draft Case has current injection devices i.e. synchronous generators, STATCOMs

etc, and loads connected to the electrical network. All current injection devices are
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connected to buses in the network. Any bus can have one or more current injection

devices connected to it. The current injection devices have controllers connected

to them. The controllers may be of feedback type with measurements of the own

device bus (local signal feedback) or with remote signal feedback. In terms of the

control action, each control block can be identified with only one current injection

device. Therefore, the control block can be identified using the bus connection of the

associated current injection device. The most straightforward way is to place generic

models on the canvas and build the power system to be studied. Instead of using

generic models the user can also design custom circuit models and control blocks, on

the draft canvas, using the fundamental circuit and controller components available

in the library.

RSCAD Files Available to the User

After running the power flow and compiling a draft case in RSCAD, several files are

generated, to which the user has access. Among these are the RPT file and the DTP

file. These files can be read as text files. The RPT file includes network data in

the form of a converged power flow. The DTP file includes all other data related

to the draft case, including all dynamic data. The dynamic data is written to the

file as clusters of datasets for each component that constitutes the draft case. E.g.

data of each synchronous generator in the draft case appears as a single cluster in

the DTP file. Also, a simple summation block appears as a single cluster. These

data sets include a unique keyword that identifies the power system or controller

component. The parameters of each component are organized in an order unique

to that component. Identifying the keyword and extracting data clusters of each
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component and then identifying the unique order in which the data set is written

and storing them in the SSSA Tool software module are the key steps of the data

extraction process. The SSSA Tool also writes the extracted data to RAW and DYR

formats so the data of RSCAD case can be fed to simulation software like PSS/E,

SSAT and TGSSR.

Generic Models

In this chpater, the term generic model is used to identify mathematical models of

power system components and control blocks whose models are well known and often

included in libraries of power system simulation software (e.g. 6th order round rotor

synchronous generator model, GENROU). Dataset for a generic model in the RSCAD

case can be readily identified in the DTP file by the specific keyword for that model.

Datasets of current injection devices and control blocks include the parameters of the

model and the bus which it is connected to. Since the structure of the generic model is

known, the linearized dynamic equations can be written in state space representation.

Data Extraction

The RPT and DTP files are read word by word, by the file-read function of the

SSSA Tool. All words are stored sequentially. Then keywords for different types of

components are searched for. Upon finding keywords, different functions act upon

the extracted sequence of words, in order to extract the data from the unique order

in which the parameters and the bus number information are written in the DTP file.
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Formulation of Linearized State Space from Extracted Data

The current injection device and its controllers together can be identified as the device.

The devices can be identified with the bus it is connected to. The extracted data is

then passed to different functions to determine the coefficients of the device equations

i.e. AD, BD, ED, CD and DD. Then the linearized state space for the multi-machine

power system is developed.

2.4.2 Prototype Test Results of SSSA Tool

The IEEE benchmark 12-bus test system is used to test the prototype of the software

module. The prototype software module is able to extract the network data and

dynamic data. The test system is implemented on RSCAD and compiled. The lin-

earized system has 41 states hence 41 eigenvalues are to be calculated. The SSSA Tool

was run and the eigenvalues obtained are plotted on Fig. 2.3 against the eigenvalues

obtained from SSAT®.

The RAW file and the DYR file generated by PSS/E software for the power system

with the same parameters, were identical to the same type of files generated by the

SSSA Tool. This validates the data extraction process. As seen on Fig. 2.3, the SSSA

Tool calculates the same eigenvalues as SSAT ® does. This validates the SSSA Tool’s

multi-machine power system small signal stability analysis for the limited number of

generic models it can currently handle.
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Fig. 2.3: Validation of eigenvalues obtained from SSSA Tool against SSAT®

2.4.3 Inclusion of User-Written Control Blocks to Eigenvalue

Analysis

As described earlier, RSCAD users can build custom controllers using fundamental

control blocks from the RSCAD library. The prototype of the SSSA Tool has the

ability to extract data of fundamental control blocks and include them in the eigen-

value analysis. The prototype software can identify the transfer function components

and summing junctions. Unlike generic models, the datasets of these fundamental
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control blocks in the DTP file do not identify themselves with the current injection

device they are associated with. Instead, the datasets include information of the sig-

nal flow. Therefore, it is required to store all the signal variables in the draft case and

map them to the state variables to determine the topology of custom control blocks.

Signal variables are all the available inputs and outputs of generic models and fun-

damental control blocks. The signal variable names are assigned, either manually by

the user or automatically by RSCAD. In order to incorporate these custom control

blocks in the state-space of the linearized power system, dynamic equations related

to the fundamental control blocks need to be determined. The procedure followed by

SSSA Tool is given in the flowchart in Fig. 2.4. The example provided below shows

how custom control blocks are used in place of a generic exciter model found in the

library. Fig. 2.5 shows the RSCAD Draft view of using a generic model of an exciter

from the Generator Controls Library and Fig. 2.6 shows the same exciter modeled

using fundamental control blocks, excluding the nonlinear limiters.

Example

The control system shown in Fig. 2.6 is considered. It has two time-delay blocks and

one lead-lag block. Signal variables Vt, p, q, r, Vref and Efd are shown on the figure.

Eq. 2.30 and 2.31 are included in the SSSA Tool as attributes of the generic

functions for Time-Delay Block and Lead-Lag Block respectively. Whenever the sim-

ulation case includes any of these control blocks, these equations are used to develop

the linearized state-space.

∆ẏ1 = −1
T

∆y1 + G

T
∆u1 (2.30)
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Read DTP file

Generate database of all fun-
damental control blocks

Determine the topology of control
blocks by mapping the signal variables

Aggregate control blocks to deter-
mine the complete control struc-
ture for each power system device

Incorporate dynamic equations of
the controller to the device equa-

tions and determine system matrices

Determine the total system matrix

Fig. 2.4: Procedure of incorporating fundamental control blocks to the linearized
power system, in SSSA Tool

∆ẏ2 = −1
T1

∆y2 + G2

T1
∆u2 + G2T2

T1
∆u̇2 (2.31)

where

y1, y2 = outputs

u1, u2 = inputs

T, T1, T2 = time constants
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Fig. 2.5: RSCAD Draft view of ESAC4A generic exciter model connected to a
synchronous generator

G1, G2 = gains

The SSSA Tool uses information in tables 2.1 and 2.2 and apply the appropriate

parameters in the Eq. 2.30 and 2.31 and generates the system shown in Eq. 2.32,

which is part of the device equations for generator associated with the control system.


∆ṗ

∆ṗ

∆Ėfd

 =


−1
TR

0 0
−GA

TR

−1
TA

0

0 G1
T1
− G1T2

T1TA

−1
T1




∆p

∆r

∆Efd

+


1
TR

0

0 GA

TA

0 GAG1T2
TAT1


 ∆Vt

∆Vref


(2.32)

Subsequently, the device matrices including custom control blocks are processed,

to derive the system matrix.

The prototype SSSA Tool was validated for inclusion of custom control blocks,

by replacing all generic models of exciters in the test system with their respective
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Table 2.1: Database generated for the control system in Fig. 2.6

Component ID Block 1 Block 1 Block 1 Block 1
Component Type Time-Delay Summing Time-Delay Lead-Lag
Parameters G = 1 - G = GA G = G1

T = TR T = TA T1 = T1
T2 = T2

No. of States 1 0 1 1
Input Signal Variables Vt p, Vref q r
Output Signal Variables p q r Efd

Table 2.2: Signal Variable data for control system in Fig. 2.6

Signal Variable Associated Bus External Input Gain
Vt Bus 1 - +1
p - - -1
Vref - Yes +1
q - - +1
r - - +1
Efd Bus 1 - +1
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Fig. 2.6: RSCAD Draft view of ESAC4A type exciter (excluding limiters), built
using fundamental control blocks, connected to a synchronous generator

custom control blocks (as in Fig. 2.6) and comparing the final system matrices. The

exact same system matrix was achieved.

2.4.4 Common Protocol for Further Development of SSSA

Tool

In order to include all generic models available in RSCAD in the SSSA Tool, each

generic model should be linearized manually and included in the SSSA Tool library.

Each component may be added as a function file to the SSSA Tool. The functions

need to be written with correct sequence of inputs and outputs.

2.5 Chapter Summary

A mechanical analogy was used in this chapter to explain transients and small signal

dynamics of a power system. The methodology to develop the small signal model
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is explained. The methodology of a software module developed to incorporate small

signal stability analysis to RSCAD EMT simulation software has been presented. The

software module can only perform linear analysis of simulation cases that use only

generic library models. While the importance of complementing small signal stability

analyses with EMT simulations of power systems is elaborated, the exercise demon-

strates the usability of an inbuilt small signal stability tool in an EMT simulation

software. The software tool’s applicability is limited to simulation cases with only

generic library models. In the following chapters, a procedure to determine the linear

models of black-boxed power system device simulation models is developed.
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Chapter 3

Transfer Function Identification by
Expanding Window Prony Analysis

3.1 History

History of System Identification Methods (SIM) in power systems and power system

components goes to as far as 1930s. Open circuit and short circuit tests were carried

out on a synchronous machine to determine its parameters i.e. direct and quadrature

axes reactances and time constants, as reported in a classical paper by Wright in

1931 [16]. A large body of literature on system identification of more complex power

system components, including controllers, started appearing in late 1960s. Estima-

tion of the transfer function of the excitation system of a synchronous machine, using

measurements, is presented in [17]. A pseudo-random binary signal was used as the

input in [18], to identify the total transfer function and the subsystem transfer func-

tions of a synchronous machine. These early works were mainly focused on parameter

estimation using field measurements. They lacked the use of advanced computing and

advanced signal processing algorithms available today.
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3.2 Applications of System Identification in Power

Systems

In Section 1.5 a list of different motivations for use of system identification in power

system applications is given. A literature review of these applications is presented in

this section.

3.2.1 Deriving reduced equivalent models for large power

systems

When simulating a very large power system of tens of thousands of nodes, the com-

putation burden is very high, hence the long time taken for simulation. Distant or

external parts of the power system cannot be neglected because of their contribu-

tion to the dynamics of the system i.e. oscillations. A reduced linear model of such

a distant or external system may replace the large system. In order to determine

the linear equivalent model, two approaches may be used. One is the calculation of

the state space model of the external system using Taylor Series Expansion method,

which requires all data of the system [19]. The other approach is system identification

of the large system which reveals the low-damped modal content in the power system.

Authors of [19] have summarized techniques that have been developed and published

since the introduction of Prony Analysis to power system application by Dr. J.F.

Hauer in 1990, until 2012. (Details of Prony Analysis is given in Section 3.3)

Auto Regressive Moving Average (ARMA) linear identification method [20] and

Prony Analysis in power system applications, have been compared in [21]. It concludes

that Prony Analysis has more numerical robustness in the algorithm while ARMA is
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more simple. It recognizes that both methods identifies spurious modes which need to

be carefully removed from the final linear model. This is caused by the "overfitting"

done by the two algorithms. In [22], Prony Analysis’s superiority over ARMA is

presented.

A powerful alternative to Prony Analysis has been presented in [23]. The proposed

algorithm has been named as Minimum Realization Algorithm in [23]. In subsequent

papers [24, 25] the same algorithm has been referred to as Matrix Minimal Realization

and Eigensystem Realization Algorithm (ERA). ERA had previously been applied in

aerospace applications [19]. A formal mathematical comparison between ERA and

Prony Analysis has not been done as yet. However, observers claim that the difference

between the two methods are only superficial [23, 24]. The ability to form a Multi-

input-Multi-output (MIMO) state space from ERA has been claimed as an advantage

over Prony Analysis. However, the modal content identified by both methods are the

same [25].

Steiglitz-McBride Algorithm has been used in [26] for identification of low-order

linear power system models from EMT simulations. The paper claims that it has

similar performance to Prony Analysis. However, in a performance comparison done

between Steiglitz-McBride Algorithm, ERA and Prony Analysis in [27], it has been

firmly concluded that ERA and Prony are superior identification methods in power

system applications over Steiglitz-McBride Algorithm. It has been reported that the

performance of ERA and Prony Analysis are similar [27]. Prony Analysis and ERA

have been tested in noisy environments and an algorithm has been proposed to remove

the effects of noise and to remove spurious modes [28].

In more recent publications, MIMO system identification has gained more at-
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tention. The pioneer work related to MIMO linear identification in power systems

has been presented in [29]. It is a subspace identification method. In [30], a MIMO

transfer function identification based on multichannel ARMAX method is proposed.

Authors of [31], a very recent paper, compares the two algorithms, among other

things. In more recent publications, methods of utilizing PMU data for MIMO linear

system identification has been presented. It should be noted that the MIMO methods

require a probing signal to the power system and the state variables in the derived

state space does not represent any physical state but fictitious states whose physical

meaning cannot be determined. In other words, the basis of the derived state space

has no physical meaning.

The nature of the problem addressed in this research can be described as taking

the form of recovering the linear state space of a system. The preferred approach for

such a problem is subspace identification [32]. Subspace identification methods i.e.

N4SID [33] and, recursive stochastic subspace identification [34], have been employed

to identify a state space for a power system. Subspace methods only allow to identify

the modes and mode shapes of the system at the given operating point. The states

realized in subspace methods lack a physical description. All these methods reported

in the literature lack the ability to incorporate any a-priori knowledge of the system

[35].

3.2.2 Online monitoring of power system modal contents for

dynamic security assessment

Most of the recent literature related to system identification of power systems focus

on online monitoring of modes in the system. The purpose is to identify insufficiently
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damped oscillatory modes, especially, electromechanical modes. Such monitoring

requires fast calculation of modes but only the low damped critical modes are of

interest.

Prony Analysis, has been proposed for the purpose of oscillation monitoring for

dynamic security assessment of power systems[36, 37, 38]. A modified form of Prony

Algorithm, used as the candidate System Identification Method in this thesis, is

presented in detail, in Section 3.3.

Kalman filter uses an auto-regressive (AR) model to approximate the observed

data. The coefficients of the AR model are determined such that the error between the

actual value and the predicted value by the model is minimized. This is achieved using

a recursive algorithm. Once the coefficients are found, the roots of the characteristic

equation give the eigenvalues of the system. Thus, the Kalman filter algorithm can

be used to determine the modal content in the output signals of transient simulation

programs. A detailed comparison between the Kalman filters and the Prony analysis

can be found in [39].

Kalman filter algorithm has been used in [40], to track the most dominant oscil-

latory mode in the real-time environment. In [41], the algorithm has been improved

to track multiple oscillatory modes.

Reference [42] presents an algorithm using the Fourier Transform (FT) to de-

termine the frequencies and damping ratios of the dominant modes present in the

outputs of transient simulations. First, the frequency content of a ring-down oscil-

lation is obtained via the frequency spectrum. Based on the dominant frequency,

the length of a data window and the gap between the adjacent data windows are

determined. FT is applied on these multiple data windows and the real part of the
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eigenvalue associated with the oscillation mode is determined by taking the ratio of

the FTs at the selected oscillation frequency.

The damping ratio estimations of this approach are sensitive to the length and

the separation between the data windows. Furthermore, the presence of multiple

modes in the ring-down oscillation interferes on the calculated values. Therefore, it is

recommended to eliminate the neighbouring model interactions before the analysis.

An improved algorithm using the FT applied on multiple measurements in power

systems is proposed in [43] to monitor the power system oscillations in real-time. It

is shown in [43] that the damping ratio of an oscillatory mode can be determined as

the rate of decay of its energy.

The discrete short time Fourier transform (STFT) is essentially a discrete FT of

a sampled signal over a short time data window. Thus, at each time instant, the

STFT is related with the FT of the signal in the vicinity of that time instant, which

makes it an appropriate tool to determine the time-dependent variation of a spectral

content of a signal. The usage of STFT to determine the time-frequency distribution

of energy of electromechanical oscillations is given in [44]. The frequencies of the

dominant modes are identified by the peaks of the energy spectrum. A scenario of

oscillatory instability is represented by an unbounded increase in the kinetic energy

determined at the dominant frequency. This method is more suitable to observe the

patterns of system dynamic behaviour. Nevertheless, it lacks providing an accurate

damping estimation.
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3.2.3 Validating existing power system models

One of the main motivations of using system identification in power systems is vali-

dating models of the existing power system devices in the system. This can extend

to validating the as-built detailed simulation model built to represent a new power

system device.

Power system devices, once installed, can be subjected to changes due to aging

etc. Their controller parameters too may be changed without proper documentation.

When a power system simulation does not agree with the actual dynamic response, the

result may be catastrophic. In [45], the discrepancy between the simulation and the

actual system response, at the 1996 system outage in theWSCC electric power system,

affecting 7.49 million customers in North America, has been reported. The importance

of validating the power system models to achieve a good fit with the measured data

is elaborated. Report of the IEEE PES Task Force on Wind Generation Model

Validation 2011 [46] sets out 3 steps for the model validation process.

Step 1 Define the model and model structure to be used for modeling the device(s)

under study - in the case of this research: a wind turbine generator (or an

entire wind power plant).

Step 2 Collect recorded/measured data from the actual device(s) to be modeled. Such

data is typically collected either from a set of “staged” tests (e.g., purposely

injecting a small change in the reference set-point of a controller such as the

voltage set-point of a voltage regulator) or through online monitoring of the

device to see its response to naturally occurring disturbances (e.g., in the case

of this research: to see the response of the wind power plant to disturbances on
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the electric power system, etc.).

Step 3 Attempt to simulate the same set of tests/events as occurred/ forced during the

data collection process using the model(s) in step 1 and compare the simulated

response of the device to the recorded response in step 2. If the two responses

match adequately, we have a validated model.

This approach is prima facie similar to the research strategy set out in Section

1.6.1. However, defining the model structure (step 1) limits the degree of freedom of

the order of the system. Attempting to achieve a good fit (step 3) as suggested is

more of a trial-and-error tuning procedure. These 3 steps with Levenberg-Marquardt-

Fletcher algorithm have been used to find the parameters of a doubly-fed induction

generator [47].

In [48], a method to use wide area measurements to identify the need to re-tune

the models is suggested. In [49] a hybrid method to bridge the simulation world and

the measurement world is suggested to identify the need to re-tune power system

models. In [50] PMU measurements are used to re-tune the models of a practical

system. In [51], simulation-measurement hybrid method with PMU measurements

are used to re-tune a synchronous machine model.

Given Prony Analysis and its time-tested application in power systems as de-

scribed above, it was chosen as the candidate system identification method for the

purpose of this research. “Prony analysis is a technique for modeling sampled data as

a linear combination of exponentials” [52]. An improved system identification method

based on Prony analysis has been proposed to identify transfer functions for inputs

of a given class. For the purpose of this research, the method proposed in [53] has

been further improved using concepts presented in [38].
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3.3 Transfer Function Identification from Prony

Analysis

Prony Analysis is considered one of the widely used power system identification al-

gorithms. Initial theory of Prony Analysis was presented by G.R.B. Prony in 1795.

"Its practical use has awaited the digital computer and means for dealing with some

inherent ill-conditioned mathematics", states J.F. Hauer in [54].

3.3.1 Theory of Prony Analysis

Prony Analysis is essentially a curve fitting method that fits a time domain signal

y(t) to a weighted sum of exponential terms of the form

y(t) =
n∑
i=1

Rie
λit (3.1)

In discrete form, 3.1 takes the form

y(k) =
n∑
i=1

Riz
k
i (3.2)

where

y(k), y(t) = Time-domain signal (discrete and continuous time)

Ri = Complex amplitude of the ith exponent

λi =Continuous-time mode

zi =Discrete-time mode
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n =Model order

The application of Prony’s method in the modal identification of the problem this

research is tackling, is developed from Eq. 3.3 to Eq. 3.9.

Let the auto-regressive model be described as:

y(k) = a1y(k − 1) + a2y(k − 2) + ...any(k − n) (3.3)

then, Eq. 3.3 can be applied to form the linear set of equations, where N is the

number of sample points.



y(n+ 0) y(n− 1) ... y(1)

y(n+ 1) y(n+ 0) ... y(2)

... ... ... ...

y(N − 1) y(N − 2) ... y(N − n)





a1

a2

...

an


=



y(n+ 1)

y(n+ 2)

...

y(N)


(3.4)

Eq. 3.4 is a set of overdetermined linear equations which can be solved for the

coefficients vector [ a1 a2 ... an ]T . The discrete time (z-domain) modes are the

roots of the polynomial

zn − a1z
n−1 − ...− an = 0 (3.5)

From the z-domain modes, continuous time (s-plane) modes can be calculated as

follows:

λi = loge(zi)/∆t (3.6)

where ∆t is the sampling time of the signal.
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Frequency ωi and damping ratio ζi of each mode are given as follows:

ωi = Im(λi) rad/s (3.7)

ζi = −Re(λi)
|λi|

× 100% (3.8)

The complex amplitudes Ri can then be calculated by solving the linear set of

equations: 

z0
1 z0

2 ... z0
n

z1
1 z1

2 ... z1
n

... ... ... ...

zN−1
1 zN−1

2 ... zN−1
n





R1

R2

...

Rn


=



y(1)

y(2)

...

y(N)


(3.9)

For the best fit, it is recommended to choose the model order n ≈ N/2, but

n < N/2.

It is clear that the best fit occurs at a very high model order. Most of the

modes calculated from this method do not represent actual modes of the system

(spurious modes). It is suggested to choose the modes with large amplitudes |Ri|,

which represent the mode strengths [22]. Threshold of the mode strength is to be

chosen by the user. Using engineering intuition, modes with unlikely frequencies can

be omitted. It is observed that many spurious modes have very high frequencies.

3.3.2 Including an Exogenous Input for Transfer Function

Identification from Prony Analysis

Prony Analysis presented in Section 3.3.1 above, assumes that the output y(t) is

dependent only on past values of the output. A modification to the Prony model has
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been proposed in [53] to include a certain class of input signals in the analysis, so

that the transfer function can be identified.

The class of input signals is described in Laplace domain by:

U(s) =

(
c0 + c1e

−sD1 + c2e
−sD2 + ...+ cke

−sDk

)
s− λn+1

(3.10)

where Di < Di+1 and ci are real coefficients.

The input is a summation of signals with the same pole and with different delays.

The n+1 subscript of the pole λn+1 ensures that it is different from the distinct poles

in the system that is being identified, as described in Eq. 3.1. An example input

signal would be a finite pulse stream with different delays as shown in Fig. 3.1, which

could be described by:

U(s) =

(
1− 2e−sτ + 2e−s2τ + ...+ 2.(−1)ke−skτ

)
s

(3.11)

A finite pulse stream is a viable excitation input for system identification in power

systems. Governor speed reference and exciter voltage reference are examples of such

inputs. Throughout the rest of this subsection, the TFI algorithm is presented with

an exogenous input of k
2 pulses with a magnitude of 1p.u. and a duty cycle of τ .

Let G(s) be the system transfer function, that needs to be identified.

Y (s) = G(s)U(s) (3.12)

where U(s) is the input defined in Eq. 3.11.
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Fig. 3.1: Exogenous Input Signal for Prony Analysis

Partial fraction decomposition yields

Y (s) =
(
1− 2e−sτ + 2e−s.2τ + ...+ e−skτ

)(Qn+1

s
+

n∑
i=1

Qi

s− λi

)
(3.13)

where

Qi = Ri

λi
(3.14)

Qn+1 = −
n∑
i=1

Qi (3.15)
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Inverse Laplace transform of Eq. 3.13 would be:

y(t) =
(
Qn+1 +

n∑
i=1

Qie
λit

)
u(t)− 2

(
Qn+1 +

n∑
i=1

Qie
λi(t−τ)

)
u(t− τ) + ...

+
(
Qn+1 +

n∑
i=1

Qie
λi(t−kτ)

)
u(t− kτ) (3.16)

For causality, t >= kτ , then Eq. 3.16 can be rewritten as:

y(t) = Q1

(
1 +

k−1∑
i=1

2.(−1)ie−λ1.iτ + e−λ1.kτ

)
eλ1t

+Q2

(
1 +

k−1∑
i=1

2.(−1)ie−λ2.iτ + e−λ2.kτ

)
eλ2t+

...+Qn

(
1 +

k−1∑
i=1

2.(−1)ie−λn.iτ + e−λn.kτ

)
eλnt (3.17)

It is not possible to apply Prony analysis described in Section 3.3.1 directly to the

output described in Eq. 3.17. However, if we consider the output signal just after the

finite input pulse stream, i.e. after a delay of kτ , the delayed output can be described

by v(h) as follows.

Let h = t− kτ and v(h) = y(h+ kτ)

v(h) = Q1

(
1 +

k−1∑
i=1

2.(−1)ieλ1τ(k−i) + 1
)
eλ1h+Q2

(
1 +

k∑
i=1

2.(−1)ieλ2τ(k−i) + 1
)
eλ2h+

...+Qn

(
1 +

k∑
i=1

2.(−1)ieλnτ(k−i) + 1
)
eλnh (3.18)

- 54 -



Transfer Function Identification by Expanding Window Prony Analysis

v(h) = Q1

(
k−1∑
i=0

2.(−1)ieλ1τ(k−i)
)
eλ1h +Q2

(
k∑
i=0

2.(−1)ieλ2τ(k−i)
)
eλ2h+

...+Qn

(
k∑
i=0

2.(−1)ieλnτ(k−i)
)
eλnh (3.19)

For h >= 0 Eq. 3.18 can be rewritten as:

v̂(t) =
n+1∑
i=1

Bje
λikτ (3.20)

where

Bj = Qj

(
k−1∑
i=0

2.(−1)ieλih(k−i)
)

(3.21)

and from Eq. 3.14

Qj = Rj

λj
(3.22)

From Eq. 3.21 and Eq. 3.22, the transfer function residues can be obtained as

Rj = Bjλj∑k−1
i=0 2 · (−1)ieλjh(k−i) (3.23)

The representation in Eq. 3.20 is the same as the Prony model given in Eq. 3.1.

Therefore, Bj and λj can be found using the procedure described in Section 3.3.1.
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3.3.3 Expanding-Window Prony Analysis with Exogenous In-

put

In the recent paper [38], a simple improvement to the conventional Prony Analysis

is suggested in order to determine true modes of a ringdown power system signal.

As shown in Fig. 3.2 the length of the data window, on which Prony Analysis is

performed, is extended and Prony Analysis is repeated. This is done for several

expanding data window lengths. Each Prony Analysis overfits the signal in the data

window. Each overfitting has true modes and spurious modes. While each data

window must have the true modes in them repeatedly, the spurious modes do not

repeat. Instead of relying on the mode strength calculation, this method ensures

identification of all excited true modes in the data window, including those having a

low mode strength.

Time / (s)

S
ig

na
l M

ag
ni

tu
de

Data Window 1

Data Window 2

Data Window N

Fig. 3.2: Illustration of a power system signal subjected to multiple Prony Analyses
with expanding window lengths
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According to the research strategy explained in Section 1.6.1, it is important to

identify all modes in the system. Therefore this improved Prony Analysis is suitable

to identify all modes including the less excited and the less observed.

The transfer function identification method explained in Section 3.3.2 was tested

for the "Expanding Window" method given in [38].

3.3.4 Limitations of Expanding-Window Prony Analysis

Excessive data points in the signal

EMT simulation time step for successful simulation of power systems is in the order of

50µs. Especially when the devices have power electronic switching components, the

required simulation time step can be as small as 10µs. An electromechanical mode

in the power system can have frequencies as low as 0.1Hz. In order to conform to

the Nyquist criterion, the minimum data window length of the system identification

process should be half the period of the minimum frequency. Therefore, a data

window of at least 5s should be chosen for the Prony Analysis. In a general case of

the simulation time step being 50µs, the total number of data points for the shortest

required data window is 1× 105 samples. This many data points causes solving Eq.

3.4 and 3.9 very time consuming.

Fast decaying stationary modes

Power system signals have fast decaying stationary modes represented by negative

real eigenvalues. These highly damped modes may disappear during the first few

data points in the data window. The effect of highly damped stationary modes on

stability of a system is minimal. However, their inclusion improves the accuracy of
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the reconstructed signal. A priori knowledge of the system was utilized to incorporate

some of the fast decaying modes in the system identification, and it is described in

Chapter 4.

3.4 Chapter Summary

This chapter reviews existing system identification methods used in power system

applications. It identifies merits of Prony Analysis against other available methods.

Two short comings of Prony Analysis were overcome by improvements to Prony Anal-

ysis proposed in literature. Conventional Prony Analysis is an autoregressive type

linear system identification method. It is important to identify transfer functions of

the system. A specific type of exogenous input is chosen to perturb the system, as

suggested in the literature for successful transfer function identification. Conventional

Prony Analysis overfits the signal with spurious modes. In order to identify the true

modes of the system, an expanding window algorithm has been chosen along with

the exogenous input. However, capturing fast decaying modes is still a challenge. In

order to proceed with the research strategy laid out in Chapter 1, it is important that

all modes contributed by the current injection device subsystem, including those de-

caying fast, are in the identified transfer functions. A methodology to utilize a priori

knowledge of the system with the use of eigenstructure assignment, that ensures the

identification of modes contributed by the current injection device, is presented in

the next chapter.
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Chapter 4

Utilizing A Priori Knowledge to
Improve Modal Identification

4.1 Introduction

As explained in Chapter 1, for a successful small signal stability analysis, all models

and parameters of all devices and network elements must be available [3]. If any

of the devices has an unknown controller, the conventional model-based small signal

stability assessment procedure fails.

A power system consists of a large number of devices and network elements that

have been incrementally installed over decades. Data of these devices are usually well

documented. With the increased interest in renewable energy sources, distributed

energy sources are being added to the existing network i.e. wind power plants and

solar power plants. These distributed generators have new control schemes which

are generally not made public. However, the current injection element of these new

devices, especially in the case of wind turbines, is still a well-known machine, i.e.

an induction machine. Even if the manufacturers have proprietary concerns over the
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controllers, the name plate data and the dynamic data of the machine can be made

available to the customer.

Out of the large body of previous work on system identification of power systems,

only a limited number of work attempt to identify an unknown device i.e. a black

boxed model, in a way that it could be included in a model-based small signal stability

study [55].

As laid out in Chapter 1, the first part of the research strategy is to identify all

modes of a black-boxed device utilizing a priori knowledge of the black boxed device,

namely, data of the current injection device. The Expanding Window Prony Analysis

with an Exogenous Input presented in Chapter 3 ensures that the overfitting spurious

modes are omitted from the system identification result. However, Prony Analysis

method alone does not capture highly damped modes. It is important to capture

all modes contributed by the current injection device subsystem, as current injection

device transfer functions calculated from available dynamic data are used as a priori

knowledge of the system in the latter stages of the proposed procedure.

This chapter proposes a method that involves designing a fictitious controller to

the known current injection device in such a way the modes identified by the Ex-

panding Window Prony Analysis are achieved. The fictitious controller is designed

using Eigenstructure Assignment (ESA). ESA is a controller tuning procedure that

allows to place eigenvalues almost at any point on the s-plane. However, in order to

match the system identification results, the parameter selection for ESA has to be

done within strict constraints which leads to a highly nonlinear optimization prob-

lem, as explained in the following sections. A meta-heuristic optimization method

is proposed for the nonlinear optimization required in the process and the candidate
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algorithm chosen is Simulated Annealing.

4.2 Application of Eigenstructure Assignment

The eigenstructure of a linear system is the combination of its eigenvalues and eigen-

vectors. A set of eigenvalues and corresponding eigenvectors uniquely defines the

system matrix of a linear state space system. Therefore, if the eigenstructure of a

system can be determined, the system matrix of the system can be calculated.

ω

Fig. 4.1: Single Machine Infinite Bus (SMIB) test system of synchronous machine
(SM)

Let us consider a synchronous machine single machine infinity bus (SMIB) system

with auxiliary controllers as shown in Fig. 4.1. The linearized system of the test

system, with machine states and the controller states separated, can be derived as

follow:

Let

xg ∈ Rng =Vector of machine state variables

i ∈ R2 =Current injection from the machine
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ug ∈ Rrg =Input vector to the machine

v ∈ R2 =voltage of the machine bus

xc ∈ Rnc =Vector of controller state variables

uc ∈ Rrc =Input vector to the controller

Yeq ∈ R2×2 =Equivalent admittance matrix

Ag ∈ Rng×ng ,Eg ∈ Rng×2,Bg ∈ Rng×rg ,C ∈ R2×ng ,D ∈ R2×2,Ac ∈ Rnc×nc ,Ec ∈ Rnc×2

=Corresponding coefficient matrices.

AD ∈ Rng×ng =System matrix for machine-only

M1 ∈ Rng×nc ,M2 ∈ Rnc×ng =Coefficient submatrix with interconnections be-

tween the controller and machine

∆ denotes small variations

∆ẋg = Ag∆xg + Eg∆i + Bg∆ug (4.1a)

∆i = C∆xg + D∆v (4.1b)

∆yg = Cg∆xg (4.1c)

∆i = Yeq∆v (4.1d)

∆ẋc = Ac∆xc + Ec∆i + Bc∆uc (4.1e)

∆yc = Cc∆xc (4.1f)

AD = Ag + Eg(C + D(Yeq −D)−1C) (4.1g)
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From equations 4.1

∆ẋg = AD∆xg + Bg∆ug (4.2a)

∆ẋc = Ac∆xc + Ec(C + D(Yeq −D)−1C)∆xg + Bc∆uc (4.2b)

The complete state space shall be written as

 ∆ẋg

∆ẋc

 =

 AD M1

M2 Ac


 ∆xg

∆xc

+ Bc∆uc (4.3)

If the model data of the machine and the network data are known, the sub matrix

AD is known. All other elements of the system matrix are unknown. If the order of

the controller is unknown, the order of complete system matrix is unknown.

If the complete eigenstructure of the system is known, all elements of the sys-

tem matrix can be calculated. If only the eigenvalues are known, a set of fictitious

controllers with states xc can be designed to achieve the same eigenvalues. Such

knowledge of eigenvalues can be obtained from system identification procedure pro-

posed in Section 3.3.3. One of the controllers in the set of fictitious controllers is the

actual controller in the system, exactly as modeled. Such a controller gives the eigen-

structure that can calculate the basis on which the system was originally modeled.

Due to limitations in the Prony Analysis method presented in Section 3.3.4, all

the eigenvalues of a power system device cannot be identified. The motive of this

section is to use an optimization procedure to design a fictitious controller that best

matches the combination of a priori knowledge of submatrixAD and the knowledge of
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modes and mode shapes obtained from Prony Analysis. The preferred control design

method is Parametric Eigenstructure Assignment which is a control design procedure

that assigns a limited number of eigenvalues and eigenvectors to a system.

4.2.1 Parametric Eigenstructure Assignment

Eigenstructure assignment has been developed since 1960s as a linear control design

method. The focus is to assign preferred eigenvalues to a system by choosing suitable

eigenvectors. Choice of eigenvectors is usually not unique. In [56], a parametric ap-

proach has been proposed. The theory behind parametric eigenstructure assignment

is given in Section 4.3.

In short, parametric eigenstructure assignment calculates a feedback gain matrix

K(FP ) using a matrix of arbitrary parameter vectors FP as given in Eq. 4.11.

4.3 Parametric Right Eigenstructure Assignment

When the open loop system is given by

ẋ = Ax + Bu (4.4a)

y = Cx (4.4b)

Where x ∈ Rn, u ∈ Rr and y ∈ Rm are the state vector, input vector and output

vector respectively, where:

n = order of the system
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r = number of inputs to the system

m = number of outputs available for feedback

A = system matrix

B = input matrix

C = output matrix

A feedback control law K ∈ Rr×m can be defined as:

u(t) = K y(t) (4.5)

Then the closed loop system is:

ẋ = (A + BKC)x (4.6)

Let vi be a right eigenvector corresponding to the eigenvalue λi. Then:

(A + BKC)vi = λivi (4.7)

By defining a parameter vector fi as:

fi = KCvi (4.8)

vi can be presented in terms of free parameters as follows:

vi = (λiI−A)−1Bfi (4.9)
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Let:

p = number of eigenvalues to be assigned

When the number of eigenvalues that need to be assigned is less than the number

of outputs available for feedback i.e. p < m, the eigenvalues can be assigned by

merely choosing a feedback matrix K.

Let:

VP = [v1,v2, ...vp]

FP = [f1, f2, ...fp]

Then K can be calculated as:

K = FP (CVP )−1 (4.11)

In order to determineK, the parameter vectors, f1, f2, ...fp should be chosen under

three mild conditions, namely:

(i) |CVP | 6= 0

(ii) fi ∈ Rr if λi ∈ R

(iii) fj = f*i ∈ Cr if λi ∈ C where i and j represent the complex conjugate pair

indices

However, if the number of eigenvalues that needs to be assigned is more than

the number of available outputs for feedback, an additional controller known as a
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dynamic compensator has to be introduced. Schematic of a Dynamic Compensator

feedback control system is given in Fig. 4.2.

Fig. 4.2: Schematic of a Dynamic Compensator Feedback Control System

The dynamic compensator is defined as:

z(t) = D z(t) + E y(t) (4.12a)

u(t) = F z(t) + G y(t) (4.12b)

Where z(t) is the state vector of the dynamic compensator.

It should be noted that the equivalent input vector to the state space of the

dynamic compensator is y(t), which represents the outputs of the plant that goes in

to the dynamic compensator as inputs. The equivalent outputs of the state space is

u(t), which represents the output of the dynamic compensator that goes in to the

plant according to the control law.

˙̄x = Āx̄ + B̄ū (4.13a)

ȳ = C̄x̄ (4.13b)
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Where:

Ā =

 A 0

0 0



B̄ =

 B 0

0 I



C̄ =

 C 0

0 I



K̄ =

 G F

E D



The choice of parameters for FP determines the feedback matrix K̄ hence the closed

loop system matrix.

A* = Ā + B̄K̄C̄ (4.15)

4.3.1 Choosing candidate parameter vectors for eigenstruc-

ture assignment

Theoretically, the choice of the parameter vectors fi, for successful eigenstructure

assignment, is only constrained by the three constraints given above. From Eq. 4.9,

it is evident that resulting eigenvectors from distinct parameter vectors may not be

distinct. In order to limit the search space to the unit hypersphere of eigenvectors,

the following manipulation is done to the parameter vectors.
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For all real valued eigenvalues to be assigned let:

fi real = θi

and for all complex valued eigenvalue pairs let the parameter vector pairs be:

fi complex = αi + j.βi

f*i complex = αi − j.βi

where, αi ∈ Rr,βi ∈ Rr and θi ∈ Rr and j =
√
−1.

Therefore,

the total number of parameters (number of elements in FP) = r × p

The initial values for these r × p parameters can be randomly chosen from a

uniform distribution. The following steps were followed.

Step 1

Generate random numbers for vectors θi,αi and βi for i = 1, 2, ...p between 0 and 1

with a resolution of 1× 10−4.

The randomly chosen initial parameters within the mild constraints described in

Section 4.3 above, still achieve the target eigenvalues in the system. The range and

resolution of the distribution, from which the parameters are chosen, limit the number

of solutions in the search domain.
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Step 2

Calculate the candidate eigenvector for each parameter vector fi from Eq. 4.9

Step 3

Convert the eigenvector to its unit eigenvector by dividing by the norm of the eigen-

vector.
vi
||vi||

= (λiI−A)−1B
(

fi
||vi||

)
(4.17)

Step 4

Candidate parameter vector f̄i is given by

f̄i =
(

fi
||vi||

)
(4.18)

Choosing fi from a set of uniformly distributed random numbers within limits, as

described in Step 1 ensures that the vector f̄i is a randomly chosen vector from the

hypersphere, which is the search domain for the optimization problem described in

Section 4.4

4.3.2 Non-uniqueness of the Solution of the Optimization

Problem

Let us consider an analytically derived linear dynamic system given by Eq 4.4. When

developing a state space model of a dynamic system, every state has a physical mean-

ing. The derived linear state space can be described by a state space of a different
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basis. The change of basis can be done by any invertible matrix T as given in Eq

4.19.

Let x̃ = Tx

˙̃x(t) = T−1ATx̃(t) + T−1Bu(t) (4.19a)

y(t) = CTx̃(t) (4.19b)

and

˙̃x(t) = Ãx̃(t) + B̃u(t) (4.20a)

y(t) = C̃x̃(t) (4.20b)

where

Ã = T−1AT

B̃ = T−1B

C̃ = CT

In order to calculate the system matrix A with the same basis with physical

meaning, the exact normalized eigenvector matrix Φ (or Ψ for that matter) has to

be known. In the eigenstructure assignment procedure presented above, the eigen-

vector vi is determined by the choice of the parameter vector fi as given in Eq 4.9.

When calculating the system matrix using the procedure, basis of the states of the

plant are preserved, but the basis of the controller states cannot be preserved. There-

fore, physical meanings of controller states that were considered during the analytical
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derivation of the linear system are no longer valid for the new controller states. Con-

troller states are mostly signals and their physical meanings are not very important in

a small signal analysis, other than the information about which controller subsystem

it belongs to i.e. exciter, governor etc. The fact that there is no unique basis that has

to be achieved makes the optimization problem in Eq. 4.27 to have multiple solutions.

Finding any one of these solutions is successfully solving the optimization problem.

4.3.3 Choosing Free Parameters Using Optimization

The choice of free parameters in the above procedure is the discretion of the user.

Any set of parameters chosen under the given mild conditions results in a system that

has the preferred eigenvalues. Apart from the assigned eigenvalues, the system has

other eigenvalues too. In order to choose from all possible sets of free parameters,

further constraints should be imposed.

If the user has knowledge of the mode shapes of the modes he is assigning using

eigenstructure assignment, such mode shapes can be translated in to the objective

function of an optimization procedure.

4.4 Objective Function

The rationale of choosing the objective function is that the mode shapes of the iden-

tified modes should be the same as the mode shapes of the system with the fictitious

controller.

The residues of the p number of modes identified by system identification are the

mode shapes. Mode shape has the magnitude (strength) and the angle (phase) of

- 72 -



Utilizing A Priori Knowledge to Improve Modal Identification

each mode.

Let Rik be the residue of the ith mode of the kth output. Then |Rik| is the mode

strength and arg(Rik) is the mode phase.

Mode strengths of all identified modes at output k, from i = 1, 2, . . . p can be

represented by a normalized vector γk.

γk = [|R1k|, |R2k|...|Rpk|]
||[|R1k|, |R2k|...|Rpk|]||

(4.22)

When a fictitious controller assigns identified eigenvalues to the system using

eigenstructure assignment, the closed loop eigenvalue can be categorized into three

categories as follow:

(i) Eigenvalues identified and assigned (denoted by Λ1)

(ii) Eigenvalues that are more damped than the assigned eigenvalues (denoted by

Λ2)

(iii) Eigenvalues that are less or as equally damped as the assigned eigenvalues(denoted

by Λ3)

The modal decomposition of the system can be given by the following partitioned

representation

˙̄z =


Λ1 0 0

0 Λ2 0

0 0 Λ3

 z̄ + ΨBu (4.23a)

ȳ = C̄
[

Φ1 Φ2 Φ3

]
z̄ (4.23b)
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Where Ψ and Φ are the left and right eigenvector matrices respectively and z̄ is

the modal state vector. Φ is partitioned appropriately in Eq 4.23.

Normalized mode strength vector of the assigned eigenvalues in the jth output

can be given by a similar vector as γk.

ζk = [|c̄kφ11|, |c̄kφ12|...|c̄kφ1p|]
||[|c̄kφ11|, |c̄kφ12|...|c̄kφ1p|]||

(4.24)

For the designed system to have the same behaviour as the identified system, a

necessary condition would be, the two vectors γk and ζk to coincide. For the minimum

Euclidean distance between the two vectors the following minimization should be

achieved.

min
Fp

{
m∑
i=1
||γk − ζk||

}
(4.25)

where FP is the matrix of free parameters which are the decision variables of the

optimization problem.

The objective function should also account for the additional modes introduced to

the system. If these additional modes have more strength than those assigned modes,

the controllers that caused to result in such systems should be avoided. The rationale

of this measure is that the modes with the greatest strength must be identified in

the identification procedure. In order to avoid such fictitious controllers, a penalty

function is proposed.

P =


h, if max(real(Λ2)) > min(real(Λ1))

0, otherwise
(4.26)
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Where h is a relatively large number e.g. 100.

Therefore, the complete proposed objective function is

min
Fp

E = min
Fp

{
m∑
i=1
||γi − ζi||+ P

}
(4.27)

The relationship between E and elements of FP is nonlinear and the problem is

non-convex. Therefore, a meta-heuristic optimization method has to be chosen to

solve the minimization problem. The subject of non-convex optimization is a devel-

oping one and numerous algorithms have been developed. There are many algorithms

that mimic natural processes. (e.g. genetic evolution, swarming movements of animal

species and metal annealing process.) The efficiency of the algorithm depends on the

problem it is applied to. Each algorithm has room for variations and choice of param-

eters that will further improve its efficiency in solving a given problem. This research

does not investigate methods and parameters to improve the efficiency of solving the

given optimization problem. The time it takes to achieve a feasible solution is not

considered as a major constraint. Simulated Annealing was chosen as a candidate

meta-heuristic optimization procedure. Theory and application of Simulated Anneal-

ing is given in Appendix A.

4.5 Application to Synchronous Machine SMIB Sys-

tem

In setting up the test case we assume that the EMT simulation model of the device

is provided by the vendor as a black box with a limited number of output and inputs.
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Such a model is connected to an infinite bus in the EMT program and time-domain

outputs are observed. Schematic of the simulated test system is given in Fig. 4.10.

Components inside the dashed-line box are considered to be in a black box. The

generator speed and other terminal measurements such as voltage, current and power

are available to the user as output signals. Voltage reference input to the exciter and

the speed reference input to the governor are also available to the user.

The proposed method was applied to the test system. Fig. 4.3 summarizes the

procedure that was followed. The network and dynamic data for the test system are

given in the Appendix C.

The system was simulated on PSCAD/EMTDC software with an integration time

step of 50µs. A small disturbance was given to the system by giving a 0.25pu pulse for

30 ms to the Vref input of the exciter. The speed of the generator and the terminal

voltage were the only outputs observed. The output signals was decimated to a

sampling time of 10ms. The smallest data window was 1.7s and five expanding data

windows were chosen with an increment of 0.2s. Thus the largest data window was

2.5s. The identification procedure was carried out on both output signals and the

union of sets of modes identified from the two different outputs were accepted as true

modes of the system.

Outcome of Step 1 is the first column of Table 4.1. In Step 2, the synchronous

machine is modeled as shown in Fig. 4.4. Known parameters of the synchronous

machine are included in the subsystem labeled as “SM”. All the unknown dynamics

are modeled by the dynamic compensator. The goal is to ensure that the closed

loop system has the eigenvalues identified in Step 1. Simulated annealing algorithm,

described in Appendix A, was performed multiple times with varying initial temper-
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Fig. 4.3: Procedure to identify highly damped modes of a SMIB system incorpo-
rating a priori knowledge of the current injection device
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atures between 1000 and 10000 with varying maximum number of iterations as the

stopping criteria to minimize the objective function given in Eq. 4.27. The most effi-

cient convergence was shown at the intial temperature 2000 with a maximum allowed

iterations 6000 as shown in Fig. 4.5.

Fig. 4.4: Single Machine Infinite Bus (SMIB) test system of synchronous machine
with the designed controller

Fig. 4.5: Variation of the objective function value of the simulated annealing
optimization procedure in Step 1

Calculated eigenvalues of the state space realized using eigenstructure assignment
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Table 4.1: Eigenvalues identified from the time domain simulation and eigenvalues
determined by the proposed method

Identified Modes Modes Determined by Prony+ESA Method

−0.6356± j12.6332 −0.6356± j12.6332 - Mode A

−3.529 −3.529 - Mode B

−0.5018 −0.5018 - Mode C

−0.1989 −0.1989 - Mode D

−0.9721 −0.9721 - Mode E

−0.3747± j0.5850 −0.3747± j0.5850 - Mode F

−37.3402 - Mode G

−28.1941 - Mode H

−43.7292 - Mode I

−3.6404 - Mode J

are reported in the 2nd column of Table 4.1.

For the purpose of comparison, the actual system was linearized using the data

given in the Appendix C. The calculated eigenvalues and their participating dominant

states are shown in Table 4.2.

Comparing the eigenvalues shown in Tables 4.1 and 4.2 it can be seen that the

eigenvalues of the realized system are of 3 types:

(i) Modes identified by the Prony method - Modes A to F.

(ii) Modes that were not identified by the identification process but are numerically

close to theoretically calculated eigenvalues of the original system - Modes G

and H.
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Table 4.2: Theoretical modes in the system

Mode No. Mode Dominant States

1 −100.2823 Exciter

2 −49.855 Exciter

3 −36.9351 D-axis damper winding

4 −28.2409 Q-axis damper winding 2

5, 6 −0.6392± j12.5693 Rotor speed and rotor angle

7 −3.4893 Q-axis damper winding 1

8 −2.0000 Governor turbine

9 −0.9763 Governor turbine

10 −0.5002 Stabilizer

11, 12 −0.1999± j0.0047 Stabilizer

13, 14 −0.3696± j0.5729 Exciter and generator field winding

(iii) Modes that are not found in the original linearized system - Modes I and J.

The state space realized by eigenstructure assignment has 12 states. According

to the partitioning in Eq. 4.2 the first 6 states are the states of the synchronous

machine. The rest are those of the dynamic compensator. Table 4.3 gives the list of

states of the realized state space.

Fig. 4.6 shows state participation in modes described by above (ii) and (iii).

The following deductions can be made by observing Fig. 4.6.

a Participation of modes categorized by above (ii) are very close to that of the

original system and are highly damped modes participated by the generator.

b Modes categorized in above (iii) are mainly participated by the dynamic com-
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Table 4.3: States of the state space realized using eigenstructure assignment

State No. Description

1 Rotor speed

2 Rotor angle

3 Field winding

4 D-axis damper winding

5 Q-axis damper winding 1

6 Q-axis damper winding 2

7-12 Dynamic compensator states

pensator states and can be treated as spurious modes realized by the eigen-

structure assignment procedure.

Thus, modes described in above (a) are accepted as true modes along with the modes

identified by the identification process. The user has the discretion either to accept or

decline modes described in (b). Residues of these true modes are recalculated using

Eq. 3.9.

Fig. 4.7 presents comparison between speed deviations of the theoretical linear

system and that of the nonlinear EMT simulation response. The responses are al-

most perfectly matching. Therefore the theoretical linear system response is used to

compare the Multiple-Window Prony Analysis and the proposed method.

In conventional Prony analysis, the time domain signal is overfit by fictitious

modes. The multiple-window Prony method extracts less damped true modes as

described in Section 3.3.3. As a result of missing highly damped modes that exist

in the system, the comparison between the time domain responses of the system
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Fig. 4.6: Participation of each state of the realized state space in modes that were
not initially identified by the Prony Method (States 1-6: generator states, States
7-12: controller states; Modes (G)-(J) ref. Table 4.1)

realized by multiple-window Prony method and the theoretically linearized system

is not perfectly matching. (See Fig. 4.8-a). The method proposed in this chapter

determines additional true modes (Modes G and H) and results in a better match in

time domain responses. (See Fig. 4.8-b).

Fig. 4.9 presents the voltage deviation response comparison for theoretical linear

system and the response of the system determined by the proposed method.
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Fig. 4.7: Comparison of EMT simulation time domain output with the response
of theoretical linear system

Fig. 4.8: Comparison of (a) Multiple-Window Prony Method and (b) the proposed
method responses against the theoretical linear system response

4.6 Incorporating a Black Boxed Device to a Lin-

ear Analysis of a Power System

This section extends the concepts of Section 4.5 to a multi-machine system. The same

three step procedure was carried out. In the first step, time domain output signals
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Fig. 4.9: Comparison of voltage deviation response of theoretical linear system
with the the proposed method response

from generator buses of an EMT simulation of the multimachine power system are

subjected to a multiple window Prony method presented in Section 3.3.3 and low

damped modes of the system are identified. In the second step, a fictitious controller

is designed using Eigenstructure Assignment (ESA). In the third step a state space

is realized for the full system.
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Fig. 4.10: IEEE 12-bus test system with bus 12 generator black-boxed

4.6.1 System Identification

In setting up the test case we assume that the EMT simulation model of the device is

provided by the vendor as a black box with a limited number of outputs and inputs.

Generator 4, connected to bus 12 of the IEEE 12-bus system [57], is considered to

be a black-box. The generator speed (ω) and other terminal measurements such as

voltage (V ), current (I) and power of the black-box model are available to the user

as output signals. The system is simulated in the EMT program and time-domain

outputs at its three generator buses, 10, 11 and 12, are observed. Schematic of the

simulated test system is shown in Fig. 4.10.

The system was simulated on PSCAD/EMTDC software with an integration time

step of 50µs. A 0.1pu pulse of 20ms duration was given to the mechanical torque input
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r

t

Fig. 4.11: Black box modeled as a synchronous machine with a dynamic compen-
sator, connected to the larger system

of generator 3 (G3). Generator speeds and voltages at all three generator buses were

observed. The smallest data window was 1.7s and five expanding data windows were

chosen with an increment of 0.2s. Thus the largest data window was 2.5s

As the first step of the methodology, the Expanding-Window Prony method de-

scribed in Section 3.3.3 was performed on the time domain signals of the test system.

The method identifies the true modes of the system and their relative strength at

each measuring point (generator buses). Outcome of Step 1 is reported in Table 4.4.

4.6.2 Eigenstructure Assignment

In Step 2, the test system, including the black-box synchronous machine, is modeled

as shown in Fig. 4.11. Known parameters of the synchronous machine are included

in the subsystem labeled as “SM". All the unknown dynamics are modeled by the

dynamic compensator. The goal is to ensure that the closed loop system has the

eigenvalues identified in Step 1.

Eigenstructure Assignment procedure with optimization proposed in Sections 4.3

and 4.4 was used to achieve this controller design goal. The most efficient convergence
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of the Simulated Annealing used, was achieved with an initial temperature of 9000

with 10000 maximum iterations as the stopping criterion.

4.6.3 Results

Table 4.4: Eigenvalues and mode strengths identified from the time domain sim-
ulation

Eigenvalue
Relative Mode Strength in Signals

Speed Measurements Voltage Measurements

Bus10 Bus11 Bus12* Bus10 Bus11 Bus12*

−0.313± j8.60 0.047 1 0.219 0.566 1 0.043

−0.342± j5.96 0.188 0.182 0.587 0.261 0.377 0.134

−0.285± j5.03 0.563 0.344 0.433 0.334 0.31 0.083

−2.913 0.047 0.027 0.029 0.338 0.179 0.047

−2.595 0.006 0.026 0.044 0.023 0.142 0.078

−2.267 0.01 0.031 0.011 0.013 0.321 0.036

−1.698 0.009 0.077 0.003 0.001 0.255 0.007

−0.645 0.021 0.038 0.128 0.002 0.003 0.006

*Measurements of the black-box generator bus

Mode identification results reported in Table 4.4 were used for the Step 2 de-

scribed above. Eigenvalues and participation factors can be conveniently evaluated

from the system realized in Step 3. All electromechanical modes so calculated are

reported in Table 4.5 along with their mode shapes in each generator speed output.

For the purpose of comparison, the actual system was linearized using the actual

data including the system inside the black box . The calculated electromechanical
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Table 4.5: Electromechanical modes evaluated for the system realized from the
proposed method

Frequency

(Hz)

Damping

(%)
Participation

Mode Shapes

Bus10 (G2) Bus11 (G3) Bus12 (G4*)

Mag. Ang. Mag. Ang. Mag. Ang.

1.37 3.63 G3, G4 0.047 94.738 1 -67.973 0.219 111.14

0.95 6.93 G2, G4 0.188 50.958 0.182 -85.196 0.587 -103.973

0.80 5.09 G2, G4 0.563 79.713 0.344 82.891 0.433 71.939

*Mode shapes for the black-box generator bus

Table 4.6: Electromechanical modes analytically evaluated from the actual system

Frequency

(Hz)

Damping

(%)
Participation

Mode Shapes

Bus10 (G2) Bus11 (G3) Bus12 (G4)

Mag. Ang. Mag. Ang. Mag. Ang.

1.33 3.58 G3, G4 0.047 93.61 1 -72.72 0.22 110.7

0.93 5.79 G2, G4 0.189 50.79 0.19 -91.90 0.63 -103.97

0.78 5.90 G2, G4 0.579 78.27 0.34 78.06 0.45 71.93

modes, their participating states and mode shapes are shown in Table 4.6.

Comparing the eigenvalues shown in Tables 4.5 and 4.6 it can be seen that the

the realized system represents the actual system with sufficient accuracy.

4.7 Discussion

It is not possible to linearize a power system if complete model data of all devices in the

system are available. In case of a black-boxed synchronous machine model, even if the

auxiliary controller model data are concealed due to proprietary reasons, the physical
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parameters of the synchronous generator can be requested from the manufacturer.

This data is utilized in the proposed method as a priori knowledge of the system.

Using assumed or typical parameters for the unknown auxiliary controller may not

result in the actual modes in the system, especially when the unknown auxiliary

controller is responsible for damping certain modes in the system.

The black-boxed EMT model of the synchronous machine can be connected to

the multi-machine system and perform time domain simulations. Some of the low

damped modes of the system can be identified using the system identification pro-

cedure. A fictitious controller is designed to represent the auxiliary controller, using

eigenstructure assignment, to achieve the identified modes for the system and the

complete linear system can be realized. The fictitious controller is valid only for the

operating point at which the modes were identified. The realized system gives the

same modes and mode strengths identified in the EMT simulation. A modal analysis

of the realized system gives participation factors for actual states in the system. This

is in contrast to the subspace methods described in the introduction.

The subspace identification methods only give the participating locations of the

identified modes, but not the actual states of the system. Subspace methods may

be effective in case none of the model data is available. However, power systems are

usually well documented and most of the model data pertaining to the system are

available. Subspace methods are not capable of incorporating any a priori knowledge

of the system.
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4.8 Chapter Summary

This chapter introduced a novel method to incorporate a priori knowledge of a power

system device to improve its transfer function identification. The expanding window

Prony Analysis described in Chapter 3 was used to identify low damped modes a

SMIB system of a synchronous machine. It was assumed that the current injection

device data are available to the user but the auxiliary controller parameters are not.

Then a fictitious controller was designed for the current injection device. The design

objective was to achieve the same eigenstructure (modes and mode shapes) of the

identified system. This was achieved by eigenstructure assignment (ESA). The choice

of free parameter of the ESA is to be done within constraints which leads to a highly

nonlinear optimization problem. Simulated Annealing was chosen as the candidate

meta heuristic optimization method for the purpose. The realized system so realized

includes all modes, including highly damped modes, of the current injection device

along with the identified low damped modes.

This chapter also dealt with the problem of performing eigenvalue analysis of a

multi-machine power system in the absence of complete model data of one of the

synchronous machines, which is available only as a black boxed EMT simulation

model. The specific case where the generator time constants and reactances are known

but information of the auxiliary controllers are unknown, has been considered.
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Chapter 5

Determining Auxiliary Controller
Transfer Functions of a
Synchronous Machine Model

5.1 Introduction

In small signal stability programs, the power system is modeled as a network with

current injection devices connected to it. Each current injection device can be sepa-

rated into two subsystems, namely, the device characteristics and the auxiliary con-

trollers. The device characteristics are usually described by the time constants and

reactances (in case of generators). Auxiliary controllers can be assumed to be linear

and operating-point-independent in the normal operating region of the power sys-

tem device. If the transfer functions for each auxiliary controller and the transfer

functions for the current injection device can be separately determined, the complete

linear system can be aggregated into a state-space and complete eigenvalue analysis

is possible for the complete system. Given the dynamic data and the operating point

data of the machine, the transfer functions for machine can be obtained. Section 5.1
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describes the challenge of identifying an operating-point-independent model even if

the machine transfer functions are known and describes how to utilize the distinct dy-

namics at distinct operating points to obtain operating-point-independent auxiliary

controller transfer functions.

In this chapter, a black boxed EMT simulation model of a synchronous machine

is considered. Modes from a finite number of operating points of the system, are

identified using a Prony Analysis method augmented with eigenstructure assignment,

presented in Chapter 4 [58, 59]. Mason’s Gain Rule is used to separate the subsystems

in the simulation case. A linear system of polynomial equations are generated using

data from multiple operating points and they are solved for the auxiliary controller

transfer function polynomials.

5.2 Utilizing the Operating Point Dependency of

Power System Devices

Consider a simple single-input-single-output (SISO) feedback system given in Fig.

5.1.

Fig. 5.1: Simple SISO system with feedback

Let a(q) be a known scalar gain at the qth operating point. y(q)(t) is the output

obtained at the qth operating point for input u(t). k and f are unknown scalar gains
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that need to be estimated. The user can observe y(q)(t) and can control u(t). y(q)(t)

and u(t) are the only signals the user has access to. Using system identification, the

transfer relationship between inputs and outputs can be found as:

y(q)(t) = θ(q)u(t) (5.1)

where

θ(q) = ka(q)

1 + kfa(q) (5.2)

θ(q) is dependent on the operating point. k and f cannot be separately determined

by estimating θ(q) at only one operating point, even if a(q) is known. The operating-

point-dependency of gain a(q) allows to obtain the following linear relationship for

two operating points for q = 1, 2.

 θ(1)

θ(2)

 =

 a(1) −a(1)θ(1)

a(2) −a(2)θ(2)


︸ ︷︷ ︸

M

 k

kf

 (5.3)

If M is well conditioned, a unique solution for
[
k kf

]T
exists.

A power system device has the special feature of having some subsystems operating-

point-dependent (e.g. the machine), while other subsystems are operating-point-

independent (e.g. auxiliary controllers). This Section presents a novel approach,

utilizing the said feature, to determine operating-point-independent transfer func-

tions of individual subsystems. The model structure of a power system device is

more complex than the example presented in Fig. 5.1. Therefore, Mason’s Gain Rule

has been carefully used to decompose a complex system into known and unknown
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subsystems, in order to apply the simple principle presented above.

5.3 Mathematical Preliminaries

Let there be a linear combination of polynomials Ai(s), Xi(s) and Bi(s) of variable

s:

[
A1(s) A2(s) ... Ap(s)

]


X1(s)

X2(s)

...

Xp(s)


= B(s) (5.4)

where

Ai(s) =
m∑
k=0

aiks
k ; Bi(s) =

n∑
k=0

biks
k ; and Xi(s) =

n−m∑
k=0

xiks
k

If orders of Ai(s) and Bi(s) are known to be m and n respectively, order of Xi(s)

is n−m. The polynomial relationship in Eq. 5.4 can be given by convolution matrices

and vectors as follows:

[
A1 A2 ... Ap

]


x1

x2

...

xp


= b (5.5)

where:

Ai = the convolution matrix of Ai(s) of appropriate dimensions
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xi = the vector of coefficients of the polynomial Xi(s)

b = the vector of coefficients of the polynomial B(s)

Similarly, a set of linear equations of polynomials such as:



A
(1)
1 A

(1)
2 ... A(1)

p

A
(2)
1 A

(2)
2 ... A(2)

p

... ... ... ...

A
(q)
1 A

(q)
2 ... A(q)

p





X1

X2

...

Xp


=



B(1)

B(2)

...

B(q)


(5.6)

can be represented by vectors and convolution matrices, as an extension of Eq. 5.5,

as follows.



A(1)
1 A(1)

2 ... A(1)
p

A(2)
1 A(2)

2 ... A(2)
p

... ... ... ...

A(q)
1 A(q)

2 ... A(q)
p


︸ ︷︷ ︸

A



x1

x2

...

xp


︸ ︷︷ ︸

x

=



b(1)

b(2)

...

b(q)


(5.7)

If A is well conditioned, then, a unique solution for x can be found.

In the following sections, we show that a linearized power system at q operating

points, can be represented by a system of Laplacian Polynomials as in Eq. 5.6, where

Xi(s) represents unknown, operating-point-independent subsystems; A(j)
i (s) repre-

sents known, operating-point-dependent subsystems, and B(j) represents the known

characteristic polynomial of the system at the jth operating point. The unknown

subsystems can be determined by solving Eq. 5.7.
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5.4 Problem Statement

In this chapter a black-boxed EMT simulation model of a synchronous machine with

a limited number of inputs and outputs, is considered. As shown in Fig. 5.2, the

EMT simulation model is connected to an infinite bus through a transformer and

a short transmission line. Outputs such as generator speed ω(t) and other terminal

measurements such as voltage V (t), current I (t), active power P(t) and reactive power

Q(t), and voltage reference input to the exciter V ref(t) and speed reference input to

the governor ωref (t) are available to the user. All time constants and reactances of

the synchronous machine (SM) included in the model are also available to the user.

Auxiliary

controller

Fig. 5.2: Test power system with the black boxed synchronous machine connected

Parameters of the open-loop synchronous machine (SM) are known. Therefore

its MIMO transfer function matrix can be determined by linearizing the nonlinear

equations that describe synchronous machines, as described in [3]. The input/output

transfer relationship of the MIMO block of Fig. 5.3 is given by Eq. 5.8. Note that

the denominator of all transfer functions in the MIMO system are the same.

 ∆ω(t)

∆V (t)

 =


NM1(s)
DM (s)

NM2(s)
DM (s)

NM3(s)
DM (s)

NM4(s)
DM (s)


 ∆Tm(t)

∆Efd(t)

 (5.8)

A generic auxiliary controller structure as shown in Fig 5.3 is considered. The

system consists of an exciter, a power system stabilizer (PSS) and a turbine-governor.

- 96 -



Determining Auxiliary Controller Transfer Functions of a Synchronous Machine Model

 

 !  !

 
 

 
MIMO

Transfer

function

matrix of 

Sync.

Machine
NP(s)
DP(s)

NE(s)
DE(s)

1
DV(s)

NT(s)
DT(s)

Fig. 5.3: Assumed model structure for the black-boxed device

The objective is to determine the unknown transfer functions
(
NE

DE

)
,
(
NT

DT

)
,
(
NP

DP

)
and

(
1
DV

)
, in such a way that their parameters could be used in a complete eigenvalue

analysis of a power system consisting of the black-boxed synchronous machine model.

5.5 Subsystem Transfer Functions of a Synchronous

Machine

5.5.1 Application of Mason’s Gain Rule

All variables in this section, unless defined, refer to the Section 5.4, specifically Fig.

5.3 and Eq. 5.8.

Let Gω(s) be the transfer function that describes the rotor speed response of the

closed loop SMIB synchronous machine system, to a small perturbation of the speed

reference input to the governor. The block diagram of the closed loop system is given

in Fig.5.3. Applying Mason’s Gain Rule [60, 61], Gω(s) can be expressed in terms

of numerator and denominator polynomials of subsystem transfer functions (denoted

- 97 -



Determining Auxiliary Controller Transfer Functions of a Synchronous Machine Model

by N and D with subscripts) as shown in Eq 5.9.

Gω = Nω

Dtotal

(5.9)

where

Nω =
NTNM1DVDEDP

+NENTDPU
(5.10)

Dtotal =

DMDTDVDEDP

+NTNM1DVDEDP

−NTNEDPU

−NPNENM2DTDV

+NENM4DTDP

(5.11)

Polynomial U in Eq. 5.10 and Eq. 5.11 is defined as:

U = NM1NM4 −NM3NM2

DM

(5.12)

Eq. 5.12 takes the form of the determinant of a square transfer function matrix.

This is according to the following Theorem 1, of which the proof is given in Appendix

D.

Theorem 1 For a state space described by A ∈ Rn×n, B ∈ Rn×r and C ∈ Rr×n,
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ẋ = Ax + Bu (5.13)

y = Cx (5.14)

With the transfer function matrix:

W = C(Is−A)−1B (5.15)

we have:

det(W) = p(s)
det(sI−A) (5.16)

where p(s) is a polynomial in s of order n− r.

Numerator and denominator polynomials of transfer function Gω, can be written

as a set of polynomial equations in terms of subsystem transfer functions.

From Eq. 5.10 to Eq. 5.11:

H(s)v(s) =

 Nω

Dtotal

 (5.17)

where

H(s) =

 0 NM1 U 0 0

DM NM1 −U −NM2 NM4

 (5.18)
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v(s) =



X1

X2

X3

X4

X5


=



DTDVDEDP

NTDVDEDP

NTNEDP

NPNEDTDV

NEDTDP


(5.19)

For the considered model structure, there are five unknowns in the polynomial

equations derived from Mason’s Gain Rule. Each Xk, for k = [1, 2, ...5], is a poly-

nomial. If the order of polynomials in H(s) is m and the order of the characteristic

polynomial Dtotal is n, then the order of each element in v(s) is n −m. Polynomial

equation in Eq. 5.17 can be represented by the corresponding convolution matrices

and vectors as:

 0 NM1 U 0 0

DM NM1 −U −NM2 NM4

x = b(k) (5.20)

This is analogous to Eq. 5.5. The system can be solved for x by developing a

system as given in Eq. 5.7, from data for q operating points, where q is the least

number of operating points required to obtain a full rank system of equations. From

the solutions for x, elements of v(s) can be determined.

Let Γ(.) be the operator that minimally realizes a rational polynomial function

and then normalizes it to the highest order term of the denominator polynomial. By

operating Γ(.) on elements of v(s), as shown in Eq. 5.21, an intermediate set of
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transfer functions can be calculated.

Na(s)
Da(s)

= Γ
(
X2

X1

)
(5.21a)

Nb(s)
Db(s)

= Γ
(
X3

X2

)
(5.21b)

Nc(s)
Dc(s)

= Γ
(
X4

X1

)
(5.21c)

From Eq. 5.17 and Eq. 5.21 the numerator and denominator polynomials of

auxiliary controller transfer functions can be uniquely calculated as presented in Eq.

5.22.

NT = Na (5.22a)

DT = Da (5.22b)

NE = Nb (5.22c)

DP = X5

NbDa

(5.22d)

DE = Dc

DP

(5.22e)

DV = Db

DE

(5.22f)

NP = Nc

Nb

(5.22g)

5.5.2 Transfer Function Identification

To solve Eq. 5.7, the coefficient matrix A, is calculated from the machine parameters

that are assumed to be available. Vector b is determined by the numerator and
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denominator polynomials of the total system transfer function. TheProny analysis

procedure augmented with eigenstructure assignment (ESA Prony Method) presented

in Chapter 4 was used to identify the transfer function of the system shown in Fig.

5.2. The reasons for selecting this procedure over others are as follow:

• The procedure assures identifying true modes in the system and avoid over-

fitting fictitious modes.

• The procedure assures that all modes dominantly contributed by the machine,

including the highly damped machine-modes, are identified.

The ESA Prony Method may still fail to identify modes contributed by the aux-

iliary controller. The effect of failure to identify modes is discussed in Section 5.7.

The proposed procedure has been summarized by a flowchart given in Fig. 5.4.

5.6 Test System and Results

The system in Fig. 5.2, which is the same as the test system in Fig. 4.1, was simulated

on PSCAD/EMTDC software with an integration time step of 50µs. Parameters for

the test system are given in Appendix C. It is assumed that the components and

signals inside the grayed box in Fig. 5.2, are not accessible to the user. Terminal

quantities and rotor speed are accessible outputs. Exciter voltage reference and gov-

ernor speed reference are accessible inputs. A small disturbance was given to the

system by giving a 0.25pu pulse for 25ms to the ωref input of the governor. The

speed of the generator and the terminal voltage were observed. The output signals

was decimated to a sampling time of 10ms. The multiple window Prony Analysis
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augmented with eigenstructure assignment presented in Chapter 4 was used to de-

termine the transfer functions of the system at operating points given in Table 5.1.

These candidate operating points were randomly chosen from a uniformly distributed

set of operating points, within the operating region of the machine.

Table 5.1: Data of candidate operating points at which modes of the system were
identified

Operating Point 1 2 3 4 5 6 7 8 9 10 11

Active Power (pu) 0.81 0.21 0.39 0.37 0.27 0.71 0.66 0.28 0.33 0.65 0.64

Reactive Power (pu) 0.22 0.66 0.66 0.09 0.48 0.12 0.37 0.38 0.08 0.40 0.02

The change in the identified system poles at the first five operating points are

visible in the eigenvalue plot in Fig. 5.5.

Polynomials NM1, NM2, NM3 NM4 and DM of machine transfer functions were

calculated using system data for the chosen set of operating points. The machine

transfer functions are of order 6 as a sixth order round rotor synchronous machine

model was used in the test system.

The system identification procedure yields 11th order transfer functions for the

complete system. Hence the order of the complete auxiliary controller is 5. The

calculated machine transfer function polynomials and identified closed loop system

transfer function polynomials were used to populate matrix A and vector b of Eq.

5.7, respectively, in the form of appropriately dimensioned convolution matrices and

coefficient vectors as explained in Section 5.3. Data from five distinct operating points

were sufficient to obtain a full rank A matrix, and a solution for x was obtained by

Moore-Penrose Inversion method. The initial solution for v(s) in Eq. 5.17 obtained

from solution for x is given in Table 5.2.
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Table 5.2: Coefficients of Polynomials of Initial Solution for v(s)

v(s)
Coefficients

s5 s4 s3 s2 s1 s0

X1 0.9953 1.5052 1.3454 0.4983 0.0777 0.0017

X2 -0.0016 -16.88 -16.36 -5.618 -0.7094 -0.0343

X3 -0.9582 163.3 309.8 188.7 43.33 3.329

X4 -37.59 -316.4 -814.6 -833.3 -236.1 -0.647

X5 -20.68 -30.35 -27.00 -12.53 -2.635 -0.2014

Table 5.3: Coefficients of Polynomials of Refined Solution for v(s)

v(s)
Coefficients

s5 s4 s3 s2 s1 s0

X1 0.9998 1.9207 1.2154 0.3401 0.0433 0.0020

X2 0 -16.99 -15.45 -5.027 -0.6935 -0.0342

X3 0 178.3 301.8 162.3 34.95 2.610

X4 -47.46 -344.2 - 846.1 -840.2 -290.8 -0.002

X5 -10.49 -28.37 -27.52 -11.72 -2.234 -0.1554

The very small high order terms of X2 and X3 in Table 5.2 were eliminated and

v(s) was recalculated. The recalculated solutions for v(s) is given in Table 5.3.

Application of the operation introduced in Eq. 5.21 yields the intermediate trans-

fer functions given in Eq. 5.23.
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Table 5.4: Comparison of Auxiliary Controller Transfer Functions Realized from
the Proposed Method with the Actual Transfer Functions

Auxiliary Controller Realized Transfer Function Actual Transfer Function

Turbine-Governor NT (s)
DT (s)

−17.05
s+1.012

−16.67
s+1

Exciter NE(s)
DE(s)

−10.49s−9.531
s+0.1099

(
−10s−10
s+0.1

) (
100
s+100

)
PSS NP (s)

DP (s)
4.524s3+24.13s2+30.16s

s3+0.7842s2+0.198s+0.01611
4.826s3+24.13s2+30.16s
s3+0.9s2+0.24s+0.02

Voltage Transducer 1
DV (s) 1 50

s+50

Γ
(

X2

X1

)
= −17.05

s + 1.012 (5.23a)

Γ
(

X3

X2

)
= −10.49s− 0.9531

s + 0.1099 (5.23b)

Γ
(

X4

X1

)
= 47.45s4 + 296.2s3 + 546.3s2 + 287.4s

s4 + 0.9213s3 + 0.3034s2 + 0.0422s + 0.002 (5.23c)

The realized controller transfer functions, by application of the simplification

given in Eq. 5.22, are presented in Table 5.4. The third column ‘Actual Transfer

Function’ has been included in Table 5.4 for comparison against the realized transfer

functions.

The response of each realized transfer function to a 25ms pulse of 0.25pu magni-

tude are plotted in Fig. 5.6 to Fig. 5.8.

Realizing the auxiliary controller transfer functions is equivalent to obtaining the

complete set of dynamic data of the black-boxed synchronous machine. When the

dynamic data of a black-boxed machine is available to the user, a linear state space

can be obtained for any known power system that includes the black-boxed machine,
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at any operating point. The realized transfer functions were incorporated in an SMIB

system at a different operating point than that was used for system identification.

Operating Point 11 from Table 5.1 was used for the validation. The realized linear

system was perturbed and the resulting speed change plot is given in Fig. 5.9. It

can be observed that the frequency of the response is matching and the peaks of the

first four cycles are slightly different. Given that the system was realized without

the knowledge of the auxiliary controller parameters, it can be concluded that the

realized model reproduces the dynamics of the actual system with sufficient accuracy,

using data from the minimum required number of operating points.

From the time-domain responses in Fig. 5.7 to Fig. 5.8, it is evident that, by

utilizing only five operating points for system identification, the time constants of the

transfer functions were realized with a reasonable accuracy. However, there are small

discrepancies in the gains and zeros in the realized systems for the exciter and PSS

that causes the mismatch in damping in the response in Fig. 5.9.

The process was repeated using data from more operating points than the mini-

mum required operating points, and the realized system was tested against Operating

Point 11 as before. Fig. 5.10 presents the responses of systems realized, using ex-

tra operating points. It was observed that, using data from more operating points,

improves the accuracy of the realized system.
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5.7 Effects of errors in system identification

5.7.1 Not identifying modes

The system identification procedure proposed in [58] ensures that all modes con-

tributed by the machine are identified as the method utilizes known data of the

machine. However, modes contributed by the auxiliary controllers may be missed

due to the following reasons.

• Modes are highly damped

• Poles are canceled out with zeros

• Complex modes with very low frequencies may be identified as real modes.

The effect of missing highly damped modes on the Eq. 5.7 is minimal. By

performing the system identification on multiple outputs with different perturbations

ensures that poles canceled out by zeros for one input/output pair, are made visible

by another.

However, if a complex pole with very low frequency and small negative real part

was identified as a real mode, a significant error is introduced to the solution of Eq.

5.17. Such an error can be identified by the inconsistency of elements of v(s) in Eq.

5.17, in the sense that Eq. 5.24 is not satisfied by the obtained solutions.

X1X3 −X2X5 = 0 (5.24)
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5.7.2 Mitigating misidentification of complex modes with very

low frequencies

A situation where two eigenvalues are very closely located was created by changing the

PSS parameters of the test system given in Table C.4 in Appendix cha:Linearizing.

Two parameters were changed as T2 = 0.4s and T4 = 5s. The change causes the

system to have a complex eigenvalue pair −0.199±j0.005 which is misidentified by the

system identification as a single decaying mode (−0.199). This causes the solutions

for v(s) to not satisfy Eq. 5.24 and the resulting auxiliary controller transfer function

responses do not match with the actual responses. In order to mitigate this, all real

eigenvalues with magnitudes less than a threshold value Γ, were replaced with pairs

of complex eigenvalues with the same real part and very small imaginary part, in

different combinations. Criterion for choosing Γ is given by Eq. 5.25.

Γ = 10×min |<{all eigenvalues}| (5.25)

Eq. 5.24 was evaluated for all such combinations and the combination that satis-

fies the equation the best is chosen as the suitable correction to be introduced to the

system identification result. The modified PSS transfer function response, realized by

the proposed procedure is given in Fig. 5.11. All other auxiliary controller responses

are identical to result obtained in Section 5.6.
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5.8 Summary of the Proposed Procedure

Mason’s Gain Rule was used to decompose the generic model structure of a syn-

chronous machine into its subsystem transfer functions. The black-boxed simulation

model was connected to an infinite bus and was subjected to an enhanced system

identification procedure at a limited number of operating points. Data of identified

transfer functions of the system and, dynamic data of the synchronous machine were

used to generate a polynomial equation. The distinction of poles and zeros of the

system at distinct operating points has been utilized to generate a full rank system

of polynomial equations whose solutions are the auxiliary controller transfer function

polynomials. The realized auxiliary controller transfer functions can be used to in-

clude the black-boxed synchronous machine in small signal stability analysis at any

operating point, connected to any power system.

5.9 Chapter Summary

This chapter introduced a methodology to decompose a power system device mode

into known-operating-point-dependent subsystems and unknown-operating-point-independent

subsystems, using results from Mason’s Gain Rule. A linear system of polynomial

equations was developed. It can be solved for unknown auxiliary controller polynomi-

als by using system identification results (identified transfer functions) from multiple

operating points. Such identified transfer functions essentially requires to include all

modes contributed by the known current injection device subsystem. Application of

the Prony Analysis method augmented with eigenstructure assignment, presented in

Chapter 4 ensures that the identified transfer functions meet this condition. The pro-
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cedure has been successfully demonstrated for the case of a black-boxed synchronous

machine with controllers, to determine operating-point-independent linear auxiliary

controller transfer functions. Transfer functions so realized can be easily incorporated

into a small signal stability analysis of a power system that includes the black-boxed

synchronous machine.
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Fig. 5.4: Proposed procedure flow chart

- 111 -



Determining Auxiliary Controller Transfer Functions of a Synchronous Machine Model

−40 −30 −20 −10 0

−10

0

10

Real Axis

Im
ag
in
ar
y
A
xi
s

Operating Point 1
Operating Point 2
Operating Point 3
Operating Point 4
Operating Point 5

Fig. 5.5: Identified eigenvalues of the system at five distinct operating points

0 0.2 0.4 0.6 0.8 1

1

2

3

Time (s)

C
ha

ng
e
of

fie
ld

vo
lta

ge
[∆

E
f

d
] Actual System
Realized System

Fig. 5.6: Time responses of realized and actual exciter transfer functions

- 112 -



Determining Auxiliary Controller Transfer Functions of a Synchronous Machine Model

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Time (s)

C
ha

ng
e
of

m
ec
ha

ni
ca
lt

or
qu

e
in
pu

t
[∆

T
m
]

Actual System
Realized System

Fig. 5.7: Time responses of realized and actual governor transfer functions

0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

Time (s)

C
ha

ng
e
of

m
od

ul
at
ed

vo
lta

ge
re
fe
re
nc
e
[∆

V
s
]

Actual System
Realized System

Fig. 5.8: Time responses of realized and actual PSS transfer functions

- 113 -



Determining Auxiliary Controller Transfer Functions of a Synchronous Machine Model

0 1 2 3 4 5

−2

−1

0

1

2

·10−3

Time (s)

Sp
ee
d
D
ev
ia
tio

n
(p
u)

Actual System
Realized System

Fig. 5.9: Comparison of realized and actual system responses at Operating Point
11

0 1 2 3 4 5

−2

−1

0

1

2

·10−3

Time (s)

Sp
ee
d
D
ev
ia
tio

n
(p
u)

Actual System
6 Operating Points
7 Operating Points
10 Operating Points

Fig. 5.10: Comparison of system responses realized using data from additional
operating point

- 114 -



Determining Auxiliary Controller Transfer Functions of a Synchronous Machine Model

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

Time (s)

C
ha

ng
e
of

m
od

ul
at
ed

vo
lta

ge
re
f.

[∆
V

s
]

Actual System
Realized System

Fig. 5.11: Time responses of realized and actual PSS transfer functions in the
presence of two real modes very close to each other

- 115 -



Determining Auxiliary Controller Transfer Functions of a Black-Boxed DFIG

Chapter 6

Determining Auxiliary Controller
Transfer Functions of a
Black-Boxed DFIG

In the preceding chapters, a procedure for determining auxiliary controller transfer

functions of a power system device has been established. The procedure starts with

a Prony Analysis method that incorporates a priori knowledge of the system by

using eigenstructure assignment. Modes so identified at multiple operating points

are used to determine subsystem transfer functions of a black-boxed power system

device. The power system device was divided into two main subsystems, namely, the

operating point dependent current injection device and the auxiliary controller which

is operating point independent within a given operating mode. By solving a linear

set of polynomial equations, the unknown auxiliary controller transfer functions of

a synchronous machine were realized as presented in Chapter 5. The knowledge of

the structure of the auxiliary controller was utilized in decomposing the complete

system into subsystems using the result of Mason’s Gain rule. The real application of

determining auxiliary controller transfer functions are in more modern power system
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devices. The controller architecture of these modern devices are much more complex

than that of a synchronous machine. Doubly-Fed Induction Generator (DFIG) was

chosen as a candidate device to apply the procedure proposed in this thesis.

6.1 Overview of DFIGs

Doubly-Fed Induction Generator (DFIG), also known as Type 3 Wind Turbine Gen-

erator (WTG), is a popular technology with converters rated at 25% - 30% of the

generator rating. Four-quadrant active and reactive power operation with variable

speed is the major advantage of DFIGs over fixed speed induction generators. The

cost advantage over the Full Converter Type 4 WTG makes DFIG a popular candi-

date in the rapid drive for the expansion of wind power generation [62]. Small signal

stability analysis of power systems with DFIG wind turbine penetration has been

a topic of great interest in the past decade [63]. In planning the expansion of the

power grid with modern devices, it is important to pay attention to possible interac-

tions between control systems of the existing power system and those of the planned

additions.

The general architecture of a DFIG is given in Fig. 6.1.

Decoupled control architecture is the most common control strategy for DFIG.

The generic control structure of a DFIG is given in Fig. 6.2.

It has been identified that DFIGs are the most vulnerable type of WTG to subsyn-

chronous oscillations, especially where there are series compensated lines [63]. There

has been a debate in recent papers on the root cause of the subsynchronous oscilla-

tions; whether it is due to self excitation or due to controller interactions. Eigenvalue
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DFIG

Gear box

Rotor-side 
converter

Grid-side 
converter

Multimass 
Wind 
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Ps, Qs
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Ig, Pg

Vdc

Ir, Pr

Vg

Vs

Is

Vr

Fig. 6.1: Generic schematic of the Doubly Fed Induction Generator (DFIG)

analysis has been the main tool used in these studies and they all assume that the

DFIG of the study case is fully known. The importance of linear analysis has been

reiterated especially to find the root cause of oscillatory issues as well as to determine

the mitigatory measures.

Manufacturers of DFIGs, almost always, conceal the controllers of their product

and make available an as built electromagnetic transient (EMT) simulation model

for the users. The common practice in the industry is to connect the black-boxed

simulation model to the user’s test system and perform time-domain simulations

for a limited number of study cases. Unavailability of the complete mathematical

model forces the power system engineers to forgo small signal stability analysis of the

system, which also closes the door to apply methodologies to investigate root causes

of stability issues.

The DFIG control architecture proposed in [64] and, very descriptively presented

in [65] was used in the simulation model. For the purpose of this study, the controller

blocks and signals of a black boxed EMT model of a DFIG that have been contained in
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the darkened areas in Fig. 6.2 are considered inaccessible to the user. The induction

generator parameters and stator measurements, converter transformer parameters

and terminal measurements, DC capacitor voltage measurement and input references

are assumed to be accessible to the user.

The problem at hand is to identify transfer functions that describe the inner loop

current controllers of both converters and outer loop controllers for speed, stator

reactive power, grid reactive power and DC link voltage, separately.

6.2 Applicability of the Proposed Procedure to DFIG

For the case of a synchronous machine with an exciter, power system stabilizer and

turbine-governor block, in Chapter 5, a minimum of only 5 operating points were

required to solve the linear system of polynomial equations. By increasing the number

of operating points to 10, the accuracy of the transfer function determination process

increased. It is clear that, as the black-boxed system gets more complex, the number

of required operating points increases.

Fig. 6.3 is the block diagram of transfer functions of a DFIG connected to an

infinite bus through a short transmission line. Definitions of symbols used in the

Fig. 6.3 are given in Table C.7 in Appendix C. The transfer function matrix shown

in Fig. 6.3 represents the transfer functions between each input/output pair of the

machine subsystem. The transfer functions were calculated based on the linearized

model of the wound rotor induction generator presented in [65], based on the detailed

model presented in [3]. All signal paths and signal names shown in green colour

are reference inputs determined by the user of the simulation. Perturbations to the
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system are made through those inputs. All signal paths and signal names shown in

blue represent observable signals in the simulation. Transfer functions shown in blue

are also fully known. The subsystems and signals shown in black are inside the black

box.

The corresponding Signal Flow Graph (SFG) of the block diagram shown in Fig.

6.3 consists of 26 nodes and 72 edges. Applying Mason’s Gain Rule between the

inputs and outputs of the system and separating the known and unknown subsystem

polynomials reveals that there are 139 unknown polynomials that require data from

at least 178 operating points to solve. Obtaining distinct modal identification data

for a large number of operating points is a challenge as the actual change in poles and

zeros from one operating point to another may be smaller than the error in the system

identification. Also, very small changes may cause the linear system of polynomial

equations to be ill-conditioned.

Due to the requirement of very high number of operating points, some subsystems

are required to be identified separately, so that the order of the problem is reduced

to a manageable magnitude. The grid-side converter controllers are more accessible

than those of the rotor-side. If the grid-side converter controllers and turbine transfer

functions are known, the system can be represented by a set of polynomial equations

that has 15 unknowns, and data from 8 operating points are required to solve the

system. The grid-side converter system is more accessible. Therefore by a conven-

tional system identification exercise, its controller parameters could be estimated as

presented in Section 6.3.1 that follows. MATLAB Symbolic Toolbox was used to

manipulate the very large amount of variables and equations.

The known and unknown subsystems were separated by applying Mason’s Gain

- 121 -



Determining Auxiliary Controller Transfer Functions of a Black-Boxed DFIG

G
Q

s

G
ω
r

G
ID

r

G
IQ

r

G
V

dc

G
Q

g

G
Id

g

G
Iq

g

O
ut

er
 L

oo
p 

C
on

tro
lle

rs
In

ne
r L

oo
p 

C
on

tro
lle

rs

ΔQ
S

re
f

Δω
r
re
f

ΔV
dc

re
f

ΔQ
gr

ef

ΔQ
S

Δω
r

ΔV
dc

ΔQ
g

ΔI
D

r

ΔI
Q

r

ΔV
D

r*

ΔV
Q

r*

ΔI
D

r*

ΔI
Q

r*

ΔI
dg

ΔI
qg

ΔV
dg

*

ΔV
qg

*

ΔI
dg

*

ΔI
qg

*

G
T

+ + + +

k 1

k 2

k 3

k 4

ΔQ
S

ΔI
D

r
ΔP

g

ΔP
r

ΔI
Q

r

ΔI
qg

ΔI
dg

ΔQ
g

ΔT
e

ΔV
D

r

ΔV
Q

r ΔV
dg

ΔV
qg
Δω

r

ΔT
m

ΔT
m

g
Δω

r

+ + + +
----

- - - -
++++

+
-

+

-
1

2H
gs

G
en

er
at

or
 

ro
to

r

D
C

 li
nk

 
C

ap
ac

ito
r

1
C

V d
c0

s

S
ta

to
r V

A
r 

co
nt

ro
lle

r

R
ot

or
 s

pe
ed

 
co

nt
ro

lle
r

D
C

 li
nk

 
vo

lta
ge

 
co

nt
ro

lle
r

G
rid

-s
id

e 
VA

r 
co

nt
ro

lle
r

d-
ax

is
 c

ur
re

nt
 c

on
tro

lle
r

q-
ax

is
 c

ur
re

nt
 c

on
tro

lle
r

Q
-a

xi
s 

ro
to

r c
ur

re
nt

 c
on

tro
lle

r

D
-a

xi
s 

ro
to

r c
ur

re
nt

 c
on

tro
lle

r

Δv
w

Fi
g.

6.
3:

D
ec
ou

pl
ed

co
nt
ro
la

rc
hi
te
ct
ur
e
of

D
FI
G

- 122 -



Determining Auxiliary Controller Transfer Functions of a Black-Boxed DFIG

Rule as proposed in Section 5.5 and the linear system of polynomial equations similar

to Eq. 5.17 was obtained.

Due to the relative complexity of the system, each element in H (in Eq. 5.17)

is a summation of a large number of terms. In this specific case, the maximum

number of polynomials aggregated in a single element is 64. Each and every element

of this matrix can be calculated, as all the polynomials involved are known. The

theorem proven in Chapter 5 is used to calculate the polynomials that are in the

form of determinants of transfer function matrices. This conditioning ensures that

the elements of H are numerically accurate, despite the arithmetic summation of a

large number of terms.

The unknown vector of polynomials obtained from Mason’s Gain Rule reduction

is:
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v(s) =



X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15



=



DIDr
DIQr

DQsDωrDT

NIDr
NIQr

NQsNωrDT

DIDr
DIQr

DQsDωrNT

DIDr
DQsDTNIQr

Nωr

DIDr
DQsDωrDTNIQr

DIDr
DQsDωrNTNIQr

DIQr
DQsDωrDTNIDr

DIQr
DQsDωrNIDr

NT

DIQr
DωrDTNIDr

NQs

DIQr
DωrNIDr

NQsNT

DQsDTNIQr
NωrNIDr

DQsDωrDTNIDr
NIQr

DQsDωrNIDr
NIQr

NT

DωrDTNIDr
NIQr

NQs

DωrNIDr
NIQr

NQsNT



(6.1)

An intermediate set of transfer functions can be realized by Eq. 6.2, where Γ(.)

is the function for minimum realization.

- 124 -



Determining Auxiliary Controller Transfer Functions of a Black-Boxed DFIG

Na(s)
Da(s)

= Γ
(
X3

X1

)
(6.2a)

Nb(s)
Db(s)

= Γ
(
X5

X1

)
(6.2b)

Nc(s)
Dc(s)

= Γ
(
X7

X1

)
(6.2c)

Nd(s)
Dd(s)

= Γ
(
X5

X1

)
(6.2d)

Numerator and denominator polynomials of the controllers can be uniquely de-

termined by the following relationships:

NT = Na (6.3a)

DT = Da (6.3b)

NIQr
= Nb (6.3c)

DIQr
= Db (6.3d)

NIDr
= Nc (6.3e)

DIDr
= Dc (6.3f)

NQs = Nd (6.3g)

DQs = Dd (6.3h)
Nωr

Dωr

=
X4DIQr

X1NIQr

(6.3i)

(6.3j)
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6.3 Test Results

A DIFIG SMIB as shown in Fig. 6.1 was simulated on PSCAD/EMTDC software

with an integration time step of 50µs. Test system data are given in the Appendix

C. The improved Prony Analysis presented in Chapter 4 was used to identify the

modes of the system. The DFIG was opereated at constant Tip-Speed-Ratio (TSR).

Constant TSR ensures maximum power tracking by changing the speed reference.

6.3.1 Identification of the Grid-side Converter Controllers

Identification of the grid-side converter controllers was carried out as a system iden-

tification exercise between inputs and outputs. Steady state values of all terminal

quantities were obtained. The angle between the infinite bus voltage and the trans-

former terminal voltage is α. Transformer terminal voltage was compared with the

reference sinusoidal waveform of steady state voltage and was decomposed into d and

q frames and Vdg and Vqg were obtained, and they are the output signals for the sys-

tem identification. Transformer terminal current, phase angle of the current, grid-side

converter reactive power output Qg, DC link voltage Vdc and input references Qgref

and Vdcref are the input signals. External current injections along d-axis and q-axis

at the converter transformer bus have been introduced to improve the identifiability

of the systems.

Identification of DC link Voltage Controller

DC capacitor voltage controller of the grid-side converter controller is shown in Fig.

6.4. The input considered for the transfer function identification, U1, shown in the
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figure, is the difference between the VDC−ref input and measured DC link voltage.

The transfer functions between the inputs and outputs are given by Eq. 6.4. A

current source is connected to the converter transformer bus and a second transfer

function identification was carried out using a current injection along the d-axis. The

transfer function between ∆idg−ext and ∆vdg is given by Eq. 6.5. It should be noted

that N and D denote the numerator and denominator polynomials of the transfer

functions shown in the block diagrams.

GVdc GIdg
ΔVdc

ΔVdc

ΔIdg-ex

ΔVdg*ΔIdg*+ -

-

+

d-axis current controller
Gvdg-Idg

Gvdg-Vdc

-

D-axis current injection at the grid-
side converter transformer bus

DC link 
voltage 

controller

+

+

ΔIdg

k

ΔVdgΔU1

Fig. 6.4: Block diagram of DC link voltage controller

∆vdg(s)
∆U1(s)) =

NVdc
Nidg

Dvdg−Vdc
Dvdg−idg

DVdc
(Didg

Dvdg−Vdc
Dvdg−idg

+Nvdg−idg
Nidg

Dvdg−Vdc
− kNvdg−Vdc

Dvdg−idg
Didg

)
(6.4)

∆vdg(s)
∆idg−ext(s)

=
Nidg

DVdc
Dvdg−V dcDvdg−idg

Didg
(DVdc

Dvdg−V dcDvdg−idg +N2Dvdg−V dcDVdc
− kNvdg−V dcDvdg−idgDVdc

)
(6.5)

The transfer functions realized from the two system identification exercises are
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given in Table 6.1.

Table 6.1: Identified transfer functions of grid-side converter DC link voltage
controller

Transfer Function System Identification Result

∆vdg(s)
∆U1(s))

−2.43(s+202.35)(s+51.33)(s2+17.6s+3.176×104)
(s+93.54)(s+0.43)(s2+522s+1.321×105)

∆vdg(s)
∆idg−ext(s)

0.47(s+204.6)(s2+18.7s+3.2847×104)
(s+0.51)(s2+506s+1.599×105)

It should be noted that the response of transfer functions between ∆vdg and the

output variables ∆Vdc and ∆idg are very fast. This can be observed in roots of the

numerator of the realized transfer functions. This suggests that the relatively small

zeros are those of the DC link voltage controller. This suggests that in determining

auxiliary controller transfer functions of complex systems requires engineering intu-

ition, as in the case of any system identification exercise. Further validation of system

identification results can be obtained by repeating the transfer function identification

of grid-side controllers at different operating points.

By observing the zeros and poles of the realized transfer functions between inputs

and outputs, the numerator and denominator polynomials of each auxiliary controller

transfer function was realized. The determined parameters have been compared with

the actual PI controller parameters in the system, in Table 6.3.

Identification of Grid-Side Converter Reactive Power Controller

The same exercise as above, was carried out for the reactive power controller. The

system for which transfer function identification was applied is shown in Fig. 6.5. It
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is assumed that vqg has minimal sensitivity to variations in Vdc for perturbations to

Qg−ref and iqg−ext.

GQg GIqgΔQgref

ΔQg

ΔIqg-ex

ΔVqgΔIqg*+ -

-

+

Grid-side VAr 
controller q-axis current controller

Gvqg-Iqg

Gvqg-Qg

-

Q-axis current injection at the grid-
side converter transformer bus

ΔIqg

ΔU2

Fig. 6.5: Block diagram of DC link voltage controller

∆vqg(s)
∆U2(s) = NQgNiqgDvqg−iqg

DQg(Dvqg−iqgDiqg +NiqgNvqg−iqg)
(6.6)

∆vqg(s)
∆iqg−ext(s)

= NiqgDQgDvqg−QgDvqg−iqg

Diqg(DQgDvqg−QgDvqg−iqg +Nvqg−iqgDvqg−QgDQg +Nvqg−QgDvqg−iqgNQg)
(6.7)

The transfer functions realized from the two system identification exercises are

given in Table 6.2. Estimated controller transfer function parameters are presented

in Table 6.3 along with actual PI controller parameters.
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Table 6.2: Identified transfer functions of grid-side converter reactive power con-
troller

Transfer Function System Identification Result

∆vqg(s)
∆U2(s))

8.89(s+92.82)(s+11.32)(s2+407.7s+4.101×105)
(s+87.32)(s+0.93)(s2+619.3s+3.491×105)

∆vqg(s)
∆iqg−ext(s)

0.79(s+89.83)(s2+607.02s+5.861×105)
(s+0.32)(s2+643.2s+561.32×105)

Table 6.3: Comparison of realized grid-side auxiliary controller transfer functions
with the actual transfer functions

Auxiliary Controller Realized Transfer Function Actual Transfer Function

GVdc

−5.17s−16.54
s+0.43

−5s−10
s

GIdg

0.47s+96.162
s+0.51

0.5s+100
s

GQg

11.25s+127.4
s+0.93

10s+100
s

GIqg

0.79s+96.70
s+0.32

s+100
s

6.3.2 System Identification of the Total System

The only unknown subsystems left to be determined are the outer-loop and inner

loop controller transfer functions of the rotor-side converter and the transfer function
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Fig. 6.6: Time responses of realized and actual GVdc
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Fig. 6.7: Time responses of realized and actual GIdg
transfer functions

of the multimass turbine.

The system was subject to modal identification at 20 operating points. The

system was independently perturbed using the DC link voltage reference (Vdc−ref )

and the stator reactive power reference input (Qs) to achieve the respective transfer
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Fig. 6.8: Time responses of realized and actual GQg transfer functions
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Fig. 6.9: Time responses of realized and actual GIqg transfer functions

functions between the inputs and outputs. In order to maintain a constant torque

input to the multimass turbine, the wind speed was modulated using the speed of the

rotor. The performance coefficient of the wind turbine was assumed to be constant.

It should be noted that parameters of grid-side controller transfer functions were
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considered as a priori knowledge of the system in application of the methods presented

in Chapter 4 to identify the modes.

Variation of the identified modes at varying operating points are shown in Fig.

6.10.
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Fig. 6.10: Identified eigenvalues of the system at five distinct operating points

6.3.3 Results for the Rotor-Side Converter Controllers

By applying the system identification data to Eq. 6.1 to 6.3, the auxiliary controllers

of the rotor-side converter could be determined. The realized transfer functions and

the actual controller transfer functions are shown in Table 6.4.

- 133 -



Determining Auxiliary Controller Transfer Functions of a Black-Boxed DFIG

Table 6.4: Comparison of auxiliary controller transfer functions realized from the
proposed method with the actual transfer functions

Auxiliary Controller Realized Transfer Function Actual Transfer Function

GQs

0.39s+1.96
s+0.21

0.5s+2.5
s

Gωr

−1.08s−0.69
s+0.94

−1.5s−0.75
s

GIDr

0.74s+12.45
s+0.04

0.5s+10
s

GIQr

0.29s+8.92
s+0.31

0.5s+10
s
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Fig. 6.11: Time responses of realized and actual GQs transfer functions

6.3.4 Determining Multimass Turbine Transfer Function

The proposed procedure yields the multimass turbine transfer function as shown in

Table 6.5. The transfer function realized is the one between rotor speed deviation,

∆ωr, and input torque to the generator rotor ∆Tmg (output torque of the multimass

turbine). The test system assumes zero mechanical damping in the multimass turbine.
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Fig. 6.12: Time responses of realized and actual Gωr transfer functions
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Fig. 6.13: Time responses of realized and actual GIDr
transfer functions

However, the realized transfer function for the turbine shows some damping.
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Fig. 6.14: Time responses of realized and actual GIQr
transfer functions

Table 6.5: Comparison of realized multimass turbine transfer function with the
actual transfer function

Realized Transfer Function Actual Transfer Function
112s3+111.15s2+2.269×104s+1.247×104

s4+1.334s3+391.69s2+430.35s+2784
113.1s3+2.29×104s
s4+391.1s2+2665

6.3.5 Limitations and Challenges of Application in a DFIG

System

It was observed that the sensitivity of modes to some reference point changes, are

less than it is to the others. Modes are more sensitive to change of DC link voltage

reference and change of stator reactive power reference. In order to achieve the

required distinct modes, additional time-domain simulations had to be run. However,

this knowledge of the sensitivity of modes to the change of operating points helps

reduce the number of operating points at which the EMT simulations should be run

for identification of DFIG systems.
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Fig. 6.15: Time responses of realized and actual multimass turbine transfer func-
tions

In order to avoid the effects of converter harmonics, the signals were pre-conditioned

using a low pass filter. Signals were decimated to reduce the number of data points

for system identification procedures.

More user intervention was required to the minimum realization operation Γ(.)

as the tolerance of minimum realization of different transfer functions were different.

6.4 Chapter Summary

A black-boxed DFIG has been successfully identified for the purpose of linear analysis

with reasonable a priori knowledge of the system and reasonable access to measure-

ments of the system states. Compared to the synchronous machine example presented

in Chapter 5, the system of a DFIG poses additional challenges due to its complex-

ity. Available access to grid-side converter states was utilized to simplify the system,
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by identifying grid-side converter controllers as a separate exercise of conventional

system identification. The Prony Analysis method augmented with eigenstructure

assignment, presented in Chapter 4 has been used to identify modes of the complete

system. Then the results derived from Mason’s Gain Rule, in Chapter 5, were used to

construct a linear system of polynomial equations in the same way it was applied for a

synchronous machine SMIB system. Using system identification results from multiple

operating points and a priori knowledge of the current injection device subsystem,

the linear system of polynomial equations was solved for unknown auxiliary con-

troller polynomials of the rotor-side converter. The application of methods proposed

in Chapter 5, in a relatively complex system was successful as it could determine the

controller transfer function parameters with reasonable accuracy.
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Chapter 7

Conclusions, Contributions and
Future Work

7.1 Conclusions

A procedure to identify the operating-point-independent linear auxiliary controller

transfer functions of a black-boxed power system device model, has been proposed.

The procedure utilizes system identification results at multiple operating points and

dynamic data of the current injection device subsystem of the power system device

model. A procedure has been proposed to augment the Prony Analysis system identi-

fication method with an eigenstructure assignment based controller tuning procedure

to enhance the system identification results.

It has become the trend of the power system device manufacturers to make avail-

able a detailed EMT simulation model of their devices. Such simulation models are

usually black-boxed and cannot be accommodated in a small signal stability analysis.

It can be assumed that the time constants and reactances of the current injection

device is available.

The proposed procedure requires the user to connect the black-boxed EMT sim-
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ulation model to an ideal voltage source through a short transmission line to build

a Single Machine Infinite Bus (SMIB) simulation case on the EMT programme. Dy-

namic data of the current injection device of the black boxed system (e.g. induction

generator data of a DFIG system) are available to the user. The user runs time-

domain simulations of the SMIB case at a chosen set of distinct operating points.

At each operating point, the system is perturbed by a pulse stream of a specific

class through inputs available in the black-boxed model. Then the observed output

variables are used to estimate system modes at each operating point using a Prony

Analysis algorithm with Exogenous Input and with different data window lengths.

The identification results are further augmented with a proposed eigenstructure as-

signment (ESA) controller tuning method, so that the a priori knowledge of the

current injection device is utilized to improve it. It could be seen that the modes of

the system change with the operating point.

A result derived from Mason’s Gain Rule was used to to decompose a complex

power system model into known-operating-point-dependent subsystems and unknown-

operating-point-independent subsystems, to formulate a linear system of polynomial

equations of the form Ax = b, where A consists of transfer function polynomials

of the current injection device calculated using a priori knowledge, x is a vector of

unknown auxiliary controller transfer function polynomials and b consists of system

identification results. The system can be made overdetermined by populating it with

data from multiple operating points and can be solved for x and, the auxiliary con-

troller transfer functions can be calculated. Auxiliary controller transfer functions

so determined and the current injection device data can be used for complete linear

analysis of any power system the black-box is connected to, at any operating point.
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The scope of the research is limited to linear auxiliary controllers and operating

points that do not cause controller saturation. It is important that the SMIB operat-

ing points chosen for system identification cause in distinct modes so that the linear

system of polynomial equations is consistent.

The procedure was first applied to a synchronous machine model with controllers.

It required a minimum of 5 operating point data to successfully determine the aux-

iliary controllers. In order to test the application of the method to more complex

systems, a Doubly Fed Induction Generator (DFIG) model was chosen. Due the

complexity of the system, data from a minimum of 139 operating points were re-

quired. Out of the two converters of the DFIG, the grid-side converter state variables

are more accessible. A more conventional transfer function identification exercise was

carried out to determine the grid-side converter controllers. The problem was reduced

to one that requires data from a minimum of only 11 operating points. Data from 20

operating points were used to successfully determine the auxiliary controller transfer

functions of rotor-side converter controllers.

It has been shown that the proposed procedure can be generally applied to com-

plex power system models. When the order of the problem increases due to the

complexity of the system, it can be made simpler by utilizing other data of the sys-

tem.

7.2 Contributions

The main contributions of this thesis are summarized below,

• A methodology to decompose a complex power system model into known-
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operating-point-dependent subsystems and unknown-operating-point-independent

subsystems was formulated to allow to use system identification data from mul-

tiple operating points and a priori knowledge of the system to solve for unknown

auxiliary controller transfer functions. In order to make this formulation pos-

sible, a novel result from Mason’s Gain Rule has been presented as a theorem

with proof.

• The system identification results used in the method proposed above essentially

requires to include all modes contributed by the known current injection de-

vice subsystem. An Eigenstructure Assignment (ESA) based method has been

proposed to incorporate a priori knowledge of the current injection device sub-

system to linear system identification results. The method involves designing a

fictitious controller to the known subsystem, i.e. current injection device model

of a power system device, using ESA, to achieve the same modes and mode

shapes identified from a linear system identification. A meta heuristic opti-

mization problem has been formulated to choose free parameters of ESA. The

method was successfully used with Single Machine Infinite Bus system.

• The system identification method augmented with eigenstructure assignment

has been extended to a multimachine power system with black-boxed devices.

This application allows the user to perform complete eigenvalue analysis to a

system with black-boxed devices at a given operating point.

The main contributions of this thesis have been published in reputed journals and

conference proceedings.
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7.3 Proposed Future Work

This thesis presented a time domain simulation based method to determine linear

equivalent models of two different power system device models. The proposed pro-

cedure can be packaged into a software tool, preferably as a part of an EMT power

- 143 -



Conclusions and Contributions

system simulation program, so that it can be applied to a wide range of power system

devices. Apart from the linear development of the tool, the researcher has identified

possible future directions of this research.

• This research neglects the presence of noise in the measurements as the proposed

methods are based on simulations. The application of the proposed procedure

can be extended to real systems if the system identification procedures could

be improved to handle noisy signals.

• Application of the proposed method may be applied to achieve equivalent re-

duced order linear models of large power systems that will allow for faster and

cheaper simulation.

• Application of the proposed procedure in real power system devices will enable

determining more accurate transfer functions of components such as multimass

turbines and will enable more realistic analysis of power system electromechan-

ical modes.

• The eigenstructure assignment method used in the proposed procedure uses

Simulated Annealing as the candidate meta heuristic optimization procedure.

The efficiency of using other meta heuristic optimization methods such as ge-

netic algorithm and ant-colony optimization can be explored to improve the

efficiency of the complete algorithm.

• The proposed Mason’s Gain Rule application may be incorporated with es-

tablished block oriented system identification techniques [66] to include a priori

knowledge of subsystem blocks, in order to improve the the model identification.
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Appendix A

Simulated Annealing

Simulated Annealing
Annealing Process of Metals

Annealing is a heat treatment of metals, usually carried out to soften them. In
a metallurgic sense, this softness is achieved by achieving the lowest energy metal
structure. In the process, first, the metal is brought to a high temperature. It may
even go into the liquid phase. This way, the molecules gain energy and move fast and
randomly. Then, the red hot or liquid metal is allowed to cool down, slowly. When
cooling down, the molecules lose energy and settles down to a low energy structure.
The slower the cooling process, the more probable it is to achieve the minimum energy
state. The opposite of this process is quenching, where the heated metal is cooled
suddenly, so that a structure close to a crystalline structure is achieved. This is done
to harden metals.

In simulated annealing [67, 68], the objective function is analogous to the energy
of the metals. The decision variables are analogous to the metal molecules. Decision
variables are randomly perturbed iteratively and lower objective function values are
accepted as approaching the global minimum value. In addition, during the initial
iterations, the probability of accepting a solution, even if its objective function is
higher, is more. This is analogous to the high-energy random movement of metal
molecules in the annealing process. During the later iterations, this probability is less.
This change of probability as iterations advance, is analogous to the temperature of
the metal, which goes down (cool down) as time goes by. This heuristic characteristic
is introduced to the algorithm by the Metropolis Criterion [69].
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Metropolis Criterion

• If, the new state contains lower total energy compared to the previous state,
then the new state is accepted.

• Else, the new state is accepted with the probability given by Eq A.1.

p(∆E) = e
−
(

∆E
KB×T

)
(A.1)

Where:

∆E = is the change occurred in the total energy of the solid due to the pertur-
bation

KB = is the Boltzmann’s constant

T = is the temperature of the substance

The Metropolis criterion explains the possibility of achieving the minimum energy
state at a given temperature.

Simulated Annealing Optimization Technique
The Simulated Annealing optimization algorithm as applied in the problem at hand
is illustrated in Fig.A.1.

Optimization parameters

There are three types of parameters in this algorithm, namely the initial temperature
T1, cooling rate rc and the Boltzman Constant KB. The ideal initial temperature and
cooling rate in the physical process of annealing depends on the material considered.
Similarly the initial temperature and cooling rate in simulated annealing too depends
on the optimization problem. Highly nonlinear problems with a large number of
decision variables require higher initial temperatures. Higher initial temperatures
and slower cooling rate extends the time for convergence but increase the probability
of reaching the global optimum.

Saving the best solution

Due to the heuristic nature of the algorithm, it is possible to achieve a better solution
than solution converged to at the end. Therefore, the best solution so far should be
saved.
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Perturbing the Variables

The decision variables of this optimization problem are the free parameters of the
eigenstructure assignment procedure. The free parameters are given a maximum of
10% random perturbation according to Eq. A.2.

fki = fk−1
i + ∆fi (A.2)

Where ∆fi is a randomly generated vector with values between ±10%× fki .

Stopping Criteria

Two stopping criteria were chosen for the simulated annealing algorithm.
Stop if:

iter ≥ itermax (A.3a)
Titer ≤ Tmin (A.3b)
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Initial param-
eters T,FP
iter = 1

Start

Evaluate objective function
Eq. 4.27

is Eiter < Eiter−1?
Calculate

probability p(∆E)
Eq. A.1

is p(∆E) > g?Save solution

Generate random
number g

between 0 and 1

T = T.rc

Check stopping
criteria Eq A.3 Discard solution

Stop

iter = iter + 1

FiterP from
Eq. A.2

No

No

Yes

Yes

Yes

No

Fig. A.1: Simulated annealing algorithm flow chart
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Appendix B

Linear Algebraic Preliminaries for
Application of Mason’s Gain Rule

Mason’s Gain Rule
According to the Mason’s Rule [60, 61], the path transmission, or, the effective transfer
function, from a source to a sink may be stated as:

T = 1
∆{the sum of [forward path transmission (N)] for all possible paths} (B.1)

where

N = 1− Transmission of all loops not intersecting this forward path,
taken one at a time

+ Transmission of all loops not intersecting this forward path,
multiplied two at a time, taken in non-intersecting pairs

− Transmission of all loops not intersecting this forward path,
multiplied two at a time, taken in non-intersecting pairs

+ etc.

∆ = 1− All loop transmissions taken one at a time
+ All loop transmissions not intersecting each other,

taken two at a time
− All loop transmissions not intersecting each other,

taken three at a time
+ etc.
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Linear Algebraic Manipulations
Let there be polynomials ai(s), xi(s) and bi(s) of variable s related as:

ai(s)xi(s) = bi(s) (B.2)

where

ai(s) =
m∑
k=0

ai,ks
k

bi(s) =
n∑
k=0

bi,ks
k

xi(s) =
n−m∑
k=0

xi,ks
k

Polynomials ai(s), xi(s) and bi(s) can be represented by their coefficient vectors
ai, xi and bi.

where:

aT
i =

[
ai,m ai,(m−1) ... ai,1 ai,0

]
xT

i =
[
xi,(n−m) xi,(n−m−1) ... xi,1 xi,1

]
bT

i =
[
bi,n bi,(n−1) ... bi,1 bi,0

]
Relationship in Eq. B.2 can be represented by convolution of vectors as follows:

ai ∗ xi = bi (B.5)

Let Ai ∈ R[n+1]×[n−m+1] be the convolution matrix of ai, with regard to xi.

Aixi = bi (B.6)
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where:

Ai =



ai,m
ai,(m−1) ai,m
. . . ai,(m−1) ai,m

ai,1 . . . ai,(m−1)
. . .

ai,0 ai,1 . . .
. . . ai,m

ai,0 ai,1
. . . ai,(m−1)

ai,0
. . . . . .
. . . ai,1

ai,0



Cauchy-Binet Formula
Let

P ∈ R[r×n]

Q ∈ R[n×r]

[n] = {1, ..., n}
[r] = {1, ..., r}(

[n]
r

)
= {r combinations of [n]}

S ∈
(

[n]
m

)
P[r],S ∈ R[r×r]

QS,[r] ∈ R[r×r]

The Cauchy–Binet formula then states.

det(PQ) =
∑

S∈([n]
m)

det(P[m],S) det(QS,[m]) (B.7)
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Appendix C

Test System Data

Table C.1: Generator and network parameters of the test system shown in Fig.
4.1

Generator rating 500 MVA

System base MVA 500 MVA

Generator base voltage 22 kV

Network base voltage 22 kV

Generator model GENROU

Transformer leakage reactance 0

Transmission line reactance 0.025 pu

Transmission line resistance 0

Table C.2: Bus voltages of the test system shown in Fig. 4.1

Bus Base Voltage (kV) Voltage (pu) Angle (deg)

1 230 1.0000 0.0000

2 230 1.0536 4.0818

3 22 1.0765 5.5974
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Table C.3: Dynamic data of the synchronous machine of the test system shown
in Fig. 4.1

T ′do Tdo” T ′qo Tqo” H D

8.69 0.03 0.31 0.04 3 0

Xd Xq X ′d X ′q Xd” = Xq” Xl

0.73 0.4845 0.304 0.304 0.25 0.12

Table C.4: Synchronous machine controller data of the test system shown in Fig.
4.1

ESAC4A Exciter STAB1 Stabilizer TGOV1 Governor

TR = 0.02 s K/Tw = 2 s−1 R = 0.06

TC = 1 Tw = 2 s T1 = 0.5 s

TB = 10 s T1/T3 = 0.08 T2 = 1 s

KA = 100 s T3 = 5 s T3 = 1 s

TA = 0.01 s T2/T4 = 0.08

T4= 5 s
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Table C.5: Network data for DFIG SMIB System shown in Fig. 6.1

Parameter Value

Wind farm network voltage 33 kV

Collector transformer MVA 200 MVA

Collector transformer leakage reactance 6%

Network resistance 0.4713 Ω

Network reactance 0.7766 Ω

Network susceptance 5.42 ×10−4S

Transmission line resistance 0.05 Ω/km

Transmission line inductance 0.0089 mH/km

Transmission line capacitance 0.0089 µF/km
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Table C.6: DFIG generator data for system shown in Fig. 6.1

Parameter Value

Rated power 2MW

Radius 37.5m

Performance coefficient 0.28

Air density 1.225 kg/m3

Gear ratio 10.909

Rated voltage 690 V

Base MVA 2 MVA

Stator resistance 0.0012 Ω

Rotor resistance 0.0013 Ω

Stator leakage inductance 0.0584 mH

Rotor leakage inductance 0.0629 mH

Mutual inductance 2.4961 mH

DC capacitance 25 mF

DC voltage 1000 V

Converter transformer base 0.6 MVA

Transformer leakage reactance 6%

Blade inertia 4 s

Hub inertia 0.3 s

Generator inertia 0.42 s

Shaft stiffness constants 0.3 pu/rad
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Table C.7: Definitions of symbols used in Fig. 6.3

Symbol Definition
∆QSref Stator reactive power reference
∆ωrref Rotor speed reference
∆Vdcref DC link voltage reference
∆Qgref Grid-side converter reactive power reference
∆Qs Stator reactive power (measured)
∆ωr Rotor speed (measured)
∆Vdc DC link voltage (measured)
∆Qg Grid-side converter reactive power (measured)
∆I∗

Dr D-axis rotor current controller reference
∆I∗

Qr Q-axis rotor current controller reference
∆I∗

dg d-axis grid side converter current controller reference
∆I∗

qg q-axis grid side converter current controller reference
∆IDr D-axis rotor current controller (measured)
∆I∗

Qr Q-axis rotor current controller (measured)
∆Idg d-axis grid side converter current controller (measured)
∆Iqg q-axis grid side converter current controller (measured)
∆V ∗

Dr D-axis rotor voltage reference
∆V ∗

Qr Q-axis rotor voltage reference
∆V ∗

dg d-axis grid side voltage reference
∆V ∗

qg q-axis grid side voltage reference
∆VDr D-axis actual rotor voltage
∆VQr Q-axis actual rotor voltage
∆Vdg d-axis actual grid side voltage
∆Vqg q-axis actual grid side voltage
∆Pg Grid-side converter real power injection to the grid
∆Pr Rotor-side converter real power injection to the rotor
C DC capacitance
Vdc0 Steady state DC link voltage
Hg Inertia constant of the induction machine
∆Tmg Mechanical torque input to the rotor
∆Tm Mechanical torque input to the turbine
∆vw Wind speed
GT Turbine transfer function
GQs

Stator reactive power controller transfer function
Gωr Rotor speed controller transfer function
GVdc

DC link voltage controller transfer function
GQg

Grid-side converter reactive power controller transfer function
GIDr

D-axis rotor current controller transfer function
GIQr

Q-axis rotor current controller transfer function
GIdg

d-axis grid side converter current controller transfer function
GIqg q-axis grid side converter current controller transfer function
s Laplacian variable
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Appendix D

Proof of Theorem 1

Theorem 1 For a state space described by A ∈ Rn×n, B ∈ Rn×r and C ∈ Rr×n,

ẋ = Ax + Bu (D.1)
y = Cx (D.2)

the transfer function matrix between the inputs and outputs are given by:

W = C(Is−A)−1B (D.3)

det(W) = p(s)
det(sI−A) (D.4)

where p(s) is a polynomial in s of order n− r.

Proof 1 Let z = Ψx, Ψ = Φ−1 and x = Φz
Modal decomposition of the state space:

Φż = AΦz + Bu (D.5)
ż = ΨAΦx + ΨBu (D.6)
y = CΦz (D.7)
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Let

C′ = CΦ
B′ = ΨB
Λ = ΨAΦ
Φ = Normalized right eigenvector matrix
Ψ = Normalized left eigenvector matrix

Λ is the diagonal matrix of eigenvalues of A.

Λ =


λ1

λ2
...

λn

 (D.8)

Now, Eq. D.3 can be rewritten as follows:

W = C′(Is−Λ)−1B′ (D.9)

For any matrix M, the symbol adj(M) denotes the well known cnocept of adjoint
matrix of M.

W = C′adj(Is−Λ)B′
det(Is−Λ) (D.10)

adj(Is−Λ) =


a1

a2
...

an

 (D.11)

where
ak =

n∏
i=1
i 6=k

(s− λi) (D.12)

H = C′adj(Is−Λ)B′ (D.13)
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Let:

[r] = all indices[1, 2, ...r](
[n]
r

)
= all combinations of n choose r

S = set of indices in a chosen combination of n choose r

Applying Cauchy-Binet Formula [70]:

det(H) =
∑

S∈([n]
r )

 ∏
S∈([n]

r )
ak

 det(C’[r],S) det(B’S,[r]) (D.14)

∏
S∈([n]

r )
ak =

∏
S∈([n]

r )

n∏
i=1
i 6=k

(s− λi) (D.15)

Right hands side of Eq D.15 can be factored as:

∏
S∈([n]

r )
ak =

(
n∏
i=1

(s− λi)
)r−1∏

S′
(s− λj) (D.16)

where S ′ = {Compliment of S}
But

n∏
i=1

(s− λi) = det(sI−Λ) (D.17)

Also

det(C’[r],S) det(B’S,[r]) = det(C[r],SΦ[r],SΨS,[r]BS,[r]) (D.18)
= det(C[r],S I BS,[r]) (D.19)
= det(C[r],SBS,[r]) (D.20)

From Eq. D.14, D.16, D.17 and D.20

det(H) = det(sI−Λ)r−1 ∑
S∈([n]

r )

(∏
S′

(s− λj)
)

× det(C’[r],S) det(B’S,[r])
(D.21)
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From Eq. D.10
W = H

det(Is−Λ) (D.22)

det(W) = det(H)
det(Is−Λ)r (D.23)

det(W) = det(sI−Λ)r−1

det(Is−Λ)r
∑

S∈([n]
r )

(∏
S′

(s− λj)
)

× det(C[r],SBS,[r])
(D.24)

det(W) = 1
det(Is−Λ)

∑
S∈([n]

r )

(∏
S′

(s− λj)
)

× det(C[r],SBS,[r])
(D.25)

Therefore
det(W) = p(s)

det(sI−A) (D.26)

and
p(s) =

∑
S∈([n]

r )

(∏
S′

(s− λj)
)

det(C[r],SBS,[r]) (D.27)

Order of p(s) is n− r.
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