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Abstract 

The emergence of huge industries and mega economies has led to the creation of 

supply chains and the development of transportation systems. Supply chain management 

is used to direct raw materials and products through the supply chains, which were 

extended beyond the direct relation between the producer and customer. The vehicle 

routing problem (VRP) is concerned with one of the operational decisions in supply chain. 

The VRP is the class of problems in which the demand of customers should be fulfilled by 

a fleet of vehicles. This fleet of vehicles is starting from and returning to the depot while 

minimizing the total route cost such as travelled distance, time, etc. The VRP is considered 

a more sophisticated form of the famous TSP. 

In this thesis, VRP models arising in omni-channel retail distribution systems are 

introduced. Retail distribution systems are considered as omni-channel systems when 

consumers can either place orders online or visit the stores physically to buy the products. 

In case of online orders, the organizations are responsible for the products delivery. The 

resultant VRP models can be considered as new variants of the VRP. These models 

represent variety of scenarios adopted by different retail chain store organizations.  

Mathematical formulations are provided for these new variants of the VRP and 

solved to obtain optimum solutions for small problem instances. The VRP and its variants 

are NP-hard problems and difficult to solve in the case of large problem instances. 

Therefore, different heuristics and metaheuristics are proposed to obtain optimum (or near 

optimum) solutions for large problem instances. New bench mark problem instances are 

generated to test the proposed heuristics and metaheuristics performance. The average 

percentage deviation of the proposed metaheuristics with respect to the optimum solutions 
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of small problem instances obtained from the mathematical models is less than 1%. It can 

be concluded that the proposed metaheuristics have good performance while succeeding to 

keep shorter calculation time. 
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Chapter 1 

 

Introduction 

1.1 Background 

Transportation of goods through supply chains has grabbed vast interest in the 

optimization research through last decades. Transportation has been a key element in the 

competition between organizations as it can denote 10% to 20% or more of the cost of any 

product [1]. Organizations have realized that the struggle in markets is not determined only 

by the product quality anymore. The market is controlled by many other factors, i.e. how 

far the organizations can spread their products and how much they can satisfy the 

customers’ needs at the lowest cost. 

With the rise of the global awareness towards the environmental concerns, many 

legislations have been achieved regarding the waste management. In 1991, a law has been 

established in Germany which obligates each industry to manage its own packaging waste. 

The industry must bear the cost of collecting, sorting, and recycling waste if it did not recall 
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back that waste [2]. This increased the transportation cost of firms and the complexity of 

the transportation systems. The attention in optimizing the transportation process increased 

even more because it is one of the main consumers of fossil fuel which causes CO2 

emissions. 

Operations research (OR) has been employed in transportation planning. It was 

proven to be very efficient in optimizing the distribution of goods. The VRP is the problem 

of distributing goods between depots and customers. In this class of problems, the demands 

of customers are fulfilled with the products originating from depot and transported using a 

fleet of vehicles in such a way that the total travelling cost of all vehicles is minimized. 

The VRP was first considered as a generalized form of the famous Travelling Salesman 

Problem (TSP). It was formulated by Dantzig and Ramser [3] to find shortest route to 

deliver fuel using gasoline delivery trucks from central depot to gas stations. There are 

many forms of the VRP according to the different classifications of customers and vehicles 

characteristics. 

The vehicle characteristics: 

▪ The vehicles may be assumed with unlimited capacity and can fulfill any amount 

of demand or the problem can be capacitated. 

▪ There might be restrictions on the distance and/or time for the vehicles trips.  

▪ The vehicle can be identical or heterogeneous. 

▪ The vehicles can be composed of one or multi number of compartments.  

▪ The number of the vehicle in the fleet can be constrained or not. 

▪ The vehicles can be settled in single or multiple depots. 
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▪ Travel time can be static, dynamic, or stochastic. 

The customers’ characteristics: 

▪ Customers can restrict the start and the end of delivery time. 

▪ All customers may require the same or different services (demand and pickup). 

▪ Customers’ orders can be transportations requests to other customers.  

▪ Customers may require similar or different type of goods. 

▪ Demand can be known or real time demand. 

▪ Demand can be satisfied in one visit or multiple visits (i.e. split demand). 

1.2 Motivation and Objectives 

According to the Global Powers of Retailing report [4], the 250 largest retailers 

around the world generated revenues of US$4.31 trillion in 2015. This figure indicates that 

despite the challenging global economy in 2015, retailers managed to keep steady growth 

and international expansion. The revenue generated by e-commerce was 8.7 percent of the 

total retail revenue of the top 250 retailing companies. The volume of e-commerce sales 

has been steadily growing in recent years. Companies working in retail industry are 

motivated to adopt different strategies and policies to cope up with this market change. The 

increasing share of e-commerce in retail industry clearly exhibits the shift of retail industry 

from single channel to omni-channels [5]. Omni-channel retailing is one of the recently 

developed business models. In this model, customers can order products online and get 

these products delivered at their homes or visit the store physically to get the products. The 

delivery of the online ordered products to the customers is the responsibility of the 

company. To increase the customer satisfaction, companies are working on making all the 
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products available in stores as well as online. In addition, they are trying to reduce the time 

between orders placement and delivery times. This means that online orders should be 

satisfied from nearby retail stores. The companies usually operate their own distribution 

networks to deliver products to different retail stores in a certain city. Each distribution 

network includes a central warehouse, and a group of scattered retail stores. A fleet of 

vehicles is used to deliver products from the center warehouse to the retail stores. This fleet 

of vehicles can be utilized to deliver online orders from retail stores to consumers as well. 

This research is motivated from the supply chain management of omni-channel retailing 

distribution systems. Different scenarios are investigated to provide applicable solutions 

for the optimization of omni-channel retailing distribution networks. 

1.3 Contribution 

In this work, different scenarios in retail industry distribution systems are 

investigated. Each of the investigated scenarios represents a new variant of the VRP with 

real life application in retail industry. I provide a description for these new variants and 

develop mathematical formulations. The mathematical formulations are solved to obtain 

optimum solutions for small size problem instances. In addition, I present different 

approximate solution approaches which can obtain optimum (or near optimum) solutions. 

Finally, I introduce new bench mark problems to test the performance of the proposed 

solution approaches and to test other algorithms in future work. The main contributions of 

this research work can be summarized as follows: 

 

▪  The multi-compartment VRP 
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I provide a mathematical formulation for the multi-compartment VRP (MCVRP). I 

propose a new hybridized Ant Colony (AC) algorithm to solve the problem. I perform 

computational experiments on new generated bench mark problem instances. The new 

algorithm improved the existing solutions for almost all problem instances. Finally, I 

investigate the benefit of using multi-compartment vehicles instead of the regular vehicle. 

The multi compartment feature will be used later in one of the proposed VRP models for 

omni-channel retailing distribution systems.  

▪ The TSP for online ordered products in retail industry 

I introduce a new variant of the TSP that arises in the delivery of online ordered 

products in retail industry. We investigate this problem as it can be considered as a 

simplified VRP with only one vehicle route. Exploring this model provides a better 

understanding of the VRP model in omni-channel retail distribution systems. I provide a 

description of the problem and present its mathematical formulation to obtain optimal 

solutions for the problem in small problem instances. In addition, I propose a heuristics 

and a metaheuristic to obtain near optimum solutions for the problem in large problem 

instances. I present new bench mark problem instances to test the proposed algorithms. I 

compare the proposed algorithms against the optimal solution obtained by solving the 

mathematical formulation. 

▪ The MCVRP for omni-channel retail distribution 

I introduce the VRP arising in omni-channel retail distribution. I describe the 

problem and provide a mathematical formulation to solve the problem optimally. In this 

problem, the whole distribution network in omni-channel retailing is investigated. It 
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considers the distribution of the products from the warehouse to the retail stores and 

delivery of online orders from the retail stores to the consumers. The model suggests 

utilizing the same fleet of vehicles in both types of transportation by using multi-

compartment vehicles in satisfying the demand of the retail stores and the online consumers 

simultaneously. I propose different heuristics and a metaheuristic to solve the problem. I 

generate new bench mark problem instances to evaluate the proposed algorithms and test 

algorithms in future work.      

▪ The VRP in omni-channel retailing distribution systems 

I introduce a new variant of the VRP arising in omni-channel retailing distribution 

systems. The new problem can be considered a generalization of both capacitated VRP and 

the pickup and delivery problem (PDP). This model considers the assignment of consumers 

to retail stores as a decision variable along with the routing problem. Consumers are 

assigned to retail stores to satisfy the orders of the consumers based on the product 

availability at the retail stores inventory. This decision can be made simultaneously while 

selecting the best routes. The model is different from the previous models because the 

previous models (3-4) assume that the consumers are already assigned to retail stores and 

the assignment decisions are known in advance. In addition, the model adds more 

complexity to the previous model by assuming maximum route length which is more 

realistic. I provide a description for the problem and explain the generalized VRP structure. 

I present a mathematical formulation to solve the problem to optimality. I propose a two-

phase heuristic and multi-AC algorithm to solve large problem instances. I generate new 

bench mark problem instances to evaluate the performance of the proposed solution 
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approaches. Finally, I illustrate the benefit of using the proposed generalized VRP structure 

instead of the two existing structure in case of omni-channel distribution systems.  

1.4 Thesis Organization 

In chapter 2, a review of the related literature is presented. In chapter 3, the multi-

compartment VRP is studied and the benefit of using multi compartments is investigated. 

Chapter 4 introduces the TSP for the delivery of online ordered products in retail industry. 

Chapter 5 introduces the multi- compartment VRP in omni-channel retail distribution. 

Chapter 6 introduces the VRP arising in omni-channel retailing distribution systems. 

Chapter 7 concludes the thesis and presents the future work directions. 
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Chapter 2 

 

Literature Review 

For simplification the VRP will be classified according to the service required by 

customers. All customers may require only one service type (demand or pickup). However, 

some of them may require one service while others require the other services. Moreover, 

in some cases customers may require both service types. A summary of the literature 

review with extensive classification can be found in the next subsection. 

2.1 Customers Require One Service Type 

Lorini et al. [6] investigated the dynamic VRP to minimize the sum of travel time 

and lateness at the customers and depot. They allowed redirection of vehicles to other 

locations instead of planned destinations after communication between the dispatch office 

and the drivers. These communications is used to update the drivers with new customer 

requests and the dispatch office about current drivers’ locations. They assumed a fleet of 

K identical incapacitated vehicles dispatched from single depot and soft time windows. 



Literature Review 
 

9 
 

Lin [7] investigated the benefit of coordination between non- identical resources, in 

minimizing the total cost. Light resources are used to deliver items or transported with a 

heavier resource (which can deliver items itself). They formulated the problem using MIP 

model and presented two stages heuristic to solve it. They assumed incapacitated problem 

but limited capacity for heavier resource in term of the light resources. They assumed that 

resources can perform multiple routes and pickup time window for customers.  

2.1.1 Capacitated VRP 

In the capacitated VRP (CVRP) a fleet of identical vehicles (initially settled in the 

depot) serves a number of customers. Each vehicle visits a group of the customers only 

once in a predetermined order called route, such that the total demand of the customers 

does not exceed the capacity of the vehicle. A more constrained form is VRP with time 

windows (VRPTW) in which the deliveries to the customers are restricted by start and end 

times. Opening and closing times may be considered to the depot as well. 

The CVRP was first considered a generalized form of the TSP and formulated by 

Dantzig and Ramser [3]. In the last six decades, many exact, heuristic, and meta-heuristic 

approaches have been proposed to solve the problem. A branch-and-cut algorithm based 

on a two-commodity network flow formulation was presented by Baldacci et al. [8]. An 

exact algorithm based on set partitioning formulation was described by Fukasawa et al. [9]. 

New formulations for the problem and new lower bounds were presented by Letchford and 

Salazar-Gonzalez [10]. Different types of metaheuristics have been efficiently used to 

solve the CVRP (e.g., hill climber heuristic (Derigs and Kaiser [11]), particle swarm 

optimization (PSO) (Ai and Kachitvichyanukul [12]), memetic algorithm (Nagata and 
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Bräysy [13]), artificial bee colony algorithm (Szeto et al. [14]), and AC algorithm 

(Reimann et al. [15], and Yu et al. [16])). Toklu et al. [17] studied the CVRP with time 

window constraints under travel time uncertainty. They proposed an AC algorithm to 

minimize the costs. Brandao [18] proposed a Tabu Search (TS) to minimize the total cost 

in heterogenous fixed fleet vehicle routing problem HFFVRP. They used fixed fleet of 

different capacity vehicles to satisfy the customers demand. For recent research in VRP 

and its variants refer to (Cordeau et al. [19]; Golden et al. [20]; Laporte [21]; Eksioglu et 

al. [22]; Toth and Vigo [1]; Lahyani et al. [23]). 

2.1.2 Multiple Routes 

The VRP with multiple routes is an extension of the basic VRP when vehicles are 

required to make more than one trip per day due to limitation in the time or the number of 

available vehicles and/or drivers. Azi et al. [24] formulated the problem of VRPTW using 

set portioning and introduced a branch and cut algorithm. They used a fleet of K identical 

vehicles which have limited capacity Q and perform multiple routes. Because the limited 

capacity they tried to choose which customers to be served based on difference between 

their revenue and traveling costs.  

Macedo et al. [25] proposed a set partitioning formulation and exact algorithm based 

on pseudo-polynomial network flow model for the VRPTW to minimize the total travelled 

distance and increase the number of served customers. A fleet of K identical vehicles with 

capacity Q can make multiple trips. 

Cattaruzza et al. [26] considered the multi trip VRP in which a fleet of K identical 

vehicles with limited capacity Q is used to serve the customers demand. They proposed a 
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hybrid Genetic Algorithm (GA) to minimize the total travel time. They advised considering 

time window constrains in the future work. 

2.1.3 Multi Commodity 

Reed et al. [27] considered the CVRP for the waste collection. They assumed a fleet 

of identical multi compartment vehicles with capacity Q to transfer the separated waste. 

They minimized the total route length using AC system algorithm. They suggested the 

extension of the simple two-compartment model to more compartments. 

Cattaruzza et al. [28] proposed an iterated local search algorithm to reduce the 

number of used vehicles and minimize the cost in a multi commodity multi trip VRPTW. 

They used a fleet of identical vehicles with capacity Q and that commodities are 

incompatible and cannot be transferred together. They recommended that multi trip should 

be used to increase the utilization of the vehicles. 

2.1.4 Split Deliveries  

The split delivery VRP is the relaxation of CVRP in which the customer can be 

visited more than once. This relaxation can yield to total distance minimization as well as 

the number of vehicles. Moreover, it can be used in extending the VRP to a planning 

horizon with periodic demands. 

Salani and Vacca [29] presented a flow-based Mixed Integer Programming (MIP) for 

the split delivery VRPTW and proposed a branch and price algorithm to minimize the total 

travel time. They assumed delivery dependent service times and discrete instead of 

continuous split deliveries which is more realistic. They used a fleet of K identical vehicles 

with capacity Q. 
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Belfiore and Yoshizaki [30] presented a mathematical formulation and developed a 

scatter- search approach to minimize the sum of the fixed vehicle costs and the travel costs 

in the split delivery VRPTW. They assumed unlimited fleet of heterogeneous vehicles with 

different capacities. They suggested using a scatter-search approach in the multi depot VRP 

and the PDP in the future. 

2.1.5 Multi Depot 

Increased demand and scattered markets required more distribution channels. The 

multi depot VRP requires more decisions to be made; which depot customers will be served 

by. Obviously, all depots are identical and offer the same commodity. 

Escobar et al. [31] presented a hybrid Granular TS algorithm to minimize the total 

traveling costs in the multi depot VRP. They assumed identical fleet of K vehicles with 

capacity Q and a maximum trip time T. They suggested using heterogeneous fleet of 

vehicles in future work. 

Contardo and Martinelli [32] presented a vehicle-flow and a set-partitioning 

formulation to minimize the total traveling time in the multi depot VRP. They used cutting 

planes to solve the first formulation and column-and-cut generation to solve the second. 

They used identical fleet of K vehicles with capacity Q and a maximum trip time T. They 

suggested extending their model to multi depot VRPTW, multiple-echelon VRP or 

multiple-period VRP. 

Gulczynski et al. [33] investigated the effect of split deliveries on the total distance 

reduction in MDVRP. They formulated a MIP for the problem and presented a heuristic to 

maximize the total distance saving. They assumed capacitated problem. They 
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recommended considering minimum delivery amounts on vehicles when splitting and 

using time windows as future directions. 

Salhi et al. [34] presented a flow based MIP formulation and a variable neighborhood 

search meta-heuristic. They addressed the problem of minimizing the total cost and 

determining the composition of the fleet in multi depot VRP. They used unlimited fleet of 

heterogeneous vehicles with different capacities and maximum route time. They forced the 

vehicles to return to their original depots, this constrain relaxation can be investigated as 

future direction and may lead to cost reduction. 

2.2 Customers Require Demand and Pickup Services  

With the introduction of reversed and closed-loop supply chains; another flow of 

goods in the form of pickups from customers to depots originated. To increase vehicle 

utilization three different strategies are suggested to deal with the combined pickups and 

deliveries. The first strategy is to schedule the pickups after all the deliveries are satisfied 

in the vehicle route back to the depot in VRP with backhauls. In the second strategy, VRP 

with Mixed Backhauls, mixed orders of the linehauls and backhauls customers are 

integrated. 

2.2.1 Mixed Backhauls 

Dondo and Cerda [35] presented a MIP formulation and a neighborhood search 

algorithm to solve the mixed backhauls VRPTW. They assumed soft time windows and 

maximum trip duration. They assumed a fleet of heterogeneous vehicles with different 

capacities. They intended to work on the dynamic environment VRP. 
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2.2.2 Simultaneous Pickup and Delivery 

The third strategy allows the customers to have deliveries and pickups which are 

done simultaneously in one visit. This problem is known by VRP with Simultaneous 

Pickup and Delivery (VRPSPD). All strategies can be constrained with time windows.  

Gajpal and Abad [36] presented an AC system with three local search procedures: 2-

opt, insertion/interchange, and arc exchange. Their algorithm can solve the VRP with 

backhaul and mixed load as well. Gajpal and Abad [37] proposed a saving heuristic and a 

parallel saving heuristic. They checked the feasibility of merging two routes using 

cumulative net pickup approach. Subramanian et al. [38] addressed the VRPSPD and 

proposed a MIP model based on undirected and directed two-commodity flow 

formulations. They presented a branch and cut algorithm to solve the problem trying to 

minimize the total routing cost. Zachariadis et al. [39] presented an adaptive memory 

algorithm to reduce the total cost of a route in VRPSPD. They used a central depot where 

a fleet of homogeneous K vehicles with capacity Q is used to serve the customers. 

Goksal et al. [40] considered the VRPSPD and proposed a hybridization approach of 

the PSO and variable neighborhood descent algorithm. They used unlimited fleet of 

identical vehicles with capacity Q and tried to minimize the total routing cost. They 

suggested extending the model to solve the multi depot VRPSPD. 

Wang and Chen [41] introduced the flexible delivery and pickup problem with time 

windows which improves the mixed backhauls VRPTW by allowing simultaneous pickup 

and delivery to reduce the cost. They presented a MIP model to minimize the number of 

used vehicles and the total traveled distance. They proposed a co-evolutionary algorithm 
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based on GA to solve the problem. They assumed distribution and collection centers. They 

suggested extending their model to allow demand uncertainty. 

Liu et al. [42] introduced a special generalized form of VRPSPD with time windows 

in which other transportations services are provided to the customers; delivery from 

hospital to patient and pickup from patient to medical lab. The problem can be considered 

multi commodity generalization. They proposed two MIP formulations to the problem and 

used GA and TS to minimize the total routing cost. 

2.2.3 The Pickup and Delivery Problem 

In VRPSPD the pickups are directed to the depot and prohibited to other customers. 

The transportation orders between customers are the distinguishing feature of the PDP. 

However, each customer has either pickup or delivery only. 

The PDP was considered for the first time by Lokin [43]. The author introduced a 

variant of the TSP where precedence relations are forced on some of the customers. This 

means that some nodes must be visited before other nodes. The author described a branch 

and bound algorithm for this problem, which was later known as the PDP. Kalantari et al. 

[44] proposed a branch and bound algorithm for the problem. They considered single and 

multiple capacitated and non-capacitated vehicles. Savelsbergh and Sol [45] presented a 

survey and a description of the general pickup and delivery problem. Lu and Dessouky 

[46] provided MIP formulation for the multiple vehicle PDP and proposed a branch-and-

cut algorithm. Ting and Liao [47] formulated the selective PDP and presented a memetic 

algorithm to solve the problem.  
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The PDP with time windows is a generalization of the PDP. Ropke and Cordeau [48] 

formulated the problem of PDP with time windows using set partitioning and introduced a 

branch-and-cut-and-price algorithm to solve the problem. They used identical vehicles 

with capacity Q located in a center depot and tried to minimize the total routing cost. 

Baldacci et al. [49] presented a new algorithm for the same problem using set partitioning 

and solved it using branch-and-cut-and-price also. Their objective function was to 

minimize the sum of vehicle fixed and route costs. They reported that their proposed 

algorithm is faster and solved previously unsolved instances. 

Different heuristics and metaheuristics have been used to solve the problem (e.g., a 

reactive TS (Nanry and Barnes [50]), a two-phase heuristic (Lau and Liang [51]), a tabu-

embedded simulated annealing (SA) (Li and Lim [52]), a grouping GA (Pankratz [53]), a 

large neighborhood search heuristic (Ropke and Pisinger [54]), an insertion-based 

construction heuristic (Lu and Dessouky [55]), a SA, a PSO, a GA, and an artificial immune 

system (D’Souza et al. [56])).  

The PDP with transfers is an extension of the PDP with time windows in which the 

pickup request can reach its final destination by another vehicle. The transfer between 

vehicles occurs at certain locations usually called transfer points where the drivers may be 

switched as well. Masson et al. [57] introduced the PDP with Shuttle routes which is a 

special case of the PDP with transfer. They presented Arc-based and Set Partitioning 

formulations and proposed a branch-and-cut-and-price algorithm to solve the problem 

optimally to minimize the total distance traveled by the vehicle fleet. They assumed time 
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windows and homogeneous fleet of vehicles K with capacity Q stationed in a single depot. 

They suggested considering a heterogeneous fleet of vehicles. 

Rais et al. [58] allowed transshipment in the network as well. They formulated the 

problem with and without time window constrains using MIP model. They assumed 

flexible size fleet of heterogeneous vehicles with different capacities. They used a 

commercial solver that uses a combination of branch-and-cut and branch-and-bound 

techniques to minimize the total cost of the vehicle routes. 

Rieck et al. [59] considered the many-to-many location problem with inter-hub 

transport with multi commodity. They did not assume time windows and used identical 

vehicles. They considered the facility positioning to minimize the facility fixed cost, 

facility operating costs, and routing costs. A MIP was formulated, and a fix-and-optimize 

scheme procedure and a GA were proposed. A number of survey papers that deal with the 

PDP have been recently published. Berbeglia et al. [60] presented a survey and 

classification for the problem. Parragh et al. [61-62] presented a comprehensive survey and 

another classification. 

2.3 Solution Approaches  

Since the introduction of the TSP and the VRP to the operations research literature, 

many exact, heuristic, and meta-heuristic approaches have been proposed to solve the 

different variants of the VRP. Here, I present some of the most commonly used 

metaheuristics in solving different variants of the VRP. 

The AC algorithm is inspired by the behavior of ants in the search of food. They 

mark their trails by laying a substance called pheromone. The amount of laid pheromone 
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on the path inspires other ants to know whether this path is promising or not. This 

observation inspired Dorigo et al. [63] to design a metaheuristic technique to solve 

combinatorial optimization problems. They presented the first AC to solve the TSP in 

which agents called ants simulate the behavior of the real ants. Due to simplicity of the 

general procedures of the algorithm, it was applied in many different problems. 

The AC has been used in solving the VRP and its variants since Bullnheimer et al. 

[64] designed their AC trying to solve the basic VRP. It was used to solve: the CVRP 

(Reimann et al. [15], Yu et al. [16], Reed et al. [27], Bin et al. [65]), the VRPTW (Toklu 

et al. [17]), MCVRP (Reed et al. [27], and Abdulkader et al. [66]), the VRPSPD (Gajpal 

and Abad [36]), the dynamic VRP (Montemanni et al. [67]), the time dependent VRPTW 

(Balseiro et al. [68]), the VRPTW with heterogeneous vehicles and multiple products (De 

la Cruz et al. [69]). 

The GA was initially proposed and developed by J. Holland [70] in the 1960s and 

1970s. It was inspired by the evolution process and its natural mechanisms; mating and 

mutation. Several extensions to these algorithms have been developed and for several years 

genetic algorithms have been efficient in solving different combinatorial optimization 

problems. The GA has been used in solving different variants of the VRP since it was first 

applied to solve the TSP by Brady [71]. It was used to solve: the VRPTW (Berger and 

Barkaoui [72]), the multi depot VRP (Ho et al. [73]), the multi trip VRP (Cattaruzza et al. 

[26]), the periodic VRPTW (Nguyen et al [74]), the VRPSPD (Wang and Chen [41] and 

Liu et al. [42]), and the PDP (Pankratz [53], D’Souza et al. [56], and Rieck et al. [59]). 
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The PSO was inspired by the social behaviour of bird flocking and fish schooling by 

Kennedy and R. Eberhart [75]. The PSO has been used in solving different variants of the 

VRP: the CVRP (Ai and Kachitvichyanukul [12]), the multi depot VRP (Geetha et al. [76]), 

the heterogeneous VRP (Yao et al. [77]), the VRP with stochastic demand (Marinakis et 

al. [78]), the VRPSPD (Goksal et al. [40]), and the PDP (D’Souza et al. [56]). 

The SA was inspired by the physical annealing process in which the temperature of 

the material is reduced by slow cooling rate. The algorithm is using random search to 

decrease the objective function. The SA was first used to solve the TSP by Kirkpatrick et 

al. [79]. Since then it has been used in solving different variants of the VRP: the CVRP 

(Osman [80]), the multi depot VRP (Mirabi et al. [81]), the VRPTW (Chiang and Russell 

[82]), the VRPSPD (Wang et al. [83]), and the PDP (Li and Lim [52] and D’Souza et al. 

[56]). 

The TS was presented by Glover [84] to find better near optimum solutions for 

combinatorial problems. Its idea is to examine neighbour solutions and select the best 

neighbour.  The selected neighbours are banned from being selected in next iterations by 

adding them to a tabu list to prevent trapping in cycles of improvement. One of the first 

trials to apply TS for solving the VRP was done by Willard [85]. The TS has been used in 

solving different variants of the VRP: the CVRP (Osman [80]), the CVRP with 

heterogenous vehicles (Brandao [18]), the multi depot VRP (Escobar et al. [31]), the 

VRPTW (Badeau et al. [86]), the VRPSPD (Liu et al. [42]), and the PDP (Nanry and Barnes 

[50]).  

2.4 Conclusions 
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From the previous review of the VRP and its variants, it can be concluded that 

different solution approaches have been proposed to solve different scenarios for the 

delivery of goods. However, the rise of e-commerce motivated the organization that 

operates in retail industries to adopt a recently developed business models which is called 

omni-channel retailing. In this model, customers can order products online and get these 

products delivered at their home or by physically visiting the store. It allows consumers to 

go shopping seven days a week, twenty-four hours a day. The delivery of the online ordered 

products to the customers is the responsibility of the company. In addition, the companies 

that own chain stores operate their own distribution networks to deliver the products from 

the warehouse to different retail stores located in the city. This work considers the issue of 

managing these complicated distribution systems of the omni-channel retail business 

model. The VRP models arising in omni-channel distribution system have not been yet 

considered in the literature. This thesis will be the first one to introduce VRP models arising 

in omni-channel distribution system. There are different VRP structures available in the 

OR literature. However, none of these structures exactly fits in to the structure of 

distribution systems arising in omni-channels. The VRP structures arising in omni-channel 

distribution systems are complex although they have similarity with some of the VRP 

structures available in literature. In This thesis, I propose different VRP models arising in 

omni-channel distribution systems. These models will provide practical solutions for the 

supply chain management in retail industry. 
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Chapter 3 

 

Multi-Compartment Vehicle Routing Problem 

 

3.1 Introduction 

The MCVRP deals with satisfying the demand of customers with different products. 

The demand of each customer for each product is constant and known in advance. The 

products should be stored in different compartments of the same vehicle while being 

transported together. Vehicles are partitioned into a constant number of compartments with 

certain capacities. Customers are assigned to routes so that the total demand of customers 

assigned to any route for certain product does not exceed the capacity of the reserved 

compartment for this product. The objective is to minimize the total transportation cost. 

Another application of the MCVRP is the delivery of food and grocery where 

refrigerated and non-refrigerated grocery items are stored in two different compartments 

in the same vehicle. Chajakis and Guignard [87] presented two integer programming 

models for two different layout vehicles and presented Lagrangean Relaxations for the first 

model. They addressed the decisions involved in assigning customers to routes only and 
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stated that sequencing of customers within trips can be solved by any TSP algorithm. They 

stated that the customers’ orders should be fulfilled completely by one vehicle. 

Another application of the MCVRP is delivering different types of fuels using a fleet 

of vehicles or marine vessels with different capacity tanks. To solve this problem, Avella 

et al. [88] used set portioning to formulate a branch and bound algorithm. El Fallahi et al. 

[89] found an application in which animal foods is supplied to the farms separately. They 

proposed two algorithms to solve the problem; memetic algorithm and TS algorithm. 

Muyldermans and Pang [90] investigated the benefits of co-collection of sorted waste 

from different locations to central location by multi compartment vehicles over separate 

collection by regular vehicles. They introduced new local search procedure based on 2-opt, 

cross, exchange, and relocate moves to solve the problem and compared their results with 

El Fallahi et al. [89]. It was assumed in [88-90] that the demand of each customer for certain 

items cannot be splitted. However, they assumed that more than one vehicle can visit the 

customer to fulfil demands of different items. Reed et al. [27] proposed an AC with 2-opt 

local search improvement to solve the basic CVRP in recycling waste collection network. 

They extended their algorithm to solve the MCVRP in which the customers are visited only 

once by one vehicle. Our work is inspired from Reed et al. [27] algorithm extension for the 

MCVRP. I address the problem of food and grocery delivery from retail store to different 

customer locations where two types of grocery should be stored in different compartments 

on the same vehicle. I use a fleet of identical vehicles; each one of them visits a group of 

locations such that each customer is visited by only one vehicle and only once. The problem 
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is to decide which customers are assigned together in one trip as well as the order of visiting 

them with the objective of minimizing the total travelling distance. 

The AC algorithm is inspired by the behavior of ants in the search of food. They 

mark their trails by laying a substance called pheromone. The amount of laid pheromone 

on the path inspires other ants to know whether this path is promising or not. This 

observation inspired Dorigo et al. [63] to design a metaheuristic technique to solve 

combinatorial optimization problems. They presented the first AC in which agents called 

ants simulate the behavior of the real ants. The ants communicate with each other by the 

pheromone laid by the ants while travelling from one place to another. Higher amount of 

pheromone in a path increases the probability of ants to follow that path. Dorigo et al. [63] 

used the TSP to apply their algorithm and compare it with other approaches. Due to 

simplicity of the general procedures of the algorithm, it was applied in many different 

problems. 

The AC has been used in solving the VRP and its variants since Bullnheimer et al. 

[64] designed their AC trying to solve the basic VRP. Although they could not improve the 

best-known solutions, their algorithm produced good results and showed competiveness 

with other metaheuristics. Montemanni et al. [67] used the AC to solve the dynamic VRP. 

They introduced new bench mark problems and tested their algorithm which showed good 

results. Bin et al. [65] presented an improved AC by offering new pheromone updating 

strategy called ant-weight and by introducing mutation operator. Other than computation 

times, their algorithm was effective compared to other metaheuristics. 
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Gajpal and Abad [36] presented an AC to solve the VRP with simultaneous delivery 

and pickup. Balseiro et al. [68] tried to enhance the AC algorithm by hybridizing it with an 

insertion algorithm to solve a time dependent the VRP with time window constraints. De 

la Cruz et al. [69] proposed a sequential algorithm with AC and TS to solve the VRP with 

time window constrains in which heterogeneous vehicles deliver multiple products. All 

these papers presented new best-known solution for the bench mark problems. This shows 

the effectiveness of the AC algorithm in solving the VRP and its variants. 

3.2 Mathematical Modelling 

A list of notations related to the problem definition is presented below: 

N Set of customers 

k Set of vehicles 

p Set of compartments and products 

𝑞𝑖𝑝 Quantity of product p to be picked up from customer i 

Qp Vehicle capacity reserved for product p 

L The maximum length of any route 

𝐶𝑖𝑗 The distance of traversing arc (ij) 

𝑄𝑖𝑝
𝑘  The total carried quantity of product p by vehicle k after leaving vertex i 

In this section, a mathematical formulation is provided for the problem. The 

mathematical formulation for the MCVRP considered in this section is not available in the 

literature. However, a mathematical formulation for a variant of MCVRP is available in 

the literature [89]. In the variant of MCVRP, the customer is allowed to get served more 

than once. Our formulation is based on pickup of materials from customer locations. Let 
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G= (V, A) be an undirected graph with a set of vertices V= {0, 1 …… n}, where 0 

represents the depot node, and N= {1, 2 ….n} are the customers served by a number of 

identical vehicles k (initially located in the depot). Vehicles are divided into a number of 

compartments p equals to the number of products handled in the network. Each customer i 

has a known quantity 𝑞𝑖𝑝 to be picked up of each product 𝑝 and each customer is visited 

exactly once by only one vehicle. Each vehicle visits a group of customers, such that the 

total load of this group of customers for certain type of products does not exceed the vehicle 

capacity of the compartment reserved for this product Qp. The maximum length of each 

route cannot exceed L. Let 𝐶𝑖𝑗 be the distance of traversing arc (ij). Let 𝑋𝑖𝑗
𝑘  be a binary 

variable equals to 1 if and only if vehicle k visits customer j just after customer i. Let  𝑄𝑖𝑝
𝑘  

denote the total carried quantity of product p by vehicle k after leaving vertex i. Then, the 

MCVRP can be formulated as follows: 

Minimize 

𝑍 = ∑ ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑘

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

 
(3.1) 

Subject to:  

∑ ∑ 𝑋𝑖𝑗
𝑘

𝑗∈𝑁𝑘∈𝐾

= 1           ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗 (3.2) 

∑ ∑ 𝑋𝑖𝑗
𝑘

𝑖∈𝑁𝑘∈𝐾

= 1           ∀𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (3.3) 

∑ 𝑋0𝑖
𝑘 =

𝑖∈𝑁

∑ 𝑋𝑗0
𝑘 = 1

𝑗∈𝑁

           ∀𝑘 ∈ 𝐾 (3.4) 

𝑞𝑖𝑝 ≤ 𝑄𝑖𝑝
𝑘 ≤ 𝑄𝑝           ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 (3.5) 

𝑄𝑖𝑝
𝑘 − 𝑄𝑗𝑝

𝑘 + 𝑄𝑝𝑋𝑖𝑗
𝑘 ≤ 𝑄𝑝 − 𝑞𝑗𝑝           ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 (3.6) 
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∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑘

𝑗∈𝑉𝑖∈𝑉

≤ 𝐿           ∀𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (3.7) 

𝑋𝑖𝑗
𝑘 ∈ {0,1}            ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (3.8) 

 

Eq. (3.1) is the objective function representing the total cost of all traversed arcs by 

all vehicles. Eq. (3.2) and (3.3) impose that exactly one arc enters and leaves each vertex 

associated with a customer respectively. They together ensure that only one vehicle visits 

a customer and only once. Eq. (3.4) ensures that each vehicle k starts its route from depot 

0 and ends it at depot 0. Eqs. (3.5) and (3.6) are necessary for sub-tour elimination; they 

impose the capacity requirement and connectivity requirement between two customers. 

When 𝑋𝑖𝑗
𝑘 = 0, eq. (3.6) is not binding since 𝑄𝑖𝑝

𝑘 ≤ 𝑄𝑝 and 𝑞𝑗𝑝 ≤ 𝑄𝑗𝑝
𝑘 . When 𝑋𝑖𝑗

𝑘 = 1 

equations (3.5) and (3.6) impose that 𝑄𝑖𝑝
𝑘 − 𝑄𝑗𝑝

𝑘 ≤ −𝑞𝑗𝑝 which eliminates sub-tour 

construction. In addition, eq. (3.5) ensures that the total carried quantity after visiting vertex 

i does not exceed the vehicle capacity for this product. Thus, eq. (3.5) ensures capacity 

violation constraint. Eq. (3.7) represents the route length constraint. Eq. (3.8) describes 

variables 𝑋𝑖𝑗
𝑘  which equal to 1 if and only if vehicle k visits customer j just after customer 

i. 

 

 

 

 

3.3 Hybridized Ant Colony Algorithm 

A list of notations related to the proposed hybridized AC (HAC) is presented below: 
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𝜏𝑖𝑗 Trail intensity on arc (ij)   

m Number of ants 

𝜇𝑖𝑗 The inverse of the distance of arc (𝑖𝑗) 

𝜀𝑖𝑗 The attractive value of arc (𝑖𝑗) 

𝑁𝑖 The list of all feasible customers that has not been visited by the ant  

𝐿𝑏𝑒𝑠𝑡 The length of the best solution found so far 

ρ The trail persistence 

Tabus The tabu list for first visited customer by all ants. 

Tabui The tabu list for the customers visited by ant i 

The AC algorithm is an algorithm used for finding near optimal solutions for NP-

hard problems. The algorithm is based upon the behavior of real ants for finding shortest 

path when they travel from their nest to the food source. In the AC algorithm, artificial ants 

are used to construct a solution. These simple agents called ants travel from one customer 

location to another customer location to construct proposed routes (solutions of the VRP). 

Each ant performs four basic activities during route building process: 1) It chooses next 

customer based on a probability function of two attraction measures; the distance from 

current location to the proposed customer and the trail intensity on this arc; 2) It keeps a 

history of the visited customers during current route (tabu list); 3) It updates the remaining 

capacity in the vehicle; and 4) It updates trail intensities on the visited arcs. Then local 

search procedures are applied to enhance the solutions quality. Finally, the tabu lists are 

deleted and a new iteration starts. The HAC algorithm can be described below and is 

followed by detailed description in next subsections. 
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Step 1: Create initial solution to initialize the trail intensities. 

Step 2: Repeat the following until termination condition is reached. 

▪ Construct routes for m number of ants. 

▪ Perform local search scheme to improve the solution produced by each ant. 

▪ Update best solution found. 

▪ Update trail intensities for all arcs using best solution. 

Step 3: Terminate the algorithm and report the best solution. 

The flow diagram for generating an initial solution is shown in Figure 3.1. The flow 

diagram for the proposed HAC is shown in Figure 3.2. 

3.3.1 Initial Solution and Initialization of Trail Intensities 

Trail intensities are initialized at the beginning of the algorithm. The initial trail 

intensities do not affect the proceeding of the algorithm because the same amounts are 

deposited to all edges at the beginning. However, an initial solution is needed to initialize 

trail intensities. The initial solution is generated randomly by starting the route from the 

depot. Customers are added randomly to a vehicle route as long as the vehicle capacity is 

sufficient to pick up the customers load. Otherwise, the vehicle returns to the depot before 

visiting the next customer. The initial pheromone is calculated based on the 

expression 𝜏𝑖𝑗 = 1 𝐿     (∀𝑖, 𝑗 ∈ 𝑁)⁄ , where L is the total length of a randomly generated 

tour. 
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3.3.2 Route Construction 

I use m ants to construct ant solutions (see parameters setting in section 4 for setting 

the value of m). Each ant generates a complete tour (a complete solution of MCVRP). Each 

ant starts its route from the depot and continues by selecting first customer randomly (each 

ant starts the route from different customer). The first customer is chosen randomly to 

diversify the solution. Each ant then travels from customer to another customer based on 

two attraction measures representing the probability function. The first measure is the trail 

intensity 𝜏𝑖𝑗 which contains information on how frequently arc ij has been used in previous 

Figure 3.1. The flow diagram of generating initial solution 
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iterations. The second measure 𝜇𝑖𝑗 is the inverse of arc distance which represents the move 

desirability. The attractive value is calculated as follows: 

𝜀𝑖𝑗 = (𝜏𝑖𝑗)
𝛼

(𝜇𝑖𝑗)
𝛽

 (3.9)  

The probability of picking customer j as the next customer is:  

𝑃𝑖𝑗 = {
 

𝜀𝑖𝑗

∑ 𝜀𝑖𝑙𝑙∈𝑁𝑖
 
               𝑖𝑓 𝑗 ∈ 𝑁𝑖      

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    (3.10) 

Where 𝑁𝑖 is the list of all feasible customers that has not been visited by the current 

vehicle and can be visited without exceeding the vehicle capacity or passing the maximum 

length of the trip. However, before each ant decides to choose the next customer according 

to eq. (3.9), a random variable q uniformly distributed over [0, 1] is assessed. If 𝑞 > 𝑞° the 

next customer is chosen according to eq. (3.10), otherwise choose the customer which has 

the maximum attractive value among feasible customers, where 𝑞° is a constant value. Each 

ant continues adding customers to its route until there is no more feasible customers (𝑁𝑖 is 

empty). Then the ant proceeds to the depot to start another trip. 

3.3.3 Local Search Procedures 

After creating all routes, three local search procedures; 2-opt, customer insertion, and 

customer exchange are performed to enhance the solution quality. The local search 

schemes are implemented sequentially on each route without violating the capacity 

constraints. The following are the descriptions of the schemes. 

 

 

 

Set Tabus = {ɸ}  

Set i = 1 
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Set Tabui = {ɸ} 

Start route of ant i from depot 

Set iteration 

= 1 
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Figure 3.2. The flow diagram of the proposed HAC 
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3.3.3.1 2-opt Local Search 

This scheme was proposed by Lin [91] to solve the TSP. Each trip is considered a 

TSP, so it can be modified to reduce the distance travelled without exceeding the capacity. 

A 2-opt local search can be described as follows: The trip is broken at two places forming 

three sections. The customers' sequence of the middle section is inverted. The trip is 

reconstructed by connecting the three sections and the total length of the new trip is 

calculated. All the possible 2-opt moves are investigated by trying all combinations of two 

places and the move with maximum improvement is chosen. The process continues till no 

further improvement is possible. It is considered one of the powerful local search schemes 

for the TSP. However, its implementation in the VRP is limited since customers are not 

allowed to move between different routes. Thus, I consider two other local search schemes 

where customers are moved between two routes. 

3.3.3.2 Customer Insertion Local Search 

The drawback of 2-opt heuristic is that it does not move customers between routes. 

On the contrary of the 2-opt scheme, customer insertion allows the movement of customers 

between different trips. There are two types of insertions; insertion in the same trip, and 

insertion in different trips. Customer i is first removed from position a in trip Tp, then 

inserted in another position b in Tq.  I consider the insertion possibility for customer i in the 

same trip Tp as well in another trip Tq. If the customer is inserted in the original trip Tp, the 

capacity constraint will be conserved. Thus, it is only needed to check the possible insertion 

at different places in the same trip Tp. If insertion is considered in different trip Tq, the 

capacity of the vehicle is first checked before checking insertion of customer i in trip Tq. If 
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the vehicle capacity permits insertion, maximum route length constraint should be tested 

for every position. The insertion of customer i will be tried in all positions of all trips. 

The improvement is calculated by subtracting the increase in length of the enlarged 

trip due to customer insertion from the reduction in length of the original trip. All customers 

should be tested as candidates for insertion in all positions. Customer which may yield 

highest improvement is selected for possible insertion. The current solution is modified by 

inserting the chosen customer at the place where its insertion yields highest improvement. 

Once a modified/ improved tour is obtained, the whole process is repeated with modified / 

improved tour to make a second modified tour. If second modification is not possible, then 

the search process is stopped. Otherwise, search process is continued till search process 

stops improving solutions. 

3.3.3.3 Customer Swapping Local Search 

Customer exchange can be done within the same trip or between different trips. 

Customer i first removed from its position in trip Tp to be swapped with customer j in tour 

Tq. If both customers are in the same trip, then the capacity constraint is not violated. 

However, if two customers are from different trips, both trips new vehicle loads are 

checked. In addition, both trip lengths should be checked for maximum length constrains 

to make sure that the move is feasible. All feasible trades are evaluated and the one with 

maximum improvement is chosen. The whole swapping process continues on improved 

tour till no further improvement is possible. 

 

3.3.4 Updating Trail Intensities 
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After local search is performed, all trail intensities are updated by the best solution 

found so far. The purpose of the local search schemes is to improve the solutions generated 

by ants. Therefore, the best solution is updated only after applying local search schemes. 

Hence, the best solution is then used to update the trail intensities. Pheromone or trail 

intensities evaporate with time on all arcs. At the same time, ants leave pheromone on the 

visited arcs. These two actions are performed after local search improvements in each 

iteration. Updating trail intensities is described in two steps: lowering of pheromone on all 

arcs and pheromone increase on the arcs reported in the best route only. According to 

Dorigo et al. [63], ρ is defined as trail persistence 0 ≤ ρ < 1. The term (1- ρ) is interpreted 

as trail evaporation. Eq. (3.11) updates the trail intensities by adding 1 𝐿𝑏𝑒𝑠𝑡⁄  to the 

remaining amount of trail intensity after its evaporation. 

𝜏𝑎𝑏
𝑛𝑒𝑤 = {

𝜌 × 𝜏𝑎𝑏
𝑜𝑙𝑑  + 1 𝐿𝑏𝑒𝑠𝑡     𝑖𝑓 𝑎𝑟𝑐 𝑎𝑏 ∈ 𝑏𝑒𝑠𝑡 𝑟𝑜𝑢𝑡𝑒⁄

𝜌 × 𝜏𝑎𝑏
𝑜𝑙𝑑                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

 (3.11)  

Where 𝐿𝑏𝑒𝑠𝑡 is the total length of the best solution in each iteration. See parameters 

setting in section 4 for setting the value of 𝜌. The first part of eq. (3.11) represents the 

remaining amount of trail intensities after evaporation. Therefore, the existing trail 

intensities are multiplied by the term ρ. In the second part of eq. (3.11), trail intensities of 

the arcs included in the best solution are increased by amount 1 𝐿𝑏𝑒𝑠𝑡⁄ . 

3.4 Numerical Experiments 

In this section, I present the setting of parameters, explain how the data was generated 

from the bench mark problems, present the numerical results, and compare the results of 

the proposed (HAC) algorithm with the best reported results of the existing (ACS) 

proposed by Reed et al. [27] 
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3.4.1 Parameters Setting 

The number of the used ants (m) controls the solution quality, but it also affects the 

computational time. I found that after 20 ants, the computational time increases excessively 

without any observed solution improvements. Dorigo et al. [63] found that setting (α=1 

and β=2) gives very good solutions. Setting (ρ=0.9) gave a good chance to update the 

pheromone with the new experience of ants on the account of the existing experiences. In 

addition, I set (qο=0.9) as recommended by Reed et al. [27]. I use 100 iterations to test the 

performance of the HAC against 2000 iterations for the ACS. I use 100 iterations for two 

reasons: 1) to keep the solution time comparable with the existing algorithm; 2) 

Improvement is very minimum after 100 iterations. 

3.4.2 Data Generation 

The new bench mark problems for the MCVRP are generated from the VRP bench 

mark problems of Christofides [92]. I use the method described by Reed et al. [27] to 

generate the data set. Christofides [92] has 14 problem data sets named as vrnpc1 to 

vrnpc14. Each of the original problem was used to generate two different problems referred 

to as a and b. For example, problem vrnpc1 was used to generate vrnpc1a and vrnpc1b. 

The used procedure to generate the two data sets can be described in the following steps: 

Step 1: The vehicles were splitted into two compartments using capacity ratio 1:3. This 

means that if the capacity of the vehicle in the original data set is Q, then the 

capacity of the two compartments in the new data sets is 0.25Q and 0.75Q.  

Step 2: The customers were divided into two regions according to their coordinates; region 

1 and region 2. Customers are assigned to their regions as follows: Let Xmax and 
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Ymax be the maximum x-coordinate and the maximum y-coordinate among all 

customers coordinates respectively. Region 1 contains the customers with x and y 

coordinates greater than 0 and less than Xmax/2 and Ymax/2 respectively. Region 2 

contains all other customers, i.e whose x and y coordinates greater than Xmax/2 and 

Ymax/2 respectively.   

Step 3:  The customers located in region 1 require a product pickup quantity of the ratio 

1:2. If the pickup quantity in the original data set is q, then the pickup quantity of 

product 1 and product 2 in the new data sets are 0.33q and 0.67q. in region 1, both 

problem sets a and b has the same ratio 1:2 for pickup quantity of product 1 and 

product 2. 

Step 4:  Customers from region 2 require a product pickup quantity of the ratio 1:3 in 

problems vrnpcXa and ratio 1:4 in problems vrnpcXb. If the pickup quantity in 

the original data set is q, then the pickup quantity of product 1 and product 2 in 

the new data sets are 0.25q and 0.75q in problems a, and 0.2q and 0.8q in problems 

b. 

In this way I generate 28 problem instances from the 14 problem set of Christofides 

[92]. The results of the existing ACS are not available for these 28 new generated problem 

instances. Therefore, I codded the existing ACS to get its solutions for these problem 

instances. 

3.5 Computational Results 

The proposed HAC algorithm and the existing ACS were coded in C and the new 

generated 28 problems were solved. The HAC was run for 100 iterations only to maintain 
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the considerably low computational time. The ACS was run for 2000 iterations as 

recommended by Reed et al. [27]. The CPU times reported in Table 3.1 and Table 3.2 are 

in seconds. The results were obtained using a server that operates four 2.1GHz processors 

with 16-core each and a total of 256 GB of RAM. The results are presented in Table 3.1. 

The percentage improvement in total length is calculated according to eq. (3.12) by 

dividing the difference in average total length calculated by both algorithms by the total 

length calculated by ACS. 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 % =
𝐴𝐶𝑆 − 𝐻𝐴𝐶

𝐴𝐶𝑆
∗ 100 (3.12)  

The results reported in Table 3.1 show that the average total length of ACS is 1109.2 

unit length and the average computational time is 204.5 seconds, the average total length 

of HAC is 1048.4 unit length and the average computational time is 128.5 seconds. The 

average total length improvement of the proposed HAC over the existing ACS is 5.1%. 

These results already exhibit that the proposed algorithm produces better quality solution 

in less computational time compared to the existing algorithm for all solved problems 

except one problem (vrpnc12a). This validates the dominance of the proposed algorithm 

over the existing algorithm. The difference between the total length calculated by HAC 

and ACS is very tight in problems vrnpc11 to vrnpc14. This is because the customers are 

clustered in these problems and thus the problems can be solved easily. A trend can be 

remarked in the total length improvement percentage with the number of customers. It 

increases from about 3% in small problems to more than 8% in larger problems. This trend 

indicates that the performance of the proposed HAC over the existing ACS increases with 

the increase in problem size. It can be concluded that HAC maintains its high performance 
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in large problems where the number of customers is more than 100. Note that the ACS 

algorithm used 2000 iterations while the proposed HAC used 100 iterations. The HAC used 

less number of iterations but produced better solutions because of the hybridization of the 

AC algorithm with local search procedures. The effect of using different hybridization 

schemes is further analyzed and described in the next section.  

Table 3.1: The results of the generated problems 

Problem 

No. of 

customers 

ACS HAC 

Improvement 

% 
Total 

Length 

CPU 

Time (s) 

Total 

Length 

CPU 

Time (s) 

vrpnc1a 50 569.564 16 550.70 5 3.31 

vrpnc1b 50 569.118 17 551.94 5 3.02 

vrpnc2a 75 957.525 36 890.68 15 6.98 

vrpnc2b 75 954.856 35 918.96 14 3.76 

vrpnc3a 100 964.132 122 874.07 40 9.34 

vrpnc3b 100 959.327 122 895.26 44 6.68 

vrpnc4a 150 1253.86 345 1126.12 146 10.19 

vrpnc4b 150 1254.51 336 1159.48 151 7.58 

vrpnc5a 199 1587.02 688 1444.29 257 8.99 

vrpnc5b 199 1640.59 676 1525.87 236 6.99 

vrpnc6a 50 573.274 13 557.49 11 2.75 

vrpnc6b 50 573.378 13 559.37 10 2.44 

vrpnc7a 75 997.007 33 928.24 28 6.90 
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vrpnc7b 75 969.337 32 932.67 26 3.78 

vrpnc8a 100 963.381 97 882.96 93 8.35 

vrpnc8b 100 976.212 97 884.85 95 9.36 

vrpnc9a 150 1343.08 273 1228.88 326 8.50 

vrpnc9b 150 1346.63 274 1226.58 333 8.91 

vrpnc10a 199 1645.58 606 1511.65 624 8.14 

vrpnc10b 199 1659.94 608 1526.02 620 8.07 

vrpnc11a 120 1133.88 281 1110.45 75 2.07 

vrpnc11b 120 1247.49 280 1221.73 87 2.06 

vrpnc12a 100 911.861 105 912.64 15 -0.09 

vrpnc12b 100 970.833 100 950.79 30 2.06 

vrpnc13a 120 1577.45 171 1556.46 117 1.33 

vrpnc13b 120 1572.11 168 1550.12 123 1.40 

vrpnc14a 100 914.857 91 911.35 34 0.38 

vrpnc14b 100 970.933 91 965.84 38 0.52 

Average  1109.205 204.5 1048.41 128.50 5.14 

3.5.1 Effect of Hybridization 

In this section, I present the effect of hybridizing the AC algorithm with the local 

search schemes. In order to observe the effect of local search schemes on HAC algorithm, 

I solve the MCVRP under two settings. In the first setting, the HAC algorithm described 

in section 3 is used without adding any local search schemes to solve the problem. In the 

second setting, the HAC is combined with local search schemes under three criteria. Under 
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the first criteria, only 2-opt local search scheme is combined with HAC. Under the second 

criteria, 2-opt and swapping local search schemes are used. Finally, under the third criteria, 

2-opt, swapping and insertion local search schemes are all combined with HAC. I change 

the number of iterations for each criterion to maintain approximately the same 

computational time. I evaluate the performance of the algorithm after applying each local 

search scheme. The results are shown in Table 3.2. Figure 3.3 represents the effect of 

hybridization on the solution quality. It can be noticed that hybridizing the AC algorithm 

with local search schemes enhanced the solution quality. When the AC is hybridized, 

improvement percentage in the average total distance is calculated from the average total 

length obtained by AC algorithm when no local search scheme is applied. 

It is clear from Table 3.2 and Figure 3.3 that the AC algorithm need better local 

search schemes for better performance. When 2-opt local search is combined with AC, the 

solution quality is improved by 11.31%. However, 2-opt local search is not sufficient to 

improve the solution quality. Note that 2-opt local search is applied only on a single trip 

and thus its performance is good for the TSP but its performance for the VRP is limited. 

When the AC is combined with 2-opt and swapping local search schemes, the solution 

quality improves from 11.31% to 12.66%. The results indicate that swapping enhances the 

solution quality because it moves customers between two routes. Finally, when insertion 

local search is combined with 2-opt and swapping, the solution improves from 12.66% to 

17.11%. This result shows that insertion local search is very effective local search scheme 

in improving the solution quality. 

Table 3.2: The effect of hybridization on solution quality 
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Degree of 

Hybridization 

Number of 

Iterations 

Average Total 

Distance 

CPU 

Time (s) 

Improvement 

% 

No local search 10000 1264.78 141.82 0.00 

2-opt 10000 1121.70 127.96 11.31 

2-opt + Swapping 300 1104.61 130.29 12.66 

2-opt + Swapping + 

Insertion 

100 1048.41 128.50 17.11 

 

3.5.2 The Benefit of Using Multi-Compartment Vehicles  

In this section, I illustrate the benefit of using multi-compartment vehicles instead of 

single compartment vehicles in garbage collection. In order to calculate this benefit, I solve 

the generated problem instances in two settings. In the first setting, two-compartment 

vehicles are used to collect the demand of all customers. In the second setting, only one 

compartment vehicles are used to collect the demand of all customers. The total vehicle 

capacity is kept same under both settings. Suppose the vehicle capacity of the 

compartments for two products are Q1 and Q2 under first setting. Then, the vehicle 

capacity under second setting is set to Q = Q1 + Q2 
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In the second setting, only single compartment vehicles are used to collect the 

demand of all customers. Since the products have different characteristics, they cannot be 

transported within the same vehicle. Therefore, a customer is visited twice to collect 

product 1 and product 2 at different trips. In this case the problem is decomposed into two 

sub-problems. The first sub problem consists of solving the VRP for collection of product 

1 and the second sub problem consists of solving VRP for collection of product 2. The sum 

of travelling cost for these two sub problems represents the solution for second setting. The 

results of 14 problem instances under two settings are presented in Table 3.3.  The results 

reported under first setting (i.e., two compartments) are the same results reported in Table 

3.1. The results reported under second setting (i.e., single compartment) are the combined 

tour length obtained after solving two sub problems using the proposed HAC. 

Table 3.3: The benefit of using two-compartment vehicles instead of single-compartment 

vehicle 
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Figure 3.3: The effect of hybridization on the solution quality  
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Problem 

No. of 

customers 

Two 

Compartment 

Total Length 

Single 

Compartment 

Total Length 

Percentage Total 

Length Increase 

vrpnc1a 50 550.70 935.32 69.84 

vrpnc1b 50 551.94 939.03 70.13 

vrpnc2a 75 890.68 1319.33 48.13 

vrpnc2b 75 918.96 1328.86 44.60 

vrpnc3a 100 874.07 1432.56 63.90 

vrpnc3b 100 895.26 1422.62 58.91 

vrpnc4a 150 1126.12 1719.16 52.66 

vrpnc4b 150 1159.48 1708.05 47.31 

vrpnc5a 199 1444.29 2037.73 41.09 

vrpnc5b 199 1525.87 2055.67 34.72 

vrpnc6a 50 557.49 1113.36 99.71 

vrpnc6b 50 559.37 1113.36 99.04 

vrpnc7a 75 928.24 1802.44 94.18 

vrpnc7b 75 932.67 1802.44 93.26 

vrpnc8a 100 882.96 1749.80 98.17 

vrpnc8b 100 884.85 1749.80 97.75 

vrpnc9a 150 1228.88 2421.78 97.07 

vrpnc9b 150 1226.58 2421.78 97.44 

vrpnc10a 199 1511.65 2925.00 93.50 
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vrpnc10b 199 1526.02 2915.72 91.07 

vrpnc11a 120 1110.45 1573.89 41.73 

vrpnc11b 120 1221.73 1543.48 26.34 

vrpnc12a 100 912.64 1279.78 40.23 

vrpnc12b 100 950.79 1298.74 36.60 

vrpnc13a 120 1556.46 3100.26 99.19 

vrpnc13b 120 1550.12 3100.26 100.00 

vrpnc14a 100 911.35 1643.49 80.34 

vrpnc14b 100 965.84 1643.49 70.16 

Average  1048.41 1789.19 70.97 

 

It can be noticed that the total cost (total length) increases significantly when single 

compartment vehicles are used. In this case, a customer is visited twice to collect two 

different products. Visiting a customer twice increases the total travelling cost, although 

the travel cost per trip decreases due to the increase of vehicle capacity which allows 

vehicles to serve more customers per trip. The results reported in Table 3.3 show that the 

average total tour length increases by 70% when single compartment vehicles are used to 

serve the customers. The high percentage increase of tour length clearly exhibits the benefit 

of dividing the vehicles in different compartments instead of using the same vehicles with 

single compartment. 

3.6 Conclusion 
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I propose a HAC algorithm combined with local search procedures to solve the 

MCVRP. I generate new bench mark problems to test the effectiveness of the proposed 

algorithm. The newly generated problem instances can also be used for testing other 

algorithms for the MCVRP in the future. The proposed HAC and the existing ACS are 

coded and numerical experiments are performed to evaluate the performance of the 

proposed HAC. The new algorithm improved the solutions in almost all instances. The 

numerical experiments indicate that on average, the proposed HAC algorithm produces 

better results using less computational time. In addition, it maintains its high performance 

in larger problems as well. The numerical results also indicated that hybridization is 

required to improve the performance of AC algorithm. Moreover, I illustrate the benefit of 

using multi-compartment vehicles instead of single-compartment vehicles. 
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Chapter 4 

 

Travelling Salesman Problem for Online Orders in 

Retail Industry 

4.1 Introduction 

Routing is one of the main operational decisions in supply chain management. It 

deals with the transportation of goods between different supply chain components. This 

class of problems is concerned with designing the optimal routes for the delivery of goods 

between depots and customers. The VRP was formulated by Dantzig and Ramser [3] as a 

generalized form of the famous TSP. These two problems captured the attention of many 

researchers since the transportation process can denote 10% to 20% of the cost of any 

product [1]. The interest in optimizing the transportation process increased even more 

because it is one of the main consumers of fossil fuel which causes CO2 emissions. 

E-commerce is currently a vital tool for every successful business. It has been altering 

the retail industry and influencing markets behaviour. Companies are motivated to adopt 
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different strategies and policies to cope up with this change in the market. One of the 

recently developed business models is called omni-channel retailing. Omni-channel 

retailing refers to the shopping experience in which there is no difference between online 

and regular shopping [93]. In fact, the retail industry has evolved from multi-channels 

toward omni-channels [5]. 

In omni-channel retailing, customers can get the products through different ways. 

They can order the products to be delivered at home or visit a store physically to get the 

products. Ordering the products may be done online or over the phone. For the products 

ordered online, the delivery of the products to the customers becomes the responsibility of 

the company. In order to increase the customer satisfaction, companies are working on 

making all the products available in stores as well as online. In addition, they are trying to 

reduce the time between orders placement and delivery times. This means that online 

orders should be satisfied from retail stores. 

In this chapter, I investigate the TSP in omni-channel retail distribution systems. The 

problem is concerned with the design of the optimum route to deliver the products ordered 

online from the retail stores to the customers. The problem considers a retail company that 

owns a number of scattered retail stores in a specific area. The company offers a service 

for its customers by allowing them to order products online for home delivery. Each 

customer makes an order for a particular product provided that this product is available in 

at least one of the retail stores. The company is responsible for the delivery of products 

after deciding the retail store that will satisfy each customer order. Thus, the decisions of 

assigning customers to retail stores have been already made and know in advance. This 
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means that each customer is assigned to one of the retail stores. Another application of the 

model may encounter a situation in which a third-party logistics company that provides 

delivery services for a number of small retail stores. The problem is NP-hard and is 

considered a generalization of the classical TSP. It reduces to classical TSP if all the retail 

stores are sharing the same location. In this case, that location is referred to as the depot. 

To the best of our knowledge, this problem has not been considered in the literature. 

However, problems that are closely related to the problem exist in the TSP literature. (i.e., 

the pickup and delivery travelling salesman problem (PDTSP).  

The main contribution of this chapter is to introduce a new variant of the TSP that 

arises in omni-channel distribution systems. This problem has practical applications in 

most retail distribution systems. The mathematical formulation of the described problem is 

presented. In addition, I propose solution approaches to solve the problem. Newly 

generated bench mark problem instances are generated which can be used to compare the 

results of new solution approaches in future research work. 

4.2 Literature Review 

The TSP is the problem of determining the shortest Hamiltonian route. A 

Hamiltonian route starts from a given city, visits a number of cities once and only once, 

and returns back to the original city. It is one of the most studied yet challenging 

combinatorial optimization problems. Many exact algorithms have been proposed to solve 

the problem. Dantzig et al. [94] presented one of the earliest formulations to the problem. 

Little et al. [95] presented a branch and bound algorithm to solve the problem. Crowder 

and Padberg [96] presented a cutting plane approach coupled with branch and bound to 
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solve the problem. The TSP is easy to describe and hard to solve. Thus, several heuristics 

have been tested by applying them to solve the problem. The SA was first tested to solve 

the TSP by Kirkpatrick et al. [79]. The GA was first applied to solve the TSP by Brady 

[71]. The memetic algorithm was proposed by Ulder et al. [97] to solve the TSP. The AC 

algorithm was first introduced to solve the TSP by Dorigo et al. [63]. Different surveys of 

the TSP can be found in [98-100].   

The Pickup and Delivery Problem (PDP) is one of the most popular forms of the 

VRP due to its wide range of applications. It has been extensively studied in the literature 

of the TSP and the VRP as the PDTSP and PDVRP respectively. In the PDP, a number of 

transportation requests is satisfied by single or multiple vehicles. Each request is 

recognized by an origin and a destination. The route of the vehicle starts and ends at the 

depot. Lokin [43] introduced the precedence relations to the basic TSP. Kalantari et al. [44] 

presented a branch and bound algorithm for the single and multiple vehicle PDP. 

Savelsbergh & Sol. [45] presented a general model and survey for the PDP. Ruland and 

Rodin, [101] formulated the PDTSP as an integer program similar to the model of Dantzig 

et al. [94] and proposed a branch and cut algorithm to solve the problem. Renaud et al. 

[102] introduced a two-phase heuristic to solve the PDTSP. Renaud et al. [103] presented 

perturbation heuristics to solve the PDTSP. Dumitrescu  et al. [104] proposed a branch and 

cut algorithm to solve the PDTSP. Hosny and Mumford [105] presented a GA, a SA, and 

a hill climbing algorithm to solve the PDTSP with time windows. Veenstra et al. [106] 

proposed a large neighborhood search heuristic to solve the PDTSP with handling cost. A 

number of survey papers was published recently dealing with the PDP [60-62]. 
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4.3 Problem Description 

The proposed model considers a set of c customers served by one vehicle which is 

available initially at the depot. Customers require deliveries of certain products from a set 

of r retail stores. Each customer requires demand for certain products to be supplied from 

a specific retail store. A basic assumption of the problem is that the retail store that satisfies 

the online order has been already decided. This means that the retail stores used for 

satisfying the demand of customers are known in advance. Every customer is associated 

with only one retail store that satisfies this customer demand. 

A solution for the proposed model is a vehicle route that starts from the warehouse, 

visits a set of retail stores and customers in any sequence, and finally returns to the 

warehouse. However, the retail store must be visited before the associated customers. The 

proposed model aims to minimize the total cost of the vehicle routes such that 

• The vehicle route starts and ends at the depot. 

• Every retail store is visited only once. 

• The total load carried by the vehicle remains under the capacity of the vehicle. 

• Every customer is visited only once. 

• Every customer is assigned to only one retail store. 

• The customer is visited only after its associated retail store. 

The chapter uses the following notations: 

𝑁 Set of all nodes 

𝑅 Set of retail stores nodes 

𝐶 Set of customers nodes 
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 𝑑𝑗 Online demand of customer j 

 𝑝𝑗 Quantity picked up at retail store j 

𝐶𝑖𝑗 The distance of traversing arc (i,j) 

𝑇𝑖𝑗 The time of traversing arc (i,j) 

𝑄 The vehicle capacity  

𝑂𝑖 Service time at the location i  

The problem can be defined using graph theory as follows: 

Let G = (V, A) be an undirected graph with a set of vertices V= {0, 1,…, (r+c)} where 

r is the number of the retail stores and c is the number of the customers. Node {0} is the 

depot. Here, R= {1, …, r} are the retail stores, and C= {r+1,…, r+c} are the customers. 

Nodes N= {1, 2, …, r, r+1, …, r+c} are all the nodes served by one vehicle (initially 

located in the depot). The total quantity carried by the vehicle does not exceed the capacity 

of the vehicle. Each node 𝑗 ∈ 𝑁 has a quantity 𝑑𝑗  to be delivered from a certain retail store 

(𝑑𝑗 equals zero for all retail stores). Each node 𝑗 ∈ 𝑁 has a quantity 𝑝𝑗  to be picked up at 

its location. No quantities are picked up at the customers locations (𝑝𝑗 equals zero for all 

customers). The term 𝑌𝑖𝑗 is given and equal to 1 if customer j is assigned to retail store i 

and 0 otherwise. The term 𝐶𝑖𝑗 represents the travel distance (cost) for travelling from node 

𝑖 to node 𝑗. The term 𝑂𝑖 represents the service time at location i. The term 𝑇𝑖𝑗 represents 

the time for travelling from node 𝑖 to node 𝑗. 

Let 𝑋𝑖𝑗 be binary flow variables equal to 1 if the arc (i j) is traversed by the vehicle, 

and 0 otherwise; 𝑄𝑖 be the load of the vehicle after serving node 𝑖; and 𝑆𝑖 be the service 

start time of node 𝑖 by the vehicle.  
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Mathematical Model 

The proposed model can be formulated as follows: 

Minimize 

𝑍 = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑗∈𝑉𝑖∈𝑉

 (4.1) 

Subject to:  

∑ 𝑋𝑖𝑗

𝑗∈𝑉

= 1 ∀𝑖 ∈ 𝑉, 𝑖 ≠ 𝑗 (4.2) 

∑ 𝑋𝑖𝑗

𝑖∈𝑉

= 1 ∀𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 (4.3) 

𝑄 ≥ 𝑄𝑖 ≥ (𝑄𝑗 + 𝑑𝑗 − 𝑝𝑗)𝑋𝑖𝑗 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (4.4) 

𝑆𝑗 ≥ (𝑆𝑖 + 𝑇𝑖𝑗+𝑂𝑖) 𝑋𝑖𝑗  ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (4.5) 

𝑆𝑗 ≥ (𝑆𝑖 + 𝑇𝑖𝑗+𝑂𝑖) 𝑌𝑖𝑗  ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶 (4.6) 

𝑋𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 (4.7) 

Eq. (4.1) is the objective function representing the total travelling cost of all arcs 

traversed by the vehicle. Eqs. (4.2-4.3) confirm that exactly one arc enters a node and 

exactly one arc leaves a node respectively. Eq. (4.4) confirms that the capacity of the 

vehicle is preserved. Eq. (4.5) confirms that the route connectivity is preserved and the sub 

tours are eliminated. Eq. (4.6) confirms that if customer j is assigned to retail store i, the 

retail store i is visited before the customer j. 

The mathematical model is nonlinear. However, it is linearized to find optimal 

solutions for small size problems using CPLEX. To linearize the model, Eq. (4.4) is 

replaced by Eqs. (4.8-4.9) and Eq. (4.5) is replaced by Eq. (4.10). 

𝑄 ≥ 𝑄𝑖 ∀𝑖 ∈ 𝑉 (4.8) 

(𝑄𝑗 + 𝑑𝑗 − 𝑝𝑗 − 𝑄𝑖) ≤ (1 − 𝑋𝑖𝑗)𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (4.9) 
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(𝑆𝑖 + 𝑇𝑖𝑗+𝑂𝑖 − 𝑆𝑗) ≤ (1 − 𝑋𝑖𝑗)𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 (4.10) 

Where M is a number with big value. 

4.4 Solution Approaches 

The problem is NP-hard which makes it difficult to solve the problem optimally. The 

mathematical model was solved using CPLEX solver in AMPL platform to get optimal 

solutions for small size problem instances. I propose two solution approaches (a heuristic 

and a metaheuristic) to solve larger problem instances. The next subsections provide more 

detailed description of these solution approaches. 

4.4.1 Nearest-Neighbor Heuristic (NNH) 

In this heuristic, the vehicle route is constructed using the minimum travel distance. 

The vehicle starts its route from the depot and visits the nearest retail store. After visiting 

a retail store the vehicle is loaded by the quantity required to satisfy the demand of the 

customers associated with this retail store. The vehicle then proceeds to the node with 

minimum distance (from the current location) among feasible nodes (i.e., retail store or 

customers). A retail store is considered feasible if there is enough capacity in the vehicle 

to pick up the products required by its associated customers. On the other hand, a customer 

is considered feasible if its associated retail store has been already visited by the vehicle. 

The vehicle proceeds from one node to another node till there are no feasible nodes 

available for visit. When there are no more feasible nodes to visit, the vehicle returns back 

to the depot. 

4.4.2 Ant Colony Algorithm 
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The AC is an algorithm used to find near optimum solutions for larger problem 

instances of NP-hard problems. It is based on the behavior of the real ants when selecting 

the shortest route from their nest to the source of food. The algorithm is used in VRPs to 

construct routes by considering the vehicles as ants moving from one customer to another. 

Customers are chosen according to a probability function which is affected by two 

measures: the distance from current location to the next recommended location and the 

pheromone value. Pheromone is an indication of how frequently this arc was used to 

construct best solutions in previous iterations. The algorithm can be described in the 

following steps: 

Step 1: Create initial solution to set initial pheromone values. 

Step 2: Construct ant solutions for m number of ants. 

Step 3: Improve the solutions produced by ants using local search. 

Step 4: Update pheromone values on all arcs using best solution. 

Step 5: Repeat the steps (2-4) until termination condition is reached and report the best 

solution. 

4.4.2.1 Setting Initial Pheromone Values 

In the beginning of the algorithm, initial pheromone values 𝜏𝑖𝑗 are set on all arcs. 

Since there are no previous data exist, the pheromone values are set equal on all arcs. Initial 

solution is used to calculate the initial pheromone value which is set to the inverse of the 

total distance travelled to visit all nodes in the initial solution. I use the initial solution 

found in the NNH to calculate the initial pheromone values. 

4.4.2.2 Solution Construction     



Travelling Salesman Problem for Online Orders in Retail Industry 
 

55 
 

In each iteration of the algorithm, m solutions are constructed. Each ant constructs a 

complete vehicle route. The ant starts its route from depot and visits a random retail store. 

The vehicle load is updated by adding the quantity required to satisfy the demand of the 

customers associated with this retail store. The ant selects the next node from a group of 

feasible nodes and adds it to the route. Feasible nodes are retail stores that there is enough 

capacity in the vehicle to pick up the products required by their associated customers. 

Customers that their associated retail stores have been already visited by the vehicle are 

considered feasible nodes as well. In order to select the next node, a random variable 𝑞 is 

generated between [0,1]. If 𝑞 < 𝑞° , the feasible node with maximum attraction value 

𝜀𝑖𝑗 = (𝜏𝑖𝑗)
𝛼

(𝜇𝑖𝑗)
𝛽

 is selected as the next node (where  𝜇𝑖𝑗 is the inverse of the arc distance 

and 𝜏𝑖𝑗 is the pheromone value on the arc). Otherwise, the next node is selected using the 

probability function in eq. (4.11). 

𝑃𝑖𝑗 = {
 

𝜀𝑖𝑗

∑ 𝜀𝑖𝑙𝑙∈𝑁𝑖
 
               𝑖𝑓 𝑗 ∈ 𝑁𝑖      

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (4.11) 

where 𝑁𝑖 is the list of feasible nodes and  𝜀𝑖𝑗 is the attraction value. 

Ants add nodes to the routes till no more nodes are left. The vehicle then returns to 

the depot and the solution is completed. 

4.4.2.3 Relocation Local Search 

After m routes are constructed, the solutions are improved using relocation local 

search. This local search improves the solution by searching for a better location for each 

node. Each node is removed from its original position and tested for insertion in every 
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position without violating the feasibility of the route. The node is then relocated in the 

position that yields minimum total travel distance of the route. The feasibility of the route 

is preserved by ensuring that every customer is visited after visiting its associated retail 

store. In addition, the capacity constraint should not be violated. All nodes are tested for 

relocation. The process is terminated when no more improvements is possible through 

relocation. 

4.4.2.4 Pheromone Update 

In each iteration, after all ant routes are improved using the local search, the best 

solution found so far is reported. In addition, pheromone values are update on all arcs. The 

update process is performed in two steps: 1) the pheromone value is reduced on all arcs. 2) 

the pheromone value is increased on the arcs used in the best solution found so far only. 

Eq. (4.12) is used to calculate the new pheromone value for all arcs. 

𝜏𝑎𝑏
𝑛𝑒𝑤 = {

𝜌 × 𝜏𝑎𝑏
𝑜𝑙𝑑  + 1 𝐿𝑏𝑒𝑠𝑡     𝑖𝑓 𝑎𝑟𝑐 𝑎𝑏 ∈ 𝑏𝑒𝑠𝑡 𝑟𝑜𝑢𝑡𝑒⁄

𝜌 × 𝜏𝑎𝑏
𝑜𝑙𝑑                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

 
(4.12) 

Where 𝐿𝑏𝑒𝑠𝑡 is the total length of the best solution found so far. 

4.5 Numerical Experiments 

In this section, problem instances are generated and the performances of the proposed 

solution approaches are evaluated. 

 

4.5.1  Parameters Setting 

In this chapter, two solution approaches; the NNH and the AC algorithm, are used to 

solve the problem. The NNH produces single solution to the problem. The AC algorithm 

uses 1000 iterations to find the best solution. In each iteration, the AC algorithm constructs 
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m number of solutions where m is equal to the number of retail stores. The AC algorithm 

uses other parameters with the following values: α=1, β=2, qο=0.5, and ρ=0.9. 

4.5.2  Data Generation 

Three sets of problem instances are used to evaluate the performance of the solution 

approaches. The objective of the first set of problem instances is to evaluate the 

performance of the proposed solution approaches using the optimal solutions. Thus, the 

first set consists of 15 small size problem instances so that optimal solutions could be found 

by solving the mathematical model of the problem. The objective of the second set of 

problem instances is to compare the performance of the proposed solution approaches and 

test other approaches in the future. Thus, the second set consists of 15 larger size problem 

instances. The last set of problem instances is created by Dumitrescu  et al. [104] and I use 

it to test the performance of the AC algorithm against the branch and cut algorithm in [104]. 

In the first set I use the number of retail stores equals to 3, 4, and 5; the number of customers 

equals to 6, 8, 10, 12, and 14. In the second set I use the number of retail stores equals to 

6, 8, and 10; the number of customers equals to 30, 35, 40, 45, and 50. The capacity of the 

used vehicle is 25 and 50 units in the first and second set of problem instances respectively. 

In both sets of problem instances, the customers are assigned to retail stores randomly; the 

locations of the retail stores and customers are created randomly by generating X and Y 

coordinates between [0,50]. The demand of the customers is generated randomly between 

[1,5] unit. 

4.5.3  Computational Results 



Travelling Salesman Problem for Online Orders in Retail Industry 
 

58 
 

The problem was solved using a heuristic, a metaheuristic, and CPLEX solver. The 

heuristic and metaheuristics were coded in C and solved using a server with four 2.1 GHz 

processors 16 core each with total of 256 GB of RAM. The mathematical model was coded 

using AMPL and CPLEX solver on Mac computer. The performance of the NNH and the 

AC algorithm is evaluated against the optimal solution found using CPLEX. The 

percentage deviation (PD) of the total travel distance is calculated using Eq. (4.13) 

where PD𝑖  represents the PD in the total length of problem i. The term 𝐶𝑖 is the total length 

found by CPLEX for problem i and the term 𝑆𝑖 is the total length found by the AC algorithm 

or NNH for the same problem i. 

 The results of the first set of problem instances are presented in Table 4.1. The CPU 

time taken by CPLEX to calculate the optimal solution is reported in seconds in the table. 

The average CPU time of CPLEX is 782.73 sec while the CPU time of the NNH and the 

AC algorithm is less than 1 sec. The average total distance calculated by CPLEX, the NNH, 

and the AC algorithm is 204.64, 204.93, and 237.16 unit respectively. It can be noticed that 

the AC algorithm reached the optimal solution in all problem instances. The AC algorithm 

succeeded to provide high performance while maintaining shorter CPU time. On the other 

hand, the average PD of the solution found by the NNH is 15%. The heuristic performed 

well in some problem instances and reached a minimum PD of 2.1%. However, it failed to 

perform well in other problem instances and reached a maximum PD of 40 %. 

The performance of the NNH and the AC algorithm in the second set of problem 

instances is compared on the basis of the relative percentage deviation (RPD) of the total 

𝑃𝐷𝑖  =
𝑆𝑖 − 𝐶𝑖

𝐶𝑖
× 100% (4.13) 
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travel distance. The RPD is calculated using Eq. (4.14) where RPD𝑖 represents the 

percentage deviation for problem i. The term 𝐴𝑖 is the total length found by AC algorithm 

for problem i and the term 𝑁𝑖 is the total length found by the NNH for the same problem i. 

Table 4.1: The results of the AC and the NNH against the optimum solution 

Proble

m 

Numbe

r of 

Retail 

stores  

Number 

of 

Customer

s 

CPLEX AC NNH 

Total 

Distanc

e 

CPU 

Time 

Total 

Distanc

e 

PD

% 

Total 

Distanc

e 

PD% 

1 3 6 

163.63 

1 163.63 0.00 188.33 

15.0

9 

2 3 8 

173.37 

1 173.37 0.00 243.26 

40.3

1 

3 3 10 156.48 1 156.48 0.00 162.64 3.94 

4 3 12 231.69 7 231.69 0.00 250.03 7.92 

5 3 14 

239.76 

1500 239.76 0.00 293.46 

22.4

0 

6 4 6 149.44 1 149.44 0.00 152.58 2.10 

7 4 8 187.22 1 187.22 0.00 201.02 7.37 

8 4 10 

213.32 

1 213.32 0.00 286.13 

34.1

3 

9 4 12 213.15 45 213.15 0.00 230.28 8.03 

10 4 14 238.37 80 238.37 0.00 260.00 9.08 
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11 5 6 

191.72 

1 191.72 0.00 217.90 

13.6

6 

12 5 8 

228.65 

3 228.65 0.00 252.39 

10.3

8 

13 5 10 182.07 1 182.07 0.00 192.01 5.46 

14 5 12 

229.73 

87 229.73 0.00 255.27 

11.1

2 

15 5 14 

271.05 

10011 271.05 0.00 372.11 

37.2

8 

Averag

e 

  

204.64 782.7

3 

204.93 0.00 237.16 

15.2

2 

Table 4.2: The results of the NNH against the AC 

Problem 

Number 

of Retail 

stores  

Number of 

Customers 

AC NNH 

Total 

Distance 

CPU 

Time 

Total 

Distance 

RPD% 

1 6 30 357.70 13 475.06 32.81 

2 6 35 348.50 22 505.95 45.18 

3 6 40 382.73 36 570.96 49.18 

4 6 45 427.46 49 498.62 16.65 

5 6 50 436.09 77 521.49 19.58 

𝑅𝑃𝐷𝑖  =
𝑁𝑖 − 𝐴𝑖

𝐴𝑖
× 100% (4.14) 
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6 8 30 293.94 30 386.93 31.64 

7 8 35 354.75 37 455.77 28.47 

8 8 40 385.82 63 471.97 22.33 

9 8 45 430.70 85 542.33 25.92 

10 8 50 449.16 125 684.69 52.44 

11 10 30 348.52 35 437.75 25.60 

12 10 35 374.07 60 504.22 34.79 

13 10 40 361.17 77 527.88 46.16 

14 10 45 436.48 114 628.10 43.90 

15 10 50 516.46 135 656.07 27.03 

Average   393.57 63.87 524.52 33.45 

 

 

Figure 4.1. The results of the second set of problem instances using the AC and the NNH 
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The results of the second set of problem instances are presented in Table 4.2 and 

Figure 4.1. The CPU time taken by the AC algorithm is reported in seconds in the table. 

The average CPU time of the AC algorithm is 63.87 sec while the CPU time of the NNH 

is less than 1 sec. The average total distance calculated by the NNH and the AC algorithm 

is 524.52 and 393.57 unit respectively. It can be noticed that the AC algorithm performed 

better than the NNH in all problem instances. The average RPD of the NNH with respect 

to the AC algorithm is 33.45%. This was expected from the results of the first set of 

problem instances. However, it can be concluded that the AC algorithm maintained high 

performance in larger size problem instances. 

The results of the third set of problem instances are presented in Table 4.3. It can be 

noticed that the AC algorithm reached the optimal solution in 24 problem instances and the 

best solution found by the branch and cut algorithm of Dumitrescu  et al. [104] in another 

problem instance. The average deviation of the AC algorithm with respect to the branch 

and cut algorithm is 0.47%. The average CPU time of the AC algorithm is 36 seconds while 

the average CPU time of the branch and cut algorithm is 3606 seconds. It can be concluded 

that the AC algorithm succeeded to provide high performance while maintaining shorter 

CPU time. 

Table 4.3: The results of the AC against the branch and cut  

Problem 

Number 

of 

requests 

Branch & Cut AC 

Total 

Distance 

CPU 

Time 

Total 

Distance 

CPU 

Time 

Deviation 

% 
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1 5 3585 0 3585 0 0 

2 5 2565 0 2565 0 0 

3 5 3787 0 3787 0 0 

4 5 3128 0 3128 0 0 

5 5 3123 0 3123 0 0 

6 10 4896 3 4896 0 0 

7 10 4490 2 4490 0 0 

8 10 4070 0 4070 0 0 

9 10 4551 1 4551 0 0 

10 10 4874 4 4874 0 0 

11 15 5150 8 5150 2 0 

12 15 5391 21 5391 2 0 

13 15 5008 0 5008 2 0 

14 15 5566 14 5566 2 0 

15 15 5229 0 5229 2 0 

16 20 5698 12 5698 10 0 

17 20 6213 20 6213 9 0 

18 20 6200 19 6200 8 0 

19 20 6106 17 6106 9 0 

20 20 6465 58 6465 9 0 

21 25 7332 14400 7345 23 0.18 

22 25 6665 3138 6807 28 2.13 
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23 25 7095 291 7095 30 0 

24 25 7069 14323 7075 27 0.08 

25 25 6754 72 6754 28 0 

26 30 7309 14400 7456 78 2.01 

27 30 6857 2843 6857 64 0 

28 30 7723 1891 7723 61 0 

29 30 7310 573 7390 69 1.09 

30 30 7213 14400 7346 69 1.84 

31 35 7746 2104 7971 146 2.90 

32 35 7904 14400 8098 161 2.45 

33 35 7949 14400 8205 166 3.22 

34 35 7905 14400 7905 133 0 

35 35 8530 14400 8564 144 0.40 

Average  5927.31 3606.11 5962.46 36.63 0.47 

 

4.6 Conclusion 

In this Chapter, I introduce the TSP arising in omni-channel retail distribution 

systems. A mathematical model is presented to describe the problem. The mathematical 

problem is solved using CPLEX solver to find optimum solutions. A nearest neighbor 

heuristic and an AC algorithm are proposed to solve the problem. Bench mark problem 

instances are generated to test the performance of the proposed algorithms. The AC 
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algorithm showed good performance with respect to the optimal solutions found using the 

CPLEX. It reached the optimal solution of all problem instances. It also succeeded to 

provide high performance while maintaining shorter CPU time against the branch and cut 

algorithm. 
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Chapter 5 

 

Multi-Compartment Vehicle Routing Problem for 

Omni-Channel Retail Distribution 

5.1 Introduction 

"There was a time when the online and offline businesses were viewed as being 

different," said Walmart.com Chief Executive Raul Vazquez. "Now we are realizing that 

we actually have a physical advantage thanks to our thousands of stores, and we can use it 

to become No. 1 online." [107]. The statement of Walmart executive highlights the 

importance of online business in retail industry. In fact, Walmart delivered 40 percent of 

its online orders through their stores in that year. According to the National Retail 

Federation report [108], the business of 3.8 million retail establishments performed 12 

percent of all business establishments in US in year 2012. The retail industry provided 42 

million jobs which was 23.4 percent of the total national employment in US. The total labor 

income generated by the retail industry was $1.58 trillion which was 16.1 percent of the 
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total labor income. The total GDP impact of the retail industry was $2.59 trillion which 

was 16 percent of the total GDP.  

According to the Global Powers of Retailing report [4], the 250 largest retailers 

around the world generated revenues of US$4.31 trillion in 2015. This figure indicates that 

despite the challenging global economy in 2015, retailers managed to keep steady growth 

and international expansion. The revenue generated by e-commerce was 8.7 percent of the 

total retail revenue of the top 250 retailing companies. The increasing share of e-commerce 

in retail industry clearly exhibits the shift of retail industry from single channel to omni-

channels [5]. The omni-channel system is the most recent business model used in the retail 

industry. The new business model aims to increase the sales volume as well as the customer 

satisfaction in retail industry. It provides the customers with the flexibility to get the 

products through different channels. Customers can choose to get the products by 

physically visiting the store, or by ordering the products online for home delivery. The 

research conducted by Herhausen et al. [109] showed that the online-offline channel 

integration not only enhances the shopping experience of the customers but it also provides 

competitive advantages for the organization. 

This chapter considers the VRP arising in omni-channel retailing. The considered 

problem studies the distribution network of a giant retailing company operating in different 

cities. In a given city, it owns a central warehouse and a group of retail stores. The proposed 

model considers the distribution system for this giant retailing company in a particular city 

only. The company offers its consumers the choice of purchasing products in two ways; 

visiting the stores physically or ordering the products online. The company offers a group 
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of products that can be ordered online. A consumer places an order for a specific product 

available in one of the retail stores and the products are supplied to the consumer from the 

chosen retail store. Thus, I assume that a decision on the retail stores that satisfies the 

demand of consumers has been already made. In other words, the retail stores used for 

satisfying the demand of consumers are known in advance. This assumption is supported 

by the statement of Walmart executive which states that 40 percent of their online orders 

are delivered through their stores. 

The distribution network of the company performs two types of deliveries; deliveries 

from the warehouse to the retail stores and deliveries from the retail stores to the 

consumers. The company tries to utilize the same fleet of vehicles to serve the retail stores 

and the consumers. I consider that the products required by the consumers will be stored 

in different compartment of the same vehicle. Thus, handling the products required by the 

consumers does not interfere with the products required by the retail stores. The fleet of 

vehicles is available at the warehouse.  

Our model suggests that both retail stores and consumers are visited using the same 

fleet of vehicles. Hence, the proposed model is applicable for the organizations that use 

light to medium trucks in serving their scattered retail stores. Several cities have imposed 

restrictions on the times and days when heavy trucks are allowed inside the city. These 

restrictions are applied on vehicles exceeding the gross weight of 7.5 tons which produce 

more noise and pollution. For example, according to [110] trucks are allowed to use 

selected routes only in Winnipeg, Canada. In this case, organizations prefer to use smaller 

trucks to have the privilege of using their fleet without any restrictions. The proposed 
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model is applicable in this situation as well. The proposed model is not applicable in some 

business models where only large trucks are used to deliver products to the retail stores. 

In this chapter, I introduce of a new variant of the VRP arising in the omni-channel 

retail distribution networks. In addition, the chapter presents a mathematical formulation 

for the problem to obtain the optimal solutions. Moreover, the chapter proposes different 

heuristics and a metaheuristic to solve large scale problems. Finally, new bench mark 

problem instances are introduced for testing the proposed algorithms and for testing 

algorithms in future work. The presented model in this chapter is applicable in retail stores 

such as: Shoppers Drug Mart, Walmart, etc. 

5.2 Literature Review  

The considered problem in this chapter is closely related to the CVRP and the PDP. 

Thus, the literature related to this problem is divided into two directions: literature related 

to the CVRP and literature related to the PDP. The CVRP was considered as a 

generalization of the TSP by Dantzig & Ramser [3]. This was the first introduction of the 

VRP in the operations research literature. Afterwards several variants of the VRP evolved 

in the operations research literature. Different solution approaches were proposed to solve 

the problem. A review of the most recent exact algorithms focused on the CVRP can be 

found in Baldacci et al. [111]. Recently, new formulations for the problem and new lower 

bounds were presented by Letchford and Salazar-Gonzalez [10]. The exact algorithms can 

solve only small problem instances. Therefore, heuristic methods are considered a popular 

choice for solving the real life VRPs. Different heuristics have been used in the VRP 

literature to find near optimum solutions (such as: AC algorithm (Mazzeo and Loiseau 
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[112]), hill climber heuristic (Derigs & Kaiser [11]), memetic algorithm (Nagata & Bräysy 

[13]), PSO (Ai & Kachitvichyanukul [12]), and artificial bee colony (Szeto et al. [14])). 

For recent research in VRP and its variants see [21-23]. 

The PDP is one of the most popular variant of the VRP due to its wide range of 

applications. It has been extensively studied in the literature. The precedence relations of 

the PDP were introduced to the basic TSP by Lokin [43]. A branch and bound algorithm 

for the single and multiple vehicles PDP was presented by Kalantari et al. [44]. The first 

general model and survey for the problem were introduced by Savelsbergh & Sol. [45]. A 

mixed integer linear programming formulation for the multiple vehicles PDP was presented 

by Lu, & Dessouky [46]. They developed a branch and cut algorithm to solve the problem. 

A number of survey papers is published recently dealing with the PDP [60-62]. The 

proposed problem in this chapter combines the structure of the CVRP and PDP along with 

the two compartment feature. To the best of our knowledge, the considered problem in this 

chapter has not been tackled in the literature. 

The proposed problem falls under the category of NP-hard problems which is difficult 

to solve using exact algorithms especially with large problem instances. Therefore, it is 

common in the VRP literature to consider heuristics and metaheuristics to solve different 

variants of the VRP. In this chapter, I present different heuristics to solve the proposed 

problem. In addition, I use an AC algorithm to solve the problem. The AC algorithm was 

first introduced to solve combinatorial problems by Dorigo et al. [63]. It was applied to 

solve the TSP. The first application of the AC for solving the VRP was proposed by 

Bullnheimer et al. [64]. Although the initial experiments in [64] did not improve the best 
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known solutions, it provided promising results. The AC produced good results when it was 

used to solve the dynamic VRP by Montemanni et al. [67]. An improved AC was 

introduced to solve the VRP with backhauls in [36] and to solve the VRP with simultaneous 

delivery and pickup in [37]. The AC was used to solve the multi-compartment VRP in [66]. 

A multiple AC system was proposed for the VRP with time windows and uncertain travel 

times in [17]. 

5.3 Problem Description and Formulation 

In this section, I provide a brief description of the problem and present its 

mathematical formulation. The considered problem includes two sets of customers served 

by a fleet of homogenous vehicles. The first set of customers consists of r retail stores. The 

second set of customers consists of c consumers. The first set includes the customers who 

require some products to be delivered from a distribution center. The second set includes 

the consumers who require products to be supplied from specific retail store. The fleet of 

vehicles is available at the depot. Every consumer is associated with only one retail store 

that satisfies its demand. Every vehicle has two compartments reserved for the retail stores 

demand and consumers demand. In this chapter, the two compartments are referred as retail 

store compartment and consumer compartment respectively. 

A solution for the proposed problem consists of number of vehicle routes. Each 

vehicle starts from the warehouse, visits a set of retail stores and consumers in any 

sequence, and finally returns back to the warehouse. However, the retail store must be 

visited before the associated consumer. The proposed model aims to minimize the total 

cost of the vehicle routes such that: 
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• Every route starts and ends at the depot. 

• Every retail store is visited by only one vehicle and only once. 

• The total load arising from the demand of the retail stores remains under the 

capacity of the retail store compartment. 

• The total load arising from the demand of the consumers remains under the capacity 

of the consumer compartment. 

• Every consumer is visited by only one vehicle and only once. 

• Every consumer is assigned to only one retail store. 

• The consumer and its associated retail store are visited by the same vehicle. 

• The consumer is visited only after visiting its associated retail store. 

Notations: 

𝑁 Set of all customer nodes 

𝑅 Set of retail stores 

𝐶 Set of online consumers (consumers ordering products online) 

𝐾 Set of vehicles 

𝑀 Set of compartments 

 𝐷𝑗  Demand delivered from the depot to customer j  

 𝑑𝑗 Online demand of customer j 

 𝑝𝑗 Quantity picked up at customer j 

𝐶𝑖𝑗 The distance of traversing arc (i,j) 
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𝑇𝑖𝑗 The time of traversing arc (i,j) 

𝑄1 The vehicle capacity of retail store compartment 

𝑄2 The vehicle capacity of consumer compartment 

𝑂𝑖 Drop time at the location i  

The problem can be defined using graph theory as follows: 

Let G = (V, A) be an undirected graph with a set of vertices V= {0, 1,…, (r+c)} where 

r is the number of the retail stores and c is the number of the consumers. Node {0} is the 

distribution center from where products are delivered to retail stores. Here, R= {1, …, r} 

are the retail stores, and C= {r+1,…, r+c} are the consumers. Nodes N= {1, 2, …, r, r+1, 

…, r+c} are the customer nodes (retail stores and consumers) served by a number of K 

identical vehicles (initially located at the depot). Each vehicle has 2 compartments (one for 

retail stores demand and the other for the online demand of the consumers). The total 

quantity carried in each of the compartments does not exceed the capacity of the 

compartments (𝑄1, and 𝑄2). Each customer 𝑗 ∈ 𝑉 has a quantity 𝐷𝑗  to be delivered from 

the depot (𝐷𝑗 equals zero for all consumers). Each customer 𝑗 ∈ 𝑉 has a quantity 𝑑𝑗  to be 

delivered from a certain retail store (𝑑𝑗 equals zero for all retail stores). Each customer 𝑗 ∈

𝑉 has a quantity 𝑝𝑗  to be picked up at his location. No quantities are picked up at the 

consumers locations (𝑝𝑗 equals zero for all consumers). 𝑌𝑖𝑗 is equal to 1 if consumer j is 

assigned to retail store i and 0 otherwise. 𝐶𝑖𝑗 represents the travel distance (cost) for 

travelling from node 𝑖 to node 𝑗. 𝑂𝑖 represents the drop time at location i. The term 𝑇𝑖𝑗 

represents the time for travelling from node 𝑖 to node 𝑗. 
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Let 𝑋𝑖𝑗
𝑘  be binary flow variables equal to 1 if the arc (i j) is traversed by vehicle k, 

and 0 otherwise; 𝑄1𝑖
𝑘 be the load of compartment 1 (retail store compartment) after serving 

node 𝑖; 𝑄2𝑖
𝑘 be the load of compartment 2 (consumer compartment) after serving node 𝑖; 

and 𝑆𝑖
𝑘  be the service start time of node 𝑖 for vehicle 𝑘. The proposed model can be 

formulated as follows: 

Minimize   

𝑍 = ∑ ∑ ∑ 𝐶𝑖𝑗
𝑘 𝑋𝑖𝑗

𝑘

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

 (5.1) 

Subject to:  

∑ ∑ 𝑋𝑖𝑗
𝑘

𝑗∈𝑉𝑘∈𝐾

= 1 ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗 (5.2) 

∑ 𝑋(0)𝑗
𝑘 =

𝑗∈𝑅

1 ∀𝑘 ∈ 𝐾 (5.3) 

∑ 𝑋𝑖𝑗
𝑘 −

𝑖∈𝑉

∑ 𝑋𝑗𝑖
𝑘

𝑖∈𝑉

= 0 ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.4) 

∑ 𝑋𝑖(0)
𝑘

𝑖∈𝑁

= 1       ∀𝑘 ∈ 𝐾 (5.5) 

𝑌𝑖𝑗 (∑ 𝑋𝑖𝑙
𝑘 −

𝑙∈𝑁

∑ 𝑋𝑙𝑗
𝑘

𝑙∈𝑁

) = 0 ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑙, 𝑗 ≠ 𝑙 (5.6) 

𝑄1 ≥ 𝑄1𝑖
𝑘 ≥ (𝑄1𝑗

𝑘 + 𝐷𝑗)𝑋𝑖𝑗
𝑘  ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.7) 

𝑄2 ≥ 𝑄2𝑖
𝑘 ≥ (𝑄2𝑗

𝑘 + 𝑑𝑗 − 𝑝𝑗)𝑋𝑖𝑗
𝑘  ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.8) 

𝑆𝑗
𝑘 ≥ (𝑆𝑖

𝑘 + 𝑇𝑖𝑗+𝑂𝑖) 𝑋𝑖𝑗
𝑘   ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.9) 

𝑆𝑗
𝑘 ≥ (𝑆𝑖

𝑘 + 𝑇𝑖𝑗+𝑂𝑖) 𝑌𝑖𝑗  ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.10) 

𝑋𝑖𝑗
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (5.11) 

Eq. (5.1) is the objective function representing the total travelling cost of all arcs 

traversed by all vehicles. Eq. (5.2) confirms that exactly one arc enters a customer node. 
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Eqs. (5.3-5.5) confirm that each vehicle starts its route from the depot and ends its route at 

the depot. Eq. (5.6) confirms that if a consumer j is assigned to a retail store i, both the 

retail store and consumer are visited by the same vehicle. Eqs. (5.7-5.8) confirm that the 

total load of the vehicle is under the capacity of the compartments. Eq. (5.9) confirms that 

the time consistency is conserved. Eqs. (5.7-5.9) confirm that the sub tours are eliminated. 

Eq. (5.10) confirms that if a consumer j is assigned to a retail store i, the retail store i is 

visited before the consumer j. 

The mathematical model is nonlinear and the problem falls under the category of NP-

hard problems. However, the mathematical model was linearized and solved using CPLEX 

solver in AMPL platform to get optimal solutions for small size problem instances. The 

optimal solutions found by CPLEX are used to evaluate the performance of the proposed 

solution approaches. The model is linearized by replacing Eq. (5.7) with Eqs. (5.12 and 

5.13), replacing Eq. (5.8) with Eqs. (5.14-5.15), and replacing Eq. (5.9) with Eq. (5.16) 

respectively. 

𝑄1 ≥ 𝑄1𝑖
𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (5.12) 

(𝑄1𝑗
𝑘 + 𝐷𝑗 − 𝑄1𝑖

𝑘) ≤ (1 − 𝑋𝑖𝑗
𝑘 )𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, , 𝑘 ∈ 𝐾  𝑖 ≠ 𝑗 (5.13) 

𝑄2 ≥ 𝑄2𝑖
𝑘 ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (5.14) 

(𝑄2𝑗
𝑘 + 𝑑𝑗 − 𝑝𝑗 − 𝑄2𝑖

𝑘) ≤ (1 − 𝑋𝑖𝑗
𝑘 )𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, , 𝑘 ∈ 𝐾  𝑖 ≠ 𝑗 (5.15) 

(𝑆𝑖
𝑘 + 𝑇𝑖𝑗+𝑂𝑖 − 𝑆𝑗

𝑘) ≤ (1 −  𝑋𝑖𝑗
𝑘 )𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (5.16) 

Where M is a number with big value. 

 

5.4 Solution Approaches 
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In addition to the mathematical model, this chapter presents three solution 

approaches (two heuristics and one metaheuristic) to solve the problem. These solution 

approaches are described in the next subsections. 

5.4.1 Insertion Heuristic (IH) 

The insertion heuristic finds the solution in two phases. In the first phase, a vehicle 

route consisting of retail stores only is constructed on the basis of the nearest neighbor 

criteria. The retail store compartment capacity is preserved while building the routes. In 

the second phase, online consumers are added to the constructed routes. Consumers can be 

added in any position of the route after the position of their associated retail store. The 

consumer compartment should be preserved while inserting the consumers. Consumers are 

inserted one after another in the feasible position that minimizes the total distance of the 

route. The process continues till all consumers are assigned to vehicle routes.  

5.4.2 Minimum Weighted Distance Heuristic (MWD) 

In this heuristic, I construct solutions in one phase by adding retail stores and 

consumers to vehicle routes simultaneously. Each vehicle starts from depot and visits 

feasible nodes (retail stores and consumers) on the basis of the minimum weighted distance 

criteria. A retail store node is considered feasible if it satisfies two constraints: 1) its retail 

store demand does not violate the capacity constraint of compartment 1; 2) the demand of 

its associated consumers does not violate the capacity constraint of compartment 2. A 

consumer node is considered feasible if its associated retail store has been already visited 

by the current vehicle. The vehicle proceeds from one customer to another till there is no 
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feasible node available for visiting. The vehicle then returns back to the depot and another 

trip starts from the depot to serve the remaining nodes. 

The distinct feature of this heuristic is the consideration of weighted distance between 

nodes. The weighted travel distance is obtained by multiplying the actual distance to the 

next feasible consumer by a factor x. The weighted distance for retail stores nodes is kept 

as the actual distance. The weighted distance is used to select which node is visited from 

the current location of the vehicle. The value of factor x determines the preference between 

consumers and retail stores. If the value of factor x is less than one, this means that 

consumers have the preference to be visited over retail stores. If the value of factor x is 

more than one, this means that retail stores have the preference to be visited over 

consumers. I construct different solutions for each problem by multiplying the distances to 

the online consumers by different values of the factor x (0.5, 0.75, 1, 1.25, and 1.5). Finally, 

I choose the solution that has the minimum total travel distance among different values of 

factor x. 

5.4.3 Ant-colony Algorithm 

The AC is an algorithm used in solving NP-hard problems by finding near optimum 

solutions. It was inspired from the behavior of the real ants in finding the best route from 

their nest to the source of food. The algorithm is widely used in VRPs to construct routes 

due to its efficiency in finding good solutions in reasonable time. Customers are added to 

the current vehicle route according to a probability function composed of two parts: the 

distance from current customer to the next customer and the pheromone value. Pheromone 
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is the desirability of an arc measured by how often this arc is chosen in previous solutions. 

The algorithm can be described in the following steps:  

Step 1: Create initial solution to initialize the trail intensities. 

Step 2: Construct m complete tours using m number of ants. 

Step 3: Improve the solution produced by each ant using Intra-route local search. 

Step 4: Update pheromone values on all arcs using best solution. 

Step 5: If the termination condition is not met: go back to step 2  

Step 6: Report the best solution. 

5.4.3.1 Deposit Initial Pheromone Values 

The pheromone value 𝜏𝑖𝑗 indicates the frequency of selecting arc (ij) in previous 

solutions. In the beginning of the algorithm, the initial pheromone values are set equally 

for all arcs. The initial pheromone value is equal to the inverse of the total travelled distance 

calculated from an initial solution. I use the MWD heuristic to initialize pheromone. 

5.4.3.2 Route Construction 

I use m ants to construct complete tours. Each ant starts from the depot and chooses 

a feasible node randomly. Then, the next node is chosen from the list of feasible nodes as 

described in section 5.4.2. In order to choose the next node, a random variable 𝑞 is 

calculated between [0,1]. If 𝑞 < 𝑞° , the next chosen node is the feasible customer with 

maximum attraction value 𝜀𝑖𝑗 = (𝜏𝑖𝑗)
𝛼

(𝜇𝑖𝑗)
𝛽

 where  𝜇𝑖𝑗 is the inverse of the arc distance. 

Otherwise, the next node is chosen according to the probability function in eq. (5.17).  

𝑃𝑖𝑗 = {
 

𝜀𝑖𝑗

∑ 𝜀𝑖𝑙𝑙∈𝑁𝑖
 
               𝑖𝑓 𝑗 ∈ 𝑁𝑖      

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (5.17) 
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where 𝑁𝑖 is the list of feasible nodes and  𝜀𝑖𝑗 is the attraction value. 

Customers are added to the vehicle route till no more nodes can be added feasibly to 

the vehicle route. The vehicle returns back to the depot and a new trip is started. The route 

is completed when all customers (retail stores and consumers) are visited. 

5.4.3.3 Intra-Trip Local Search 

In the route construction phase m solutions are found using m ants. In this phase, the 

m solutions are improved using the local search. This local search improves the solution of 

each trip by repositioning the nodes. Nodes are removed from their original position and 

tested for insertion in every feasible position in the same trip. However, the position that 

minimizes the total travel distance is chosen. The repositioning of a node in a certain 

position is considered feasible if it does not violate the sequence constraint or the capacity 

constraint. The sequence constraint is violated if a consumer is located before its associated 

retail store.  

5.4.3.4 Pheromone Update 

After local search is performed, the distance is updated for all routes. The best 

solution found so far is used to update the pheromone values using eq. (5.18). Updating 

trail intensities is described in two steps: lowering of pheromone on all arcs and increasing 

on the arcs reported in the best route.  

𝜏𝑖𝑗
𝑛𝑒𝑤 = {

𝜌 × 𝜏𝑖𝑗
𝑜𝑙𝑑  + 1 𝐿𝑏𝑒𝑠𝑡           𝑖𝑓 𝑎𝑟𝑐 𝑖𝑗 ∈ 𝑏𝑒𝑠𝑡 𝑟𝑜𝑢𝑡𝑒⁄

𝜌 × 𝜏𝑖𝑗
𝑜𝑙𝑑                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

 (5.18) 

where 𝐿𝑏𝑒𝑠𝑡 is the total length of the best solution in each iteration. 

5.5 Numerical Experiments 
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In next subsections, I present the data generation method to perform the numerical 

experiments. The numerical experiments are used to compare the performance of the 

different proposed solution approaches. 

5.5.1 Parameter Setting for the AC Algorithm 

The above described AC algorithm uses number of parameters. I set these parameters 

on the basis of the recommended values in the literature. The solution quality of the AC 

depends mainly on the number of iterations and the number of used ants. Increasing the 

number of iterations and the number of ants increases the solution quality. However, it also 

increases the computational time. I used 1000 iterations and a number of ants equals to the 

number of retail stores to keep the CPU time reasonable. I use (α=1 and β=2) and set 

(qο=0.9). I use (ρ=0.9) to update the pheromone with new and existing experiences of ants. 

5.5.2 Data Generation 

There are no bench mark problems for VRP in omni-channels because the problem 

is introduced for the first time in this chapter. In this work, I use two sets of problem 

instances: small size problem instances and large size problem instances. The small 

problem instances are used to compare the solution of the proposed solution approaches 

with the optimal solution obtained by solving the mathematical model. This comparison 

gives an indication about the performance of the proposed heuristics and metaheuristic. 

The large problem instances are used to compare the performance of the proposed 

heuristics and metaheuristic approaches. These later cases can be used for testing the 

performance of any proposed solution approaches in the future. The X and Y coordinates 

of retail stores and consumers are created randomly between [0,100]. The demand of the 
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retail stores is generated between 25 and 50 units.  The retail store compartment capacity 

is set to 100 units and the consumer compartment capacity is set to the maximum pickup 

quantity from any retail store. The list of served consumers for each retail store is generated 

randomly. In the first set, I use number of retail stores of 3, 4, 5, and 6, number of 

consumers of 6, 9, 12, and 15. Thus, a total of 16 problem instances are generated. In the 

second set, I use number of retail stores of 10, 15, 20, and 25, number of consumers of 25, 

50, 75, 100, and 150. Thus, a total of 20 problem instances are generated.   

5.5.3 Computational Results 

The proposed heuristics and metaheuristic were coded in C programming language 

and the 36 problem instances were solved. The problems were solved using a server that 

operates four 2.1GHz processors with 16-core each and a total of 256 GB of RAM. The 

mathematical model was coded using AMPL and solved using CPLEX solver. The 

performances of the three solution approaches are evaluated with respect to their solutions 

using the PD. The PD is calculated according to Eq. (5.19), where PD𝑖 represents the 

percentage deviation in the total length of problem i. Furthermore, the term 𝐶𝑖 is the total 

length found by CPLEX for problem i and the term 𝑆𝑖 is the total length found by each 

heuristic and metaheuristic for the same problem i. 

The results of small problem instances are presented in Table 5.1. The CPU time 

taken by the AC algorithm and the two heuristics was less than one second. It can be noticed 

that the AC algorithm was able to reach the optimum solution found by the CPLEX in 14 

out of the 16 problem instances. The average PD of the AC with respect to the optimum 

𝑃𝐷𝑖  =
𝑆𝑖 − 𝐶𝑖

𝐶𝑖
× 100% (5.19) 
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solution found by CPLEX is 0.10%. It can be concluded that the AC algorithm has a good 

performance while it succeeded to keep shorter CPU time compared to the solution found 

by CPLEX which took 1217 seconds on average. On the contrary, the performances of the 

two heuristics are poor with an average of 14.7% and 12.50% PD with respect to the 

solution found by the CPLEX for the MWD and IH respectively. The performances of the 

two heuristics are so close but on average the IH has a slightly better performance. 

Table 5.1: The results of the AC, the MWD, and the IH against the optimum solution 

Problem 

Number 

of 

Retail 

stores 

Number of 

Consumers 

CPLEX AC MWD IH 

Total 

Distance 

CPU 

Time 

Total 

Distance 

PD% 

Total 

Distance 

PD% 

Total 

Distance 

PD% 

1 3 6 473.38 1 473.38 0.00 473.62 0.05 473.62 0.05 

2 3 9 545.64 1 545.64 0.00 596.20 9.27 589.54 8.05 

3 3 12 521.95 1 521.95 0.00 557.05 6.73 560.70 7.42 

4 3 15 557.42 3 557.42 0.00 639.30 14.69 707.86 26.99 

5 4 6 475.08 1 475.08 0.00 608.83 28.15 650.10 36.84 

6 4 9 514.68 4 514.68 0.00 553.23 7.49 553.23 7.49 

7 4 12 517.14 7 517.14 0.00 573.84 10.96 554.68 7.26 

8 4 15 518.21 2 518.21 0.00 577.88 11.51 597.00 15.20 

9 5 6 526.20 12 526.20 0.00 573.83 9.05 526.20 0.00 

10 5 9 650.71 55 650.71 0.00 854.72 31.35 788.12 21.12 

11 5 12 696.22 1786 700.57 0.62 877.97 26.11 737.19 5.88 
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12 5 15 771.49 1968 779.59 1.05 1012.45 31.23 906.72 17.53 

13 6 6 584.87 4 584.87 0.00 650.63 11.24 650.63 11.24 

14 6 9 603.22 13 603.22 0.00 674.47 11.81 674.19 11.77 

15 6 12 747.80 1118 747.80 0.00 793.80 6.15 793.80 6.15 

16 6 15 987.07 14504 987.07 0.00 1180.56 19.60 1155.06 17.02 

Average     605.69 1217 606.47 0.10 699.90 14.71 682.41 12.50 

For large problem instances, the performances of the three solution approaches are 

evaluated with respect to the best solution found using the relative percentage deviation 

(RPD). The RPD is calculated according to Eq. (5.20), where RPD𝑖  represents the relative 

percentage deviation in the total length of problem i. Furthermore, the term 𝐵𝑖 is the best 

total length found by any of the solution approaches for problem i (the AC algorithm gave 

the best solution in all problems). The term 𝑆𝑖 is the total length found by the other 

heuristics for the same problem i. 

The results of large problem instances are presented in Table 5.2. The average 

computational time for the heuristics is 0.1 seconds while the average computational time 

for the AC algorithm is 22.6 seconds. The total lengths calculated using the AC algorithm, 

the MWD and the IH respectively are presented in the table and shown in Figure 5.1. It is 

obvious that the results obtained from the AC algorithm are better than the results obtained 

using other heuristics in all problem instances.  

Table 5.2: The results of the MWD and the IH against the AC algorithm 

𝑃𝐷𝑖  =
𝑆𝑖 − 𝐵𝑖

𝐵𝑖
× 100% (5.20) 
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Problem 

Number of 

retail stores 

Number of 

consumers 

Total 

Distance 

AC 

MWD IH 

Total 

Distance 

RPD% 

Total 

Distance 

RPD% 

1 10 25 1253.12 1383.97 10.44 1473.43 17.58 

2 10 50 1509.58 1683.89 11.55 1723.83 14.19 

3 10 75 2231.93 2694.14 20.71 2790.28 25.02 

4 10 100 2272.95 2753.82 21.16 2753.66 21.15 

5 10 150 2625.62 3333.66 26.97 3402.43 29.59 

6 15 25 1533.00 1789.53 16.73 1749.29 14.11 

7 15 50 2022.89 2401.73 18.73 2456.19 21.42 

8 15 75 2512.35 3274.76 30.35 2841.17 13.09 

9 15 100 3079.58 3479.57 12.99 3698.46 20.10 

10 15 150 3718.84 4431.01 19.15 4380.79 17.80 

11 20 25 1900.56 2326.96 22.44 2226.39 17.14 

12 20 50 2333.18 2935.94 25.83 2992.87 28.27 

13 20 75 2902.04 3424.07 17.99 3573.05 23.12 

14 20 100 3573.64 4222.43 18.15 4482.18 25.42 

15 20 150 4391.81 5220.95 18.88 4875.63 11.02 

16 25 25 2086.49 2338.75 12.09 2392.80 14.68 

17 25 50 2610.70 3095.03 18.55 3100.54 18.76 

18 25 75 3186.29 3724.44 16.89 3597.55 12.91 

19 25 100 3920.02 4513.71 15.15 4579.02 16.81 
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20 25 150 4491.01 5370.92 19.59 5574.92 24.14 

Average   2707.78 3219.96 18.92 3233.22 19.40 

 

 

Figure 5.1: The results of the MWD and the IH against the AC algorithm 

The RPD of the two heuristics are calculated with respect to the solution found by 

the AC. The RPD is presented in Table 5.2 and shown in Figure 5.2. The two heuristics 

have similar performance with an average RPD of 18.92% and 19.40% with respect to the 

solution found by the AC for the MWD and the IH respectively. 

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
o
ta

l 
D

is
ta

n
ce

IH

MWD

AC



Multi-Compartment Vehicle Routing Problem for Omni-Channel Retail Distribution 
 

86 
 

 

Figure 5.2: The RPD of the IH and the MWD with respect to the AC 

5.6 Conclusion 

In this chapter, I introduce the VRP arising in the omni-channel retailing. In this 

problem, the existing retail store distribution system is integrated with the consumer 

distribution system by utilizing the same fleet of vehicles. The vehicle has two 

compartments reserved for retail stores demand and consumers demand separately. I 

present a mathematical model for the problem. The mathematical model was solved using 

CPLEX to find the optimal solution. I propose different solution approaches; a Minimum 

weighted distance heuristic, an insertion heuristic and an AC algorithm. Bench mark 

problems are generated to test the effectiveness of the proposed solution approaches. The 

AC produced an average relative percentage deviation of 0.10% with respect to the optimal 

solution for small problem instances. The AC is able to improve the IH and the MWD 

heuristic solutions by 19% approximately for large problem instances.  
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This chapter assumes that the consumers are already assigned to retail stores. A suggested 

research direction is to make the assignment decision as a decision variable in the routing 

problem. In this case, the retail stores shipping the consumer orders will be decided by the 

product availability at retail stores. This decision can be made simultaneously while 

selecting the best routes. 
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Chapter 6 

 

Vehicle Routing Problem in Omni-Channel 

Retailing Distribution Systems with Inventory 

Consideration 

6.1 Introduction 

Transportation of goods through supply chains has attracted significant interest in the 

optimization research throughout the last decades. Transportation has been a key element 

of the competition between organizations as it can denote 10% to 20% of the cost of any 

product [1]. Operations research has been employed in planning efficient transportation 

systems by optimizing the distribution of goods. The VRP is an operational decision in the 

supply chain. The VRP is the problem of distributing goods between depots and customers. 

In this class of problems, the demands of customers are fulfilled with the products 

originating from a depot and transported using a fleet of vehicles such that the total 
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traveling cost of all vehicles is minimized. There are many variants of the VRP according 

to the different classifications of customers and vehicles characteristics. For recent research 

work in the area of the VRP and its variants refer to [19-23]. 

The problem considered in this chapter is motivated by the product distribution 

system found in most retail chain stores following the omni-channel business model. 

Recently, e-commerce has been a global trend and an important tool for every business 

worldwide. Economies have started to rely on e-commerce, and companies have been 

forced to adopt different strategies and policies to adapt to this change in the market. 

Nowadays, most businesses try to increase their sales by using a recent business model 

called omni-channel retailing (e.g., John Lewis Partnership, a major retailer in the UK 

[113]). The retail industry has evolved toward omni-channels [5]. This development is 

helping retail stores reach more consumers and expand their market. It allows consumers 

to go shopping seven days a week, twenty-four hours a day. Omni-channel retailing is a 

seamless experience in which there is no difference between physical and online shopping 

[90].  

In omni-channel retailing, consumers can buy products through multiple channels. 

They can choose to order products to be delivered at home or to physically visit a store to 

buy the products. Delivering products ordered online to consumers is the responsibility of 

the company. These products can be shipped from online distribution centers or from 

nearby stores depending on product availability. Shipping products from an online 

distribution center incurs additional cost to the supply chain. It results in the supply chain 

holding more inventories and delays inventory turnover. In addition, shipping from an 
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online distribution center disrupts the availability between the online system and stores. 

This means that some products are available at stores but not available online and vice 

versa. This has been hindering the omni-channel shopping experience and customer 

satisfaction. Therefore, companies are motivated to have all products available in stores as 

well as online (i.e., shipping the products ordered online from nearby stores).  

Usually, the products ordered online are shipped through regular mail or by a separate 

fleet of vehicles. Shipping products through regular mail increases the product cost, which 

is paid either by the consumer or by the company. Similarly, the use of a separate fleet of 

vehicles to meet the online demand increases product cost as well. However, the additional 

cost can be reduced if the products ordered online are distributed using the existing 

distribution system. The model proposed in this chapter is applicable to organizations that 

use light to medium trucks for serving their scattered retail stores. The proposed model is 

not applicable to some business models where only large trucks are used to deliver products 

to retail stores, because it is inappropriate to visit consumers using these large trucks. In 

addition, several European Union countries have imposed restrictions on the times and 

days when heavy trucks (gross weight equal to or greater than 7.5 tons) are allowed inside 

cities for noise and pollution control. In this case, organizations prefer using fleets of 

smaller trucks to avoid such restrictions. The proposed model is applicable in this situation 

as well.   

The companies that own chain stores operate their own distribution networks to 

deliver products to different retail stores located in the city. Each distribution network 

includes a central warehouse, a group of scattered retail stores, and a fleet of vehicles to 
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deliver the products. In this chapter, I propose delivering products ordered online using the 

same fleet of vehicles. The use of the same vehicles for retail stores and consumers 

complicates the existing distribution system. However, it reduces the total distribution cost. 

This chapter addresses the issue of managing this complicated distribution system of the 

omni-channel retail business model. Thus, I propose a model that uses the same fleet of 

vehicles to distribute online ordered products and the products required by retail stores. 

The proposed model integrates two existing distribution systems: the retail distribution 

system and the consumer distribution system. In the retail distribution system, products are 

delivered from the depot to the retail stores. In the consumer distribution system, products 

are delivered from the retail stores to the consumers. Thus, the VRP arising from this 

integrated distribution system is considered a generalization of two VRP structures. The 

first VRP structure is the CVRP, and the second VRP structure is the PDP. However, the 

proposed model is more general compared with the PDP because retail stores can serve 

more than one consumer. Moreover, the retail stores serving the consumer orders are 

decided based on product availability, which is not determined in advance in our model. 

The proposed problem is considered a generalization of the CVRP and PDP. The 

problem reduces to the CVRP if the demands of all online orders are considered zero. The 

problem reduces to the PDP if the demands of all retail stores are considered zero. Both 

CVRP and PDP are considered NP-hard problems, and hence, the proposed problem will 

also be NP-hard. To the best of our knowledge, this is the first time the VRP in omni-

channel distribution systems is addressed. 
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The main contribution of this chapter can be stated as follows: A new variant of the 

VRP arising in omni-channel distribution systems is presented. This problem has practical 

applications in most retail distribution systems. The mathematical formulation of the 

described problem is presented. In addition, I present two solution approaches to solve the 

problem (two-phase heuristic and multi-ant colony (MAC) algorithm). Moreover, new 

bench mark problem instances are presented that can be used to compare the results of new 

solution approaches in future research work. Finally, I illustrate the benefit of using the 

integrated distribution system instead of the two existing distribution systems. 

6.2 Literature Review 

The proposed problem is closely related to the CVRP and PDP. The CVRP was first 

considered as a generalized form of the popular TSP and formulated by Dantzig and 

Ramser [3]. In the last six decades, many exact, heuristic, and meta-heuristic approaches 

have been proposed to solve the problem. A branch-and-cut algorithm based on a two-

commodity network flow formulation was presented by Baldacci et al. [8]. An exact 

algorithm based on set partitioning formulation was described by Fukasawa et al. [9]. New 

formulations for the problem and new lower bounds were presented by Letchford and 

Salazar-Gonzalez [10]. Different types of metaheuristics have been efficiently used to 

solve the CVRP (e.g., hill climber heuristic (Derigs and Kaiser [11]), particle swarm 

optimization (Ai and Kachitvichyanukul [12]), memetic algorithm (Nagata and Bräysy 

[13]), artificial bee colony algorithm (Szeto et al. [14]), and AC algorithm (Reimann et al. 

[15], and Yu et al. [16])). For recent research in VRP and its variants refer to [19-23]. 
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The PDP was considered for the first time by Lokin [43]. The author introduced a 

variant of the TSP where precedence relations are forced on some of the customers. This 

means that some nodes must be visited before other nodes. The author described a branch 

and bound algorithm for this problem, which was later known as the PDP. Kalantari et al. 

[44] presented a branch and bound algorithm for the problem. They considered single and 

multiple capacitated and non-capacitated vehicles. Savelsbergh and Sol [45] presented a 

survey and a description of the general pickup and delivery problem. Lu and Dessouky 

[46] presented mixed integer linear programming formulation for the multiple vehicle PDP 

and proposed a branch-and-cut algorithm. Ting and Liao [47] formulated the selective PDP 

and presented a memetic algorithm to solve the problem. The PDP with time windows is a 

generalization of the PDP. Different heuristics and metaheuristics have been used to solve 

the problem (e.g., a large neighborhood search heuristic (Ropke and Pisinger, [54]), an 

insertion-based construction heuristic (Lu and Dessouky, [55]), a two-phase heuristic (Lau 

and Liang, [51]), a reactive TS (Nanry and Barnes [50]), a grouping GA (Pankratz, [53]), 

a tabu-embedded SA (Li and Lim [52]), a SA, a PSO, a GA, and an artificial immune 

system (D’Souza et al., [56])). A number of survey papers that deal with the PDP have 

been recently published. Berbeglia et al. [60] presented a survey and classification for the 

problem. Parragh et al. [61-62] provided a comprehensive survey and another 

classification. A literature review shows that the CVRP and PDP have been modeled 

independently. The problem proposed in this chapter combines the structure of the CVRP 

and PDP. To the best of our knowledge, this combination has not been presented before.  
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It is clear from the literature that heuristics and metaheuristics have been used to 

efficiently solve the CVRP and PDP. The proposed problem is complicated, which forces 

the solution approach to solve it in two phases. Therefore, the MAC algorithm can be 

considered as a suitable approach. However, other metaheuristics can be considered in 

future research and compared with the results reported in this chapter. The AC algorithm 

was introduced by Dorigo et al. [63]. The algorithm was inspired from the behavior of real 

ants. Ants communicate by depositing pheromone on every route they travel. Higher 

pheromone intensity guides the successive ants to the most promising route. The algorithm 

was first proposed to solve combinatorial problems. It was applied to solve the TSP. 

Bullnheimer et al. [64] applied the AC algorithm for the first time to solve the VRP with 

promising results. The AC has been used to efficiently solve different variants of the VRP. 

It has been used to solve the dynamic VRP [67], the VRP with backhauls [36], the VRP 

with simultaneous delivery and pickup [37], and the multi-compartment VRP [66]. The 

MAC algorithm was used to solve the capacitated location routing problem in [41] and the 

VRP with time windows and uncertain travel times in [17]. It is clear that the AC 

algorithms have been successfully applied to variants of the VRP with promising results. 

6.3 Problem Description and Mathematical Formulation 

The problem investigated in this chapter considers a giant retailing company running 

in different cities. In a given city, it owns a central warehouse and a group of retail stores. 

The company offers its consumers the choice of purchasing products in two ways: 

physically visiting the stores or ordering the products online. The proposed model 

considers the distribution system for this giant retailing company in a particular city only. 
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The company offers a group of products that can be ordered online. Each consumer places 

an order for a specific product that can be supplied from more than one retail store. Thus, 

the consumer demand specifies the type and the quantity of the required product. The 

available inventory for each product at different retail stores is known. The retail store from 

which a consumer demand will be satisfied is considered as a decision variable in our 

model. For simplification, if a consumer orders more than one item, I assume that each 

item will be delivered separately by duplicating the consumer. The assumption of single 

item order by a consumer is adopted to guarantee the solution feasibility and to minimize 

the distribution cost. If multiple items are ordered and can be satisfied from a single retail 

store, the algorithm will automatically assign single deliveries. If multiple items are 

ordered and if they are required to be satisfied from multiple retail stores, enforcing single 

delivery for consumers can either increase the distribution cost or make the solution 

infeasible. 

Products from different suppliers are delivered to the retail company’s central 

warehouse. These products are stored in the warehouse in larger packages till they are 

needed by the retail stores. I assume that each retail store has a specified delivery from the 

depot which is measured in terms of number of pallets. Thus, the demand is specified by 

the number of pallets. The products are delivered to the retail stores on a daily basis in 

order to replenish their inventory. Moreover, the company commits to delivering the 

products ordered online from the retail stores to the consumers. Therefore, the distribution 

network of the company performs two types of deliveries: deliveries from the warehouse 



Vehicle Routing Problem in Omni-Channel Retailing Distribution Systems with Inventory 

Consideration 
 

96 
 

to the retail stores and deliveries from the retail stores to the consumers. The company tries 

to utilize the same fleet of vehicles to serve the retail stores and the consumers.  

The demand of the online consumers is satisfied from the retail stores’ inventory. 

Products ordered online are picked up from retail stores and shipped to the online 

consumers. The products shipped to consumers may be the same products delivered to the 

retail stores from the warehouse. However, those products need further handling and 

packaging before being shipped to the consumers. They must be packaged in advance to 

be picked up by a vehicle visiting the retail stores. Therefore, as they require further 

packaging, products ordered online cannot be shipped directly from the central warehouse. 

Moreover, the warehouse does not hold inventory of all items. It temporarily holds the 

products until they are needed by the retail stores. 

The proposed model suggests that both retail stores and consumers are visited using 

the same fleet of vehicles. Hence, the proposed model is applicable to organizations that 

use small vehicles for serving their scattered retail stores. The proposed model is not 

applicable to some business models where only large trucks are used to deliver products to 

the retail stores because it is inappropriate to visit consumers using these large trucks. 

In summary, the proposed model considers two sets of customers served by a fleet of 

homogenous vehicles. The first set of customers comprises r retail stores that require 

products to be delivered from a distribution center, and the second set comprises c 

consumers that require products to be supplied from any retail store. The fleet of vehicles 

is available at the depot.  
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A solution for the proposed model comprises a number of vehicle routes. Each 

vehicle starts from the warehouse, visits a set of retail stores and consumers in any 

sequence, and finally returns to the warehouse. However, the retail store that has been 

determined to satisfy the demand of a particular consumer must be visited before that 

particular consumer. The proposed model aims to minimize the total cost of the vehicle 

routes such that: 

▪ Every route starts and ends at the depot. 

▪ The routes do not exceed the maximum tour length. 

▪ Every retail store is visited by only one vehicle and only once. 

▪ The total load of the vehicle arising from the delivery demand of the retail stores 

does not exceed the vehicle capacity. 

▪ Every consumer is visited by only one vehicle and only once. 

▪ The total consumer demand to be fulfilled by a retail store for a certain product 

does not exceed the available inventory of this product at the retail store. 

▪ The retail store determined to satisfy the consumer’s demand must be visited 

before the consumer and by the same vehicle. 

The problem structure is illustrated using a numerical example. Consider a small 

distribution network that consists of one depot and three retail stores and six consumers. 

Three products are available for online orders and the vehicles capacity is 100. The data of 

the distribution network is given in Table 6.1: 
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Table 6.1: Data for a small distribution network 

Node X Y 𝐷𝑖 

Ordered 

product 

Online 

demand 

Inventory 

P1 P 2 P 3 

0 95 66 0 0 0 0 0 0 

1 54 23 37 0 0 0 2 1 

2 19 40 42 0 0 1 2 0 

3 75 19 28 0 0 2 0 1 

4 60 20 0 3 1 0 0 0 

5 8 89 0 2 1 0 0 0 

6 35 42 0 2 1 0 0 0 

7 60 10 0 1 1 0 0 0 

8 48 93 0 1 1 0 0 0 

9 41 99 0 2 1 0 0 0 

 

The solution of the proposed problem specifies two decisions: the assignment of 

consumers to retail stores and the vehicle route. The optimum solution of the problem has 

a total distance of 386.91 and the vehicle route is ( 0  1  6  2  5  9  8  0  3  7  4  0 ). In this 

solution, as shown in Figure 6.1, consumer 6 is assigned to retail store 1; consumers 5, 8, 

and 9 are assigned to retail store 2; and consumers 4 and 7 are assigned to retail store 3. 

The first vehicle starts from the depot (node 0) with initial load of 79 units to satisfy the 

demand of retail stores 1 and 2. The vehicle then proceeds to retail store 1 to deliver its 

demand (37 units) and to pick up the product required by its assigned consumer 6. The 
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vehicle delivers the picked-up product to consumer 6. The vehicle then proceeds to retail 

store 2 to deliver its demand (42 units) and to pick up the product required by its assigned 

consumers 5, 9, and 8. The vehicle then delivers the picked-up product to consumers 5, 9, 

and 8 and returns to the depot. The second vehicle starts from the depot (node 0) with initial 

load of 28 units to satisfy the demand of retail store 3. The vehicle then proceeds to retail 

store 3 to deliver its demand and to pick up the product required by assigned consumers 7 

and 4. The vehicle delivers the picked-up product to consumers 7 and 4 and returns back 

to the depot. 

 

 

The notations used in the mathematical formulation are listed below: 

Sets: 

𝑁 Set of all customer nodes 

𝑅 Set of retail stores 
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Figure 6.1: The optimum solution of the distribution network in Table 6.1 
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𝐶 Set of online consumers (consumers ordering products online) 

𝐾 Set of vehicles 

𝑃 Set of products 

Parameters: 

𝑄 Vehicle capacity 

𝐷𝑖 Quantity to be delivered from the depot to retail store i 

 𝑑𝑗
𝑝

 Demand of consumer j for product p 

𝐼𝑖
𝑝
 Inventory level of product p at retail store i 

𝐿 The maximum length of any route 

𝐶𝑖𝑗 The distance of traversing arc (i,j) 

𝑇𝑖𝑗 The time of traversing arc (i,j) 

𝑂𝑖 Drop time at the location i  

Decision variables: 

𝑄𝑖
𝑘 The total quantity carried by vehicle k after leaving node i 

𝑆𝑖
𝑘  The service start time at node 𝑖 by vehicle 𝑘 

𝑋𝑖𝑗
𝑘  Binary flow variable equals 1 if the arc (i,j) is traversed by vehicle k, and 0 

otherwise. 

𝑌𝑖𝑗  Binary variable equals 1 if consumer 𝑗 ∈ 𝐶 is served by retail store 𝑖 ∈ 𝑅 and 0 

otherwise. 

The problem can be defined using graph theory as follows: Let G = (V, A) be an 

undirected graph with a set of vertices V = {0, 1,…, (r+c)}, where r is the number of retail 
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stores and c is the number of consumers. Node {0} is the distribution center from where 

products are delivered to retail stores. Here, R = {1 … r} are the retail stores, and C = 

{r+1… r+c} are the consumers. Nodes N = {1, 2, …r, r+1, …, r+c} are the customer nodes 

(retail stores and consumers) served by a number of identical vehicles k (initially located 

in the depot). There are P types of products available for orders by consumers. Each 

customer 𝑖 ∈ 𝑁 has a quantity 𝐷𝑖  to be delivered from the depot. According to the 

definition, 𝐷𝑖 is the quantity to be delivered from the depot to retail store i. Since the 

demand of online consumers is not satisfied from the depot, 𝐷𝑖 is considered to be zero for 

all online consumers. Each retail store 𝑖 ∈ 𝑅 has an inventory level 𝐼𝑖
𝑝
 available for 

satisfying orders of consumers for a certain product 𝑝 ∈ 𝑃. Each consumer 𝑗 ∈ 𝐶 has a 

demand 𝑑𝑗
𝑝 for product p, which can be delivered from any retail store 𝑖 ∈ 𝑅. However, I 

assume that each consumer can order only one item. I assume that the consumer demand 

is negligible compared to the retail store demand. Therefore, the vehicle load is not affected 

by the consumer demand. The retail store from where the consumer order is shipped is 

decided according to inventory availability. 

𝑍 = ∑ ∑ ∑ 𝐶𝑖𝑗
𝑘 𝑋𝑖𝑗

𝑘

𝑗∈𝑉𝑖∈𝑉𝑘∈𝐾

 (6.1) 

Subject to:   

∑ ∑ 𝑋𝑖𝑗
𝑘

𝑗∈𝑉𝑘∈𝐾

= 1          ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗 (6.2) 

∑ 𝑋(0)𝑗
𝑘 =

𝑗∈𝑅

1 ∀𝑘 ∈ 𝐾 (6.3) 
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∑ 𝑋𝑖𝑗
𝑘 −

𝑖∈𝑉

∑ 𝑋𝑗𝑖
𝑘

𝑖∈𝑉

= 0 ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (6.4) 

∑ 𝑋𝑖(0)
𝑘

𝑖∈𝑁

= 1       ∀𝑘 ∈ 𝐾 (6.5) 

𝑌𝑖𝑗 (∑ 𝑋𝑖𝑙
𝑘 −

𝑙∈𝑁

∑ 𝑋𝑙𝑗
𝑘

𝑙∈𝑁

) = 0 ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃, 𝑖 ≠ 𝑙, 𝑗 ≠ 𝑙 (6.6) 

∑ 𝑌𝑖𝑗 = 1

𝑖∈𝑅

 ∀𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃 (6.7) 

∑ 𝑌𝑖𝑗𝑑𝑗
𝑝 ≤

𝑗∈𝐶

 𝐼𝑖
𝑝
 ∀𝑖 ∈ 𝑅, 𝑝 ∈ 𝑃 (6.8) 

𝑄 ≥ 𝑄𝑖
𝑘 ≥ (𝑄𝑗

𝑘 + 𝐷𝑗)𝑋𝑖𝑗
𝑘  ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (6.9) 

𝑆𝑗
𝑘 ≥ (𝑆𝑖

𝑘 + 𝑇𝑖𝑗+𝑂𝑖) 𝑋𝑖𝑗
𝑘   ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (6.10) 

𝑆𝑗
𝑘 ≥ (𝑆𝑖

𝑘 + 𝑇𝑖𝑗+𝑂𝑖) 𝑌𝑖𝑗  ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾 (6.11) 

𝑆𝑖
𝑘 + 𝑂𝑖 + 𝑇𝑖0 ≤ 𝐿 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (6.12) 

𝑋𝑖𝑗
𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (6.13) 

𝑌𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃 (6.14) 

Eq. (6.1) is the objective function representing the total traveling cost of all arcs 

traversed by all vehicles. Eq. (6.2) confirms that exactly one arc enters a customer node. 

Eqs. (6.3-6.5) confirm that each vehicle starts its route from the depot and ends its route at 

the depot. Eq. (6.6) confirms that if a retail store is fulfilling the demand of a certain 

consumer, both the retail store and consumer are visited by the same vehicle. Eq. (6.7) 

confirms that each consumer is served by only one retail store. Eq. (6.8) confirms that the 

quantity to be delivered from retail store i to all the consumers served from this retail store 

is less than or equal to the inventory level at this retail store. Eqs. (6.9) and (6.10) confirm 

that the consistency of the capacity and time and the routes connectivity are preserved. Eq. 
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(6.11) confirms that for each delivery, the retail store i is visited before consumer j. Eq. 

(6.12) confirms that no route should exceed the maximum tour length. 

The mathematical model is nonlinear and the problem falls under the category of NP-

hard problems. However, the mathematical model is linearized and solved using CPLEX 

to obtain optimal solutions for small problem instances. The optimal solutions found by 

CPLEX are used to evaluate the performance of the proposed solution approaches. The 

model is linearized by replacing Eq. (6.6) with Eqs. (6.15 and 6.16) and replacing Eqs. 

(6.9-6.11) with Eqs. (6.17-6.19) respectively. 

∑ 𝑋𝑖𝑙
𝑘 −

𝑙∈𝑁

∑ 𝑋𝑙𝑗
𝑘

𝑙∈𝑁

≤ (1 − 𝑌𝑖𝑗 )𝑀 ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾 (6.15) 

∑ 𝑋𝑙𝑗
𝑘

𝑙∈𝑁

− ∑ 𝑋𝑖𝑙
𝑘

𝑙∈𝑁

≤ (1 − 𝑌𝑖𝑗 )𝑀 ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾 (6.16) 

(𝑄𝑗
𝑘 + 𝐷𝑗 − 𝑄𝑖

𝑘) ≤ (1 − 𝑋𝑖𝑗
𝑘 )𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (6.17) 

(𝑆𝑖
𝑘 + 𝑇𝑖𝑗+𝐷𝑇𝑖 − 𝑆𝑗

𝑘) ≤ (1 − 𝑋𝑖𝑗
𝑘 )𝑀 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 ≠ 𝑗 (6.18) 

(𝑆𝑖
𝑘 + 𝑇𝑖𝑗+𝐷𝑇𝑖 − 𝑆𝑗

𝑘) ≤ (1 − 𝑌𝑖𝑗 )𝑀 ∀𝑖 ∈ 𝑅, 𝑗 ∈ 𝐶, 𝑘 ∈ 𝐾 (6.19) 

Where M is a number with a big value. 

6.4 Solution Approaches 

It is common in the VRP literature to consider the near-optimum solutions found 

using heuristic and metaheuristic solution approaches. Thus, this chapter presents a two-

phase heuristic and a metaheuristic based on the AC algorithm to solve the problem. 

Heuristics are used when reasonable quality solutions are required in minimal CPU time. 

Metaheuristics can generate better quality solutions but require longer CPU time. This 

chapter aims to provide both solution approaches that can satisfy the need of different users. 
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6.4.1  Two-Phase-Based Heuristic  

The heuristic was designed in two phases to ensure that it builds a feasible route. In 

the first phase, consumers are assigned to different retail stores and simultaneously a retail 

store route is built for each retail store. In the second phase, retail stores’ routes are 

combined to build the final solution. The proposed problem assumes that the tour length of 

a given route does not exceed a specified tour length. The problem also requires that the 

demand of consumers is satisfied from the product available at the retail stores. Further, 

the problem assumes a single visit for each retail store and consumer. This means that a 

retail store and its associated consumers must be visited by the same vehicle. Then, in a 

simplest route, the vehicle starts from a depot, visits a single retail store and its associated 

consumers, and finally returns to the depot. In this situation, it is necessary to assign 

consumers to retail stores such that the simplest route consisting of a retail store and its 

associated consumers does not violate the maximum tour length constraint. Thus, our 

heuristic approach tries to find a feasible assignment of consumers to retail stores in the 

first phase. Then, retail stores’ routes are combined in the second phase to reduce the total 

tour distance. The heuristic is described below in more details. 

6.4.1.1 Phase 1: Build TSP Routes 

The aim of the first phase of the heuristic is to build feasible retail store routes. In the 

beginning, routes equal to the number of retail stores are built. The route starts from a 

depot, proceeds to one of the retail stores, and returns to the depot. Then, consumers are 

assigned to retail stores’ routes starting from the first consumer till all consumers are 

assigned to the routes. First, efforts are made to assign each consumer to its nearest retail 
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store on the basis of two criteria. The first criterion is that the product required by the 

consumer is available at the retail store. The second criterion is that the insertion of the 

consumer in the least cost position on the retail store’s route does not violate the maximum 

tour length constraint. The least cost position is the position at which the length of the retail 

store’s route is the minimum. If the consumer assignment at the nearest retail store is not 

feasible, then an attempt is made to assign the consumer to the next nearest route. In this 

manner, the consumer is assigned to one of the retail stores’ routes. If the consumer cannot 

be assigned to any retail store route without exceeding the maximum tour length, then a 

corrective action is used for consumer assignment.  

In the corrective action, the consumer is assigned to its nearest retail store where 

inventory is available to satisfy the consumer demand. This is done by removing one or 

more existing consumers from the retail store’s route. The removal of existing consumers 

starts from the last consumer in the route. The removed consumers are assigned to other 

retail stores’ routes. The existing consumers can be removed from their assigned retail 

store’s route only if they can be feasibly assigned to another route. I keep on removing 

existing consumers till the new consumer can be inserted without violating the maximum 

tour length constraint. If removing existing consumers from the retail store’s route does 

not allow the new consumer to be feasibly inserted, an attempt is made to insert the new 

consumer in other retail stores’ routes. Priority of insertion is given to the nearest retail 

store.  

6.4.1.2 Phase 2: Build Final VRP Routes 
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In the second phase of the heuristic, the routes of the retail stores are combined. Two 

retail stores’ routes can be combined only if it is possible to complete the two routes and 

return to the depot without violating the maximum tour length. The routes are combined 

based on the maximum saving criterion of Clarke and Wright [114]. Under this criterion, 

combinations of all existing routes are considered for possible merging. The combination 

that provides the maximum benefit is selected for merging. The merging process continues 

till merging of two routes is feasible.  

6.4.2 MAC Algorithm  

The power of the AC and other metaheuristics comes from their ability to approach 

good quality solutions in minimal time. They start with a group of initial solutions scattered 

in the search space, and then proceed to the area where it is most likely to find better 

solutions. In addition, metaheuristics have the ability to avoid trapping in the local optimum 

unlike regular heuristics. The probability of choosing lower quality solutions enables the 

heuristic to search new areas where good quality solutions may be hidden. The proposed 

problem is complicated, which forces the solution approach to solve it in two phases. 

Therefore, the MAC algorithm can be considered as a suitable approach unlike some of the 

other metaheuristics. However, other metaheuristics can be considered in future research 

and then compared with the reported results in this chapter. The AC algorithm is based on 

the behavior of real ants when they search for the shortest path to food. Real ants follow 

the trails of their successive ants to find the shortest path. The AC uses artificial ants to 

construct good quality solutions. In the MAC algorithm, more than one ant is used to 

construct a solution. In our MAC algorithm, the first group of ants (Ant1) is used to assign 
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consumers to retail stores and build retail stores’ routes. The second group of ants (Ant2) 

is used to build final vehicles routes by combining retail stores’ routes produced by the first 

ant. The outline of the algorithm is given below followed by a detailed description: 

Step 1: Create initial solution to initialize the trail intensities 

Step 2: Repeat the following to construct VRP routes  

▪ Use Ant1 to build retail stores’ routes 

▪ Use Ant2 to build VRP routes by combining retail stores’ routes 

▪ Perform local search to improve the solution quality of ants 

▪ Update best solution found so far 

▪ Update trail intensities for all arcs using best solution 

Step 3: Terminate the algorithm and report the best solution 

6.4.2.1 Initializing Trail Intensities 

The first step of the MAC algorithm is to initialize trail intensities (pheromone) to all 

arcs. This initial pheromone is usually calculated from an initial solution. In this algorithm, 

the initial pheromone is calculated from the solution found in the two-phase heuristic. The 

initial pheromone does not affect the solution because the same amount of pheromone is 

located on all edges. The initial pheromone is calculated based on the expression 𝜏1𝑖𝑗 =

𝜏2𝑖𝑗 = 1 𝐿     (∀𝑖, 𝑗 ∈ 𝑁)⁄ , where L is the total length of the route generated using the two-

phase heuristic. 

 

6.4.2.2 Route Construction 
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A number of m routes are generated in each iteration of the MAC using m ants from 

Ant1 and m ants from Ant2.  

1. Building Retail Stores Routes Using Ant1 

Ant1 is used to assign consumers to retail stores, i.e., generate a route for each retail 

store. The ant assigns consumers one by one to retail stores based on the probability 

function stated in Eq. (6.20), where 𝑁1𝑗  is the list of feasible retail stores that have 

sufficient inventory of the product required by consumer i. The term 𝜀1𝑖𝑗 is the attraction 

value of assigning consumer i to retail store j and is calculated using Eq. (6.20). The first 

measure 𝜏1𝑖𝑗 is the pheromone value between retail store j and consumer i. This value 

represents how frequently consumer i was assigned to retail store j in previous iterations. 

The second measure 𝜇1𝑖𝑗 is the inverse of the arc (i,j) distance between retail store j and 

consumer i. The lower distance gives the higher attraction value. The third measure 𝑆𝑇𝑗 is 

the slack time in the retail store j trip (i.e., the difference between the maximum tour length 

and the current tour length of retail store j). It can be noticed that it is more preferable to 

assign consumers in the routes with more slack time. However, if the trip time exceeds the 

maximum tour length, the slack time is equal to 1. This means that consumers can still be 

assigned to retail stores even if it violates the maximum tour length constraint. The 

algorithm is allowed to exceed the maximum tour length in order to offer more chances to 

escape trapping in the local optima. However, after all retail stores’ routes are generated, a 

corrective action is performed to meet the maximum tour length constraint.  
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𝑃1𝑖𝑗 = {

𝜀1𝑖𝑗

∑ 𝜀1𝑙𝑖𝑙∈𝑁1𝑖
 
                    𝑖𝑓 𝑗 ∈ 𝑁1𝑖          

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

             (6.20) 

𝜀1𝑖𝑗 = (𝜏1𝑖𝑗)
𝛼1

(𝜇1𝑖𝑗)
𝛽1

(𝑆𝑇𝑗)  (6.21) 

After assigning each consumer to a retail store, all possible positions in the retail 

stores’ route are considered for inserting the consumer. The consumer is inserted at the 

position that generates a shorter distance route. Ant1 ignores the maximum tour length 

constraint by allowing assignment of consumers to routes even if there is no slack time in 

these routes. Thus, a corrective action must be performed to make the routes feasible.  

A corrective action is applied to the retail stores’ routes violating the maximum tour 

length constraint. Starting from the last consumer, consumers are considered for removal 

from the infeasible route one by one till the route becomes feasible. The removed 

consumers are assigned to other retail stores where they can be feasibly assigned. If a 

consumer cannot be feasibly assigned to another retail store’s route, it is not removed from 

its original route. If the infeasible routes remain infeasible after possible removal of all 

existing consumers, the entire solution is discarded and another solution is generated. 

2. Combining Retail Store Routes Using Ant2 

Ant2 is used to combine retail stores’ routes, i.e., generate final VRP routes. The 

probability of combining routes of retail store j and retail store i is calculated using Eq. 

(6.22), where 𝑁2𝑖 is the list of feasible retail stores’ routes that can be combined with the 

route of retail store i without exceeding the maximum tour length constraint. The term 𝜀2𝑖𝑗 

is the attraction value of combining the routes of retail store i and retail store j and is 
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calculated using Eq. (6.23). The first measure 𝜏2𝑖𝑗 is the pheromone value between retail 

store i and retail store j. This value represents how frequently the routes of retail store i and 

retail store j are combined in the best solutions found in the previous iterations. The second 

measure 𝜇2𝑘𝑗 is the inverse of arc (k,j) distance between retail store j and consumer k, 

where k is the last consumer in the route of retail store i. The lower arc distance gives the 

higher attraction value.  

𝑃2𝑖𝑗 = {

𝜀2𝑖𝑗

∑ 𝜀2𝑖𝑙𝑙∈𝑁2𝑖
 
                    𝑖𝑓 𝑗 ∈ 𝑁2𝑖          

0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

             (6.22) 

𝜀2𝑖𝑗 = (𝜏2𝑖𝑗)
𝛼2

(𝜇2𝑘𝑗)
𝛽2

 (6.23) 

By combining retail stores’ routes, m VRP routes are generated. The distances of all 

VRP routes are calculated and the best solution found so far is updated.  

After creating vehicle routes, insertion local search is used to improve the solution quality. 

Two neighborhood structures are investigated: intra-route move and inter-route move. 

Feasible moves are evaluated and the move with highest improvement is applied. The local 

search is stopped when no further improvement is allowed. 

6.4.2.3 Updating Elitist Ants and Trail Intensities 

Elitist ants are used to update trail intensities. Elitist ants are defined as the best ant 

solutions found so far. They are updated by comparing the current ant solution with the 

current elitist ant solutions. After the elitist ants are updated, all trail intensities are updated 

using the 𝛾 elitist ants found so far. Pheromone or trail intensities evaporate with time on 

all arcs. At the same time, ants deposit pheromone on the visited arcs. Updating trail 
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intensities is described in two steps: lowering pheromone on all arcs and pheromone 

increase on the arcs reported in the 𝛾 elitist ant routes only. According to Dorigo et al. [63], 

ρ is defined as trail persistence 0 ≤ ρ < 1. The term (1 − ρ) is interpreted as trail evaporation. 

There are two types of pheromones: pheromone used for assigning consumers to retail 

stores and pheromone for combining retail stores. Eq. (6.24) is used to update the 

pheromone used for assigning consumers to retail stores. Pheromone is updated by adding 

1 𝐿𝑏𝑒𝑠𝑡⁄  to the remaining amount of trail intensity after its evaporation. The pheromone is 

increased if consumer i is assigned to retail store j in the elitist ant solutions. Eq. (6.26) is 

used to update the trail between the retail stores. Pheromone is updated by adding 1 𝐿𝑏𝑒𝑠𝑡⁄  

to the remaining amount of trail intensity after its evaporation. The pheromone is increased 

if the routes of retail store i and retail store j are combined in the 𝛾 elitist ant solutions, 

where 𝐿𝑏𝑒𝑠𝑡 is the total length of the best solution found so far. 

𝜏1𝑖𝑗
𝑛𝑒𝑤 = 𝜌1 × 𝜏1𝑖𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏1𝑖𝑗
𝑡𝜃

𝛾

𝜃=1

 (6.24) 

∆𝜏1𝑖𝑗
𝜃 = {

1 𝐿𝑏𝑒𝑠𝑡⁄            if consumer 𝑖 is assigned to retail store𝑗 
                 in the route of the 𝜃th elitist ant,       

0                        otherwise                                                   

 (6.25) 

𝜏2𝑖𝑗
𝑛𝑒𝑤 = 𝜌2 × 𝜏2𝑖𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏2𝑖𝑗
𝑡𝜃

𝛾

𝜃=1

 (6.26) 

∆𝜏2𝑖𝑗
𝜃 = {

1 𝐿𝑏𝑒𝑠𝑡⁄            if retail stores 𝑖 and 𝑗 are combined 
                          in the route of the 𝜃th elitist ant,       

0                        otherwise                                          

 (6.27) 

Refer to parameter setting in the next subsection for the setting of the value of 𝜌. The 

first parts of Eqs. (6.24) and (6.26) represent the remaining amount of trail intensities after 



Vehicle Routing Problem in Omni-Channel Retailing Distribution Systems with Inventory 

Consideration 
 

112 
 

evaporation. Therefore, the existing trail intensities are multiplied by the term ρ. In the 

second part of Eq. (6.24), trail intensities between consumers and their assigned retail 

stores in the best solution are increased by the amount 1 𝐿𝑏𝑒𝑠𝑡⁄ . In the second part of Eq. 

(6.26), trail intensities between retail stores combined in one route in the best solution are 

increased by the amount 1 𝐿𝑏𝑒𝑠𝑡⁄ . 

6.4.2.4  Parameters Setting for MAC 

 I use 1000 iterations to test the performance of the MAC against the solution found 

using the two-phase heuristic. Using 1000 iterations kept the computational time of the 

MAC comparable to the computational time of the two-phase heuristic. Moreover, the 

solution quality does not significantly improve when more iterations are used. The number 

of used ants, m, controls the solution quality, but it also affects the computational time. I 

found that after 10 ants, there is no significant improvement in the solution quality 

compared to the excessive increase in the computational time. I found that using 10 elitist 

ants to update the trail intensities gives better solution quality. Dorigo et al. [63] reported 

that better solutions are found using α1= α2 = 1 and β1 = β2 = 2. Setting ρ1 = ρ1 = 0.9 

updates the pheromone with new ant experience on account of the existing experience, 

which produces better solutions. 

6.5 Numerical Experiments 

In this section, I explain the data generation of bench mark problem instances, show 

and compare the results for the proposed solution approaches, and illustrate the benefit of 

using the integrated distribution system instead of the two existing distribution systems. 
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6.5.1 Data Generation 

There are no bench mark problem instances for VRP in omni-channel retail 

distribution systems. Therefore, I create bench mark problem instances to test our solution 

approaches. I use two sets of problem instances: small problem instances and large problem 

instances. The small problem instances are used to compare the solution of the proposed 

solution approaches with the optimal solution. The large problem instances are used to 

compare the two solution approaches and for testing other solution approaches in the 

future. In the first set, I use number of retail stores of 3, 4, 5, and 6 and number of consumers 

of 6, 9, 12, 15, and 18. Thus, a total of 20 problem instances are generated. In the second 

set, I use number of retail stores of 10, 15, 20, and 25 and number of consumers of 25, 50, 

75, 100, and 150, and three different available inventory scenarios. Thus, a total of 60 

problem instances are generated. In both sets of problem instances, the X and Y coordinates 

of retail stores and consumers are randomly created in the range [0,100]. The demand of 

the retail stores is generated randomly between 25 and 50 units, while the capacity of the 

vehicles is fixed to 100 units for all problem instances. The number of product types 

available for online demand generated in [3–5] product types in the first set of problem 

instances and in [10–20] product types in the second set of problem instances. Each 

consumer is allowed to choose one item from the products available in the network. 

Products are randomly assigned to consumers. The maximum tour length is fixed to 8 h 

and the drop time is fixed to 5 min for all problem instances. Three scenarios for the 

available inventory of retail stores used to serve the online order are considered to study 
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the effect of inventory availability on the solution in the second set of problem instances. 

The three scenarios are presented below: 

1. Scenario 1: Tight Available Inventory 

• ∑ 𝐼𝑝 = ∑ 𝐷𝑝 + 𝑈[0.1,0.2] ∑ 𝐷𝑝 

2. Scenario 2: Relaxed Available Inventory  

• ∑ 𝐼𝑝 = ∑ 𝐷𝑝 + 𝑈[0.5,1] ∑ 𝐷𝑝 

3. Scenario 3: Abundant Available Inventory  

• 𝐼𝑝 = ∑ 𝐷𝑝 (at each retail store) 

where  

∑ 𝐼𝑝 is the total inventory available in the network of product p 

∑ 𝐷𝑝 is the total online demand of product p  

The first scenario represents tight available inventory to satisfy the consumer 

demand. The second scenario represents relaxed available inventory and the third scenario 

represents abundant available inventory. In the first scenario, the total available inventory 

for a product is just 10%–20% excess of the total product demand. While in the second 

scenario, the total available inventory for a product is 50%–100% excess of the total 

product demand. In the third scenario, it is assumed that each retail store can satisfy the 

demand of all online orders for a certain product from its available inventory. 

6.5.2 Computational Results  

The proposed MAC algorithm and two-phase heuristic were coded in C and the 

generated 80 problems were solved. The MAC was run for 1000 iterations only to maintain 

the considerably low computational time. The two-phase heuristic gave a single solution. 
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The results were obtained using a server that operates four 2.1 GHz processors with 16-

cores each and a total of 256 GB RAM. The mathematical model was coded using AMPL 

and solved using the CPLEX solver. The performances of the two solution approaches are 

evaluated with respect to their solutions’ total traveled length using the PD. The PD is 

calculated according to Eq. (6.28), where 𝑃𝐷𝑖  represents the relative percentage deviation 

in the total length for the two solutions of problem i. Furthermore, the term 𝐶𝑖 is the total 

length found by CPLEX for problem i and the term 𝑆𝑖 is the total length found by the MAC 

algorithm or the two-phase heuristic for the same problem i. 

The results of the small problem instances are presented in Table 6.2. The CPU time 

taken by the MAC algorithm and the two-phase heuristic was less than one second. Note 

that the MAC algorithm could reach the best solution found by the CPLEX in 17 out of the 

20 problem instances. The average PD of the MAC with respect to the solution found by 

CPLEX is 0.13%. It can be concluded that the MAC algorithm has a good performance 

while it succeeded in maintaining a shorter CPU time compared with the CPLEX, which 

needed 4161 s on average. On the other hand, the performance of the two-phase heuristic 

is poor and it has an average PD of 43% with respect to the solution found by the CPLEX. 

 

 

 

Table 6.2: The results of the MAC and the heuristic against the optimum solution. 

𝑃𝐷𝑖  =
𝑆𝑖−𝐶𝑖

𝐶𝑖
× 100% (6.28) 
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Problem 

Number 

of 

Retail 

stores  

Number of 

Consumers 

CPLEX MAC Heuristic 

Total 

Distance 

CPU 

Time 

Total 

Distance 

PD% 

Total 

Distance 

PD% 

1 3 6 386.91 1 386.91 0.00 479.19 23.85 

2 3 9 416.35 1 416.35 0.00 589.63 41.62 

3 3 12 424.31 9 424.31 0.00 512.32 20.74 

4 3 15 455.29 31 455.29 0.00 767.06 68.48 

5 3 18 601.36 65 601.36 0.00 936.20 55.68 

6 4 6 419.32 1 419.33 0.00 512.12 22.13 

7 4 9 455.91 16 455.91 0.00 688.39 50.99 

8 4 12 448.83 525 449.35 0.12 711.88 58.61 

9 4 15 457.32 3 457.32 0.00 746.57 63.25 

10 4 18 514.38 11326 514.38 0.00 740.80 44.02 

11 5 6 486.04 9 486.04 0.00 545.72 12.28 

12 5 9 624.81 35 624.81 0.00 881.95 41.15 

13 5 12 535.44 33 535.44 0.00 961.67 79.61 

14 5 15 605.03 111 605.03 0.00 838.93 38.66 

15 5 18 708.23 3078 709.89 0.23 898.75 26.90 

16 6 6 468.89 7 468.89 0.00 582.10 24.14 

17 6 9 468.61 75 468.61 0.00 608.99 29.96 

18 6 12 586.62 6696 586.62 0.00 924.41 57.58 
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19 6 15 750.94 940 750.94 0.00 964.11 28.39 

20 6 18 588.65 60267 601.71 2.22 1005.72 70.85 

Average     520.16 4161.45 520.92 0.13 744.82 42.94 

 

The results of the proposed MAC algorithm and the two-phase heuristic for large 

problem instances are presented in Tables 6.3–6.5. The performances of the two solution 

approaches are evaluated with respect to the best solution found using the RPD. The RPD 

is calculated according to Eq. (6.29), where RPD𝑖 represents the RPD in the total length of 

problem i. Furthermore, the term 𝐵𝑖 is the best total length for problem i. The RPD 

presented in Tables 6.3–6.5 are calculated for the two-phase heuristic with respect to the 

MAC algorithm because the MAC algorithm gave the best solution in all problems. The 

term 𝑆𝑖 is the total length found by the two-phase heuristic for the same problem i. 

The results for scenario 1 (the tight available inventory scenario) are reported in 

Table 6.3. It can be noticed that the results obtained from the MAC are better than the 

results obtained from the two-phase heuristic. The average total length calculated using the 

heuristic is 3275.61 and the average total length calculated using the MAC is 2028.30. The 

average RPD of the heuristic compared to the MAC is 61.50%. The CPU time taken for 

the two-phase heuristic is still less than one sec. However, the MAC CPU time is 227 s on 

average. The results for scenarios 2 and 3 are reported in Table 6.4 and Table 6.5, 

𝑃𝐷𝑖  =
𝑆𝑖 − 𝐵𝑖

𝐵𝑖
× 100% (6.29) 
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respectively. Over the 60 problem instances, the average RPD of the heuristic compared to 

the MAC is 53.32% and the average CPU time of the MAC is 697 sec.  

Table 6.3: The results of inventory scenario 1 using the MAC and the heuristic 

Problem 

No. of 

retail 

stores 

No. of 

consumers 

Heuristic 

Total 

Length 

MAC 

Total 

Length 

MAC 

CPU 

Time 

RPD% 

1 10 25 1631.63 1002.47 7 62.76 

2 10 50 2057.50 1189.79 47 72.93 

3 10 75 3006.19 1815.42 80 65.59 

4 10 100 2830.16 1529.04 303 85.09 

5 10 150 3478.72 1905.19 640 82.59 

6 15 25 1774.35 1313.69 8 35.07 

7 15 50 2461.83 1510.55 49 62.98 

8 15 75 3545.11 2101.77 142 68.67 

9 15 100 3528.98 2329.53 227 51.49 

10 15 150 4916.75 3012.18 469 63.23 

11 20 25 2432.56 1611.34 12 50.97 

12 20 50 2695.34 1800.87 55 49.67 

13 20 75 3936.67 2406.04 140 63.62 

14 20 100 3826.14 2483.81 345 54.04 

15 20 150 4496.05 2790.69 761 61.11 



Vehicle Routing Problem in Omni-Channel Retailing Distribution Systems with Inventory 

Consideration 
 

119 
 

16 25 25 2254.87 1669.56 14 35.06 

17 25 50 3020.80 1965.56 50 53.69 

18 25 75 3963.52 2449.76 146 61.79 

19 25 100 4933.86 2788.48 270 76.94 

20 25 150 4721.26 2890.29 762 63.35 

Average   3275.61 2028.30 226.35 61.50 

 

Figure 6.2 shows the effect of the number of retail stores on the heuristic 

performance. It can be noticed from Figure 6.2 that the RPD of the heuristic with respect 

to the MAC decreases as the number of retail stores increases. In other words, the 

performance of the heuristic increases as the number of retail stores increases. In the case 

of a smaller number of retail stores, the problem is harder owing to the maximum tour 

length constraint. In this case, the performance of the MAC is better than that of the 

heuristic.  

It can be noticed from Figure 6.3 that, the overall RPD of the heuristic with respect 

to the MAC increases as the number of consumers increases. In other words, the 

performance of the MAC increases as the number of retail stores increases. In the case of 

a higher number of consumers, the problem is harder and the MAC can perform better than 

the heuristic. 
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Figure 6.2: The effect of the number of retail stores on the RPD 

 

Figure 6.3: The effect of the number of consumers on the RPD 

6.5.2.1 Effect of the Available Inventory on the Performance of the Solution 

Approaches  

From Tables 6.3–6.5, the averages of the total lengths calculated using the heuristic 

are 3275.61, 2812.91, and 1824.49 for the available inventory scenarios 1, 2, and 3, 

respectively. The averages of the total lengths calculated using the MAC are 2028.30, 
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1716.91, and 1346.20 for the available inventory scenarios 1, 2, and 3, respectively. The 

average RPD of the heuristic compared to the MAC is 61.50%, 63.84%, and 35.53% for 

the available inventory scenarios 1, 2, and 3, respectively. The RPD of the two-phase 

heuristic compared to the MAC decreases when the more relaxed available inventory 

scenario is used. This means that the two-phase heuristic performance increases when the 

problem is more relaxed. In other words, the MAC can still search and find good quality 

solutions efficiently even if the problem is tighter. This is shown in Figure 6.4.  

Table 6.4: The results of inventory scenario 2 using the MAC and the heuristic 

Problem 

No. of 

retail 

stores 

No. of 

consumers 

Heuristic 

Total 

Length 

MAC 

Total 

Length 

MAC 

CPU 

Time 

RPD% 

21 10 25 1571.63 879.16 11 78.76 

22 10 50 1920.59 1083.66 92 77.23 

23 10 75 2699.23 1591.52 180 69.60 

24 10 100 2305.09 1437.68 569 60.33 

25 10 150 2700.41 1519.35 1979 77.73 

26 15 25 1665.15 1180.83 12 41.02 

27 15 50 2320.66 1329.26 81 74.58 

28 15 75 3016.45 1692.41 305 78.23 

29 15 100 3302.39 2016.40 605 63.78 

30 15 150 3918.97 2399.60 1547 63.32 
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31 20 25 1993.49 1495.79 17 33.27 

32 20 50 2713.01 1656.86 82 63.74 

33 20 75 3393.34 1799.64 277 88.56 

34 20 100 3127.49 2018.50 798 54.94 

35 20 150 3742.21 2205.53 2364 69.67 

36 25 25 2032.06 1530.33 17 32.79 

37 25 50 3130.52 1939.50 80 61.41 

38 25 75 3433.23 2088.58 302 64.38 

39 25 100 3824.46 2244.14 700 70.42 

40 25 150 3447.89 2229.43 2041 54.65 

Average   2812.91 1716.91 602.95 63.84 

 

Table 6.5: The results of inventory scenario 3 using the MAC and the heuristic 

Problem 

No. of 

retail 

stores 

No. of 

consumers 

Heuristic 

Total 

Length 

MAC 

Total 

Length 

MAC 

CPU 

Time 

RPD% 

41 10 25 897.55 710.47 17 26.33 

42 10 50 1287.81 875.42 154 47.11 

43 10 75 1531.06 1114.87 384 37.33 

44 10 100 1636.54 1247.46 1000 31.19 

45 10 150 1551.75 1273.86 2158 21.81 
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46 15 25 1264.32 995.77 32 26.97 

47 15 50 1488.07 1084.75 163 37.18 

48 15 75 1815.22 1252.35 582 44.95 

49 15 100 2242.40 1586.20 1265 41.37 

50 15 150 2459.52 1691.42 4308 45.41 

51 20 25 1660.91 1302.89 35 27.48 

52 20 50 1740.66 1304.54 163 33.43 

53 20 75 2096.76 1433.07 614 46.31 

54 20 100 2226.39 1638.15 1402 35.91 

55 20 150 2518.16 1747.42 5879 44.11 

56 25 25 1550.71 1311.63 38 18.23 

57 25 50 1835.39 1469.78 207 24.88 

58 25 75 2276.94 1654.92 821 37.59 

59 25 100 2061.86 1575.67 1306 30.86 

60 25 150 2347.76 1653.30 4687 42.00 

Average   1824.49 1346.20 1260.75 35.53 
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Figure 6.4: The effect of inventory on the heuristic performance 

It is obvious from Figure 6.5 that the average total length is decreased when more 

inventories are available in the network. The increase in the available inventory in the 

network allows more flexibility in assigning consumers to more different retail stores. This 

ultimately decreases the total length traveled. It can be noticed that the gap between the 

MAC and the heuristic increases as I move from relaxed inventory scenario (3) to tighter 

scenario (1).  

 

Figure 6.5: The effect of inventory on the average total distance 
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6.5.2.2 Benefit of Using the Integrated Distribution System 

In this section, I illustrate the benefit of using the integrated distribution system 

instead of the two existing distribution systems. The benefit is calculated by solving the 

generated problem instances in two settings. In the first setting, the same vehicles are used 

to simultaneously deliver the products from the depot to the retail stores and from the retail 

stores to the consumers. However, two different fleets of vehicles are used in the second 

setting. The first fleet is used to deliver the products from the depot to the retail stores while 

the second fleet is used to deliver the products from the retail stores to the consumers. In 

this case, the problem is decomposed into two sub-problems. The first sub-problem is 

solving the CVRP for distributing the products from the depot to the retail stores. The 

second sub-problem is solving the PDP for distributing the products from the retail stores 

to the consumers. The sum of traveling costs for these two sub-problems represents the 

solution for the second setting. 

The results of 60 problem instances under the two settings are calculated using the 

MAC and the heuristic and presented in Table 6.6. The results are classified according to 

the three available inventory scenarios. The results reported under the first setting (i.e., the 

integrated distribution system) are the same as those reported in Tables 6.3–6.5. The results 

reported under second setting (i.e., the two existing distribution systems) are the combined 

tour lengths obtained after solving two sub-problems. It can be noticed that the total cost 

(total length) increases significantly when the two existing distribution systems are used. 

In this case, a retail store is visited twice, once for delivering its orders and once for 

collecting the consumers’ orders. Visiting a retail store twice increases the total traveling 
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cost. The results reported in Table 6.6 show that the average total tour length increases by 

33% and 44% (for the heuristic and MAC, respectively) when the two existing distribution 

systems are used. The high percentage increase in tour length clearly exhibits the benefit 

of the proposed integration of the distribution system over the two existing separate 

distribution systems. 

Table 6.6: The benefit of using the proposed distribution system instead of the existing 

distribution systems 

Availabl

e 

inventory 

scenario 

Heuristic average total length MAC average total length 

Integrated 

distributio

n system 

2 different  

distributio

n systems 

Increase 

percentage 

Integrated 

distribution 

system 

2 different  

distribution 

systems 

Increase 

percentage 

1 3275.61 4227.80 29.07 2028.30 2831.42 39.60 

2 2812.91 3744.13 33.10 1716.91 2490.31 45.05 

3 1824.49 2615.66 43.36 1346.20 2042.87 51.75 

Average 2637.67 3529.19 33.80 1697.14 2454.87 44.65 

 

6.6 Conclusion 

I introduce the VRP in omni-channel retailing distribution systems, which is a new 

variant of the VRP. In the proposed problem, the same fleet of vehicles is used to distribute 

the products ordered online along with the products required by the retail stores. It 

integrates two existing distribution systems: the retail distribution system and the consumer 
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distribution system. The new problem can be considered a generalization of both the CVRP 

and PDP. I provide a mathematical formulation to describe the problem and propose two 

solution approaches. Bench mark problems are generated to test the effectiveness of the 

proposed solution approaches. The MAC algorithm produced good quality solutions when 

compared to the optimal solutions found by solving the mathematical model using CPLEX. 

The MAC produced an average relative percentage deviation of 0.16% with respect to the 

optimal solution. The MAC algorithm improves the solutions of all problem instances. The 

numerical experiments indicate that on average, the proposed MAC algorithm produces 

better results than the proposed heuristic. In addition, it maintains its high performance in 

harder problems where the available inventory is tight. I illustrate the benefit of using the 

proposed integrated distribution system instead of the two existing distribution systems. 

The numerical experiments show that the proposed integrated distribution system reduces 

the distribution cost by up to 44%. This is the first construction of a VRP structure for 

omni-channel retail distribution systems. Our work has paved the way for the investigation 

of more mathematical models to tackle operational decisions in the omni-channel 

distribution system. The variant of VRP presented in this chapter is a new problem and no 

previous results are available and I hope that our research provides a bench mark for future 

research. 
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Chapter 7 

 

Conclusion 

7.1 Summary 

The research presented in this thesis is motivated from the supply chain management 

of omni-channel retailing distribution systems. Different scenarios are investigated to 

provide applicable solutions for the optimization of omni-channel retailing distribution 

networks. In omni-channel retailing, consumers can choose to order products to be 

delivered at home or to visit a store physically to buy the products. It allows consumers to 

go shopping seven days a week, twenty-four hours a day. The Delivery of the online 

ordered products to consumers is the responsibility of the company. 

I propose different VRP models arising in omni-channel distribution systems. These 

models provide practical solutions for the supply chain management in retail industry. 

These models are considered as new variants of the VRP. They share some characteristics 

with other VRP variants (different VRP variants are reviewed in chapter 2). However, they 

have other unique features that are designed to fit the constraints imposed in the omni-
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channel retail distribution systems e.g. serving different types of customers using the same 

fleet (retailers and consumers), considering assignment decisions based on inventory 

availability. The new VRP variants have not been tackled in the VRP literature. I provide 

brief description for each of the new variants and provide mathematical formulations for 

these new variants of the VRP. I solve the proposed mathematical models to obtain 

optimum solutions for small problem instances. The VRP and its variants are NP-hard 

problems and difficult to solve in the case of large problem instances. Therefore, different 

heuristics and metaheuristics are proposed to obtain near optimum solutions for large 

problem instances. 

The thesis starts with the model of MCVRP in chapter 3. The multi compartment 

feature is utilized in one of the proposed VRP models for omni-channel retailing 

distribution. The MCVRP is already presented in literature but the solution methods are 

not efficient. In this thesis, I provide an efficient AC algorithm to solve the MCVRP. The 

proposed AC algorithm produces better results using less computational time. In addition, 

it maintains its high performance in larger problems as well [66]. 

After designing an efficient algorithm for MCVRP, I introduce a simple VRP model 

in omni-channel distribution system in chapter 4. This model is concerned with the design 

of the optimum travelling salesman route to deliver the online ordered products from the 

retail stores to the customers. Exploring this model provides better understanding of the 

VRP model in omni-channel retail distribution systems. I present a mathematical 

formulation for the problem and solve it to optimality for small size problem instances. In 

addition, I provide a heuristic and a metaheuristic to solve the large problem instances. 
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 The thesis then considers more complex situation in the omni-channel retail 

distribution systems by studying the whole distribution network in chapter 5. The 

distribution network of the company includes two distribution systems; retail distribution 

system and consumer distribution system. These distribution systems perform two types of 

deliveries; deliveries from the warehouse to the retail stores and deliveries from the retail 

stores to the consumers. The model assumes that both distribution systems can be served 

using the same fleet of vehicles. The products required by the consumers will be stored in 

different compartment of the same vehicle. Thus, handling the products required by the 

consumers does not interfere with the products required by the retail stores. Therefore, 

vehicles with multiple compartments are used in this model. The MCVRP model 

considered in chapter 3 offers a comprehensive understanding on developing solution 

methods for MCVRP model in omni-channel distribution systems. I describe the problem 

and provide a mathematical formulation for the problem. I propose different heuristics and 

a metaheuristic to solve the large problem instances. 

Finally, I introduce another VRP model for the omni-channel retail distribution 

systems in chapter 6. The models considered in chapters 3 and 4 assume that the consumers 

are already assigned to retail stores. This means that, the retail stores that satisfy the 

demand of the consumers are decided and known in advance. However, the last model 

considers the assignment of consumers to retail stores as a decision variable in the routing 

problem. In this case, the retail stores satisfying the consumer orders will be decided by 

the inventory availability at the retail stores. This decision can be made simultaneously 

while selecting the best routes. I introduce a mathematical formulation for the problem and 
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solve the mathematical model to obtain the optimum solution for small problem instances. 

In addition, I provide a two-phase heuristic and a metaheuristic to obtain near optimum 

solutions for large problem instances. Moreover, I generate new bench mark problem 

instances to evaluate the performance of the proposed algorithms [115].   

7.2 Future Research Directions 

This thesis investigates new VRP models that arise in omni-channel retailing 

distribution systems. These models have not been considered in the literature and are 

considered for the first time in this thesis. The objective of introducing the new models is 

to provide practical solutions for the supply chain management in retail industry.  

Extensions of the proposed models will simulate more real-life applications. One of 

the extensions is to allow the customers to order items from more than retail store in the 

same order. This adds more complexity to the problem since more precedence constraints 

are added. In this case, all the retailers that satisfy the consumer order should be visited 

before the consumers and by the same vehicle which might add more delivery cost. 

Otherwise, the company may choose to satisfy the consumer demand in more than one 

delivery which might reduce the customer satisfaction.  

Another extension is to consider the preferred delivery time by the customers. This 

can be done by assigning time windows to the online orders. Tight time windows may 

result in reduced utilization of the vehicles which means increased delivery cost. Soft time 

windows may be a good option for the companies in this condition. It will allow ignoring 

some customers preferred times those will to increase the cost remarkably. However, this 

will reduce the customer satisfaction as well.  
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Although these extensions increase the customer satisfaction, it increases the 

transportation cost at the same time. The companies should consider this tradeoff between 

the cost and the customer satisfaction. Pareto analysis may be used in this case to provide 

a group of solutions with different combinations of the delivery cost and the customer 

satisfaction. This will enable each organization to select its own level of customer 

satisfaction along with the transportation cost. 
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