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Abstract

Master of Science

by Lindsay Wessel

Infectious diseases have played a major role in shaping humanity throughout history.

Understanding the dynamics of infectious diseases is a critical aspect in the creation

of public health policies when determining the best course of action to take when an

epidemic takes hold of a society.

Since the introduction of vaccines, many deaths due to various diseases including measles,

have been drastically reduced. In Canada, there is a recommended vaccine schedule for

all residents of the country; however, vaccine practises and immunisation schedules can

vary from location to location as well as vary from country to country, leading to dis-

crepancies in vaccine coverage and herd immunities. In addition, some anti-vaccination

movements have been noted to persuade individuals into refusing vaccines, even in his-

torically well immunised locations. In order to investigate the effect of varying vaccine

coverage, a two patch metapopulation model for measles incorporating a single dose

vaccine is formulated and studied.

lindsaywessel@gmail.com
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Chapter 1

Introduction

1.1 Measles

Vaccinations are a crucial part of modern medicine as they have played a critical role

in decreasing the impact of various potentially deadly infectious diseases including (but

not limited to) measles, mumps, rubella, diphtheria, pertussis and smallpox. Due to

vaccination strategies implemented around the world, smallpox has been eradicated and

morbidity rates have declined for many other diseases for which vaccines exist [13].
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Figure 1.1: Measles incidence in the USA from 1961 - 2010. Data from US Centers
for Disease Control and Prevention.

This thesis will focus on measles, a highly contagious viral disease that has the potential

to be fatal, particularly in young children and adults over 20 years of age. It is estimated

that the expected number of secondary infections from a single infectious individual in

a wholly susceptible population is 18 [17], the mark of a highly transmissible disease.

It remains one of the leading causes of death among children around the world, de-

spite vaccinations being readily available, and it is estimated that there are 10 million

cases of measles worldwide each year [24]. According to the World Health Organisation

(WHO), measles caused approximately 114,900 deaths in 2014; however, this number is

considerably lower than the 546,800 deaths caused by measles in the year 2000 [35].

Measles begins with a high fever, beginning 10 to 12 days after exposure to the virus

and potentially lasting up to 7 days. After several days, a rash lasting 5 to 6 days begins

and eventually spreads over the entire body. According to WHO, most measles-related
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deaths are caused by complications of the disease including encephalitis, severe diarrhoea

or pneumonia. Individuals prone to measles are likely to have a deficiency in vitamin A

or have a weakened immune system. The WHO also notes that in populations lacking

proper health care and nutrition, up to 10% of measles cases result in death.

The group of individuals most at risk for contracting measles are unvaccinated individu-

als. This is true in particular for individuals living in developing countries where measles

is still prevalent. The virus is spread through droplets of nasal and throat secretions and

can live up to 2 hours in air or on surfaces. Measles can be transmitted by an infected

person 4 days prior to the eruption of the rash to 4 days after the rash begins. Since

there are no antiviral treatments for measles, vaccination provides the best protection

against the disease. The vaccine is safe, effective and inexpensive (it costs approximately

one US dollar to immunise an individual). The measles vaccine is often combined with

rubella and/or mumps vaccines (MMR), and provides the same level of protection as

when administered alone while only slightly raising the cost.

According to the Public Health Agency of Canada [32], the routine childhood immuni-

sation schedule recommends that children receive their first dose of the MMR vaccine

at 12 to 15 months of age and the second dose at 18 months to 5 years of age (prior

to beginning school). There are also vaccine schedules for individuals who were not

previously immunised as infants; this schedule calls for the two doses of the vaccine to

be administered at least 4 weeks apart. Measles is also a reportable disease in Canada

and must be reported by health professionals to local public health departments. It

is estimated that 15% of vaccinated individuals fail to develop immunity after a single

dose, thus the protection for these individuals against contracting measles is provided

by the successful immunisation of others within the same community. This concept is

referred to as herd immunity [17].
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1.2 Herd immunity

Herd immunity is a term used in public health to describe the fact that achieving a

critical proportion of vaccinated individuals in a population can protect a community

against a disease when an outbreak occurs. In other words, if a given threshold of

individuals are immune to a disease, then the remaining susceptible individuals within

a given population are protected. The main method used to induce herd immunity is

vaccination. Herd immunity plays an important role in controlling the spread of measles,

since humans are the only natural hosts of the disease. It is estimated that at least 90%

of a population must have immunity to measles in order to maintain herd immunity [15];

however, even when this critical threshold is met, it does not seem to prevent annual

epidemics in developing countries and there are also cases where outbreaks of measles

still occur in developed countries [15].

1.3 Vaccination practises in Canada and around the world

Although herd immunity seems reliable, in reality there is the potential for vaccinations

to wane or for individuals to choose not to vaccinate, thus decreasing the effectiveness

of herd immunity. In Canada during 1990-1998, there was an outbreak of pertussis

caused by the waning of a vaccine after mass immunisation took place during that time

frame [22]. This outbreak was troubling as the people who contracted the disease were

adults who had been immunised as children, indicating that the vaccine had most likely

waned over time and these individuals were now able to potentially spread the disease

to unvaccinated, young children [22].

In recent years, the anti-vaccination movement has skyrocketed. A plethora of websites

and various literature is now at the fingertips of parents questioning whether to vaccinate

their children [20]. The justifications for choosing not to vaccinate or to delay vaccination

varies, but can include religious beliefs, fears of risks associated with vaccines and the

disbelief in the effectiveness of vaccines [26]. In Southwest Alberta, Canada, a qualitative
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study was conducted in order to investigate why individuals choose not to vaccinate. The

sample included people of Dutch background, Hutterites and parents and practitioners

who engage in alternative health practises [26]. The authors found that the main reason

for individuals refusing or delaying immunisation included the belief that children were

not at risk because diseases such as polio and diphtheria were only present in third-

world countries. Religion also played a role in the decision making for Hutterites as

they explained to the authors that the health status of a child was subject to God’s

will. This group also noted that countries in Europe had ceased vaccinations with no

negative impact on their populations, attributing to their belief that the same would

happen for their population [26]. In 2013, the Netherlands reported an outbreak of

measles which occurred in communities where MMR vaccination rates were below 90%.

Most of the cases were orthodox Protestants who were unvaccinated due to religious

beliefs or critical attitudes toward vaccination. In order to help control the spread of the

disease, measures were put in place to offer personal invitations to individuals residing in

communities where MMR vaccination rates were below 90%, including those of orthodox

Protestant faith. This vaccination campaign is unique to the Netherlands and has since

helped to reduce the spread of measles with orthodox Protestant communities, as it is

now estimated that only 15% of individuals from this group refuse vaccinations; much

lower than the 92% it had been in the past [25].

1.4 Availability of health services in remote locations

Not only does the anti-vaccination movement have an impact on the resurgence of infec-

tious diseases, but the health services and education available to individuals in remote

locations can also contribute to the increasing number of outbreaks. In Manitoba, there

are approximately 88,000 registered First Nations individuals residing on First Nations

Communities (Reservations) and 63 First Nations Communities. Of those communities,

23 are not accessible by an all-weather road and this accounts for more than 74,000 indi-

viduals residing within remote reservations [31]. Some health care related issues faced by
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individuals living in remote or rural communities include limited availability of health

care services within the community due to infrastructure or other factors, scarcity of

resources and varied enablement of health professionals to work at their full scope due

to the lack of tools available in rural and northern areas [34]. Thus, many individuals

from rural and remote communities must travel to larger urban areas in order to seek

medical attention and health care; however, there are currently no studies investigating

vaccine behaviours among individuals of Aboriginal descent within Canada [11].

Investigating studies which have been conducted in other rural communities around

the world may help provide some insight into vaccination accessibility and practises in

rural Canadian communities. In [30], the authors studied rural areas in Kenya and

investigated whether spatial distancing from health care and socio-demographic status

had an effect on the timeliness of immunisation administration. The authors conducted

a vaccine coverage survey and found that travel time did not effect vaccine coverage or

timeliness, when the maximum pedestrian and vehicular times to vaccine clinics was less

than 3 hours and 2.5 hours, respectively. The authors also stated that although travel

time did not have an effect on time-to-immunisation, other factors such as harvest season

could impede travel and thus, reduce timely administration of immunisations.

A study was also done on immunisation practises of hard to reach populations in Papua

New Guinea [43]. The authors of this paper conducted a household survey to collect

information on the number of children aged 12 to 23 months who had been vaccinated

according to the national immunisation schedule. Due to the geographical landscape

of the country, some areas were more difficult for health care professionals to access

or for individuals to travel from due to climate or terrain. Based on the survey, the

authors concluded that late delivery of vaccinations was a problem throughout Papua

New Guinea and that this was due to a mixture of lack of health care access, but also

parental lack of knowledge of the benefits of immunisation as well as misconceptions

around vaccinations. Therefore, due to the importance of timely vaccine administration

in maintaining herd immunity and staving off potential epidemics, individuals residing
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in remote communities may be required to travel to larger, urban centres in order to

seek proper medical care.

1.5 Travel and the spread of disease

According to the Public Health Agency of Canada, outbreaks of measles, diphtheria,

pertussis and other highly contagious but immunisable diseases in Canada are relatively

rare compared to other countries in Europe and Africa due to high immunisation rates

[32]. However, travel between countries in which measles is endemic or prevalent can

have negative impacts in countries such as Canada and the United States. In 2011,

Utah experienced an outbreak of measles when a teenager returned to Salt Lake City

after travelling to Europe. The teenager was unvaccinated against measles and spread

the disease to family members and fellow students. In 2011, there were 220 confirmed

cases of measles in the United States, with 89% of those infections originating from

unvaccinated individuals who had travelled abroad [12]. There was also a case in 2010

where a 23-month-old infected and contagious with measles travelled from Europe to

the US. The US Centres for Disease Control and Prevention (CDC) did an investigation

of the passengers who were on the same air plane as the child, and discovered that one

other adult had become infected with measles as well. This was a concern since the adult

was a chaperone to 270 students from Europe and Asia; continents where immunisation

rates are not as high as North America [24].

1.6 Summary

Overall, it is clear that vaccinations and mobility play a role in the spread of infectious

diseases, including measles. The focus of this thesis will be to use a mathematical

model in order to investigate the effect varying vaccination rates as well as movement

rates between two geographic locations of different size and socioeconomic status has on

the transmission dynamics of measles. As mathematical definitions and notations are
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needed in order to analyse the model, these are introduced in Chapter 2. The focus of

Chapter 3 is to describe and define epidemiology and mathematical epidemiology terms

and in Chapter 4, a mathematical epidemiology literature review is provided. Chapter

5 introduces the mathematical model which is the focus of this thesis and Chapter

6 provides mathematical analysis of the model presented in the previous chapter and

provides an overview of the model. Chapter 7 includes numerical simulations and the

final chapter provides some conclusions as well as ideas for future work.



Chapter 2

Mathematical Preliminaries

2.1 Ordinary Differential Equations

The use of mathematical models to investigate the dynamics of a disease dates as far

back as the 1760s, when Daniel Bernoulli studied inoculation against smallpox [5]. In

compartmental mathematical modelling, the independent variable is time t and the rates

of transfer between compartments can be expressed as derivatives with respect to time

of the sizes of the compartments. Thus, the model formulated in this thesis consists

of differential equations, where interest lies in the qualitative nature of the model; that

is, what is the behaviour of solutions as t → ∞? When using differential equations to

describe a model, it is assumed that the epidemic process is deterministic, meaning that

the behaviour of the population is determined only by its history and the assumptions

created to describe the model [45].

The following is based on material from [7, 16, 18, 37, 39].

2.1.1 First Order Differential Equations

It is important to understand ordinary differential equations (ODEs) as they are often

used in mathematical modelling of populations and disease dynamics and will be used

10
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throughout this thesis.

A simple model which shows that the constant rate (r) at which a population (P ) is

changing with respect to time (t) is given by the differential equation

dP

dt
= rP.

In the above equation, which is often referred to as Malthusian growth, it is assumed

that the rate of change of population size is directly proportional to the population size.

However, this assumption leads to a solution

P (t) = P (0)ert

where P (0) is the initial condition. Since it is not realistic to assume that a population

can maintain exponential growth indefinitely, the model should be modified.

A more succinct model for population growth includes the assumption that the growth

rate, which is the difference between reproduction and death rates, decreases with pop-

ulation size. The famous differential equation including the above assumption as well

as competition amongst species used to describe the change in a population over time

is the known as the logistic growth equation

dP

dt
= r

(
1− P

K

)
P, (2.1)

where r and K are both constant, r is the growth rate and K represents the carrying

capacity of the population.

2.1.2 Notations, Definitions and Theorems

A first order differential equation takes the form
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d

dt
x(t) = f(t, x(t)), (2.2)

where t ∈ R is an independent variable, x(t) is an unknown function and f : Rn → R.

If no ambiguity arises, then the dependence of x(t) on t is often dropped; and d
dtx is

abbreviated x′ such that (2.2) is denoted

x′ = f(t, x). (2.3)

If the vector field f does not depend explicitly on time, then (2.2) is said to be au-

tonomous and takes the form

x′ = f(x) (2.4)

and the general solution is

x(t) =

∫ t

t0

f(τ)dτ. (2.5)

For fi : Rn → Rn and xi ∈ Rn, a system of ordinary differential equations is defined

when n > 1, otherwise the equation is scalar for n = 1.

In applications, it is important to determine a particular solution, rather than a general

solution. To do this, initial conditions are needed.

Definition 2.1. (Initial Value Problem) A first order differential equation together with

an initial condition,

x′ = f(t, x) (2.6a)

x(t0) = x0 (2.6b)
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is called an initial value problem. A solution of an initial value problem is a differ-

entiable function x(t) such that

1. x′(t) = f(t, x(t)) for all t in an interval containing t0 where x(t) is defined, and

2. x(t0) = x0.

Thus, the solution can be expressed in integral notation as

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ.

The system of ODEs analysed in this thesis is autonomous and takes the form x′ = f(x),

with x ∈ R8
+ and f : R8

+ → R8
+.

Definition 2.2. (Well-posededness). System (2.6) is well-posed if solutions exist, are

unique, and for systems describing populations, solutions remain bounded and are non-

negative for all non-negative initial conditions.

Theorem 2.3. (Cauchy-Lipschitz) Consider the differential equation (2.6) with x ∈ Rn,

and suppose that f ∈ C1. Then there exists a unique solution of (2.6) that x(t0) = x0,

where t0 ∈ R and x0 ∈ Rn, defined on the largest interval t0 ∈ I on which f ∈ C1.

Definition 2.4. (Equilibrium point) Consider equation (2.4). Then x∗ is an equilibrium

solution of (2.4) if f(x∗) = 0.

Definition 2.5. (Locally stable equilibrium point) An equilibrium solution, x∗ of (2.4),

is said to be locally stable if for all ε > 0, we can find δ > 0 (depending on ε) such that

if Ψ(t) is any solution of (2.4) having ||Ψ(t0)− x∗|| < δ, then the solution Ψ(t) exists ∀

t ≥ t0.

Definition (2.5) holds for any norm; however, for convenience the Euclidean norm can be

used since this norm is the Euclidean distance which makes neighbourhoods spherical.
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Definition 2.6. (Locally asymptotically stable equilibrium point) An equilibrium solu-

tion, x∗ of (2.4), is said to be locally asymptotically stable if it is locally stable and if there

exists a number δ0 > 0 such that if Ψ(t) is any solution of (2.4) having ||Ψ(t0)−x∗|| < δ0,

then limt→+∞Ψ(t) = x∗.

Definition 2.7. (Globally asymptotically stable equilibrium point) An equilibrium so-

lution, x∗ of (2.4), is said to be globally asymptotically stable (with respect to Ω ⊂ Rn)

if for all initial conditions in Ω, solutions approach x∗ as t→∞.

An equilibrium solution is said to be unstable if it is not stable.

2.1.3 Linearisation

In order to study a nonlinear system of ODEs, it can be helpful to linearise the system.

The Hartman-Grobman Theorem 2.9 allows approximation of a nonlinear system of

ODEs about equilibria by a corresponding linear system. This system can be found by

computing the system’s Jacobian matrix at a given equilibrium point.

Theorem 2.3 implies that, for smooth functions f : Rn → Rn, the solution x(t) ∈ Rn

to the initial value problem is defined at least in some neighbourhood t ∈ (−c, c) of

t = 0 where c > 0, c ∈ R+\{0}. Thus a local flow, φt : Rn → Rn, is defined by

φt(x0) = x(t, x0).

When studying systems of ODEs, it is important to characterise the behaviour of so-

lutions near a fixed point (often referred to as an equilibrium point) x∗. Studying the

dynamics of nonlinear systems can be simplified when the system (2.6) is linearised at

x∗ such that

ξ′ = Df(x∗)ξ (2.7)
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where Df = [∂fi/∂xj ] is said to be the Jacobian matrix of first partial derivatives of

the function f = (f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn))T .

Definition 2.8. A homeomorphism, or continuous transformation, is a one-to-one cor-

respondence between points in two spaces and is continuous in both directions.

Theorem 2.9. (Hartman-Grobman) If Df(x0) has no zero or purely imaginary eigen-

values then there is a continuous transformation, also known as a homeomorphism, h,

defined on some neighbourhood U of x0 in Rn locally taking orbits of the nonlinear flow

φt of (2.6), to those of the linear flow etDf(x0) of (2.7). The homeomorphism preserves

the sense of orbits and can also be chosen to preserve parameterization by time.

2.2 Some useful results in matrix analysis

Let Mn ∈ Cn be the set of all n× n square arrays



a11 a21 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann


,

where the entries in the matrix are denoted aij with the location of the entry being in

the ith row and jth column.

Definition 2.10. The spectrum of a matrix A = [aij ] ∈ Mn, denoted σ(A), is the set

of all eigenvalues of A.

Definition 2.11. The spectral radius of a matrix A = [aij ] ∈Mn, denoted ρ(A), is the

eigenvalue of A having maximum modulus.

Definition 2.12. A matrix A = [aij ] ∈ Mn is said to be non-negative if all entries are

≥ 0.



Chapter 2 Mathematical Preliminaries 16

Definition 2.13. A matrix A = [aij ] ∈ Mn is said to be positive if all entries are

strictly greater than 0.

Theorem 2.14. Let A = [aij ] ∈ Mn be non-negative. Then the spectral radius ρ(A) =

max{|λ|, λ ∈ σ(A)} is bounded by the minimum and maximum of the column sums and

the minimum and maximum of the row sums.

Theorem 2.15. If A = [aij ] ∈ Mn is positive, then the geometric multiplicity of the

spectral radius of A as an eigenvalue of A is 1.

Definition 2.16. A matrix A = [aij ] ∈Mn is diagonally dominant if the absolute value

of the diagonal entries is greater than or equal to the absolute sum of the off diagonal

entries. The matrix A is strictly diagonally dominant if the absolute value of the diagonal

entries is greater than the absolute sum of the off diagonal entries.

Theorem 2.17. Let A = [aij ] ∈Mn be non-negative. Then the spectral radius is strictly

positive if any main diagonal entry of A is positive.

Definition 2.18. A matrix A = [aij ] ∈Mn is reducible if there is a permutation matrix

P ∈Mn such that

P TAP =

 B C

0n−r,r D

 and 1 ≤ r ≤ n− 1

where B and D are square matrices having size of at least 1.

Definition 2.19. A matrix A = [aij ] ∈Mn is irreducible if it is not reducible.

Theorem 2.20. (Perron-Frobenius). Let A = [aij ] ∈ Mn be irreducible and non-

negative, and suppose that n ≥ 2. Then

(a) ρ(A) > 0

(b) ρ(A) is an algebraically simple eigenvalue of A

(c) there is a unique real vector x = [xi] such that Ax = ρ(A)x and x1 + . . . + xn = 1;

this vector is positive
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(d) there is a unique real vector y = [yi] such that yTA = ρ(A)yT and x1y1+. . .+xnyn =

1; this vector is positive

2.3 Lyapunov Functions

The material in this section has been taken from [46].

The method of Lyapunov functions is often used to determine the stability of equilibrium

points when an equilibrium point is nonhyperbolic, and more specifically, to determine

global stability of an equilibrium point.

Recall that local asymptotic stability implies that we begin in a specified neighbourhood

of the equilibrium point. However, with the use of Lyapunov functions, it is possible to

make this result more precise by determining stability of the equilibrium point in Rn.

Theorem 2.21. Consider the following vector field

x′ = f(x), x ∈ Rn. (2.8)

Let x∗ be a fixed point of (2.8) and let V : U → R be a C1 function defined on some

neighbourhood U of x∗ such that

i) V (x∗) = 0 and V (x) > 0 if x 6= x∗.

ii) V ′(x) ≤ 0 in U − {x∗}.

Then x∗ is stable. Moreover, if

iii) V ′(x) < 0 in U − {x∗} (strict Lyapunov function)

then x∗ is asymptotically stable.
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Furthermore, if U can be chosen to be all of Rn in Theorem 2.21, then the fixed point, x∗

is said to be globally stable if (i) and (ii) hold and globally asymptotically stable

if (i) and (iii) hold.



Chapter 3

Epidemiological and

Mathematical Epidemiology

Preliminaries

The focus of this chapter is to define public health terms which are relevant to the

model studied in this thesis. It is important to note that terms used in public health

have specific meanings and may differ from general definitions. The following material

has been adapted from [38, 48].

3.1 Epidemiological terms and definitions

The definition of health has varied over time, but the underlying message of health

promotion and disease prevention is present across the board. In 1984, The World

Health Organisation defined health as

[Health] is the extent to which an individual or group is able on the one hand

to realise aspirations and satisfy needs, and, on the other hand, to change

and cope with the environment. Health is therefore seen as a resource for

19
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everyday life, not the objective of living; it is a positive concept emphasising

social and personal resources as well as physical capacities.

When investigating the dynamics of a disease within a Canadian population, it is impor-

tant to consider what health means to Canadians. In 1986, [9] proposed a definition for

health, highlighting that “health recognises freedom of choice and emphasises the role

of individuals and communities in defining what health means.” From this definition,

‘freedom of choice’ may been seen as freedom to choose whether or not to vaccinate,

which has an effect on the health of communities under consideration.

Population is generally defined as the number of people in given geographic or political

area. When studying the dynamics of a disease within a population, it is important to

make a distinction between de facto (individuals actually present in a location at the

time of counting) and de jure (individuals who usually belong to a specific area, but are

momentarily absent) in order to decide who should be included in the total population

in question. Since the movement of individuals from one geographic location to another

plays a role in the spread of diseases, the model presented in this thesis will consider

individuals present within a region at the time of study.

The term population health can be seen as a “conceptual framework for thinking

about why some people are healthier than others and the policy development, research

agenda, and resource allocation that flow from this.” On the other hand, public health

refers to organised efforts by a community and the government to provide services and

programs in order to prevent disease and promote health. Examples of these efforts can

include immunisation programs or education focused around healthy lifestyle choices for

families.

Epidemic, endemic and pandemic differ in meaning. An epidemic is usually short-lived

and affects a given geographical region and specific population. A pandemic is an

epidemic, but on a larger scale. According to the Dictionary of Epidemiology, a pan-

demic is defined as an “epidemic occurring worldwide, or over a very wide area, crossing

international boundaries and usually affecting a large number of people”. Examples of
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diseases considered pandemic are Black Death, which occurred in the mid-fourteenth

century and severe acute respiratory syndrome (SARS), a more modern example which

spread to over two dozen countries in 2003. On the other hand, a disease is said to be

endemic if it is constantly present in an area or population and the level at which it

persists can be thought of as a ‘baseline’ to measure an epidemic against.

Two common measures when describing population health are incidence and preva-

lence, which are often misconstrued. In general, incidence refers to the number of new

cases of a disease, whereas prevalence describes the number of individuals afflicted by

a disease. Incidence can be thought of as ‘change’ and ‘new’ cases, whereas prevalence

can be thought of as ‘status’ of ‘existing’ cases. In addition, incidence can be further

broken down into cumulative incidence and incidence rate. Cumulative incidence is

defined as the number of individuals who experience the onset of a health-related event

during a specified time interval. This time interval is usually the same for all individuals

in the group of interest; however, may vary from person to person without reference to

age. On the other hand, incidence rate is defined as the number of new cases divided by

the sum of the individual person-times as risk (infection period). In general, incidence

rate is the rate at which new events occur in a population.

Epidemiology is defined as “the study of the distribution and determinants of health-

related states or events in specified populations, and the application of this study to

control health problems” [38]. In general, epidemiology is the study of epidemics, in-

cluding not only those caused by infectious diseases, but also those caused by drugs, diet

and environmental hazards. The focus of this thesis is mathematical epidemiology which

is the study of epidemics using mathematical models, and in addition, only infectious

diseases are considered.
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3.2 Mathematical epidemiology

Contagious and infectious diseases such as measles, chicken pox, HIV and malaria have

been a fact of life for hundreds of years. With years of research, we are now able to

identify the mechanism of transmission for most diseases. The purpose of mathematical

modelling is to use collected data along with a sound mathematical model to aid in the

creation of public health policies in the case of epidemics. This section will provide an

introduction to mathematical modelling as well as some techniques used to analyse the

model.

The following is based on material in [45].

3.2.1 Compartmental and deterministic model overview

Compartmental modelling refers to grouping a population into various compartments

in order to study the dynamics of disease transmission. In order to formulate a sound

model, assumptions are made about the nature of movement from one compartment

to another. For example, a population can be divided into three classes labelled S, I

and R. Here, S(t) is defined as the number of susceptible individuals at time t, I(t)

denotes the number of individuals who are infected and infectious and thus, are able to

spread the disease to susceptible individuals. The final compartment, R(t), denotes the

number of removed individuals at time t and individuals are considered removed due to

isolation, recovery, immunisation, natural immunity or death due to disease. A model

divided into these three compartments is referred to as an SIR model. The following

subsection will describe this model in more detail.

3.2.2 SIR Model

In 1927, W.O. Kermack and A.G. McKendrick [21] published a paper describing epidemic

models with the use of mathematics. In this paper, the authors consider equations which
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arise when time is divided into intervals and assume that infections occur at the exact

moment of passing from one time interval to the next. They then formulate a rather

complex model with various parameters, including rate of removal and rate of infectivity

as functions of the time intervals. The model that has been made famous from this paper

is the special case in which the rate of removal and rate of infectivity are constant. This

model has become known as the Kermack-McKendrick model and takes the form

S′ = −βSI (3.1a)

I ′ = βSI − γI (3.1b)

R′ = γI, (3.1c)

where S represents the number of susceptible individuals at time t, I represents the num-

ber of infected individuals at time t and R represents the number of removed individuals

at time t.

Model (3.1) includes the following assumptions:

• a susceptible individual makes contact sufficient to contract the disease from a

infected individual at a rate of βN per unit time. This is referred to as mass

action incidence;

• infective individuals leave the infected class at a rate of γI per unit time;

• there is no entry into or exit from the population

Since R does not play a role in the dynamics of S nor I, and R does not depend on S

or I, equation (3.1c) can be removed and therefore (3.1) is reduced to an SI model

S′ = −βSI (3.2a)

I ′ = (βS − γ)I. (3.2b)
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The system is analysed by studying the behaviour of its solutions using a qualitative

approach. It can be observed that S(t) and I(t) must remain non-negative, otherwise

the model would not make sense. It can also be noted that S′ < 0 ∀ t and I ′ > 0 if

and only if S < γ
β . Considering the initial condition S(0) < γ

β , then I will decrease

to 0 indicating no epidemic. On the other hand, if S(0) > γ
β , then I will first increase

(indicating an epidemic) before decreasing. This leads to the quantity βS(0)
γ , which is

referred to as the basic reproduction number.

3.2.3 The Basic Reproduction Number, Disease Free Equilibrium and

Endemic Equilibrium

The basic reproduction number is a critical component of modelling and is one of the

main considerations when investigating the severity of an infectious disease.

Definition 3.1. [45] The basic reproduction number, denoted R0, is the number of

expected secondary infections caused by a single infectious individual introduced into a

wholly susceptible population.

Definition 3.2. A disease free equilibrium (denoted DFE) is the equilibrium so-

lution to a system of ordinary differential equations in which there are no infected or

infectious individuals.

Definition 3.3. An endemic equilibrium point (denoted EEP) is the equilibrium

solution to a system of ordinary differential equations in which there are infected and

infectious individuals present.

3.2.4 Next generation method for calculating R0

The next generation method is useful in computing R0 when a disease is modelled using

a system of ordinary differential equations. This method was developed by van den

Driessche and Watmough [44] and is summarised below.
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Given a system of ODEs along with non-negative initial conditions which take the form

x′i = fi(x) = Fi(x)− Vi(x), for i = 1, ..., n (3.3)

where Fi(x) is the rate of new infections into compartment i, V+i (x) is the rate of transfer

of individuals into compartment i by all other means, V−i (x) is the rate of transfer of

individuals out of compartment i, and Vi = V−i (x)− V+i (x).

The set of all disease free states, Xs, can be defined as

Xs = {x ≥ 0 | xi = 0, i = 1, . . . ,m}.

The functions must also satisfy the conditions (A1) to (A5) below.

Since Fi,V−i , V+i represent the transfer of individuals, they are all nonnegative. Thus,

(A1) if x ≥ 0, then Fi,V−i , V+i ≥ 0 for i = 1, . . . , n.

If a compartment is empty, there can be no movement of individuals out of the com-

partment by any means, thus,

(A2) if xi = 0, then V−i = 0.

This holds since for each nonnegative initial condition, there is a unique, nonnegative

solution [46].

(A3) in the uninfected compartments, the incidence of infection is 0. Thus, Fi = 0 if

i > m.

(A4) to ensure the disease free space in invariant, assume that a population initially free

of disease will remain free of disease. Thus, x ∈ Xs then Fi(x) = 0 and V+i (x) = 0 for

i = 1, . . . ,m.



Chapter 3 Epidemiological and Mathematical Epidemiology Preliminaries 26

The final condition is based on the assumption that if a population remains near a DFE

(denoted by x0), then th population will return to the DFE according to the linearized

system

x = Df(x0)(x− x0)

where Df(x0) is the Jacobian matrix evaluated at the DFE. The authors then state

their attention is focused on systems in which the DFE is table in the absence of new

infection. Hence,

(A5) If F(x) = 0, then all eigenvalues of Df(x0) have negative real parts.

The conditions above allow the matrix Df(x0) to be partitioned as seen in the theorem

below.

Theorem 3.4. If x∗ is a DFE of (3.3), then the derivatives of DF(x0) and DV(x0)

are partitioned as

DF(x0) =

 F 0

0 0

 and DV(x0) =

 V 0

J3 J4

 ,

where F and V are the m×m matrices defined by

F =

[
∂Fi
∂xj

(x0)

]
and V =

[
∂Vi
∂xj

(x0)

]
with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is a non-singular M-matrix and all eigenvalues of J4

have positive real part.

Theorem 3.5. (Reproduction Number) The reproduction number, R0, is the spectral

radius of FV −1.

Theorem 3.6. (Local Stability of DFE) The disease free equilibrium (DFE) is said to

be locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
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Example 3.7. Given an SIR model with demography, we can compute the DFE and use

the next generation method to determine R0 and the stability. Here, assume b denotes

births and that individuals are only born into the susceptible class and d denotes death.

S′ = b− βSI − dS

I ′ = βSI − γI − dI

R′ = γI − dR

Thus, the DFE can be calculated by setting I = 0 resulting in

DFE =

(
b

d
, 0, 0

)
.

Using the next generation method seen in Theorem 3.4, the matrices F and V are of

size 1× 1 and are as follows:

F =
(
βSI

)
and V =

(
γI + dI

)
.

Taking the derivative of both F and V with respect to I and evaluating at the DFE

yields

F = β
b

d
and V = γ + d.

Thus, the reproduction number is the spectral radius of FV −1. Since the matrices are

1× 1

R0 =
βb

d(γ + d)
.
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In addition, the DFE is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.



Chapter 4

Mathematical Modelling of

Measles with Mobility and

Vaccination

The study of the movement of individuals between geographic locations as well as the

impact of vaccines on infectious diseases using mathematical modelling can be seen

throughout the literature. Models which involve the movement of individuals between

geographic locations are referred to as metapopulation models. In these models, indi-

viduals in populations are grouped by geographic location and the groupings are often

referred to as patches. Each patch has their own dynamics but these dynamics can vary

due to the connectivity of the patches and movement of individuals [10]. In this thesis,

each individual within a patch will be grouped according to the stage of the disease in

which they are in and two geographic locations will be linked via travel in order to study

the effect travel has on the spread of measles in which vaccinations are available.

29
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4.1 Motivation

4.1.1 Mathematical modelling of metapopulations

Since the year 2000, two infamous examples of diseases which spread due to travel of

infectious individuals are severe acute respiratory syndrome (SARS) in 2003 and H1N1

influenza in 2009. SARS began in Foshan, a city southwest of Guangzhou in Guangdong

province of China, and spread to other areas in China, including Heyuan and Zhongshan

in Guangdong, as well as around the world due to travel of infectious individuals [14].

Approximately six years later in April 2009, the CDC confirmed two cases of H1N1

in southern California, and by June 2009, there were 30,000 cases of H1N1 influenza

confirmed across 74 countries, again due to travel of infected individuals [41].

Investigating the effect travel has on the spread of infectious diseases using mathematical

modelling can be critical to the creation of public health policies and can aid in reducing

an epidemic. In [4], the authors formulate a Susceptible-Infectious-Susceptible (SIS)

model with mobility between n cities and compute the reproduction number in order

to determine the disease dynamics. With the use of mathematical and computational

analysis, the authors concluded that if a system is at an equilibrium and one city is

at the disease-free equilibrium, then all cities with access to that city are also at the

disease-free equilibrium. They also found that when the system is at an equilibrium and

one city has an endemic disease level, then all cities with access to this city are also at

an endemic level. However, the most important point made in this paper is that the

application of the next generation matrix method (seen in section 3.2.4) can be used to

determine the basic reproduction number in a model with mobility.

Another example in which metapopulations are studied is in [19]. In this paper, the

authors present a stochastic metapopulation model in which the patches in the model

are fully coupled. The main focus of this paper is disease transmission within animal

populations (for example, foot and mouth and avian flu); however, could easily be

extended to diseases affecting human populations. The authors consider within-patch
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dynamics and use a Susceptible-Infectious-Recovered (SIR) model to classify individuals

within each patch. The authors then examine the effect of three different movement rates

(low, peak and high) between patches and concluded that there are three cases of disease

behaviour. With the use of simulations, the first case shows that, in general, low levels

of travel between patches does not induce an outbreak of disease. The second case shows

that when the movement rate peaks, there is usually one epidemic outbreak followed by

the disease dying out and finally, when movement rates are at their highest, there could

be several consecutive epidemics and the infection could persist at an endemic level.

Nonlinear incidence functions in a multi-city epidemic model is considered in [28]. The

authors study an SIR model with travel between multiple cities and also investigate

the effect of pulse vaccination control strategies on the transmission of an infectious

disease. The authors conclude by stating threshold conditions which guarantee disease

eradication in the multi-city SIR model and the multi-city model with disease control

strategies (including vaccinations); however, they did not investigate the stability of an

endemic equilibrium.

An SIR metapopulation model and the effect of varying population size is the focus of

[2]. The authors created an SIR model with travel between a large urban city with many

smaller satellite cities and the model also employs different incidence functions in the

patches (see subsection 5.2 for more information on incidence functions), with the urban

city having proportional incidence and the smaller satellite cities having mass action

incidence. The authors then calculate individual and coupled reproduction numbers and

investigate the dynamics of disease transmission as well as what effect travel can have

on the coupled reproduction number. In the end, it was found that lower connectivity

between the large city and satellite city can have an impact on the value of the coupled

reproduction number.

The effect of media induced social distancing on the spread of disease in a metapopulation

model is considered in [42]. In this paper, the authors are interested in determining what

effect ample media coverage can have on the transmission of a disease when two patches
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are linked by travel. They formulated a two-patch SIS model with standard incidence;

however, they also include the assumption that reporting by media is an increasing

function of the number of present infectious cases in a patch, and thus, the contact rate

between susceptible and infectious individuals is a decreasing function. The authors

then define the contact rate to be a non-linear function of the infectious individuals,

compute the basic reproduction number and run simulations in order to investigate the

effect of different parameters. In the end, the authors conclude that media coverage

does not have an effect on reducing the reproduction number if it is larger than one, but

if the reproduction number has already been lowered to a number below one based on

other means, then increased media coverage of a disease can help to lead to extinction

of the epidemic by influencing individuals to reduce unnecessary travel.

4.1.2 Mathematical models with vaccination

The use of vaccinations and their efficacy to control the spread of infectious disease is

apparent in the literature. In [47], the authors study a Susceptible-Infectious-Recovered-

Vaccinated (SIRV) model with varying population through demography. In this paper,

the authors state that a proportion of the susceptible population is vaccinated at a given

rate, but can still become infected due to imperfect or waning vaccines. A modified

vaccination rate is derived, which is described as an increasing function of the infection

rate, vaccination waning rate and the vaccine efficacy parameter. The authors prove

global asymptotic stability of the disease-free equilibrium using real analysis instead of

a suitable Lyapunov function and concluded that a disease will die out when the actual

vaccination rate is greater than the modified vaccination rate but will become endemic

if the opposite is true.

In [1], the authors develop an SVIR model in which vaccinated individuals are consid-

ered separately from recovered individuals due to imperfect or waning vaccines. In the

model, standard incidence for the transmission of the disease is used and demography is

included. The main disease under consideration in this paper is pertussis, but the model
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could be extended to other diseases with similar vaccination schedules and transmission

characteristics. The authors analyse the model and determine an endemic equilibria

exists only for a basic reproduction number greater than one and two cases related to

bifurcation occur depending on increasing vaccine efficacy above a critical threshold. In

the first case, increasing vaccine efficacy above the stated critical value leads to classical

forward bifurcation to a unique endemic equilibria and in the second case, backward

bifurcation is present when an increase in vaccine efficacy above the given threshold

leads to the existence of two equilibria. The authors also compute a new reproduction

number which they refer to as Rvac in which the basic reproduction number is modified

by vaccination. Using this modified reproduction number, the authors analyse stability

of the disease free equilibrium and conclude with three cases: one where no endemic

equilibria exists, the second in which a unique endemic equilibrium exists and the third,

two distinct endemic equilibria exist.

In addition to studying the effects vaccine efficacy, the effect varying vaccine schedules

can have an impact on disease spread. In [29], the authors consider two strategies for im-

munising a population; continuous vaccination and pulse vaccination. In the continuous

vaccination strategy, an SVIR model with demography is studied and the disease-free

equilibrium, endemic equilibrium and basic reproduction number are computed. In the

pulse vaccination strategy, it is assumed that the vaccination process is discontinuous

or seasonal and is therefore best modelled with impulsive differential equations. With

impulsive differential equations, the global behaviours of solutions become more difficult

to analyse, but the authors note that based on the reproduction number, all positive

solutions will tend to the disease free equilibrium when the reproduction number is less

than one and the disease will remain at endemic levels if the reproduction number is

greater than one.
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4.1.3 Vaccinations and economic impact

Another factor considered when studying the use of vaccines to control disease spread

is optimal cost-benefit strategies. Since vaccines can be used to reduce the spread of

disease not only preventatively, but also during the outbreak of an epidemic, the feasible

economics and costs associated with vaccine strategies should be considered. In [23], the

authors combine epidemiological and economic modelling in order to determine the best

disease control strategies while minimising cost. The authors examine three strategies:

treat all individuals (global treatment), treat a local neighbourhood of individuals (local

treatment) or treat no individuals (however, these individuals can be treated for symp-

toms, but are not treated to control the spread of disease). The authors studied an

SIR model and included the assumption that asymptomatic individuals could transmit

the given disease. After analysis of the model and simulations, the authors concluded

that in some cases, refraining from treatment might be the most cost-effective strategy

while controlling the spread of a disease. They also noted that the application of the

local treatment strategy does not depend strongly on the cost of treatment, however,

the decision of whether to treat locally or globally does depend on cost.

4.1.4 Limited vaccine availability

Studies investigating the impact of vaccinations within rural areas can be found in the

literature. In [40], the authors built a face-to-face contact network based on the sur-

veys of participants and with the use of a Susceptible-Latent-Infected-Recovered (SLIR)

model, the authors were able to simulate a stochastic SLIR Poisson process. In this

model, the authors assumed that when an individual entered the latent class, that in-

dividual is infected but not yet infectious. The authors wanted to determine the best

immunisation strategy to employ when there are limited vaccines available. Various geo-

graphic locations were identified in the rural town in which individuals were more likely

to have high levels of contact with other individuals (for example, restaurants) and thus,

were more likely to spread disease or become infected. The authors concluded that when



Chapter 4 Mathematical Modelling of Measles with Mobility and Vaccination 35

vaccines are limited, the optimal immunisation strategy is to target subpopulations who

were identified as frequenting critical locations with high contact rates.

4.1.5 Summary

In this thesis, a two-patch model will be analysed. One patch will represent a large

city, such as Winnipeg, whereas the other patch will represent a small community or

town such as a Hutterite colony or First Nations Reservation. Both the uncoupled

and coupled systems will be considered. In the province of Manitoba, there are many

isolated communities in which vaccine schedules may not be adhered to due to lack of

convenient access to proper medical care or religious reasons. Thus, individuals travelling

to a larger city to seek medical care may be carriers of disease or highly susceptible to

certain diseases. Some interesting questions to investigate include

1. Using a similar model as seen in [47], how long does it take to eradicate disease in

each patch when vaccination is present compared to the case where vaccination is not

present as in a traditional SIR model?

2. Coverage and herd immunity in each uncoupled patch are considered. What critical

threshold of individuals must be vaccinated in order to achieve herd immunity?

3. What happens to the reproduction numbers of each patch when the efficacy of a

vaccine in the relative patch fluctuates?

4. How many cases of disease are averted due to the introduction of a single dose vaccine

into each uncoupled patch?

5. Based on the work in [4], how do the travel rates between the large, urban city and

small, rural community effect the coupled reproduction number? What public health

policies regarding travel can be concluded? What happens to the coupled reproduction

number when one travel rate is much greater than the other?
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6. Although vaccine efficacy is fairly standard, it may be interesting to investigate what

the effect on the global reproduction number with vaccination is when one patch has a

0% or very low vaccine efficacy.

7. How is the coupled reproduction number influenced by the individual reproduction

numbers? Which individual reproduction number seems to drive the global reproduction

number?



Part II

Deterministic metapopulation

model for measles

37



Chapter 5

The Model

5.1 Model overview

The model analysed in this thesis is an autonomous, compartmental SVIR model. Here,

a two patch model is considered. The patch with subscript w represents a large city,

whereas the patch with subscript r represents a small town. Let S, V , I, and R denote

the numbers of susceptible, vaccinated, infected and recovered individuals within a pop-

ulation, respectively. Individuals in the S class are assumed to be completely susceptible

to a given disease. It is also assumed that individuals in V have begun a vaccination

schedule and thus, have partial immunity to a given disease such as measles. Individuals

in I are considered infected and may be symptomatic or asymptomatic, but regardless,

are also assumed infectious and thus, able to spread the disease. Individuals in the R

class are considered removed from the population, either due to recovery and subsequent

immunity or a form of natural immunity.

Demographics are also included in the model. Each patch will have its own associated

birth rate represented by bw and br; however, the death rate will be the same in each

patch, represented by d. It is also important to note that death due to disease or death

due to other means is indistinguishable in this model. The rate of disease transmission

is denoted by β and will differ in each patch. Next, let γ be the recovery rate. This will
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be the same within each patch as the recovery for a given disease is based on an average

regardless of location. The recruitment from the susceptible class to the vaccinated class

is represented by α and the efficacy of vaccines will be denoted 1−σ, thus, it is assumed

that a proportion of vaccinated individuals will become infected. Note that σ ∈ [0, 1].

Each patch will be analysed individually (uncoupled systems) and also linked with mo-

bility (coupled system). Here, it is assumed that all individuals regardless of health

status, travel at the same rate between the two patches. It will also be assumed that the

rate of travel from the small town to the large city is proportionally higher than travel

from the large city to the small town. In order to analyse the system, initial conditions

are needed. All initial conditions are assumed to be nonnegative and take the form

(S(0), V (0), I(0), R(0)).

5.2 Incidence functions

The type of incidence used in modelling can vary depending on assumptions. In mass-

action incidence, which takes the form βSI, it is assumed that new infections are gener-

ated through homogeneous mixing [45]. Generally, this type of incidence is appropriate

for small populations, but is unrealistic for larger populations. Another type of incidence

is proportional incidence (also known as standard-incidence) in which the mass-action

incidence is divided over the entire population, thus β SIN . This type of incidence may be

more appropriate when modelling a larger population as it is unlikely that all susceptible

individuals will come into contact with all infected individuals over a given time period,

but rather a proportion of individuals will come into contact with one another. Both

of these types of incidence depend linearly on the number of currently infected individ-

uals within a population, however, neither of these may be realistic when considering

a larger density of infected individuals decreases their per capita infectivity or in cases

where an individual must come into contact with an infected individual on multiple

occasions in order for transmission to occur [45]. A more realistic incidence function for

the aforementioned population may by one which takes the form β I
pSq

N , where p > 1
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corresponds to synergistic effects amongst pathogens where a viral concentrations must

exceed a critical level for transmission to occur, or could also apply to vector-borne dis-

eases where a disease vector (such as a mosquito) must attack multiple infected hosts in

order to increase its level of infectivity to a level suitable for transmission [45]. In [27],

the authors use this type of incidence function in an SIRS model and found that if the

initial number of infected individuals is larger than a given threshold, the infection will

increase rapidly and then either die out or persist in the population at a stable constant

level or with stable periodic oscillation.

In this thesis, mass-action incidence will be used in the small town as it is more likely

that in a small population, individuals will come into contact with all other individuals.

On the other hand, proportional-incidence is used in the large city as it is more likely

that individuals in this population will remain in specific locations in the city and only

come into contact with a proportion of individuals.
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Figure 5.1: Flow diagram for a coupled SVIR model.

The above assumptions lead to the following system of differential equations. This

system represents the coupled system. In order to analyse the uncoupled systems, simply

remove all of the travel terms.
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S′w = bw − αwSw −
βwSwIw
Nw

+mwrSr −mrwSw − dSw (5.1a)

V ′w = αwSw −
σwβwVwIw

Nw
+mwrVr −mrwVw − dVw (5.1b)

I ′w =
βwSwIw
Nw

+
σwβwVwIw

Nw
− γIw −mrwIw +mwrIr − dIw (5.1c)

R′w = γIw −mrwRw +mwrRr − dRw (5.1d)

S′r = br − αrSr − βrSrIr −mwrSr +mrwSw − dSr (5.1e)

V ′r = αrSr − σrβrVrIr −mwrVr +mrwVw − dVr (5.1f)

I ′r = βrSrIr + σrβrVrIr − γIr +mrwIw −mwrIr − dIr (5.1g)

R′r = γIr +mrwRw −mwrRr − dRr (5.1h)

Also, the total populations of each patch are

Nw = Sw + Vw + Iw +Rw

Nr = Sr + Vr + Ir +Rr,

and the total population for the metapopulation model is

N = Nw +Nr.

The definitions of parameters are summarised in Table 5.1.
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Parameter Definition

βw disease transmission rate in large city (per capita)
βr disease transmission rate in small town (per capita/ per con-

tact)
bw birth rate in large city
br birth rate in small town
αw vaccination rate in large city
αr vaccination rate in small town
1− σw vaccine efficacy in large city
1− σr vaccine efficacy in small town
mrw movement of individuals from large city to small town
mwr movement of individuals from small town to large city
d death rate
γ recovery rate

Table 5.1: Definition of parameters



Chapter 6

Mathematical Considerations

This chapter focuses on the analysis of System 5.1 presented in Chapter 5. Both the

coupled and uncoupled patches will be analysed throughout this chapter.

Where needed in the rest of this chapter, the system will be written as

x′ = f(x), (6.1)

where x(t) = (Sw(t), Vw(t), Iw(t), Rw(t), Sr(t), Vr(t), Ir(t), Rr(t))
T ∈ R8

+\{0}.

6.1 Well-Posedness

6.1.1 Existence and uniqueness

Proposition 6.1. (Existence and uniqueness). Consider system (5.1) with non-negative

initial conditions. Then solutions to system (5.1) exist and are unique for all t ≥ 0.

Proof. System 5.1 is written in form d
dtx = f(x). The components of f are denoted by

fi for i = {1, 2, 3, 4, 5, 6, 7, 8}.
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The vector field f consists of sums of terms written in terms of Sw, Vw, Iw, Rw, Sr, Vr, Ir

and Rr. Thus, fi are continuous functions on R8
+\{0} and dfi

dSw

dfi
dVw

dfi
dIw

dfi
dRw

dfi
dSr

dfi
dVr

dfi
dIr

dfi
dRr

exist, which implies that fi are differentiable functions ∀i. The total population of

the large city, Nw(t) converges and is strictly positive. This can be seen in Section 6.1.3.

By Definition 2.1, a unique solution exists to the initial value problem d
dtx = f(x) for

any initial condition

x(0) ∈ R8
+\{0}.

6.1.2 Non-negativity of solutions

Proposition 6.2. Given non-negative initial conditions to System 5.1, x(t) is non-

negative ∀t ≥ 0.

Proof. Assume that initial conditions are non-negative. Setting Sw = 0 and Sr = 0 in

(5.1a) gives

S′w = bw > 0.

This conclusion holds ∀t ≥ 0, indicating that the total susceptible population remains

positive for all time.

Now set Vw = 0 and Vr = 0 in (5.1b). This gives

V ′w = αwSw

The sign of V ′w depends on the sign of Sw; however Sw was positive, so V ′w ≥ 0, indicating

Vw(t) is also non-negative ∀t ≥ 0.

Now set Iw = 0 and Ir = 0 in (5.1c). This gives

I ′w = 0,
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which is clearly non-negative, so Iw(t) is also non-negative ∀t ≥ 0.

Next set Rw = 0 and Rr = 0 in (5.1d), which gives

R′w = γIw.

Since Iw(t) was non-negative ∀t ≥ 0, this implies Rw(t) is also non-negative ∀t ≥ 0.

The same will apply equations (5.1e) to (5.1h) of system (5.1). Hence, the system has

non-negative solutions when given non-negative initial conditions.

6.1.3 Positivity and boundedness of the total population

Lemma 6.3. The total population, N(t), is positive and bounded.

Summing all equations of (5.1) gives the evolution of the total population N(t),

N ′(t) = b− dN

where b = bw + br. Integrating with respect to t using integrating factors method, gives

N(t) =
b

d
+ e−dtK,

where K is a constant. To solve for K, use the initial condition N(0) = N0

N(0) =
b

d
+K = N0.

Thus,
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K = N0 −
b

d
.

Since e−dt is a decreasing function and goes to 0 as t→∞, it reaches a maximum when

t = 0. The maximum of e−dt = 1. Therefore, N(t) = b
d + e−dt(N0 − b

d) < N0, showing

the total population size is bounded.

Finally, System (5.1) is well posed in a biological sense since solutions exist and are

unique, remain non-negative for initial conditions greater than zero ∀t ≥ 0 and the total

population size is bounded.

6.2 Convergence of total population in the patches

It can be shown that the population in each patch converges when travel terms are

introduced. Here, assume that all individuals travel at the same rate regardless of

health status.

Summing equations (5.1a) to (5.1d) yields

N ′w = bw − dNw +mwrNr −mrwNw

and summing equations (5.1e) to (5.1h) yields

N ′r = br − dNr −mwrNr +mrwNw.

Next, rewrite the system in vector form so it is easier to analyse:

 N ′w

N ′r

 =

 bw

br

− d
 Nw

Nr

+M

 Nw

Nr

 ,



Chapter 6 Mathematical Considerations 47

where M is the movement matrix

M =

 −mrw mwr

mrw −mwr

 . (6.2)

The movement matrixM is clearly singular. The following useful lemma is given in [2].

Lemma 6.4. Let c ∈ R+\{0}. The matrix M (6.2) has the following properties.

1) −M is a singular M matrix and has all its eigenvalues with nonpositive real parts.

2) −(M− cI) is a nonsingular M matrix.

3) −(M− cI) > 0

4) M− cI has all its eigenvalues with real parts less than or equal to −c

5) If mwr > 0 and mrw > 0, then M,−M,M− cI and −(M− cI) are irreducible and

−(M− cI)−1 >> 0

Computing the convergence of the total population yields

b− dN +MN = 0 (6.3)

and solving for N in equation (6.3)

b = (dI−M)N

N = (dI−M)−1b.

From Lemma 6.4, it is clear that (dI−M) is invertible because d > 0. Thus, the total

population converges to (dI−M)−1b, more specifically,
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Nw =
mwr(bw + br) + bwd

d(d+mrw +mwr)
(6.4)

Nr =
mrw(bw + br) + brd

d(d+mrw +mwr)
. (6.5)

When the patches are uncoupled by setting mwr = mrw = 0 in (6.4) and (6.5), the total

populations in the large city and small city converge to bw
d and br

d , respectively.

6.3 Reducing a system of equations

In both the uncoupled and coupled cases, it is possible to reduce the systems to 3

and 6 equations, respectively. This is possible since the total population in each patch

converges, the total population in the coupled system converges and also because the

dynamics of S, V and I do not depend on R. Thus, Rw and Rr can be removed from

both the coupled and uncoupled systems.

Thus, System 5.1 can be reduced to 6 equations

S′w = bw − αwSw −
βwSwIw
Nw

+mwrSr −mrwSw − dSw (6.6a)

V ′w = αwSw −
σwβwVwIw

Nw
+mwrVr −mrwVw − dVw (6.6b)

I ′w =
βwSwIw
Nw

+
σwβwVwIw

Nw
− γIw −mrwIw +mwrIr − dIw (6.6c)

S′r = br − αrSr − βrSrIr −mwrSr +mrwSw − dSr (6.6d)

V ′r = αrSr − σrβrVrIr −mwrVr +mrwVw − dVr (6.6e)

I ′r = βrSrIr + σrβrVrIr − γIr +mrwIw −mwrIr − dIr (6.6f)
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6.4 Existence of Disease Free Equilibria (DFE)

The general procedure for finding the disease free equilibria consists in assuming that all

infected compartments are empty and finding the corresponding equilibria of the system.

Generally, it is found that only one such equilibrium point exists.

6.4.1 Uncoupled systems without vaccination

Considering the uncoupled systems without vaccination and without travel, i.e. mwr = 0

and mrw = 0, the system for the large city takes the form

S′w = bw −
βwSwIw
Nw

− dSw (6.7a)

I ′w =
βwSwIw
Nw

− γIw − dIw (6.7b)

which is a typical SIR model that has been reduced to 2 equations, has proportional

incidence and includes demography. The system of equations for the small city can

be reduced in similar manner as above, and will yield a system of 2 equations with

demography and mass action incidence.

The DFE for this system is simple to compute and takes the form

DFEw0 =

(
bw
d
, 0

)
= (N∗w, 0).

The DFE for the small city when no vaccination is present takes a similar form to that

of the large city

DFEr0 =

(
br
d
, 0

)
= (N∗r , 0).
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6.4.2 Uncoupled systems with vaccination

Consider the large city first where mwr = 0 and mrw = 0. The total population in this

patch, Nw, converges to bw
d and the system has already been reduced to 3 equations, i.e.

equations (6.6a) to (6.6c). The system for the large city in isolation takes the form

S′w = bw − αwSw −
βwSwIw
Nw

− dSw (6.8a)

V ′w = αwSw −
σwβwVwIw

Nw
− dVw (6.8b)

I ′w =
βwSwIw
Nw

+
σwβwVwIw

Nw
− γIw − dIw (6.8c)

Equilibria are determined by setting the time derivatives of each state variable in System

(6.8) equal to 0.

To calculate the DFE, let Iw = 0 as there is no disease. This leaves equations (6.8a)

and (6.8b), which, when set to 0, take the form

0 = bw − αwSw − dSw

0 = αwSw − dVw.

Thus, the disease free equilibrium is

DFEw = (S∗w, V
∗
w , 0) =

(
bw

αw + d
,

αwbw
d(αw + d)

, 0

)
. (6.9)

Next, consider the small city where mwr = 0 and mrw = 0, i.e., equations (6.6d) to

(6.6f). The total population in this patch, Nr, converges to br
d . The system for the small

city in isolation takes the form
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S′r = br − αrSr − βrSrIr − dSr (6.10a)

V ′r = αrSr − σrβrVrIr − dVr (6.10b)

I ′r = βrSrIr + σrβrVrIr − γIr − dIr (6.10c)

To calculate the DFE, follow the same procedure as for the larger city. Thus, in R3, the

DFE of the small city is

DFEr = (S∗r , V
∗
r , 0) =

(
br

αr + d
,

αrbr
d(αr + d)

, 0

)
. (6.11)

6.4.3 Coupled system without vaccination

Setting the time derivatives of each state variable in System 6.6 to 0, as well as setting

Iw = 0 and Ir = 0 in System 6.6, removing the V ′w and V ′r equations and setting αw = 0

and αr = 0 results in the following disease free equilibrium of the coupled system without

vaccination

DFE0 = (S∗w, 0, S
∗
r , 0), (6.12)

where

S∗w =
bw(mwr + d) +mwrbr

(mrw + d)(mwr + d)−mwrmrw

S∗r =
br(mrw + d) +mrwbw

(mrw + d)(mwr + d)−mwrmrw

6.4.4 Coupled system with vaccination

Setting the time derivatives of each state variable in System (6.6) to 0 and setting Iw = 0

and Ir = 0 in system (6.6) results in the following disease free equilibrium
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DFE = (S∗w, V
∗
w , 0, S

∗
r , V

∗
r , 0), (6.13)

where

S∗w =
bw(αr +mwr + d) +mwrbr

(αw +mrw + d)(αr +mwr + d)−mwrmrw

S∗r =
br(αw +mrw + d) +mrwbw

(αw +mrw + d)(αr +mwr + d)−mwrmrw

V ∗w =
αwS

∗
w +mwrαrS

∗
r

(mrw + d)(mwr + d)−mwrmrw

V ∗r =
αrS

∗
r +mrwαwS

∗
w

(mrw + d)(mwr + d)−mwrmrw

6.5 Reproduction number

The basic reproduction number, R0, is defined as the expected number of secondary

infections produced by an initial case in a population which is wholly susceptible. The

basic reproduction number is a measure of the potential for a disease to spread within a

population. If R0 < 1 , then it is clear there are not enough new infections to have the

disease persist, and thus the disease will die out. However, if R0 > 1, then the number

of infected individuals will increase with each generation and the disease will spread [44].

6.5.1 Uncoupled systems without vaccination

The reproduction number of the large city without vaccination can be calculated using

the next generation matrix method as seen in Theorem 3.4. In the uncoupled case, the

calculations produce scalars rather than matrices since there is only one compartment

containing infected individuals.

First, taking the infected compartment to be Iw gives

F =
βwSwIw
Nw

and V = γIw + dIw.
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Hence,

F =
βwSw
Nw

and V = γ + d.

As V is scalar,

V −1 =
1

γ + d
.

Therefore,

FV −1 =
βwSw

Nw(γ + d)

and the reproduction number for the large city is given by

Rw0 =
βw
γ + d

S∗w
N∗w

.

The previous equation simplifies to

Rw0 =
βw
γ + d

. (6.14)

It should also be noted that Rw0 > 0 since Rw0 above consists of all positive terms.

A similar method can be followed to calculate the reproduction number for the small

city without vaccination, and the result is

Rr0 =
βr

γ + d

br
d
. (6.15)



Chapter 6 Mathematical Considerations 54

6.5.2 Uncoupled systems with vaccination

The reproduction number of the large city can be calculated using the next generation

matrix method as seen in Theorem 3.4. In the uncoupled case, the calculations will

produce scalars rather than matrices since there is only one compartment containing

new infections.

First, taking the infected compartment to be Iw gives

F =
βwSwIw + σwβwVwIw

Nw
and V = γIw + dIw.

Hence,

F =
βwSw + σwβwVw

Nw
and V = γ + d.

Since V is scalar,

V −1 =
1

γ + d
.

Therefore,

FV −1 =
βwSw + σwβwVw

Nw(γ + d)

and the reproduction number for the large city is given by

Rwvac =
βw
γ + d

S∗w + σwV
∗
w

N∗w
.

The previous equation simplifies to

Rwvac =
βw
γ + d

d+ σwαw
d+ αw

. (6.16)
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It should also be noted that Rwvac > 0 since Rwvac above consists of all positive terms.

In the small city, the reproduction number can be calculated using the same method as

above. Taking the infected compartment to be Ir gives

F = βrSrIr + σrβrVrIr and V = γIr + dIr.

Hence,

F = βrSr + σrβrVr and V = γ + d.

As V is scalar,

V −1 =
1

γ + d
.

Therefore,

FV −1 =
βrSr + σrβrVr

γ + d

and the reproduction number for the small city is given by

Rrvac =
βr

γ + d
(S∗r + σrV

∗
r ),

which simplifies to

Rrvac =
βr

γ + d

d+ σrαr
d+ αr

br
d
. (6.17)

It should also be noted that Rrvac > 0 since Rrvac above consists of all positive terms.
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6.5.3 Comparison of R0 and Rvac

In theory, vaccination should reduce the incidence of disease. Thus, the reproduction

number involving vaccination should be less than or equal to the true reproduction

number without vaccination.

Proposition 6.5. The reproduction number modified by vaccination is less than or equal

to the true reproduction number in both uncoupled patches.

Proof. Beginning with the reproduction number including vaccination (6.17) and with-

out vaccination of the small city (6.15) respectively,

Rrvac =
βr

γ + d

(d+ σrαr)

(d+ αr)

br
d

Rr0 =
βr

γ + d

br
d

It is clear that Rrvac consists of Rr0 and therefore Rrvac can be rewritten as

Rrvac = Rr0
d+ σrαr
d+ αr

.

Since σr ≤ 1, Rrvac ≤ Rr0. In addition, equality will only hold if and only if σr = 1.

The same proof holds for the reproduction numbers of the large city as well.

6.5.4 Global stability of DFEr and DFEw with vaccination

Theorem 6.6. The disease free equilibrium of the small city and large city are globally

asymptotically stable for Rrvac < 1 and Rwvac < 1, respectively.

See Appendix A for proof.
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6.5.5 Coupled system with vaccination

The next generation method of van den Driessche and Watmough [44] can also be used

to determine the reproduction number for metapopulation models. This was shown by

Arino and van den Driessche [4].

Taking the infected compartments to be Iw and Ir gives

F =

 βwSwIw+σwβwVwIw
Nw

βrSrIr + σrβrVrIr

 and V =

 (γ +mrw + d)Iw −mwrIr

(γ +mwr + d)Ir −mrwIw

 .

Hence,

F =

 βwSw+σwβwVw
Nw

0

0 βrSr + σrβrVr

 and V =

 γ +mrw + d −mwr

−mrw γ +mwr + d

 .

If follows that

V −1 =
1

(γ + d)(γ + d+mwr +mrw)

 γ +mwr + d mwr

mrw γ +mrw + d

 .

Is it possible to re-write F in terms of the uncoupled reproduction numbers.

F =

 (γ + d)Rwvac 0

0 (γ + d)Rrvac

 .

Therefore,

FV −1 =
1

γ + d+mwr +mrw

 (γ + d+mwr)Rwvac mwrRwvac

mrwRrvac (γ + d+mrw)Rrvac

 . (6.18)
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Eigenvalues of FV −1 are

[(γ + d+mwr)Rwvac + (γ + d+mrw)Rrvac]±
√

∆

2(γ + d+mwr +mrw)
,

where

∆ = ((γ+d+mwr)Rwvac + (γ+d+mrw)Rrvac)2− 4(γ+d)(γ+d+mwr +mrw)RwvacRrvac.

Theorem 6.7. The reproduction number of the coupled system is the spectral radius of

the matrix FV −1, thus

Rvac =
(γ + d+mwr)Rwvac + (γ + d+mrw)Rrvac +

√
∆

2(γ + d+mwr +mrw)
. (6.19)

Proof. Since the matrix FV −1 (6.18) is a positive, 2 × 2 matrix, it follows that the

eigenvalues of the matrix are either both real or a complex conjugate pair. Considering

the case where the eigenvalues are a complex conjugate pair, then the spectral radius is

the modulus of the eigenvalues and would be equal in this case. However, by Theorem

2.20, the spectral radius must be greater than all other eigenvalues and therefore, the

eigenvalues must both be real and the greater of the two is the eigenvalue which is stated

in equation 6.19 [18].

6.5.6 Coupled system without vaccination

The reproduction number for the coupled system with no vaccination will take the same

form as equation (6.19), but with the uncoupled reproduction numbers taking the form

Rw0 (6.14) and Rr0 (6.15) where vaccination has been excluded.
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6.5.7 Summary of reproduction numbers

Large City Small City

Uncoupled:

without vaccine Rw0 =
βw
γ + d

(6.14) Rr0 =
βr

γ + d

br
d

(6.15)

Uncoupled:

with vaccine

Rwvac =
βw
γ + d

d+ σwαw
d+ αw

(6.16) Rrvac =
βr

γ + d

d+ σrαr
d+ αr

br
d

(6.17)

Table 6.1: Summary of reproduction numbers for uncoupled systems

Coupled:
without vaccine R0 =

(γ + d+mwr)Rw0 + (γ + d+mrw)Rr0 +
√

∆0

2(γ + d+mwr +mrw)

Coupled:
with vaccine

Rvac =
(γ + d+mwr)Rwvac + (γ + d+mrw)Rrvac +

√
∆

2(γ + d+mwr +mrw)
(6.19)

Table 6.2: Summary of reproduction numbers for coupled systems

Where,

∆0 = ((γ + d+mwr)Rw0 + (γ + d+mrw)Rr0)2 − 4(γ + d)(γ + d+mwr +mrw)Rw0Rr0,

and

∆ = ((γ+d+mwr)Rwvac + (γ+d+mrw)Rrvac)2− 4(γ+d)(γ+d+mwr +mrw)RwvacRrvac.
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6.5.8 Localisation of Rvac

In this section, we investigate what effect each of the individual reproduction numbers

has on the coupled reproduction number. By Theorem 2.14, the coupled reproduction

number is bounded by the minimum and the maximum row sums and the minimum and

maximum column sums of FV −1 (6.18).

Therefore,

min{ (γ+d+2mwr)Rw
vac

γ+d+mwr+mrw
, (γ+d+2mrw)Rr

vac
γ+d+mwr+mrw

} ≤ Rvac ≤ max{ (γ+d+2mwr)Rw
vac

γ+d+mwr+mrw
, (γ+d+2mrw)Rr

vac
γ+d+mwr+mrw

}

and

min{(γ + d+mwr)Rwvac +mrwRrvac
γ + d+mwr +mrw

,
(γ + d+mrw)Rrvac +mwrRwvac

γ + d+mwr +mrw
} ≤ Rvac ≤

max{(γ + d+mwr)Rwvac +mrwRrvac
γ + d+mwr +mrw

,
(γ + d+mrw)Rrvac +mwrRwvac

γ + d+mwr +mrw
}.

In addition, since both diagonal entries of FV −1 are positive, then Rvac must also be

strictly positive.

Proposition 6.8. If Rwvac = Rrvac = R, then Rvac = R.

Proof. LetRwvac = Rrvac = R in equation (6.19). Factoring and cancelling, the expression

for Rvac reduces to

R((γ + d+mwr) + (γ + d+mrw)) +R
√
m2
wr +mwrmrw +m2

rw

2(γ + d+mrw +mwr)

which further reduces to
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R(2γ + 2d+ 2mrw + 2mwr)

2(γ + d+mrw +mwr)
= R.

Proposition 6.9. The coupled reproduction number is bounded by the individual, un-

coupled reproduction numbers, hence min{Rwvac,Rrvac} < Rvac < max{Rwvac,Rrvac}.

Proof. By Theorem 2.14, the spectral radius of the matrix FV −1 (6.18) must be bounded

by the minimum and maximum column sums (or row sums).

Taking the column sums of the matrix FV −1, we can see that the sum of column one is:

(γ + d+mwr)Rwvac +mrwRr0
(γ + d+mwr +mrw)

and the sum of column two is

(γ + d+mrw)Rrvac +mwrRwvac
(γ + d+mwr +mrw)

.

Now assume

(γ + d+mwr)Rwvac +mrwRrvac
(γ + d+mwr +mrw)

>
(γ + d+mrw)Rrvac +mwrRwvac

(γ + d+mwr +mrw)

After cancelling terms, we get

(γ + d)Rwvac
(γ + d+mwr +mrw)

>
(γ + d)Rrvac

(γ + d+mwr +mrw)

Which further simplifies to

Rwvac > Rrvac

.

Since the initial claim was Rwvac > Rrvac it follows that the sum of column one is greater

than the sum of column two.
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Therefore, Rrvac < Rvac < Rwvac.

The converse will be true following the same process as above.

6.6 Endemic equilibrium

The general procedure for finding endemic equilibria consists in assuming that infected

compartments are not empty and finding the corresponding equilibria of the system.

Determining the existence of endemic equilibria can prove to be more difficult then

showing the existence of a disease free equilibrium since there can be a unique endemic

equilibrium or multiple endemic equilibria.

6.6.1 Uncoupled systems with vaccination

Consider the uncoupled patches first. In the rural town, the endemic equilibrium is

found by setting Ir = I∗∗r > 0.

S′r = br − αrSr − βrSrIr − dSr (6.20a)

V ′r = αrSr − σrβrVrIr − dVr (6.20b)

I ′r = βrSrIr + σrβrVrIr − γIr − dIr (6.20c)

R′r = γIr − dRr (6.20d)

To solve for the endemic equilibrium, set the left hand side of the equations in System

6.20 to 0.

First, solve (6.20d) for R∗∗r in terms of I∗∗r

R∗∗r =
γ

d
I∗∗r
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Next, solve (6.20a) for S∗∗ in terms of I∗∗

S∗∗r =
br

d+ αr + βrI∗∗r
(6.21)

Third, solve (6.20b) for V ∗r in terms of I∗

V ∗∗r =
αrS

∗∗
r

σrβrI∗∗r + d
=

αrbr
(d+ αr + βrI∗∗r )(σrβrI∗∗r + d)

(6.22)

Lastly, solve (6.20c) for S∗r in terms of V ∗r

S∗∗r =
d+ γ − σrβrV ∗∗r

βr
(6.23)

Substituting (6.21) and (6.22) into (6.24) yields

br
d+ αr + βrI∗∗r

=
γ + d

βr
− σrαrbr

(d+ αr + βrI∗∗r )(σrβrI∗∗r + d)
(6.24)

Rearranging equation (6.24) yields a polynomial of the form

P (I∗∗r ) = AI∗∗
2

r +BI∗∗r + C (6.25)

Where

A = βrσr(γ + d) ≥ 0, (6.26a)

B = γdσr + γσrαr + dαrσr + d2 + γd+ d2σr − βrbrσr, (6.26b)

C = γd2 + γαrd+ d3 + d2αr − βrbr(d+ σrαr) =
d(d+ γ)(d+ αr)(1−Rrvac)

βr
. (6.26c)
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The following is based on the method presented in [6]. All of the coefficients A,B and C

are functions of βr and the condition C = 0 or Rrvac = 1 corresponds to a critical value

βc of βr given by

βc =
d(d+ γ)(d+ αr)

br(d+ αrσr)
. (6.27)

Theorem 6.10. System (6.20) has a unique endemic equilibrium for Rrvac(6.17) > 1.

Proof. It is clear that A(6.26a) > 0 and when Rrvac > 1, C(6.26c) < 0. Descartes’ Rule

of Sign states that for every sign change in the coefficients of a polynomial, there is a

positive real root and for every even multiple, there are that many positive real roots or

two less. Therefore the sign of B is irrelevant as it will yield one sign change whether it

is positive or negative and thus, one positive, real root.

It is also important to eliminate the possibility of an endemic equilibrium existing when

Rrvac < 1 because this would indicate backward bifurcation. This phenomenon has

critical public health implications since reducing Rvac below 1 may not be sufficient in

eliminating a disease [8]. Brauer [6] states that B(βc)(6.26b) < 0 is a necessary and

sufficient condition for the existence of a positive endemic equilibrium and backward

bifurcation at Rrvac = 1. With some algebraic manipulation, it can be shown that

γdσr + γσrαr + dαrσr + d2 + γd+ d2σr <
σrd(d+ γ)(d+ αr)

(d+ αrσr)
.

This factors further to

(γ + d)[(dσr + σrαr) + d] <
σrd(d+ γ)(d+ αr)

(d+ αrσr)

(γ + d)(d+ αrσr)[(dσr + σrαr) + d] < σrd(γ + d)(d+ αr).
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Cancelling common factors results in

(d+ αrσr)[(dσr + σrαr) + d] < σrd(d+ αr)

and expanding the left hand side of the inequality yields

σrd(d+ αr) + dσ2rαr + α2
rσ

2
r + d2 + dαrσr < σrd(d+ αr).

Thus, it is clear that the inequality does not hold, therefore, there is no possibility of

backward bifurcation in this patch.

The unique endemic equilibrium point (EEPr) of System 6.20 is

(S∗∗r , V
∗∗
r , I∗∗r , R

∗∗
r ) =

(
br

d+ αr + βrI∗∗r
,

αrbr
(d+ αr + βrI∗∗r )(σrβrI∗∗r + d)

, I∗∗r ,
γ

d
I∗∗r

)
.

(6.28)

For the larger city, use the limiting factor Nw(t) = bw
d to simplify the system (6.8).

S′w = bw − αwSw −
dβwSwIw

bw
− dSw (6.29a)

V ′w = αwSw −
dσwβwVwIw

bw
− dVw (6.29b)

I ′w =
dβwSwIw

bw
+
dσwβwVwIw

bw
− γIw − dIw (6.29c)

R′w = γIw − dRw (6.29d)

Using the substitution β̃ = dβw
bw

, system 6.29 can be further simplified and using the same

process as for System 6.20 above, the endemic equilibrium point (EEPw) of System 6.29

is
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(S∗∗w , V
∗∗
w , I∗∗w , R

∗∗
w ) =

(
bw

d+ αw + β̃I∗∗w
,

αwbw

(d+ αw + β̃I∗∗w )(σwβ̃I∗∗w + d)
, I∗∗w ,

γ

d
I∗∗w

)
.

(6.30)

Determining the characteristics of the roots in the polynomial in P (I∗∗w ) = AI∗∗
2

w +

BI∗∗w +C will follow the same process as for I∗∗r by using the limiting factor Nw(t) = bw
d

and the substitution β̃ = dβw
bw

since the total population converges.

Theorem 6.11. System 6.8 has a unique endemic equilibrium for Rwvac > 1.

Proof. The proof follows the above proof for System 6.20 and there will be no occurrence

of backward bifurcation in this patch.

6.6.2 Uncoupled systems without vaccination

In the above endemic equilibria above, set αr and σr to 0 to determine the endemic

equilibrium when there is no vaccination.

Beginning first with the small city, the coefficients of the polynomial in I∗∗r is

A = 0

B = d(γ + d)

C =
d2(d+ γ)(1−Rr0)

βr
.

Solving for I∗∗r yields

d(γ + d)I∗∗r +
d2(d+ γ)(1−Rr0)

βr
= 0

I∗∗r =
d(Rr0 − 1)

βr
.
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Thus, the endemic equilibrium point when vaccination is not present is

(S∗∗r , I
∗∗
r , R

∗∗
r ) =

(
γ + d

βr
,
d(Rr0 − 1)

βr
,
γ(Rr0 − 1)

βr

)
(6.31)

Using the same process as above,

(S∗∗w , I
∗∗
w , R

∗∗
w ) =

(
γ + d

β̃w
,
d(Rw0 − 1)

β̃w
,
γ(Rw0 − 1)

β̃w

)
(6.32)

where β̃w = dβw
bw
.

6.6.3 Global Stability of EEPr and EEPw

Theorem 6.12. The endemic equilibrium of each uncoupled patch with vaccination is

globally stable.

See Appendix A for proof.

6.6.4 Coupled system with vaccination

To simplify the system, substitute λw = βwIw
Nw

and λr = βrIr.

Since the total population remains constant, we have that Nw = mwr(bw+br)+bwd
d(d+mrw+mwr)

and

Nr = mrw(bw+br)+brd
d(d+mrw+mwr)

. Thus, the endemic equilibrium of system (5.1) is
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S∗w =
Nw + bw(αr + λr)

(d+ αw +mrw + λw)(d+ αr +mwr + λr)−mrwmwr
(6.33)

S∗r =
S∗wmrw + br

λr + αr + d+mwr
(6.34)

V ∗w =
S∗wαw(σr +mwr + d) +mwrαwS

∗
r

(σwλw +mrw + d)(σrλr +mwr + d)−mrwmwr
(6.35)

V ∗r =
S∗rαr(σw +mrw + d) +mrwαrS

∗
w

(σwλw +mrw + d)(σrλr +mwr + d)−mrwmwr
(6.36)

I∗w =
mwrI

∗
rNw

Nw(γ +mrw + d)− βw(S∗w + σwV ∗w)
(6.37)

I∗r =
mrwI

∗
w

γ + d+mwr − βr(S∗r + σrV ∗r )
(6.38)

R∗w =
γI∗w(d+mwr) +mwrγI

∗
r

(d+mrw)(d+mwr)−mwrmrw
(6.39)

R∗r =
γI∗r (d+mrw) +mrwγI

∗
w

(d+mrw)(d+mwr)−mwrmrw
(6.40)

where all variables are in terms of I∗w and I∗r .
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Numerical Considerations

In this chapter, numerical simulations are performed on System 5.1 in order to investigate

the dynamics of disease spread as well as compliment the mathematical analysis in the

previous chapter.

7.1 Parameter Values

The parameters used in the numerical analysis are estimated based on related literature

as well as based on the dynamics of measles and its related vaccine schedules and average

life expectancy. Birth rates in each patch are estimated using the convergence of the total

populations in each patch. Vaccine efficacy is approximated using the fact that a single

dose the MMR vaccine is 85% to 95% effective [33]. The most difficult parameters to

estimate are the transmission rates. However, using the relationship between the disease

transmission rates and the reproduction numbers, one can approximate an appropriate

rate of disease transmission for the cases where the reproduction numbers are less than

or greater that one.

In the simulations, the values for the parameters will be taken as in Table 7.1 below

unless otherwise stated.

69
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Parameter Definition Value

βw disease transmission rate in large city (per
capita)

0.1

βr disease transmission rate in small city (per cap-
ita/ per contact)

0.00001

bw birth rate in large city (per day) 27.39
br birth rate in small city (per day) 0.18
αw rate of vaccination in large city 1/400
αr rate of vaccination in small city 1/400
1− σw vaccine efficacy in large city 90 %
1− σr vaccine efficacy in small city 90 %
mrw movement of individuals from large city to small

city (per day)
1 %

mwr movement of individuals from small city to large
city (per day)

11 %

d death rate (per day) 1/(75*365)
γ recovery rate (days) 1/24

Table 7.1: Definition of parameters with values based on disease dynamics for measles
[3, 32, 33]

7.1.1 Estimation of movement and birth rates

In this section, the method presented in [2] is followed.

Estimates for total populations as well as travel rates are determined using values from

Table 7.2, considering the large city to be Winnipeg, the capital city of Manitoba, and

the small cities to be Portage la Prairie, Morden and Peguis First Nations. The last

column in the table indicates average daily travellers to Winnipeg.

City Population Distance (km) Average
daily trav-
ellers

Winnipeg 663,617 - -
Portage la Prairie 12,996 85 4,115
Morden 7,812 130 1,630
Peguis First Nations 2,609 184 650

Table 7.2: 2011 Canadian census and Traffic on Manitoba Highways [36]

To estimate movement rates, consider the large city and its population, Nw. Assuming

that mrw is the movement of individuals from the large city to the small city, thus N ′w =
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−mrwNw. Solving this differential equation yields Nw(t) = −Nw(0)e−mrwt. Therefore,

after one day, N(1) = Nw(0)e−mrw . Solving for the movement rate yields

mrw = −ln
(
Nw(1)

Nw(0)

)
.

To compute the total population in the large city with several days of travel considered,

let Trw be the number of individuals travelling from the large city to the small city each

day. Therefore, N(1) = Nw(0)− Trw and

mrw = −ln
(

1− Trw
Nw(0)

)
.

Given the movement rates and the population numbers, b is then set so that the travel

rates are conserved. It follows that

b = (dI−M)N∗.

Substituting this value of b into

N′ = b− (dI−M)N

gives

N′ = (dI−M)N∗ − (dI−M)N = (dI−M)(N∗ −N).

Therefore, starting with N(0) = N∗ allows numerical simulations at the population

equilibrium to be computed so that the only effects visible are those due to disease.
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7.2 Uncoupled patches with vaccination

When the patches are uncoupled, it seems as though the transmission coefficients, βw

and βr, have the largest impact on Rwvac and Rrvac respectively. This can be seen in Fig-

ures 7.1 and 7.2 below. The reproduction number of each patch increases rapidly with

small perturbations in the infection rates. It is difficult to determine what is a realistic

infection rate for a particular disease; however, it possible to use a approximated repro-

duction number for a given disease to work backwards and determine an approximate

transmission coefficient.
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Figure 7.1: Varying the disease transmission coefficient in the large city. It can be
seen in the figure that the reproduction number in the large city drives the global repro-
duction number. It should also be noted that the global reproduction number remains
bounded by each individual reproduction number which was shown in Proposition 6.9.
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Figure 7.2: Varying transmission coefficient in small city. Although the reproduction
number in the small city is increasing rapidly with respect to the increasing disease
transmission coefficient, the global reproduction number tends to stay within the range

of the reproduction number of the larger city.

7.2.1 Vaccine coverage

In public health, vaccine coverage refers to the proportion of individuals in a population

which have been vaccinated. In order to maintain herd immunity, a critical threshold of

individuals must be vaccinated or have conferred immunity through other means.

Considering the large city first, the vaccine coverage, cw, is computed by taking the total

vaccinated individuals at the disease free equilibrium, V ∗w , and dividing by N∗w. Thus,
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cw =
αwbw

d(d+ αw)

d

bw
=

αw
d+ αw

.

However, this relationship only holds when Rwvac < 1, since that is when the DFEw is

globally asymptotically stable. Using the coverage, it is possible to rewrite αw in terms

of cw such that

αw =
dcw

1− cw
for cw ∈ [0, 1).

Using this relationship, Rwvac < 1 can be re-written to take the form

Rwvac =
βwbw(1− cw + σwcw)

γ + d
.

Similarly, coverage is computed for the small city such that

cr =
αrbr

d(d+ αr)

d

br
=

αr
d+ αr

and Rrvac < 1 can be re-written to take the form

Rrvac =
βrbr(1− cr + σrcr)

d(γ + d)
.

When Rwvac and Rrvac are greater than one, the endemic equilibrium values for V ∗∗ must

be considered since the disease free equilibria for either patch is no longer stable. This

is the case which is most interesting as the above case implies that the reproduction

number remains less than one, regardless of the number of immune individuals. This

quantity is difficult to determine mathematically as the endemic equilibrium point is not

explicit, thus it will be explored numerically.
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Considering the small city first, it can be seen that introducing vaccination into a pop-

ulation has a positive effect in reducing the number of infections (if only slightly).
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Figure 7.3: The number of infected individuals in the small city with vaccination over
a time span of 2 years. It can be seen in the figure that during the initial 100 days the
number of individuals infected becomes large, indicating an epidemic. Here, the initial
conditions are taken to be Sr(0) = 2450, Vr(0) = 50, Ir(0) = 500 and Rr(0) = 2000

and Rr
vac = 10.
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Figure 7.4: The number of infected individuals in the small city without vaccination
over a time span of 2 years. It can be seen in the figure that during the initial 100
days the number of individuals infected becomes large, indicating an epidemic. Here,
the initial conditions are taken to be Sr(0) = 2450, Vr(0) = 50, Ir(0) = 500 and

Rr(0) = 2000 and Rr
vac = 10.

In Figure 7.3, the maximum number of individuals that become infected in the small

city during the given time span is 1635; however, it can be seen in Figure 7.4 that the

maximum number of individuals which become infected is 1696. Thus, vaccination has

a positive effect on reducing the incidence of disease. The same can be observed in the

large city.
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Figure 7.5: The percentage of the population immune to the disease. During the
time span, nearly 100 % of individuals in the small patch must be immune by either
vaccination or natural immunity in order for the disease to remain at a low endemic

equilibrium.

7.2.2 Cases averted

In this section, the number of cases averted in each uncoupled patch is studied by

examining the effect of a vaccine on disease transmission when reproduction number is

larger than one.

Beginning with the small city, the endemic equilibrium points of both cases; where

vaccination is present (6.28) and where vaccination is not present (6.31), are considered.
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In addition, the reproduction number varied in these simulations is the reproduction

number where no vaccination is present (6.15). This is due to the fact that Rr0 > Rrvac.

Since the transmission coefficient is tied into the varying reproduction number, βr is

written as a function of Rr0.

βr =
Rr0d(d+ γ)

br

Rrvac =
Rr0(d+ σrαr)

d+ αr
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Figure 7.6: A depiction of the cases averted in the small city. As the reproduction
number increases, the proportion of cases also becomes smaller. This figure shows that
the number of infective individuals at the endemic equilibrium is slightly above 4 for

both the cases with and without vaccine.
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Figure 7.7: A depiction of the cases averted in the large city. As the reproduction
number increases, the proportion of cases also becomes smaller. This figure shows that
the number of infective individuals at the endemic equilibrium is slightly above 600 for

both the cases with and without vaccine.
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Figure 7.8: The figure shows the percentage reduction in cases in both the small city
and large city. The greatest number of cases averted occur when R0 < 10.

7.3 Coupled patches with vaccination

Movement between patches has an effect on the global reproduction number, Rvac. It

can be seen in Figures 7.9 and 7.10 below that varying travel between the patches when

one of the patches has a reproduction number larger than one can drive the global

reproduction number, Rvac, below one.
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Figure 7.9: Varying movement to and from the large and small city with Rr
vac = 2.5

and Rw
vac = 0.5. The line on the plot indicates where Rvac = 1 and the gradient scale

indicates the changing value of Rvac for the different movement rates. In this case,
increased movement from the small city to the large city in conjunction with decreased
travel from the large city to the small city can push the global reproduction number

below one (as seen to the left of the line Rvac = 1).
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Figure 7.10: Varying movement to and from the large and small city with Rw
vac = 2.5

and Rr
vac = 0.5. The line on the plot indicates where Rvac = 1 and the gradient scale

indicates the changing value of Rvac for the different movement rates. In this case,
increased movement from the large city to the small city in conjunction with decreased
travel from the small city to the large city can drive the global reproduction number

below one (as seen to the right of the line Rvac = 1).
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As stated earlier, vaccine efficacy is fairly standard and it is estimated that a single dose

the MMR vaccine is 85% to 95% effective [33]. However, it is interesting to consider cases

where vaccines may be less effective or ineffective in order to predict what might happen

under these circumstances. Thus, varying vaccine efficacy in each patch has a great

effect on Rvac. It can be seen in the figure below that if there is a vaccine administered

with very low efficacy in the large city, this would drive the global Rvac above one, even

if the vaccine is perfect in the small city.
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Figure 7.11: Varying vaccine efficacy and the effect on Rvac. The global reproduction
number is driven by the effectiveness of vaccination in the large city. Hence, if vaccine
efficacy of the vaccines administered in the large city is approximately 30% or less and
the vaccines administered in the small city are perfect or near perfect vaccine, the global

reproduction number falls above one.
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The global reproduction number, Rvac, can also be plotted as a function of the individual

reproduction numbers.
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Figure 7.12: Varying individual reproduction numbers and the effect on the global
reproduction number. It is clear from the figure that the reproduction number in the

large city drives the global reproduction number.
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7.4 Summary

This chapter explored the dynamics of measles transmission between two patches con-

nected with mobility as well as in the isolation using numerical analysis. While the

figures are in no means a proof to any of the conjectures, they do aid in understanding

the dynamics of disease transmission under varying circumstances by depicting trends.



Chapter 8

Perspectives and Conclusions

The focus of this thesis was to analyse a two patch model in which the patches were

connected with mobility as well as isolated when mobility was ignored. The model also

included a single vaccination class and the effect vaccination has on the dynamics of

measles in each patch was studied. Summarised below are some of the key findings as

well as potential future work.

8.1 Findings

1. The reproduction number of the large city drives the coupled reproduction

number. It can be seen in Figure 7.12 that the reproduction number of the coupled

system is greatly effected by the value of the reproduction number in the large city.

Not only do the numerical simulations in Chapter 7 reinforce the fact that the coupled

reproduction number must remain bounded by the maximum and minimum individual

reproduction numbers, this was shown mathematically in Proposition 6.9.

2. Travel away from the patch with a reproduction number greater than one

to a patch in which the reproduction number is less than one reduces the

global reproduction number. It is seen in Figures 7.9 and 7.10 that mobility plays

88
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a key role in the dynamics of disease spread. Moving individuals could be a method

adopted by public health officials in order to reduce an epidemic.

3. High vaccine efficacy in the large city drives the coupled reproduction

number. In an unlikely and unethical scenario, if a vaccination with very low efficacy

were to be introduced into the large patch, it could potentially drive the global repro-

duction number above one even if individuals in the small patch are receiving a perfect

or near perfect vaccine.

4. A significant number of cases are averted when the true reproduction

number, R0, is less than 10. Figure 7.8 demonstrates that as the reproduction

number becomes very large (unrealistically large), the number of cases averted due

to vaccine administration falls off. However, for a reproduction number below 18 (an

estimated reproduction number for measles), greater than 65% of cases are averted in

both patches.

5. Herd immunity is increased globally as herd immunity is increased in the

large patch. The large patch as the most impact on herd immunity. It can be seen in

Chapter 7 that almost 90% of individuals in the total population residing in the large

patch are immune over the time span of two years.

8.2 Future work

In Section 6.6.4, the stability of the endemic equilibrium point was undetermined as

the expression was not explicit. Given more time, it may be possible to execute many

simulations, analyse the Jacobian of the system at the various endemic points found and

determine if all eigenvalues have negative real parts. Although this is not a proof, it

would show an indication that the endemic equilibrium is at least locally asymptotically

stable.

Sensitivity analysis is an area in which attention could be focused in the future in order to

determine what effect small perturbations in various parameters has on various quantities
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including the individual reproduction numbers as well as the global reproduction number

with vaccination and mobility.

Another area to investigate could be the economic impact of travel to and from the large

city in order to receive health care as well as the cost to supply remote rural communities

with effective vaccines and the proper medical personnel to administer them.



Appendix A

The following is a proof for Theorem 6.6.

Proof. Beginning with the small city and assuming Rrvac < 1, consider the following

Lyapunov function taken from [29].

L1 = Sr − S∗r − S∗r ln
Sr
S∗r

+ Vr − V ∗r − V ∗r ln
Vr
V ∗r

+ Ir (A.1)

where DFEr = (S∗r , V
∗
r , 0).

Its time derivatives along the solutions of system (6.10) satisfies

L′1 = S′r + V ′r + I ′r − S∗r
S′r
Sr
− V ∗r

V ′r
Vr

= br − dSr − dVr − dIr − γIr − S∗r
d

Sr
+ dS∗r + βrS

∗
r Ir + αrS

∗
r − αr

V ∗r Sr
Vr

+ σrβrV
∗
r Ir + dV ∗r

= −dSr −
αrS

∗
rVr

V ∗r
+ 2dS∗r + 3αrS

∗
r −

S∗r
Sr

(dS∗r + αrS
∗
r )− αr

V ∗r Sr
Vr
− (d+ γ − βrS∗r − σrβrV ∗r )Ir

= −dS∗r (
Sr
S∗r

+
S∗r
Sr
− 2)− αrS∗r (

Vr
V ∗r

+
S∗r
Sr

+
V ∗r Sr
VrS∗r

− 3)− (d+ γ)(1−Rr0)Ir.

Here, because the arithmetic mean is larger than, or equal to the geometric mean, we

have
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Sr
S∗r

+
S∗r
Sr
− 2 ≥ 0,

Vr
V ∗r

+
S∗r
Sr

+
V ∗r Sr
VrS∗r

− 3 ≥ 0

and the equalities hold if and only if Sr = S∗r and Vr = V ∗r . Since Rr0 < 1, it is clear that

L′1 < 0. Thus, DFEr is globally asymptotically stable since (A.1) is a strict Lyapunov

function.

The proof for the global asymptotic stability of DFEw is found using the same Lyapunov

function in (A.1) and follows the same process as above.

The following is a proof for Theorem 6.12.

Proof. Beginning with the rural system, suppose Rrvac > 1. Consider the Lyapunov

function

L2 = Sr − S∗∗r − S∗∗r ln
Sr
S∗∗r

+ Vr − V ∗∗r − V ∗∗r ln
Vr
V ∗∗r

+ Ir − I∗∗r − I∗∗r ln
Ir
I∗∗r

where EEPr = (S∗∗r , V
∗∗
r , I∗∗r ) is the endemic equilibrium system (6.10).

Its time derivative along the solutions of system (6.10) satisfies
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L′2 = S′r + V ′r + I ′r − Sr +
S′r
Sr
− Vr +

V ′r
Vr
− Ir +

I ′r
Ir

= d− dSr − dVr − dIr − d
S∗∗r
Sr

+ dS∗∗r + βrS
∗∗
r Ir + αrS

∗∗
r

− αrSr
V ∗∗r
Vr

+ σrβrV
∗∗
r Ir + dV ∗∗r − βrSrI∗∗r − σrβrVrI∗∗r + dI∗∗r

= 2d− dSr −
αrS

∗∗
r − σrβrV ∗∗r I∗∗r

V ∗∗r
Vr − (dS∗∗r + βrS

∗∗
r I
∗∗
r + αrS

∗∗
r )

S∗∗r
Sr

+ αrS
∗∗
r

− αrSr
V ∗∗r
Vr
− βrSrI∗∗r

= 2(dS∗∗r + βrS
∗∗
r I
∗∗
r + αrS

∗∗
r )− dSr −

αrS
∗∗
r Vr

V ∗∗r
+ αrS

∗∗
r

− dS∗∗
2

r

Sr
− βrS

∗∗2
r I∗∗r
Sr

−−αrS
∗∗2
r

Sr
− αrSrV

∗∗
r

Vr
− βrSrI∗∗r

= −(dS∗∗r + βrS
∗∗
r I
∗∗
r )

(
Sr
S∗∗r

+
S∗∗r
Sr
− 2

)
− αrS∗∗r

(
Vr
V ∗∗r

+
S∗∗r
Sr

+
SrV

∗∗
r

S∗∗r Vr
− 3

)
≤ 0.

Thus, the endemic equilibrium, EEPr, is globally stable.

The above proof applies to system (6.8) using the fact that Nw = bw
d .
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