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ABSTRACT 

 

Fiber reinforced polymer (FRP) rebars have been used for reinforcing concrete structures 

for the last quarter of the century. The advantages of using FRP are: high strength to weight 

ratio, corrosion resistance, durability, and high tensile strength. It would be beneficial to 

have non-destructive testing (NDT) methods that have the potential to detect damage at 

loads well below failure. This is particularly important for FRP rebars as they do not exhibit 

any external signs of damage until brittle failure. However, internal damage in FRP rebars 

increases with increasing tensile loads. Acoustic emission (AE) signal has proved to be a 

useful tool for monitoring damage in FRP materials.  However, FRP rebars have received 

little attention. In this work damage progression in different types of FRP rebars subjected 

to tension was studied using AE, SEM and µCT. One possible mechanism for damage 

progression is the growth of voids entrapped in FRP rebars during their manufacture. These 

voids are a weakened region within the bars.  When the bar is subjected to stress these 

regions can grow in size. In this work the growth of the voids within the bar is interpreted 

as the progression of damage. Internal voids and their growth were observed using micro 

computed tomography (µCT) and scanning electron microscopy (SEM) and compared to 

AE results. Strong correlation was observed between the void volume growth determined 

using µCT analysis and cumulative energy of AE.  

 

This work also demonstrated improved methods used to locate the source of AE signals 

that occurred in FRP rebars subjected to tension. An artificial neural network (ANN) was 

used to reduce the uncertainty in determining the AE source location. The ANN had 

improved accuracy, compared to the conventional source location methods by factor of 1.6 
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and 3 for GFRP and CFRP samples respectively. The source location results obtained with 

the ANN were also compared to µCT void volume analysis along the length of the bars 

after tension testing.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Corrosion of steel reinforcement is one of the crucial factors which leads to the 

deterioration of concrete structures. It also reduces the the capacity of structures and service 

life. This is especially true for structures which have been exposed to severe environmental 

effects.  

 

Carbon-fiber reinforced polymer (CFRP) and glass-fiber reinforced polymer (GFRP) have 

been used widely in concrete structures for the last quarter century, either to rehabilitate 

damaged reinforced and prestressed concrete elements or to erect new ones (ElBatanouny 

et al. 2014; Mirmiran and Philip 2000) As of 2016, 65 bridges have been built using FRP 

bars in the USA, and 202 bridges have been built using FRP bars in Canada including 

bridge decks, parapets, barriers, and sidewalks (Busel 2016).  

 

The advantages of using FRP over the steel reinforcement are (ACI Committee 440 2006): 

• High strength to weight ratio: the density of FRP composites is about one-sixth to 

one-fourth of the steel reinforcement  

• High tensile strength: the ultimate strength of FRP bars is about triple of the 

yielding stress of the conventional steel  

• Corrosion resistance   

• Electrical insulator  
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• Nonmagnatic properties 

• Durability  

• Design flexibility as it can be shaped and sized to meet the requirements 

• Colour matching  

 

However, FRP composites have a brittle behaviour and demonstrate a linear stress – strain 

curve, and have relatively low modulus of elasticity. The modulus of elasticity is in the 

range of 110 – 140 MPa for CFRP and 45 – 65 GPa for GFRP bars, while the modulus of 

elasticity of steel is 200 GPa as shown in Figure 1.1. Since FRP materials are relatively 

new in civil engineering applications and frequently subjected to environmental changes 

condition, it would be beneficial to use non-destructive testing (NDT) methods that have 

the potential to detect damage at loads well below failure. This is particularly important for 

FRP bars as they do not exhibit any external signs of damage until their brittle failure.  

 

 

Figure 1.1 Tensile stress strain relationship for FRP rebars compared with steel rebar 

(Liang et al. 2004, With permission from ASCE) 
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Several NDT methods have been used to test FRP composites; some of them are applicable 

for laboratory testing but are impractical for field testing. Some methods need time and are 

labour-intensive which affects the economic situation of the project, especially for large 

structures. Most of structural health monitoring techniques are difficult to perform in an 

in-service structure because of the system size and weight which is used for a such 

technique. One of the promising structural monitoring techniques that has been used for 

monitoring the FRP composites during operation  is the Acoustic Emission (AE) technique 

(Prosser 2002). It has been used to inspect structures such as pipes, vessels, storage tanks, 

concrete, rock, wood, buildings, bridges, railway structures and nuclear power plants 

(Ohtsu 2008). This research provides a comprehensive study of FRP rebars behaviour 

under tension using AE technique as a rational first step toward the goal of monitoring in 

situ damage progression in FRP reinforced concrete.   

 

AE signals are transient elastic waves generated by a sudden release of energy from 

localized sources within a material (ASTM E1316 2006). These waves are detected by 

special sensitive sensors installed on the surface of a material such as concrete or FRP 

composite. Then the information is stored in a data acquisition system and analyzed by 

using AE parameters. The most sophisticated AE system is able to detect very early age 

damage under a lower load, even below 10% of the ultimate strength (Ohtsu 2008). 

 

The first AE standard was established in 1982 by the Committee on Acoustic Emission 

from Reinforced Plastics (CARP) to assess the integrity of FRP tanks and pressure vessels 

(CARP 1999). After that, additional sections have been added to the standard in order to 
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use an AE method as a predominant test for highway tankers, man-lifts, and cooling tower 

fan blades (Ativitavas et al. 2004). The committee has included updated AE research in 

every field. In addition, the Non-destructive Testing Method Handbook, Vol. 5 included 

methods on AE application (Miller and McIntire 1987). 

 

These waves could be due to changes of the properties of materials caused by a damage 

mechanism such as dislocation, micro-cracking, or plastic deformation. In FRP materials, 

acoustic emission could be due to fiber breakage, matrix cracking (both micro and macro), 

delamination, debonding, fiber cracking, or fiber pullout (Ziehl 2000).  

 

An advantage of the AE technique is that it has the ability to monitor a region or volume 

of a structure in one test by attaching an array of AE sensors. This is possible because the 

method does not require a priori knowledge of the location of the defect. Therefore, it is an 

attractive method for monitoring materials in larger structures. 

 

 

1.2 Problem Definition 

  

 

Several studies have been conducted using AE signals to correlate their amplitude and 

frequency to damage occurrence in FRP composites such as laminates (Barré and 

Benzeggagh 1994), sheets (Cole et al. 2006)  and stay cables (Rizzo and Lanza di Scalea 

2001). The range in frequencies and amplitudes varies depending on the type of signal. It 

was found that certain amplitudes and frequencies are predominant for matrix cracking, 

while others correspond to fiber pullout or fiber breakage. Research has been conducted 
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using aramid FRP (AFRP) and hybrid FRP (HFRP) bars subjected to tension and monitored 

by AE technique (Chen et al. 1993; Liang et al. 2004) respectively. AFRP and HFRP 

consist of different percentages of fibers and different kinds of resins. To the best of our 

knowledge, up to date, CFRP and GFRP bars, which have different properties than AFRP 

or HFRP, have not been investigated using AE technique.   

 

The literature shows that when FRP composites are subjected to excessive tensile or fatigue 

loading, these composites will develop internal damage such as matrix cracking, fiber 

breakage and fiber debonding (Dry 1996; Pang and Bond 2005). Results of these studies 

give various range of amplitude and frequency for different materials and configurations.  

 

FRP rebars have a linear-elastic (brittle) behaviour that does not provide any warning 

before failure. Safety concerns have arisen due to the rupture of the prestressed FRP 

tendons during and after the application of the prestressing in the precast concrete plants. 

In addition, trapped voids can be developed in FRP rebars along the length of fibers during 

their manufacturing process. These voids provide possibility of development of weak 

regions in the bars subjected to stress and lead to changes in the tensile properties of the 

rebars (Balaguru et al. 2008). Hence there is a need to better understand the progression of 

damage with tensile loading in FRP reinforcing rebars. 

 

AE signals originates from the rapid release of strain energy due to the damage. This energy 

propagates as elastic waves and the location of the damage can be determined from the 

arrival time of the AE waves (Prosser 2002). However, the determination of the arrival 
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time is complicated by the presence of multiple modes that the AE waves can travel in 

(Prosser 2002). The challenge of this study is to use a method to reduce the uncertainty in 

determining AE source location in FRP rebars subjected to tension.    

 

1.3 Scope of Work  

 

 

The principal objective of this research is to understand the AE signal emitted from FRP 

rebars subjected to static load until failure. In the current study, AE was studied to 

investigate the fracture of different diameters of CFRP and GFRP bars during tensile 

loading. A burst AE signal was generated every time material components undergo 

cracking or fracture. FRP specimens were tested under increasing tensile loads 

accompanied by monitoring the AE signals. The response of AE signals was analyzed to 

identify their sources, using conventional signal analyses in time domain. Amplitude 

distribution over time, cumulative ratio of the amplitude distribution corresponding to the 

percentage of the ultimate load, RA (rise time divided by amplitude) and AF (number of 

counts divided by duration) as a function of time, cumulative counts, and amplitude versus 

duration, were plotted for this purpose. 

 

Scanning electron microscopy (SEM) and micro computed tomography (µCT) were used 

to provide information on progression of microstructural damage for comparison with the 

observed AE signals. The AE from FRP reinforcing rebars was monitored as the rebars 

were subjected to tensile loading at different percentages of the ultimate load. The internal 

micro-structure of the loaded rebars was investigated using micro computed tomography 
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(µCT) and scanning electron microscopy (SEM) imaging. The characteristics of the AE 

signals were correlated with the µCT and SEM analyses. 

 

In addition, an analysis was performed to locate the source of the AE events in glass fiber-

reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP) bars. An artificial 

neural network (ANN) method was used to estimate the location of the AE signals. The 

ANN was trained using AE signals generated from pencil lead break (PLB) tests and then 

the location accuracy was tested also using PLBs. The resulting ANN function was saved 

for later use to determine the source location in a real time tensile loading test on two 

different FRP bars. The ANN reduced the uncertainty in determining the AE source 

location in FRP rebar. µCT damage location analysis was compared in this study to the 

source location results obtained using the ANN method.  

 

1.4 Research Objectives  

 

The objective of this research is to provide a thorough understanding of the performance 

of FRP rebars subjected to an increasing and sustained tension load and to study the damage 

propagation until failure. The performance of these bars was investigated analytically and 

experimentally.  

The main objectives of the research are:  

• Studying the behaviour of pultruded FRP rebars using AE signals.  

• Relate the results of AE analysis to type of damage in FRP bars using scanning 

electron microscope (SEM) technique, and hence aid in identifying the origin of these AE 

signals. 
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• Compare results obtained from acoustic emission (AE) testing and micro structure 

analysis obtained by micro computed tomography (µCT) and scanning electron 

microscopy (SEM) after being subjected to different levels of tensile loading. 

• Enhance the accuracy of damage location in FRP rebars using the ANN method. 

AE signals generated from pencil lead break (PLB) test were used first. The resulted 

function was saved for later to determine the source location in a real time tensile loading 

test and to enhance the noise discrimination.  

 

1.5 Research Methodology 

 

  

CFRP and GFRP bars were subjected to a tensile load and monitored using AE. AE signal 

analysis was used to detect, locate, and distinguish AE signals coming from the test 

samples and ones that come from zones outside of the test samples.  

 

The research was carried out in two phases. In the first phase, various types of CFRP and 

GFRP rebars were tested under an increasing or sustained tension load. The dimensions of 

the rebar specimens were prepared according to Annex B of the CSA S806-12 (2012) 

standard. Two resonant transducers were used to pick up the AE data. AE from these FRP 

rebars was monitored as the rebars were subjected to tensile loading at different percentage 

of the ultimate load. After loading, the internal micro-structure of the rebars was 

investigated using µCT and SEM images. For µCT analysis, three dimensional (3D) and 

two dimensional (2D) µCT reconstructed images were used to study and quantify the void 

volume and its distribution. In this work the void volume was used as a measure of damage. 
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In the second phase, analytical work was done using MATLAB. The AE signals were 

analyzed using the RMS AE hit detection algorithm, and then parameters were extracted 

in time and time – frequency domain. The signal processing techniques extracted the 

amplitude, cumulative events, duration, energy, rise time, number of counts, cumulative 

counts, average frequency, and frequency peaks of the acoustic signals. Short time Fourier 

transform (STFT) was performed for calculating FFT and energy. Spectrograms using 

MATLAB were used to obtain the frequency bands that are predominant for both CFRP 

and GFRP bars at each load level during the test.  

 

Different stages of internal damage of the specimens were identified and related to micro 

– crack propagation and to the failure of FRP bars. Furthermore, the analysis of recorded 

AE data was developed to attain accurate damage location and logical signal discrimination 

using ANN in MATLAB. 

 

1.6 Anticipated Research Contributions to the State of the Knowledge 

 

The major contribution of the research can be briefly described in the following: 

• The AE in FRP bars under tension testing was studied. The AE signals were 

classified and correlated with different damage mechanisms in FRP bars using SEM 

and µCT. 

•  The AE activity was observed to increase with load level until failure. 
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• In FRP rebar the volume of voids in as manufactured and after tension testing were 

studied and quantified using µCT and SEM imaging. In addition, the cumulative 

energy of FFT acoustic emission signals were correlated with the percentage 

volume of the voids in µCT.  The void volume was found to increase with load until 

failure and was correlated with AE signal cumulative energy. 

• The ANN method was used to improve the accuracy of determining AE source 

location in FRP rebar. The trained ANN was saved and used for a later tensile 

loading test on the same rebars. An additional contribution of this study is a 

comparison between the density of location of AE signals determined by the ANN 

method with damage density measured with µCT analysis along the same FRP 

rebars.  

 

In conclusion, this work can help with the development of data analysis method using 

signal processing to study the characteristic of AE signals from the recorded data in order 

to monitor the internal changes in FRP bars, distinguish between possible types of damage, 

and locate the AE sources.  The acoustic emission characteristics presented in this work 

show strong correlations with ultimate load, and may prove useful for damage prediction. 

In addition, the AE characteristics may be useful in setting a data base for monitoring FRP 

rebars. 

 

The analysis of FRP rebars by µCT method may be useful for estimating quality and 

consistency of pultruded FRP rebars, which is important for a manufacturer in tracking 

changes in the quality due to entrapped air during manufucturing processes and due to some 
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microcracks that occurred during the thermal stresses. The µCT method looks promising 

in determining the structural integrity of the FRP rebars as a result of tensile loading that 

may play a significant role in determining the long-term durability of the rebars. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

The following chapter provides a general information about FRP rebars and a summary of 

literature review on testing FRP composites using the AE technique. In particular, FRP as 

a material and its fabrication are briefly described first. Then, the structural health 

monitoring techniques are presented. After that, AE principles and parameters are defined, 

and the definition of AE parameters that help with interpretation of the AE data are 

mentioned for a completence.  The past research on FRP composites using AE technique, 

SEM, and µCT scan are described.  

 

2.2 FRP Composites for Civil Structure 

 

The use of FRP in civil engineering structures started in the 1980s. Many structures have 

used these rebars for either retrofit, reinforcement, or prestressing  (Bakht and Mufti 2015). 

 

FRP rebar is a composite material manufactured from high-strength fibers embedded in a 

matrix to bind and protect the fibres.   The main  types of fibers are aramid, carbon, and 

glass, and the most common types of matrices are epoxy and ester (Balaguru et al. 2008). 

The fibers carry the load and the matrix protects the fibres from corrosion and transfers 

load between fibers. The most common method used to fabricate FRP rebars is pultrusion. 
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It is an automated process that produces products with a constant cross section. The 

reinforcing fibers are pulled from the creels, collected into a bundle in the guide plate, and 

then impregnated in a resin bath. Then the bundle is directed to the performer to get rid of 

the excessive resin and to mold it into shape. Then the product is directed to the heated die 

to form the final cross section and cure the resin. At the final stage, the cured product is 

passed through a cut-off saw to be cut into the required length (Kopeliovich 2012). Figure 

2.1 illustrates the pultrusion process.  

    

 

 

Figure 2.1 Schematic of pultrusion manufacturing process of FRP rebars (used with 

permission) (“Strongwell: The pultrussion process” 2018) 
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2.3 Structural Health Monitoring 

 

Structural health monitoring (SHM) is defined as a system of sensors, attached to a  

structure that is used to understand the performance of a structure under its service 

conditions. The integral components of the SHM system are: measurements and sensing; 

structural identification; damage identification; and decision making (Ettouney and 

Alampall 2011). 

 

Several techniques are available for SHM. Some of them are classified as a global method 

and other as a local method. Visual inspection is a simple global monitoring method that 

is achieved by training personnel to inspect a structure for any sign of defect and report the 

extent of the problem and suggest an appropriate solution (Holford et al. 2001).  A tap test 

is another simple method that involves tapping the surface of a structure by a hammer and 

listening to its response to determine the area that has a defect (Chang and Liu 2003). Both 

the visual inspection method and the tap method require personnel with prior experience 

using these methods, while the results are also subjective. 

 

There are some non-destructive monitoring techniques that are classified as local 

monitoring methods. Some of them use mechanical waves such as ultrasonic (includes 

pulse echo and through transmission methods), thermography, Acousto-ultrasonic, and 

acoustic emission methods. Others use electromagnetic waves such as radiographic and 

electromagnetic (such as Eddy Current, Remote Field, and Magnetic Flux Leakage electric) 

(Chang et al. 2003). Another local monitoring method is fiber optics that are used to sense 
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the strain and temperature of the civil structures such as  bridges, pipes, buildings, dams, 

piles and tunnels (Deng and Cai 2007) . Another type of testing is called Shearography test 

that uses a laser to detect delamination in a structure (Gholizadeh 2016). As mentioned 

before, most of these techniques are not possible to perform in an operating structure 

because of the system size and weight which is used for a such technique. Accordingly, a 

real time structural health monitoring that is possible to perform through an in-service 

structure is demanded. AE on the other hand, is a suitable technique that can be used to 

monitor the FRP composites during their operation since it is able to achieve the goal of 

detecting and localizing an early defect. 

 

2.4 Acoustic Emission Technique 

 

Acoustic emission has been identified as a promising technique for a real time monitoring 

for its ability to detect a damage and the damage progress during the structures’ service life 

(de Oliveira and Marques 2008). AE technique has been used to evaluate materials such as 

concrete, metal, and composites. When a material is subjected to load, strain energy is 

released in a location where a change in the microstructure occurred. This energy 

propagates as elastic waves that are called acoustic emission signals (AE). In FRP, these 

AE waves could be due to fiber breakage, debonding, matrix cracking, and fiber pull out 

(Ziehl 2000). Ziehl (2000) tested coupons that were cut from larger plates of glass vinyl 

ester and polyester  with a variety of geometries, fibers oriented at 00, 450, and 900 to the 

applied load and woven roving specimens. The results showed that AE damage 

mechanisms are affected by the geometry of FRP specimens and the applied load. For 
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instance, damage mechanisms for specimens loaded perpendicular to the fiber direction 

were fiber matrix-debonding and matrix cracking. In comparison, damage mechanisms for 

specimens loaded parallel to the fiber direction were fiber-matrix debonding, fiber pullout, 

fiber breakage, and matrix cracking. For woven roving specimens, all those five types of 

damage mechanisms are possible. The results showed that the onset of the damage for more 

flexible resin such as 00, 450 and woven roving specimens started in a higher stress than 90 

degree specimens (Ziehl 2000). 

 

2.5 Acoustic Emission Principles 

 

The general working principle of acoustic emission starts with force acting on a material 

and causing damage at a specific point. The damage produces elastic waves that propagate 

to the surface of the material and cause it to vibrate until these waves reach AE sensors. 

High sensitivity sensors contain a thin disk of piezoelectric crystal, which lies inside a 

protective housing and converts the detected waves (elastic displacement) into electrical 

signals of 1μv (Ohtsu 2008) and produces a change in voltage in response. AE signals 

produced are often very small to be detected; thus, a preamplifier and amplifier are used to 

amplify the signals for further processing with a gain given in decibels (dB). In concrete, 

signals are amplified with a gain range from 60 to 100 dB (Grosse and Ohtsu 2008). The 

transducer also contains filters that define the frequency range to be used and eliminate 

background noise such as mechanical rubbing and electromagnetic interference before the 

signals are passed to the data acquisition system. These signals are filtered by band-pass 

filter with a frequency ranging from 1 kHz to 2 MHz depending on the noise level and the 
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attenuation property of a material. Finally, these signals are sent to the data acquisition 

system to be stored for later analyses. Figure 2.2 illustrates the process of AE monitoring. 

 

 

 

 

Figure 2.2 Schematic of the AE Monitoring Process 

 

2.6 Acoustic Emission Advantages and Disadvantages  

 

Studies of AE signals have been conducted for more than half a century. The studies were 

able to come up with several advantages and some disadvantages of this non-destructive 

monitoring technique.  
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The main advantages of using AE technique are:  

• Ability to provide  real time structural health monitoring without shutting down a 

structure, which increases its practical value. 

• Highly sensitive that can detect the early cracks and flaws 

•  Applicability for local and global monitoring of active defects since the method 

does not require a priori knowledge of the location of the defect. The whole structure can 

be evaluated quickly and effectively in one test by attaching more sensors.  

•  Ability to detect the location of the damage and monitor its growth by using 

multiple channel sensors.  

• Economic feasibility for extending the life of the structures without the need for 

intensive labor. 

The main disadvantages:  

• It needs specialist skills to interpret the information from the source and distinguish 

among different types of damage. 

 

2.7 Basic Parameters of AE Signals  

 

AE is a wave generated by a sudden release of energy. The strength of acoustic signals is 

determined by the damage growth, the distance between the damage source and the sensors, 
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the acoustic properties of the transferring material, the sensor type, and the wave path 

(ASM International Handbook Committee 1990). After amplification and digitizing, an AE 

signal is represented as a voltage vs. time plot. AE waves can be analyzed in three domains: 

time domain, frequency domain, and time-frequency domain. Basic parameters in time 

domain are shown in Figure 2.3. 

 

 

 

Figure 2.3 AE signal characteristics 

 

These AE parameters are commonly used in AE processing technology (Miller and 

McIntire 1987). By applying these parameters, damage initiation and development can be 

monitored. The basic signal parameters are:  
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1. Amplitude: is the maximum voltage peak within the signal duration and is 

measured in decibels (dB). A decibel is defined as “the logarithmic ratio of signal peak 

amplitude to fixed reference amplitude” (ASTM F1430 2005). A decibel scale range is 

from 0 to 100 where 1μV at the sensor is referred to 0 dB.  

𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑑𝐵) = 20 log10 (
𝑉1

𝑉0
⁄ ) − 𝑝𝑟𝑒𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑟 𝑔𝑎𝑖𝑛 𝑖𝑛 𝑑𝐵 

…………………………………………………………………………………..      (2.1) 

 

Where: V0 = 1 μV at the sensor output (before amplification), and V1 = peak voltage of the 

measured acoustic emission signal.  

 

2. Threshold: is the level which determines the onset of the damage. If the absolute 

amplitude of the signal is below this level, that means the signal is produced by background 

noise. It would be filtered out. Threshold level may be user adjustable, fixed or automatic 

floating based on the background noise (ASTM F1430 2005). 

 

3. Duration: is the time of a signal from the first point exceeding the threshold level 

to the last one. It measures the source magnitude, so it is important to characterize different 

types of sources. The unit of measurement is microsecond (millionth of a second) (ASTM 

F1430 2005). The Amplitude – duration relationship helps to identify signal’s shape.  

 

4. Counts: is the number of times which the AE signal crosses the threshold level. 

Typically, the counts that start from crossing threshold level to the peak amplitude are 

called “counts to peak” (ASTM F1430 2005).  
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5.  Rise time: is the time measured from the first point of the signal exceeds the 

threshold level to the maximum peak amplitude. This parameter is important to measure 

the capacity of signals as it is related to the source – time function. The unit of measurement 

is also microsecond (ASTM F1430 2005). 

 

6. Event: is the rise of an AE activity indicated by a damage onset in a material. A 

single event may contain few or hundreds of counts. It is used for interpreting the AE data 

(ASTM F1430 2005). 

 

7. Energy, MARSE: is the measured area between the squared signal envelope and 

the threshold level within the duration of time. It is expressed in logarithmic form (dB) and 

measured in joules (ASTM E1316 2006).This parameter is preferred in quantifying the AE 

activity rather than the counts or hits as it is more sensitive to the amplitude and duration, 

and it is less dependent on the voltage threshold and operating frequency (Grosse and Ohtsu 

2008). 

  

𝐸𝑛 = ∑ 𝑝𝑜𝑤𝑒𝑟 𝑠𝑖𝑔𝑛𝑎𝑙 = ∑ 𝑥2[𝑛]      …………………………………………       (2.2) 

 

8. Arrival time: is the first time that an AE signal exceeds the threshold level (ASTM 

F1430 2005).  
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9. Channel: is an AE sensor, and the other related instrumentation which detects, 

transmits, and measures the signal within it (ASTM E1316 2006).  

 

10. Average Frequency: is the ratio between the AE counts and the duration; it is 

measured in kHz (ASTM E1316 2006). 

𝐴. 𝐹. =
𝐴𝐸 𝑐𝑜𝑢𝑛𝑡𝑠

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 (𝑘𝐻𝑧)          …………………………………………………        (2.3) 

 

11. RA value: is the ratio between the rise time and the amplitude; it is recorded in 

μs/V. It is important to categorize the type of cracks.  

 

12. Attenuation: is the loss of energy when a wave travels outward from the source due 

to some factors such as: dispersion, scattering, and conversion to other kinds of energy 

such as heat (Prosser 2002). This parameter depends on the distance between a source and 

sensors and the properties of the material to be tested (ASTM F1430 2005). Consequently, 

the signals can be recorded up to a specific distance and this will limit the distance of sensor 

placement. The number of sensors should be limited in monitoring large structures for 

economic reason. Hence, a careful selection of the sensors placement in a large structure 

where the defect is likely to take place is important. The attenuation is computed using:  

 

𝐴𝑓 = 𝐴0𝑒−𝛼𝑑                 ………………………………………………………      (2.4) 

Where: 𝐴𝑓 is the amplitude at the sensing location, 𝐴0 is the initial amplitude at the source 

location, α is the attenuation coefficient, and d is the travelling distance (Maillet et al. 

2014). 
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AE signals could be released in two types of signals, burst (transient) and continuous 

signals as shown in Figure 2.4. The burst emission is a discrete signal which has high 

amplitude and energy. In other words, it has start and end points caused likely by crack 

propagation or fracture formation. The continuous signal is a sustained signal which has 

variation in amplitude in low energy with no ending point. Burst signals often refer to a 

fracture or crack propagation, while continuous signals refer to noise signals (GI-MR 

2009). Table 2.1 summarizes the AE parameters and information about their source events. 

 

 

 

Figure 2.4 Examples of a continuous AE signal compared to a burst AE signal 
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Table 2.1 AE parameters and information provided about the source event (reproduced from Ozevin et al. 2004) 

Domain Parameters Information about the source event 

 Rate Rate of damage occurring 

 Peak amplitude Intensity of source event, orientation 

Time domain variables Relative arrival times Source location 

 Duration or count Energy of source event 

 Waveform Structure of source event 

 Energy Energy of source event – damage type 

Frequency domain variables Frequency spectrum Nature of source event 

Time – frequency domain variables 

Spectrogram 

Energy distribution of source event 

through time 

The time variation of each frequency 

component 

The intensities of source frequency 

components 
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2.8 Derived Parameters of AE signals 

  

2.8.1. Kaiser Effect & Felicity Effect  

 

Kaiser effect is “the absence of detectable acoustic emission at a fixed sensitivity level, 

until previously applied stress levels are exceeded” (ASTM E1316 2006). Felicity effect is 

“the presence of detectable acoustic emission at a fixed predetermined sensitivity level at 

stress levels below those previously applied” (ASTM E1316 2006). Figure 2.5 describes 

the Kaiser and Felicity Effects. 

 

 

 

Figure 2.5 Kaiser and Felicity Effects (Reproduced with permission from the NDT 

Resource Center and Center for NDE, Iowa State University) (NDT 2014) 

 

Felicity effect 

Kaiser effect 
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The Kaiser effect is described in (BCB) when a specimen is unloaded (from B to C) then 

reloaded (from C to D) and no emissions are produced during unloading or reloading until 

the previous load is exceeded (from B to D). The Kaiser effect is a good indication for 

structural integrity (Ohtsu 2008). The Felicity effect is described in (DEF) when a 

specimen is unloaded (from D to E) then reloaded (from E to G), and AE are produced at 

F within reloading before the previous load is reached at D. The Felicity effect is an 

indication of significant damage when it is less than one (Ohtsu 2008). 

 

𝐹𝑒𝑙𝑖𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =  
𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑜𝑛𝑠𝑒𝑡 𝑜𝑓 𝐴𝐸

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑟𝑒𝑠𝑠
      ………………………         (2.5) 

 

The Felicity effect has been investigated in several studies. One study was carried out in 

1996 where corroded concrete specimens with 1 mm and 4 mm wide cracks were subjected 

to four – point bending, and monitored by the AE technique (Murakami and Yuyama 

1996). The results indicated that the felicity ratio reduces as cracks increase (Murakami 

and Yuyama 1996). 

 

2.8.2. Calm Ratio & Load Ratio 

 

Calm ratio is the ratio between the number of cumulative AE activities within the unloading 

process and the total AE activities within the last maximum loading (Ohtsu et al. 2002). 

 

Load ratio is the ratio between the load level at the time AE hit is detected within the 

loading cycle and the preceding load level (Ohtsu et al. 2002). The calmand load ratio 



 

27 
 

parameters were derived by Ohtsu et al. (2002) in a study that tested reinforced concrete 

beams under cyclic loading with the intention of evaluating damage progression. The result 

of this study became part of the Japanese code for non-destructive testing NDT (Ohtsu et 

al. 2007).  The calculations of these ratios were schemed and divided into four regions; 

each region represented a damage level as shown in Figure 2.6) 

              

Figure 2.6 Damage evaluation in term of calm ratio vs load ratio (reproduced from Ohtsu 

et al. 2007) 

 

2.8.3. Historic Index & Severity 

 

Historic index (H(I)) is an analytical method of tracing the abrupt change (knee) of the 

slope of the cumulative AE signal strength against time. It is calculated as a ratio of the 
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average signal strength of the last few events to the average signal strength of all events up 

to that point (CARP 1999): 

 

𝐻(𝐼) =
𝑁

𝑁−𝐾
[

∑ 𝑆𝑜𝑖
𝑁
𝑡=𝑘+1

∑ 𝑆𝑜𝑖
𝑁
𝑖=1

]      ……………………………………………             (2.6) 

 

Where: N is the number of hits up to the point. Soi is the signal strength of a particular hit. 

K is the empirically derived constant based on a type of material and number of events.  

 

The severity (Sr) is calculated as the average signal strength of (j) events having the 

maximum value of signal strength (CARP 1999): 

 

𝑆𝑟 =
1

𝐽
[∑ 𝑆𝑜𝑚

𝐽
𝑚=1 ]       …………………………………………………         (2.7) 

 

Where: Som is the signal strength of the mth event where the ordering of m is based on signal 

strength magnitude, m=1 when the event having the largest signal strength. J is the 

empirically derived constant based on a type of material and number of events. The K & J 

values for FRP materials are defined in Table 2.2. 
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Table 2.2 K & J values for FRP (CARP 1999) 

Number of Hits K J 

< 20 Not Applicable Not Applicable 

20-100 0 20 

101-500 0.8 N 20 

> 500 N -100 20 

 

 

The K & J values for concrete are defined in Table 2.3 below. 

 

Table 2.3 K & J values for concrete (Golaski et al. 2002) 

Number of Hits K J 

≤ 50 0 0 

51-200 N-30 50 

201-500 0.85 N 50 

> 500 N-75 50 

 

                      

Hence, the historic index and the severity are important parameters for intensity analysis 

which helps to identify the onset of a significant damage and its propagation. The intensity 

of an acoustic emission source can be determined by plotting severity vs historic index in 

a log-log chart as shown in Figure 2.7. The zones A to E are explained in Table 2.4. 
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Figure 2.7 Intensity analysis zones for FRP vessel (reproduced from Gostautas et al. 

2005) 

 

The resultant plot can be divided into these zones based on structural damage level. The 

values of maximum damage are plotted on the top right-hand corner while the minor 

damages on the bottom left-hand corner (Gostautas et al. 2005). The zones intensity is 

shown in Table 2.4. 
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Table 2.4 Zone intensity and their recommended action (reproduced from Gostautas et al. 

2005) 

Zone Intensity Recommended action 

A – No significant 

emission 

Insignificant acoustic emission. No follow-up recommended 

B – Minor 

Note for reference in further tests. Typically, minor surface 

defects such as corrosion, pitting, gouges, or cracked 

attachment welds 

C 

Defect requiring follow-up evaluation. Evaluation may be 

based on further data analysis, or complementary non-

destructive examination 

D Significant defect requiring follow-up inspection 

E 

Major defect requiring immediate shut–down and follow–up 

inspection 

 

 

2.9 AE Analysis in Frequency Domain and Time – Frequency Domain 

 

Signal processing techniques have been developed making waveform-based AE analysis 

more applicable. AE signal processing methods include time series analysis, Fourier 

transform (FT), Short timed Fourier transform (STFT, also known as Gabor or windowed 

Fourier transform), and Wavelet transform (WT).  
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Several studies have proved that frequency analysis is an effective method to distinguish 

signals from different damage mechanisms in FRP composites (Bohse 2000; de Groot et 

al. 1995; Gutkin et al. 2011; Kamala et al. 2001; Ramirez-Jimenez et al. 2004; Russell and 

Henneke 1977) Summary of their results are found in Table 2.5. The studies were 

performed on laminates, plates or sheets. Other techniques were used in some of these 

studies to confirm the findings such as the optical microscope and the television camera in 

(Russell and Henneke 1977); the light microscopy in (Bohse 2000); the SEM micrograph 

in (Ramirez-Jimenez et al. 2004); and the ultrasonic scanning in (Gutkin et al. 2011). 
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Table 2.5 Summary of Frequency Analyses 

Study Year Material type Test Type 
Analysis 

Technique 
Findings / limitations 

Russell & 

Henneke,  
1977 

Graphite Epoxy  

Laminates 
Tensile 

Spectrum  

Analysis 

50-150 kHz Matrix Cracking 

140-180 kHz Fiber Failure 

Suzikie et al. 

(from De 

Groot et al 

1995) 

1988 
Glass Polyester 

Composites 
Tensile Frequency Analysis 

(30–150) kHz Matrix Cracking 

30-100 kHz Delamination 

(180–290) kHz Fiber Debonding and 

pull-out 

230-450 kHz Debonding 

(300–400) kHz Fiber Failure 

De Groot et al. 1995 

Unidirectional Carbon 

Fiber / Epoxy 

Composites (Plates) 

Tensile Frequency Analysis 

(90-180) kHz Matrix Cracking 

(180-240) kHz Fiber Pull-out 

(240-310) kHz Debonding 

> 300 kHz Fiber Failure 

Bohse  2000 

Single Carbon 

Fiber/Epoxy Laminate 

Single Glass 

Fiber/Epoxy Laminate  

Tensile Frequency Analysis 

70% of the signal power< 350 kHz 

Matrix Cracking  

70% of the signal power> 350 kHz 

Fiber Failure 

In between Debonding 

Kamala et al. 2001 

Carbon Fiber 

Reinforced Composites 

(Laminates) 

Tensile Fatigue 
Time-Frequency 

Analysis (DWT) 

120 kHz Matrix Cracking 

250 kHz Debonding 

300 kHz Fiber Failure 
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Table 2.5 Cont’d Summary of Frequency Analyses 

 

Ramirez-

Jimenez  

et al 

2004 
Glass  

Polypropylene Sheets 
Tensile Frequency Analysis 

100 kHz Debonding 

200-300 kHz Pull Out 

420-500 kHz fiber Failure 

Gutkin et al. 2011 
Carbon Fiber 

Reinforced Laminates 

Tensile 

Frequency Analysis 

(Pattern 

Recognition) 

(0–50) kHz Matrix Cracking 

Compact tension (50–150) kHz Delamination 

Compact 

compression 
(200–300) kHz Debonding 

Double Cantilever 

Beam 
(400–500) kHz Fiber Failure 

Four-point End  (500–600) kHz Fiber Pull-out 

Notched Flexure   
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Fast Fourier transform (FFT) is generally used to recognize the signal frequency content, 

but it is unable to record information about the time of frequency occurrence. Since AE 

waveforms are presented in both time and frequency domains and provide a valuable data, 

joint time – frequency technique is important. The WT and STFT analyses are powerful 

time – frequency technique that can provide pertinent information from the AE signals to 

determine damage types in the composites (Hamstad et al. 2002; Kaphle and Tan 2011). 

The STFT calculates the Fourier transform by dividing the signal into stationary parts; a 

short window function is used to extract the parts from the original signal, and then the 

window is relocated in a new location for the next resolution. The result obtained from the 

new location of the window is the time – frequency localization, and that has a constant 

localization resolution due to the limited length of the window. Information about the 

energy and frequency content at a specific time can be obtained using this method. The 

WT uses a scaled window in variable sizes. Long-time interval windows are used in cases 

where accurate low frequency is required, while the short-time interval ones are used in 

cases where high frequency is preferable (Mathworks 2009). Mathematical derivation of 

the STFT and WT, their reconstruction methods, and their stability are discussed in detail 

by (Daubechies 1990). Information about the energy and frequency content at a specific 

time can be obtained using this method. 

   

Although wavelet transforms can be performed for both continuous and discrete data, the 

discrete type (DWT) is fundamental in distinguishing between AE signals. It allows 

decomposing the signal into continuous frequency bands depending on different levels of 

decomposition (Mallat 2009). Thus, it is possible to represent different damage 
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mechanisms in different frequency bands by using DWT. The principal of the DWT is that 

the original signal passes through two complementary filters, low and high pass filters, and 

two signals are obtained, correlating with the approximation and detail coefficients of the 

first level. For the next resolution, the two filters are applied to the resulting approximation 

coefficients and so on. The approximations are high scale and low frequency, while the 

details are low scale and high frequency components. The sum of the signals obtained at 

each level reset the original AE signal. The DWT has two disadvantages. First, the analysis 

depends on the time, so a small shift in the time results in entirely different coefficients. 

Second, it is very sensitive to noise because of its ability in detecting sharp changes 

(Unnþórsson 2008).  

 

Kaphle et al. (2012) simulated AE signals on a long steel beam by breaking pencil leads at 

specific locations on the specimen. The STFT and WT were performed on the initial signal 

that had duration of 1000 μs and was recorded by three sensors located at different corners 

of the plate. The results showed that the frequencies lie on a narrow band around 150 kHz. 

The results concluded that the WT method was unnecessary to be used since similar 

patterns of the frequency bands were found for both methods (Kaphle et al. 2012b). 

 

Kaphle et al. (2012) calculated the energy distribution in the AE signals by using an STFT 

matrix. The coefficients of this matrix are 𝐶(𝜔𝑖, 𝜏𝑗),  where 𝜔𝑖 represents FFT in rows and 

𝜏𝑗 represents time in columns. The normalised energy ratio as a function of frequency 

(𝐸(𝜔)) can be calculated as follows: 

𝐸(𝜔) =
∑ 𝐶2(𝜔𝑖,𝜏𝑗)𝑁

𝐽=1

∑ ∑ 𝐶2(𝜔𝑖,𝜏𝑗)𝑁
𝑗=1

𝑀
𝑖=1

   ……………………………………………………          (2.8)  
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Where N is the numbers of columns that represent the time, and M is the number of rows 

that represent the frequency. Studying energy distribution in the time – frequency domain 

is expected to provide important information about the nature of the damage source. Energy 

distribution does not vary with the change of the distance between the sensor and the 

source, i.e. it is not affected by the signal attenuation (Kaphle et al. 2012b). Energy 

distribution as a function of frequency was performed to find the frequency bands that are 

predominant in specific signals.  

 

2.10 Acoustic Emission Transducers 

 

There are various types of acoustic emission transducers used in different structures and 

materials. The most significant factor for the AE to be successful is the choice of a correct 

transducer in terms of sensitivity and frequency response. Generally, the AE transducers 

are piezoelectric (PZT) devices. The frequency response is affected by the size and the type 

of the transducer (ASTM E1316 2006). In order to insure an effective transition of the AE 

signals from the test specimens to the transducers, a suitable coupling is required. The AE 

transducers are attached to the surface of the structure using magnetic holders or glues.  

The frequency range of the transducers varies from (20 kHz – 2.2 MHz) depending on the 

sensor type and the material under testing (Vallen 2002). In FRP composites, sensors with 

range of 100 kHz – 200 kHz are applicable (CARP 1999). Figure (2.8) below shows the 

commercial types of the transducers. 
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Figure 2.8 Vallen System Sensor Collection. (Used with permission of Vallen System) 

 

Two types of piezoelectric transducers are used in FRP monitoring, resonant and 

broadband (wideband) transducers. The resonant transducers have varying frequencies 

appropriate for concrete: (R6I) resonant with sensitivity equal to (40-100) kHz and R15I 

resonant with sensitivity equal to (80-200) kHz. The resonant sensors are less expensive 

and more sensitive at their resonance frequency (Vallen 2002). Accordingly, this type is 

used near the damage source to minimize amplitude attenuation and in other cases that 

other AE features rather than frequency content are required. Other AE features such as 

energy, amplitude, and arrival time should be recorded with the same type of sensors. The 

broadband sensors are preferred for practical structural monitoring in case background 

noise is the problem such as friction and impact which results from the surrounding 

environment and in case the frequency or model analyzing is required (Vallen 2002). It is 

important to know that one type of damage mechanism can produce different signals from 
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different locations, and different types of damage mechanisms can produce different 

signals from the same location. Thus, it is crucial to choose an appropriate type of sensor 

and frequency filter to identify the source mechanism and its propagation.  

 

2.11 Fields of application of AE technique 

 

 

 

The AE technique has been used efficiently for characterization of such materials as 

concrete, composites, metals, and rocks. It is also used for the design optimization, in-

process monitoring, acceptance tests, and in-service condition / SHM in structures (Czichos 

2013). It is applicable for three major fields: structural testing and surveillance, process 

monitoring and control, and materials characterisation (Scruby 1987). 

 

2.11.1 Application of AE to FRP 

 

A significant number of studies have focused on studying the AE signals characteristics of 

FRP composites under different loading tests in order to predict their failure mechanisms. 

First study in this field had been conducted by Fuwa et al. (1975), by testing cyclically-

loaded carbon fiber plastic (CFRP) laminate samples at high stress levels in both ordinary 

tensile testing and acoustic emission method. The results showed that the damage 

mechanisms for both methods are the same, and that CFRP do not have a significant 

damage with fatigue loading. Furthermore, the results indicated that the AE behaviour is 

time-dependent deformation of the resin matrix that allows forces in the fiber to redistribute 

gradually. In addition to that, the results indicated that AE count rate decreases with time 
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during cyclic loading and stress relaxation until the sample becomes silent prior to failure 

(Fuwa et al. 1975). 

 

Valentin et al. (1983) applied the AE on two types of carbon – fiber reinforced epoxy 

composite, unidirectional and crossplied (0o, 90o) specimens. The specimens were loaded 

under tensile test to failure in two directions, perpendicular and parallel to the fiber 

orientation. The results showed that the cumulative amplitude distribution for the 

unidirectional specimen was linear, while for the cross plied specimen it was bilinear. Also, 

the results showed that high amplitude signals were released from matrix cracking parallel 

to the fiber, while matrix cracking perpendicular to the fiber was negligible. In addition, 

low amplitude signals were released from fiber breakage (Valentin et al. 1983). On the 

other hand, Komai et al. (1991) provided a range of AE amplitude for CFRP Composite 

sheets suggesting that: signal with amplitude less than 60 dB was from interfacial 

debonding, signal with amplitude less than 70 dB was from matrix cracking, and signal 

with amplitude less than 75 dB was from fiber breakage (Komai et al. 1991). 

 

Ely and Hill (1992) conducted research investigating damage characterization on 

graphite/epoxy composite samples subjected to tensile tests. By using the AE parameters 

– counts, duration, and risetime, the results allow the identification of various damage 

mechanisms. With event duration ranges: 0-40 μsec and peak amplitude at 40 dB matrix 

cracking was detected, 41-72 μsec and peak amplitude at 58dB fiber breakages was 

detected, 73-126 μsec with peak amplitude at 63dB fiber pullout was detected, and duration 

of more than127 μsecs with peak amplitude at 69dB were longitudinal splitting (Ely and 
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Hill 1992). The results also showed in a later study that fiber breakage and longitudinal 

splitting occur at the same location in a unidirectional graphite/epoxy specimen, the 

stronger signals with high amplitude and long duration resulted from the fiber breakage 

and the weaker ones with low amplitude and short duration resulted from the longitudinal 

splitting (Ely and Hill 1995).  

 

Iwamoto et al. (1999) applied both parametric and frequency analysis on unidirectional 

CFRP composites to determine a bridging fiber failure. They realized that bridging fiber 

failure releases high energy that has frequency between 600 – 700 kHz. The results were 

confirmed by a power spectrum analysis with a slight difference in determining the location 

and size of the frequency intervals that were detected (Iwamoto et al. 1999). 

 

Kamala et al. (2001) applied the DWT analysis on CFRP composite under uniaxial fatigue 

loading. They decomposed the AE signal into different levels, and they concluded that 95% 

of the AE signal lies at frequency bands of 120, 250, and 310 kHz (Kamala et al. 2001).  

  

Research on glass fiber reinforced composites have been done for damage identification 

since 1979. Crump (1981) tested many GFRP specimens and analyzed the AE signals to 

determine that the AE activity increases with the increase of glass percentage in specimens, 

concluding that fiber breakage was their primary mode of failure (Crump 1981). This study 

was one of the most significant studies which lead to establishthe Committee on Acoustic 

Emission from Reinforced Plastics (CARP) code for recommended practice of monitoring 

FRP pressure vessels and tanks using the AE technique. Suzikie et al. (1998) studied the 
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AE features, amplitude distribution, and they proposed four ranges corresponding to the 

acoustic frequency released by different types of damage in glass/polyester composite: 30–

150 kHz correlated to matrix cracking, 180–290 kHz correlated to fiber debonding and 

pull-out, and 300–400 kHz correlated to fiber breaking (Suziki et al. 1988). 

 

Barre and Benzaggagh (1994) conducted research to investigate the damage initiation and 

progression in short glass fiber reinforced polypropylene under three test types: tensile, 

tensile fatigue, and crack propagation tests. The study proposed the use of AE in terms of 

amplitude distribution and the SEM techniques. Four different material compositions were 

tested in this study. All the materials contained 40% (by weight) of short glass fibers and 

60% polypropylene, but had different fiber lengths and production processes. The results 

allow the identification of damage mechanisms depending on the parameters of the 

material compositions with ranges of the AE amplitudes: 44-55 dB was correlated to matrix 

cracking, 60-65 dB was correlated to interface fracture, 65-85 dB was correlated to fiber 

pull-out phenomena, and 85-95 dB was correlated to fiber fracture (Barré and Benzeggagh 

1994). 

 

Bhat et al. (1994) discussed the experimental investigations carried out on twenty-five 

specimens made from four layered unidirectional glass fibers–epoxy composite specimens 

subjected to constant fatigue load cycles in a direction parallel to the fibers orientation. The 

acquired AE data was analyzed using pattern recognition techniques. Stepwise analysis 

was developed to estimate the parametric distributions. First, the correlation between the 

rates of AE activities are defined by shifting the peak amplitude from stage to stage. 
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Second, the classification of the data is employed using pattern recognition techniques for 

four basic AE parameters: ring down count, event duration, peak amplitude, and rise time. 

The results indicated three separate damage mechanisms before failure: matrix cracking, 

interface debonding, and gross fiber failure. Events that arose in the primary stage of 

fatigue life were correlated to matrix cracking, events that arose in (20% - 70%) of fatigue 

life were correlated to interface debonding, and events that arose in the last (10%) of fatigue 

life were correlated to fiber fracture. Furthermore, the cumulative damage was estimated 

to predict the residual life. The results showed that there was a short time of high AE events 

followed by a silent period before the failure (Bhat et al. 1994). 

 

Rizzo and Scalea (2001) tested real size carbon fiber reinforced polymer stay cables under 

large scale laboratory tests, and compared them with the AE responses. The results showed 

a qualitative correlation between signal amplitude, signal frequency and the type of 

damage. They performed additional study to identify the signal attenuation and dispersion 

phenomena, and they reported that they are very important in large structures (Rizzo and 

Lanza di Scalea 2001).  

 

Ativitavas et al. (2004) developed a low amplitude filtering technique in order to 

distinguish between different failure mechanisms in fiber reinforced polymer structures. 

The results showed that the high amplitude of AE hits related to the fiber breakage was 

separated from others, and the reason was that the fiber breakage demand higher energy 

than the matrix cracking because the fibers have high strength. The cumulative signal hits 
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of the filtered signals were correlated to the cumulative signal hits of the fiber breakage 

(Ativitavas et al. 2004). 

 

Li et al. (2011) performed fatigue tests on GFRP and CFRP cables based on the AE 

technique and fatigue test. Fractal theory approach was used for the AE analysis. Each test 

cable was made up of seven GFRP or CFRP strands with the same length and diameter. 

The time-history and frequency responses of the AE signals were investigated, and the 

results demonstrated that a fractal dimension-based damage index can quantify damage 

propagation and provide advanced warning of the FRP cable failure (Li et al. 2011). 

 

Stevenson et al. (2014) tested different types of pultruded CFRP and GFRP rebars, 

manufactured using continuous fibers, under ramping load. The histogram of the counts in 

every ten second interval, and the cumulative of these counts were plotted. The results 

showed that the count rate increases with increasing load, with a maximum peak count rate 

occurring near failure as shown in Figure 2.9. Also, the results showed that GFRP 

generated AE events at an earlier stage than the CFRP (Stevenson et al. 2014). 
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(a) 

 

(b) 

Figure 2.9 Counts histogram and load increase with time for a) CFRP, b) GFRP 

(Stevenson et al. 2014) 
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2.11.2 Application of AE for SHM 

 

Research has proved the suitability of the AE technique in studying the integrity of bridge 

structures, as it provides continuous in-service monitoring. Many studies were carried out 

on the use of AE technique detecting the early damage and assessing the health of bridge 

structures made of different materials (Colombo et al. 2005; Shigeishi et al. 2001; Yoon et 

al. 2000; Yuyama et al. 2007) applied the AE technique on concrete bridge materials. ( 

Gong et al. 1992; Holford et al. 2001; Sison et al. 1998; Yu et al. 2011, 2013) applied the 

AE technique on steel bridges, while (Melbourne and Tomor 2006; De Santis and Tomor 

2013) applied the AE technique on masonry bridge. 

 

Gostautas et al. (2005) tested glass fiber reinforced composite bridge deck specimens, in 

both original and repaired conditions, subjected to static load to study their performance 

and characterize their damage mechanisms. They applied intensity analysis and used 

Felicity ratio to check the Kaiser effect and the Felicity effect. The results showed that the 

main kinds of damage mechanisms were matrix cracking, fiber breakage, and fiber 

delamination. The results also showed that the Felicity ratio is similar to the load ratio, but 

it is defined as the load ratio where the AE events are observed in the reloading cycle to 

the previous maximum load level. The Felicity ratio was reported as an important 

parameter identifying the onset of damage (Gostautas et al. 2005). 

 

Cole et al. (2006) performed cyclic fatigue loading test on a fiber reinforced polymer 

honeycomb (FRPH) beam strip, of 9760 mm in length × 305 mm in width × 910 mm in 
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height, that was cut from  a bridge structure located in Troupsburg, New York. FRPH 

system consists of thin honeycomb core sheets covered by several layers of chopped E-

glass fibers at the top and the bottom as facesheets. Load, displacement, and strain 

measurements were recorded every 25,000 cycles up to 2 million cycles. By relating 

emission that occurs during fatigue loading to the onset of significant damage, the AE 

technique was used as an additional method comparing load, strain, and displacement. The 

specimen was designed to fail in the compression zone first. A pattern recognition was 

employed (loading, unloading, and reloading) to check the felicity effect, which is the 

significant evidence of fiber reinforced polymer damage. The results showed that the first 

presence of the felicity effect was at a level higher than the fatigue level, 10 – 44 kN which 

represent 6 % of the failure load, meaning the fatigue load had not damaged the specimen 

(Cole et al. 2006).  FRPH structures do not have a significant damage during in service 

loading. In addition to that, the AE data tracked the damage propagation during the static 

loading that other conventional methods such as strain gauge could not. The AE data 

indicated the onset of damage was under the loading point interiorly, then, propagated to 

the surface preceding the failure. 

 

2.12 Localization Technique  

 

There are two methods which depend on the arrival time to determine the source location: 

time of arrival and zonal method. Time of arrival is a common method of comparing the 

arrival times of a signal at different sensors in an array. The sensors could be located in 

linear, triangular, or rectangular arrays depending on the geometry of a material to be 
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tested. The minimum number of sensors should be two for linear, three for planar, and four 

for volumetric location. The linear source location is appropriate for a structure that has 

one long dimension compared to the width or the thickness such as pipes, bars, or truss 

members, whereas the two-dimensional source location is desired for a plane surface or a 

curved surface.  The second method is called “zonal method”. In this method, the first 

sensor that detects a hit or records a highest output in an array is used as a primary zone to 

locate the source of the damage and for the next step; an improvement can be achieved by 

using two highest output sensors. The zonal method is less accurate in identifying the 

source location than the time of arrival method, but it is more applicable for a large 

structure with a limited number of sensors or when the material attenuation is too high 

(Fowler 1988). Source location technique is useful in evaluating a large structure by using 

appropriate number of sensors, calculating the attenuation, and knowing the different wave 

modes that travel at different velocities (Surgeon and Wevers 1999). 

 

There has been previous research on various materials using various algorithms to estimate 

the location of the AE.  The AE can be used to locate damage in composite materials 

(Romhány et al. 2017). The source location in reinforced concrete slabs retrofitted with 

CFRP strips has been studied using the linear algorithm (Degala et al. 2009). In the case of 

CFRP strips, the AE signals were found at a region where the debonding initiated between 

the CFRP strips and the concrete at the anchorage of the strips. In another study, CFRP 

sheets were used to flexuraly retrofit concrete beams subjected to three-point bending (Yun 

et al. 2010). Two-dimensional AE source location was used to monitor the onset, growth 

and location of cracks in the beam. The two-dimensional algorithm successfully located 
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the damage at the centre of beams, where the CFRP sheet was intentionally not bonded to 

the concrete surface (Yun et al. 2010). In another study, damage localization has been 

investigated in fiber reinforced mortar subjected to tension and monitored using the AE 

technique and digital image correlation using an automated image processing procedures 

(Rouchier et al. 2013). A camera was set to monitor the notched area in the sample that the 

microcracks supposed to start in. Most AE signals were recorded in high strain areas, along 

the crack area.   

 

Estimated velocities have been shown to be dependant on measurement parameters. A 

study has been conducted to compare the time of arrival and estimated wave velocity at 

different AE threshold levels in reinforced concrete beams using PLB tests out of the plane 

and in the plane of the sensors (Md Nor et al. 2013). They concluded that the estimated 

wave velocity is threshold and distance dependent; the estimated wave velocity decreases 

as threshold level and distance between sensors increase. 

 

A study on the effect of wave mode on the accuracy of source location determination using 

AE generated by PLB on a steel plate was performed (Kaphle et al. 2012a). The STFT and 

WT were used to identify wave modes and determine which type of these wave modes 

gives more accurate localization of AE sources. This study concluded that using a threshold 

based method to determine arrival time is a reliable method if the extensional wave mode 

is used. However, the study concluded that by setting a low threshold to identify the 

extensional mode in actual application noise may reduce the reliability of the approach 

(Kaphle et al. 2012a).   
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A probabilistic framework has also been used to locate AE signals generated from PLBs 

on an aluminum plate-like structures (Dehghan Niri and Salamone 2012). Continuous 

wavelet transform was performed to determine the arrival time of the lamb waves. Four 

piezoelectric sensors were used to capture the AE signals in two different configurations. 

The difference of using this approach over the conventional two dimensions source 

location was the considering of uncertainties in the arrival time and wave velocity. The 

variance in arrival time was used as an uncertainty in arrival time, and the variance in the 

frequency domain was used as an uncertainty in the group wave velocity. In the next step, 

extended Kalman filter was used to iteratively predict the location of AE signals and the 

wave velocity. The results indicated that the proposed two dimensional algorithm can be 

used in a real time application (Dehghan Niri and Salamone 2012). 

 

Piezoelectric rosette sensors have also been used to improve source location in plates and 

panels (Matt and Di Scalea 2007). The rosette transducer consists of a rectangular macro-

fiber composite which has an ability to extract the flexural wave mode using rosette 

principles by determining the wave strain principal angle. Source location was determined 

using PLBs on an aluminum plate, an anisotropic CFRP laminate, and a complex CFRP-

honeycomb sandwich panel (Matt and Di Scalea 2007). 

 

Smart aggregates transducers (SAs) have also been used to improve source location in a 

plain concrete beam subjected to three-point-bending test (Li et al. 2016). The low cost 

new transducer is embedded in a concrete structure to reduce the errors coming from the 

AE signals attenuation. SAs can be used as a sensor producing voltage under stress, or can 
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be used as an actuator producing a stress wave when applying an electric field. The 

frequency response of the SAs sensor was compared to the frequency respond of the 

traditional surface mounted AE sensors. The results indicated similar characteristics for 

both types of sensors. The SAs sensor can be pre-embedded in a large concrete structure 

(Li et al. 2016).  

 

The accuracy of AE source location generated from a fatigue crack growth in an aerospace 

aluminium sample has been improved by developing three new methods in determining 

the time of arrival of an AE signal (Bai et al. 2017). Cross-correlation was used to 

determine the linear correlation between two signals generated at two sensors. The time of 

arrival of the signal is determined as a significant change occurred in the cross-correlation 

series of the time varying correlation function in time domain or continuous wavelet 

transform (CWT) coefficients in time frequency domain.  The third new method was the 

CWT-based binary map that produce a grey-scale image by normalising the power 

spectrum and then represent the first non-zero pixel as the arrival time of the signal. The 

results were compared to the conventional fixed threshold and Akaike Information 

Criterion (AIC) methods. AIC is a statistical method that find a transition point between 

noise and coherent signal which was developed by Akaike (Akaike 1974). The results 

proved that the binary map technique produced the lowest error when it compared to the 

fixed threshold and AIC methods (Bai et al. 2017).  

 

An improved method of automatic delta T mapping (DTM) technique was used to locate 

damage in a plate steel and an aerospace aluminium plate samples (Al-Jumaili et al. 2016). 
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In DTM method, two algorithms were used to improve the accuracy of AE source location. 

A clustering algorithm was used to determine the highly correlated events, and a minimum 

difference algorithm was used to locate the AE events. The results showed that the 

automatic DTM method improved the accuracy, reduced the time of operating, prevented 

the human errors, and removed the need of expertise to operate the test (Al-Jumaili et al. 

2016).    

 

With regards to source location in FRP bars, Chen et al. (1993) estimated an AE source 

location in aramid FRP plastics subjected to tensile loading. AFRP consists of 65% of 

aramid fibers and 35% of vinylester resin. The following equation was used in calculating 

the linear source location: 

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑇𝑚𝑎𝑥−∆𝑇

2
×

𝑔𝑎𝑢𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑇𝑚𝑎𝑥
           .………………………………     (2.9) 

 

Where: 𝑇𝑚𝑎𝑥 is the maximum time of the travelling wave between the two sensors for AE 

waves that generated during a preliminary experiment in the elastic stage;  ∆𝑇 is the 

difference in time for an AE wave generated from a tension test and captured by the two 

sensors. The random distribution of damage throughout the length of the failed samples 

was observed visually and verified using a threshold based linear source location (Chen et 

al. 1993). 

 

Liang et al. (2004) calculated damage location of a pseudo ductile hybrid, glass and carbon, 

fiber reinforced polymer rods subjected to tensile loading by using piezoelectric and fiber 
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optic acoustic emission sensors. Equation 2.9 was used to calculate the linear source 

location. Results showed that the maximum error between both techniques occurred in the 

middle section of the bar as shown in Figure 2.10 (Liang et al. 2004). 

 

 

Figure 2. 10 Comparison of the AE source location calculated using the AE signals 

obtained from fiber optic and piezoelectric sensors (Liang et al. 2004, With permission 

from ASCE) 

 

In the same study, the spectral energy was calculated for individual AE events at different 

stages of the loading using fast Fourier transform in time domain analysis in order to 

distinguish between the fracture of carbon and glass fibers. A damage at the elastic stage 

was associated to the carbon fiber fracture, while a damage at the ultimate stage during the 

post-yield phase was associated to the glass fiber fracture. The peak frequency for both 

fibers was located in a range of 100 – 120 kHz; however, AE signals generated from carbon 
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fracture have more low frequencies and high amplitude than AE signals generated from the 

splitting of glass fiber. The results showed that spectral energies of the elastic stage are 

larger than the spectral energies of the ultimate stage. The cumulative spectral energy plot 

showed a bilinear relationship that distinguish between the elastic and ultimate stages as 

shown in Figure 2.11 (Liang et al. 2004). 

 

 

Figure 2.11 Cumulative spectral energy versus AE events (Liang et al. 2004, With 

permission from ASCE) 

 

Liang et al. (2011) employed the AE technique for investigating the pseduoductility and 

assessment of damage in post tensioned beams with hybrid carbon glass fiber reinforced 

polymer HFRP tendons. The tendons were monitored during the post tensioning process, 

and later during four-point bending testing of the beams. Time of arrival method in time 

domain was used to locate the fiber splintering along the tendon length at different stages 

of the loading. The results showed that most of the damage occurred in the middle third 
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part of the specimen. In addition, spectral energy method was applied using frequency 

analysis of the AE signal in order to distinguish between the frequency peaks, which were 

generated from concrete cracking and HFRP splintering. Frequencies that ranged between 

92 and 98 kHz which represent concrete cracking was filtered. Also, the results were 

valuated with the load deflection response of the HFRP beam as shown in Figure 2.12. The 

figure and test indicate that the fiber damage of the HFRP tendon started at around 75 % 

of the ultimate load following a significant splintering of the glass fibers in the tendon. 

Cumulative spectral energy for both carbon and glass fiber were successfully determine 

the pseudo yield point of the post tensioned beam. The cumulative spectral energy 

demonstrated a bilinear behaviour confirming that the slope changed at the yielding point 

(Liang et al. 2011).  

 

Figure 2.12 Correlation of AE with the load deflection curve and cumulative spectral 

energy (Liang et al. 2011, With permission from ASCE) 
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Li et al. (2017) studied the interfacial debonding behaviour between a CFRP bar and 

concrete samples subjected to pullout tests and monitored using AE technique. Some AE 

parameters were used to study the response of AE such as cumulative events, amplitude, 

and peak frequency. The evolution of debonding was correlated successfully with the 

changes of AE parameters. The results were confirmed using finite element method to 

analyze the interfacial debonding performance of the CFRP pullout sample (Li et al. 2017) 

 

Artificial neural networks (ANN) have been used to improve AE source location. The ANN 

method is suited for multidimensional non-linear problems and is a promising approach to 

reduce the errors due to acoustic anisotropy and multiple modes of wave propagation 

(Kalafat and Sause 2015). In one study, an ANN localization approach was used in type III 

carbon-fiber-reinforced polymer pressure vessel with metallic liner (Kalafat and Sause 

2015). Two types of test were performed to simulate signals produced by different failure 

mechanisms: the first test was the pencil lead break (PLB), and the second test used 

piezoelectric pulser to generate pulses to excite frequency bands above 100 kHz. They 

performed tests on empty and filled tanks to obtain the different signal path propagation. 

Two-dimensional source location was carried out using conventional arrival time and ANN 

methods. The results proved the ability of using the trained neural network from both test 

sources (PLB and pulser) and applied it to recorded data from a failed material. They 

concluded that the approach improves the accuracy of the localization of the AE source by 

a factor of 6, if the velocity and arrival time can be adequately estimated. The ANN source 

location estimates also showed less scatter in the estimated position compared to the arrival 

time method by a factor of 11. The researchers suggested that training neural network for 
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source localization could be improved more by thinking of alternative strategies of 

calculating the time of arrival or using alternative parameters extracted from AE signals 

(Kalafat and Sause 2015).  

 

The ANN have also been used to predict the AE source location in a unidirectional carbon 

fiber reinforced plastic laminate having a high anisotropy ratio (Caprino et al. 2011). Three 

resonant transducers were attached on the plate surface and PLBs were used to generate 

AE sources. The difference in time arrival of the waves between the three sensors were 

measured using threshold method. The time differences between the three sensors, were 

calculated using a two-dimensional algorithm, and used as input for ANN and later 

compared using only the time difference between the two sensors. The ANN predicted the 

source location with a satisfactory accuracy, the mean difference between the actual and 

the calculated source location was 1.85 mm with a standard deviation of 3.89 mm. They 

concluded that the accuracy was not improved by increasing the number of inputs from 

one to two time differences  (Caprino et al. 2011).  

 

The ANN has been used to predict factor of delamination in 4 mm GFRP plate subjected 

to drilling tests and monitored by AE technique (Sudha et al. 2011). Three different ranges 

of cutting parameters were used to build 36 databases, and four AE parameters were used 

as inputs: RMS voltage, peak amplitude, AE counts, and energy. The results showed good 

correlation with the real factor of delamination that obtained from the experiment with a 

maximum absolute error of 2.75% (Sudha et al. 2011). 
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The ANN has also been used to predict AE impact source locations in both aluminum and 

CFRP plate (Fu et al. 2015). A new type of fiber optic acoustic emission sensor was 

developed to be embedded in the samples as it provides a better detecting of low frequency 

waves than the commercial piezoelectric transducer. Differences of the arrival time were 

used for 2D samples as inputs and AE source coordinates as outputs. The results showed 

that the ANN reduced the nonlinear errors and enhanced the accuracy with a maximum 

error of 6.3 mm (Fu et al. 2015).     

 

2.13 Micro Computed Tomography (µCT) 

 

A number of techniques have been used to study the microstructure of FRP materials. SEM 

microscopy has been used to visualize the presence of damage in FRP materials (Balaguru 

et al. 2008; Elgabbas et al. 2015; Sawpan et al. 2013) However, SEM images only provide 

information on the specific surface where the sample is cut and that represents a very small 

fraction of the sample.  As a result, a comprehensive understanding of the damage 

quantification, geometry, and thickness requires the examination of many cross sections of 

the samples. Recently µCT has been used in as a promising tool to overcome some of these 

problems through direct observation of damage in three dimensions, without the need for 

cross sectioning (Awaja et al. 2009, 2011; Awaja and Arhatari 2009; Desplentere et al. 

2005; Schell et al. 2006; Schilling et al. 2005).  

  

Using X-ray micro CT (X-µCT) internal damage has been observed in Syntactic foam 

(hollow glass microspheres in polymeric matrix) subjected to a combined effect of cycling 



 

59 
 

and increased temperature (Awaja and Arhatari 2009). The 3D reconstructed images 

showed three types of damage: glass microsphere fracture, enlargement voids, and 

microcracks in resin due to the thermal stresses. The percentage of damaged glass spheres 

increased significantly with the evolution of the thermal cycle  (Awaja and Arhatari 2009). 

 

Internal and near-surface structure has also been investigated for different epoxy resin 

composites exposed to accelerated thermal treatment using X-µCT scan and optical 

coherence tomography (OCT) (Awaja et al. 2009). That work concluded that the 

percentage of crack volume is a useful method of evaluating the damage of epoxy resin 

composites. They also concluded that the most cracks were generated as a results of the 

expanded voids that are originally present during the manufacturing process (Awaja et al. 

2009).  

 

Using X-µCT internal damage has been also investigated for E-glass, 3D parabeam, and 

carbon fiber reinforced epoxy resin composites subjected to accelerated Ultraviolet (UV) 

degradation condition, and environmental conditions (Awaja et al. 2011). The 3D images 

showed that most damage occurred in the resin in regions closed to the surface for E-glass 

and 3D glass, while the damage was in form of internal delamination in the carbon fiber 

composite (Awaja et al. 2011). 

 

Another study investigated a geometry of fiber bundle and voids in glass fiber reinforced 

polymer plate using X-µCT (Schell et al. 2006). The results showed that the voids were 

concentrated randomly near the outlet vent (Schell et al. 2006). 
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Previous study on woven glass-fiber composites has also been conducted to determine the 

microstructural variation of different 3D warp-interlaced fabrics architectures (Desplentere 

et al. 2005). Yarn thickness and width values, and the spacing between the yarns were 

compared using three techniques: optical micrography for surface scanning, optical 

microscopy for cross section scanning, and µCT for the internal geometry. Good agreement 

was obtained between these three imaging techniques (Desplentere et al. 2005).  

 

Microcracking, matrix cracking, and delamination have been investigated in CFRP and 

GFRP composite laminates using µCT (Schilling et al. 2005).  The size, location, and 

geometry of the voids were studied by three dimensional models for glass fiber tows that 

appeared as a dark grey, the resin that appeared as a grey, and voids that appeared as white 

(Schilling et al. 2005).  

 

Both µCT and SEM have proven useful for detection of damage in the form of void within 

FRP materials, but µCT has better capabilities for quantifying damage. 

 

Due to the uncertainties associated with production of FRP and their linear elastic 

characteristics, FRP design codes tend to be conservative and therefore costs of FRP 

reinforced systems maybe higher than necessary (Alampalli and Ettouney 2013; 

Chiewanichakorn et al. 2012) A better understanding of the detection and progression of 

internal damage in FRP rebars may aid in refining the limits provided by the codes. 

Therefore, there is a need to better characterize the microstructural damage evolution and 

its relationship to more field usable structural health monitoring techniques such as AE. 
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2.14 Summary 

 

Literature search revealed that FRP composites samples, with different fiber and resin 

types, as well as different manufacturing methods, have been tested using the AE 

technique. The evaluation criteria were stated in their research according to the type of the 

composite materials and their configurations.  It was noted that the type of resin, f fiber 

volume fraction, and the fibers orientation affect the onset of emission. 

  

FRP rebars may develop micro damage during the manufacturing process or under service 

loads. The micro damage will ultimately affect the durability of the rebar (Mahal 2015). 

Thus, it is of interest to identify its early damage features, and hence aid in studying the 

effect of damage on performance of these materials. 

 

The damage detection and localization can be done using NDE techniques such as 

ultrasonic, radiography, thermography, and acoustic emission. Up to date, there is no 

technique that can provide a complete quantitative evaluation of a material. Since FRP 

rebars are a relatively new material, setting standard NDE method to characterize the 

material is still challenging.   

      

In this research, AE technique was employed for the structural evaluation of GFRP and 

CFRP rebars under tension. A better understanding of the correlation between the AE and 

the damage will give a better insight for the failure mechanisms. AE data were correlated 
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with loading, and the information may be beneficial in setting a data based criterion for 

monitoring FRP rebars. 

 

The internal micro-structure of the FRP rebars subjected to tensile loading will be 

investigated using µCT and SEM images. The volume of voids in the samples is monitored 

throughout the loading process and the increase in void volume will be correlated to the 

increase in damage. The µCT method maybe useful in determining the structural integrity 

of the FRP rebars as a result of tensile loading that may play a significant role in 

determining the long-term durability of the rebars. 
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CHAPTER 3 

EXPERIMENTAL APPARATUS AND PROCEDURES 

 

 3.1 Introduction 

 

 

This chapter describes the test instrumentations and the experimental procedures. In the 

first section, the AE system, the loading machines for testing the FRP rebars under tension, 

µCT scan apparatus, SEM apparatus, and the low speed diamond saw for preparing the 

small samples are described. In the second section, FRP specimens’ preparation according 

to the CSA S806 (2012) is described. In the third section, the AE monitoring and software 

are presented.  

 

3.2 Experimental Apparatus 

 

3.2.1 AE Apparatus  

 

The equipment that was used to collect acoustic emission signals in this study is MISTRAS 

(Massively Instrumented Sensor Technology for Received Acoustic Signals), which is 

manufactured by Physical Acoustic Corporation. The main components of MISTRAS are 

a multi-channel Data translation device (DT9816-S 16 bit with maximum 750 kHz 

sampling rate for one channel as shown in Figure 3.1. 
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Figure 3.1 DT9816-S, 16 bit with maximum 750 kHz sampling rate for one channel 

 

Two piezoelectric sensors type R15I-AST, manufactured by MISTRAS, (see Figure 3.2) 

were used to pick up the AE signals . Each sensor has an integral preamplifier with gain at 

40 dB to increase the incoming voltage of the signal for easier transmission and conversion 

by Analogue to Digital Converter (ADC). The operating frequency range is 80 – 200 kHz. 

The diameter of the sensor is 29 mm, the height is 31 mm, and the weight is 70 g 

(MISTRAS 2014). 

 

 

 

Figure 3.2 R15I-AST Transducer 
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3.2.2 Loading Apparatus 

 

Experiments were conducted in the W. R. McQuade Structural Engineering Laboratory at 

the University of Manitoba.  

• Servo-hydraulic testing machine, Instron 300 DX, was used for testing CFRP size 

2 and GFRP size 4 bar specimens under increasing tensile loads as shown in Figure 3.3. 

The maximum capacity of the machine is 300 kN.  

 

• Servo-hydraulic testing machine, Baldwin 600 XHV, was used for testing CFRP 

size 4 and GFRP size 6 bar specimens under ramping tensile loads as shown in Figure 3.4. 

The maximum capacity of the machine is 600 kN. 
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Figure 3.3 Instron 300 DX machine 

 

Figure 3.4 Baldwin 600 XHV machine 



 

67 
 

3.2.3 µCT Scan Apparatus 

 

SkyScan 1176 micro-CT scanner (Bruker Micro CT, Kontich, Belgium), as shown in 

Figure 3.5, was used to acquire µCT images at 9 µm resolution with an angular step size 

of 0.5o . Three scans were acquired at each angular position and averaged.  

 

 

 

Figure 3.5 SkyScan 1176 micro-CT scanner 
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3.2.4 SEM Apparatus 

 

• JEOL JCM-6000 NEOSCOPE II Benchtop Scanning Electron Microscope, as 

shown in Figure 3.6, with magnifications range (10X-60000X) was used for providing 

cross section and transverse section images of FRP rebars. 

 

 

Figure 3.6 JEOL JCM-6000 NEOSCOPE II Benchtop SEM 

 

• FEI Nova Nano SEM 450 equipped with a Field Emission Gun, as shown in Figure 

3.7, was used to acquire the backscattered electron images for SEM analysis. 
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Figure 3.7 FEI Nova Nano SEM 450 apparatus 

• EXTEC Labcut 1010 Low Speed Diamond Saw was used for cutting FRP rebar 

samples for SEM investigation. 

 

3.3 FRP Specimens Preparation 

The AE signals were generated from different GFRP and CFRP bar specimens subjected 

to increasing tensile loads. According to the manufacturer specifications, the CFRP rebar 

specimens were composed of 27% of epoxy Vinylester based resin and 73% of carbon 

fibers (Brothers 2011a). Also according to the manufacturer, GFRP rebar specimens were 

composed of 27% of Vinylester based resin and 73% of glass fibers (Brothers 2011b). The 

bars chosen for this study are commonly used for reinforcing applications. The two bar 

diameters, Table 3.1, were chosen to see if bars of smaller and larger diameter have similar 
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AE characteristics. the method given in Annex B in the CSA S806 (2012) was used to 

prepare the specimens (CSA 2012) as shown in Figure 3.8. The code requires that the 

tension force be applied to the samples indirectly to prevent FRP crushing in the anchorage 

zone. As a result, FRP specimens were anchored into steel pipes with expansive grout that 

were gripped by the testing machine. Servo-hydraulic load system was used for the tensile 

loading test as shown in Figure 3.9. Strain gauges with gauge length of six millimetres and 

resistance of 120 Ω ± 0.3 % were glued on the surface of each specimen at the centre of 

the bar after removing the sand coating. A brief description of the FRP types, properties, 

and their configurations are listed in Table 3.1.  
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Table 3.1 Summary of FRP test specimens and their loading conditions. (* Tested under displacement control) 

                  

Bar Type 

Number 

of 

Samples 

Diameter 
Surface 

Coating 

Cross Area* 

(mm2) 

Tensile 

Strength Sample 

Length 

(40d) mm 

Anchor Length 
Loading Rate 

(kN/m) 
d (mm) fu (MPa) 

(fu × A/350) 

≥250 (mm) 

CFRP size 2 7 6 Sand coated 31.67 2241 240 250 0.8* 

CFRP size 4 8 13 Sand coated 126.7 2068 520 800 45 

GFRP size 4 9 13 
Undulation & 

sand coated 
126.7 758 520 300 4* 

GFRP size 6 9 19 
Undulation & 

sand coated 
285 690 760 600 80 

*Cross area was used from the manufacturer data sheet (nominal diameter) 
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Figure 3.8 Types of GFRP and CFRP samples 

 

 

3.4 AE Monitoring and Software 

R15I-AST sensors were attached firmly to the surface of the anchors by plastic cable ties 

and a stainless-steel hose clamps. A layer of Proceq couplant gel was used between the 

sensor and the surface of the anchors to eliminate air gaps, and to ensure good transmission 

of AE signals to the sensor. Experimental test set up of the AE monitoring system for the 

tensile load testing is shown in Figure 3.9. The sampling rate was set to 400 k samples/sec. 

The amplitude threshold for detection of acoustic events was set to 46 dBAE. This level is 



 

73 
 

approximately ten times the typical observed peak to peak noise amplitude and hence 

produces only few false triggers under the threshold level. A pencil lead break (PLB) test 

was performed near the sensor before any AE data recording took place in order to check 

the sensitivity of the sensor and the functioning of the amplifier and DAQ.  

 

 

Figure 3.9 AE system set up for the tensile load testing. (a) FRP specimen with anchors 

in servo-hydraulic load frame (b) Sensor coupled to the anchor using couplant gel 

 

For each type of rebar, one sample was used for PLB measurement of the velocity under 

load-unload-reload conditions at every 10% of the predicted ultimate load to check the 
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velocity and modulus of elasticity at each stage, and another sample was used for PLB and 

tension tests. For each sample type, the predicted ultimate load was estimated by using the 

average ultimate load from five FRP samples that were tested up to failure. Two 5 cm 

samples were cut from each diameter of the FRP bars, before loading, to be used as control 

samples for the µCT scanning. The test samples were subjected to increasing tension until 

30 to 98% of the predicted ultimate load was reached. By not testing to failure the 

disintegration of the sample was prevented so that the samples could be analyzed by µCT.   
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CHAPTER 4 

STUDY OF FRP BARS UNDER TENSION USING ACOUSTIC 

EMISSION TECHNIQUE 

 

 4.1 Introduction 

 

This chapter presents the behaviour of pultruded FRP which have been manufactured using 

continuous fibers. AE was applied to investigate the fracture of different diameters of 

CFRP and GFRP bars during tensile loading. A burst AE signal was generated every time 

material components undergo cracking or fracture. These signals were analyzed to identify 

their sources, using conventional signal analyses in time domain and time – frequency 

domain. Amplitude distribution over time, cumulative ratio of the amplitude distribution 

corresponding to the percentage of the ultimate load, RA (rise time divided by amplitude) 

and AF (number of counts divided by duration) as a function of time, cumulative counts, 

amplitude versus duration, and frequency peaks of the acoustic signals were plotted for this 

purpose. The frequency maxima were determined for different amplitude signals using 

STFT. 

 

4.2 Typical AE Signals 

 

AE waveforms can be classified using several of the AE parameters that can be related to 

different stages of the tensile test. Figure 4.1 shows AE signals for CFRP and GFRP that 

have different amplitudes. For the highest peak amplitude signals, some non-linearity can 
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be observed. For peak amplitudes exceeding 80 dBAE there is an offset in the signal before 

and after the AE event that is an artifact of instrumentation.  An artifact is an error of 

representation the information ( i.e: the amplifier does not amplify the high amplitude 

signal properly, and that is called an amplifier saturation).  When a small signal amplified, 

These results overestimate the peak amplitude at the largest signal levels (> 95 dBAE) of up 

to ~1.6 dB. For peak amplitudes of less than 80 dBAE this offset is not observed. The 

duration of the AE signals ranges from 27.5 microseconds to several milliseconds.  
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Figure 4.1 Typical unfiltered AE signal at 98, 85, 75, and 65 dBAE for a) CFRP and b) 

GFRP size 4 (d = 13mm) 
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4.3 Results and Discussion 

 

4.3.1 AE Signal Analysis in Time domain 

 

The three-part RMS algorithm described in (Shateri et al. 2017) was used to separate one 

event from another.  For each AE event, a number of parameters were measured such as 

amplitude, duration, number of counts, rise time, peak frequency, and average frequency. 

 

4.3.1.1 Amplitude 

 

Twenty tests in total were carried out on different diameters of CFRP and GFRP 

reinforcing bars. Each of the tests had similar trends in the AE parameters. Therefore, only 

typical plots are presented.  

 

Evolution of the peak amplitude of individual AE signals over time is shown in Figure 4.2. 

In Figure 4.2, each AE event is presented as a single dot on the plot. In total 146 to 811 

events per cm3 were observed in the GFRP size 4 bars, 157 to 792 events per cm3 in GFRP 

size 6 bars, 557 to 4578 in the CFRP size 2 bars, and 48 to 604 in the CFRP size 4 bars.  

The voltage threshold for detection of acoustic events was set at 46 dBAE, and hence there 

are no events below this threshold. Two interesting observations can be made from Figure 

4.2. First, the number of events per unit time increases as strain level increases. The 

direction of the loading is parallel to the fibers and in past work the low and medium 

amplitude levels have been attributed to debonding between the fibers and matrix and the 
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longitudinal microcracks in the matrix (Barré and Benzeggagh 1994; Bhat et al. 1994; Ely 

and Hill 1995) Fiber breakage was thought to release more energy per event and has been 

attributed to the higher amplitude AE signals (Bai et al. 2017; Drummond et al. 2007). 

Second, the number of higher amplitude signal events per unit time also increase with strain 

levels. 

 

At early stages of the test, CFRP bar specimens had higher amplitude signals than the 

GFRP specimens. The mean ratio of the high amplitude signals to the low and medium 

amplitude signals, for the five CFRP specimens, was 4% and 6% for size 2 and 4 

respectively. In contrast, the GFRP specimens had a very small fraction of high amplitude 

events relative to the low and medium amplitude events. The average ratio of the high 

amplitude signals to the low and medium amplitude signals for five test specimens was 1% 

for both size 4 and 6 bars.  
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Figure 4.2 Amplitude vs. time with load time superimposed. Dashed line represents time 

at which failure occurred for CFRP size 2 and GFRP size 6. CFRP size 4 and GFRP size 

4 were loaded up to 93% and 95% predicted ultimate load respectively 

 

4.3.1.2 Average Frequency (AF) and RA Value and Cumulative Counts 

 

Average frequency is calculated by dividing the number of counts by the duration, for one 

hit (Ohtsu 2008). RA value is calculated by dividing the rise time, by the amplitude of the 

hit (Ohtsu 2008). The rise time is the time interval from the start of a detected hit to the 
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maximum amplitude of a hit. These parameters have proven useful in linking AE event 

characteristics to the types of physical damage and damage accumulation (Aggelis 2011; 

Ohno and Ohtsu 2010). These two parameters have been used to link AE events to the type 

of cracks in concrete materials, and have been standardized in JCMS-III B5706 for active 

cracks in concrete (JCMS-III B5706 2003).  

 

In concrete materials, high RA value is an indication of shear cracks, while the low RA 

value refers to the tensile cracks (Aggelis 2011; Ohno and Ohtsu 2010). In a buried water-

pipeline that was located below road, low AF have been attributed to traffic noise (Suzuki 

and Ohtsu 2005). 

 

Soulioti et al. studied RA and AF parameters of AE signals from concrete containing 

different percentages of steel fiber under four – point bending (Soulioti et al. 2009). They 

concluded that the damage mode changed from tensile to shear as fiber content increased 

in concrete. This resulted in an increasing RA and decreasing AF (Soulioti et al. 2009). In 

laminated composites, a similar change has been associated with a transition from matrix 

cracking to delamination (Aggelis et al. 2010; Anastassopoulos and Philippidis 1995). 

 

AF and RA values of AE signals during tensile loading were calculated and plotted as 

function of time for CFRP bars in Figure 4.3 and for GFRP bars in Figure 4.4. Cumulative 

counts were also plotted together with stress – strain curves. Most CFRP and GFRP 

samples were loaded up to failure, while one CFRP size 4 was loaded up to 93 % of the 

predicted ultimate load and one GFRP size 4 was loaded up to 95 % of the predicted 
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ultimate load. This saved the specimens from being totally destroyed, so that they could be 

used later for SEM analysis. Five tests were loaded up to failure and the average of their 

ultimate loads was taken as the predicted ultimate load. High RA value and low AF were 

observed at the start of the test, up to 10-20% of the predicted ultimate load as shown in 

Figures 4.3a, b and 4.4a, b. AE signals of this type have been associated with friction 

between the machine grips and may also be due to the anchor (Ramirez-Jimenez et al. 

2004). After this early region, the AF and RA became relatively steady with some 

fluctuations. However, the magnitude of these early AE signals was variable in some tests, 

which had relatively lower initial levels of these signals. As the load increases, there is an 

increase in the slope of cumulative counts curve (point A) in Figures 4.3c, d that is 

associated with an increasing rate of internal damage for CFRP bars. 

 

In contrast, GFRP bars show a linear increase of the cumulative counts curve up to 40 % 

of the predicted ultimate load (point A), as shown in Figure 4.4c, d. As the load increases 

and reaches the occurrence of an impending brittle failure, an abrupt increase of the slope 

of the cumulative counts occur. In this stage, RA values start to increase and AF values 

start to decrease. Some possible reasons for the change in RA and AF with the evolution 

of the damage have already been discussed in a study of AE signals from concrete in 4-

point bending (Aggelis et al. 2011). The AE waves travel through the material in different 

modes, depending on the source of the damage. For example, some types of damage cause 

a release of energy that is primarily converted into a longitudinal wave mode (P) of a large 

amplitude, which is parallel to the wave propagation. This kind of wave travels fast causing 

a short rise and a small RA value. As the load increases, the wave travels in other wave 
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modes such as shear waves (S), perpendicular to the wave propagation, or surface waves, 

mixed of P and S waves, due to scattering of damage in the specimen. These types of waves 

are slower than the longitudinal waves, which results in a longer rise time and larger RA 

value. 

 

In the present work, there is also a change in the magnitude of both RA and AF that is 

correlated with the changes in the slope of the cumulative counts. It can be observed that 

at the failure of GFRP size 6 or before failure of GFRP size 4 in Figure 4.4a and b, RA 

decreases and AF increases.  This change could be related to the delaminating of the outside 

layer of the GFRP, which was observed with the naked eye. In contrast, CFRP size 2 shows 

a continuous increase in RA value as shown in Figure 4.3a, which may be due to some 

elongation in the matrix that was observed in the longitudinal section sample. This 

elongation will be shown later in the SEM section. On the other hand, these changes in the 

RA and AF values were not observed in CFRP size 4 specimen, which were loaded up to 

93% of the predicted ultimate load. A longitudinal section of the CFRP size 4 specimen 

after the load test did not show transverse cracks using SEM observation, which is 

consistent with the AE observations.  

 

It should be pointed out that the changing of the slope of the cumulative counts as shown 

in Figures (4.3c, d) and (4.4c, d) is not mimicked in the stress versus strain graph. A 

summary of these results is shown in Table (4.1) for both CFRP and GFRP specimens.  
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Table 4.1 AE Signal Parameters for CFRP and GFRP specimens 

 Point on the 

Cumulative 

Counts Curve 

RA* Value 

Range* 

(µs/V) 

AF* Value 

Range 

(kHz) 

Strain* Range 

(%) 

Load* Range 

(kN) 

Percentage of the 

Predicted Ultimate Load 

Range (%) 

CFRP 

size 2 

A 952-1366 48-60 0.67-1.04 32-45 44-55 

B 810-1588 29-64 0.90-1.15 29-64 60-72 

C 1200-1560 26-60 1.10-2.10 71-87 75-96 

D 2589-8557 31-60 1.24-2.20 72-87 92-100 

CFRP 

size 4 

A 1389-2823 58-85 0.15-0.24 15-59 5-22 

B 1140-1756 68-100 0.55-0.93 126-188 47-70 

C 835-1077 81-83 1.33-1.51 250-290 93-100 

GFRP 

size 4 

A 465-1378 58-75 0.93-1.00 44-58 42-50 

B 741-1256 51-83 1.68-1.96 99-117 90-100 

GFRP 

size 6 

A 787-1890 70-80 0.54-0.85 96-142 40-62 

B 1047-2271 50-92 1.19-1.92 216-241 92-100 

* RA, AF, Strain, and Load are the values at the change of the slope of the cumulative counts curve 

* Range indicate the results of five FRP sample tests for each type.  
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In conclusion, the slope of the cumulative counts increases with increasing load. However, 

the absolute number of events at failure varies considerably from specimen to specimen, 

and by itself is not reliable predictor of failure. 

 

 

Figure 4.3 Variation of AF and RA values. Cumulative counts vs. time with stress-strain 

superimposed. Dashed line represents time at which failure occurred for CFRP size 2. 

CFRP size 4 was loaded up to 93% of the predicted ultimate load 
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Figure 4.4 Variation of AF and RA values. Cumulative counts vs. time with stress-strain 

superimposed. Dashed line represents time at which failure occurred for GFRP size 6. 

GFRP size 4 was loaded up to 95% of the predicted ultimate load 

 

4.3.1.3 Amplitude – Duration  

 

The amplitude and duration of the AE events has been used to check the quality of the 

recorded data and to correlate with the type of damage mechanism (CARP 1999). Research 

on short glass fiber composites has been conducted for linking damage identification to the 
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amplitude and duration parameters (Nguyen et al. 2005). The results showed that increases 

in the average magnitude of these parameters is an indication of damage evolution during 

loading (Nguyen et al. 2005). 

 

In this study, the duration of each AE signal for one specimen was plotted in Figure 4.5, as 

a function of amplitude for the three stages that were determined in Table 4.1. Based on 

the evaluation criteria in (CARP 1987), events with high amplitude and long duration were 

attributed to fiber breakage. Low to medium amplitude events with low to medium duration 

were attributed to matrix cracking (CARP 1987). Similar results were also observed in 

studies on composite laminates (Gudmundson and Johnson 2000) and GFRP bridge deck 

panels (Gostautas et al. 2005). 

  

Figure 4.5 plots the duration of AE signal versus its amplitude. The results in Figure 4.5 

are clustered in a well banded area, with very few outliers outside the banded area. Previous 

research correlated these outlier events as unwanted signals that could be either due to 

Electromagnetic interference, Mechanical rubbing (MR), or overlapping events (OE) 

(Fowler et al. 1989). The data presented in Figure 4.5 indicates few of these unwanted 

events. Considering the scarcity of the unwanted events, the testing setup was satisfactory. 

  

Pattern recognition techniques have proven valuable for AE signals classification (Godin 

et al. 2005; Ono and Huang 1994) In the present work, a k-means algorithm (Arthur and 

Vassilvitskii 2007) was used to classify the AE signals. In this case, the k-means algorithm 

used five parameters in time domain as the input data. The parameters used were peak 
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amplitude, duration, counts, energy, and rise time as described in Figure 2.3. The algorithm 

classifies the input data depending on a predefined number of clusters, which was set to 

three to match the expected types of damage. The types of damage will be discussed in the 

SEM section later in this paper.  The principle of this method is to minimize the sum of the 

squared distance between the assigned cluster and its center. After that, the cluster vector 

and its centroid are iteratively actualised until the centroid is fixed. The classification was 

replicated five times each time with randomly assigned initial conditions.  

 

Based on previous published articles (Fowler et al. 1989) and the experimental data, most 

likely cluster 1 corresponds to debonding, cluster 2 corresponds to fiber breakage, and 

cluster 3 corresponds to matrix cracking.  Also, the figure shows that these three clusters 

were observed in all three stages of the test. It should be noted that some signal 

misclassification could be due to the signal attenuation from the source to the sensor. 

Attenuation will result in amplitude and duration reduction, so an event that is classified as 

matrix cracking or debonding could have originally been due to fiber breakage mode.      
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Figure 4.5 Duration vs. Amplitude for three stages in CFRP size 4 specimen. Duration is the time of a signal from the first 

point exceeding the threshold level to the last one. MR: mechanical rubbing; OE: overlapping events; cluster 1: deboning; 

cluster 2: fiber breakage; cluster 3: matrix cracking 
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It can be concluded from Figure 4.5 that the peak amplitude is correlated with the duration, 

and that larger amplitude signals tend to also be of longer duration. This may in part be due 

to the duration from the first to the last threshold crossing being longer for higher-

amplitude events, simply because higher-amplitude events will take more cycles to ring 

down. The number of AE signals within the various amplitude ranges were investigated in 

CFRP and GFRP specimens. The mean of AE features, such as duration and rise time, for 

each range were calculated for the three stages described in Table 4.1. The results showed 

that the CFRP signals have a mean duration and mean rise time that are less than GFRP 

signals at the start of the test, but they are larger as the load increases after about 40% of 

the predicted ultimate load. 

 

4.3.2 AE signal Analysis in Time – Frequency Domain 

 

Time – varying signals were analyzed in terms of time – frequency domain using STFT to 

determine the frequency magnitudes that were predominant during the tension test. AE 

signals that were generated during the test are associated with the magnitude of the released 

strain energy. Accordingly, these AE signals have specific characteristics due to their 

amplitude, duration, and frequency content that could be related to a specific damage 

mechanism (Yang et al. 2009). The nonstationary nature of the AE signal limits the choice 

of the time window length for STFT; therefore, for acceptable spectral resolution the length 

of window should be at least the same size as is the longest signal duration. In the current 

study, a signal was divided into sections of length of 128 samples with overlapping of 120 

samples using Hamming windows, and the spectrum was evaluated at 129 frequencies 
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according to (Mathworks 2009). This leads to a 20 µs time window length.   In the time – 

frequency plot, energy in the signal is represented by calculating the squared coefficient of 

STFT matrix in MATLAB. STFT was performed on different AE signal amplitudes, and 

then energy distribution is calculated using the formula in equation 2.8, and plotted in 

Figure 4.6 as a function of frequency content. In fact, the 80 – 200 kHz resonant sensor 

could limit the results of the frequency ranges. Most of the energy lies in the range of 125 

– 180 kHz in CFRP with some small peaks between 80 and 125 kHz. While they are 

distributed in almost all frequency ranges for GFRP for 98 dBAE signal amplitude which 

indicate that several types of damage could be occurring simultaneously. For example, a 

fiber breakage is more likely to be accompanied with other kinds of damage such as fiber 

pull out or the movement of the fiber. For 85 dBAE signal amplitude, the peak frequency is 

about 136 kHz for CFRP, while the frequencies are distributed equally between 110 and 

160 kHz for GFRP. For 75 dBAE signal amplitude, the energy lies in the frequency range 

of 150 – 180 kHz for CFRP, and is distributed equally between 80 – 200 kHz in GFRP.A 

similar pattern can be seen in the 65 dBAE signal.   
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Figure 4.6 Energy distribution versus frequency content for various signal amplitude for 

CFRP and GFRP size 4 bar specimens 
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4.4 SEM Observation 

 

Scanning electron microscopy (SEM) identified damage mechanisms in continuous 

unidirectional GFRP composites and has been correlated to AE signals by using different 

span to depth ratio samples subjected to testing in three-point bending (Siegmann and 

Kander 1992). Another study has been used SEM to observe damage mechanisms of 

different glass/polypropylene plate samples subjected to tensile loads (Ramirez-Jimenez et 

al. 2004). Different fiber orientations were used in the study: 0o, ±45o, 900, (0-90o) for each 

sample  (Ramirez-Jimenez et al. 2004). Previous studies have not addressed AE correlation 

with SEM on FRP bars. The work presented in this paper will use SEM to compare 

microstructure of FRP pultruded bars before testing and at failure to aid in identifying the 

origin of AE signals recorded during load tests. 

 

Typically, no damage is visible in the FRP bars to the naked eye until failure and therefore 

SEM analysis was used for microstructural examination. Transverse and longitudinal 

sections were cut from each bar before and after testing. Clean and flat sections were 

prepared using the following procedures: the samples were mounted into epoxy to prevent 

surface damage during the cutting process, and then a slow speed diamond saw was used 

to cut them. After that, the sections were polished to remove marks generated during the 

cutting process, and to get a smooth surface for imaging. The polishing started with 40 and 

30 µm silicon carbide sand paper, followed by 5 and 1 µm alumina slurry with a nylon 

cloth. The polished sections were cleaned using ultrasound bath with ethanol, and then 

coated with gold palladium. 
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Figure 4.7 shows the SEM images of both CFRP and GFRP rebar samples. The 

micrographs were acquired in the secondary and backscattered electrons modes at an 

accelerating voltage of 15 kV and magnification range of 100x – 600x. After loading CFRP 

size 2 to failure and GFRP size 4 to 95% of the predicted ultimate load, three types of 

damage were observed in the longitudinal sections; matrix cracking that developed 

longitudinally parallel to the fiber direction, debonding, and fiber fracture. On the other 

hand, no transverse matrix cracking was observed in the cross-section sample; only 

enlargement of the original voids was detected. In the CFRP size 2 sample, the longitudinal 

section showed misalignment of fibers, which indicated damage in the matrix. In general, 

modulus of elasticity of fibers is higher than the one for matrix; therefore, some fibers were 

fractured throughout the specimens with increasing load. Most of the fracture occurred due 

to splitting of the outside layer of the bars at failure as shown in Figure 4.7h. It can be 

concluded from these observations that the damage tends to start near the voids. The voids 

concentration was higher in the outside layer leading to the damage propagation in this 

layer at loads closer to failure.    
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Figure 4.7 SEM micrograph for untested and tested CFRP size 2 and GFRP size 4 bar 

specimens. a) Cross section for untested CFRP size 2 specimen; b) Cross section for 

tested CFRP size 2 specimen until failure; c) Longitudinal section for untested CFRP size 

2 specimen; d) Longitudinal section for tested CFRP size 2 specimen until failure; e) 

Cross section for untested GFRP size 4 specimen; f) Cross section for tested GFRP size 4 

specimen until failure; g) Longitudinal section for untested GFRP size 4 specimen; h) 

Longitudinal section for tested GFRP size 4 specimen until failure 
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CHAPTER 5 

COMPARISON BETWEEN MICROSTRUCTURAL ANALYSIS OF 

GFRP AND CFRP REBARS USING MICRO COMPUTED 

TOMOGRAPHY (µCT), SCANNING ELECTRON MICROSCOPE 

(SEM) AND ACOUSTIC EMISSION (AE) TECHNIQUES 

 

 5.1 Introduction 

 

In this chapter, different FRP bars were subjected to tension at different percentage of 

ultimate load. The internal micro-structure of the loaded FRP bars was investigated using 

µCT and SEM techniques. 3D and 2D images were used to quantify the internal voids, that 

were entrapped during the manufacturing process, and their distribution. In this work the 

void volume was used as a measure of damage. AE technique was also employed to study 

the internal damage progression in the same FRP samples. Characteristics of the AE signals 

were correlated with the µCT and SEM analyses. This work could be used to improve the 

safety of workers in precast plants by providing an early warning of failure during the 

pretensioning of FRP prestressed components. 

 

5.2 Scanning Electron Microscopy (SEM) 

 

The nature of FRPs’ microstructure and their micro damage were assessed using SEM 

cross-sectional analysis.  
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5.2.1 Image Acquisition 

 

FEI Nova Nano SEM 450 equipped with a Field Emission Gun was used. SEM images 

were acquired in the Backscattered Electron mode at an accelerating voltage of 15 kV. FEI 

Maps 2.0 software was used for creating the montages with resolution of 768x512 pixels 

for each tile in a dwell time of 10μs per pixel. 

 

5.2.2 Image Analysis 

 

SEM Image analysis was performed using MATLAB using the following steps:  

1) The montage image is loaded and saved in a matrix.  

2) The image is converted to grayscale.  

3) The region of interest (ROI) is chosen using ellipse mask.  

4) The ellipse mask is applied to the original image.  

5) Set a threshold by finding the index of the voids and equated to zero, and everything 

higher than the index value of the voids are converted to white (index of 255). 

6) The image now has only two index values (0 and 255).  

 

By calculating the area of voids (number of black pixels), the area of the cross section in 

the ROI without voids (number of white pixels) and the area of the total cross section (all 

pixels in the ROI), the percentage of the voids to the total area can be determined. 
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5.3. Micro Computed Tomography (µCT) 

 

5.3.1. Image Acquisition 

 

X-ray micro-CT scan were obtained using a SkyScan 1176 micro-CT scanner (Bruker 

Micro CT, Kontich, Belgium). The system contains an X-ray micro-focus tube operating 

at a maximum source voltage of 90 kV within a maximum power of 25 W and source 

current of 278 uA (SkyScan1176 2011). Images were acquired at 9 µm resolution with an 

angular step size of 0.5o to provide a view from different angles which were gathered by 

the detector. Three scans were acquired at each angular position and averaged. Depending 

upon the density of the material, the conditions were used in the three scans is described in 

the table below: 

 

Table 5.1 Parameters of the µCT scan images in the different three scans 

 

Source 

Voltage 

(kV) 

Source 

Current 

(uA) 

 

Filter 

Exposure 

Time 

(ms) 

Object to 

Source 

Distance 

(mm) 

Camera to 

Source 

Distance 

(mm) 

40 600 
No 

Filter 
800 118.163 165.226 

50 500 
Al 

0.5mm 
125 118.163 165.226 

90 278 
Cu 

0.1mm 
1700 118.163 165.226 
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2D Images were reconstructed using NRecon (Bruker Micro CT, Kontich, Belgium). The 

X-ray beam contains different ranges of energy from soft to hard. The soft X-rays are 

absorbed at the surface while the hard ones pass through the sample. The preferential 

absorption of soft X-rays at the FRP sample surface yields an artifact in the form of a bright 

ring at the sample surface. A filter was applied to remove this effect. However, some 

relatively soft X-rays are still in the beam. Thus, a beam hardening correction of 35% was 

applied to the data during reconstruction to correct the presence of these soft x-rays. In 

addition, ring artifacts can occur when a pixel in the detector is responding either more or 

less than it should to a given X-ray intensity. Therefore, a ring artefact reduction factor of 

7 was applied to reduce such artifacts. A ring artefact reduction factor of 7 is quite low, 

indicating that the CT detector is performing well. These 2D reconstructed images were 

stacked to generate a three-dimensional (3D) image.  

 

X- Ray is sensitive to the density of the sample which is represented as differences in X-

ray attenuation of materials (Stock 1999, 2008) This feature is useful to utilize the 

microcracks, voids, and fractures in inhomogeneous materials such as FRP composites 

where there is a variety in densities. In this study, the damage volume which refers to the 

volume of cracks and voids represent a gap in the densities and that provide a good contrast 

in the 3D image reconstructed by CT scan.  The micro structure of different diameter of 

GFRP and CFRP rebar specimens at different loading stages were investigated using a 

series of 1000 slices of a sample, equal to 9.8 mm. Figure 5.1 shows an example of images 

obtained from CFRP size 2 sample tested up to 50% of the ultimate load using SEM and 

µCT scan techniques. This sample was first analyzed using µCT scan techniques and then 
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cut and analyzed using SEM techniques. The image plane in µCT scan was aligned as 

closely as possible to the SEM cross-section.  There are many features shared between the 

two images and the correlation between the SEM and µCT images is very high. The voids 

in the SEM are also observed in the µCT image. 

                                                                                    

 

Figure 5.1 Microstructure of CFRP size 2 tested up to 50% of the ultimate load. Letters 

a, b, and c refer to the features that can observed in both images 

 

 

 

 

 

 

a 

b 
c 

Cross section image using SEM Reconstructed cross section using µCT scan 
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5.3.2. Image Analysis 

 

µCT Image analysis was performed using CTAn software version 1.11.10  

 

5.3.2.1. Threshold Determination 

 

The choice of the threshold value, for the binarization of greyscale images, affects the 

determination of the damage percentages dramatically. The voids and cracks can be 

detected from the cross section of the reconstructed image as they represent the black area; 

however, the manually choice of threshold level especially for samples that represent 

different lower and upper values of the grey levels could fail or lead to biases. Accordingly, 

the threshold level is determined by using the equation below to get the same conditions 

for all samples: 

 

Th = m - 2σ         ……………………………………………………………….      (5.1)  

 

Where Th is the threshold level for a given data, and it depends on the distribution of the 

brightness value; m is the mean brightness within the binary threshold selection, and; σ is 

the standard deviation. The binary threshold was selected between the lower and upper 

limit of the brightness values which was chosen by comparing the reconstructed image by 

the binary selection as shown in Figure 5.2.  
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Figure 5.2 Pixel histogram and binary selection for GFRP size 4 rebar sample. Red lines 

represent the minimum and maximum limit of the binary selection 

 

 

5.3.2.2. Analysis Procedures 

 

The analysis procedures are summarized in Figure 5.3 and outlined as follows:  

1) For each sample, a series of 1000 cross-sections from the reconstructed µCT images 

were collected, Figure 5.3a. The chosen region was indicated by the double red arrows.   

2) A region of interest (ROI) Fig. 5.3b is used to crop all the cross-sections and the resulting 

images, Figure 5.3c, are saved into a new file.  

3) Using a threshold, the saved images are converted into binary images. White pixels 

represent the solid phase such as the resin and fibers, while black pixels represent the voids, 

Figure 5.3d.  

4) A shrink wrap operation on the ROI is used to eliminate regions that are outside of the 

sample (Bruker 2013), Figure 5.3e.  
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5) Bitwise operation plug-in is used to mask the currently loaded image using the ROI, 

Figure 5.3f.  

6) The despeckle plug-in is used to remove all voids from ROI, Figure 5.3g.  

7) Voids which are connected to the boundary of the ROI are closed using a morphological 

operation plug-in. As a result, these closed voids are included in the analysis (Bruker 2013), 

Figure 5.3h.  

8) Within the ROI the image is inverted, so that the voids become binary positive and 

appear white in the image, Figure 5.3i.  

9) 2D analysis, 3D analysis, and 3D model are performed as final steps, Figure 5.3j. 
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Figure 5.3 Sequence of images in the image analysis methodology using CTAn, CTvox, 

and CTvol 
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5.4 Results and Discussion from µCT Scan 

 

For each sample, a 9.8 mm section was selected from approximately the center of the rebar 

for the analysis. 

  

5.4.1 3D Analysis and Image Visualization 

 

Using CTAn the image processing outlined in Figure 5.3 was carried out on the µCT image 

stack from each sample. The CTAn also estimated the void fraction and thickness 

distribution for each sample. For the three-dimensional visualization of the voids the CTvol 

software was used (Skyscan 2008). An example of a 3D image of GFRP size 4 sample is 

illustrated in Figure 5.4. Figure 5.4b shows the distribution of the voids for the control 

sample, while Figure 5.4c shows the distribution of the voids and cracks in the sample as 

a result of a tensile loading up to 95% of the ultimate load. It shows that the damage is 

concentrated near the location of the voids that were present in the untested sample.                                                                                      
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Figure 5.4 Showing: (a) reconstructed 3D image for GFRP size 4 sample; (b) cross 

section image of sample a; (c) 3D image of the distribution of voids for control sample; 

(d) cross section image of sample c; (e) 3D image of the distribution of voids and their 

increasing for the tested sample up to 95% ultimate load; (f) cross section image of 

sample e. (Note: the fibers and matrix are depicted invisable while the voids and their 

increasing are depicted as white) 

 

 

                                                                                 

9
.8

 

(a) (c) (e) 

(b) (d) (f) 
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Voids and their increase with load was visualized using the CTvox software (Bruker). 

Figure 5.5 and Figure 5.6 show some reconstructed slices in the x-z plane that are extracted 

from control samples and loaded FRP rebars. After a thorough investigation of the samples 

using reconstructed longitudinal section images of control rebar and a loaded GFRP size 4 

the examples in Figure 5.5 were chosen as they show the more critical changes observed 

in the rebar with increasing load. For the control sample the fibers in the image, Figure 

5.5a, are well distributed. The control sample does contain some noticeable voids, but they 

are less than 2 mm in length. For the sample tested up to 40 % of the ultimate load voids 

with length more than 2 mm were observed, in Figure 5.5b. For the sample tested up to 64 

% of the ultimate load, Figure 5.5c, the interconnection between voids increases and the 

voids increase in thickness. For the sample tested up to 64 % of the ultimate load the 

misalignment of the voids with the longitudinal axis is noticeable, indicating the starting 

of other type of damage such as longitudinal matrix micro-cracking. For a sample tested 

up to 95 % of the ultimate load, Figure 5.5d, shows again a misalignment of the longitudinal 

voids and an increasing density of voids near the outer surface. The reason for the growth 

of the voids maybe that the resin has a smaller modulus of elasticity than the fibers. 

Therefore, some fibers were broken and pulled out under tension leading to the longitudinal 

growth of the voids. 
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Figure 5.5 Microstructural changes observed using 3D µ CT images of the GFRP size 4 

rebar samples after being subjected to tension at varying fractions of the ultimate load. (a) 

Control sample showing the voids that are less than 2 mm (1); (b)Tested up to 40% of the 

ultimate load showing the voids that are more than 2 mm (2); (c) Tested up to 64% of the 

ultimate load showing to the interconnection between the voids (3); (d) Tested up to 95% 

of the ultimate load showing the misalignment of the longitudinal voids (4), and the 

increases of the voids density near the outer surface (5) 
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Figure 5.6 shows representative reconstructed longitudinal section images for a control 

rebar and a loaded CFRP size 4 samples. These images were also chosen after a thorough 

investigation of the samples using reconstructed longitudinal section images of control 

rebar and a loaded CFRP size 4. The examples in Figure 5.6 were chosen as they show the 

more critical changes observed in the rebar with increasing load.  It should be noted that 

each image is from a different sample. For the control sample, Figure 5.6a, the image has 

longitudinal voids that extend through the length of the 9.8 mm sample. For the sample 

tested up to 40 % of the ultimate load, Figure 5.6b, there is an increase voids with length 

more than 4 mm and a small increase in the void thickness were observed. For the sample 

tested up to 70 % of the ultimate load, Figure 5.6c, there is an increase in the number of 

voids extending through the entire length of the sample and an increase in the thickness of 

the voids. For the sample tested up to 99 % of the ultimate load, Figure 5.6d, a longitudinal 

split of the outside layer occurred along the full 9.8 mm of the sample. The figure also 

showed off longitudinal axis alignment of some of the voids. 
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Figure 5.6 Microstructural changes observed using 3D µ CT images of the CFRP size 4 

rebar samples after being subjected to tension at varying fractions of the ultimate load. (a) 

Control sample showing the longitudinal voids (1); (b) Tested up to 40% of the ultimate 

load showing the voids with length more than 4 mm (2); (c) Tested up to 70% of the 

ultimate load showing the longitudinal voids (3); (d) Tested up to 99% of the ultimate 

load sample showing longitudinal split (4), and off longitudinal axis alignment of some of 

the voids (5) 
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5.4.2 Damage Volume Fraction 

 

The percentage of the damage area was calculated for each slice using fraction of pixels 

above a set threshold (see Figure 5.3i). In other words, the damage is assumed to be the 

void fraction. Then, the volume percentage for the four different FRP rebar samples was 

averaged over 1000 slices and is plotted in Figure 5.7. Figure 5.7 shows CFRP size 2 rebar 

has a higher void percentage than CFRP size 4.  GFRP size 4 has a higher void percentage 

in the early stage of loading, but lower void percentage after 50% ultimate load. The CFRP 

rebars have a noticeable increase of void percentage after 40 % ultimate load for size 2 and 

after 50% ultimate load for size 4. GFRP rebars in comparison have a noticeable increase 

of void percentage after 30 to 40% ultimate load. The void percentage increases steadily 

with loading in both CFRP and GFRP bars. Table 5.2 shows the void percentage for these 

sample rebars, after subtracting the void percentage of the control bars formed during the 

pultrusion process.  

 

Table 5.2 Void volume percentage of FRP sample rebars 

 % Void Volume 

% Ultimate 

Load 
CFRP-2 CFRP-4 GFRP-4 GFRP-6 

30 0.13 0.04 0.12 0.05 

50 0.57 0.19 0.65 0.70 

70 1.14 0.64 0.84 1.35 

90 1.28 1.13 1.10 1.71 

99 2.48 1.57 1.35 1.81 
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Figure 5.7 Ratio of the void volume as a function of the increasing tensile loading, after 

subtracting the void percentage of the control bars formed during the pultrusion process 

 

  

5.4.3 Void Thickness Evolution with Load 

 

Thickness of the voids were estimated using the distance transform method (Remy and 

Thiel 2002). The distance transform defines a distance between a specific pixel and the 

nearest nonzero pixel of the binary selection which was explained firstly by Hildebrand 

and Ruiegsegger (1997) by means of local thickness (Hildebrand and Rüegsegger 1997). 

In this method, Local thickness was defined as a diameter of a largest sphere within the 

volume of interest that include a specific pixel need to be measured. This point is not 

needed to be at the centre of the sphere, but the sphere should be completely fit inside the 

structure, voids and their increasing in this study. After that, a mean value was calculated 
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for all local thicknesses and defined as a mean thickness of this specific object (Hildebrand 

and Rüegsegger 1997). Figure 5.8 summarizes the damage thickness distribution data 

gathered from µCT images at different ultimate load stages for GFRP size 6 and CFRP size 

4 respectively. The figure shows the void volume representing a given thickness. 

 

Assessment of µCT data showed that the void volume increases at a higher load level with 

a slight trend in increasing in void thickness in GFRP size 6, while there is a noticeable 

increase in the void volume and thickness with increasing load level in CFRP size 4. It can 

be noticed that the maximum void thickness for the control CFRP size 4 sample is 0.11 

mm, and that the void thickness increases up with the void volume as the load increases. 

Minimum void volume for the void thickness of 0.11 mm equals to 0.009 mm3 for the 

control sample and the maximum volume equals to 0.523 mm3 for a sample tested up to 

90% ultimate.  In comparison, the maximum void thickness for the control sample of GFRP 

size 6 is 0.27 mm, and the void thickness has a small increase with the void volume as the 

load increases. Minimum void volume for the void thickness of 0.27 mm equals to 0.018 

mm3 for the control sample and the maximum volume equals to 0.0545 mm3 for a sample 

tested up to 99% ultimate. Maximum void thickness equals to 0.285 mm in GFRP sample 

and 0.18 mm in CFRP sample.  
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a) GFRP size 6 

 

 

b) CFRP size 4 

Figure 5.8 Distribution of voids thickness as a result of tension test for a) GFRP and b) 

CFRP 
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5.5 Comparison between µCT scan and SEM Results  

 

The percentage of void area was calculated for a chosen slice by finding the fraction of 

pixels above the threshold. Table 5.3 compares the void percentage of the CFRP and GFRP 

rebar samples measured using µCT scan and SEM analysis. Maximum difference was 

0.15% and average difference was 0.05%.     

                                                            

Table 5.3 Percentage of void area of FRP rebar samples using µCT scan and SEM 

techniques 

 

Rebar 

Type 
% Ultimate Load 

Void Percentage 

 Area (%) using µCT 

Void Percentage 

 Area (%) using SEM 

GFRP-4 95 4.02 4.17 

GFRP-6 74 4.36 4.32 

CFRP-2 50 3.35 3.36 

CFRP-2 70 3.62 3.68 

CFRP-4 52 3.34 3.37 

 

 

5.6 Results and Discussion from AE Analysis 

 

The acoustic data in this section was compared to results obtained from µCT results. 

Frequency domain was used to analyze AE data. Each acoustic event was identified using 

the Root Mean Square (RMS) algorithm as described in (Shateri et al. 2017). The FFT was 
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calculated for each event and all of these have been plotted in Figure 5.9 for two types of 

FRP rebar. Frequencies bands were chosen using these distributions by identifying notches. 

Acoustic emissions originate from the release of acoustic energy due to cracking and 

delamination. Therefore, void volume growth was compared to the cumulative energy of 

the acoustic emissions. The cumulative energy of the FFT signals was calculated by means 

summing the energy within the band. The cumulative energy for each band was plotted 

relative to the fraction of ultimate load ranging from zero to 99% in 5% increments. GFRP 

size 6 in Figure 5.9a was divided into two frequency bands: 100 – 130 kHz and 130-190 

kHz, while CFRP size 4 in Figure 5.9b was divided into three bands: 50 – 120 kHz, 120 – 

160 kHz, and 160 – 200 kHz. Since the cumulative energy raised more or less uniformly 

for the different frequency bands, the frequency band with the largest cumulative energy 

was used in Figure 5.10 for comparing AE and µCT results.  Normalized cumulative energy 

was plotted for frequency band of 130 – 190 kHz for GFRP size 6 and 160 - 200 kHz for 

CFRP size 4 as a function of the percentage load in Figure 5.10. In addition to that, the 

normalized void volumes at a void thickness of 0.142 mm for GFRP size 6 and 0.107 mm 

for CFRP size 4, and were plotted as a function of the percentage load as well. The 

correlation between cumulative energy in the AE and void percentage measured using µCT 

are very good.  This correlation supports the notion that the growth in the void volume is 

due to increasing damage. 
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a) GFRP size 6 

 

b) CFRP size 4 

Figure 5.9 Fast Fourier Transform (FFT) of acoustic emission events for a) GFRP size 6 

and b) CFRP size 4 rebar samples 
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a) GFRP size 6 

 

 
 

b) CFRP size 4 

 

 

Figure 5.10 Comparison between normalized cumulative energy behaviour and 

cumulative void volumes at a specific void thickness behaviour for a) GFRP and b) 

CFRP rebar samples 
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CHAPTER 6 

ENHANCED SOURCE LOCATION IN PULTRUDED GFRP AND 

CFRP REINFORCING BARS USING ACOUSTIC EMISSION (AE) 

AND MICRO COMPUTED TOMOGRAPHY (µCT) SCAN 

 

6.1 Introduction 

 

In this chapter, the AE that were generated from PLBs test on different locations at the FRP 

rebars were used to estimate the source location using the conventional linear source 

location using ∆𝑡. ∆𝑡 is calculated (Prosser 2002) from the arrival time of the AE waves 

(Prosser 2002). However, the determination of the arrival time is complicated by the 

presence of multiple modes that the AE waves can travel in (Prosser 2002). The studies to 

date have confirmed that an ANN can improve the accuracy of source location. Neural 

network is known to be appropriate for resolving multidimensional non-linear problems. 

In composite materials, the inhomogeneity and acoustic anisotropy results to signal 

attenuation and dispersion that could make the source localization more challenge. The 

ANN can use different input data for localization, so it is possible to account for the 

attenuation and different propagation paths. However, the ANN have not yet been applied 

to FRP rebar, which are important materials for civil engineering applications. In the 

present study the ANN were used to reduce the AE source location errors in the FRP rebar. 

The system was trained and tested using the PLB to simulate the AE events. The trained 

ANN was used to identify source locations during a tensile loading test on two different 

FRP bars. The µCT was used to measure the damage density along the FRP bars after 
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tensile load testing. An additional contribution of this study is a comparison between the 

density of location of AE signals determined by the ANN method with damage density 

measured with the µCT analysis along the same CFRP and GFRP rebars.  

   

6.2 Wave Velocity 

 

PLB tests were used to determine the velocity of the AE wave propagation for CFRP and 

GFRP rebars. When the pencil lead breaks, an elastic wave is produced that propagates 

through the rebar sample. These waves have short rise time and are similar to AE signal 

generated from a crack (Prosser 2002). Ten PLBs were performed within a few mm of the 

anchor and hence within 2 cm of one sensor, while the second sensor was located on the 

anchor at the opposite end of the bar, as shown in Figure 6.1. The PLB test is performed 

with a 0.5 mm HB pencil lead with the length of 2.5 mm at an angle of 30o, as suggested 

in (Miller 1987). Circular foam ring was used to ensure that the pencil was held at the same 

angle. The difference in time, ∆𝑡 , that it takes a wave to travel from one sensor to another 

in a FRP sample, was determined by using the equation below: 

 

 ∆𝑡= |𝑡2 − 𝑡1|     ………………………………………………………………      (6.1) 

 

Where: t1 and t2 are the arrival time of the wave at sensor 1 and 2. The RMS algorithm was 

used to identify the start of each signal to minimize the effect of threshold level, as shown 

in Figure 6.2. The velocity was determined by dividing the distance between the two 

positions of the PLB by ∆𝑡.  
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Figure 6.1 A schematic of pencil lead break test on FRP bar samples used to determine 

the AE propagation velocity 

 

 

 

Figure 6.2 Signal arrival from a PLB at the two sensors. Dashed lines denote the arrival 

time at each sensor 

 

It is expected that there will be variation in the time difference between the arrival of each 

signal due to factors such as the wave’s propagation mode or dispersion (Prosser et al. 

1995). For example, the flexural mode will travel at lower velocity and is highly dispersive 
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than waves that travel in extensional mode (Prosser et al. 1995). Figure 6.3 shows different 

velocities for signals with amplitudes more than 90 dBAE for untested FRP rebars. 

 

 

   

Figure 6.3 Velocity calculations of different high amplitude AE signals for untested 

CFRP and GFRP rebars 
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Previous work has demonstrated that the velocity of composite laminates depends on the 

fiber orientation and the elastic properties of the material (Nunes et al. 2002). In the current 

study, the wave velocity of continuous FRP bars was checked to determine if it changes 

during the load – unload – reload tension test. Ten PLBs were performed at loads from 0 

to 90% predicted ultimate load in increments of 10 % of the predicted ultimate load. The 

velocity was determined and correlated to Modulus of Elasticity (E) estimated from the 

stress strain relationship. The stress strain relationship remained elastic until the ultimate 

load was reached and hence the modulus of elasticity and velocity also maintained constant 

up to failure.  

 

Differences in mode velocity and dispersion of AE events will lead to errors in the 

estimated source location. In addition, many overlapping signals would be displayed in a 

real-time test as many AE signals are generated in different positions and arrive to the 

sensors at the same time. Source location results would be inaccurate if it depends on 

velocity itself. In homogeneous materials, the error would be small; however, the error 

would increase in inhomogeneous materials such as FRP composites as the wave 

propagates in different wave modes and velocities (Rose and Nagy 2000). 

 

 

 

 

 

 



 

124 
 

6.3 Source Location Determination  

 

6.3.1 Conventional Linear Source Location Method 

 

In conventional linear source location, the time difference between the arrival time of an 

AE event is used to estimate the position of the AE source. Source location can be either 

linear, two, or three dimensional depending on the structure geometry. Source location on 

FRP rebars can be calculated using the linear source location as the bar can be regarded as 

one dimensional. In this study, artificial AE signals were generated on a FRP rebar using 

PLB test and detected by two sensors attached on each anchor. Six PLB tests at 3 cm 

intervals were carried on GFRP size 4 while five PLB tests were carried out every 5 cm for 

CFRP size 4 as shown in Figure 6.4. The signals were stored for post processing. 

 

 

 

Figure 6.4 A schematic of pencil lead break test performance on FRP bar samples for 

linear source location determination 
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The arrival time and AE event amplitude were determined using both the RMS and 

threshold based algorithms. From the 90 PLB tests the RMS algorithm identified 164 AE 

events and threshold based algorithm identified 222 AE events for the GFRP size 4 sample. 

From the 55 PLB tests the RMS algorithm identified 71 AE events and threshold based 

algorithm identified 135 AE events in the CFRP size 4 sample. The difference in the arrival 

time  ∆𝑇 was calculated using equation 2. The propagation velocities used were 4800 m/sec 

for GFRP and 8000 m/sec for CFRP, as determined before in Figure 6.3.  The conventional 

linear source location for both RMS and threshold based algorithms was calculated using 

difference in the arrival time according to the following relationship: 

 

𝐿1 =
1

2
(𝐿 + 𝑉 × ∆𝑇)      ………………………………………………………      (6.2) 

 

Where: 𝐿1 is the distance from a PLB at a specific point on the FRP rebar to the sensor that 

attached at one end; L is the free length. 

 

6.3.2 Artificial Neural Network (ANN) Source Location 

 

The ANN is a computing system that was designed to simulate the processing of 

information by layers of neurons (Shanmuganathan and Samarasinghe 2016). The system 

consists of individual elements called neurons that connected via coefficient (weights). The 

system consists of an input layer, one or more hidden layers and an output layer.  

Information processes in two phases, training and recall phases. The network is trained 

using examples and find a relation between the input and output data (Shanmuganathan 
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and Samarasinghe 2016). In the recall phase, the new set of data is used through the trained 

network and a recall algorithm is used to calculate the results. 

 

In general, there are two groups of learning algorithms: supervised and unsupervised 

learning algorithms. The supervised learning algorithm uses a symbolic function to relate 

the input vectors to the desired output vectors, while the unsupervised learning algorithm 

uses only input vectors and classify the measured values using their internal features.  

 

A supervised learning ANN approach was used to determine the source location of the PLB 

tests, described in 6.3.1, for both GFRP size 4 and CFRP size 4 samples. In an ANN 

neurons process information in a connected network. In this work, the connected network 

of neurons consists of an input layer, an output layer and two hidden layers. In this work 

supervised learning was used to adjust the weights of the hidden layers. After training the 

ANN provides a function that relates the input and output data (Demuth 2000). 

 

The ANN was trained using preprocessed signals that were fed to the input layer and the 

PLB locations. The AE signals were preprocessed using the RMS algorithm or threshold 

based algorithm. For each AE event, the preprocessing produced peak amplitude for the 

signal at sensor 1 (A1), peak amplitude for the signal at sensor 2 (A2), and ∆𝑡 which were 

used as the input for the neural network (three neurons in the input layer). Distance from 

the source of the PLB signal to sensor 1 (L1) was used as the target (correct answer for 

every input data). Using the preprocessed inputs and the PLB locations the network was 

trained using the neural network fitting tool (Demuth 2000) . The input data was divided 
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into training data to find the weights, and another set of data to check the final performance 

of the network (Demuth 2000). In this work a two-layer feed-forward network was used to 

fit the data with a nonlinear hidden layer (sigmoid neurons) and a linear output layer as 

shown in Figure 6.5. Bayesian Regularization training algorithm was used as that is the 

recommended approach that yields acceptable generalization for smaller data sets (Demuth 

2000). The number of neurons was incremented from 10 to 26 and training was carried for 

each number of neurons. The average error for the testing data was calculated and 

compared in order to select the number of neurons that produced the minimum average 

error. As shown in Figure 6.6, the average error was minimum with 20 neurons. After 20 

neurons, the network was overfitting and did not generalize it properly. Therefore, in this 

study, 20 neurons were used in the hidden layer. 

 

Figure 6.5 Schematic of the ANN used in this study where A1 and A2 are the peak 

amplitude of AE signal at the sensor 1 and sensor 2 respectively;  ∆𝑇 is the difference 

time;  Fs is the activation of the hidden layer (sigmoid function);  Fl is the activation 

function of the output layer (linear function); W is the weight; and B is the bias  



 

128 
 

 

Figure 6.6 The average error of the testing data versus the number of neurons  

 

For GFRP size 4, 164 AE events were used and for each event three features were extracted 

that became the three input vectors. For CFRP size 4, 71 AE events were used as input. For 

GFRP size 4, 85% of data was used for training the network and 15% was used for checking 

the accuracy of the localization. For CFRP size 4, 80% of data was used for training the 

network and 20% was used for checking the accuracy of the localization. The error was 

calculated as the difference between the calculated and actual position. The error then 

passed backward through the network to adjust the weights to reduce the error (Demuth 

2000). The ANN with the minimum standard deviation occurred at iteration number 774 

and number 433 for GFRP and CFRP size 4 respectively. Figure 6.7 shows the errors 

between the calculated and actual position for GFRP and CFRP samples.  
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Figure 6.7 Errors between real PLB source and the calculated ANN locations for GFRP 

and CFRP samples 
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6.3.3 Comparison of The Source Location Results Obtained from Conventional 

Linear Source Location and ANN  

 

Scatter plots of actual and calculated PLB source location are shown in Figures 6.7 and 6.8 

for GFRP and CFRP size 4 rebars respectively. PLB source locations were calculated using 

the three methods: conventional linear source location using both threshold based and RMS 

algorithms and the ANN method. One metric that can be used to compare the methods is 

the standard deviation between the actual PLB and the calculated source location. Standard 

deviation between the actual PLB and the calculated source location for GFRP size 4 rebar 

sample is 8.43 cm using the RMS algorithm, 7.75 cm using threshold based algorithm, and 

1.95 cm using ANN method. For CFRP size 4 sample, standard deviation between the 

actual PLB and the calculated source location is 7.84 cm using the RMS algorithm, 7.51 

cm using threshold based algorithm, and 1.48 cm using ANN method. 
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Figure 6.8 Calculated vs actual PLB source locations for GFRP size 4 rebar sample using 

the ANN and conventional linear source location methods. Difference in the arrival time 

was calculated using both threshold based and RMS algorithms 
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Figure 6.9 Calculated vs actual PLB source locations for CFRP size 4 rebar sample using 

the ANN and conventional linear source location methods. Difference in the arrival time 

was calculated using RMS algorithm 

 

 

The variance between the actual and calculated source locations was improved by a factor 

of 4 for the GFRP and a factor of 5 for the CFRP when using the ANN method. The GFRP 

and CFRP trained neural networks were saved for later analysis of tension tests of FRP 

rebar samples. 
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6.4 Source Location of AE Events During Tension Test Using ANN 

 

The tension tests and AE signals were carried out as outlined in chapter 3. The acoustic 

signals were recorded and then post processed. The RMS algorithm was used to identify 

the AE events. During post processing AE analysis, the amplitude at each sensor and ∆𝑡 

were used as input data and processed using the functions from the ANN for GFRP and 

CFRP from section 6.3.2. 

  

The free length of the sample between the sensors was approximately 52 cm for both GFRP 

and CFRP. For GFRP sample, 52% of the recorded AE events had a calculated location 

along the sample length between the two sensors, and the rest of the events were calculated 

to have positions beyond the free length of the sample. For CFRP sample, 70% of the AE 

events were calculated to be within the free length of the sample. Any AE events calculated 

to have positions outside the free length of the sample as shown in Figure 6.4 were 

discarded and not included in the analysis. The signals with estimated positions outside the 

free length of the sample could be signals that were created at the grip of the machine or 

due cracking in the grout. Another reason that estimated positions could be outside the free 

length of the sample is that AE signals from different locations might arrive at the sensors 

close enough in time that they are erroneously considered to be originating from one signal 

location.  

 

The distribution of AE events along the samples length for GFRP and CFRP rebars were 

also calculated using the conventional linear source location by using the RMS algorithm 
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and plotted in Figures 6.10a and 6.11a. For GFRP sample using the RMS algorithm, 18% 

of the recorded AE events had a calculated location along the sample length between the 

two sensors, and the rest of the events were calculated to have positions beyond the free 

length of the sample. For CFRP sample using the RMS algorithm, 35% of the AE events 

were calculated to be within the free length of the sample. 

 

The distribution of AE events along the samples length for GFRP and CFRP rebars using 

ANN method were shown in Figures 6.10b and 6.11b respectively. The results showed 

there are differences between the conventional linear source location and ANN methods 

especially for CFRP sample. 

 

6.5 µCT Analysis 

 

6.5.1 Damage Density Along the Bars Using µCT Technique  

  

Damage density along the bars after tension testing was determined using µCT Technique 

and compared with AE event localization results. After the tension test up to a load of 95-

98% of ultimate, the samples of FRP bars were cut into 5 cm lengths and imaged using 

µCT scan. After imaging, 2000 reconstructed images near the centre of each 5-cm length, 

equal to a 1.8 mm length, were chosen from each piece to find the volume of damage. In 

the analysis the void fraction was estimated from the images and the damage percentage 

was set equal to the increase in void percentage. Figures 6.10c and 6.11c show the percent 

damage volume for GFRP and CFRP samples along the sample length.  
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Figure 6.10 (a) Distribution of AE events along the GFRP rebar sample using 

conventional linear source location method. (b) Distribution of AE events along the 

GFRP rebar sample using the ANN method. (C) Distribution of the ratio of damage / total 

sample volume for the GFRP using the µCT scan 
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Figure 6.11 (a) Distribution of AE events along the CFRP rebar sample using 

conventional linear source location method. (b) Distribution of AE events along the 

CFRP rebar sample using the ANN method. (C) Distribution of the ratio of damage / total 

sample volume for the CFRP using the µCT scan 
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6.5.2 µCT Longitudinal Section Images 

 

µCT Image analysis was performed using CTAn software version 1.11.10. Within each 

5cm sample a length of 18 mm was selected for analysis. The entire diameter, excluding 

the coating, was included in the analysis. Figures 6.12 and 6.13 below show some 2D 

reconstructed images in the x-z plane for the tested GFRP and CFRP size 4 respectively. 

A µCT image in Figure 6.12a for GFRP sample has small voids at distance of 4 – 6 cm 

from the sensor.  This region has the lowest damage volume in the bar as indicated in Figure 

6.10c. The image of the sample taken from 19 – 21 cm, Figure 6.12b, has a larger void 

volume than sample taken from 4 – 6 cm, as indicated in Figure 6.10c. Figure 6.12c shows 

more damage represent as a longitudinal debonding, and Figure 6.12d show the more 

increasing of damage in the longitudinal direction. The AE location results in Figures 6.10a 

and 6.10b have similar shapes to the µCT results.  
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Figure 6.12 2D image slices along the GFRP size 4 sample using µCT
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A µCT image for a CFRP sample after load testing is shown in Figure 6.13. In the image 

of the sample shown in Figure 6.13a, taken from 9 – 11 cm from the sensor, the damaged 

regions do not appear to be as contiguous as other regions of the bar. This region has the 

lowest damage volume in the bar as indicated in Figure 6.11c. The image of the sample 

taken from 19 – 21 cm, Figure 6.13b, shows the damage starts to increase longitudinally. 

The same increase in damage volume was observed in the ANN location maps presented 

in Figure 6.11c. Figure 6.13c shows the growth of a longitudinal splitting. Figure 6.13d 

shows the increasing longitudinal and transverse damage in both directions. The AE source 

location density results in Figure 6.11c have a similar pattern as the µCT void volume 

including a maximum in 45 cm location. 
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Figure 6.13 2D image slices along the CFRP size 4 sample using µCT 
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6.6   Comparison Between ANN and RMS with µCT 

 

To quantitatively compare the ANN and RMS with the µCT method, each of the graphs in 

Figures 6.10 and 6.11 were normalized by dividing the number of events in each location 

by the sum of all events for the all locations on the rebar as shown in Tables 6.1 and 6.2. 

The difference between the methods was then determined from the normalized graphs. 

Figure 6.14 shows the differences of the localized AE events between the RMS and µCT, 

and the differences between the ANN and µCT for both GFRP and CFRP samples. The 

figures show better correlation in the localization results for the ANN and µCT methods 

than the conventional source location by factor of 1.6 and 3 for GFRP and CFRP bar 

samples respectively.      
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Table 6.1 Normalized # events using RMS, ANN, and normalized % damage volume using µCT for GFRP size 4 sample 

Conventional  

Arrival Time Using RMS  
ANN µCT     

Position  

(cm) 
# Events 

Normalized  

# Events 
# Events 

Normalized 

# Events 

% 

Damage  

Volume 

Normalized 

 % Damage  

Volume 

RMS-µCT ANN-µCT 

5 56 0.081 63 0.047 0.34 0.041 0.040 0.007 

10 60 0.086 98 0.074 0.68 0.082 0.005 -0.008 

15 73 0.105 98 0.074 0.66 0.079 0.026 -0.006 

20 81 0.117 124 0.093 0.84 0.101 0.016 -0.008 

25 104 0.150 175 0.131 1.2 0.144 0.006 -0.012 

30 69 0.099 92 0.069 0.46 0.055 0.044 0.014 

35 60 0.086 126 0.095 0.78 0.094 -0.007 0.001 

40 69 0.099 236 0.177 1.55 0.186 -0.087 -0.009 

45 123 0.177 319 0.240 1.83 0.219 -0.042 0.020 

Ʃ 695  1331  8.34    
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Table 6.2 Normalized # events using RMS, ANN, and normalized % damage volume using µCT for CFRP size 4 sample 

Conventional  

Arrival Time Using RMS  
ANN µCT     

Position  

(cm) 
# Events 

Normalized  

# Events 
# Events 

Normalized 

# Events 

% Damage  

Volume 

Normalized 

% Damage  

Volume 

RMS-µCT ANN-µCT 

5 502 0.078 901 0.099 1.659 0.109 -0.031 -0.010 

10 472 0.073 812 0.089 1.489 0.098 -0.025 -0.009 

15 507 0.079 841 0.092 1.497 0.099 -0.020 -0.006 

20 475 0.074 876 0.096 1.607 0.106 -0.032 -0.009 

25 2264 0.351 998 0.110 1.794 0.118 0.233 -0.008 

30 557 0.086 983 0.108 1.613 0.106 -0.020 0.002 

35 552 0.086 1089 0.120 1.75 0.115 -0.030 0.005 

40 522 0.081 1198 0.132 1.765 0.116 -0.035 0.016 

45 592 0.092 1395 0.153 2.017 0.133 -0.041 0.021 

Ʃ 6443   9093   15.191       
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Figure 6.14 The normalized differences between the RMS, ANN source location density 

and µCT void volume results for: (a) GFRP sample and (b) CFRP sample.   To 

quantitatively compare the ANN and RMS with the µCT method, each of the graphs were 

normalized by dividing by the sum of all values 
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CHAPTER 7 

SUMMARY, CONCLUSIONS, AND RECOMMENDATION 

FOR FUTURE WORK 

 

7.1 Summary 

 

In this work, research was done in two phases, experimental and analytical phases. In the 

experimental phase, different diameters of CFRP and GFRP bar specimens were subjected 

to tensile loading. The specimens were prepared according to Annex B of CSA S806-12 

(2012) standard. Some specimens were loaded until failure and others were loaded up to 

different stages of the ultimate load (in 10% ultimate load increments) and were used for 

SEM and µCT investigation. Two rebars were tested under load – unload – reload in 10% 

increments up to failure to estimate the wave velocity in CFRP and GFRP.  AE signals 

generated from damage were detected by two piezoelectric transducers that were attached 

to the surface of the specimens’ anchorage.  

 

In the analytical phase, MATLAB was used for analysis of AE signals and SEM images, 

and CTAn software was used for analysis of µCT Images. The AE signals were analyzed 

using the RMS AE hit detection algorithm, and then parameters were extracted in time and 

time – frequency domain. The parameters that were extracted in time domain are: 

amplitude, cumulative events, duration, energy, rise time, number of counts, cumulative 

counts, average frequency, and frequency peak. In time frequency domain, STFT was used 

to calculate the energy and FFT for both GFRP and CFRP rebar samples. 
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For a comparison between ANN and conventional linear source location, AE signals were 

analyzed using threshold method as well. For µCT analysis, 3D and 2D – µCT 

reconstructed images were used to calculate the void volume and its distribution. In this 

work the void volume was used as a measure of damage. 

 

7.2 Conclusions 

 

1. The results of twenty FRP bar specimens that were loaded up to 90 – 100% ultimate 

load showed that AE parameters changed as the quasi static load on the bar was increased. 

FRP is a linear elastic material and the stress-strain curves were linear until failure and did 

not show any indication of increase in damage with load. 

 

2. In previous work, the observed changes in AE parameters, similar to those reported 

in this work, have been correlated with the occurrence of different damage mechanisms in 

FRP materials. With pultruded FRP bars, AE signals with high amplitude and duration 

occur more frequently as the load approaches the ultimate load, while the low to medium 

amplitude signals appeared throughout the testing period. The RA and AF also showed 

some correlation with the increasing the slope of cumulative counts curve. In CFRP, the 

increasing of RA and decreasing of AF refers to the elongation in the matrix.  In GFRP, 

the decreasing of RA and increasing of AF refers to the delaminating of the outside layer. 

Moreover, AE signals generated from CFRP bars have a shorter duration than GFRP bars. 

The mean values were equal to 16.16 milliseconds during the last third of the test time for 
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CFRP bars, and 20.24 milliseconds for GFRP bar. CFRP bars have higher amplitude 

signals than GFRP. Specifically, the ratio of high to the sum of low and medium amplitude 

events is 4% for CFRP size 2, 6% for CFRP size 4, and 1% for both GFRP size 4 and 6. In 

addition, frequency peaks were obtained using STFT and energy distribution. Most AE 

signals have more than one frequency band, which indicates that different damage 

mechanisms occurred at the same time of the real-time testing. These peaks are limited to 

the sensitivity of the resonant transducer, R15I-AST of 80 – 200 kHz frequency range.  

 

3. SEM investigation revealed three types of damage in the longitudinal sections: 

matrix cracking that started from the voids and developed at the same direction of the 

fibers, debonding, and fiber fracture. On the other hand, the transverse sections did not 

show any transverse matrix cracking; just the enlargement of the voids which indicate that 

the matrix cracking occurred at regions between voids. In contrast, AE analysis revealed 

different number of events for different specimens of the same type of FRP bar, and that is 

due to different void volume fraction that was observed under SEM investigation. This 

work contributes to better understanding the behaviour of these bars.  

 

4. The experimental results from the AE monitoring system could be used to identify 

different stages of internal damage of the specimens related to micro – crack propagation 

and the failure of FRP bars. The results also confirmed that the slope of the cumulative 

counts increases with increasing load.  However, the large variation of the absolute number 

of events at failure make it a poor metric to predict when FRP bars will fail. Furthermore, 
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the time-frequency characteristics determined from different signal amplitudes are 

different and may be performed for different damage identification.  

5. µCT scan proved to be an appropriate method to investigate the internal damage 

and its distribution along FRP specimen subjected to tension loads. The determination of 

the void ratio is an appropriate method to quantitatively evaluate FRP rebars internal 

damage when subjected to tensile load. The results of cumulative energy from tension test 

experiments indicated a strong correlation with the percentage void volume obtained from 

µCT results. The cumulative energy of FFT acoustic emission events was shown to be 

proportional to the percentage void volume accumulation in FRP rebars. 

 

6. µCT results show that the percentage void volume for CFRP rebars decreases with 

bar diameter. For GFRP rebars however this trend is not valid for loads exceeding 50% of 

ultimate. It can be concluded from the 3D analysis that the thickness and length of voids, 

present after the pultrusion process, increased as damage progressed. In CFRP, voids are 

growing in thickness as damage progresses. However, GFRP size 6 shows a smaller 

increase in void thickness and volume as damage progresses, but has a higher initial void 

thickness than CFRP. 

 

7. The analysis of FRP rebars by µCT opens up the possibility of tracking changes in 

the internal structure of FRP rebars as a result of tensile loading that may play a significant 

role in determining the long-term durability of the rebars. 
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8.   AE source locations have been determined using conventional linear source 

location and ANN methods. The velocity of AE waves and Modulus of Elasticity kept 

constant as the damage accumulated. A study of 164 AE events for GFRP size 4 and 71 

AE events for CFRP size 4 the use of an ANN method provided a better estimation of 

source location over the conventional linear method in training a data obtained from PLB 

test. Standard deviation for GFRP sample was 1.95 cm using ANN method versus 8.43 cm 

and 7.75 cm using conventional linear source location for both RMS and threshold based 

algorithms respectively. Standard deviation for CFRP sample was 1.48 cm using ANN 

method versus 7.84 cm and 7.51 cm using conventional linear source location for both 

RMS and threshold based algorithms. 

 

9. Analysis of the AE results from a tension test on GFRP and CFRP rebars using the 

neural network trained on the PLB results reduced the number of times that source 

locations were predicted to be outside the free length of the sample. For ANN method, 48% 

and 30% of the AE events in GFRP and CFRP samples were considered as outlier events. 

For conventional method, 82% and 65% of the AE events in GFRP and CFRP samples 

were considered as outlier events. In addition, the trained ANN predicted source location 

densities that were better correlated with the µCT analysis than the conventional source 

location methods by factor of 1.6 and 3 for GFRP and CFRP samples respectively. GFRP 

sample showed stronger correlation than CFRP sample with the µCT analysis.  

 

10  AE characterestucs are useful in setting a in setting a data based criterion for 

monitoring FRP rebars.  
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11  The analysis of FRP bars by µCT method may be used to estimate the quality and 

consistency of pultruded FRP bars. It allows the manufacturers to track changes during 

manufacturing process such as continuous voids or micro cracks that generated during the 

thermal stresses. 

 

 

7.3 Recommendations for Future Work 

 

• Develop a failure warning system for relating the AE parameters to the impending 

failure and to particular faiure mechanisms in an FRP tendon. 

• Develop multi channel systems which will be capable of predicting failure in a 

number of bars undergoing prestress in the precast plant, and triggering an alarm if 

a rupture is expected to occur. 

• Evaluate the damage propagation using Felicity and Kaiser effects.  

• AE technique should be further investigated for concrete structures that are 

reinforced with FRP bars with the using of sensors attached to the bar and 

embedded in the concrete. 

• The µCT scanning would be further investigated on untested samples as another 

method for establishing a standard to assess the integrity of untested FRP bars. 

• Testing concrete reinforced with FRP bars and subjected to increased or sustained 

loads to study the impact of the increasing voids on the bond of FRP bars with the 

surrounding concrete. 
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• Check the performance of the ANN method to predict the source location for a 

concrete structure that is reinforced with FRP rebars by using the two-dimentional 

source location. 
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APPENDIX A 

RESULTS OF OTHER FRP SAMPLES USING AE TECHNIQUE 

 

A.1 Introduction 

 

This appendix includes the plots of the other CFRP and GFRP rebar samples that were 

tested under tensile loading and analyzed in chapter 4. Then, signals classification is briefly 

presented according to JCMS-III B5706 code. After that, AE features for FRP Rebars are 

presented in tables. 

 

A.2 Time Domain Analysis 

 

Conventional signal analyses were done in time domain. In the plots caption, the first letter 

stands for the type of fiber C for carbon and G for glass, the number that is followed stands 

for the size of the bar, the letter that is followed stands for sample, and the number that is 

followed stands for the number of the sample.   
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Figure A.1 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for CFRP size 2 
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Figure A.2 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for CFRP size 2. 

C2S4 was loaded up to 92% predicted ultimate load 
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Figure A.3 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for CFRP size 4. 

C4S2 was loaded up to 90% predicted ultimate load 
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Figure A.4 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for CFRP size 4. 

C4S3 and C4S4 were loaded up to 70% and 74% predicted ultimate load respectively 
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Figure A. 5 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for GFRP size 4 
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Figure A. 6 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for GFRP size4. 

G4S4 was loaded up to 70% predicted ultimate load 
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Figure A. 7 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for GFRP size 6 
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Figure A. 8 Amplitude vs. time with load time superimposed, variation of AF and RA 

values and cumulative counts vs. time with stress-strain superimposed for GFRP size 6. 

G6S4 was loaded up to 92% predicted ultimate load 
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Figure A.9 Duration vs. Amplitude for four stages in CFRP size 2 specimen. Cluster 1: matrix cracking; cluster 2: deboning; 

cluster 3: fiber breakage 
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Figure A. 10 Duration vs. Amplitude for two stages in GFRP size 4 specimen. Cluster 1: matrix cracking; cluster 2: deboning; 

cluster 3: fiber breakage 
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Figure A. 11 Duration vs. Amplitude for two stages in GFRP size 6 specimen. Cluster 1: deboning; cluster 2: matrix cracking; 

cluster 3: fiber breakage 

 

 

 



 

181 
 

A.3 Signal Classification 

 

AE signals have been classified in JCMS-III B5706 code into two groups for concrete 

materials. As indicated in (Aggelis 2011; Ohno and Ohtsu 2010). This classification was 

concluded from the relationship between the RA vs. AF. Signals that have high RA and 

low AF values refer to the shear cracks, while the low RA and high AF values refer to the 

tensile cracks as shown in Figure A. 12 below. Figure A. 12 shows that signals due to 

tensile (longitudinal) stress appear on the left side of the diagonal in the RA vs. AF plot. 

The signals indicating damage due to shear stresses appear on the right side of the diagonal 

of the same plot. 

 

 

 

Figure A. 12 RA vs. AF values (reproduced from Ohno and Ohtsu 2010) 
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For this purpose, the RA vs. AF for CFRP and GFRP bars tested was plotted. As can be 

seen in Figure A.13, most signals lie to the left side of the diagonal, as that is the primary 

direction of stresses in these pultruded bars. There are some signals close to the diagonal 

indicating combination of longitudinal and transverse damage. Figure 4.7 shows SEM 

images of both CFRP and GFRP bars showing damage primarily in the longitudinal 

direction. Considering the SEM evidence in Figure 4.7, and the plots of RA vs. AF shown 

below, the theory presented in the JCMS-III B5706 code is applicable to FRP pultruded 

bars.  
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Figure A. 13 RA vs. AF values for CFRP and GFRP rebar samples 
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A.4 Time - Frequency Domain Analysis 

 

STFT was performed on different AE signal amplitudes and the energy distribution was 

calculated and shown in Figure 4.6)in chapter 4. Figure A. 14 shows the STFT plot for 

those AE signals. 
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Figure A. 14 STFT for various signal amplitude for CFRP and GFRP bar specimens 

 

 

A.5 AE Features for FRP Rebars 

 

The number of AE signals within the various amplitude ranges were investigated in CFRP 

and GFRP specimens. Three stages were determined according to the change of the slope 

of the cumulative counts. The mean of AE features, such as duration, energy, number of 

counts, rise time, maximum frequency, average frequency, and RA for each range were 

calculated and presented in the following tables. 
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Table A.1 Mean values of AE features for CFRP bar specimen 

(a) Stage I 

 

Amplitude 

Range 

(dBAE) 

# 

Events 

Amplitude 

(dBAE) 

Duration 

(µs) 

Energy 

(Joule) 

# of 

Counts 

/ event 

Rise Time 

(µs) 

Max.  

Frequency 

  (kHz) 

Average 

frequency 

(kHz) 

RA (μs/V) 

95 – 100 0         

90 - 95 0         

85 - 90 1 88.93 7840.00 155.19 131 25.00 169 16.71 8.94 

80 - 85 1 81.62 4310.00 18.43 173 20.00 169 40.14 16.59 

75 - 80 5 77.24 2684.50 18.45 313 146.50 158 118.42 186.35 

70 - 75 7 72.4 195.36 3.68 186 118.93 154 93.18 334.09 

65 - 70 41 67.04 1293.96 1.13 105 93.48 150 86.09 420.20 

< 65 598 55.77 684.67 0.12 33 118.31 147 49.18 2386.10 
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Table A.2 Mean values of AE features for CFRP bar specimen 

(b) Stage II 

Amplitude 

Range 

(dBAE) 

# 

Events 

Amplitude 

(dBAE) 

Duration 

(µs) 

Energy 

(Joule) 

# of 

Counts 

/ event 

Rise 

Time (µs) 

Max.  

Frequency 

  (kHz) 

Average 

frequency 

(kHz) 

RA (μs/V) 

95 – 100 35 98.05 15189.07 5082.78 267 135.00 149 16.41 16.19 

90 - 95 20 92.42 11554.88 680.15 264 56.88 158 22.46 13.58 

85 - 90 30 87.58 7434.50 188.42 178 94.92 155 25.13 36.68 

80 - 85 54 82.49 5128.24 35.52 179 91.67 155 58.78 69.85 

75 - 80 93 77.33 2809.97 8.54 233 122.47 159 93.01 184.53 

70 - 75 187 72.13 1223.14 2.10 103 77.16 158 89.27 190.45 

65 - 70 519 67.1 850.91 0.67 64 63.27 157 80.16 286.21 

< 65 6953 57.25 425.08 0.09 23 72.20 155 58.61 1198.73 
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Table A.3 Mean values of AE features for CFRP bar specimen 

(c) Stage III 

Amplitude 

Range 

(dBAE) 

# 

Events 

Amplitude 

(dBAE) 

Duration 

(µs) 

Energy 

(Joule) 

# of 

Counts 

Rise Time 

(µs) 

Max.  

Frequency 

  (kHz) 

Average 

frequency 

(kHz) 

RA (μs/V) 

95 – 100 114 97.9 16160.86 5281.66 360 193.83 151 21.38 23.97 

90 - 95 85 92.26 11166.47 752.19 291 148.21 150 24.57 37.63 

85 - 90 1 87.49 8039.73 211.16 251 127.80 152 34.80 55.72 

80 - 85 159 82.23 5631.22 51.64 314 136.07 153 63.26 104.51 

75 - 80 253 77.48 2765.95 10.32 252 131.87 154 97.50 183.82 

70 - 75 482 72.3 1487.75 3.06 125 102.91 155 91.51 251.72 

65 - 70 1144 67.14 1078.91 0.93 84 101.91 155 83.69 460.41 

< 65  56.11 500.46 0.10 26 113.83 155 57.14 2136.55 
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Table A.4 Mean values of AE features for GFRP bar specimen 

(a) Stage I 

Amplitude 

Range 

(dBAE) 

# 

Events 

Amplitude 

(dBAE) 

Duration 

(µs) 

Energy 

(Joule) 

# of 

Counts / 

event 

Rise Time 

(µs) 

Max.  

Frequency 

  (kHz) 

Average 

frequency 

(kHz) 

RA 

(μs/V) 

95 – 100 0         

90 - 95 0         

85 - 90 0         

80 - 85 1 82.46 4872.50 44.17 148 125.00 100 30.37 94.19 

75 - 80 2 75.36 665.00 7.67 83 168.75 155 130.72 294.34 

70 - 75 14 72.14 1189.82 3.78 120 146.43 124 115.29 375.90 

65 - 70 24 67.49 1263.75 1.36 103 101.15 119 91.76 441.39 

< 65 727 54.68 851.16 0.14 36 197.73 117 43.80 4120.12 
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Table A.5 Mean values of AE features for CFRP bar specimen 

(a) Stage II 

Amplitude 

Range 

(dBAE) 

# 

Events 

Amplitude 

(dBAE) 

Duration 

(µs) 

Energy 

(Joule) 

# of 

Counts / 

event 

Rise 

Time 

(µs) 

Max.  

Frequency 

  (kHz) 

Average 

frequency 

(kHz) 

RA 

(μs/V) 

95 – 100 0         

90 - 95 0         

85 - 90 0         

80 - 85 5 82.43 4524.00 48.37 187 23.50 128 55.35 16.42 

75 - 80 12 77.17 2098.33 7.94 163 47.29 153 93.11 67.41 

70 - 75 34 72.63 1026.47 2.26 87 75.66 143 94.78 195.97 

65 - 70 56 67.37 784.42 0.75 60 48.53 135 84.64 202.29 

< 65 701 56.61 577.64 0.11 26 91.08 125 49.14 1683.78 
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Table A.6 Mean values of AE features for CFRP bar specimen 

(b) stage III 

Amplitude 

Range 

(dBAE) 

# 

Events 

Amplitude 

(dBAE) 

Duration 

(µs) 

Energy 

(Joule) 

# of 

Counts / 

event 

Rise 

Time 

(µs) 

Max.  

Frequency 

  (kHz) 

Average 

frequency 

(kHz) 

RA (μs/V) 

95 – 100 1 99.91 20247.50 9726.53 244 222.50 153 12.05 22.47 

90 - 95 8 92.06 7917.81 376.02 104 79.68 148 15.39 19.10 

85 - 90 26 87.18 6514.52 87.56 124 50.77 145 18.65 24.70 

80 - 85 71 81.99 3659.30 15.91 182 84.75 145 56.89 67.69 

75 - 80 186 77.02 1644.80 3.99 133 94.77 150 95.00 138.81 

70 - 75 427 72.2 1005.32 1.50 77 75.56 147 86.03 192.04 

65 - 70 976 67.11 798.87 0.56 56 75.41 147 77.51 332.77 

< 65 6343 57.4 522.64 0.11 25 98.15 139 52.98 1597.22 

 



 

192 
 

APPENDIX B 

µCT AND SEM CROSS AND LONGITUDINAL SECTIONS 

SHOWING THE GROWTH OF VOIDS AND THE POSSIBLE 

DIFFERENT DAMAGE MECHANISMS 

 

B.1 Introduction 

 

This appendix includes some images for CFRP and GFRP rebar samples using µCT and 

SEM observations that were analyzed in chapter 5.  The affect of increasing the trapped 

voids during the pultrusion process was briefly stated using two CFRP size 4 rebar samples 

that have different percentages of void volume. Next, cross and longitudinal sections of 

untested and tested GFRP size 4 were included showing the different possible damage 

mechanisms in the sample before failure. 

 

B.2 Voids Effects  

 

Two 5 cm pieces were taken from untested CFRP size 4 rebar samples and investigated 

using µCT scan to determine the percentage of the voids. The two rebars were tested under 

tension until failure, and then another 5 cm pieces were taken from the center of the tested 

samples for further µCT scan.  The percentage of the voids volume was calculated for 2000 

slices (1.8 mm) from the samples. Table B.1 shows that the sample that has higher 

percentage of the void volume at the untested stage failed at an ultimate load less than the 
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sample that has lower percentage of the void volume at the untested stage. The longitudinal 

sections of these samples are shown in Figure B.1. 

 

Table B.1 Void volume percentage and their affection on the ultimate load for CFRP 

sample rebars 

 
% Void Volume  

 Untested Sample Tested Sample 

Ultimate Load 

kN 

CFRP Size 4  

Sample #1 

1.09 2.45 290 

CFRP Size 4  

Sample #2 

1.59 2.99 245 

 

 

    

CFRP size 4 sample #1 at failure                 CFRP size 4 sample #2 at failure 

 

Figure B.1 Longitudinal sections for the two CFRP size 4 tested samples 
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B.3 SEM Observation 

 

Microscopic inspection of polished and cleaned GFRP samples were performed in both 

cross and longitudinal sections. Figure B.2 shows the untested GFRP sample was very 

porous. The area of voids was calculated using both µCT and SEM analyses and shown in 

Table 5.3 in chapter 5. 

 

  

  Cross section for the whole sample                      Zoom in of a small area 

 

Figure B.2 Cross sections of an untested GFRP size 4 sample 
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Figure B.3 shows a cross section of a tested GFRP size 4 sample up to 95% of the predicted 

ultimate load. It can be noticed from the figure that the matrix cracking occurred at the 

edge of a void, and also the two primary voids were enlarged and linked together as the 

load increased. 

 

 

 

Figure B.3 Cross section of a tested GFRP size 4 sample up to 95% of the predicted 

ultimate load 
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Void #2 

Matrix Cracking 
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Figure B.4 shows a longitudinal section of the same tested GFRP size 4 sample up to 95% 

of the predicted ultimate load. The figure shows the fiber fracture.  

 

 

 

Figure B.4 Longitudinal section of a tested GFRP size 4 sample up to 95% of the 

predicted ultimate load showing the fiber fracture 

 

 

 

 

 

Fiber Fracture 
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Figure B.5 shows another longitudinal section of the same tested GFRP size 4 sample up 

to 95% of the predicted ultimate load. The figure shows clearly the fiber pullout after 

fracturing.  

 

 

 

Figure B.5 Longitudinal section of a tested GFRP size 4 sample up to 95% of the 

predicted ultimate load showing the fiber pullout 
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