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 I 

Thesis Aims 

 The proteome represents all of the proteins expressed by a particular organism at a given 

point in time. By studying the proteome we can discover important factors related to a wide 

number of biological processes. With current techniques, proteins can be both identified and 

quantified relative to two or more samples. The amount and effectiveness of the information 

obtained by these techniques is dependent on the methods used in analysis of the proteome. The 

aim of this research was to develop and improve proteomic analysis. 

 

The present research was undertaken to examine the use of new data independent 

acquisition (DIA) approaches as means of obtaining consistent quantitative proteomic coverage. 

In conjunction with this analysis, a new approach for statistical analysis of quantitative 

proteomic data was developed in order to define differences in protein expression. 

 

The methods were used to examine the response of a model organism Clostridium. 

stercorarium to growth conditions on two different carbohydrates. We predict that the 

differences in protein expression determined by these methods will find the pathways and 

enzymes necessary for this organism to ferment each substrate. Approaches were also developed 

to validate the results from the label free DIA approach for quantitation of proteins. Finally, we 

used activity-based protein profiling on the same organism in an attempt to find differences in 

enzyme activity, not related to any changes in protein quantity. 

  



 

 II 

 
Thesis Abstract 

 
The main approach to studying the proteome is a technique called data dependent 

acquisition (DDA). In DDA, peptides are analyzed by mass spectrometry to determine the 

protein composition of a biological isolate. However, DDA is limited in its ability to analyze the 

proteome, in that it only selects the most abundant ions for analysis, and different protein 

identifications can result even if the same sample is analyzed multiple times in succession. Data 

independent acquisition (DIA) is a newly developed method that should be able to solve these 

limitations and improve our ability to analyze the proteome. We used an implementation of DIA 

(SWATH) to perform relative protein quantitation in the model bacterial system, Clostridium 

stercorarium, using two different carbohydrate sources, and found that it was able to provide 

precise quantitation of proteins and was overall more consistent in its ability to identify 

components of the proteome than DDA.  

 

Relative quantitation of proteins is an important method that can determine which 

proteins are important to a biochemical process of interest. How we determine which proteins are 

differentially regulated between different conditions is an important question in proteomic 

analysis. We developed a new approach to analyzing differential protein expression using 

variation between biological replicates to determine which proteins are being differentially 

regulated between two conditions. This analysis showed that a large proportion of proteins 

identified by quantitative proteomic analysis can be differentially regulated and that these 

proteins are in fact related to biological processes.  

 



 

 III 

Analyzing changes in protein expression is a useful tool that can pinpoint many key 

processes in biological systems. However, these techniques fail to take into account that enzyme 

activity is regulated by other factors than controlling their level of expression. Activity based 

protein profiling (ABPP) is a method that can determine the activity state of an enzyme in whole 

cell proteomes. We found that enzyme activity can change in response to a number of different 

conditions and that these changes do not always correspond with compositional changes. Mass 

spectrometry techniques were also used to identify serine hydrolases and characterize their 

expression in this organism.  
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1  Background and Introduction 
1.1  Systems Biology 
 

Systems biology is the study of how higher function arises from the complex interaction 

of cellular elements in living organisms. All living things, at a fundamental level, consist of a 

genome that acts as a template for RNA transcription, RNA is in turn translated by ribosomes to 

create proteins, and it is these proteins that perform a variety of different tasks with the overall 

goal of survival, growth, and reproduction (Figure 1.1). Along with these fundamental 

components, the cell maintains a number of lipids, carbohydrates, and other small metabolites 

that all play important roles. How the organism adapts and interacts with its environment is 

largely the result of how all of these components come together at a molecular level. The 

theoretical end goal of systems biology is to acquire enough knowledge on the complex 

interactions of all cellular elements to be able to model and predict the behaviour of any 

biological system, with the distinct possibility of creating artificial cell systems. This end goal is 

clearly a long way away from being realized, if it is even possible at all. Nevertheless, even just 

scratching the surface of how these components interact at a systemic level has the potential for 

widespread application and fundamental understanding in how biochemical systems operate. 



 

 2 

 

Figure 1.1 The cell system 

A simplified outline of the fundamental biological processes that occur in every living organism. The 
genome acts as information storage for all of the components necessary for cellular function. Specific 

genes are transcribed into mRNA, which is then translated into proteins by ribosomes. The active 
proteins carry out a large number of functions with the overall goal of maintaining continued cell 

survival in its environment. Systems biology is the study of how all of these components interact to 
produce a living, functioning organism. 

 

 

1.2 Fundamental components of the cell 

1.2.1 Nucleic Acids 
 

The most fundamental component to life, nucleic acids, was first isolated in the 19th 

century from the white blood cells of hospital patients by Freidrich Miescher (Dahm, 2008). He 

named the substance “nuclein” because it was isolated from chromosomes located in the nucleus 

of cells. It was soon discovered that this substance was actually a mixture of two different 

molecules, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), that differed by either 
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having a deoxyribose or ribose carbohydrate component (Loring, 1944). In the early 20th century 

it was discovered by Phoebus Levene that DNA and RNA actually consist of long chains of 

individual nucleic acids connected by phosphate groups, forming a sugar-phosphate backbone 

(Cohen & Portugal, 1974). 

 

Even though the main components of DNA were well known, there was still some debate 

as to which component passed on genetic information from generation to generation. Gregor 

Mendel, who found that properties of an organism were passed onto their offspring, discovered 

the concept of a “gene” much earlier (Mendel, 1866), but it was unclear for many years how this 

information was actually transferred. There were essentially two groups each with their own 

opinion, one saying protein was the means of information transfer, the other that nucleic acid 

was the primary carrier of genetic information. The experiments by Griffith in 1928 showed that 

DNA was likely the keeper of hereditary information (Griffith, 1928), showing that bacterial 

cells previously unable to produce a capsule, could take up DNA and “learn” how to produce a 

capsule of their own. Eventually, the famous experiments performed by Watson and Crick 

(among others) proved conclusively that DNA was the primary carrier of genetic information 

(Watson & Crick, 1953). 

 

1.2.2  Proteins 
 

The study of protein followed a similar path to DNA, slowly discovering the chemical 

composition followed by the discovery on how protein was structured. The study of proteins 

began sometime in the 18th century with their isolation from protein rich sources, such as blood, 

and egg white (Osborne, 1916). Through rudimentary experiments to degrade proteins into 
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smaller fragments, it was discovered that proteins consisted of a mixture of several different 

amino acids (Mulder, 1839). The use of enzymes has been ubiquitous throughout history but it 

was not until the early 19th century that their composition was determined. In the 19th century 

many different enzyme preparations were discovered, known to consist of protein and that they 

could carry out specific chemical reactions, many related to fermentation (Payen & Persoz, 

1833). The actual structure of protein remained elusive until 1950, when Frederick Sanger 

sequenced bovine insulin (Sanger, 1950). Through a time consuming process, involving 

chemically modifying the N-terminus of bovine insulin, digesting the protein by acid hydrolysis 

and separating the fragments by chromatography, Sanger discovered the precise amino acid 

sequence for the A and B chains of bovine insulin. Previous to this, protein structure was thought 

to be somewhat shapeless, perhaps consisting of small clusters of molecules in a colloidal 

fashion (Scheraga, 1984). This important discovery showed that proteins consisted of long chains 

of amino acids, and most importantly that each protein had a unique amino acid sequence. He 

discovered that this sequence is what gives each protein its unique biochemical properties and 

this sequence varied between different proteins giving each a varied function. This discovery 

also went on to shape the experiments by Watson and Crick in their discovery of the structure 

and function of DNA. Knowing that the amino acid sequence was linear in nature, they assumed 

that the code for the amino acid sequence would also be linear in nature, helping to shape their 

ideas on how DNA was structured. 

 

1.3 Discovery of the genetic code 
 

1.3.1  The central dogma of molecular biology 
 

The experiments by Watson and Crick in 1953 to elucidate the structure of DNA showed 



 

 5 

that DNA is constructed in a way that allowed for the transfer of genetic information. The double 

helix could be unwound, and used as a template for its own replication. They also predicted that 

this information flowed from DNA to form RNA and then protein (the so called “central dogma” 

of molecular biology) (Crick, 1970). The structure of an RNA/DNA complex was discovered 

relatively quickly after the structure of DNA was uncovered, showing that the information from 

DNA could be made mobile and transferred to other parts of the cell where it could be translated 

into protein (Rich, 2009). In 1961, Marshall Nirenberg and Heinrich Matthaei painstakingly 

uncovered the nature of the genetic code by adding RNA molecules with repeating three nucleic 

acid sequences to cell free systems containing ribosomes (Matthaei, Jones, Martin, & Nirenberg, 

1962). The translated RNA sequences would generate a polypeptide containing repeated units of 

a single amino acid, showing that each amino acid was coded by three nucleic acids. Once the 

basic architecture of the cell was determined, one of the next important questions asked was how 

do all of these components come together to create a functional, living cell? This step involved 

first being able to identify all of the components that make up a cell. The necessary technologies 

to identify these cellular components have been developed in at least some capacity, leading us 

one step closer to true systems biology, the study of how these components come together to 

create a living organism. 

 

1.3.2 Genome sequencing 
 

Prior to the discovery of the genetic code, it was known that the genetic information was 

stored in the form of chromosomes. Walter Sutton and Theodor Bolveri were the ones to develop 

the theory of chromosome heredity (Satzinger, 2008); the extent of the information stored within 

chromosomes would remain unclear until the genome was eventually sequenced in its entirety. 
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Frederick Sanger’s contribution to genome sequencing was just as important as his contributions 

to finding the amino acid sequences of proteins. In 1975 he developed a method that could 

determine the nucleic acid sequence for short oligonucleotides (~80 base pairs in length), 

involving a single stranded DNA template, DNA polymerase, deoxynucleosidetriphosphates 

(dNTPs) and chain terminating di-deoxynucleotidetriphosphates (ddNTPs) (Sanger, Nicklen, & 

Coulson, 1977). During replication of the DNA template by DNA polymerase, eventually a 

ddNTP would be incorporated into the replicated strand instead of a dNTP, terminating the DNA 

polymerase reaction and leaving a truncated oligonucleotide with a ddNTP at the 3’ end. This 

ddNTP was linked to a reporter tag that was either radioactive or fluorescent in nature for 

detection after separation by gel electrophoresis. Each of the four ddNTPs would have a different 

reporter tag attached so the terminal nucleic acid could be identified. With this method Sanger’s 

research group was able to sequence the genome of bacteriophage Φ174, consisting of 

approximately 5000 base pairs (Sanger et al., 1978), representing the first fully sequenced 

genome of a living organism. This method of genome sequencing was used for more than two 

decades, and eventually led to the complete sequencing of many, much larger genomes. 

 

1.3.3 The Human Genome Project 
 

Once small genomes could be sequenced it was only a matter of time before the nucleic 

acid sequence of much larger genomes could be determined. The human genome project (HGP) 

was the first major attempt to determine the nucleic acid sequence of a genome with a relatively 

large size (Olson, 1993). This project also had much larger implications in the study of human 

disease, being able to identify the root cause of disease at the genomic level could potentially 

allow for the development of more targeted treatments for different genetic diseases. Discussions 



 

 7 

on large scale sequencing of the human genome began in 1985 (Watson, 1990), where actual 

sequencing of the genome began sometime in the early 1990s. The majority of genome 

sequencing was performed with the “hierarchical shotgun” method, which involved 

incorporating small fragments of the human genome (~150000 base pairs in length) into bacterial 

artificial chromosomes (BAC) to allow for rapid cloning of DNA fragments after incorporation 

of the BAC into E. coli (Anderson, 1981). The BACs isolated from E. coli cells were broken into 

smaller fragments with restriction enzymes and the actual nucleic acid sequence of fragments 

was determined using the Sanger method, which had since adapted capillary electrophoresis 

instead of the less efficient gel based electrophoresis methods (Swerdlow et al., 1991). Once the 

nucleic acid sequence for the fragments was determined overlapping fragments were found 

computationally and assembled into a single contiguous unit. The HGP was completed in 2003 

mapping over 2 billion base pairs and identifying approximately 20,000 different genes 

(International Human Genome, 2004). The HGP is what laid the groundwork for many next-

generation sequencing technologies where it is now possible to rapidly sequence the genome for 

any organism of interest with only a fraction of the cost and time required (Metzker, 2010).  

 

1.3.4 Genome assembly and annotation 
 

The nucleic acid sequence in a long chain of DNA can tell us a lot about the potential 

biochemical pathways present in an organism, but does not tell us anything about when these 

genes are transcribed or translated.. If one were to write the nucleic acid sequence for the human 

genome on paper it would consist of seemingly endless pages of the same four letters repeated 

after one another. What is truly important within cell biology is being able to identify the 

functional elements within that genome. It is these elements that represent a blue print of 
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potentially all functions for a particular system. In general, the genome exists as a series of 

genes, each coding for a different protein. A typical gene consists of an upstream regulatory 

element, followed by an open reading frame (ORF), and then a stop codon, the signal in mRNA 

to stop translation during protein synthesis (Strachan & Read, 2011). The regulatory element, 

binds other proteins that can either repress or activate transcription of the ORF, which represents 

the code for the amino acid sequence of a particular protein to be constructed in the ribosome. 

Since typical genomes consist of millions to billions of base pairs, identifying which parts of the 

genome that actually code for proteins is a challenge. This would be impossible without 

computer technology, which is arguably the limiting factor in being able to study life at a 

systems level (Hogeweg, 2011).  

 

The process of identifying gene elements and assigning their function, known as gene 

annotation, is important in systems biology. Assigning function to a gene requires a combination 

of experimental evidence to determine a gene’s particular function and software to identify 

homologous protein sequences. It would be impossible to confirm the function of every gene in 

every sequenced genome so predictions of the identity and function of each gene are based on 

known evolutionarily conserved sequences. Computer programs pour over genome sequencing 

information to assemble sequenced segments of the genome into several contiguous units, and 

simultaneously identify the location of genes. Software can also annotate the genome, identifying 

the likely function of a gene based on homologous sequences discovered in other genomes 

(Koonin & Galperin, 2003). The predictions of computer algorithms in gene identifications are 

notoriously unreliable (Schnoes, Brown, Dodevski, & Babbitt, 2009), so some level of manual 

curation is always required to increase confidence in gene identifications. Nevertheless, with this 
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methodology, entire genomes can be sequenced identifying the locations of genes and their 

function, providing some information on the biological properties of a particular organism. 

1.4 Proteomics 
 

1.4.1 Omics technology 
 

The fundamental ideas used in sequencing genomes were eventually adapted for the 

development of various “omics” technologies (G. A. Evans, 2000). The identification and study 

of the many components within a biological system has been made possible through the 

application of these technologies. The fundamental goal in any omics study is first to identify all 

of the related elements. The next step involves quantifying these elements to hopefully provide 

some knowledge on what role they play within the system. There are three main techniques 

being applied currently to identify the fundamental elements within a biological system. 

Genomic technologies to sequence and identify ORFs among other genetic elements within an 

organism’s genome (Lockhart & Winzeler, 2000), transcriptomics to identify which of these 

genes are being transcribed into RNA (Z. Wang, Gerstein, & Snyder, 2009), and proteomics, 

which identifies proteins that are expressed after RNA is transcribed (Chambers, Lawrie, Cash, 

& Murray, 2000). There has been recent development in other omics technology, interested in 

obtaining complete profiles for every known biomolecule. Metabolomics, the isolation and 

identification of metabolites (Ma, Zhang, Yang, Wang, & Qin, 2012), lipidomics, the 

identification of lipids (Wenk, 2005), and glycomics, the identification of carbohydrates (Zaia, 

2008), are also fields that have seen a significant amount of research towards their development. 

The fundamental goal in each of these techniques is to not only identify all of the components, 

but also quantify them if possible. The ability to quantify many different components 

simultaneously is necessary to identify how the changing environment or signal impacts a 
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specific biological process. These relative differences can identify which specific pathways or 

protein interaction networks are important between different conditions. Ideally, all of the 

information for each biomolecule would be available in order to understand biological function, 

in reality each omics field is incredibly complicated and extensive research into each will be 

required before all of these components could be integrated into a final system. 

 

1.4.2 The Proteome 
 

The main function of any gene is to code for a specific protein or nucleotide sequence 

that performs a specific function. The ability to identify genes, predict the protein sequence, and 

predict that protein’s function is what laid the groundwork for proteomic technologies. Initially, 

studying the proteome involved in-gel separations based on protein pI and molecular weight 

(Gygi, Corthals, Zhang, Rochon, & Aebersold, 2000). The proteins were visualized through 

protein stains, finding hundreds of different spots appearing from whole cell protein lysates. 

However, these gels did not provide the identity of the proteins being viewed. The bottom up 

approach used to sequence genomes was eventually adapted to identify proteins at a proteomic 

level (Wu & MacCoss, 2002) (Figure 1.2). Proteins are first isolated from cells and then undergo 

a series of chemical reactions to produce smaller peptide fragments of each protein for analysis 

by mass spectrometry. 
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Figure 1.2 Bottom up proteomic analysis 

For bottom up proteomic analysis whole proteins are digested with a protease into smaller 
peptide fragments. Peptides are separated based on their hydrophobicity by reversed-phase C18 

liquid chromatography and then injected into a mass spectrometer for tandem-MS analysis. 
Selected peptides are isolated and then fragmented to produce peptide fragment mass spectra for 

thousands of different peptides. Computer algorithms are used to match the fragmentation 
spectra, against theoretical fragmentation databases to identify the corresponding peptide 

sequence, and assign the peptide to its constituent protein. 
 

 

The method used for the isolation of proteins varies greatly depending on the biological 

system of interest or the aspect of the proteome one wishes to study. Proteins are usually 

extracted with a detergent based cell lysis and then purified by methods such as organic solvent 

precipitation, gel filtration or dialysis (Chertov et al., 2004; Lundell & Schreitmüller, 1999). 

Most steps in processing of protein samples for bottom up analysis are geared towards unfolding 
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and denaturation of proteins to allow for efficient protease digestion. To break disulfide bonds 

between cysteine residues, the proteins are treated with a reducing agent to reduce disulfide 

groups and then treated with an alkylating agent to prevent the reformation of those bonds. It is 

also common to use a chaotrope such as urea to further unfold and denature proteins. The 

number of different methods for protein extraction, denaturation, and digestions is staggering, 

and each can affect the end result in terms of peptides identified (Proc et al., 2010). These 

unfolded, denatured proteins are digested with a protease into smaller peptides, analogous to how 

long strands of DNA were broken into smaller fragments by DNA restriction enzymes. In bottom 

up analysis, the core methods for the sequencing and analysis of these peptides have become a 

combination of liquid chromatography to first separate complex peptide mixtures, and mass 

spectrometry to sequence peptides and identify proteins. 

 

1.4.3 Mass spectrometry in proteomics 
 

The importance of mass spectrometry in the analysis of the proteome cannot be 

overstated. The application of mass spectrometry to analyze protein digests has made it relatively 

simple to identify thousands of proteins present in the original extract (Aebersold & Mann, 

2003). The analysis of these peptide digests by mass spectrometry could not be accomplished 

without the development of the soft ionization techniques, electrospray ionization (ESI) (Fenn, 

Mann, Meng, Wong, & Whitehouse, 1989) and matrix assisted laser desorption ionization 

(MALDI) (Tanaka et al., 1988). In these methods, peptides are ionized, put into the gas phase, 

and mass analyzed while also keeping the peptides intact. After the peptide is fragmented its 

sequence could be determined by using the known masses of individual amino acids. The 

complexity of a whole cell peptide digest requires that these peptides be separated in some 
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manner. The process of gel separations to separate complex protein mixtures has largely been 

replaced by reversed-phase high performance liquid chromatography (RP-HPLC)  (Krstulovic & 

Brown, 1982) to separate such protein digests and reduce their complexity. 

 

1.4.4 1- and 2-dimensional analysis of protein digests 
 

Proteins from bottom-up proteomics digests are identified using either 1D or 2D 

chromatographic techniques with detection by mass spectrometry (i.e. 1D or 2D LC-MS/MS) in 

a multi-step process. In 1D LC-MS/MS, whole cell peptide digests are loaded directly into the 

mass spectrometer via an RP-HPLC system, which provides a single degree of separation 

between peptides for their analysis. The most common solvent system in use is for RP LC-

MS/MS is acetonitrile and water with a small amount of formic acid added. Separation of 

peptides prior to MS analysis limits the impact of ion suppression, increases overall sensitivity 

and increases the possible number of peptides that can be identified (H. Wang & Hanash, 2003).  

 

Liquid chromatography separation can be extended to a second dimension in 2D LC-

MS/MS where the initial peptide solution is separated by a two-step process, sequentially 

separating peptides based on distinct physicochemical properties (Wagner et al., 2000). This 

technique was first popularized in the form of multi-dimensional protein identification 

technology (MuDPIT) (Wolters, Washburn, & Yates, 2001), which uses a combination of strong 

cation exchange (SCX), and RP chromatography to provide two degrees of separation for peptide 

digests. The method that has seen increasing use compared to SCX-RP systems is to use high 

pH, low pH RP for 2D-analysis (Gilar, Olivova, Daly, & Gebler, 2005). The peptides are first 

separated into fractions in pH 10 ammonium formate buffer, and then each fraction is further 
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separated prior to injection into the mass spectrometer in pH 3 formic acid buffer. Regardless of 

the technique used for 2D LC-MS/MS the end result is greater separation of peptides resulting in 

an increased number of protein identifications. However, this increase in protein identifications 

comes at a substantial increase in analysis time and decreases overall sample throughput. The 

bottom-up proteomic approach described here has become the core method used in almost all 

proteomic experiments allowing one to both identify and quantify proteins in any biological 

system of interest. 

1.4.5 Identification of proteins based on peptide sequences 
 

The main goal in any proteomics experiment is not to identify amino acid sequences of 

peptides but to identify proteins that they originated from. Early in proteomics analysis, a protein 

was identified by comparing the mass of a particular peptide found in each mass spectrum to a 

database of potential peptide masses that was constructed based on genomic information, a 

process known as peptide mass fingerprinting (PMF) (Thiede et al., 2005). Proteins are cleaved 

by proteases that only hydrolyze peptide bonds at specific amino acid residues, allowing one to 

predict which peptides may be present even before the analysis is performed. The most common 

protease used is trypsin, which only cleaves proteins at the C-terminal side of lysine or arginine 

residues (Olsen, Ong, & Mann, 2004). This allowed for the construction of a hypothetical 

database of peptide fragments based on known nucleic acid sequences that could be used to 

predict the corresponding amino acid sequence. Separate hypothetical database could be 

constructed if another protease was used in place of trypsin, provided that the specific sites of 

cleavage are known. Once the peptide mass is matched to the theoretical mass of a peptide 

sequence, the original protein that this peptide was derived from could be identified. Statistical 

methods are used to predict the confidence of that peptide belonging to the assigned protein 
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giving a measure of confidence that this peptide truly belongs to the matched protein and is not a 

false positive. The use of PMF has fallen out of favour due to several disadvantages in the 

technique. First of all, the protein sequence must be present in the database for it to be identified. 

So it is heavily dependent on the quality of the particular genome annotation. Proteins that have 

post-translational modifications may fail to be identified unless prior knowledge on which 

proteins are most likely to have posttranslational modifications is known. Also the technique 

becomes less effective as the protein complexity of the sample increases, typically only limited 

to samples containing 3-4 proteins (Henzel, Watanabe, & Stults, 2003).  

 

1.4.6 Tandem mass spectrometry 
 

To identify proteins in more complicated samples it is necessary to fragment the peptides 

before mass spectrometry analysis. The process of isolating and fragmenting peptides by mass 

spectrometry is known commonly as tandem-MS (McLafferty, 1981). There are many forms of 

instrumentation available to isolate and fragment peptides. Peptide ions are usually isolated in 

the electronic field generated by applying a radio frequency (RF) voltage to a linear quadrupole 

(Figure 1.3). Peptides are first isolated within a quadrupole and then transferred to a separate 

quadrupole where the fragmentation reaction takes place. Many methods have been developed to 

fragment peptides but the most common is collisionally induced dissociation (CID) (Wells & 

McLuckey, 2005). The peptides are isolated in a separate quadrupole and then excited with a 

resonant RF pulse to induce collisions with an inert gas such as nitrogen. Peptides fragmented by 

this method almost always fragment between the C-N amide bond linkage, making the resulting 

fragmentation mass spectra somewhat predictable and easier to interpret (X. J. Tang, Thibault, & 

Boyd, 1993). 
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Figure 1.3 Linear quaduropole ion trap 
The linear quadrupole ion trap is the main instrument for manipulating and isolating ions for 

mass spectrometry. The linear quadrupole consists of four metal rods arranged parallel to each 
other (1). A radio frequency voltage is applied across each pair of rods to generate the electronic 

field necessary to guide and trap ions. (See U.S. Patent US2939952, Image in the Public 
Domain) 

 

  

Orbitrap mass spectrometry is one alternative to using quadrupoles. An orbitrap consists 

of an outer “barrel-like” electrode surrounding an inner “spindlelike” electrode (Hu et al., 2005). 

Ions rotate around the spindlelike electrode at a frequency that is proportional to their mass-to-

charge ratio. Ions isolated in an orbitrap can be transferred to a linear quadrupole for 

fragmentation and tandem-MS experiments. Peptides can also be isolated within a magnetic field 

in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) (Marshall, 

Hendrickson, & Jackson, 1998) where ions can be isolated for tandem-MS using a process 
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known as Stored waveform inverse Fourier Transform (SWIFT) (Guan & Marshall, 1996).  

 

The differences between the masses of peptide fragments are what is used to deduce the 

sequence of peptides based on known amino acid masses. Once fragmentation spectra are 

generated, they can be matched against a theoretical database of fragmentation spectra generated 

from predicted protein sequences (Eng, McCormack, & Yates, 1994). The goal in proteomics is 

to be able to identify many different proteins simultaneously, with the ideal goal of identifying 

every protein in a protein digest. Therefore, initial technologies developed in proteomic analysis 

focused on fragmenting as many peptides as possible while simultaneously collecting these 

fragmentation mass spectra to later be sequenced. 

 

1.4.7 Data dependent acquisition (DDA) 
 

 The primary method developed for data collection in proteomic experiments is an 

approach called data dependent acquisition (DDA) (Stahl, Swiderek, Davis, & Lee, 1996). DDA 

is designed to analyze as many peptides as possible from peptide digests containing potentially 

tens of thousands of different peptides. As peptides are being separated and enter the mass 

spectrometer, DDA uses a predetermined set of criteria to select specific peptides for 

fragmentation inside the collision cell during LC-MS/MS analysis. The first step is a precursor 

scan which measures the m/z of peptides as they elute from the column. The peptide selected is 

isolated inside a quadrupole for further analysis by CID, collecting a peptide fragment mass 

spectrum. This process is repeated for several different peptides selected from a particular 

precursor scan. The amount of peptides that can be isolated and fragmented depends on the 

ability and speed of the mass spectrometer to isolate, fragment, and detect peptides before they 
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fully elute from the column. Early mass spectrometers designed for DDA analysis could analyze 

only a few peptides at a time, while it is now possible to analyze on the order of 20-50 peptides 

from a single precursor scan (Andrews, Simons, Young, Hawkridge, & Muddiman, 2011). 

Peptides selected for analysis must be above a certain signal intensity threshold, have a m/z 

between 400-1200, and be either doubly, triply, or quadruply charged, all characteristics of the 

peptide ions generated by ESI from tryptic digests. One cycle in DDA is the total time it takes to 

collect a precursor scan, while also isolating and fragmenting peptides (Aebersold & Mann, 

2003). Thus, DDA collects data in a series of “blocks” each containing the precursor mass of the 

fragmented peptide, the retention time and the fragmentation mass spectrum for the selected 

peptide (Figure 1.4). 
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Figure 1.4 Example of data dependent analysis 

In data dependent acquisition, peptides are separated by RP-HPLC and injected on-line to a mass 
spectrometer. The top panel represents the total ion current (TIC) over time as peptides elute 
from the column (blue line). The pink line is the TIC for fragmentation spectra of peptides 

selected by DDA. The middle and bottom panels are precursor and peptide fragmentation mass 
spectra respectively. The precursor ion scan shows several highlighted peptides in pink that were 
selected for further analysis by CID. The bottom panel shows the fragmentation for a particular 

peptide ion, the information necessary to sequence this peptide. This process is repeated 
thousands of times to identify as many peptides as possible in the original protein digest. 

 

 

1.4.8 Database searching for peptide identification 
 

The overall goal in a bottom-up proteomics experiment is not to sequence peptides but to 

identify proteins that were present in the original sample. The typical cycle time in tandem-MS 

experiments is on the order of 1-5 seconds (collecting 20-50 MS/MS spectra each time), meaning 

that over the course of a single run, which lasts on the order of 1-2 hours, tens of thousands of 

peptide fragmentation spectra are collected. These large data sets generated are practically 
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impossible to interpret by hand (i.e. by de novo sequencing) within a reasonable time frame so 

computer algorithms are necessary to interpret the output from DDA. After data collection by 

DDA, peptide fragmentation spectra are usually converted to a text format of which there are 

several available. The one that is used the most commonly in our lab and others is the mascot 

generic file (MGF) format. This file is interpreted by software designed to match theoretical 

fragmentation spectra and assign peptide sequences with a certain degree of confidence (Cottrell 

& London, 1999). The experimental peptide fragmentation spectra is matched against theoretical 

spectra and assigned a score based on their similarity. There are numerous tools available for the 

purpose of database matching and scoring such as SEQUEST (Eng et al., 1994), X!TANDEM 

(Craig & Beavis, 2004), and Mascot (Cottrell & London, 1999), reviewed in (Nesvizhskii, Vitek, 

& Aebersold, 2007). The algorithms used commonly in our lab include Paragon (Shilov et al., 

2007) (the algorithm used by Protein Pilot software) and X!Tandem (the algorithm used by The 

Global Proteome Machine, www.thegpm.org). The scores generated by these programs can be 

converted into an expectation value, the probability that the matched spectrum is actually the 

peptide in question (Fenyö & Beavis, 2003). This expectation value is useful in that it tends to 

not vary depending on the search algorithm used in analysis so is a good general indicator in the 

confidence of protein identifications (Nesvizhskii, Vitek, and Aebersold 2007). The software 

also assigns the identity of the original protein the peptide is likely to have come from and gives 

the likelihood of a true identification of that protein. The end result is a list of protein 

identifications, the peptides used to make those identifications and an indication of the 

confidence in those protein/peptide identifications. 

 

Even for peptides identified with a high score it is still possible that the matched spectrum 
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is not the peptide in question (Nesvizhskii et al., 2007). For any matched spectrum it is possible 

to have a false positive identification. Given the size of a typical proteomic experiment it is 

impractical to analyze each mass spectrum and identify which matches are false positives. Thus 

in most proteomic experiments it has become conventional to include the number of false 

positives that are possible based on statistical analysis. There are a number of different methods 

to calculate false discovery rates, including target decoy database searching (Elias & Gygi, 2007) 

and the empirical Bayes approach (Keller, Nesvizhskii, Kolker, & Aebersold, 2002). There are 

many different programs for database searching and protein identification and it is not always 

clear if one is more effective than the other. The best approach appears to be one that uses 

information from multiple sources (Nesvizhskii et al., 2007). In our experience, most programs 

will give similar identifications for proteins that are high in abundance but may disagree on some 

peptide assignments for low abundance proteins where less information on peptide sequences is 

available. 

 

1.4.9 Limitations of DDA 
 

DDA is an extremely useful tool that has the potential to identify thousands of different 

proteins in only a few hours of mass spectrometry analysis. With its relative ease of use it is clear 

why this method has become the de facto method for analysis of the proteome. Despite these 

factors there are several aspects of DDA that could be improved in order to improve how we 

analyze the proteome. The main disadvantage of DDA analysis is the process is biased towards 

the selection of high abundance peptides, failing to identify many low abundance proteins. 

Another disadvantage to DDA is its semi stochastic nature, meaning that when the same sample 

is run multiple times in succession the signal ion intensity can vary between runs resulting in 
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different peptides being selected for analysis. This results in different peptide and protein 

identifications obtained each time. The stochastic nature can be limited by dynamic exclusion 

(McQueen et al., 2012), which will prohibit the same ion from being selected for a data 

dependent experiment for a set period of time, but in practice this can be difficult to implement 

without significantly increasing analysis time. If one of the main goals in the study of the 

proteome is to analyze all of the proteins present at a given point in time, the ability to select 

only a subset of them is a serious disadvantage. Recent advances in mass spectrometer 

technology have allowed for the development of an alternative approach to data collection in 

proteomic research, called data independent acquisition (DIA) (Venable, Dong, Wohlschlegel, 

Dillin, & Yates, 2004). This technology represents the opportunity to fragment all peptides in the 

original protein digest providing a snapshot of every protein that is being expressed at a 

particular point in time and potentially representing a less biased, more complete picture of the 

proteome. 

1.4.10 Data independent acquisition 
 
 DDA has been the primary method to identify components of the proteome since the 

early 2000s. However, DDA is a limited technique in that repeated experimentation is required to 

identify all components in the proteome. The stochastic nature of DDA means that only a subset 

of the peptides in tryptic digests is analyzed in each run and a proportion of these may differ 

between analyses. The reproducibility of a DDA run varies depending on the complexity of the 

digest, and the instrumentation used in analysis. The difference in protein identifications between 

runs has been reported to be as high as 30% for technical replicates (Bateman et al., 2014; H. 

Liu, Sadygov, & Yates, 2004; Nilsson et al., 2010). In theory, the mass spectrometer could 

isolate every ion individually and collect a fragmentation spectrum for each peptide, in practice 
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this is limited by the speed at which mass spectrometers are able to isolate and fragment 

individual peptides. 

 

Recent advances in the speed of mass spectrometer technology to acquire multiple mass 

spectra revealed the potential for a new acquisition method in proteomics called data 

independent acquisition (DIA). DIA is an extension of DDA where instead of isolating and 

fragmenting individual peptides, multiple peptides are isolated and fragmented simultaneously. 

There are several DIA methods developed that differ mainly in the number of peptide ions that 

are isolated prior to fragmentation, reviewed extensively in Gillet et al., 2012. MSE is a method 

that alternates between a low and high energy scan to perform DIA (Silva et al., 2006). The low 

energy scan identifies m/z of precursor peptide ions while the high energy scan fragments those 

peptides simultaneously and collects overlapping fragmentation for the same peptides. A method 

that applies a similar concept called PAcIFIC (Precursor acquisition independent from ion count) 

(Panchaud et al., 2009) has been shown to detect nearly the entire soluble proteome of a bacterial 

species, and detect numerous proteins in plasma that are difficult to identify in DDA analysis 

without depletion of abundant proteins. SWATH is another iteration of DIA where peptide ions 

within a 25 m/z window are isolated and fragmented simultaneously in the mass spectrometer 

(Gillet et al., 2012) (Figure 1.5). There is usually a 1 Da overlap between windows to ensure 

complete isotope acquisition. This process is repeated across the entire m/z range in order to 

fragment as many peptides as possible. The SWATH methodology has been shown to identify 

known peptide sequences over a dynamic range of 4 orders of magnitude, even when these 

peptides were not detected in the original precursor scan (Gillet et al., 2012). It will be possible 

in the future to have dynamic SWATH acquisition windows. The 25 m/z window used in the 
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default configuration of SWATH can be modified during SWATH acquisition to increase in 

width during parts of the chromatogram where less peptides are eluting or decrease where more 

peptides are known to elute. Dynamic SWATH windows effectively decreases the amount of 

potential noise collected in one SWATH block by modifying slightly the number of peptides 

isolated in each window. This should have an impact on the sensitivity of label free quantitation 

in SWATH and should be something that is considered in future projects involving DIA. 

 

Figure 1.5 Data independent acquisition with SWATH 

In SWATH all peptides are fragmented by sequential isolation of 25 m/z windows over a 400-
1200 m/z range. Each SWATH “block” contains information on all peptides isolated within that 
25 m/z range. SWATH data is difficult to interpret with modern database search algorithms but 

shows the potential to be used as a method for label free quantitation for a high number of 
proteins simultaneously. 

 

 

Being able to fragment peptides in an unbiased manner could greatly improve our breadth 
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of coverage in proteome analysis. The main disadvantage to DIA is that the data collected are 

extremely complex. The amount of information that can be derived from the MS/MS spectrum of 

one peptide is extensive, so the overlapping MS/MS spectra for several peptides are very 

difficult to interpret with current database searching algorithms. Consequently, with the number 

of peptides being fragmented there will be an expected increase of noise and increased overlap in 

peptide masses in SWATH fragmentation spectra. Currently, there are no widely available 

algorithms that can interpret SWATH data. To extract proteomic information from SWATH 

data, prior knowledge on peptide/peptide fragment m/z and retention time is required. 

Fortunately, they are somewhat easy to obtain from repeated analysis of peptide digests by DDA. 

This information can be collated into an ion library that can be continuously updated for a 

particular organism under numerous conditions, possibly obtaining peptide fragmentation data 

for every possible protein. In one of the first applications of SWATH Gillet et al (Gillet et al., 

2012) used large yeast peptide databases to extract transition signal intensities from SWATH 

data. They were able to show that targeted peptide quantitation is possible over four orders of 

magnitude with accuracy comparable to quantitation by selected reaction monitoring through the 

use of isotopically labelled standard peptides, showing the potential to quantify large numbers of 

proteins simultaneously with SWATH. 

 

1.5 Differential quantitative proteomics 
 

The ability to identify the proteins within the proteome is important. However, the list of 

proteins identified will tell you very little about how this organism functions within its 

environment. We can identify specific pathways and enzymes that are being expressed but we 

are truly interested in how these proteins are being regulated in response to changing conditions. 
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It is this response that identifies important biological processes related to a particular system. 

There are many ways that a cell regulates its protein activity and expression. One of the most 

important aspects of regulation is controlling the amount of protein that is being expressed at a 

given point of time, either by increasing or decreasing the activity of an enzyme by modulating 

the level of its expression (Peng & Shimizu, 2003). A lot of effort in proteomics research has 

been placed into not only identifying proteins, but also quantifying their expression levels. It is 

the expression levels of these proteins that tell us which proteins, pathways, and enzymes are 

important to a specific biochemical process. 

 

 The ability to quantify proteins using tandem-MS is based on the peptide signal intensity 

as determined by mass spectrometry. These quantitative experiments either measure the relative 

signal intensity between one or more samples (Figure 1.6), or determine the absolute 

concentration of protein based on the construction of standard curves with known amounts of 

isotopically labelled peptides (Bantscheff, Schirle, Sweetman, Rick, & Kuster, 2007). It is 

important to note that the measured signal intensity for a peptide ion is only loosely proportional 

to the amount of peptide present in the original sample. The signal intensity for a specific peptide 

is sequence specific and depends largely on the ionization efficiency (the total amount of peptide 

ionized compared to not-ionized) of the peptide (Page, Kelly, Tang, & Smith, 2007). In the case 

of ESI, a peptide’s signal intensity is also affected by its surrounding environment at the time of 

ionization, in a process known as ion suppression (L. Tang & Kebarle, 1993). The mechanism of 

ion suppression is poorly understood, but in general, high abundance molecules suppress the 

ionization of low abundance during ESI reducing their overall signal intensity (Annesley, 2003). 

Despite these disadvantages, direct comparison of the signal intensity of the same peptide, where 
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these effects are the same, has been shown to be quantitative. 

 
Figure 1.6 Basic relative quantitative proteomic experiment 

General outline for comparative quantitative proteomic experiments. Cells cultured under two (or 
more) conditions are analyzed using one of the many methods to perform quantitative 

proteomics. These experiments determine the relative protein quantity for thousands of proteins 
between the two conditions. The ratios calculated are organized into a distribution, such as the 
standard normal distribution shown here, and proteins above or below a predetermined cut-off 

are deemed to be significant with respect to the conditions measured. 
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1.5.1 Isotope based methods for protein quantitation 
 

Early experiments in protein quantitation showed that measuring the signal intensity of a 

particular peptide sometimes poorly represented the quantity of protein. While accurate label free 

quantitative measurements could be made for single proteins, the result tended to vary once 

interfering factors from complex protein matrices were introduced (Zhu, Smith, & Huang, 2009). 

The ability to quantify protein expression reproducibly was improved through the 

implementation of various isotope-labelling techniques. Stable isotopes are incorporated into 

proteins or peptides from two or more samples so the relative signal intensities of the unlabelled 

and labelled peptides can be compared. Stable isotope labelling has only a minimal impact on the 

chromatographic properties of a peptide so the intensity of two differently labelled peptides can 

be compared within the same mass spectrum. In general, stable isotope labelling methods can be 

divided into two different groups, those that incorporate stable isotopes during cell culture, and 

those that modify proteins or peptides after extraction through the use of chemical reactions.  

1.5.2 Incorporation of stable isotopes during cell culture 
 

One method for stable isotope labelling is to incorporate stable isotopes into proteins 

during cell growth on media that has been enriched or depleted for a specific isotope. These 

isotopes are usually 13C or 15N because of the minimal impact they have on the chromatographic 

properties of a peptide, allowing one to detect both heavy and light labelled peptides in the same 

precursor mass spectrum. For instance cells can be cultured on media enriched with some 

combination of 15N and 13C where this isotope is incorporated into proteins during cell growth. 

The same cells are cultured on a separate media that does not contain this isotope (Washburn, 

Ulaszek, Deciu, Schieltz, & Yates, 2002). The relative protein concentrations in these two 

different samples can then be determined by comparing the signal intensities of light and heavy 
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labelled peptides. The alternative method is also possible, where cells are cultured on both media 

that is depleted for 15N, 13C, and 2H, and on non-depleted media to determine relative protein 

concentration ratios (Paša-Tolic et al., 1999). There are several limitations to incorporating stable 

isotopes through the use of isotopically enriched minimal media. First, it is required that the 

system under study is able to be cultured under minimal media conditions. So studying human 

samples would be impossible with this method. Certain cell types also have been reported to 

have difficulty growing on minimal media enriched with 15N and 13C salts (Ross et al., 2004a). 

Secondly, the number of isotopes that is incorporated into a peptide can vary substantially 

depending on the type of amino acid, and the molecular weight of the peptide. This creates the 

situation where the mass shift between heavy and light labelled samples varies depending on the 

peptide, complicating the interpretation of peptide mass spectra.  

1.5.3 Incorporation of stable isotope labelled amino acids 
 
 The most popular method of incorporating stable isotopes into proteins is through 

metabolic incorporation of amino acids during cell culture. An example of this approach is stable 

isotope labelling of amino acids in cell culture (SILAC) (Ong et al., 2002). Cells are cultured in 

minimal media containing either light or heavy isotope labelled arginine, where all six carbons in 

arginine are 13C instead of 12C. After approximately six cell doublings the cells completely 

incorporate the stable isotope labelled amino acids into their proteins. The proteins from each 

condition are mixed together and digested with trypsin and analyzed by tandem-MS. Analysis by 

tandem-MS produces a precursor mass spectrum containing light and heavy isotope labelled 

peptides separated by 6 amu. It is the relative signal intensity of these heavy and light labelled 

peptides that provide quantitative information for the separate conditions. The constant mass 

shift between peptides makes identifying heavy/light pairs simpler than in culturing on isotope 
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enriched minimal media. The fragment spectrum serves to sequence the peptide and confirm the 

same sequence for light and heavy peptides. SILAC gives an advantage over techniques that 

isotopically label peptides after digestion in that protein samples can be processed 

simultaneously, eliminating any technical variation that can occur during trypsin digestion and 

sample clean up. However, mixing samples also complicates mass spectra interpretation, 

essentially doubling the amount of peptides that need to be detected in order to perform relative 

quantitation. Quantification at the precursor scan level also has the disadvantage that noise levels 

are, in general, higher in MS1 than MS2 spectra, reducing the overall signal to noise. 

Furthermore, SILAC also requires that the amount of isotope incorporated into each protein is 

complete, and that the modified amino acid is stable and not subject to modification over time. 

For instance, it was found that 13C-arginine was metabolized to 13C-proline in HeLa cells by the 

arginase pathway, giving both labelled arginine and proline residues (Ong et al., 2002). 

 

1.5.4 Stable isotope labelling by peptide modification 
 
 The alternative to isotope labelling in culture is to modify proteins or peptides with stable 

isotopes after proteins have been extracted from the sample of interest. One of the first methods 

developed was to incorporate 18O into the carboxy termini of peptides during the proteolysis 

reaction (Desiderio & Kai, 1983). When the proteolysis step is performed in the presence of 

H2
18O most proteolysis enzymes will incorporate two 18O atoms into the carboxy terminus of 

peptides shifting the overall mass by 4 amu. This reaction will label every peptide except the C-

terminal peptide for a particular protein. This technique has the advantage over other methods 

that incorporate stable isotopes in that the samples do not have to be cultured in a particular 

media, increasing the number of possible systems that can be studied with this method. However, 

the rate of exchange between heavy and light isotopes during the reaction can vary depending on 



 

 31 

the peptide size, peptide sequence, amino acid, and the enzyme used in proteolysis (Julka & 

Regnier, 2004). This can lead to cases where differences in protein expression are only noticed 

because of insufficient incorporation of heavy isotope into a particular protein, interfering with 

quantitative results. 

 

1.5.5 Incorporation of isotopes by chemical labelling 
 

Most of the previous discussed methods involve direct incorporation of isotopes into the 

protein or peptides themselves. Another option is to utilize isotopically labelled chemical tags 

that react specifically with peptide side chains. Isotope coded affinity tags (ICAT) was one of the 

first methods to employ stable isotope labelling of proteins for the purposes of differential 

quantitation through labelling of protein cysteine residues (Gygi et al., 1999). The ICAT tags 

themselves consists of a cysteine reactive group, a linker either labelled with deuterium or left 

unlabelled, and a biotin tag. Protein samples were labelled with either the heavy or light version 

of the ICAT tag, and digested with trypsin. The labelled peptides could then be isolated by avidin 

enrichment. Like stable isotope labelling of proteins in culture, the relative signal intensity of the 

heavy and light peptide signals in the mass spectrum provide information on the relative amount 

of proteins in each sample. The main disadvantage of the ICAT technique was that it labelled 

cysteine residues, which are of relatively low abundance with respect to other amino acids 

leading to a reduced number of possible protein identifications with respect to the entire 

proteome. ICAT also doubles the complexity of spectra, having a heavy and light labelled 

version of each peptide. Furthermore, ICAT also reduces the peak intensity for a given peptide 

because the signal is now split between heavy and light forms. The deuterium labelling of 

peptides also alters the chromatographic properties of a peptide, as deuterium will interact with 
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solid phase supports in reversed phase chromatography (Julka & Regnier, 2004). This problem 

was later overcome by substituting 12C with 13C instead of labelling with deuterium, 13C having a 

limited impact on a peptide’s chromatographic properties (Yi et al., 2005). However, for these 

reasons listed, tags that react with amine groups have largely replaced this technique in the 

majority of quantitative proteomic experiments. 

 

1.5.6 Isobaric tags for relative and absolute quantitation (iTRAQ) 
 

The limitations in the ICAT technique led to the development of amine reactive tags that 

have the capability to label the N-terminal, and γ-amine groups in lysine residues. The first 

techniques developed to utilize this approach included, isotope-coded protein label (ICPL) 

(Schmidt, Kellermann, & Lottspeich, 2005), tandem mass tags (TMTs) (Thompson et al., 2003) 

and isobaric tags for relative and absolute quantitation (iTRAQ) (Ross et al., 2004). The iTRAQ 

system uses a series of isotopically labelled tags that consist of a reporter group, a balance group, 

and a peptide reactive group (Figure 1.7). The reactive group is an N-hydroxysuccinimide (NHS) 

moiety that reacts with amine groups and N-termini of peptides. Since all peptides contain an N-

terminal amino group this significantly increases the coverage of labelled peptides compared to 

the cysteine based labelling in ICAT. The reporter group is labelled in such a way that the mass 

of this group differs by 1 Da between tags, while the balance group was labelled in order to keep 

the mass of the tag constant. Unlike metabolic labelling, and ICPL, isotopes are incorporated 

directly into peptides post-digestion, instead of incorporating isotopes into whole protein. After 

peptide labelling samples are mixed together and analyzed with tandem LC-MS/MS and DDA. 

Since the mass of each tag is kept constant, peptides with the same sequence elute at the same 

time and will also fragment simultaneously. This also has the added effect of combining the 
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peptides from each sample, increasing the overall signal intensity. During the fragmentation 

process the reporter group breaks from the rest of the peptide leaving a signal in the mass 

spectrum corresponding to the original amount of peptide present in each of the samples 

analyzed. This experiment has been performed for the analysis of 4 or 8 samples simultaneously, 

each requiring a different set of reporter tags (Unwin, Griffiths, & Whetton, 2010). Since the 

samples are mixed prior to MS analysis there will only be a single peak for each peptide in the 

precursor MS scan, increasing overall signal intensity due to the overall contribution from four 

different experiments. Quantitation at the MS2 level is also reported to be more accurate as the 

contribution of noise to quantitation is less in MS2 spectra than at the MS1 level (Yan et al., 

2011). Furthermore, this method does not require the use of minimal media, increasing the 

possible number of systems that can be studied.  

 

The most significant disadvantage in iTRAQ experiments is the well-documented issue of 

ratio compression, where this method underestimates the change in protein quantity for large 

changes in protein signal intensity, limiting the dynamic range of quantitation to approximately 2 

orders of magnitude. This appears to be the result of isolating and fragmenting different peptides 

with overlapping m/z ratios, each contributing to the reporter ion signal intensity and 

complicating quantitation calculations (Karp et al., 2010). The iTRAQ modification itself also 

has a tendency to increase the average charge state of peptides, which can have numerous effects 

during mass spectrometry analysis. Selection by DDA is dependent on charge state and signal 

intensity, this can decrease the number of peptides that are selected, and impact the number of 

protein identifications (C. Evans et al., 2012). This problem is amplified in 8-plex experiments 

because the mass of the 8-plex tag is greater than the 4-plex, further increasing the probability of 
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higher charge states. The 8-plex reagent has also been reported to effect peptide fragmentation 

by generating neutral loss ions that are usually ignored by current search engines (Pichler et al., 

2010). Finally, since the sample processing of each sample is done separately, iTRAQ does not 

account for any differences in peptide quantity that can occur during trypsin digestion, sample 

purification, and labelling. 
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Figure 1.7 Outline of iTRAQ experiment for relative protein quantitation 

In an iTRAQ experiment peptides from up to eight different samples are labelled with a different 
isotopically labelled tag and then analyzed by tandem LC-MS. Each tag consists of a reporter 

group that is isotopically labelled to vary the mass by one Da. The balance group keeps the mass 
of the entire tag constant so the chromatographic properties of the peptide are kept constant after 
labelling. After labelled peptide samples are mixed together and analyzed, each peptide fragment 

mass spectrum will show the signal intensity for each of the reporter ions along with the 
information necessary for peptide sequencing. The example shown above is for 4-plex iTRAQ, 
but 8-plex systems to allow for the relative quantitation of up to 8 samples are also available. 

Image used with permission under Creative Commons Public License 3.0 (See: 
http://creativecommons.org/licenses/by-nc/3.0/legalcode) from (Tweedie-Cullen & Livingstone-

Zatchej, 2008) 
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1.6 Label free protein quantitation 
 

One alternative to isotope-based quantitation is to completely forgo the use of isotopes 

and directly measure protein signal intensity from mass spectrometry experiments. Label free 

methods are an attractive approach because they are inexpensive when compared to isotope 

based methods and do not require any additional expertise beyond protein digestion and peptide 

purification. Cells can be cultured using existing methods without the need to adapt isotopically 

enriched media and no further modifications of peptides are required after digestion. The most 

common label free method is spectral counting, where the number of peptide identifications for a 

particular protein is taken as a measure of relative quantity (Lundgren, Hwang, Wu, & Han, 

2010). The exponentially modified protein index (emPAI) is one example where protein quantity 

is estimated by comparing the number of highly confident observed peptides with the number of 

possible observable peptides for that particular protein (Ishihama et al., 2005). The limitations in 

this method are that DDA is biased towards the most highly abundant proteins, limiting the 

number of low abundance proteins that can be quantified. Also, when low abundance proteins 

are identified their quantity is highly variable across replicates (Mueller, Brusniak, Mani, & 

Aebersold, 2008a). 

 

Label free methods can also use extracted ion chromatograms as a measure of protein 

signal intensity. The area under the curve or peak intensity for an extracted ion chromatogram 

can provide information on the relative quantity for a particular peptide. However, the measured 

peptide quantity is affected by many factors including biological or in-vitro peptide modification, 

variation of retention time between samples, and sample background noise (Neilson et al., 2011). 
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All of these factors can in theory be corrected for, but require expertise in the appropriate 

software. Quantitation by extracted ion chromatograms also requires that the peptide peak is 

sampled several times across the entire curve to ensure proper peak reconstruction. This can be 

problematic in DDA when low abundance peptides may only be sampled once across the entire 

chromatogram. Despite the difficulties with label free protein quantitation, this method has seen 

increased use compared to stable isotope labelling within a recent time period (C. Evans et al., 

2012). The ease in sample preparation and the increase in the number of software applications to 

analyze label free data are probably factors that are contributing to its increased use as a 

quantitative method. 

 

1.6.1 Selected reaction monitoring 
 

Label free quantitation with mass spectrometry can also be performed with selected 

reaction monitoring (SRM) (also referred to as multiple reaction monitoring or MRM). SRM 

uses the capabilities of a triple quadrupole mass spectrometer to isolate and fragment specific 

peptides belonging to a protein or proteins of interest (Figure 1.8). The complete protein digest is 

injected into the mass spectrometer, the peptide is isolated, fragmented, and then the signal 

intensity of particular peptide fragments is measured. These peptide/fragment pairs are 

commonly referred to as “transitions”. The measured signal intensity of each transition is 

proportional to the original amount of protein present in the isolated sample. Multiple transitions 

are usually measured for each peptide to ensure that the peptide signal intensity measured in fact 

belongs to the peptide of interest. The selection of the appropriate transitions is crucial to ensure 

accurate protein quantitation in SRM analysis. The peptides used can be selected from those 

already identified from DDA data or software can be used to predict potential transitions from 
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the protein of interest (Mead et al., 2009). In general peptides selected for analysis should have 

no potential sites of peptide modification, have a unique sequence with respect to the rest of the 

proteome, and have no missed cleavage sites (Lange, Picotti, Domon, & Aebersold, 2008). The 

isolation step to isolate specific peptide fragments is key to the effectiveness of SRM, removing 

surrounding noise increases the sensitivity of the technique increasing the limit of detection and 

quantitation. Detection of proteins at the sub ng/mL level in plasma with accuracy over 5 orders 

of magnitude has been reported (Stahl-Zeng et al., 2007). SRM also has the ability to measure 

absolute concentrations of proteins with stable isotope labelling (Kuzyk et al., 2009). Isotopically 

labeled peptides matching the sequence of the peptide to be measured can be spiked into 

proteomic digests, and have their signal intensity measured by SRM. Measuring this signal 

intensity at multiple concentrations allows for the construction of a standard curve, which can be 

used to measure the absolute amount of the target peptide. 

 

Figure 1.8 Selected reaction monitoring for targeted quantitation of proteins 

Proteins are quantified with SRM by isolating and fragmenting peptides belonging to the protein 
of interest. The process is performed with triple quadrupole (Q1, Q2, Q3) mass spectrometers as 

shown above. The peptide is isolated in Q1 where they are then moved to Q2 for collisionally 
induced dissociation. The particular fragment or fragments to be measured is isolated in Q3 to 

determine its signal intensity 
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In terms of the ability to quantify proteins at high sensitivity and low limit of detection, 

SRM is the method of choice. However, the technique is limited in its ability to quantify a large 

number of proteins simultaneously. As the number of proteins being measured increases the m/z 

overlap between peptides increases, and inaccurate quantitation of proteins is expected. 

Sufficient time is also required to isolate enough of the peptide to detect it at reasonable signal 

intensity, limiting the number of transitions that can be analyzed in a single experiment (Lange et 

al., 2008). So in SRM there is a trade-off in the amount of proteins that can be quantified, with 

high sensitivity and lower limits of quantitation. SRM is also a targeted technique, so a priori 

information is required before quantitation can be performed, whereas with quantitative 

techniques such as iTRAQ, quantitative information is acquired for all identified proteins in a 

non-biased manner. This makes SRM limited as a discovery method when little is known about 

the system being studied. 

 

1.6.2 Label free protein quantitation with data independent acquisition 
 

Data independent acquisition can be used for the purposes of label free protein 

quantitation. Several studies have reported the use DIA as the means to perform label free 

quantitative experiments (Gillet et al., 2012; Haverland, Fox, & Ciborowski, 2014; Orellana et 

al., 2014). The method used for label free quantitation with SWATH is very similar to SRM for 

the quantitation of proteins, where prior knowledge on transitions is provided and the signal 

intensity of these specific transitions located within SWATH data are measured (Figure 1.9). 

Since SWATH represents a potential snap shot of all proteins being expressed, it follow that one 

could also quantify many of these proteins simultaneously. There are many benefits for 

developing SWATH as a label free quantitative method. Many different aspects of the proteome 
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other than protein expression could be analyzed in a single experiment. These quantitative 

experiments could be extended to identify and quantify proteins that have posttranslational 

modifications, possibly without the need for prior enrichment of these modifications. SWATH is 

also a non-stochastic process meaning that analysis of the same tryptic digest should give the 

same results unlike data dependent acquisition (DDA) based methods (such as spectral counting, 

and iTRAQ), potentially eliminating the need to run multiple experiments for complete proteome 

coverage. Additionally, label free quantification with SWATH requires no additional steps for 

sample processing once proteins are digested with trypsin. The most intriguing part of SWATH 

analysis is that the collected data represents a permanent record of proteins expressed in the 

proteome. Their data can be repeatedly analyzed to obtain new information without the need to 

reanalyze proteomic digests by LC-MS. 
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Figure 1.9 Outline of label free quantitation with SWATH 

The information from DDA experiments can be compiled into an ion library containing protein 
name, m/z and retention time information for all of the peptide fragments identified. In the case 

of SWATH, the software package PeakView uses the ion library information to quantify peptides 
based on their signal intensities in SWATH data. 

 
 

We applied this technology to quantify a relatively large number of proteins in a model 

bacterium Clostridium stercorarium in order to show the potential for SWATH as a label free 

quantitative technique. We were able to assemble ion libraries from DDA experiments, 

containing m/z and retention time information for tens of thousands of peptides belonging to 

more than >1500 proteins for the purposes of extracting quantitative ion signals from SWATH 

data. This ion library was used to quantify 1030 proteins in C. stercorarium with at least two 

peptides quantified for each protein. In a recent study, SWATH was able to quantify ~2500 

proteins in Saccharomyces cerevisae (out of approximately 5400 protein coding genes) across 18 

different samples to determine factors related to osmotic stress response (Selevsek et al., 2015) 
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further showing the potential of using SWATH as a quantitative method. The potential for using 

previously obtained protein identification data and generating hypothetical ion libraries based on 

genomic information to perform SWATH quantitation was also explored. Overall, methods such 

as SWATH that use DIA will be important to further our ability to analyze the proteome in a 

more comprehensive manner, and provide better information on the quantity and identity of 

proteins being expressed. 

 

1.7 Statistical Analysis of Proteomic Data 
 

Differential quantitative proteomics is a process that measures relative (or absolute) 

protein quantities between two or more different states (Ong & Mann, 2005). Most quantitative 

proteomic experiments are relative, looking for proteins that have high or low expression with 

respect to two or more different states. From these differences important proteins related to the 

biological process of interest can be identified. For instance, this approach has been applied 

extensively to the study of malignant tumours to identify specific proteins that can act as targets 

for inhibition of tumour growth (Everley, Krijgsveld, Zetter, & Gygi, 2004; Hanash, Pitteri, & 

Faca, 2008). The relative quantity of proteins in cancerous and healthy cells is compared and 

proteins necessary for the cancer to function are likely to be overexpressed in cancerous cells 

compared to healthy ones.  

1.7.1 Statistical analysis of high dimensional data sets 
 

The differences in protein expression between one or more states, is our main method to 

identify proteins related to the biological process of interest. Being able to identify true 

differences in protein expression within proteomic data are vital for downstream analysis. False 

identifications can lead to incorrect conclusions with wasted time and effort in studying proteins 
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that actually have no impact in the system under study. The statistical methods applied to many 

other scientific problems have also become the main methods to identify significant differences 

in protein expression from differential proteomic experiments (Urfer, Grzegorczyk, & Jung, 

2006). These methods had to be adapted and modified to deal with the large data sets not 

typically found in most experiments. The challenge in most proteomic data sets is that the 

number of replicates for each condition is usually small but the number of variables being 

measured is high (Clarke et al., 2008). Proteomic experiments can measure the signal intensity of 

thousands of different proteins but it is not common to have more than 3 replicates for a given 

condition. This problem is commonly referred to as the “high dimensionality small sample size” 

problem (HDSS) (Dobbin & Simon, 2007). The approach to this is to use multiple hypothesis 

testing to compare thousands of different proteins, with the null hypothesis being no difference 

in protein expression for each protein quantified between conditions, while also taking into 

account the large number of tests that are required to compare thousands of different proteins 

simultaneously (Dudoit, Shaffer, & Boldrick, 2003). 

 

There are many different statistical methods that have been applied to differential protein 

expression data. Multiple hypothesis testing involves testing of multiple null hypotheses for all 

the proteins identified between two or more different states. Rejection of the null hypothesis 

means that there is a stated probability of a significant difference in protein expression between 

the two different states. The problem with hypothesis testing in large data sets is that even for p-

value = 0.01 the odds that there is at least one false positive is quite high because the dataset 

contains thousands of different proteins. In other words as the size of the dataset increases the 

odds on average of identifying at least one false positive increase. The large number of null 
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hypotheses that need to be tested is taken into account in multiple hypothesis testing methods, 

with the overall goal of limiting false positives while still finding differentially expressed 

proteins. 

 

1.7.2  Common statistical methods in proteomic analysis 
 

Even though the statistical method used in selection of differentially expressed proteins is 

arguably the most important part of differential proteomic analysis, there is little consensus on 

the ideal method to select significantly regulated proteins. A review of the literature shows many 

different ideas on how to select these proteins but there is no consensus on what the ideal method 

is or whether these methods are even being implemented by the majority of users in proteomic 

research (Mueller, Brusniak, Mani, & Aebersold, 2008b). One of the most common methods in 

gene array, RNA expression, and proteomics data analysis is to select an arbitrary cut-off for 

significance in terms of fold change where those proteins with an absolute fold change over a 

certain limit are deemed significant. Another common method is to construct a frequency 

distribution of all protein ratios and then select proteins based on where they lie within this 

distribution. For example, it is common to normalize the distribution of protein ratios into a z-

score population, essentially a distribution with a mean of 0 and a standard deviation of 1. 

Typically, a cutoff of z-score > |1.67| or |1.96| (1.67 or 1.96 standard deviations from the mean 

respectively) is selected, corresponding to the outermost 10 or 5% of the protein ratio population 

respectively. These percentages also correspond to the false discovery rates (FDR) based on 

Student’s t-test in normal populations. How to model the distribution of protein ratios is certainly 

a point of contention. In most cases, normality is assumed, but it is unclear if this is dependent on 

the biological system, if this distribution changes depending on the conditions used during 
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experimentation, or if it depends on a mixture of both of these factors. 

 

1.7.3 Differential protein expression analysis with biological variation 
 

This assumption of normality can have a potentially drastic effect on the proteins selected 

as differentially expressed. If the incorrect statistical model is used this can certainly contribute 

to the amount of type 1 and type 2 error in the analysis. If anything, systems biology has shown 

that biological systems are inherently complex, so to assume that one or two specific statistical 

models can model all biological systems, on its surface, appears wrong.  During the course of 

this project we realized that experimental protein variation could be used for the purpose of 

differential quantitative proteomic analysis. Any proteomics experiment can be set in a way 

where variation between two states under the same conditions could be measured while also 

measuring the variation between two states under two different conditions.  The technical 

variation in the system that includes slight differences in protein expression, where along the 

growth curve cells are isolated, cell lysis, protein digestion, peptide purification, among other 

factors, can be measured by constructing a distribution of protein ratios between two replicates 

grown under identical conditions. Consequently, the variation between two different states can 

be measured through the construction of a similar distribution from protein ratios obtained from 

two different states. Based on the measured technical variation one could assume that any 

variation beyond this can be construed as variation based on differences in biology. The bacterial 

organism C. stercorarium was used to test the hypothesis that subtle changes in protein 

expression in pathways related to carbohydrate metabolism could be detected by first modeling 

the natural biological variation and use this as a measure of protein expression significance. It 

was shown that variation between two states grown under different conditions had much higher 
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variation than two states under similar conditions and this variation showed important subtle 

changes that occur in biochemical pathways (discussed further in Chapter 3). 

1.8 Clostridium stercorarium 
 

The statistical methods developed here were used to determine differences in relative 

protein expression in the lignocellulolytic bacterial organism Clostridium stercorarium (Madden, 

1983). This organism has the capability to ferment the components of hemicellulose into the 

biofuels ethanol and hydrogen. C. stercorarium is of particular interest because it can ferment the 

components of hemicellulose, namely, xylose, arabinose, and glucuronic acid. Along with four 

xylanases that can degrade hemicellulose into soluble sugars (Adelsberger, Hertel, Glawischnig, 

Zverlov, & Schwarz, 2004), C. stercorarium also expresses a small cellulase system, consisting 

of two cellulases (Zverlov & Schwarz, 2008), which can assist in the degradation of the cellulose 

component of plant matter. This organism also expresses cellobiose phosphorylase that 

hydrolyses the bond between β 1,4 linked glucose, to form one molecule of glucose-1-phosphate 

and one molecule of glucose. Since most plants consist of upwards of 30% hemicellulose this 

organism could be a valuable addition to any consolidated bioprocessing process (Saha, 2003). 

Furthermore, this organism shows the possibility of being able to degrade and possibly ferment 

both cellulose and hemicellulose components simultaneously.  

 

The organism demonstrates mixed acid fermentation, the capability to ferment 

carbohydrates into a mixture of ethanol, lactate, acetate, and hydrogen. The information from 

quantitative proteomics can hopefully be used to improve the production of ethanol and 

hydrogen, and decrease the amount of acetate and lactate produced. Quantitative proteomics has 

already been used in other related organisms such as Clostridium thermocellum (Gold & Martin, 
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2007), Clostridium cellulolyticum (Blouzard et al., 2010), and Clostridium acetobutylicum 

(Sivagnanam et al., 2011). Each study was able to provide information on the essential pathway 

and enzymatic components to degrade and ferment the substrates in lignocellulose. Most of C. 

stercorarium studies to date have focused on the enzymatic activity of its purified xylanase and 

cellulase systems. The application of proteomics will be important to further understand how this 

organism is able to produce biofuel from the hemicellulose and cellulose components of 

lignocellulose. To date, there has been only one other proteomic study of Clostridium 

stercorarium, where our group used proteomic data to assist in construction of the genome. 

However, this study did not include any quantitative information on protein expression 

(Schellenberg et al., 2014). 

1.9 Bioinformatic techniques for studying the proteome 
 

The types of questions that one is trying to address using any omics approach often relate 

to defining the protein compositional changes that occur under changing conditions. While a 

difference in protein composition might be responsible for such an outcome, it appears that 

quantitative changes most often account for the displayed characteristics. Thus, a list of protein 

identifications is generally of limited use. The proteins that change must be placed in a biological 

context in order to understand what is happening within each system.  

 

There are many different bioinformatic tools for the analysis of proteomic data. Most are 

based on what we already know and have discovered about biological systems. We know that 

proteins rarely exist naturally as a singular entity, meaning that it is usually takes the concerted 

effort of many different proteins to create a biological function. Thus, most analysis tools focus 

on how groups of related proteins are changing, and whether those proteins participate in known 
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biological processes. This can often be inferred from evidence of physical or indirect interactions 

between proteins, or from conserved biological functions. There are several bioinformatics 

approaches that can be used to interrogate proteomics data regarding these properties. 

 

1.9.1 Clusters of orthologous groups 
 

In general, functional gene sequences are conserved throughout evolution to maintain 

functions that are required by all organisms. Genes that share a common ancestor and have the 

same or similar function are known as orthologs. This knowledge was exploited in order to 

construct clusters of orthologous groups (COGs) essentially a bioinformatic tool that could be 

used to assign function and evolutionary relationships to genes identified within entire genomes 

for closely related species. The first fully sequenced freely living organism was Haemophilus 

influenzae, an opportunistic, pathogenic bacterium that can cause a number of different 

infections in humans (Fleischmann et al., 1995). The sequencing of this genome led to the rapid 

sequencing of four other bacterial genomes, one archael genome, and the genome of the yeast 

Saccharomyces cerevisae. All 17,967 protein sequences from the seven sequenced genomes 

were compared pairwise with each other across each genome. For each protein, a “best hit” was 

detected in each of the other genomes. In this case, a single COG consists of an ortholog 

identified in at least three phylogenetic linkages based on these pairwise comparisons. The initial 

analysis resulted in 720 COGs organized into 15 different general functionalities, across the 

seven different genomes (Tatusov, Koonin, & Lipman, 1997). The COG database has improved 

over time as more genomes are sequenced, at the time of this writing containing 4632 COGs 

from 712 different genomes, organized into 26 broad cellular functions (this information is 

available from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/). 
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In terms of proteomic analysis COGs are useful to identify changes in broad 

functionalities that may occur with changing conditions. The 26 broad functions that COGs are 

organized into include functions such as amino acid transport and metabolism, carbohydrate 

transport and metabolism, and functions such as transcription, replication, recombination, and 

repair. Most genome annotations will include an indication of which COG this protein belongs to 

and whether a specific gene or protein falls into one of these broad categories. These proteins can 

then be organized into different categories to see if large-scale changes are occurring in that 

biological process with respect to the particular condition of interest. This can be useful in the 

initial stages of data analysis to identify general changes that are occurring, but is limited in the 

depth of information that it can provide. Some combinations of COG analysis with other 

methods like pathway analysis are necessary to provide a complete picture of how metabolism is 

changing at a global level.  

   

1.9.2 Predicting interaction networks 
 

Proteins often function as components of multi-molecular complexes or interact in a way 

to induce functional changes in other areas of the cell. Thus, changes in many of the components 

within one of these interaction networks may be necessary to alter cellular activities. A 

frequently used approach is to determine the interacting partners of differentially expressed 

proteins to determine what interaction networks may be modified in response to changing 

conditions. There are a multitude of different methods for the analysis of protein networks. Some 

methods focus on predicting protein interactions computationally (Baspinar, Cukuroglu, 

Nussinov, Keskin, & Gursoy, 2014; McDowall, Scott, & Barton, 2009). Other methods including 

STRING (Szklarczyk et al., 2015) and GeneMANIA (Zuberi et al., 2013) use both predicted and 
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known interacting partners. As an example, the STRING database contains information on 

predicted and known protein interactions for 5,214,234 proteins covering 1133 different 

organisms (Szklarczyk et al., 2015) (Figure 1.10). These interactions provide information on 

protein networks and how they are affected by changing conditions and provide further context 

to proteomic data. The STRING database can predict either direct interaction, a physical 

association between two proteins, or indirect interactions, proteins that don’t necessarily interact 

in a physical manner but have functional associations. STRING predicts interactions based on 

genomic context, conserved coexpression of proteins, high throughput experimental information, 

and also by data mining of related literature. The confidence in predicting interactions between 

proteins is based on what methods were used to predict the interactions. Proteins that have 

predicted interactions based on several of the previously mentioned factors will have a higher 

confidence in its prediction than an interaction based on limited information. In general, if 

proteins are known interacting partners based on experimental data, this information will be 

more reliable than that based on computationally based predictions. Thus some caution must be 

placed when drawing conclusions from interactions based on predicted information. STRING is 

also limited to 2031 organisms, so if the organism you are interested in is not included in this set 

no information on protein interactions will be available. 
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Figure 1.10 Example of results from STRING analysis for interaction network prediction 
STRING is one of the methods available to predict protein interaction networks. Each circle 

represents a “node” or protein that has potential interactions with the other nodes as computed by 
STRING. The thickness of the line represents the overall confidence that such an interaction 

exists. 
 

 

1.9.3 Kyoto Encyclopedia of Genes and Genomes 
 
 Most biochemical processes that occur within the cell are the result of sequential 

reactions by different enzymes organized into a single pathway. Thus alterations in one or more 

elements in a pathway might be expected to result in changes in the net activity of the process. 

There are several bioinformatic tools available that assist in the analysis of these biochemical 

pathways including KEGG (Kanehisa & Goto, 2000) and MetaCyc (Caspi et al., 2008). The 

Kyoto Encyclopedia of Genes and Genomes (KEGG, www.kegg.jp) is one of the most popular 

tools for the analysis of biological pathways. Currently, KEGG consists of 15 different databases 

divided into 3 subsets of information: systems, genomic, and chemical (Kanehisa, Goto, Sato, 

Furumichi, & Tanabe, 2011). In short, these databases consist of, the genes, proteins, and 
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chemicals that make up the wide variety of components, reactions, and metabolites in a 

biological system. Each pathway in the KEGG database is a graphical representation of the 

components within the pathway and the enzyme activities that catalyze each reaction. There are 

many different tools developed that can combine experimental data with these graphical 

representations in order to view data from the perspective of how specific biological pathways 

are changing across different conditions (Okuda et al., 2008). The information in the KEGG 

database is freely available so in theory one could develop their own customized tools to analyze 

proteomic data. KEGG has several other tools available so one can view data from multiple 

perspectives if desired. These tools range from functional hierarchies (KEGG BRITE analysis) 

similar to COG or gene ontology analysis, or tools for the analysis of related protein families. No 

matter the tool used for pathway analysis this approach can provide valuable information on 

which biochemical processes are important to the system being studied. However, each 

biochemical pathway in KEGG is only one representation of how a pathway could be organized 

and could not possibly represent all the biochemical reactions possible in nature. Therefore, it is 

necessary that pathways in KEGG actually represent the biochemical reactions taking place 

when studying less characterized organisms. 

1.10 Enzyme activity and Activity Based Protein Profiling (ABPP) 
 

With the technology available today, it is relatively simple to generate a list of protein 

identifications, and predict the protein composition of a biological extract. However, a protein’s 

identity and expression is only a small part of its function within the context of systems biology. 

In reality, these proteins exist in a complex mix of interactions, between gene, transcript, protein, 

and other biomolecules, that can have a dramatic effect on their function. So it is important to 

note that proteins are dynamic, their function can change quite dramatically depending on the 
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context they are placed in without changing their amino acid sequence. A phosphorylated protein 

may be inactivated or activated (McLachlin & Chait, 2001), an interaction with an effector can 

change its structural confirmation and in turn change its function (Changeux & Edelstein, 2005), 

or a protein may only be functional when it is localized to a specific area within the cell (Huh et 

al., 2003). From a current perspective of proteomic analysis studying these aspects is quite 

challenging and one of the main goals in proteomics is to incorporate data from several sources 

and monitor not just changes in expression but also how the function of a particular protein can 

change depending on the circumstances. 

 

Enzyme activity within the proteome is an aspect that has clearly been understudied in 

systems biology research. It is possible that enzymes upregulated in proteomic studies may in 

fact have no enzymatic activity due to their deactivation by other regulatory mechanisms. As an 

example, it is common for most proteases to exist in a deactivated zymogen state until a specific 

portion of the protein is cleaved to create an active enzyme (Khan & James, 1998). Intuitively, 

we expect these enzymes to be tightly regulated else severe cellular damage could result. In a 

recent time period, methods have been developed that can probe the activity state of enzyme, 

telling us whether this enzyme is in an active state (Berger, Vitorino, & Bogyo, 2004). 

Importantly, these methods can be applied to an entire proteome, providing us information on 

enzyme activity at a systems wide level for many enzymes simultaneously (Leung, Abbenante, 

& Fairlie, 2000). 

1.10.1 Activity based protein profiling 
 

Restricting access to the catalytic site often controls enzyme activity within the cell. This 

can be performed through conformational changes in the enzyme (Yon, Perahia, & Ghelis, 1998) 
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or through molecules that directly interact with the active site. Thus specifically reacting with the 

catalytic site of an enzyme provides a direct measure of the activity status of the enzyme. 

Activity based protein profiling (ABPP) is a method that was developed to differentiate between 

the inactive and active states of an enzyme at a global level (Berger et al., 2004). In ABPP, a 

chemical probe is designed that specifically labels the active site, providing information on the 

activity state of an enzyme at a given point in time. The probe will only label the active site if the 

enzyme is active, with no reaction occurring if the enzyme is inactivated. The probes contain a 

reporter molecule connected to a reactive group that reacts specifically with the conserved active 

site only reacting if the enzyme is in its active state. The reporter group is a commonly a 

fluorescent TAMRA tag that can be used to visualize active enzymes by SDS-PAGE and in-gel 

fluorescence. The reporter group can also be a biotin tag that allows for isolation by streptavidin 

agarose, followed by Western blotting and visualization by streptavidin-HRP. Alternatively, 

biotin labelled enzymes can be enriched and isolated and subjected to bottom-up proteomic 

techniques to identify labeled enzymes. These experiments allow us to visualize if differences in 

enzyme activity exist and then potentially identify the specific enzymes that represent those 

differences. This system potentially allows us to differentiate between enzymes that may have a 

high activity under certain conditions, but may not have significant changes in protein expression 

levels. These probes can also be added to whole cell protein lysates eliminating the need to 

isolate a specific enzyme to determine its activity. 

1.10.2 Click Chemistry for in vivo analysis of enzyme activity 
 

ABPP also has the potential to measure enzyme activity in vivo with so-called “click 

chemistry”. Click chemistry is a method based on the idea that complicated molecules could be 

constructed from simpler molecular building blocks, much like the idea of forming proteins with 
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complex activities simply from 20 basic amino acids (Kolb, Finn, & Sharpless, 2001). The most 

popular reaction within the click chemistry concept is the azide alkyne cycloaddition, where 

essentially two molecules, one containing an azide and one an alkyne group, could be joined 

together in the presence of a catalyst (Meldal & Tornøe, 2008). Click chemistry was adapted to 

ABPP by making small sulfonyl flouro azides that could penetrate the cell membrane and label 

the active sites of active enzymes as cells are being cultured. The reporter ion could be attached 

after cell lysis and protein isolation via the click chemistry reaction (Speers, Adam, & Cravatt, 

2003). This is significant in that it is usually unknown what impact cell isolation and lysis has on 

the activity of enzymes, it is possible enzymes may lose or gain activity while processing cells 

for analysis but is usually assumed that cell processing has a limited impact on an enzyme’s 

activity state. In-cell labelling of enzymes allows for the measuring of enzyme activity of 

enzymes much closer to their true biological activity without any interfering factors. Although 

this technique has the potential to measure enzyme activity in vivo, the small molecules 

essentially act as a cell poison inhibiting important enzymes necessary for cell function. This 

may cause stress responses in the cell that have an unknown impact on enzyme activity. 

1.10.3 Activity based protein profiling for serine hydrolases 
 

Some of the first ABPP probes developed were to analyze the enzyme activity of serine 

hydrolases, a diverse family of enzymes with a wide range of enzymatic activities (Y. Liu, 

Patricelli, & Cravatt, 1999). The serine hydrolases with protease activity are the most common, 

but the family also contains a number of different lipases and esterases (Derewenda & 

Derewenda, 1991; Satoh et al., 2002; Wong & Schotz, 2002). The common factor between these 

protease, esterase, and lipase enzymes is the presence of an α/β hydrolase fold which consists of 

parallel 8-stranded beta sheets surrounded by alpha-helices (Nardini & Dijkstra, 1999). Within 
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this fold is the enzyme active site that always consists of a catalytic serine, a histidine, and an 

aspartic or glutamic acid residue. The aspartic acid acts as a protein donor to the histidine, which 

in turn increases the nucleophilic strength of the serine hydroxyl group (Figure 1.11). The 

activated serine nucleophile attacks the amide or ester bonds to form a covalent linkage between 

the serine and the carbon. The final step involves a water molecule to both regenerate the active 

site and complete the cleavage of the amide/ester bond. The serine hydrolases are predicted to be 

relatively important in humans, where ~1% of the entire proteome is predicted to be serine 

hydrolases (Adam, Sorensen, & Cravatt, 2002). Serine hydrolases are less studied in microbial 

systems, but they are known to express acetyl xylan esterases involved in substrate degradation 

(Margolles‐Clark, Tenkanen, Söderlund, & Penttilä, 1996), lipases involved in a number of 

different processes (Gupta, Gupta, & Rathi, 2004), and serine hydrolases related to surface layer 

biogenesis (Dang et al., 2010). 
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Figure 1.11 Labelling of serine hydrolase active sites with FP probes 

One of the first tags developed to measure serine hydrolase activity by ABPP was the 
fluorophosphonate tag. The flurophosphonate group reacts specifically with the active site serine 
in all serine hydrolases that has been made highly nucleophilic by charge transfer reactions with 

a histidine and aspartic acid residues. The result is a covalent bond between the 
fluorophosphonate tag and a specific reporter tag. Analysis by in-gel fluorescence is available for 

the FP-TAMRA probe, the desthiobiotin-FP can be used for either Western blotting, or 
enrichment of serine hydrolases by streptavidin agarose for mass spectrometry anbalysis. There 
is also a cell permeable azido-FP tag for in-cell labelling of serine hydrolases and subsequent 

click chemistry. 
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1.11 Summary 
 

The aim of the present study was to improve and develop new approaches to 

characterizing the proteomic changes of an organism in response to changing growth conditions. 

The proteome represents the majority of cellular machinery that a cell requires to perform a wide 

variety of functions. It consists of thousands of different proteins all with diverse functionalities 

that can change depending on their environment, interactions with cofactors and other proteins, 

posttranslational modifications, among many other factors. To conduct these experiments we 

selected Clostridium stercorarium as a model bacterial system. This organism represents a 

potential bacterium that can be used in the conversion of lignocellulosic biomass into ethanol and 

other biofuels. This organism was cultured on two different carbohydrate sources, cellobiose and 

xylose, which are close analogues to the breakdown products of cellulose and hemicellulose (the 

main components of all plants) respectively. We selected this organism because of a number of 

different factors. Bacterial proteomes are less complex when compared to higher order 

eukaryotic systems, making the data easier to analyse computationally. Also, the approaches 

developed here could potentially be applied to other bacterial species with similar capabilities to 

aid in bioengineering projects and potentially improve biofuel output. 

 

The primary method to analyze the proteome in the past and present is DDA. Despite its 

widespread use this method has several limitations that limit our ability to study the proteome. Its 

stochastic nature only allows us to detect a subset of the proteins being expressed, with a bias 

towards highly abundant proteins. To fully analyze the proteome with this method requires 

repeated mass spectrometry analysis, significantly increasing the analysis time required. Data 
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independent acquisition represents a method that can overcome these limitations, providing an 

unbiased picture of the proteome that can be analyzed repeatedly without the need for repeat 

analysis of the same sample. We have tested the ability of DIA (in the form of SWATH), for the 

large scale, label free quantitation of whole cell lysates. This method was able to quantify ~40% 

of predicted open reading frames in the bacterial organism Clostridium stercorarium. It did so 

with high reproducibility in only a fraction of the time necessary compared to 2D quantitative 

methods. Most importantly, the comparative analysis of two different growth conditions using 

SWATH, revealed how this organism changes its protein expression in order to metabolize 

different carbohydrate sources.  

 

 The differential analysis of the proteome with comparative proteomic techniques such as 

iTRAQ is the primary method for discovering how a biological process functions at a systems 

wide level. Two or more samples cultured under different conditions are analyzed by the 

quantitative method of choice and then the relative quantity of thousands of proteins is 

determined between these different states. The most important part of this analysis is determining 

which proteins are being differentially expressed as a result of changing conditions and not just 

as a result of random variation. Significance testing (based on Neyman-Pearson statistics) is the 

primary method for determining which proteins are being differentially expressed at a fixed rate 

of false positives. The main issue to overcome with these methods is that most statistical models 

assume a normal distribution of ratios when it is not always clear that this is the case. The 

distribution could possibly change based on the conditions used or which biological system is 

being studied. Furthermore, these models assume that only proteins with the most amount of 

change between conditions are important, ignoring subtle changes in protein expression that may 
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occur in complex biological networks. We explored a different approach to determining 

differentially expressed proteins related to carbohydrate metabolism in C. stercorarium and 

found this approach to be more indicative of systems wide changes in carbohydrate related 

processes. The approach uses the overall variation between replicates grown under the same 

conditions and assumes that any variation beyond this is the result of actual biological 

differences in protein expression. This model appears to better describe changes in protein 

expression related to carbohydrate metabolism, and these changes would be ignored using 

current methods for determining significance in protein expression. Overall, this process shows 

that many proteomic studies are potentially underestimating the importance for many proteins 

identified during analysis. 

 

 Differences in protein expression are one variable that can be measured to identify which 

proteins are important to a specific biological process. However, a difference in the amount of 

protein expression is only one aspect of regulation that occurs in the proteome. The proteome is a 

dynamic system that can regulate the activity of proteins based on factors such as 

posttranslational modification and allosteric interactions with other proteins. Thus, proteins can 

be highly expressed within a system but actually have no biochemical activity until other factors 

come into play. Activity based protein profiling is a method that probes the activity state of an 

enzyme and differentiates whether that protein is in an active or inactivated state. We applied the 

concept of activity-based protein profiling to serine hydrolases in C. stercorarium to identify 

potential enzymes that are important to carbohydrate metabolism. The activity based 

flurophosphonate probe for serine hydrolases was used to identify potential differences in serine 

hydrolase activity in C. stercorarium on two different carbohydrate sources. In-gel fluorescence 
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measurements of serine hydrolase activity showed potential differences in serine hydrolase 

activity on these two substrates. The mass spectrometry based assays were able to identify 

several serine hydrolases, but appear to only analyze only the most abundant enzymes present 

showing limits in the ability to identify low abundance enzymes. 
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2 Label free quantitation with data independent acquisition 
 

2.1 Abstract 
 

Label free quantitation by measurement of peptide fragment signal intensity (MS2 

quantitation) is a technique that has seen limited use due to the stochastic nature of data 

dependent acquisition (DDA). However, data independent acquisition (DIA) has the potential to 

make large scale MS2 quantitation a more viable technique. In this study we used an 

implementation of data independent acquisition – SWATH – to perform label free protein 

quantitation in a model bacterium Clostridium stercorarium. We tested the capability of three 

different ion libraries, one containing transitions based on DDA experiments, another containing 

information from a previous 2D-DDA analysis on the same organism, and one based on in-silico 

calculations to predict hypothetical transitions from C. stercorarium genomic data. The most 

effective library was the one based on DDA experiments performed on the same samples used 

for SWATH analysis, followed by the 2D ion library, and then the hypothetical library. 

Application of the DDA ion library to SWATH data quantified 1030 proteins with at least two 

peptides quantified (~40% of predicted proteins in the C. stercorarium genome) in each 

replicate. Quantitative results obtained were very consistent between biological replicates (R2 ~ 

0.960). SWATH based quantitation was able to consistently detect differences in relative protein 

quantity and it provided coverage for a number of proteins that were missed in some samples by 

DDA analysis. Although, not as effective as the DDA ion library, the ion libraries based on 

previous experiments and hypothetical transitions were able to quantify proteins not identified in 

the original DDA experiments, showing that using data from multiple sources can potentially 

improve quantitation results. 
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2.2 Introduction 
 

Mass spectrometry based peptide sequencing has become the key method for protein 

identification and quantification. Peptide mixtures obtained from proteolytic digestions are 

analyzed in succession by MS and tandem MS (MS/MS) in order to obtain parent mass and 

amino acid sequence information, respectively (Aebersold & Goodlett, 2001). Protein 

identification is the first necessary step in all quantitation procedures whether using isotope 

based or label free methods. Experimental data are aligned against theoretical peptide 

fragmentation databases to identify proteins (Craig, Cortens, Fenyo, & Beavis, 2006; 

Nesvizhskii, 2007). Information from either peptide peak intensities in MS or MS/MS modes can 

be used to quantify proteins and give relative protein expression measurements (Wang, You, 

Bemis, Tegeler, & Brown, 2008). 

 

Quantitation techniques in proteomics are usually classified by the type of acquisition 

used to extract peak intensities (MS or MS/MS) or by the use of stable isotopes (Bantscheff, 

Schirle, Sweetman, Rick, & Kuster, 2007). Relative quantitation methods such as ICAT (Gygi et 

al., 1999), SILAC (Stahl-Zeng et al., 2007), or iTRAQ (Wiese, Reidegeld, Meyer, & Warscheid, 

2007), use isotope based labelling in order to quantify proteins. The ICAT and SILAC methods 

employ MS-based quantitation, while iTRAQ uses specific reporter ions in MS/MS spectra to 

assign relative peptide abundances. Selected reaction monitoring (SRM) uses isotopically labeled 

reference peptides to perform absolute quantitation of proteins through the measurement of 

specific fragments isolated by tandem mass spectrometry (Lange, Picotti, Domon, & Aebersold, 

2008). SRM does not perform protein/peptide identification, but uses peptide sequence 
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information obtained from prior experiments as building blocks for a targeted acquisition 

method. 

 

Label free quantitation of cellular proteins is quickly becoming the predominant method 

for relative quantitative analysis of complex proteomes (Evans et al., 2012; Wang et al., 2008) 

because it requires fewer steps in sample processing, costs less than other quantitative methods, 

and is broadly applicable (Wong & Cagney, 2010). This type of quantitation is typically 

performed either by measurement of peptide extracted ion chromatograms (MS1 quantitation) 

(Schilling et al., 2012) or by the measurement of corresponding peptide fragment intensities 

(MS2 quantitation). An example of MS1 quantitation is “intensity based absolute quantitation” 

(iBAQ) which sums the intensity of all peptides belonging to a specific protein then divides by 

the number of theoretically observable peptides to provide an estimate of protein abundance 

(Nagaraj et al., 2011). Normalized spectral index is a recent technique for label free quantitation, 

which combines aspects of peptide and spectral counting with fragment ion measurement 

(Griffin et al., 2010). Spectral counting is also a common technique for MS2 label free 

quantitation, where the number of MS2 spectra identified for a specific protein is taken as an 

indicator of relative abundance (Lundgren, Hwang, Wu, & Han, 2010). In general, label free 

quantitative techniques suffer from inaccurate quantitation due to peptide modifications that can 

happen pre- or post- digestion, variation of retention time between runs, and sample background 

noise (Neilson et al., 2011), which is especially predominant when measuring peptide signal 

intensity at the MS1 level.  
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The majority of quantitation techniques reported to date are based on data dependent 

acquisition (DDA) methods (Stahl, Swiderek, Davis, & Lee, 1996) where, after an initial MS 

scan, the most abundant peptides are selected for fragmentation. Several groups have 

experimented with summed MS2 ion intensities to provide information on protein quantity (Krey 

et al., 2014; Shin et al., 2007; Spinelli et al., 2012). However, even when an identical sample is 

analyzed multiple times in succession, DDA can provide different protein identifications for each 

analysis (H. Liu, Sadygov, & Yates, 2004). This is mostly the result of variations in retention 

time and peptide signal intensity that can cause the analysis software to select different peptides 

for fragmentation each time. This approach is biased towards fragmenting the most abundant 

peptides and cannot provide consistent sampling throughout the full profile of an eluting peptide 

peak – both of which are key conditions for accurate quantitation. Recent improvements in 

acquisition speed of mass spectrometers (Holcapek, Jirasko, & Lisa, 2012) may resolve many of 

the problems with DDA based label free quantitation: a 2014 report by Krey et al. (Krey et al., 

2014) demonstrated that while iBAQ MS1 quantitation was the most accurate method to measure 

the quantity of spiked peptides in an E. coli digest background, MS2 quantitation with an 

Orbitrap mass spectrometer was able to closely match these results. Recent time-of-flight mass 

spectrometers offer up to 50 Hz acquisition rate in DDA MS2 mode (Andrews et al. 2011), 

allowing for frequent sampling of the peptide chromatographic peak, which might also 

demonstrate superior MS2 quantitation. 

 

These advances have allowed for the development of an alternate approach, data 

independent acquisition (DIA) that potentially eliminates the variability associated with ion 

selection during DDA analysis of peptide mixtures. In DIA, multiple peptides within a given m/z 
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window are isolated and then fragmented simultaneously, as opposed to fragmenting single 

peptides in DDA. The resulting mass spectrum in each case consists of overlapping 

fragmentation spectra of many different peptides. Examples of DIA methods reported to date 

include PAcIFIC (Panchaud et al., 2009), MSE (Silva et al., 2006), and SWATH (Gillet et al., 

2012). These methods differ mainly in the size of the acquisition window used to isolate peptides 

simultaneously.  

 

SWATH’s default configuration uses 25 m/z blocks of ions that are isolated in the mass 

spectrometer and fragmented simultaneously. This process is repeated across the entire m/z range 

(typically 400-1200 m/z) in order to obtain fragmentation information on as many peptides as 

possible. The sampling speed of recent mass spectrometers is sufficient for multiple acquisitions 

across the chromatographic profile of an individual peak, thus providing more consistent 

quantitative information than DDA. The end result is multiple SWATH “blocks” containing 

information on ions isolated across the entire LC-MS run. In theory, the results of these 

experiments should contain sequencing and quantitative information on all peptides in a given 

sample. The data obtained in SWATH acquisition are too complex for current algorithms that 

interpret peptide fragmentation spectra. To date, SWATH data are used mainly for the purposes 

of targeted peptide quantitation, requiring a priori knowledge of peptide transitions and retention 

time (Gillet et al., 2012; Haverland, Fox, & Ciborowski, 2014; Y. Liu et al., 2013). Peptide 

signals (intensity of selected fragment ions for a particular 25 m/z block) can be extracted using 

ion libraries obtained from previous DDA experiments. An appealing aspect of SWATH is that it 

provides a permanent record of all peptide fragmentation information; this record can be re-
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analyzed for new analytes as additional ion library data becomes available. Settings can also be 

modified to optimize quantitation of particular proteins. 

 

Identification and quantitation procedures in SWATH are separate, unlike traditional 

MS1 or MS2 spectral counting quantitation based on DDA. The ion library (the list of m/z and 

retention times for the parent and fragment ions) is created based on preliminary DDA 

measurements and may or may not contain information on the species fragmented during 

SWATH acquisitions. This is particularly critical when samples with significant variations in 

protein content are analyzed as only proteins included in the ion library can be quantified and it 

is possible to miss differences in protein expression. Inclusion of the whole repertoire of proteins 

into the ion library might require preliminary DDA runs for all samples to be compared and/or 

extensive 2D-LC MS DDA acquisition.  

 

The ion library necessary for SWATH quantitation can be constructed in a number of 

different ways. Peptide retention time and fragmentation data can be taken from online 

repositories such as PeptideAtlas (Desiere et al., 2006) or The Global Proteome Machine 

(www.thegpm.org) to use as a basis for constructing an ion library. Another option is to create a 

hypothetical ion library, in which m/z of expected peptides from the entire organism, their 

fragmentation patterns, and expected retention times can be calculated in-silico. Taking into 

account recent progress in understanding MS/MS fragmentation mechanisms (Zhang, 2004) and 

peptide RP-HPLC retention prediction (Spicer, Grigoryan, Gotfrid, Standing, & Krokhin, 2010) 

this option might be possible. This has the potential to completely eliminate the necessity to 

conduct preliminary experiments turning SWATH quantitation into a single step analysis. 
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The limited number of SWATH applications reported to date has targeted small 

populations of proteins (Helm, Dobritzsch, Rodiger, Agne, & Baginsky, 2014; Y. Liu et al., 

2012; Moran, Cross, Brown, Colligan, & Dunbar, 2014). We questioned the potential of 

SWATH to provide a proteome-wide snap shot of protein expression for a particular organism. 

This was felt to be an attractive method relative to other quantitative techniques in that SWATH 

should have higher reproducibility between replicates than DDA due to even sampling of the 

entire chromatographic peak of a single peptide. Furthermore, this capability introduces the 

potential to compare large numbers of different conditions with minimal sample preparation and 

method development. 

 

The intent of this study was to evaluate the potential of SWATH as a method for the 

rapid, relative quantitation of large numbers of proteins in a single analysis. We have used a 

combination of DDA and SWATH in order to perform high-throughput relative quantitative 

analysis in a model organism Clostridium stercorarium (Madden, 1983). SWATH quantitation 

was evaluated in terms of reproducibility of protein signal intensities between biological 

replicates and relative protein signal intensity ratios across different growth conditions. The limit 

of reproducibility in DDA acquisitions (MS2 quantitation based on fragment signal summation) 

was also determined by comparison of SWATH and DDA protein quantitation results. We also 

demonstrated advantages and limitations of state-of-the-art peptide RP-HPLC retention and 

MS/MS fragmentation modeling as it applies to creation of hypothetical ion libraries for label 

free quantitation with SWATH. 
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2.3 Materials and Methods 

2.3.1 Culturing of C. stercorarium 

 
 C. stercorarium DSM 8532 (GenBank Accession: NC_020887) was cultured on 1191 

medium (Sparling et al., 2006) to mid-exponential phase at 60°C using either 0.2% xylose or 

0.2% cellobiose as the primary carbon source. Cells from each culture were collected by 

centrifugation at 5,000 g, washed three times with PBS (8.00 g/L NaCl, 0.20 g/L KCl, 1.44 g/L 

Na2HPO4, 0.24 g/L KH2PO4, 0.24 g/L KH2PO4, pH 7.5) and then frozen at -80°C until needed. 

 

2.3.2 Filter assisted sample preparation (FASP) for cell lysis and protein digestion 
 

The filter assisted sample preparation method (FASP) was used to generate tryptic digests 

for subsequent LC-MS acquisitions (Wisniewski, Zougman, Nagaraj, & Mann, 2009). Cell 

pellets (~50 uL) were suspended in 500 µL of SDT buffer (100 mM Tris, 100 mM DTT, 4% 

SDS, pH 8.5) and heated at 95°C for 10 minutes. To ensure complete cell lysis, samples were 

sonicated using three 12-second pulses, with cooling on ice for 1 minute in between each pulse. 

Cell lysates were frozen at -80°C until processed for analysis. Two hundred µL of cell lysate was 

added to a 50 mL 10 kDa MWCO Millipore (Billerica, MA) centrifugation filter already 

containing 12 mL of UA buffer (100 mM Tris, 8 M urea, pH 8.5). Samples were centrifuged at 

4,000 g until an equal volume of buffer was left on each filter. This washing procedure was 

repeated twice in order to remove the majority of SDS. An equal volume of 100 mM 

iodoacetamide solution was added to each sample and left at room temperature in the dark for 45 

min. Samples were washed twice with 12 mL of 100 mM ammonium bicarbonate to remove 

excess urea. Protein concentration was determined by the BCA assay. Sequencing grade trypsin 

(Promega, Madison, WI) was added to each vial at 1:100 enzyme:substrate ratio and incubated 
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overnight at room temperature. Peptides were collected by the addition of 1 mL of 500 mM NaCl 

and centrifugation at 4,000 g into a clean 50 mL tube. Final peptide concentration was 

determined by nano drop UV absorbance spectrometer (Thermo Fisher, Rockford, IL) at 280 nm. 

Peptide samples were desalted by RP-HPLC, lyophilized and re-suspended in 0.1% formic acid 

and spiked with a 6 peptide standard mixture (Krokhin & Spicer, 2009b) before subsequent LC-

MS analyses in DDA and SWATH acquisition modes. 

 

2.3.3 LC-MS/MS analysis 
 

A Triple TOF 5600 mass spectrometer (ABSciex, Mississauga, ON) coupled to a nano-

flow Tempo LC system (Eksigent, Dublin CA) was used for the analysis. Samples (10 µL) were 

injected via a 300 µm x 5 mm PepMap100 trap column (Thermo Fisher, Rockford IL) and 

separated on 100 µm x 200 mm analytical column packed with 5 µm Luna C18 (Phenomenex, 

Torrance CA). Both eluents A (water) and B (acetonitrile) contained 0.1 % formic acid as ion-

pairing modifier. Samples were separated using a 0.5-30% B gradient over 105 minutes (0.28% 

acetonitrile/min) followed by 5 minutes of washing (90% acetonitrile) and a 10 minute 

equilibration (0.5% acetonitrile) step. Either 2 or 0.5 µg of digest was injected for DDA or 

SWATH analyses, respectively. 

 

Each cycle of data dependent acquisition included a 250 ms MS scan (400-1600 m/z) and 

up to 40 MS/MS (100 ms each, 100-1600 m/z) for ions with charge state from +2 to +5 and an 

intensity of at least 300 counts per second. Selected ions and their isotopes were dynamically 

excluded from further fragmentation for 12 seconds. Raw spectra files were converted to 
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searchable Mascot Generic File (MGF) format carrying MS/MS acquisition information. Peptide 

identifications were performed using a customized version of the X!Tandem algorithm (Craig, 

Cortens, & Beavis, 2005) (complete carbamidomethyl Cys modification, maximum of one 

missed cleavage, mass accuracy of ± 10 ppm and 0.05 Da for parent and fragment ions 

respectively). False positive rates are computed internally by X!Tandem and included in the 

output XML files. Retention times for all identified peptides were assigned to each non-

redundant species as the intensity weighted time average for the two most intense matching 

MS/MS spectra. Venn diagrams for protein identifications were generated with GeneVenn 

(http://genevenn.sourceforge.net/). 

 

 Each cycle of SWATH analysis consisted of a 250 ms MS scan and a 100 ms MS/MS 

scan in 25 m/z blocks in 400-1250 m/z range: a total of 34 SWATH blocks collected for each 

scan. Precursor selection windows had an overlap of 1 Da with each adjacent window to ensure 

complete isotope coverage between SWATH blocks. Collision energy was set to optimum 

energy for a +2 ion at the center of each SWATH block with a 15 eV collision energy spread. 

The mass spectrometer was always operated in high sensitivity mode. 

 

2.3.4 Label free MS2 quantitation 
 

Protein level DDA expression values were extracted from X!Tandem XML files given as 

the “sumI” variable listed for each protein. More specifically, this value can be found in 

X!Tandem XML reports under the “sumI” field of the “protein” declaration. The sumI value is 

simply the summation of all fragment intensities obtained from collisionally induced dissociation 

spectra for each peptide belonging to a particular protein.  
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2.3.5 Construction of the experimental ion library for SWATH quantitation 
 

The ion library used for SWATH quantitation was constructed with an in-house 

algorithm that extracted fragment mass to charge ratios directly from X!Tandem XML files for 

each of the four DDA runs and combined them into a single library, under the  assumption that 

peptides seen in any DDA run could potentially be detected in all SWATH runs. Peptides for 

inclusion in the ion library were only taken from proteins that had at least 2 non-redundant 

peptides identified, and with a protein expectation value (Fenyo & Beavis, 2003) log(e) ≤ -3 .  

 

For every peptide in the library, the most intense CID spectrum in the DDA run 

collection was selected to provide the SWATH transitions, with its parent m/z and charge values 

as the “Q1” and “prec_z” column entries respectively. The “confidence” column for each peptide 

was computed as 0.99-10(expectation-value). The peptide’s amino acid sequence was used to compute 

all possible singly and doubly charged b-ion and y-ion fragments, giving a series of “Q3” entries, 

each having “frg_type”, “frg_z” and “frg_nr” columns. Observed CID fragment intensities were 

integrated across a ± 20 PPM window from each computed Q3 transition value, yielding the 

“relative_intensity” column value; any transition with integrated value greater than zero was 

included in the final ion library. The retention times of these peptides were averaged across the 

four runs. This non-redundant, averaged, collection was then formatted to a tab-delimited table 

of parent and fragment transitions to drive SWATH quantitation with PeakView (ABSciex, 

Missisauga ON). The settings used by PeakView to perform SWATH quantitation were as 

follows: 1) mass accuracy 50 ppm (i.e. ± 25 ppm from ion library mass), 2) retention time 5 

minutes (i.e. ± 2.5 mins from ion library retention time) 3) use 6 peptides with 6 transitions 
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required for each peptide, 4) 1% false discovery rate, 5) only use peptides with confidence > 

99% in identification or higher. Peak area outputs from PeakView were further organized into 

tab delimited text files containing log2 signal intensities between biological replicates and 

different growth states for both DDA and SWATH signal intensities. All further data analysis 

and graph generation were performed with the R programming language. 

 

2.3.6 Construction of the hypothetical ion library for SWATH quantitation 
 

In-house software applications written in Perl were used to calculate in-silico/predict 

basic properties of expected tryptic peptides from C. stercorarium. It starts by conducting an in-

silico tryptic digestion (no missed cleavages) of the proteins and building a list of tryptic 

peptides. Each peptide is then scored based on its amino acid sequence. Peptide sequences that 

could be subject to common post-translational modifications are penalized. Peptides with N-

terminal Gln or Cys (cyclization), M or W (oxidation), NG NS QG QS motifs (deamidation) 

have their scores values significantly scaled down. Then we compute the most likely charge state 

for the peptide using a 13-parameter predictive model based on 300 highly confident non-

modified peptides observed in typical TripleTOF5600 runs. Peptides were excluded if their 

expected m/z was outside of a 400-1250 window. 

 

Each peptide is subjected to in-silico fragmentation then sorted by expected y-ion 

intensity. This portion of the algorithm is driven by a table of (Z=1) y-ion intensities for amino 

acid pairings based on empirical observations of highly confident peptides at parent charge Z=2. 

Similar models can be optimized of other charge states, but assuming Z=2 seemed adequate for 

this initial study for both Z=3 and Z=4 ions. 
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Finally, the hydrophobicity index (HI) for each peptide sequence was computed using 

SSRCalc (formic acid model) (Spicer et al., 2007) and mapped into actual retention time based 

on a linear regression of the retention times of the calibrating peptides P2-P6 observed in 

SWATH runs and their precisely known HI values (Krokhin & Spicer, 2009). The resulting 

library contained 383,373 transitions from 66,332 hypothetical peptides spanning 2580 proteins 

from C. stercorarium. 

 

2.3.7 The “lobe/meta” system for omics analysis 
 

The “lobe/meta” system was designed to provide potential biological insights into omics 

data from proteomics, RNAseq and microarray experiments under a unified comparative analysis 

system using a small number of functions. All incoming data are mapped into a log2 scale on a 

gene/protein level for simplified comparison, subtraction and visualization, exploiting the fact 

that the difference of log values being equivalent to the log of the ratio. 

 

Meta is built around the summary file generated by IMG/ER (https://img.jgi.doe.gov/cgi-

bin/er/main.cgi) “Export Gene Information” function: all of an organism’s proteins mapped into 

higher order variables (HOV) (Markowitz et al., 2012). These include MetaCyc pathways, 

enzyme class numbers, COG letters and KEGG modules. The resulting spreadsheet of rows 

containing HOV entries and columns of gene/protein log2 signal intensities can be manipulated 

directly in a spreadsheet package, processed and visualized in lobe, or entered into R for further 

data analysis.  
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The omics data sets (4xDDA experiments, experimental, 2D-library, hypothetical 

SWATH quantitation) used in this study were incorporated into lobe/meta to assess the 

reproducibility of each method on its own and for comparison between each method. Each 

protein identified by DDA had at least 2 peptides identified and an expectation value of <= -3. 

SWATH data were incorporated based on the SWATH peptide quantitation outputs from 

PeakView using either of the three ion libraries. Four different populations were constructed by 

subtracting log2 signal intensities between xylose and cellobiose biological replicates and 

between each xylose/cellobiose pair. Each population was then bias corrected by mean 

subtraction. 

 

2.4 Results and Discussion 

2.4.1 Generating an ion library for SWATH quantitation 
 
 Protein quantitation by SWATH was performed post-acquisition using an ion library 

based on information extracted from DDA experiments. The ion-library encompassed all 

proteins detected in each sample, in order to maximize the number of possible proteins 

quantified by SWATH. In our study four replicates of C. stercorarium were grown on xylose or 

cellobiose (two biological replicates each), then digested and analyzed by 1D LC-MS/MS 

(Figure 2.1). The combined output of these four data dependent acquisitions was used to 

construct an ion library for SWATH quantitation that contained 1309 proteins. Identifications 

between biological replicates were very reproducible with ~90% overlap between samples 

(Figure 2.2). Nine hundred and ninety eight and 980 proteins were identified in both replicates 

for xylose and cellobiose conditions respectively with a false positive rate of 0.40-0.43%. This 

result illustrates advances in the performance of bottom-up proteomic analysis by DDA – 
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previous studies on the reproducibility of protein identifications gave overlaps of between 70-

80% between technical replicates (Bateman et al., 2014; H. Liu et al., 2004; Nilsson et al., 2010). 

This increase in reproducibility between replicates is likely a product of increasing the numbers 

of peptides that can be analyzed by MS/MS in a single scan cycle, increasing the possibility that 

all ions in the precursor mass spectrum are selected for analysis. 
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Figure 2.1 Outline for label free quantitation with SWATH 
Duplicate cultures of C. stercorarium were grown under two different growth conditions (xylose 

[XY] and cellobiose [CB]). Whole cell digests were analyzed by DDA and SWATH LC-
MS/MS. Peptide identifications from DDA were consolidated into an ion library for SWATH 

quantitative analysis. Ion libraries were constructed in a similar manner using data from a 
previous 2D-DDA experiment on the same organism and with hypothetical transitions based on 
the C. stercorarium genome. SWATH spectra were analyzed with each of the ion libraries via 
PeakView software processing. The final results consisted of SWATH peptide signal intensity 

based on experimental, 2D or hypothetical peptide information. 



 

 91 

 

 

 

Figure 2.2 Venn diagrams for protein identifications in xylose and cellobiose biological 
replicates 

Venn diagrams showing overlap in protein identifications (≥ 2 peptides, log(e) ≤ -3 between 
biological replicates of C. stercorarium cultured on either xylose (top) or cellobiose (bottom). 

 

 

The DDA derived information on peptide transitions and retention times were used to 
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construct an ion library. Peptides were only included if their corresponding protein identification 

had at least 2 non-redundant peptides and a protein-level expectation value of log(e) ≤ -3. The 

final library contained 191,972 transitions spanning 15,075 peptides belonging to 1,309 proteins. 

The overlap in potential peptide transitions was very low, finding only 250 transition collisions 

for 222 peptides, out of the 191,972 transitions in the original ion library. Further analysis was 

conducted assuming that the low number of transition collisions had an insignificant effect on 

quantitation with respect to the entire dataset as a whole. PeakView transition filtering 

constraints of retention time ± 2.5 min and mass ± 25 ppm was applied to the four SWATH run 

collections, resulting in a peptide level intensity report containing 4,704 peptide entries for 1,207 

proteins. If proteins with two or more peptides are used for SWATH identification this gives 

1,030 proteins quantified by SWATH. Thus, with only 4 x ~2 hour SWATH runs it was possible 

to quantify ~40% of predicted C. stercorarium open reading frames (GenBank Accession: 

NC_020887) under two different growth conditions. 

 

2.4.2 Quantifying the C. stercorarium proteome using MS/MS signal intensities in DDA 
and SWATH modes 

 
 The reproducibility of SWATH and DDA MS2 quantitation was examined by calculating 

the coefficient of determination (R2 value) between log2 protein signal intensities across 

biological replicates (Figure 2.3 and Figure 2.4). For further evaluation we only used proteins 

quantified by SWATH with 2 or more peptides. Eliminating proteins with only one peptide 

quantified increased the R2 value between replicates and appeared to only eliminate proteins with 

poor reproducibility between replicates and low signal intensities. The Triple TOF 5600 provides 

very high MS/MS acquisition rates (for this study the acquisition rate was set to 40 MS/MS per 

cycle) giving consistent identification outputs between replicate runs. The higher sampling rate 
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minimizes the stochastic nature of parent ion selection; in combination with the high 

reproducibility of MS/MS acquisition, MS2 quantitation signals are more stable. The R2 value 

for DDA quantitation was 0.921 and 0.922 for xylose and cellobiose respectively, decreasing 

slightly when proteins with only one peptide are included (Figure 2.3). The R2 value for SWATH 

quantitation was 0.969 and 0.963 for xylose and cellobiose datasets, respectively. 
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Figure 2.3 Reproducibility of label free quantitation with DDA 

Scatterplots demonstrating the reproducibility of label free quantitation between biological 
replicates based on summation of DDA spectra using a 1 peptide (top two panels) or 2 peptide 

minimum (bottom 2 panels) for quantitation. Signal intensities on x- and y-axis are given in log2 
format. The number in the upper left of each graph is the calculated R2 value. There was a slight 

improvement in reproducibility when a 2 peptide minimum was used for quantitation. The 
quantitation results also appear to be less reproducible as the protein signal intensity decreases. 

This decrease in reproducibility appears to be more predominant for DDA MS2 quantitation than 
for SWATH based quantitation. 
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Figure 2.4 Reproducibility of label free quantitation with SWATH 

Scatterplots demonstrating the reproducibility of label free quantitation with SWATH using a 1 
peptide (top two panels) or 2 peptide (bottom two panels) minimum. Signal intensities on x- and 
y-axis are given in log2 format. Like MS2 quantitation with DDA there was an improvement in 
quantitation reproducibility when a 2 peptide minimum is used. SWATH quantitation results 

were less variable than DDA quantitation as shown by increased R2 values between biological 
replicates. 
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 The dynamic range for SWATH quantitation was slightly higher than for DDA 

quantitation. The dynamic range for DDA was roughly four orders of magnitude (7.7 x 103 – 1.3 

x 108 or 12.9 – 27.0 in log2 units) while SWATH covered nearly 5 orders of magnitude (1.3 x 103 

– 1.2 x 108, 10.4 – 26.9 in log2 units). Additionally, the distribution of protein signal intensities 

between SWATH replicates over this range is nearly linear (Figure 2.4), whereas the deviation of 

DDA protein signal intensities between replicates is greater at lower intensities – likely the result 

of inconsistent parent ion selection for low abundance species. The DDA peak selection criteria 

are based on ion intensity, giving multiple MS/MS acquisitions for abundant components and 

thus a complete profile of the corresponding peptide peak. Conversely, low abundance peptides 

are fragmented only once or twice at random MS2 fragmentation intensities from the peptide’s 

chromatographic peak, yielding inconsistent peak profiles across multiple runs. The increased 

variation in protein signal intensity for these low abundance proteins is likely the result of MS2 

signal noise contributing to the extracted peptide intensities. 

 

 While correlation between biological replicate protein signal intensities was similar for 

SWATH and DDA (~0.960 and ~0.920 respectively), the nature of DDA meant not every protein 

was detected in every run. Of the 1030 proteins quantified by SWATH, 88 were identified by 

DDA in only 3 replicates, 79 were identified in only two replicates, and 25 were only identified 

in a single replicate (192 proteins total), supporting the notion that proteins inconsistently 

detected by DDA may indeed be present in all four replicate samples. To put these numbers in 

perspective, for the four original DDA acquisitions, 157 proteins were identified in a single 

replicate, 101 were identified in two replicates, 124 were identified in three replicates, and 913 

proteins were identified in all four replicates (≥2 peptides, protein expectation value log(e) ≤ -
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3).The average log2 DDA signal intensity for proteins identified in 3 replicates was 16.4, proteins 

in 2 replicates had an average signal intensity of 16.7 and proteins only identified in a single 

replicate had an average signal intensity of 15.7, showing some correlation between signal 

intensity and the likelihood of a protein being identified by DDA when analyzing a sample 

multiple times. The average SWATH log2 signal intensities for the same proteins were 18.2, 

17.9, and 17.0, indicating that SWATH was able to better quantify the population of proteins 

with inconsistent DDA results at increased signal intensity of ~2-3 fold over DDA.  

 

2.4.3 Relative protein quantitation in C. stercorarium with SWATH and DDA 
 

The purpose of most relative quantitation studies is to identify those proteins that are 

altered under different biological conditions (Unwin, Evans, & Whetton, 2006). The general 

strategy is to focus on those proteins, which display the greatest variation in abundance ratios 

relative to the assumed normal frequency distribution of ratios for the entire protein population. 

However, the actual observed ratio for any protein is a combination of the reproducibility of the 

measurements and of the actual physiological changes. If we make the assumption that the 

variation between biological replicates is the result of technical variation we can make an 

estimate of this by determining the reproducibility of multiple replicates. It can then be assumed 

that any variation in ratios beyond this value between different biological states is the result of 

the biological response of changing the organism’s environment. 

 

We calculated the relative protein expression ratios between biological replicates under 

each growth condition based on SWATH and DDA derived quantitation. This provided measures 

of the expected technical variation. The standard deviations between biological replicate ratios 
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for SWATH data were 0.415 and 0.452 for xylose and cellobiose replicates respectively. 

Similarly the standard deviation for ratios calculated across biological replicates using DDA 

signal intensity was 0.640 and 0.683 for the same growth conditions. Estimations of the variation 

between “cross-states” (i.e. ratios of the signal intensities for the same proteins in cells grown on 

xylose or cellobiose) were then determined.  In contrast to the biological replicates, the standard 

deviations of the frequency distributions of the cross-state comparisons displayed a much higher 

values i.e. 1.06 and 0.996 for SWATH data and 1.27 and 1.21 for DDA data (Figure 2.5), 

indicating changes in protein expression between the different growth states. These results also 

further demonstrate how SWATH analysis provided more consistent quantitation than DDA. 



 

 99 

 

Figure 2.5 Density distributions for relative protein ratios for DDA and SWATH 
quantitation 

Bias corrected kernel density estimates of ratios from biological replicates (solid lines) and for 
“cross-state” replicates (dotted lines) for DDA (left) and SWATH (right) quantitation. The solid 

vertical lines represent ± 1.5 standard deviations from the mean of biological replicate ratio 
distributions that showed the highest amount of variation. The images demonstrate the greater 

reproducibility of SWATH quantitation results than DDA and the degree of cross-state variation. 
The higher amount of cross-state variation than replicate variation may better reflect differential 

protein expression between the two different conditions. 
 

 

Measuring changes in relative protein expression has provided information on many 

different biological processes (Bantscheff et al., 2007). However, most studies only focus on 

those proteins that exhibit large changes relative to the population as a whole. This approach 

could overlook more subtle but biologically important global changes in protein expression. 

Assuming normal probability distributions of biological replicate ratios, ~90-95% of ratios are 

within 1.5 standard deviations of the mean (Figure 2.5). If the premise is that this variation is 

from culture conditions and sample processing, we can define the point where biological 

variation between different growth states becomes significant. Expressing this as a log2 ratio, 
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differences above 0.68 for SWATH quantitation or 1.0 for DDA quantitation would represent 

significant changes relative to those expected for technical variation. Based on this value 198 out 

of 1030 proteins (~20% of all proteins quantified) displayed statistically significant changes in 

protein expression under the two growth conditions in both biological replicate pairs where at 

least two peptides were quantified. Increasing the number of biological replicates analyzed per 

condition would offer a more precise estimate of the cut-off value for significant biological 

variation. This concept is further explored in the next and following chapter, relying on iTRAQ 

as the primary method of quantitation, to verify these results. Collectively, the data suggest that 

there are extensive changes in protein expression in response to different growth conditions.  

 

2.4.4 Protein quantitation with alternative ion library strategies 
 
 The number of proteins quantified by SWATH is limited largely by the number of 

proteins included in the ion library for quantitation, and also by the large protein dynamic range 

present in complex biological lysates (Corthals, Wasinger, Hochstrasser, & Sanchez, 2000). We 

tested two other strategies to construct an ion library for the purposes of label free quantitation 

with SWATH. The first involved constructing an ion library based on hypothetical transitions 

based on in-silico calculations of peptide transitions. The second strategy involved constructing 

an ion library with data obtained from a previous 2D LC-MS/MS DDA experiment with C. 

stercorarium cultured on xylose. Analyzing the original samples by 2D LC-MS/MS can easily 

increase the number of proteins identified by DDA and generate an extended ion library. This 

method also shows the possibility of using previous data to construct an ion library limiting the 

amount of experiments necessary for ion library construction. 2D LC-MS/MS acquisition using 

pH 10 – pH 2 reversed phase – reversed phase separation scheme (Dwivedi et al., 2008) 
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identified 1563 proteins (including all 1309 from 1D acquisitions used to construct the ion 

library in this study) and 15,279 peptides according to the same criteria (2 peptides per protein, 

protein score log(e) ≤ -3) in a separate sample of C. stercorarium cultured on xylose. Since 

second dimension separation in 2D LC-MS/MS was performed using shorter gradients, 

constructing the ion library from these identification data required a peptide retention time re-

alignment. This was achieved by using a standard mixture of peptides previously used in our lab  

(Krokhin & Spicer, 2009). Based on this 2D library 955 proteins were quantified in the four 

SWATH replicates (only including proteins with ≥2 peptides quantified) (Table 2.1). Of these 

955 proteins, 60 were not found by using the ion library based on 1D data dependent acquisitions 

(Figure 2.6). The small increase in the number of uniquely quantified proteins suggests that 

limitations in the amount of the sample subjected to SWATH acquisitions might be a limiting 

factor to achieving deeper DIA coverage. This also suggests that more substantial gains can be 

made in the number of proteins quantified by SWATH through the application of 2D LC-MS/MS 

before SWATH analysis. A reproducible first dimension fractionation should reduce noise and 

transition overlap in each SWATH block, while also permitting injection of larger quantities of 

protein digests. 

Table 2.1 Properties of ion libraries used for SWATH quantitation 
 DDA Experimental 

SWATH 
Hypothetical 

SWATH 2D SWATH 

No. transitions in ion library NA 191973 383374 215391 
No. of peptides in ion library 15075 NA 66332 15279 
No. of proteins in ion library 1309 NA 2580 1563 

No. of peptides quantified NA 4704 1030 1220 
No. of proteins quantified NA 1031 550 955 
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Figure 2.6 Venn diagram for proteins quantified by each method 

Venn diagram showing overlap in proteins quantified (minimum 2 peptides for quantitation) 
between the three methods used for SWATH quantitation. A relatively small amount of new 

proteins were quantified from SWATH data using experimental data from a separate experiment, 
and a hypothetical ion library. The 2D library quantified 60 unique proteins while the 

hypothetical library quantified 16 unique proteins. 
 

 

2.4.5 Protein quantitation using ion libraries derived from hypothetical ion libraries 
 

Another way to include possible proteins/peptides into the ion library is to predict 

fragmentation and retention times for all in-silico digested proteins from the respective 

proteome. This approach can possibly eliminate the need for extensive analysis of protein digests 

by DDA in order to build an ion library, essentially making SWATH a single step analysis. We 

developed a simple algorithm to create a hypothetical ion library for all proteins in C. 
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stercorarium and used it to probe the four SWATH runs. Transitions were predicted using an 

adaptation of MRM method development software that predicts most-likely MS2 fragment peaks 

from a protein sequence. The algorithm conducts an in-silico tryptic digestion of the protein and 

builds a list of tryptic peptides. Each peptide is then given a score based on its amino acid 

sequence. The resulting library contained 383,373 transitions from 66,332 hypothetical peptides 

spanning all 2,580 predicted proteins from C. stercorarium.  The average number of transitions 

per peptide was less than half that of the experimental combined ion library (5.78 versus 12.73) 

due to using only z=1 y-ions and from limitations of our fragment prediction algorithm. 

Additionally, as peptide retention times are predicted rather than observed we enlarged the 

PeakView extraction retention window parameter from +-2.5 minutes to +-6 minutes based on 

the prediction accuracy of our current algorithm. 

 
Ion extraction across the four SWATH runs in PeakView using the hypothetical library 

yielded 8,122 transitions for 2,022 peptides spanning 1,029 proteins. From these proteins, 886 of 

them were observed in at least one of the DDA runs. It is possible that the remaining 143 

proteins identified from the hypothetical library are single-peptide, and is therefore outside 

analysis by our two-peptide-per-protein filtering rule. This collection of 886 proteins quantified 

by the hypothetical library is reduced to 550 if we only include proteins quantified with two or 

more peptides. 

  

SWATH quantitation using the hypothetical library showed good correlation between 

biological replicates. If we allow one peptide for quantitation the R2-value is 0.897 and 0.836 for 

xylose and cellobiose replicates, respectively. The R2-value increases to 0.959 and 0.919 if we 

include proteins that have two or more peptides for quantitation (Figure 2.7). This follows the 
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same pattern shown by the experimental data where many proteins with only one peptide 

quantified demonstrated poor protein signal correlation between biological replicates. 
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Figure 2.7 Reproducibility of label free quantitation with hypothetical ion library 

Scatterplots demonstrating the reproducibility of label free quantitation with hypothetical ion 
library using a 1 peptide (top two panels) or 2 peptide (bottom two panels) minimum. Signal 

intensities on x- and y-axis are given in log2 format. There is an improvement in reproducibility 
when using a two peptide minimum as opposed to using a single peptide for quantitation 

 

 

The hypothetical library generated for SWATH quantitation was also able to show 
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protein expression differences between different growth states (Figure 2.8). The standard 

deviation for the distribution of biological replicate ratios was 0.423 and 0.608 for xylose and 

cellobiose respectively. The standard deviation increased to 1.15 and 1.08 when protein signal 

intensity was compared between different growth conditions. This increase in standard 

deviations shows similar behaviour to the experimental ratio distributions shown earlier. The 

hypothetical library used in this study seems to be a reliable tool based on the similarities in 

relative quantitation to the experimental library. The main downside is that the absolute number 

of proteins quantified decreased from 1030 using experimental data to 537 using the hypothetical 

ion library. 
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Figure 2.8 Density distributions of hypothetical SWATH protein ratios 

Bias corrected kernel density estimates of ratios calculated from hypothetical ion library 
SWATH quantitation for biological replicates (solid lines) and cross-state replicates (dashed 
lines).  The distribution of cross-state replicate ratios show increased variation compared to 

biological replicate distributions indicating biological differences in protein expression for C. 
stercorarium grown under different conditions. 

 

 

2.4.6 Reproducibility of methods for ion library creation 
 

The performance for the 2D and hypothetical methods for creating an ion library can be 



 

 108 

measured based on the reproducibility compared to the DDA method of ion library generation. 

Two scatterplot matrices were generated to compare all three methods in a single plot for both 

xylose and cellobiose growth conditions. The R2 value ranged from 0.713-0.794 when 

comparing 2D and DDA methods for quantitation. This value dropped to a range of 0.584-0.651 

when comparing results from DDA and hypothetical quantitation methods. This essentially 

means that there is some disagreement on the quantity of certain proteins depending on the 

method used to construct an ion library. We can assume that the DDA ion library would give the 

best results for SWATH quantitation, given that the exact same samples were analyzed in 

SWATH acquisition mode to perform quantitative experiments. The methods to generate 2D and 

hypothetical ion libraries required retention time re-alignment and prediction, likely contributing 

significantly to the overall error in quantitation. It is also likely that the culture used to perform 

2D DDA experiments differed somewhat fundamentally from the cultures used for the four 1D 

experiments. Both were isolated in the “mid-exponential” phase of growth, but protein 

expression levels could change depending on what time each culture was isolated. The majority 

of discrepancies between the two methods appear to be for lower signal intensity proteins (in the 

range of 10-17 log2 signal intensity), demonstrated by the increased variability in scatterplots as 

signal intensity decreases. All three methods appeared to agree for high abundance proteins (log2 

signal intensity 20 or higher) where this part of the distribution appears to be nearly linear. This 

demonstrates that any of these methods may be reliable for the quantitation of high abundance 

proteins. 
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Figure 2.9 Scatterplot matrices showing reproducibility of methods for SWATH 
quantitation 

These scatterplot matrices compare all three methods for SWATH quantitation simultaneously. 
The diagonal represents the sample label (SW = DDA library, HYP = hypothetical library, 

TWOD = 2D library), where a scatterplot is generated for each pairwise comparison (bottom left 
panels). The R2 value is shown for each scatterplot in the upper right panels. 
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2.5 Conclusions 
 

Data independent SWATH acquisition can be used for the rapid simultaneous 

quantitation of a large number of proteins in whole cell digests. Using 2 hour SWATH 

acquisitions we were able to quantify 1030 proteins (~40% of predicted C. stercorarium open 

reading frames) in four replicates under two different growth conditions. Protein quantitation by 

SWATH demonstrated good reproducibility between biological replicates and the capability to 

detect the regulation of protein expression in the bacterium grown on different substrates. We 

also illustrated that the amount of the injected digest and the large dynamic range of protein 

abundances is likely the limiting factor in the number of quantified proteins, rather than the size 

of the ion library used to interrogate the DIA outputs. This was demonstrated by the fact that 

even though the 2D library contained more proteins than the DDA based library, it was unable to 

quantify as many proteins as the DDA library. This suggests that the number of proteins 

accessible in SWATH could be increased through 2D fractionation of peptide digests prior to 

SWATH analysis – this will reduce sample complexity and further improve quantitation by 

elimination of overlapping transitions and an overall noise reduction. However, analysis by 2D 

LC-MS/MS may be unnecessary if the quantitation targets are high abundance proteins easily 

detected via 1D DIA analysis as these were reproducibly quantified by SWATH no matter the 

method of ion library generation.  

 

The hypothetical ion library used for SWATH quantitation was limited in the number of 

proteins that it could quantify compared to experimental results, seeing a ~50% drop in the 

number of protein quantified. Although the proteins that were quantified showed similar 

reproducibility to the ion libraries based on experimental results, and also in its ability to detect 
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differences in protein expression between two different conditions.  

 

The static, additive nature of the ion library permits future analyses of this organism from 

only SWATH acquisitions. Once DDA acquisition is performed, the fragmentation patterns and 

chromatographic properties of peptides are transferred to the ion library. This collection could 

continue to be updated through deeper fractionation or enrichment of samples until all possible 

proteins are detected. This shows the potential to combine these libraries into a single library that 

may improve the depth of quantitation. Although it is clear from this analysis that the addition of 

new transitions from previous experiments and from hypothetical libraries only had a marginal 

effect on the number of new proteins quantified. So it may be sufficient to include only ions from 

the DDA analysis of the same sample. Taking data from multiple sources may be more effective 

in increasing the number of quantified peptides for more complex proteomes.  

 

Combining ion libraries may prove challenging in that decisions need to be made on what 

peptides for each protein should be selected from each library for inclusion, as it is not always 

clear what the “best” peptides are. Variations in retention time between analyses also need to be 

taken into account when including peptides into an ion library. The best method for ion library 

generation was using the results of DDA analysis on the same samples one wishes to perform 

SWATH quantitation. However, the ion libraries generated from 2D and hypothetical data 

quantified 76 unique proteins, showing that incorporation of data from multiple sources can have 

an impact on the number of proteins discovered in SWATH analysis. Furthermore, we found that 

quantitation of the most abundant proteins using the MS2 signal on a Triple TOF 5600 can 

provide information comparable to SWATH, showing new found potential for quantitation with 
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this method. Although, the variation for DDA MS2 quantitation was slightly higher, and 

SWATH was able to recover quantitative data for proteins not identified in all replicates by 

DDA. These results show that MS2 quantitation can be a viable option if one does not have the 

mass spectrometer necessary to perform DIA analysis, provided that acquisition rates are high 

enough. If the interest is only in quantifying known high abundance proteins, MS2 quantitation 

should be reliable enough to be used for a single step analysis that does not require the 

generation of an ion library or the additional software necessary for quantitation by DIA based 

methods. 
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3  Using replicate variation to find significantly regulated proteins 
in iTRAQ data. 

3.1 Abstract 
 

 Relative protein quantitation is the main method to study biological systems at a 

proteomic level. Proteins relevant to a specific biological process are determined by comparing 

the relative signal intensity of many proteins simultaneously and finding the proteins 

significantly changed between two or more conditions. The main goal is to interpret the data to 

determine which proteins are significant, while also limiting the number of false positives, and 

false negatives. In this analysis, 2D-iTRAQ was used to determine the relative protein quantity 

between four replicates of the bacterium Clostridium stercorarium grown on either xylose or 

cellobiose as the main carbon source. The variation between biological replicates was used to 

determine statistically significant proteins related to carbohydrate metabolism. We identified a 

total of 1539 proteins with iTRAQ experiments and found that this model predicted 534 proteins 

(10% FDR, 356 proteins at 5% FDR) to be differentially regulated between the two conditions. 

To test the validity of this method, these proteins were analyzed in the context of biological 

pathways, clusters of orthologous groups (COGs), and protein expression in relation to position 

on the genome. There were significant changes in protein expression related to the mixed acid 

fermentation pathway, and also in COGs related to carbohydrate metabolism, energy production, 

and inorganic ion transport and metabolism. Furthermore, we detected 64 different regions on 

the genome that demonstrated similar relative protein expression, possibly showing the 

capability of this method to discover operons in bacterial organisms. 
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3.2 Introduction 
 

Mass spectrometry based proteomics has become the main method to study complicated 

protein systems in many different organisms (Aebersold & Mann, 2003). Differential 

quantitative proteomics is a method used to identify important biological differences between 

two or more states (Ong & Mann, 2005). The datasets usually contain quantitative information 

for thousands of proteins under two or more conditions where the main interest is in identifying 

which proteins are being differentially expressed between the conditions. These differences are 

important because they provide us with information on how a protein system operates at a 

fundamental level and can potentially lead to a number of different applications in medicine, 

biology, and industry.  

 

How we process mass spectrometry data to identify differences in protein expression has 

been extensively studied (Urfer, Grzegorczyk, & Jung, 2006). Commonly, the Student’s t-test is 

applied in many proteomics experiments to determine significant differences between treated and 

untreated populations (Ting et al., 2009). However, the t-test is problematic because it assumes a 

normal distribution, but this is often not tested for, and the distributions from proteomic data can 

be skewed (Wilkins et al., 2006). Numerous examples are available in the literature of different 

statistical techniques used to model quantitative proteomic data and identify significant 

differences (Cox & Mann, 2008; Gentleman et al., 2004; Li, Zhang, Ranish, & Aebersold, 2003; 

Pan et al., 2006; Polpitiya et al., 2008). The main issue with proteomics data (or with any other 

“omics” data) is the so-called problem of “high dimensionality low sample size” (HDSS), 

meaning that several thousand variables can be measured in a single experiment but the number 

of replicates is usually low (typically on the order of 1-6 for a given condition) for any given 
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state (Dobbin & Simon, 2007). This means that when the test statistic is calculated for thousands 

of different proteins the odds of encountering at least one false positive is high even for low p-

values. “Multiple hypothesis testing” methods have been developed that take into account the 

HDSS problem (Dudoit, Shaffer, & Boldrick, 2003). The goal here is to limit the number of false 

positives identified while also limiting the number of false negatives, taking into account the 

sheer number of tests that are required to identify true differences. Some of the most well-known 

methods for multiple hypothesis testing are the Bonferroni correction (Hochberg, 1988) and the 

Holm procedure (Holm, 1979). The emphasis is usually placed on limiting false positives since 

significant time and effort can be put into follow-up experiments on significant proteins such as 

the case for biomarker discovery (Rifai, Gillette, & Carr, 2006). While limiting false positives is 

important, there is a strong argument that limiting false negatives is of equal importance in order 

to truly understand what is happening in a biological system (Lieberman & Cunningham, 2009) .  

 

It was found in a recent review that the majority of proteomic studies do not use multiple 

hypothesis testing methods, preferring to rely on simpler statistical models (Diz, Carvajal-

Rodríguez, & Skibinski, 2011). Commonly, these tests only choose proteins that have high 

differences in protein signal intensity on the order of 2-fold (Mann, 2006; Wilkins et al., 2006). 

This has the underlying assumption that only those proteins with a large difference in 

concentration between the two states are biologically significant. Such an approach may ignore 

subtle changes in protein expression that can occur in biological networks. Additionally, this 

type of analysis almost always has the underlying assumption that the statistical model used to 

construct the distribution matches the biological and technical variability of the system. These 

models can be effective in identifying important proteins and may match the true variability 
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closely, but it is unclear if the same model holds between multiple systems. This distribution 

could change depending on the organism or conditions used in the experiment. For these reasons 

we propose to use experimental data to model the variability of system to identify proteins that 

are differentially regulated. These calculations are relatively simple with respect to the current 

methods presented in the literature and can in theory be applied to any label free or isotope based 

quantitative proteomic method. Additionally, this method keeps false positive rates comparable 

to other common statistical methods but also identifies significantly more proteins as potentially 

important to the process being studied, possibly limiting false negative rates. 

 

Two biological replicates of the model bacterial organism Clostridium stercorarium were 

grown on two different carbohydrate sources and analyzed by 2D-iTRAQ for differential protein 

expression analysis. 2D-iTRAQ allows for the measurement of protein concentration variability 

between biological replicates and the same variability between the two different conditions 

simultaneously. The overall systemic variability between biological replicates is used to define 

the point where differential expression occurs assuming that any variability beyond the technical 

variability is the result of differential protein expression based on changing carbohydrate 

conditions. We calculated a metric that compares the average variability across the entire system 

for both biological replicates and cross-state replicates and subsequently determines the cut-off 

for significance. We present biological evidence in the form of consistent expression across 

operons in C. stercorarium and substrate dependent differences in carbohydrate metabolism in 

the mixed acid fermentation pathway. These differences were also visualized by showing protein 

expression for proteins belonging to specific pathways with respect to the overall technical 

variability. This study shows strong evidence that current statistical tests used predominantly in 
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the literature are underestimating the biological significance of a large number of proteins and 

that small changes in protein expression can be potentially relevant towards the biological 

process being studied. 

 

3.3 Materials and Methods 
 

3.3.1 Culturing of C. stercorarium 
 
 C. stercorarium DSM 8532 (GenBank Accession: NC_020887) was cultured on 1191 

medium (Sparling et al., 2006) to mid-exponential phase at 60°C using either 0.2% xylose or 

0.2% cellobiose as the primary carbon source. Cells from each culture were collected by 

centrifugation at 5,000 g, washed three times with PBS (8.00 g/L NaCl, 0.20 g/L KCl, 1.44 g/L 

Na2HPO4, 0.24 g/L KH2PO4, 0.24 g/L KH2PO4, pH 7.5) and then frozen at -80°C until needed. 

 

3.3.2 Filter assisted sample protocol for cell lysis and protein digestion 
 

The filter assisted sample preparation method (FASP) was used to generate tryptic digests 

for subsequent LC-MS acquisitions (Wisniewski, Zougman, Nagaraj, & Mann, 2009). The 

procedure for bacterial cell lysis and protein digestion with FASP was detailed in Chapter 2. 

Briefly, cell pellets (~50 uL) were suspended in 500 µL of SDT buffer (100 mM Tris, 100 mM 

DTT, 4% SDS, pH 8.5), heated at 95°C for 10 minutes and sonicated. Cell lysates were frozen at 

-80°C until processed for analysis. Two hundred µL of cell lysate was added to a 50 mL 10 kDa 

MWCO Millipore (Billerica, MA) centrifugation filter already containing 12 mL of UA buffer 

(100 mM Tris, 8 M urea, pH 8.5). Samples were washed three times with UA buffer to remove 

the majority of SDS. After alkylation by iodoacetamide, sequencing grade trypsin (Promega, 
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Madison, WI) was added to each vial at 1:100 enzyme:substrate ratio and incubated overnight at 

room temperature. Peptides were collected by the addition of 1 mL of 500 mM NaCl and 

centrifugation at 4,000 g into a clean 50 mL tube. Final peptide concentration was determined by 

nano drop UV absorbance spectrometer (Thermo Fisher, Rockford, IL) at 280 nm. 

 

3.3.3 iTRAQ labelling procedure and fractionation 
 

Peptide samples generated by FASP were labelled with iTRAQ reagents (ABSciex, 

Concord, ON) as per the manufacturer’s instructions. Briefly, 50 µg of peptides from each 

sample was labelled with one of the four iTRAQ reagents and then pooled into a single sample. 

The pooled sample was then separated into 17 fractions by high pH RP LC (Dwivedi et al., 

2008). Finally, each fraction was lyophilized and stored at -80°C until needed. 

 

3.3.4 LC-MS/MS analysis 
 

A Triple TOF 5600 mass spectrometer (ABSciex, Mississauga, ON) coupled to a nano-

flow Tempo LC system (Eksigent, Dublin CA) was used for the analysis. Fractions containing 

~2 µg of peptides (10 µL) were injected via a 300 µm x 5 mm PepMap100 trap column (Thermo 

Fisher, Rockford IL) and separated on 100 µm x 200 mm analytical column packed with 5 µm 

Luna C18 (Phenomenex, Torrance CA). Both eluents A (water) and B (acetonitrile) contained 

0.1 % formic acid as ion-pairing modifier. Samples were separated using a 0.5-30% B gradient 

over 105 minutes (0.28% acetonitrile/min) followed by 5 minutes of washing (90% acetonitrile) 

and a 10 minute equilibration (0.5% acetonitrile) step. 
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Each cycle of data dependent acquisition included a 250 ms MS scan (400-1600 m/z) 

and up to 40 MS/MS (100 ms each, 100-1600 m/z) for ions with charge state from +2 to +5 and 

an intensity of at least 300 counts per second. Selected ions and their isotopes were dynamically 

excluded from further fragmentation for 12 seconds. Raw spectra files for each fraction were 

converted to searchable Mascot Generic File (MGF) format carrying MS/MS acquisition 

information. Peptide identifications were performed using a customized version of the 

X!Tandem algorithm (complete carbamidomethyl Cys modification, maximum of one missed 

cleavage, mass accuracy of ± 10 ppm and 0.05 Da for parent and fragment ions respectively) and 

then combined into a single dataset. False positive rates were computed internally by X!Tandem. 

 

3.3.5 Differential analysis with replicate variability 
 

 The tab delimited data table containing protein log2 signal intensities determined by 

iTRAQ quantitation was loaded into R for further analysis. iTRAQ data were bias corrected 

before any further analysis by mean subtraction. Replicate (R0 and R1) and cross state 

distributions (Z0, Z1, Z2, Z3) were constructed by subtracting the corresponding iTRAQ signal 

intensities. The two biological replicates for each growth condition gave four possible 

permutations for calculating cross-state ratios. Kernal density estimate curves were computed by 

the “density” function in R. The line maps were constructed with a custom R script that takes 

either replicate or cross state ratios automatically from iTRAQ data and overlaid those values in 

the form of lines over density estimate curves.  

 

The increase in variability between cross-state replicates over biological replicate 

variability was defined as “signal to noise” (S/N) (i.e. the ratio of cross-state variability to 
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biological replicate variability). For calculating S/N values for use in differential analysis, raw 

data were first normalized into distributions with a mean of 0 and standard deviation of 1 with 

the “scale” function in R. S/N values for differential analysis were calculated using 

system_signal, system_noise, and quality values represented by σZ0 + σZ1 + σZ2 + σZ3, σR0 + σR1, 

and system_signal / system_noise respectively. The final S/N value for every protein identified 

by iTRAQ was calculated with Equation 3.1: 

  
Equation 3.1 Equation for calculating protein significance 

𝑺
𝑵
= 𝒒𝒖𝒂𝒍𝒊𝒕𝒚 ∗ (

( 𝟏
𝟒
) 𝒁𝟎𝒏𝒆𝒕𝟐!𝒁𝟏𝒏𝒆𝒕𝟐!𝒁𝟐𝒏𝒆𝒕𝟐!𝒁𝟑𝒏𝒆𝒕𝟐

( 𝟏
𝟐
) 𝑹𝟎𝒏𝒆𝒕𝟐!𝑹𝟏𝒏𝒆𝒕𝟐

) 

	
  

 

where Z0net, Z1net, Z2net, and Z3net are normalized Z0 and, Z1, Z2 and Z3 values and R0net 

and R1net are normalized R0 and R1 values, respectively. The threshold (θ) for significance was 

computed by conducting simulations for 100 runs of 5,000 differentially regulated proteins with 

a quality value = 1.0. Under this condition, the portion of the population with S/N values greater 

than θ corresponds to the false-discovery-rate (FDR), related by Equation 3.2: 

Equation 3.2 Calculation of false discovery rate 

	
  

𝐥𝐧 𝜽 =   −𝟎.𝟓𝟔 ∗ 𝐥𝐧 𝟏𝟎𝟎 ∗ 𝑭𝑫𝑹 + 𝟐.𝟑𝟏	
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If the FDR is set to 5% the corresponding S/N threshold is ~4.1. This threshold decreases 

to 2.8 if an FDR of 10% is used. Thus any protein with S/N value > 4.1 or 2.8 were considered as 

differentially expressed between the two conditions with a 5% or 10% FDR respectively. 

3.4 Results and Discussion 
 

3.4.1 Detecting differential protein expression in C. stercorarium 
 

The aim of this study was to identify differences in the protein expression patterns of C. 

stercorarium cultured with different carbohydrate sources (in this case xylose or cellobiose). 

Identifying these differences in protein expression should allow us to predict how this organism 

metabolizes a specific substrate. The general strategy in most relative quantitation studies is to 

focus on those proteins, which display a large variation in abundance ratios relative to the 

assumed normal frequency distribution of ratios for the entire protein population (Wilkins et al., 

2006). However, the actual observed ratio for any protein is a combination of the reproducibility 

of the measurements and of actual physiological changes (Pham, Piersma, Warmoes, & Jimenez, 

2010). Variation between biological replicates can arise as a result of variability during cell 

growth and technical variation. One can estimate these aspects by determining the 

reproducibility of multiple biological replicates. Four replicates of the bacterial organism C. 

stercorarium, two each under two different conditions, were analyzed by iTRAQ to generate 

relative protein expression data (Figure 3.1). The overall variation in protein expression between 

biological replicates under the same condition was used to evaluate which proteins were 

differentially expressed between the two conditions based on using different carbohydrates as the 

main carbon source.  
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Figure 3.1 Experimental outline for determining protein significance with iTRAQ and 
biological variation 

Experimental iTRAQ biological replicate distributions (R0, R1) and cross-state replicate 
distributions (Z0, Z1, Z2, Z3) are constructed by subtracting the log2 signal intensities between 
the appropriate datasets. The standard deviations of each distribution are used to calculate the 

system_signal, system_noise, and quality factors. The distributions are then normalized to 
standard normal distributions (R0net, R1net, Z0net, Z1net, Z2net, Z3net) and the final S/N value 

for each protein is calculated using the given equation. 
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3.4.2 Summary of iTRAQ Results 
 

2D-iTRAQ confidently quantified a total of 1539 proteins, approximately 60% of the 

predicted proteome in C. stercorarium. Six protein ratio populations were constructed based on 

the variation between xylose and cellobiose biological replicates and between the four 

permutations of xylose to cellobiose protein signal intensity ratios. Kernel density estimates 

(Silverman, 1986) for each of the four populations were computed and then overlaid to compare 

the variation between biological replicates with that of the “cross-state” replicates (i.e. the 

variation in xylose and cellobiose signal intensity ratios) (Figure 3.2). The density estimates 

show that the variation between cross-states increases relative to the variation in density 

estimates for biological replicates grown under the same conditions. The standard deviations for 

biological replicate ratios were 0.31 and 0.29 for xylose and cellobiose growth conditions, 

respectively. The standard deviation of protein ratios between cross-states increased to 0.63, 

0.60, 0.64, and 0.58 (for Z0, Z1, Z2, and Z3, respectively) suggesting that there were global 

changes in the protein content of cells grown under these two conditions. This shows the 

potential to use the difference between replicate variation and cross-state variation as a measure 

of protein significance with the assumption that there is a higher abundance in cross-state ratios 

because of substrate dependent differences.  
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Figure 3.2 Density curves for biological and cross-state ratios 

Kernal density estimates of bias corrected R0, R1, Z0, Z1, Z2, and Z3 ratio distributions. The 
solid lines represent the distributions for biological ratio distributions (R0 and R1), while the 

dotted line represents the distributions for cross-state ratios (Z0, Z1, Z2, and Z3). The variation 
of the cross-state ratios is clearly higher than for biological replicate ratios, the effect of 

biological changes in protein expression that occurs during growth on different substrates. 
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3.4.3 Determining the cut-off for protein significance through replicate variation 
 

We start by defining the difference populations between biological replicates as R0 and 

R1 and the difference populations for cross-state replicates as Z0, Z1, Z2, and Z3. We then 

normalized each of these populations into z-score populations with a mean of zero and standard 

deviation of one with the formula, 𝑛𝑒𝑡 = (𝑥 − 𝜇) 𝜎, where x is the experimental value and µ 

and σ are the mean and standard deviations respectively for their respective populations. In most 

cases proteins with a score >1.96 or <-1.96 are considered to be significant at P < 0.05 (Cheadle, 

Vawter, Freed, & Becker, 2003) . As an alternative we developed a metric that attempts to 

measure the variability in an omics system outside its inherent replicate variability. We predict 

that any variability outside of this is the result of changing the main carbohydrate source for this 

organism. We define the system_signal as: σZ0 + σZ1 + σZ2 + σZ3 and the system_noise as: σR0 + 

σR1. We can then define the overall quality of the system as quality = system_signal / 

system_noise. The test statistic calculated for each protein is a measure of “signal/noise” (S/N) 

scaled by the quality factor (see Equation 3.1). 

 

The cut off for significance is based on the FDR calculated from Equation 3.2. This 

concept was applied to C. stercorarium iTRAQ data finding 537 proteins, or ~35% of all 

proteins quantified meet these criteria at 10% FDR (See 3.7 Supplementary Information for a 

complete list). If the FDR is reduced to 5%, this predicts 356 proteins to be differentially 

expressed. In any list of differentially expressed proteins the functions of some proteins may be 

unclear, as most functional assignments are entirely based on the current annotation. This is 

especially true in less studied organisms such as C. stercorarium. So to test the strength of this 

differential analysis we focused on well-annotated central metabolic biochemical pathways along 
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with protein expression of potential operons, both well-defined aspects of biology in bacterial 

systems. 

 

3.4.4 Evidence for subtle changes in carbohydrate metabolism pathways  
 

As an approach to assessing the significant biological changes predicted by replicate 

variation, a subset of the quantitative data for proteins from well-annotated biochemical 

pathways were selected for further analysis. We selected three distinct pathways in which 

constituent proteins for each step were identified (glycolysis, the pentose phosphate pathway, 

and mixed acid fermentation). These three groups of proteins mediate processes where one might 

expect changes in protein expression if there are metabolic differences in the metabolism of two 

different carbohydrate substrates. 

3.4.5 Glycolysis 
 

To aid in the visualization of changes in protein expression that may occur between these 

two substrates a plot was constructed for each pathway where the density distributions for 

biological and cross state replicate variation are shown and the relative expression ratio of each 

protein within a particular pathway is represented by vertical lines (Figure 3.3, blue-lines = 

biological replicate ratios, red-lines = cross-state replicate ratios). These graphs reveal two 

distinct patterns with respect to the components of each pathway. For glycolysis, protein ratios 

are, for the most part, clustered around the center of the distribution, regardless of whether they 

are ratios between biological replicates or cross-states (Figure 3.3, Table 3.1). It is possible that 

ROK family glucokinase (Clst_00277) and the operon containing phosphoglycerate mutase, 

triosephosphate isomerase, phosphoglycerate kinase, and glyceraldehyde-3-phosphate 



 

 132 

dehydrogenase (Clst_01985-01988) are all slightly upregulated in cellobiose cultures. C. 

stercorarium has genes for three different phosphofructokinases (Clst_0642, Clst_1437, and 

Clst_2032), all of which were detected in this iTRAQ experiment. One of these genes 

(Clst_0642) is predicted to use pyrophosphate as the phosphate donor instead of ATP. It is 

interesting to note that the signal intensity for this pyrophosphate dependent phosphofructokinase 

is approximately 8-times higher than the other two genes for ATP dependent 

phosphofructokinase in all four samples. This suggests that pyrophosphate is the main 

phosphoryl group donor in glycolysis over ATP in C. stercorarium. This has also been noticed in 

the related organism C. thermocellum, which also appears to use pyrophosphate dependent 

phosphofructokinase in glycolysis. In anaerobic fermentation ATP is a scarce resource, so it 

appears that these organisms limit their use of ATP through the use of other phosphoryl donors 

such as pyrophosphate. 

 

Glycolysis is a central metabolic pathway (Scheme 3.1) that is vital in almost every 

biochemical process and can receive carbon flux from either direct entry of glucose-6-P after 

degradation of cellobiose by cellobiose phosphorylase and isomerization by alpha-

phosphoglucomutase, or fructose-6-P and glyceraldehyde-3-P from the pentose phosphate 

pathway. So one might expect this pathway to change very little with respect to using either 

cellobiose or xylose as the primary carbon source It is important to note that although there was 

little change in the concentration of enzymes in glycolysis between conditions, it is possible that 

this pathway is being regulated by other means. The regulation of glycolysis enzyme activity 

varies between the different domains of life (Davies, 2014) and these mechanisms do not always 

involve changing enzyme concentration. For example, in the related organism Clostridium 
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acetobutylicum it was found that glyceraldehyde-3-phosphate dehydrogenase was inhibited by 

high concentrations of NADH/NAD+, and the expression of alcohol dehydrogenases was 

affected by NADH/NAD+ and ATP concentrations (Girbal & Soucaille, 1994) showing that 

enzyme activity can change through both inhibition and by transcriptional regulation of enzyme 

expression. 
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Figure 3.3 Density line plot for glycolysis 

Plot showing the relative protein ratios between xylose and cellobiose of proteins from select 
biological pathways expressed as vertical lines with respect to the overall variation between 

biological replicates. The black line traces (solid line = biological replicate distributions, dotted 
line = cross-state distributions) are Kernal density estimates of the protein ratios between 
biological replicates. Blue vertical lines are protein ratios calculated between biological 

replicates and red are protein ratios calculated between cross-states. The example given above is 
for glycolysis, showing that the majority of protein ratios calculated for these proteins show no 

significant variation from the overall variability between biological replicates. The same concept 
was used to generate plots for the pentose phosphate pathway, and mixed acid fermentation. 

Following each plot is the list of proteins in each pathway and their corresponding replicate and 
cross-state ratios (only Z0 = ITXY1/ITCB1, and Z3= ITXY2/ITCB2 were included due to size 

constraints) and a schematic of each pathway. 
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Table 3.1 Protein expression ratios for glycolysis 
locus description ITXY1 

/ITXY2 
ITCB1 
/ITCB2 

ITXY1 
/ITCB1 

ITXY2 
/ITCB2 

Clst_2032 6-phosphofructokinase  -0.01 -0.27 0.23 -0.03 
Clst_2054 phosphopyruvate hydratase  0.14 0 0.23 0.09 
Clst_0642 6-phosphofructokinase  -0.02 -0.17 0.22 0.07 
Clst_1985 phosphoglycerate mutase -0.05 -0.16 0.16 0.05 
Clst_0600 phosphoglycerate mutase 0.13 -0.16 0.08 -0.21 
Clst_0422 Fructose-2,6-bisphosphatase  0.16 0.76 0.07 0.67 
Clst_1437 6-phosphofructokinase -0.05 -0.09 -0.01 -0.05 
Clst_0927 fructose-bisphosphate aldolase 0.01 -0.08 -0.03 -0.12 
Clst_1411 alpha-phosphoglucomutase  0.02 -0.1 -0.11 -0.23 
Clst_1987 phosphoglycerate kinase 0.1 0.01 -0.11 -0.2 
Clst_0277 ROK family protein (putative 

glucokinase)  
0.12 -0.01 -0.17 -0.3 

Clst_1053 glucose-6-phosphate isomerase -0.05 -0.27 -0.19 -0.41 
Clst_1988 glyceraldehyde-3-phosphate 

dehydrogenase 
0.04 0.08 -0.31 -0.27 

Clst_1986 triosephosphate isomerase  0 -0.09 -0.49 -0.58 
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Scheme 3.1 Cellobiose metabolism and glycolysis in C. stercorarium 

The enzyme in red is upregulated in cellobiose 
 

 

3.4.6 The pentose phosphate pathway 
 

Like glycolysis, the majority of proteins were not detected as differentially expressed in 
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the pentose phosphate pathway (Figure 3.4, Table 3.2). This may be expected if we consider the 

fact that the pentose phosphate pathway is a central metabolic pathway, necessary for the 

production of NADPH, ribose-5-P for nucleic acid synthesis, and erythrose-4-P for the synthesis 

of certain of amino acids. The pentose phosphate pathway in C. stercorarium is unusual in that it 

lacks the transaldolase enzyme necessary for the interconversion of glyceraldehyde-3-P and 

sedoheptulose-7-P to fructose-6-P and erythrose-4-P. Secondly, the gluconolactonase necessary 

for the conversion of 6-phosphogluconolactone to 6-phosphogluconate was not detected, 

suggesting that this enzyme was not expressed by C. stercorarium (Scheme 3.2). In xylose 

metabolism, the substrate is first converted to xylulose by xylose-isomerase (Clst_0877), and 

then xylulose is phosphorylated by xylulokinase (Clst_0875) to form xylulose-5-P. Xylulose-5-P 

is then utilized by transketolase in two steps of the pentose phosphate pathway. The lack of 

transaldolase has also been found in the eukaryotic parasite Entamoeba histolytica, which 

alternately uses PPi dependent phosphofructokinase to phosphorylate sedoheptulose-7-P to 

sedoheptulose 1,7 bisphosphate, and an amoebal aldolase to cleave biphosphorylated 

sedoheptulose to erythrose-4-P and dihydroxyacetone-P (Susskind, Warren, & Reeves, 1982) . 

The lack of transaldolase is also found in other members of the genus Clostridium, including C. 

thermocellum (Rydzak et al., 2012). Recently, C. thermocellum and C. stercorarium have been 

reclassified together into the family Ruminococcaceae, and the genus Ruminiclostridium (Yutin 

& Galperin, 2013) showing that these organisms are of close genetic relationship and may 

explain some of the similarities noticed in proteomic data. The absence of gluconolactonase 

suggests that the oxidative branch of the pentose phosphate pathway is not used in the 

metabolism of xylose. One alternative is that NADPH is being generated by the malate shunt, via 

the oxidation of malate to pyruvate through the action of malic enzyme. 
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Figure 3.4 Density line plot for the pentose phosphate pathway 
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Table 3.2 Protein expression ratios for the pentose phosphate pathway 

locus description ITXY1 
/ITXY2 

ITCB1 
/ITCB2 

ITXY1 
/ITCB1 

ITXY2 
/ITCB2 

Clst_02416 6-phosphogluconate 
dehydrogenase  

-0.1 0.13 0.7 0.93 

Clst_01559 L-ribulokinase  -0.02 0.06 0.3 0.38 
Clst_02184 transketolase subunit B 0 -0.2 -0.07 -0.27 
Clst_02185 Transketolase, N-terminal 

subunit  
0.18 -0.07 -0.07 -0.32 

Clst_02453 ribose-5-phosphate 
isomerase 

0.02 -0.07 -0.11 -0.2 

Clst_01558 L-ribulose 5-phosphate 4-
epimerase 

0.29 0.06 -0.2 -0.43 

Clst_01970 ribulose-5-phosphate 3-
epimerase  

0.02 0.25 -0.39 -0.16 

Clst_01190 glucose-6-phosphate 1-
dehydrogenase 

-0.26 -0.18 -0.83 -0.75 

Clst_01071 Gluconolactonase  NA NA NA NA 
Clst_02639 6-phosphogluconolactonase  NA NA NA NA 
Clst_01011 Transketolase, N-terminal 

subunit  
NA NA NA NA 

Clst_01012 Transketolase, C-terminal 
subunit  

NA NA NA NA 

Clst_00877 xylose isomerase  -0.4 -0.58 1.46 1.28 
Clst_00875 xylulokinase (EC 2.7.1.17)  -0.37 -0.52 1.53 1.38 
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Scheme 3.2 Xylose degradation and the pentose phosphate pathway in C. stercorarium 

The enzymes in blue or red are upregulated in xylose or cellobiose respectively. 
 

 

3.4.7 Mixed acid fermentation 
 

Contrary to the limited differential protein expression in glycolysis and the pentose 

phosphate pathway, in the mixed acid fermentation pathway (Scheme 3.3) protein ratios between 

biological replicates are clustered around the center of the density distribution, while the ratios of 

cross-state replicates start to trend away from the distribution center (Figure 3.5, Table 3.3). 

These ratios clearly almost always fall in the range where cross-state ratios have a higher density 

than biological replicate ratios. From this, it appears that changes in protein expression are 

occurring with proteins related to mixed acid fermentation, and changes might be happening in 
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multiple proteins related to that pathway. 

 
Figure 3.5 Density line plot for mixed acid fermentation 
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Table 3.3 Protein expression ratios for mixed acid fermentation 

locus description ITXY1 
/ITXY2 

ITCB1 
/ITCB2 

ITXY1 
/ITCB1 

ITXY2 
/ITCB2 

Clst_2614 Malate/L-lactate dehydrogenases  -0.05 -0.19 0.48 0.34 
Clst_2613 Malic enzyme  -0.09 -0.17 0.47 0.39 
Clst_1166 sodium ion-translocating decarboxylase, beta 0.17 0.12 0.36 0.31 
Clst_0986 Threonine dehydrogenase and related Zn-

dependent  
-0.17 -0.09 0.35 0.43 

Clst_2128 Uncharacterized oxidoreductases, Fe-
dependent 

-0.14 -0.07 0.35 0.42 

Clst_2077 NAD-dependent aldehyde dehydrogenases  -0.07 0.07 0.31 0.45 
Clst_0602 Oxaloacetate decarboxylase, gamma chain.  0.02 -0.15 0.21 0.04 
Clst_2252 Citrate synthase  -0.33 0.03 0.19 0.55 
Clst_1052 oxaloacetate decarboxylase alpha subunit  -0.05 -0.1 0.08 0.03 
Clst_0601 sodium ion-translocating decarboxylase, beta -0.03 0.16 0.05 0.24 
Clst_0646 pyruvate:ferredoxin (flavodoxin) 

oxidoreductase 
-0.05 -0.18 -0.09 -0.22 

Clst_1243 acetate kinase 0.03 -0.06 -0.26 -0.35 
Clst_0731 isocitrate dehydrogenase (NADP)  -0.03 -0.19 -0.27 -0.43 
Clst_0730 aconitase -0.06 -0.11 -0.34 -0.39 
Clst_1933 pyruvate phosphate dikinase -0.02 -0.06 -0.37 -0.41 
Clst_2229 pyruvate kinase  0.08 -0.12 -0.49 -0.69 
Clst_1242 phosphotransacetylase  0.03 -0.25 -0.5 -0.78 
Clst_0968 Phosphoenolpyruvate carboxykinase (GTP)  -0.05 -0.13 -0.53 -0.61 
Clst_2023 L-lactate dehydrogenase -0.2 -0.05 -0.75 -0.6 
Clst_1094 Citrate synthase  -0.13 -0.26 -1.07 -1.2 
Clst_0828 Pyruvate 2-oxoglutarate dehydrogenase 

complex 
0.01 -0.16 -1.16 -1.33 

Clst_1401 pyruvate:ferredoxin -0.05 -0.3 -1.22 -1.47 
Clst_1812 acetaldehyde/alcohol dehydrogenase (AdhE)  -0.07 -0.08 -1.22 -1.23 
Clst_0660 Uncharacterized oxidoreductases, Fe-

dependent 
-0.14 -0.03 -1.29 -1.18 

Clst_0830 Pyruvate 2-oxoglutarate dehydrogenase 
complex 

-0.03 -0.22 -1.32 -1.51 

Clst_0829 dihydrolipoamide dehydrogenase  -0.18 -0.05 -1.4 -1.27 
Clst_0831 Dehydrogenases with different specificities  -0.25 -0.02 -1.6 -1.37 
Clst_0827 Threonine dehydrogenase and related Zn-

dependent  
0.05 -0.07 -1.61 -1.73 
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Scheme 3.3 Mixed acid fermentation in C. stercorarium 
The enzymes in mixed acid fermentation in C. stercorarium turn phosphoenol pyruvate into a 
mixture of 2-oxoglutarate (for biosynthetic purposes), acetate, ethanol and lactate. The main 

purpose of mixed acid fermentation is to regenerate oxidizing NAD+ to use again in glycolysis. 
The oxidation of pyruvate to acetyl-CoA can be carried out by a number of enzyme systems in C. 

stercorarium including the pyruvate dehydrogenase complex, and pyruvate ferredoxins, listed 
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near the bottom of the figure. The enzymes listed in red are upregulated in cellobiose, while the 
enzymes in blue are upregulated in xylose samples. 

 
 

3.4.8 Biological relevance of predicted changes in mixed acid fermentation 

 
The enzymes in mixed acid fermentation are involved in the conversion of 

phosphoenolpyruvate (PEP) to citrate, ethanol, acetate, and lactate in C. stercorarium. PEP can 

be converted directly into pyruvate with pyruvate kinase (Clst_2229, EC 2.7.1.40), or pyruvate 

phosphate dikinase (Clst_1933, EC 2.7.9.1), both of which are expressed by C. stercorarium. 

PEP can alternately be converted into oxaloacetate via GTP dependent PEP carboxykinase 

(Clst_0968, EC 4.1.1.32). This reaction usually forms PEP from oxaloacetate for the purposes of 

gluconeogenesis in mammalian systems (Hanson & Reshef, 1997), but is known to run in the 

reverse direction in bacteria, incorporating CO2 into PEP to form oxaloacetate (Sauer & 

Eikmanns, 2005). This reaction also allows for the possibility of atypical glycolysis where GTP 

dependent glucokinase and PEP-carboxykinase are the main phosphoryl donors and acceptors in 

glycolysis. This mechanism was confirmed to be the case in C. thermocellum (Zhou et al., 2013). 

The fact that PEP-carboxykinase is upregulated in cellobiose samples would suggest that atypical 

glycolysis is also occurring in C. stercorarium, but further experimentation will be required to 

confirm this fact. Although a less common reaction in bacteria (Sauer & Eikmanns, 2005) 

oxaloacetate can be turned into pyruvate by oxaloacetate decarboxylase (α-subunit, Clst_1052, γ-

subunit, Clst_0602) or by the “malate shunt” with malate dehydrogenase (Clst_2614, EC 

1.1.1.37) and malic enzyme (Clst_2613, EC 1.1.1.38). The data presented here show it is 

possible alternative routes for carbohydrate metabolism are dependent on whether xylose or 

cellobiose is used as the primary carbon source. The enzymes trending in the xylose direction are 
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all related to oxaloacetate decarboxylase and the malate shunt, while enzymes trending in the 

cellobiose direction suggest either pyruvate kinase or pyruvate phosphate dikinase as the primary 

mechanism. 

 

Several differences in protein expression on xylose and cellobiose are also found in the 

enzymes responsible for action on acetyl-CoA to form waste products and regenerate NAD+. C. 

stercorarium expressed both bi-functional acetylaldehyde/alcohol dehydrogenase (AdhE, 

Clst_1812) and an aldehyde dehydrogenase (Clst_2077), upregulated on cellobiose or xylose 

respectively. An alternate route for ethanol production exists where aldehyde dehydrogenase, 

and another alcohol dehydrogenase Adh (Clst_0986) can perform the function of AdhE. Adh has 

sequence homology to a family of Zn binding alcohol dehydrogenases, and is sometimes 

annotated as L-threonine-3-dehydrogenase (EC 1.1.1.13) so there is some ambiguity in the 

function of this enzyme. However, both the aldehyde (Clst_2017) and alcohol dehydrogenase 

(Clst_0986) are upregulated on xylose predicting a substrate dependent alternate pathway for 

ethanol production. C. stercorarium also has two genes encoding citrate synthase (Clst_2252 and 

Clst_1094), one found to be upregulated on xylose, the other on cellobiose, predicting a different 

substrate dependent enzyme used on acetyl-CoA. These citrate synthases have the same 

functional annotation so it is unclear why they might be expressed highly under specific substrate 

conditions. It is important to note that all of these enzymes are differentially regulated based on 

the model presented here but some are found within less than 2 standard deviations from the 

distribution mean and would not be found if using a z-test for significance. 

3.4.9 Predicted reasons for changes in protein concentration 
 

It is currently unclear why alternate metabolic routes might be taken for the metabolism 
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of either xylose or cellobiose in C. stercorarium. It is possible that the degradation of each 

substrate is closely tied to redox potential in the form of either NAD+ or NADP+ requiring one or 

the other as enzyme cofactors for the metabolism of each substrate. The pentose phosphate 

pathway, the predicted main route for xylose degradation, is known to primarily use NADPH to 

operate. However, NADPH is only generated in the oxidative branch of the pentose phosphate 

pathway, where our data suggest that this part is non-functional in both xylose and cellobiose 

metabolism. The malic enzyme used in this reaction is predicted to be NAD dependent as 

opposed to NADP dependent  (Bologna, Andreo, & Drincovich, 2007) so by affecting NAD 

concentrations this process may have an effect on the activity and expression of other enzymes 

involved in the breakdown of carbohydrates. Although we cannot rule out the possibility of 

malic enzyme using NADP as opposed to NAD, as the conserved Rossman nucleotide binding 

fold in malic enzyme can bind either NADP or NAD. More insight into these differences could 

be gained by analyzing the concentrations of NAD, NADP and possibly other metabolites using 

a metabolomics approach. Concentrations of NAD(P)H/NAD(P)+ have already been shown to be 

affected by the acidogenic-solvatogenic transition in Clostridium acetobutylicum  (Amador-

Noguez, Brasg, Feng, Roquet, & Rabinowitz, 2011) , showing concentrations of redox molecules 

can have an effect on the overall metabolism of this family of organisms. 

 

It is possible these differences arise from alternate ATP/PPi dependent mechanisms for 

substrate metabolism. Xylose requires phosphorylation by ATP to eventually form xylulose-5-P, 

but cellobiose can be completely phosphorylated in a PPi dependent manner by cellobiose 

phosphorylase, and PPi dependent phosphofructokinase. We detected expression of all three 

phosphofructokinases in C. stercorarium (Clst_1437, Clst_0642, Clst_2032), one of which 
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(Clst_0642) is annotated as PPi dependent phosphofructokinase. The requirement of ATP in 

xylose metabolism, clearly affects the concentrations of ATP in C. stercorarium possibly having 

wide downstream effects in regulation of protein expression. Further experimentation to detect 

levels of NADH/NADPH, ATP, GTP, PPi and possibly other metabolites in this organism will be 

required to form a conclusive story on hexose/pentose metabolism in C. stercorarium. 

3.4.10 Hydrogenases in C. stercorarium 
 

Hydrogen (H2) is another potential biofuel that is produced during the fermentation of 

lignocellulose related substrates by many members of the genus Clostridium (Carere, Sparling, 

Cicek, & Levin, 2008). Hydrogenases are enzymes that have the capability to reduce protons to 

form molecular hydrogen and are found in many Clostridia. Clostridium stercorarium is no 

different and is known to produce hydrogen during fermentation of carbohydrates. We identified 

10 different enzymes with hydrogenase activity in iTRAQ data along with 4 hydrogenase 

maturation factors (Clst_0662, Clst_0663, Clst_0664, Clst_1290) (Table 3.4). Only two proteins 

were statistically significant between xylose and cellobiose samples. Coenzyme F420-reducing 

hydrogenase, beta subunit (Clst_0146) was upregulated in xylose samples and Fe-only 

hydrogenase large subunit (Clst_1808) was upregulated in cellobiose samples. 

 

The enzyme system in the related organism C. thermocellum consists of four putative 

hydrogenases, including a ferredoxin dependent [NiFe]-H2ase and 3 Fe-only catalytic subunits. 

The predominant hydrogenase activity in C. thermocellum appears to be from NADPH 

dependent H2ase (Magnusson, Cicek, Sparling, & Levin, 2009). We detected NADPH Fe-only 

hydrogenase (Clst_0900-Clst_0904), but this enzyme was not statistically significant between 

the two growth conditions. The upregulation of Coenzyme F420-reducing hydrogenase, and Fe-
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only hydrogenase subunit on xylose and cellobiose samples respectively, would suggest this to 

be the predominant hydrogenase activity on these two substrates. Although further enzyme 

assays will be required to further determine the enzyme systems in use by C. stercorarium in the 

production of hydrogen on these substrates. 
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Table 3.4 Hydrogenases and hydrogenase maturation factors identified in iTRAQ data 
locus description ITXY1/

ITXY2 
ITCB1/
ITCB2 

ITCB1/
ITXY1 

ITCB2/
ITXY2 

Clst_0146 Coenzyme F420-reducing hydrogenase, beta 
subunit  

-0.12 0.30 0.82 0.98 

Clst_0606 Iron only hydrogenase large subunit, C-
terminal  

-0.41 -0.61 0.06 -0.55 

Clst_0661 putative iron-only hydrogenase system 
regulator  

0.1 -0.35 -0.75 -1.1 

Clst_0662 iron-only hydrogenase maturation protein 
HydE  

-0.08 -0.43 0.07 -0.36 

Clst_0663 iron-only hydrogenase maturation protein 
HydG  

0.01 -0.94 0.47 -0.47 

Clst_0664 [FeFe] hydrogenase H-cluster maturation 
GTPase  

-0.49 -0.64 -0.2 -0.84 

Clst_0900 NAD(P)-dependent iron-only hydrogenase  0.03 -0.65 0.4 -0.25 
Clst_0902 NAD(P)-dependent iron-only hydrogenase  -0.03 -0.72 0.26 -0.46 
Clst_0903 NAD(P)-dependent iron-only hydrogenase  -0.45 -0.9 0.05 -0.85 
Clst_0904 NAD(P)-dependent iron-only hydrogenase 

catalytic  
-0.41 -0.99 0.06 -0.93 

Clst_1290 Hydrogenase maturation factor  -0.37 -0.52 -0.06 -0.58 
Clst_1806 [FeFe] hydrogenase, group B1/B3  -0.72 -0.37 -0.87 -0.76 
Clst_1808 Iron only hydrogenase large subunit, C-

terminal  
-0.54 -0.60 -1.19 -1.24 

Clst_2545 Iron only hydrogenase large subunit, C-
terminal  

-0.24 -0.4 -0.26 -0.66 

 

3.4.11 Analysis of operon expression 
 

Studying bacterial proteomes provides the opportunity to examine changes in protein 

expression of operons, multiple open reading frames that fall under the regulatory control of the 

same operator (Ermolaeva, White, & Salzberg, 2001) . If proteins within the same region on the 

genome show similar levels of relative protein expression this can strengthen the claim of 

differential protein expression using this model. An “operon” in this case was defined as two or 

more proteins that are directly adjacent on the genome. This criterion was applied to the 533 
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proteins identified as differentially expressed, identifying 79 suspected operons (See 3.7 

Supplementary Information). Three exceptions were made in the operons related to the CRISPR 

system (Clst_1592, Clst_1596, Clst_1597, Clst_1598), cell motility (Clst_2465, Clst_2466, and 

Clst_2468) and glycolysis (Clst_1986, Clst_1988), where not all of the genes are directly 

adjacent but are functionally related based on genome annotation. Out of these 79 suspected 

operons, 15 had protein expression values that were not consistent, meaning some members of 

the operon were up-regulated on xylose and others on cellobiose or vice versa. Since the majority 

of operons identified (~80%) had consistent protein expression, this gives strong evidence that a 

biological effect is being observed in the form of transcriptionally regulated operons. This is 

made apparent when the standard deviation of operons is plotted as a histogram, showing that for 

most operons there was limited variation in protein expression ratios (Figure 3.6).  
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Figure 3.6 Standard deviation of protein expression in adjacent genes 

Variation in standard deviation of protein expression ratios of genes detected in this 
iTRAQ study in relation to their position on the genome. 

 

 

Some of the operons had a clear biological purpose related to carbohydrate metabolism in 

carbohydrate transport (Clst_0228-Clst_0231 and Clst_2457-Clst_2460), glycolysis 
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(Clst_01986-01988), and pyruvate dehydrogenase activity (Clst_00827-00831). Components of 

the CRISPR system (Clst_1592, Clst_1596, Clst_1597, Clst_1598), the pyruvate dehydrogenase 

complex (Clst_0827-Clst_0831), and proteins related to cell motility (Clst_2465, Clst_2466, and 

Clst_2468), had consistent protein expression across the entire operon. Furthermore, aconitase, 

and isocitrate dehydrogenase (Clst_00730 and Clst_00731 respectively) both show up-regulation 

in cellobiose cultures. The operon containing malic enzyme and malate/L-lactate dehydrogenase 

(Clst_02613 and Clst_02614 respectively) also show up-regulation with respect to xylose 

cultures as observed earlier. 

 

Interestingly, an operon related to energy and ethanol production had components with 

strong expression in cellobiose (Clst_1808-1812) with the exception of the transcriptional 

regulator (Clst_1813), which was strongly expressed in xylose samples. This transcriptional 

regulator falls into the family of LysR transcriptional regulators that are commonly activators of 

operon transcription in bacterial systems (Schell, 1993) although there are some instances of 

negative gene repressors that fall into the same family (Neidle, Hartnett, & Ornston, 1989). It is 

interesting to note that the up-regulation of this regulator in xylose samples may indicate 

negative transcriptional regulation of these genes, which corresponds with the prediction that 

there is an alternative route for ethanol production in xylose grown C. stercorarium. With that 

said, we should acknowledge the possibility that this regulator is involved with the regulation of 

genes downstream from this particular operon or for another operon entirely and may not be 

involved in the regulation of dehydrogenase expression. Nevertheless, the strong correlation in 

operon expression presented here provides more evidence that changes in protein expression 

predicted by this model are biologically relevant even though they can only show slight changes 

in protein expression with respect to the growth condition used. 
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3.4.12 Clusters of orthologous groups 
 

Clusters of orthologous groups (COGs) are genes that have been grouped together based 

on orthologous sequences across multiple genomes (Tatusov, Koonin, & Lipman, 1997). COGs 

can be a useful method to find changes in broad functionality across the proteome when 

integrated with proteomic data.  Each protein identified by iTRAQ was assigned one of 21 

different COGs based on information from the “everything” file downloaded from the Integrated 

Microbial Genome (IMG) database (Table 3.5). Proteins without any known function were 

labelled as belonging to COG “X”. The COGs that had ~45% of their proteins change with 

respect to xylose or cellobiose are COG “C” energy production and conversion, COG “G” 

carbohydrate transport and metabolism and COG “P” inorganic ion transport and metabolism. 
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Table 3.5 Number of significant proteins in each COG 

Number of proteins identified in each COG by iTRAQ, and the number of proteins determined to 
be differentially regulated by the “S/N” model. 

COG Name Total proteins 
ID'd 

Differentially 
Regulated 

Percent 
Regulated 

C Energy production and conversion 80 37 46.3 
P Inorganic ion transport and metabolism 40 18 45.0 
G Carbohydrate transport and metabolism 163 72 44.2 
N Cell motility 32 13 40.6 
O Post translational modifications, protein 

turnover, and chaperones 
45 18 40.0 

D Cell cycle control, cell division, and 
cell partitioning 

27 10 37.0 

T Signal transduction mechanisms 46 17 37.0 
X No function prediction 143 52 36.4 
R General function prediction only 170 60 35.3 
J Translation, ribosomal structure and 

biogenesis 
137 48 35.0 

U Intracellular trafficking, secretion, and 
vesicular transport 

27 9 33.3 

M Cell wall/membrane/envelope 
biogenesis 

70 23 32.9 

F Nucleotide transport and metabolism 46 15 32.6 
S Function Unknown 82 25 30.5 
E Amino acid transport and metabolism 131 38 29.0 
H Coenzyme transport and metabolism 49 14 28.6 
Q Secondary metabolites biosynthesis, 

transport, and catabolism 
7 2 28.6 

V Defense mechanisms 30 8 26.7 
K Transcription 95 25 26.3 
L Replication, recombination, and repair 80 20 25.0 
I Lipid transport and metabolism 26 5 19.2 

 
 

3.4.13 COG “G” carbohydrate transport and metabolism 
 

A large proportion of proteins identified by iTRAQ in COG G were differentially 

expressed as predicted by this model (72 out of 163 proteins in COG G identified) (Table 3.6). 

Based on these results ABC transporters appear to be the primary mechanism of carbohydrate 
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transport in C. stercorarium. The ABC transporter components, Clst_2161, Clst_2160, 

Clst_0229, Clst_0230, and Clst_0231 all had high relative protein expression in xylose, while 

Clst_2539, Clst_2540, and Clst_2541, had high protein expression in cellobiose. Typically, 

carbohydrate transport in bacterial systems is either handled by the phosphotransferase system 

(Deutscher, Francke, & Postma, 2006) or by ABC transporters  (Davidson & Chen, 2004), which 

appears to be the main mechanism of transport for these carbohydrate sources in C. 

stercorarium. It is also interesting to note that some proteins upregulated in COG “G” highly 

expressed in xylose are related to pentose and glucuronate interconversions, suggesting possible 

alternative routes that do not involve transaldolase for the metabolism of xylose. Alternatively, 

this may also suggest that xylose is the signal to upregulate the expression of proteins related to 

xylan degradation, one of the complex polymeric components of cellulose that can contain 

sugars such as galactose, glucuronic acid, and arabinose that exist in the natural environment of 

C. stercorarium. These proteins include arabinogalactan endo-1,4-beta-galactosidase 

(Clst_1647), mannitol-1-phosphate/altronate dehydrogenases (Clst_0019), predicted 

xylanase/chitin deacetylase (Clst_0804), mannose-6-P isomerase (Clst_1161), and glucuronate 

isomerase (Clst_2021).  

 

In the firmicutes phylum the metabolism and uptake of xylose is usually under control of 

the XylR regulon (Gu et al., 2010). XylR is a repressor open reading frame kinase (ROK) family 

protein that regulates the xylAB operon, where xylA and xylB are genes that express xylose 

isomerase (Clst_0877), and the xylulokinase (Clst_0875), respectively. The xylR regulator has 

also been shown to affect the transcription of the xynCB operon in Bacillus subtilis, a β-xyloside 

permease and β-xylosidase, respectively. XylR has also been shown to affect the xyn1 gene in 
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Bacillus stearothermophilus, an extracellular xylanase (Rodionov, Mironov, & Gelfand, 2001) . 

This shows some evidence that when the xylAB operon is activated this may also affect the 

transcription of other related carbohydrate metabolism genes in C. stercorarium. 

 

Table 3.6 Proteins differentially regulated in COG G – carbohydrate transport and 
metabolism 

locus Protein XY1/
XY2 

CB1/C
B2 

XY1/
CB1 

XY2/
CB2 

Clst_02161 carbohydrate ABC transporter substrate-
binding  

-0.34 0.42 4.08 4.84 

Clst_00230 ABC-type sugar transport system, periplasmic  -0.45 0.55 3.42 4.42 
Clst_00231 Beta-galactosidase/beta-glucuronidase  -0.53 -0.5 3.22 3.25 
Clst_00228 ABC-type polysaccharide transport system,  -0.49 -1.37 2.46 1.58 
Clst_02457 transcriptional regulator, DeoR family  -0.49 -0.59 1.68 1.58 
Clst_00875 xylulokinase (EC 2.7.1.17)  -0.37 -0.52 1.53 1.38 
Clst_00877 xylose isomerase  -0.4 -0.58 1.46 1.28 
Clst_00237 Beta-glucosidase-related glycosidases  -0.49 -0.64 1.43 1.28 
Clst_00676 Beta-xylosidase  -0.35 -0.57 1.33 1.11 
Clst_02141 ABC-type sugar transport system, periplasmic  -0.44 -0.71 1.04 0.77 
Clst_01647 Arabinogalactan endo-1,4-beta-galactosidase  -0.1 -1.08 1 0.02 
Clst_02460 multiple monosaccharide ABC transporter 

membrane  
-0.33 -1.02 0.99 0.3 

Clst_00229 ABC-type sugar transport system, permease  -0.42 -0.3 0.84 0.96 
Clst_00907 Beta-xylosidase  -0.37 -0.7 0.8 0.47 
Clst_00019 Mannitol-1-phosphate/altronate 

dehydrogenases  
-0.31 -0.71 0.77 0.37 

Clst_00804 Predicted xylanase/chitin deacetylase  -0.32 -0.9 0.73 0.15 
Clst_02459 ABC-type sugar transport system, ATPase  -0.42 -0.84 0.69 0.27 
Clst_02458 multiple monosaccharide-binding protein  -0.38 -0.78 0.68 0.28 
Clst_01665 Cupin domain.  -0.36 -0.5 0.62 0.48 
Clst_02416 6-phosphogluconate dehydrogenase  -0.46 -0.63 0.6 0.43 
Clst_01161 mannose-6-phosphate isomerase, type 1 (EC  -0.35 -0.8 0.57 0.12 
Clst_01160 fructose-1-phosphate kinase (EC 2.7.1.56)  -0.33 -0.61 0.56 0.28 
Clst_01905 glucosamine-6-phosphate isomerase  -0.21 -0.68 0.55 0.08 
Clst_02097 Predicted periplasmic protein (DUF2233).  -0.38 -0.82 0.55 0.11 
Clst_02160 ABC-type sugar transport systems, permease  -0.54 -0.59 0.54 0.49 
Clst_00811 Alpha-galactosidases/6-phospho-beta-

glucosidases, family 4  
-0.41 -0.81 0.49 0.09 

Clst_01586 Alpha-galactosidase  -0.28 -0.97 0.48 -0.21 
Clst_02021 Glucuronate isomerase  -0.41 -0.83 0.46 0.04 
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Clst_01565 hypothetical protein  -0.24 -0.87 0.42 -0.21 
Clst_01589 carbohydrate ABC transporter substrate-

binding  
-0.37 -0.94 0.4 -0.17 

Clst_01440 Predicted xylanase/chitin deacetylase  -0.45 -0.85 0.4 0 
Clst_02100 Cellobiose phosphorylase  -0.45 -0.82 0.39 0.02 
Clst_02631 N-acetylglucosamine-6-phosphate deacetylase  -0.3 -0.76 0.38 -0.08 
Clst_00460 rhamnose ABC transporter, rhamnose-binding  -0.49 -0.45 0.38 0.42 
Clst_00621 L-rhamnose isomerase (EC 5.3.1.14)  -0.42 -0.75 0.37 0.04 
Clst_01168 Beta-glucosidase-related glycosidases  -0.27 -0.76 0.28 -0.21 
Clst_01561 L-arabinose isomerase (EC 5.3.1.4)  -0.49 -0.87 0.28 -0.1 
Clst_00630 Beta-1,4-xylanase  -0.31 -0.82 0.26 -0.25 
Clst_02159 carbohydrate ABC transporter membrane 

protein 2,  
-0.4 -0.66 0.26 0 

Clst_00295 Beta-glucosidase-related glycosidases  -0.37 -0.76 0.26 -0.13 
Clst_01342 protease FtsH subunit HflK  -0.42 -0.84 0.24 -0.18 
Clst_00805 ABC-type sugar transport system, periplasmic  -0.29 -0.74 0.24 -0.21 
Clst_00906 Sugar phosphate isomerases/epimerases  -0.36 -0.69 0.19 -0.14 
Clst_02149 Predicted sugar kinase  -0.34 -0.88 0.18 -0.36 
Clst_00846 4-deoxy-L-threo-5-hexulose uronate isomerase  -0.35 -0.77 0.13 -0.29 
Clst_00856 Beta-xylosidase  -0.45 -0.8 0.12 -0.23 
Clst_00217 carbohydrate ABC transporter substrate-

binding  
-0.34 -0.7 0.07 -0.29 

Clst_02270 phosphopentomutase  -0.38 -0.8 0.04 -0.38 
Clst_01411 alpha-phosphoglucomutase (EC 5.4.2.2)  -0.34 -0.86 -0.21 -0.73 
Clst_02453 ribose-5-phosphate isomerase (EC 5.3.1.6)  -0.34 -0.83 -0.21 -0.7 
Clst_01627 Alpha-galactosidase  -0.41 -0.82 -0.33 -0.74 
Clst_02579 carbohydrate ABC transporter ATP-binding  -0.34 -0.9 -0.37 -0.93 
Clst_01988 glyceraldehyde-3-phosphate dehydrogenase, 

type I  
-0.32 -0.68 -0.41 -0.77 

Clst_00564 Cellulase M and related proteins  -0.3 -0.9 -0.43 -1.03 
Clst_02209 Ribulose-5-phosphate 4-epimerase and related  -0.3 -0.89 -0.43 -1.02 
Clst_01933 pyruvate phosphate dikinase (EC 2.7.9.1)  -0.38 -0.82 -0.47 -0.91 
Clst_00479 ABC-type sugar transport system, periplasmic  -0.46 -0.92 -0.47 -0.93 
Clst_00455 transcriptional regulator, DeoR family  -0.41 -0.63 -0.48 -0.7 
Clst_02537 Pectin methylesterase  -0.39 -0.96 -0.49 -1.06 
Clst_02229 pyruvate kinase  -0.28 -0.88 -0.59 -1.19 
Clst_01986 triosephosphate isomerase (EC 5.3.1.1)  -0.36 -0.85 -0.59 -1.08 
Clst_00434 ABC-type sugar transport system, periplasmic  -0.28 -0.88 -0.64 -1.24 
Clst_01064 phosphoglucosamine mutase (EC 5.4.2.10)  -0.4 -0.91 -0.74 -1.25 
Clst_02619 ABC-type sugar transport system, periplasmic  -0.47 -0.69 -0.89 -1.11 
Clst_01190 glucose-6-phosphate 1-dehydrogenase (EC  -0.62 -0.94 -0.93 -1.25 
Clst_01087 Predicted glycosylase  -0.36 -0.9 -1.22 -1.76 
Clst_01635 ABC-type sugar transport system, periplasmic  -0.46 -0.76 -1.86 -2.16 
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Clst_01085 carbohydrate ABC transporter substrate-
binding  

-0.51 -1.07 -1.92 -2.48 

Clst_02540 carbohydrate ABC transporter membrane 
protein 2,  

0.07 -1.26 -2.72 -4.05 

Clst_00361 cellobiose phosphorylase (EC 2.4.1.20)  -0.72 -0.87 -3.38 -3.53 
Clst_02539 ABC-type sugar transport system, periplasmic  -0.7 -0.93 -3.68 -3.91 
Clst_02541 carbohydrate ABC transporter membrane 

protein 1,  
-0.96 -0.98 -3.71 -3.73 

 
 

3.4.14 COG “C” energy production and conversion 
 
 Grouping in COG “C” reveals potential substrate dependent differences in energy 

production, electron transfer, and dehydrogenase reactions (Table 3.7). Several proteins 

(Clst_1640, Clst_1196, Clst_2546) typically containing 4Fe-4S and 3Fe-4S clusters used for 

redox reactions are upregulated in xylose samples. Components of the pyruvate dehydrogenase 

complex (Clst_0828, Clst_0829, Clst_0830) were all upregulated on cellobiose samples 

suggesting that this is the main mechanism of pyruvate oxidation to acetyl-CoA on this substrate. 

The function of these proteins upregulated in xylose samples related to redox reactions are 

poorly characterized based on the current annotation. But the data presented here suggest that 

there may be alternative mechanisms for pyruvate oxidation dependent on the substrate used for 

growth. Further experiments to characterize redox reactions in C. stercorarium would be 

necessary to fully understand these types of electron transfer reactions. 
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Table 3.7 Proteins differentially regulated in COG C – energy production and conversion. 
locus Protein XY1/

XY2 
CB1/
CB2 

XY1/
CB1 

XY2/
CB2 

Clst_1640 Ferredoxin  0.03 -1.15 1.45 0.27 
Clst_1579 Glycerophosphoryl diester 

phosphodiesterase  
-0.31 -1.01 0.85 0.15 

Clst_1196 Indolepyruvate ferredoxin 
oxidoreductase, alpha  

-0.59 -1.1 0.84 0.33 

Clst_2546 Rubrerythrin  -0.33 -0.45 0.48 0.36 
Clst_2489 NADH dehydrogenase, FAD-containing 

subunit  
-0.45 -0.78 0.42 0.09 

Clst_0331 Archaeal/vacuolar-type H+-ATPase 
subunit B  

-0.33 -0.92 0.41 -0.18 

Clst_0146 Coenzyme F420-reducing hydrogenase, 
beta subunit  

-0.38 -0.67 0.4 0.11 

Clst_2614 Malate/L-lactate dehydrogenases  -0.41 -0.95 0.38 -0.16 
Clst_2613 Malic enzyme  -0.45 -0.93 0.37 -0.11 
Clst_0759 Pyruvate:ferredoxin oxidoreductase and 

related  
-0.32 -0.69 0.36 -0.01 

Clst_2128 Uncharacterized oxidoreductases, Fe-
dependent 

-0.5 -0.83 0.25 -0.08 

Clst_0038 NADH:flavin oxidoreductases, Old 
Yellow Enzyme  

-0.44 -0.87 0.23 -0.2 

Clst_0484 radical SAM family uncharacterized 
protein  

-0.36 -0.78 0.22 -0.2 

Clst_2325 electron transport complex, 
RnfABCDGE type, C  

-0.3 -0.62 0.21 -0.11 

Clst_2077 NAD-dependent aldehyde 
dehydrogenases  

-0.43 -0.69 0.21 -0.05 

Clst_1559 L-ribulokinase  -0.38 -0.7 0.2 -0.12 
Clst_0963 vacuolar-type H(+)-translocating 

pyrophosphatase  
-0.36 -0.7 0.1 -0.24 

Clst_0325 Archaeal/vacuolar-type H+-ATPase 
subunit I  

-0.33 -0.75 0.01 -0.41 

Clst_1243 acetate kinase (EC 2.7.2.1)  -0.33 -0.82 -0.36 -0.85 
Clst_0731 isocitrate dehydrogenase (NADP) (EC 

1.1.1.42)  
-0.39 -0.95 -0.37 -0.93 

Clst_0730 aconitase (EC 4.2.1.3)  -0.42 -0.87 -0.44 -0.89 
Clst_2352 Archaeal/vacuolar-type H+-ATPase 

subunit I  
-0.34 -0.64 -0.59 -0.89 

Clst_1242 phosphotransacetylase (EC 2.3.1.8)  -0.33 -1.01 -0.6 -1.28 
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Clst_0968 Phosphoenolpyruvate carboxykinase 
(GTP)  

-0.41 -0.89 -0.63 -1.11 

Clst_2218 Nitroreductase  -0.35 -0.92 -0.64 -1.21 
Clst_2349 Archaeal/vacuolar-type H+-ATPase 

subunit E  
-0.22 -0.81 -0.67 -1.26 

Clst_1810 NADH:ubiquinone oxidoreductase 24 
kD subunit  

-0.17 -0.88 -0.72 -1.43 

Clst_2408 hypothetical protein  -0.36 -0.76 -0.74 -1.14 
Clst_2023 L-lactate dehydrogenase (EC 1.1.1.27)  -0.56 -0.81 -0.85 -1.1 
Clst_1809 NADH:ubiquinone oxidoreductase 24 

kD subunit  
-0.3 -0.84 -0.94 -1.48 

Clst_1094 Citrate synthase  -0.49 -1.02 -1.17 -1.7 
Clst_0828 Pyruvate/2-oxoglutarate dehydrogenase 

complex,  
-0.35 -0.92 -1.26 -1.83 

Clst_1812 acetaldehyde dehydrogenase (EC 
1.2.1.10)/alcohol  

-0.43 -0.84 -1.32 -1.73 

Clst_1401 pyruvate:ferredoxin (flavodoxin) 
oxidoreductase,  

-0.41 -1.06 -1.32 -1.97 

Clst_0660 Uncharacterized oxidoreductases, Fe-
dependent  

-0.5 -0.79 -1.39 -1.68 

Clst_0830 Pyruvate/2-oxoglutarate dehydrogenase 
complex,  

-0.39 -0.98 -1.42 -2.01 

Clst_0829 dihydrolipoamide dehydrogenase  -0.54 -0.81 -1.5 -1.77 
 
 

3.4.15 COG “P” Inorganic Ion and Transport 
 
 Inorganic ion and transport is another COG that saw many proteins differentially 

regulated between the two conditions tested. The hemerythrins (Clst_0182, Clst_1507) 

upregulated in xylose samples are iron-containing proteins typically used to bind oxygen in 

many marine invertebrates (Stenkamp, 1994). It is unclear what the purpose of hemerythrins 

might be in C. stercorarium. It was found that these types of proteins are more common in 

anaerobic organisms than aerobic, suggesting that they may act as a defense mechanism against 

oxygen toxicity by sequestration of oxygen molecules (French, Bell, & Ward, 2008). There are 

also some instances in nature of hemerythrin like proteins being used for the storage of iron 

molecules (Baert, Britel, Sautiere, & Malecha, 1992). Two ABC transporters (Clst_2638, and 
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Clst_1907) were upregulated in xylose samples, one specific for Fe3+ (Clst_2638) and the other 

for Fe2+ (Clst_1907). Separate Fe2+ ABC transporters were upregulated in cellobiose (Clst_1682, 

Clst_1683). This may show that Fe3+ is involved in a xylose dependent process and may be tied 

to the proteins involved with Fe-S cluster proteins, and redox reactions observed earlier as 

upregulated in xylose samples. 
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Table 3.8 Proteins differentially regulated in COG P – inorganic ion transport and 
metabolism 

locus Protein XY1/
XY2 

CB1/
CB2 

XY1/
CB1 

XY2/
CB2 

Clst_0182 hemerythrin-like metal-binding domain  -0.17 -0.69 0.87 0.35 
Clst_1507 hemerythrin-like metal-binding domain  -0.19 -0.73 0.74 0.2 
Clst_2638 ABC-type Fe3+ transport system, 

periplasmic  
-0.44 -0.58 0.65 0.51 

Clst_1907 ferrous iron transporter FeoB  -0.32 -0.43 0.38 0.27 
Clst_2163 Adenylylsulfate kinase and related 

kinases  
-0.43 -0.76 0.06 -0.27 

Clst_1906 Mg2+ transporter (mgtE)  -0.36 -0.78 -0.25 -0.67 
Clst_1264 ABC-type nitrate/sulfonate/bicarbonate 

transport  
-0.33 -0.76 -0.35 -0.78 

Clst_0912 Cation transport ATPase  -0.37 -0.71 -0.36 -0.7 
Clst_0911 copper-(or silver)-translocating P-type 

ATPase  
-0.41 -0.97 -0.42 -0.98 

Clst_1886 Alkaline phosphatase  -0.38 -0.67 -0.5 -0.79 
Clst_2494 ABC-type metal ion transport system, 

periplasmic  
-0.41 -0.88 -0.61 -1.08 

Clst_1532 Cystathionine beta-lyase family protein 
involved  

-0.37 -0.89 -0.61 -1.13 

Clst_0044 ABC-type metal ion transport system, 
periplasmic 

-0.48 -0.59 -0.69 -0.8 

Clst_0820 ABC-type nitrate/sulfonate/bicarbonate 
transport  

-0.33 -1.2 -0.83 -1.7 

Clst_1787 ABC-type enterochelin transport 
system, ATPase  

-0.7 -0.85 -2.12 -2.27 

Clst_1786 ABC-type enterochelin transport 
system,  

-0.77 -0.6 -2.85 -2.68 

Clst_1682 Fe2+ transport system protein A  -0.7 -0.68 -3.44 -3.42 
Clst_1683 ferrous iron transporter FeoB  -0.52 -0.81 -3.48 -3.77 

 

3.5 Conclusions 
 

Bottom-up proteomics has become a valuable tool for identifying important targets 

related to different biological processes. In most proteomic experiments, two or more states are 

subjected to analysis where quantitative methods can identify significant differences in protein 

expression. It is these differences that provide insight into how a specific biochemical process 
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functions. Since future decisions are made based on which proteins have significant changes in 

their expression, it can be argued that the most important part in any proteomics experiment is 

deciding which proteins are biologically significant. The goal here is to avoid selecting proteins 

that are false positives, proteins identified as differentially expressed but are not truly different 

between the states tested, and also proteins that are false negatives, proteins that did not show 

significant changes in expression but are in fact relevant to the process being studied. Choosing 

the wrong proteins for follow-up analysis can lead to wasted time and money studying proteins 

that have no relevance to the biological process at hand. Likewise, leaving proteins out of the 

analysis that are relevant fails to provide a complete picture and may lead to unexpected or 

unexplainable results in the future.  

 

It is common in most proteomic analysis to select a point in the analysis where protein 

changes are statistically significant from the rest of the population. The main problem with 

applying statistics to systems biology experiments is that the cut-offs selected for statistical 

significance are largely arbitrary; they assume a normal distribution even when this may not be 

the case and it is not clear on where this cut-off should be placed with respect to the population. 

Most importantly, this cut-off does not take into account the biology of the organism, and subtle, 

important biological differences that may occur in the proteome are missed. The approach we 

have used here to find proteins that are significant to carbohydrate metabolism in C. 

stercorarium utilizes the technical variation between biological replicates to define the point 

where a protein is differentially expressed between these conditions. We analyzed two biological 

replicates on two different growth conditions using the iTRAQ approach. With this approach we 

were able to identify and quantify 1539 proteins (~60 % of predicted open reading frames in C. 
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stercorarium). This approach shows the possibility of metabolic changes related to mixed acid 

fermentation at the point where phosphoenolpyruvate is converted into either pyruvate or 

oxaloacetate. The results suggest that on cellobiose this is either a pyruvate kinase, or pyruvate 

phosphate dikinase dependent process, whereas on xylose pyruvate is likely to be generated via 

the malate shunt. This process is regulated in many different bacterial organisms and it appears 

that our results show changes in activity at this point in the metabolism of carbohydrates in C. 

stercorarium. In contrast, the enzymes in glycolysis and the pentose phosphate pathway showed 

limited changes in protein expression between the two substrates. This could mean that these 

pathways operate in a similar manner for these two conditions or that there are other regulatory 

mechanisms that do not involve modifying enzyme expression to affect activity. 

 

The analysis of protein expression for genes found in close proximity in the genome 

revealed that many of them are likely to be under control of the same regulatory mechanism. 

Sixty four out of the 79 potential operons all had protein expression values trending in either the 

xylose or cellobiose directions. The majority of the genes within these operons also had similar 

protein expression ratios between the two conditions. We found some evidence that a LysR 

family protein may, negatively regulate the alcohol dehydrogenase operon upregulated in 

cellobiose samples, when C. stercorarium is grown on xylose. This falls in line with the finding 

that separate acetaldehyde and alcohol dehydrogenase enzymes were upregulated on xylose 

samples. These results provide further evidence that this methodology for selecting differentially 

expressed proteins is indicative of biological processes that are occurring in C. stercorarium. 

 

More biologically relevant changes were noticed when the proteins identified by iTRAQ 



 

 165 

were organized into their respective COGs. The main mechanism of carbohydrate transport 

appears to be by ABC transporters as opposed to the phosphotransferase system. Components of 

the xylose degradation system were also upregulated in xylose samples, along with several other 

pentose metabolizing enzymes, suggesting that these processes are possibly all under the control 

of the XylR regulon. Analysis of COG “C” revealed that the pyruvate dehydrogenase complex is 

likely the main mechanism of acetyl-CoA synthesis on cellobiose, while on xylose this process 

may be under the control of pyruvate:ferredoxin oxidoreductases. Finally, differences in metal 

ion transport between these two conditions indicate possibly another important factor in the 

metabolism of these two substrates. 

 

The evidence presented here suggests that for a given biological system the common 

statistical cut-offs underestimate the number of proteins that are significantly different between 

two different states. We were able to identify a number of enzymes important to the metabolism 

of each substrate that wouldn’t have been identified using conventional statistical methods. It 

follows from this, that the majority of proteomic studies are potentially being underutilized in 

terms of the amount of relevant biological information that can be extracted. 
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3.7 Supplementary Information 
 
Spreadsheet showing all 533 significant proteins determined by iTRAQ analysis and all 79 
"operons" identified from the same analysis. The operons spreadsheet shows the standard 
deviation of ratios for each operon and a binary value of 1 or 0 if the expression ratios are 
trending in the same or different direction respectively. 
 
Available as Google Sheet: https://docs.google.com/spreadsheets/d/1bDNJb8Av-
Ne_vGELnjxH4NYSvR7BDYccE5gpP8sck0s/edit?usp=sharing 
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4 Comparison of iTRAQ and SWATH quantitative results 
4.1 Abstract 
 
 The results demonstrated in previous chapters show that isotope based and label free 

methods can both be effective methods for large-scale protein quantitation. The isotope-based 

methods were originally developed because of limitations in reproducibility when using a label 

free approach. However, recent improvements in mass spectrometer technology give the 

possibility of improving label free quantitation to be on par with isotope-based quantitation. Both 

iTRAQ and SWATH based label free quantitation was performed on the same set of samples 

allowing us to compare and contrast the results from each, and potentially find potential 

advantages and disadvantages of using each method. 2D-iTRAQ quantified more proteins 

compared to 1D-SWATH quantitation. For each method, significant proteins were determined 

based on the previously outlined approach (See Chapter 3). The relative protein quantitation 

results from SWATH based quantitation nearly matched the results from iTRAQ quantitation (R2 

= 0.910). We present evidence that SWATH is able to find a subset of differentially regulated 

proteins that could not be found with iTRAQ because of the well-known phenomenon of ratio 

compression. Overall, SWATH based methodology closely matched the results from iTRAQ, 

showing the potential to use this method as an alternative to isotope based methods. 
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4.2 Introduction 
 
 There are a multitude of isotope based and label free methods for the purposes of large-

scale protein quantitation with mass spectrometry. In general, isotope based methods are the 

more favoured methods because they eliminate much of the variability associated with 

measuring peptide signal intensity directly (Zhu, Smith, & Huang, 2009). Because of this, 

isotope based methods such as SILAC (Ong et al., 2002) and iTRAQ (Wiese, Reidegeld, Meyer, 

& Warscheid, 2007) are the most predominant methods for performing proteome quantitation. 

We have conducted a comparison of iTRAQ and SWATH based label free quantitation in order 

to further validate SWATH as a potentially effective method for whole cell quantitative 

proteomics. Both SWATH and iTRAQ methods were used to analyze four replicates of C. 

stercorarium, two replicates each grown on either xylose or cellobiose. These results can be 

compared directly to find the advantages and disadvantages to using either an iTRAQ or 

SWATH based approach and hopefully provide evidence that SWATH can match the 

quantitative results from isotope based labelling experiments. 

 

 There are few studies available that directly compare the results of label free and isotope 

based quantitation on the same biological system. Recently, Wang et al. compared iTRAQ and a 

label free approach applied to two strains of the algae Chlamydomonas reinhardtii to assess the 

technical and biological variation of each method (Wang, Alvarez, & Hicks, 2011) on an orbitrap 

mass spectrometer. The label free and iTRAQ approaches were able to identify 896 and 639 

proteins respectively, finding 329 and 124 to be significant out of each group. They found that 

the label free approach provided more accurate quantitation for proteins that had a high fold 

change difference between the two samples, but iTRAQ was the more precise method overall. 
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Eighty-two and 78 proteins were quantified by each method for biological and technical 

replicates respectively. The protein ratios between the two strains calculated by the two different 

methods were directly compared. The R2 for protein ratios between each method was 0.781 for 

technical replicates, and 0.627 for biological replicates. The authors go on to conclude that the 

choice of quantitative method is largely dependent on the needs of the user and depends on a 

number of different factors, including sample number, amount, and sample complexity. They 

also caution that the number of samples should be limited if performing label free quantitation as 

the run-to-run variation can increase the bias in the results significantly. 

 

 In a recent study by Zhang et al. both iTRAQ and SWATH were used to analyze the 

secretome of highly metastatic and low metastatic non-small-cell lung cancer (NSCLC) cell lines 

(Zhang et al., 2014). Five hundred and sixty two and 636 proteins were quantified by the 

SWATH label free and iTRAQ labelling methods, respectively. Three hundred and twenty six 

proteins were identified by each method. They discovered that some significantly regulated 

proteins were only detected in one method but not the other, showing that one may want to use 

multiple methods for proteomic analysis. However, they conclude that the strategy of choice will 

largely depend on sample complexity and the system being analyzed. Overall, the results showed 

a similar fold-change pattern between highly metastatic and low metastatic cell lines for proteins 

that were detected by both methods. 

 

 The approach to determine differentially regulated proteins by iTRAQ analysis in 

Chapter 3 was found to provide valuable information on carbohydrate metabolism in C. 

stercorarium by analyzing proteomic data from the perspective of biochemical pathways, 
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clusters of orthologous genes (COGs), and operons. The exact same approach was applied to the 

SWATH data set (Chapter 2) in order to see if similar results were obtained by using this method 

of quantitation. By comparing these two methods we can determine the limitations and 

advantages of each technique and make better decisions on which methodology will be an 

effective approach to analyzing the proteome of a specific system. Furthermore, if limitations in 

SWATH quantitation are found we may be able to identify the source of these limitations and 

improve the overall quantitation strategy with this method. 

 

4.3 Materials and Methods 
 

For detailed methods on how data were generated for iTRAQ and SWATH experiments 

refer to sections 2.3 and 3.3. Venn diagrams were generated with GeneVenn 

(http://genevenn.sourceforge.net/). All data processing and graph generation were performed 

with the R programming language. 

4.4 Results and Discussion 
 

4.4.1 Comparison of SWATH label free quantitation results with 1D and 2D iTRAQ 
 

Duplicate lysates of cells grown under two conditions were subjected to stable isotope 1D 

and 2D-iTRAQ quantitation and SWATH based acquisition methods for label free quantitation. 

2D-iTRAQ quantitation was used to provide a broad scope of differential protein expression 

between growth conditions. The original results from DDA experiments performed on the same 

samples were combined into a single ion library and used to extract peptide transitions intensities 

from SWATH experiments. Since iTRAQ is the more established method for quantitation, we 

had the opportunity to validate the results from SWATH by directly comparing both approaches. 
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The experiment was designed in a way that the three analysis methods could be performed using 

the same tryptic digests. The variation between biological replicates was used to aid in the 

selection of proteins that are biologically significant to carbohydrate metabolism as detailed in 

section 3.4.1 Detecting differential protein expression in C. stercorarium. 

 

4.4.2 Summary of quantitation results 
 

In total, SWATH quantified 1024 proteins, 1D-iTRAQ quantified 495 proteins, and 2D-

iTRAQ quantified 1538 proteins (Figure 4.1). 2D-iTRAQ was able to quantify the highest 

number of proteins followed by SWATH then 1D-iTRAQ. 2D-iTRAQ was also able to quantify 

a large number of proteins that were not identified in either 1D-iTRAQ or by SWATH. 2D-

iTRAQ was able to quantify all proteins quantified by SWATH and 1D-iTRAQ. Fractionating 

samples prior to analysis not surprisingly had an impact on the number of proteins quantified by 

iTRAQ, increasing the number of proteins quantified by ~300%. 1D-DDA analyses with no 

iTRAQ labels was able to identify almost twice as many proteins, demonstrating the tendency 

for iTRAQ to reduce the overall number of identifications (see Figure 2.2). The increase in 

charge state of iTRAQ labelled peptides has a known effect on the number of proteins that can 

be identified (Evans et al., 2012). Incomplete labelling of peptide samples and MS/MS analysis 

on peaks representing isotopic impurities can also contribute to the decreased amount of protein 

identifications in iTRAQ experiments. Even though SWATH quantified fewer proteins (~30% 

less) than 2D-iTRAQ, SWATH required less time for analysis by mass spectrometry. Twenty 

fractions were analyzed for 2D-iTRAQ, requiring ~40 hours of instrument time, whereas if you 

include the samples necessary to generate an ion library, SWATH required the analysis of 8 

samples, or ~16 hours of instrument time. The ion library generated can be used in future 
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experiments, which would further limit the amount of time required to perform label free 

quantitation with SWATH. 

 

Figure 4.1 Venn diagram of proteins quantified by SWATH, 1D- and 2D-iTRAQ 

 

 

The amount of variation between biological replicates varied depending on the method 

used for quantitation. For simplicity’s sake the two ratios calculated based on biological 

replicates were averaged. The four cross-state ratios for each protein were also averaged to 

provide a single value for each protein. The standard deviations of biological replicate ratios 

were 0.18 for 1D-iTRAQ, 0.19 for 2D-iTRAQ and 0.30 for SWATH. The decreased variation in 

iTRAQ experiments is likely the result of being able to collect all quantitative information in a 

single run, essentially eliminating instrument variability. The same increase in cross-state 

replicate variation as discussed in Chapter 2 and 3 (see Figure 2.5 and Figure 3.2) was also found 

for all three methods (Figure 4.2). 
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Figure 4.2 Density curves of protein expression ratios for iTRAQ and SWATH methods 
These density curves show the overall variation in biological replicate (solid lines) and cross-

state ratios (dotted lines) for both 1D and 2D-iTRAQ (black lines), and SWATH label free 
quantitation (red lines). There was almost no difference in variability for 1D and 2D-iTRAQ 

quantitation. All methods showed an increase in variability for ratios calculated from cross-state 
relative protein expression ratios. 

 

 

4.4.3 Evidence for iTRAQ ratio compression 
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For this experiment we had access to three different quantitative data sets for the 

purposes of cross validating protein quantitation. We applied the same method in Chapter 3 to 

2D and SWATH data sets in order to determine significantly regulated proteins for each method. 

The 1D data set was left out of this analysis because all of the proteins quantified by 1D-iTRAQ 

were also quantified by 2D iTRAQ. If applied to each method separately, 536 and 371 proteins 

are found to be significant in iTRAQ and SWATH datasets respectively (~30% of all proteins for 

each method). Each method agreed on 243 proteins to be differentially regulated between each 

condition (Figure 4.3). There was a high amount of correlation between the protein ratios 

determined by each method, having an R2 value of 0.916 (Figure 4.4). When the ratios between 

biological replicates for each method are plotted we find that these points are clustered around 

the center of the plot showing little difference in relative protein quantity between biological 

replicates for the same overlapping proteins. We also see evidence of iTRAQ ratio compression, 

a known issue with iTRAQ experiments where there is a tendency to underestimate the change in 

protein amount at high-fold change values (Evans et al., 2012; Ow, Salim, Noirel, Evans, & 

Wright, 2011; Savitski et al., 2013). The SWATH log2 ratios range from -6 to 6, while the 

iTRAQ ratios range from -4 to 4, an approximate 4-fold difference in signal intensity between 

SWATH and iTRAQ experiments for these proteins.  
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Figure 4.3 Venn diagram showing overlap in differentially expressed proteins determined 
by 2D-iTRAQ or SWATH 
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Figure 4.4 Scatterplot of SWATH and iTRAQ protein quantitation ratios 

Plot showing reproducibility of relative protein expression ratios between biological replicates 
(black dots) and cross-state replicates (red dots) for iTRAQ and SWATH label free quantitation 

methods. Note the range of log2 protein expression ratios from -4 to -4 for iTRAQ and -6 to 6 for 
SWATH, showing evidence of ratio compression by iTRAQ. 

 

 

SWATH detected 128 differentially expressed proteins that were not significant by 

iTRAQ analysis. This appears to be a result of ratio compression by iTRAQ underestimating 

their ratio and subsequently failing to find them above the cut-off for significance. The standard 

deviation for biological replicates is 0.12 for SWATH quantitation and 0.13 for iTRAQ 

quantitation for these particular proteins. In contrast to this, the standard deviation of cross-state 
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ratios for SWATH quantitation is 0.71, whereas the standard deviation of cross-state ratios for 

iTRAQ is 0.28 showing reasons for why these proteins are significant in the SWATH analysis. If 

we believe this decrease in variation to be a result of ratio compression it is possible that 664 

proteins are differentially regulated between these conditions and not just the 536 proteins 

determined by iTRAQ alone. So even though iTRAQ quantified more proteins overall, this 

method alone may not be sufficient to identify all of the differentially regulated proteins based 

on inherent limitations to the method itself. 
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Figure 4.5 Scatterplot of protein ratios for significant proteins unique to SWATH analysis 
Plot showing reproducibility of relative protein expression ratios between biological replicates 

(red dots) and cross-state replicates (black dots) for iTRAQ and SWATH label free quantitation 
methods only for the 128 proteins unique to SWATH analysis. The dotted lines show 

approximate areas for protein significance cut-offs. 
 

 

Despite showing some of the potential problems with iTRAQ quantitation, this method 

found 293 significant proteins not detected as significant by SWATH. Why this occurs is made 

clear by examining the overall variation in this set of proteins. The standard deviation between 

biological replicates was 0.09 and 0.40 for iTRAQ and SWATH respectively. For cross-state 

replicates this increased to 0.65 for iTRAQ and 0.75 for SWATH. There was a significant 
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amount of variation between biological replicates for SWATH quantitation, making it difficult to 

distinguish between experimental variability and variability based on changing conditions. The 

opposite was true for iTRAQ quantitation where there was a small amount of variation between 

biological replicates for these proteins making it easier to distinguish between technical variation 

and actual changes in protein expression. It is unclear why these proteins have significant 

SWATH variability between replicates. Increasing the number of replicates analyzed by 

SWATH could make better estimates of variability between biological replicates. SWATH is 

also affected by instrument variability over time, whereas quantification by iTRAQ analyzes all 

four samples simultaneously. 
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Figure 4.6 Scatterplot of protein ratios for significant proteins unique to iTRAQ 

Plot showing reproducibility of relative protein expression ratios between biological replicates 
(red dots) and cross-state replicates (black dots) for iTRAQ and SWATH label free quantitation 
methods only for the 293 proteins unique to iTRAQ analysis. These proteins show a much lower 
degree of variation along the x-axis making it easier to distinguish these proteins from biological 

replicate variability. 
 

 

4.4.4 Comparison of biological pathway information 
 

The main interest in most proteomic studies is to find proteins that are relevant to a 

biological process. We found many different proteins related to carbohydrate metabolism in this 

organism using iTRAQ (the discussion starting in section 3.4.4). All of the proteins identified as 
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important to xylose or cellobiose metabolism by iTRAQ all had nearly identical relative protein 

quantitation ratios with SWATH quantitation. Malic enzyme, malate dehydrogenase, and 

components of the oxaloacetate complex are suggested as upregulated in xylose samples, 

whereas pyruvate kinase and pyruvate phosphate dikinase are upregulated on cellobiose. 

Bifunctional acetylaldehyde/alcohol dehydrogenase (AdhE) is again upregulated on cellobiose 

whereas the alternate route for alcohol production in NAD-dependent aldehyde dehydrogenase 

(Clst_00277) and Zn-dependent alcohol dehydrogenase (Clst_00986) are upregulated in xylose. 

 

SWATH was also able to confirm overall changes in pathways with respect to protein 

expression in specific metabolic pathways. The plots showing protein ratio with respect to the 

biological replicate distribution were constructed in a similar manner to that of using iTRAQ 

data, except using SWATH protein ratios (Figure 4.7, Figure 4.8, Figure 4.9, Table 4.1, Table 

4.2, Table 4.3). A similar pattern emerges where for glycolysis and the pentose phosphate 

pathway, both blue and red lines are clustered around the center of the distribution indicating less 

variation within the pathway. When the mixed acid fermentation pathway is examined, the blue 

lines are clustered around the center of the plot with the red lines trending in either the positive 

or negative direction. SWATH was able to detect detect nearly all proteins belonging to these 

pathways with the exception of fructose-2,6-bisphosphatase (Clst_0422) and pyruvate:ferredoxin 

oxidoreductase (Clst_1401). So if the interest was in any of these central metabolic pathways, 

one would draw similar conclusions using either SWATH or iTRAQ quantitation. 
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Figure 4.7 Density line plot for glycolysis (SWATH quantitation) 
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Table 4.1 SWATH protein expression ratios for glycolysis 

locus description SWXY1 
/SWXY2 

SWCB1 
/SWCB2 

SWXY1 
/SWCB1 

SWXY2 
/SWCB2 

Clst_00642 6-phosphofructokinase  0.02 -0.21 0.38 0.15 
Clst_02032 6-phosphofructokinase  0.03 -0.07 0.33 0.23 
Clst_01985 phosphoglycerate mutase  0.07 -0.15 0.23 0.01 
Clst_02054 phosphopyruvate hydratase  0.1 -0.02 0.2 0.08 
Clst_01437 6-phosphofructokinase  0.08 -0.23 0.15 -0.16 
Clst_01987 phosphoglycerate kinase  0.24 0.49 0.03 0.28 
Clst_00927 fructose-bisphosphate aldolase  -0.01 0.25 -0.04 0.22 
Clst_01988 glyceraldehyde-3-phosphate 

dehydrogenase, type I  
-0.05 0.09 -0.18 -0.04 

Clst_00600 phosphoglycerate mutase  0.05 0.15 -0.22 -0.12 
Clst_01053 glucose-6-phosphate 

isomerase  
-0.1 -0.12 -0.33 -0.35 

Clst_01411 alpha-phosphoglucomutase  -0.01 0.1 -0.37 -0.26 
Clst_01986 triosephosphate isomerase  -0.07 -0.15 -0.49 -0.57 
Clst_00277 ROK family protein (putative 

glucokinase)  
-0.15 0.03 -0.52 -0.34 

Clst_00422 Fructose-2,6-bisphosphatase  NA NA NA NA 
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Figure 4.8 Density line plot for the pentose phosphate pathway (SWATH quantitation) 
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Table 4.2 SWATH protein expression ratios for the pentose phosphate pathway. 
 

locus description SWXY1 
\SWXY2 

SWCB1 
\SWCB2 

SWXY1 
\SWCB1 

SWXY2 
\SWCB2 

Clst_01558 L-ribulose 5-phosphate 4-epimerase  0.5 -0.54 0.92 -0.12 
Clst_02416 6-phosphogluconate dehydrogenase  -0.06 -0.16 0.79 0.69 
Clst_01561 L-arabinose isomerase 0.08 0.22 0.72 0.86 
Clst_01559 L-ribulokinase  0.06 0.07 0.46 0.47 
Clst_02453 ribose-5-phosphate isomerase  -0.08 -0.35 0.24 -0.03 
Clst_02184 transketolase subunit B  -0.03 -0.37 0.12 -0.22 
Clst_01970 ribulose-5-phosphate 3-epimerase  0.06 0.32 0.09 0.35 
Clst_02185 Transketolase, N-terminal subunit  -0.09 0.06 -0.03 0.12 
Clst_01190 glucose-6-phosphate 1-dehydrogenase  -0.2 0.06 -1.05 -0.79 
Clst_01071 Gluconolactonase  NA NA NA NA 
Clst_02639 6-phosphogluconolactonase/Glucosamine-6-

phosphate  
NA NA NA NA 

Clst_01011 Transketolase, N-terminal subunit  NA NA NA NA 
Clst_01012 Transketolase, C-terminal subunit  NA NA NA NA 
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Figure 4.9 Density line plot for the mixed acid fermentation pathway (SWATH 

quantitation) 
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locus locus.description SWXY1 
/SWXY2 

SWCB1 
/SWCB2 

SWXY1 
/SWCB1 

SWCB2 
/SWXY2 

Clst_02229 pyruvate kinase  -0.01 -0.59 -0.57 -1.15 
Clst_01933 pyruvate phosphate dikinase  -0.08 -0.33 -0.45 -0.7 
Clst_00968 Phosphoenolpyruvate carboxykinase  0.05 0.04 -0.36 -0.37 
Clst_02614 Malate/L-lactate dehydrogenases  0.06 0.03 0.76 0.73 
Clst_02613 Malic enzyme  0.04 -0.2 0.69 0.45 
Clst_02023 L-lactate dehydrogenase (EC 1.1.1.27)  -0.03 -0.07 -0.79 -0.83 
Clst_00828 Pyruvate/2-oxoglutarate 

dehydrogenase complex 
-0.66 -0.17 -2.77 -2.28 

Clst_00829 dihydrolipoamide dehydrogenase  -0.09 -0.33 -2.12 -2.36 
Clst_00830 Pyruvate/2-oxoglutarate 

dehydrogenase complex 
-0.29 -0.14 -2.08 -1.93 

Clst_00646 pyruvate:ferredoxin (flavodoxin) 
oxidoreductase 

0.08 -0.23 0.06 -0.25 

Clst_01242 phosphotransacetylase (EC 2.3.1.8)  0.2 -0.26 -0.32 -0.78 
Clst_01243 acetate kinase (EC 2.7.2.1)  -0.1 0.51 -0.73 -0.12 
Clst_02077 NAD-dependent aldehyde 

dehydrogenases  
0.09 -0.11 0.69 0.49 

Clst_01812 acetaldehyde/alcohol dehydrogenase 
(AdhE)  

0.01 -0.15 -1.22 -1.38 

Clst_00831 Dehydrogenases with different 
specificities  

-0.03 -0.07 -1.91 -1.95 

Clst_00660 Uncharacterized oxidoreductases, Fe-
dependent 

-0.01 -0.08 -1.46 -1.53 

Clst_00986 Threonine dehydrogenase and related 
Zn-dependent  

-0.03 0.02 0.65 0.7 

Clst_00827 Threonine dehydrogenase and related 
Zn-dependent  

0 -0.29 -1.25 -1.54 

Clst_02128 Uncharacterized oxidoreductases, Fe-
dependent 

-0.06 -0.19 0.58 0.45 

Clst_01052 oxaloacetate decarboxylase alpha 0.06 -0.2 0.24 -0.02 
Clst_00601 sodium ion-translocating 

decarboxylase, beta 
0.14 0.7 0.55 1.11 

Clst_01166 sodium ion-translocating 
decarboxylase, beta 

0.02 0.4 0.4 0.78 

Clst_00602 Oxaloacetate decarboxylase, gamma  -0.1 -0.05 0.18 0.23 
Clst_01094 Citrate synthase  -0.15 -0.1 -1.44 -1.39 
Clst_02252 Citrate synthase  0.11 -0.1 0.84 0.63 
Clst_00730 aconitase (EC 4.2.1.3)  0.48 0.14 0.22 -0.12 
Clst_00731 isocitrate dehydrogenase (NADP)  -0.32 -0.27 -0.62 -0.57 
Clst_01401 pyruvate:ferredoxin (flavodoxin) 

oxidoreductase 
NA NA NA NA 

Table 4.3 SWATH protein expression ratios for mixed acid fermentation 
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4.5 Conclusions 
 

The results from SWATH label free quantitation and isotope based quantitation with 

iTRAQ were compared in order to validate the results from SWATH and potentially find 

limitations in either method. 2D-iTRAQ was the best method for proteome quantitation in terms 

of the number of proteins that are quantified. 1D-iTRAQ was limited in the number of proteins 

that it could quantify, and was overshadowed by both the results from 2D-iTRAQ and 1D-

SWATH quantitation. Although 2D-iTRAQ was able to quantify the most proteins, 1D-SWATH 

quantitation was still able to quantify a respectable amount of proteins (~40% of the C. 

stercorarium proteome, compared to 60% by 2D-iTRAQ) with less instrument time required 

than iTRAQ. 

 

The SWATH based label free method is a relatively simple approach that could be 

applied simultaneously with any iTRAQ experiment. It only requires that peptide samples (0.5-2 

µg) be obtained from peptide digests prior to iTRAQ labelling and that a suitable ion library can 

be constructed for label free quantitation with DIA. The results can be cross-referenced and any 

similar trends in protein ratio can further strengthen biological claims made from proteomic data. 

The main limitation with SWATH appears to be the reduction in the number of proteins 

quantified. The high amount of reproducibility between iTRAQ and DIA quantitation results (R2 

= 0.915) could be improved by applying peptide fractionation methods to digests prior to 

analysis by DIA. This should decrease noise and increase the amount of peptides that can be 

analyzed by SWATH, further increasing the sensitivity and the number of proteins that can be 

quantified by this method. There was a discrepancy between the significant proteins as 

determined by each method. SWATH found 128 proteins that are significant that iTRAQ failed 
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to see as differentially regulated proteins, possibly from the result of ratio compression, a 

common problem in iTRAQ quantitation. 
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5 Activity based protein profiling of serine hydrolases 
5.1 Abstract 
 
 Controlling protein quantity is only one of the processes that cells use to regulate 

intracellular activity. Enzymes can be expressed but have their activity regulated by post-

translational modifications or endogenous inhibitors without changing their level of expression. 

In activity-based protein profiling (ABPP) a probe is used that specifically reacts with the active 

site of a specific class of enzymes and can provide information on the activity state of enzymes 

at a proteomic level. This approach can identify differences in enzyme activity even if these 

enzymes are being expressed at the same level. A biotin linked phosphofluoronate probe that 

specifically reacts with the serine hydrolase family of enzymes was used to identify serine 

hydrolases expressed in Clostridium stercorarium. We were able to confirm that one 

uncharacterized protein in this organism was indeed a serine hydrolase, along with identifying 

several other serine hydrolases. Several enzymes were also detected in this analysis not 

previously known as serine hydrolases based on current Gene Ontology annotation, showing the 

potential of this method to aid in genomic annotation. Furthermore, we were able to show that 

the serine hydrolases detected by this method can change depending on the reaction conditions 

used. Enzyme activity as measured by in-gel fluorescence varied drastically depending on the 

temperature used during probe labelling in mesophilic, and thermophilic bacterial organisms. 

Overall, the application of this method shows that enzyme activity can change dramatically 

depending on the conditions used, and only measuring protein expression does not provide a 

complete picture of cellular processes. 
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5.2 Introduction 
 

The proteome represents the entire collection of proteins expressed at a given point in 

time and carries out the majority of biochemical reactions in living organisms. It has become 

near routine to qualitatively assign the contents of the proteome through LC-MS/MS analysis, 

but the identity of a protein only implies the protein’s functional status. Relative protein 

expression between multiple conditions can be determined by a variety of label free and stable 

isotope labelling methods (Ong & Mann, 2005). Changes in the amount of a given protein that is 

expressed may provide some information on the functional status of that protein but not an actual 

measure of that enzyme’s activity. 

 

The function of any cell is largely the result of modulating its enzyme activity. Enzyme 

activity can be modulated by substrate or product concentration, cofactor concentration, 

interactions with other molecular intermediates, or by changing the concentration of enzyme, so 

called “coarse control” of enzyme activity (Turner & Turner, 1975). There are many other 

molecular methods of controlling enzyme activity in the cell. Enzymes can exist in an inactive 

zymogen state, only becoming active after cleavage of a specific amino acid sequence from the 

enzyme (Khan & James, 1998). There is a number of naturally occurring protein inhibitors that 

the cell can use to control enzyme activity. The serpins are the most well-known family that 

inhibit the activity of proteolytic enzymes by covalently binding to the active site (Ye & 

Goldsmith, 2001). There are also many proteins that are expressed but will only become active in 

response to a changing environment, such as in sigma factors that mediate stress responses in 

bacteria (Hecker & Völker, 2001). 
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Despite the knowledge that other mechanisms besides changing the amount of enzyme 

play a role in regulating enzyme activity, this is one aspect that is often overlooked in proteomic 

studies. The majority of quantitative proteomic studies strictly examines relative protein 

concentration and do not take into account the nuances of the proteome (Baginsky, Hennig, 

Zimmermann, & Gruissem, 2010). Studies that do not look at relative abundance of enzymes are 

generally interested in post-translational modifications of proteins (Mann & Jensen, 2003). 

Although we can identify the site and stoichiometry of post-translational modifications in 

proteins, this method does not determine the effect that post-translational modification has on 

that protein. Follow-up, single molecule studies would be required to determine the interacting 

partners of a modified enzyme or if that post translational modification is activating or 

deactivating that enzyme. 

 

Enzyme activity is clearly an important aspect that one must take into account when 

studying the proteome. Activity based protein profiling (ABPP) is an approach that has the 

capability to differentiate between active and in-active states of an enzyme at the proteomic level 

(Berger, Vitorino, & Bogyo, 2004). In ABPP, a chemical probe is designed that selectively reacts 

with the active site of an enzyme or group of enzymes that share a common catalytic mechanism. 

The key aspect in ABPP is that if the enzyme active site is not accessible the probe will not be 

able to react with the active site and this enzyme will not be detected in subsequent analysis 

(Cravatt, Wright, & Kozarich, 2008). Most ABPP probes have three parts 1) a reactive group that 

reacts specifically with the enzyme active site 2) a linker that connects the reactive group with 3) 

a reporter group that is commonly a fluorescent moiety used to visualize the labelled enzyme or a 

biotin tag to isolate labelled proteins with affinity enrichment and identify them with bottom-up 
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proteomics (Speers & Cravatt, 2004). 

 

ABPP can in theory and practice be applied to study the enzyme activity of any enzyme 

family. Most probes are developed based on the molecular structure of known enzyme inhibitors.  

In theory probes can be developed for any enzyme class if one has knowledge of the enzyme 

active site mechanism. ABPP probes have been developed to study serine hydrolases (Liu, 

Patricelli, & Cravatt, 1999), kinases (Patricelli et al., 2011), metalloproteases (Saghatelian, 

Jessani, Joseph, Humphrey, & Cravatt, 2004), cysteine proteases (Greenbaum, Medzihradszky, 

Burlingame, & Bogyo, 2000) and glycosidases (Witte et al., 2011). The most well studied family 

of enzymes using this concept is the serine hydrolase family of enzymes. The serine hydrolases 

are a diverse family of enzymes that include a number of esterases (Akoh, Lee, Liaw, Huang, & 

Shaw, 2004a), lipases (Wong & Schotz, 2002) and proteases (Botos & Wlodawer, 2007a). Serine 

hydrolase activity is, in many cases, regulated post translationally, making it difficult to analyze 

this class of enzymes using traditional quantitative proteomics. Many serine proteases exist in an 

inactive zymogen state (Khan & James, 1998), only becoming active after cleavage of a specific 

N-terminal polypeptide. This N-terminal segment sterically blocks access to the enzyme active 

site. Serine protease inhibitors (serpins) (Whisstock, Skinner, & Lesk, 1998) are another method 

of serine protease regulation, blocking access of substrate to the enzyme active site. 

 

The serine hydrolase active site contains three well-conserved residues: serine, aspartic or 

glutamic acid, and histidine. Each residue plays a role in increasing the nucleophilic strength of 

the serine side chain oxygen group. The aspartic acid forms a hydrogen bond with the histidine 

imidazole group, increasing its pKa and allowing it to accept a proton from the adjacent serine 
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residue (Dodson & Wlodawer, 1998). The serine is then able to attack the electrophilic carbon 

present in amide and ester bonds forming a tetrahedryl intermediate (Figure 5.1). A water 

molecule is then necessary to complete the reaction, regenerating the active site, and leaving 

behind the cleaved substrate. The mechanism for most serine hydrolases should be similar, 

although there is some reported diversity in serine hydrolase active sites (Botos & Wlodawer, 

2007b; Ekici, Paetzel, & Dalbey, 2008). 
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Figure 5.1 Catalytic mechanism for hydrolysis by serine hydrolases 
a) Outline for mechanism of amide bond hydrolysis by the catalytic triad of serine hydrolases 

b) Various molecules that are acted upon my serine hydrolases. Image reproduced with 
permission from Figure 1 (Dodson & Wlodawer, 1998) 
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Small molecule inhibitors of serine hydrolases were known long before the development 

of activity based probes for the study of serine hydrolases (Mackworth & Webb, 1948). 

Fluorophosphonate/fluorophosphate derivatives, both known inhibitors of the serine hydrolase 

active site were used in the development of one of first serine hydrolase probes (Liu et al., 1999). 

The probe consisted of an alkyl-fluorophosphonate group attached to either a biotin or 

fluorescein moiety by a long chain dual amide linker (Figure 5.2). The probe had to be specific 

enough to label the active site of serine hydrolases, but not too specific that it only labelled one 

or few enzymes. The probe was shown to only label the wild type of fatty acid amide hydrolase, 

but no labelling of the enzyme could be detected in the mutant form that had the active site serine 

converted to an alanine. Furthermore this probe could be used to characterize serine hydrolase 

expression in protein isolates obtained from rat by excising bands from a PVDF membrane after 

transferring a sample of labelled protein. 
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Figure 5.2 Synthesis of a biotinylated serine hydrolase probe 

Image reproduced with permission from Figure 1 (Liu et al., 1999) 
 

 

These probes were eventually adapted with slight modifications and made available for 

research purposes (http://www.piercenet.com/product/active-serine-hydrolase-probes). The three 

main probes available are the alkyl-flurophosphonate tetramethylrhodamine (FP-TAMRA), the 

alkyl-fluorophosphonate desthiobiotin (FP-desthiobiotin), and the alkyl-fluorophosphonate azido 

probe for the purposes of performing click chemistry (Speers & Cravatt, 2004). The FP-TAMRA 

probe can be used for the analysis of serine hydrolases by in-gel fluorescence, where enzyme 

activity is visualized by the detection (or lack of) fluorescence signal. Protein lysates can also be 
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labelled with the FP-desthiobiotin to allow for isolation of serine hydrolase by streptavidin 

agarose enrichment (Figure 5.3). Isolated proteins can then be subjected to bottom-up proteomic 

analysis to identify serine hydrolases. In-gel fluorescence measurements can make it readily 

apparent when there are differences in enzyme activity but it does not give any identity to those 

enzymes. Mass spectrometry analysis can identify serine hydrolases but is subject to many of the 

same problems that occur in other affinity based bottom-up proteomic analysis. Biotinylated 

proteins can be difficult to elute upon avidin binding and the enrichment process can complicate 

fragmentation spectra interpretation (Brittain, Ficarro, Brock, & Peters, 2005). Although, more 

recent activity based probes use desthiobiotin in place of biotin. The desthiobiotin moiety has 

lower affinity towards avidin and may improve protein recovery (Hirsch et al., 2002). 
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Figure 5.3 Activity based protein profiling of serine hydrolases 

a) The serine hydrolase probe consists of a reactive group attached to a reporter tag, either a 
biotin or fluorescent moiety. b) The activated serine nucleophile of the serine hydrolase catalytic 
triad attacks the electrophilic carbon of the fluorophosphonate group leaving behind a covalently 

modified serine residue in the enzyme active site. c) The probe can be added with or without 
inhibitors to detect serine hydrolases by in-gel fluorescence or bottom-up proteomics. Inhibitor 

binding proteins can be found based on their disappearance in in-gel or mass spectrometry 
assays. Image reproduced with permission from Figure 3 (Bachovchin & Cravatt, 2012)  

 

Enzyme activity is an aspect of protein chemistry that can change under a number of 

different conditions. Temperature, pH, ionic strength and enzyme concentration are all factors 

that can affect the activity of an enzyme (Atkinson, 1966). These activity based probes have the 

ability to measure the effect of these changes at a proteomic level. These changes in activity are 

important in that proteins detected in mass spectrometry experiments by data dependent analysis 

may only be active under specific a specific temperature and pH and may be inactive under other 

circumstances. Enzyme activity has also been shown to change when enzymes are in the 
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presence of other proteins (Patricelli et al., 2011), and in most cases the effect of purifying an 

enzyme has an unknown effect on its activity. So it will be important to consider how enzyme 

activity can change in a global context with respect to the proteome. We varied the reaction 

temperature during serine hydrolase labelling in a mesophilic and hyperthermophilic bacterial 

organism to determine what effect changing temperature has on enzyme activity. The structure of 

the probe itself can also have an effect on the proteins labelled (Fonovic & Bogyo, 2008). 

Following this idea we wanted to know the effect of probe structure on serine hydrolase 

labelling, and measured the profile using two different serine hydrolase probes. Finally, 

differences in enzyme activity were found in C. stercorarium when the organism was cultured on 

two different substrates. 

 

The in-gel based methods provided a qualitative assessment of enzyme activity but do not 

give the identity of the proteins being detected with this method. A mass spectrometry based 

approach was used to identify serine hydrolases being expressed in C. stercorarium. This method 

identified several serine hydrolases, and also provided confirmation of serine hydrolase activity 

in enzymes previously only predicted to have this activity based on genome annotation. 

Furthermore, mass spectrometry experiments were able to provide the likely identity of enzymes 

identified by in-gel fluorescence assays. 

  

5.3 Materials and Methods 

5.3.1 Culturing of bacterial cells 
 
 Clostridium stercorarium DSM 8532 (GenBank Accession: NC_020887), Clostridium 

thermocellum DSM 1237 (GenBank Accession: CP000568) and Clostridium termitidis 
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(GenBank Accession: AORV00000000) were cultured on 1191 medium to mid-exponential 

phase at 60°C using either 0.2% xylose or 0.2% cellobiose as the primary carbon source. Cells 

from each culture were collected by centrifugation at 5,000 g, washed three times with PBS (8.00 

g/L NaCl, 0.20 g/L KCl, 1.44 g/L Na2HPO4, 0.24 g/L KH2PO4, 0.24 g/L KH2PO4, pH 7.5) and 

then frozen at -80°C until needed. 

 

5.3.2 Isolation of proteins for ABPP analysis 
 

Bacterial cell pellets were suspended in lysis buffer (50 mM tris, 3 mM CaCl2, 2 mM 

MgCl2, pH 7.4, 0.1% NP-40) and left on ice for 30 minutes. Cells were subsequently lysed by 

sonication with 3 15-second pulses with cooling on ice for 1 minute in between each pulse. 

Residual cell debris was removed by centrifugation at 15,000 g for 30 minutes. Final protein 

concentration was determined by BCA assay and protein lysates were frozen at -80°C until 

needed. 

 

5.3.3 Labelling with FP-TAMRA 
 

 The ActivX fluorophosphonate-TAMRA (FP-TAMRA) (Thermo Scientific, Rockford, 

IL), was suspended in DMSO to a final concentration of 100 µM, and stored at -20 °C as per the 

manufacturer’s instructions. Ten µg of protein was labelled with FP-TAMRA or FP-

desthiobiotin (ActivX fluorophosphonate desthiobiotin probe, Thermo Scientific, Rockford, IL) 

for analysis by SDS-PAGE in-gel fluorescence, or Western blot respectively. FP-TAMRA 

suspended in DMSO was added to each protein sample to a final concentration of 2 µM and left 

to react in the dark at room temperature for 30 mins. For blank samples, an equivalent amount of 
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DMSO containing no probe was added. The reaction was quenched by the addition of an excess 

of 50 mM DTT solution. 

 

5.3.4 Labelling with FP-TAMRA at different temperatures 
 
 The reaction temperature of serine hydrolase labelling was varied from 4, 25, 37, 60, 80, 

and 95 °C. The 60, 80 and 95 °C reaction temperatures were reached through use of a PTC 

programmable thermal controller (MJR/BioRad, San Diego, CA). Bacterial protein samples were 

equilibrated at these temperatures for 10 minutes before the addition of the FP-TAMRA probe. 

After probe addition the samples were left to react for a further 30 minutes, where the reaction 

was then quenched by the addition of excess DTT. For 4 and 37 °C reaction temperatures, 

samples were left in a refrigerated unit, or in a 37 °C incubator. The samples were left for 10 

minutes for equilibration followed by the addition of the FP-TAMRA probe for a 30 minute 

reaction period. Samples were covered with aluminum foil when necessary and left in the dark 

for all reaction temperature experiments. 

 

5.3.5 In-gel fluorescence with SDS-PAGE 
 
 SDS-PAGE and in-gel fluorescence measurements were used for the qualitative 

assessment of serine hydrolase activity in bacterial organisms. Ten µg of protein labelled with 

the FP-TAMRA was vacuum-dried, re-suspended in 1x LDS sample buffer (Novex, Carlsbad, 

CA), and mixed to solubilize proteins. After heating at 95 °C, samples were cooled and added to 

NuPage 4-12% 1.5 mm Bis-Tris gels using either 10 or 15 well gels when appropriate. 

Electrophoresis was performed in MOPS running buffer in an Invitrogen, Novex-mini-cell unit. 

Detection of fluorescently labelled proteins was performed with a FluorChem Q (Alpha 
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Innotech, San Jose, CA) imaging system using the Cy3 channel (550 nm Ex/ 570 nm Em).  

 

5.3.6 Western blotting for the detection of FP-desthiobiotin labelled proteins 
 
  For Western blot analysis, proteins separated by SDS-PAGE were transferred to a 

nitrocellulose membrane with a Bio-Rad Trans-blot SD semi-dry transfer system (Transfer 

buffer, 14.4 g glycine, 3.02 g tris in 10% methanol) (Bio-Rad, San Diego, CA). After 

transferring, the nitrocellulose membrane was washed overnight at 4 °C in TBST buffer (50 mM 

tris, 150 mM NaCl, 0.05 % Tween). The membrane was blocked before antibody addition by 

incubation at room temperature with TBST containing 1% BSA for 1 hour. Streptavidin-HRP (R 

& D systems, Minneapolis MN) was diluted 1:5000 in TBST and added to the membrane for 

incubation at room temperature for 1 hour. After excess washing with TBST, Amersham ECL 

reagent (GE Healthcare, Buckinghamshire UK) was added to the membrane and left to sit for 5 

minutes. The chemiluminescence reaction was detected with the Fluorchem Q system (Alpha 

Innotech, San Jose, CA). 

 

5.3.7 Serine hydrolase enrichment for bottom-up proteomic analysis 
 
 The phosphofluoronate-biotin probe (PF-biotin) (Toronto Research Chemicals, ON, 

Canada) was used for the purposes of isolating enzymes with serine hydrolase activity in C. 

stercorarium. Two mg of protein from xylose and cellobiose growth conditions was labelled 

with the PF-biotin probe at a final concentration of 50 µM for 30 minutes at room temperature. 

Two identical samples were left unlabelled to act as a negative control. SDS was added to each 

sample to a final concentration of 0.5% and heated at 90 °C for 8 minutes. Sixty seven µL of 

high capacity streptavidin agarose (Thermo Scientific, Rockford IL) was added and left to 
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incubate for 1 hour with rotation. The beads were washed 2 times with 1% SDS, 2 times with 6 

M urea, and then 2 times with PBS. The beads were suspended in 50 mM ammonium 

bicarbonate and digested on-bead with 10 µg of sequencing grade trypsin. After digestion, the 

supernatant was transferred to a separate vial, vacuum dried, and then purified by C-18 ZipTip 

(Millipore, Billerica, CA). 

 

5.3.8 LC-MS/MS analysis of on-bead serine hydrolase digests 
 

A Triple TOF 5600 mass spectrometer (ABSciex, Mississauga, ON) coupled to a nano-

flow Tempo LC system (Eksigent, Dublin CA) was used for the analysis. Samples (10 µL) were 

injected via a 300 µm x 5 mm PepMap100 trap column (Thermo Fisher, Rockford IL) and 

separated on 100 µm x 200 mm analytical column packed with 5 µm Luna C18 (Phenomenex, 

Torrance CA). Both eluents A (water) and B (acetonitrile) contained 0.1 % formic acid as ion-

pairing modifier. Samples were separated using a 0.5-30% B gradient over 20 minutes followed 

by 5 minutes of washing (90% acetonitrile) and a 10 minute equilibration (0.5% acetonitrile) 

step. 

 

Each cycle of data dependent acquisition included a 250 ms MS scan (400-1600 m/z) and 

up to 40 MS/MS (100 ms each, 100-1600 m/z) for ions with charge state from +2 to +5 and an 

intensity of at least 300 counts per second. Selected ions and their isotopes were dynamically 

excluded from further fragmentation for 12 seconds. Raw spectra files were converted to 

searchable Mascot Generic File (MGF) format carrying MS/MS acquisition information. Peptide 

identifications were performed using a customized version of the X!Tandem algorithm (Craig, 

Cortens, & Beavis, 2005) (complete carbamidomethyl Cys modification, maximum of one 
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missed cleavage, mass accuracy of ± 10 ppm and 0.05 Da for parent and fragment ions 

respectively). False positive rates were computed internally by X!Tandem. 

 

5.3.9 Construction of the predicted serine hydrolase database 
 
 The predicted serine hydrolase database was constructed with a custom R-script that 

queries the Uniprot servers for proteins that have been annotated with selected Gene Ontology 

(GO) terms. After removing duplicate entries the script gives a list of Uniprot identifiers that are 

then resubmitted to Uniprot to construct a data table containing the protein locus tag, name, and 

Uniprot ID of identified proteins. The result is an excel table containing all of the proteins that 

were annotated with the selected GO terms. For predicted serine hydrolases, proteins annotated 

with GO terms GO:0017171 (molecular function: serine hydrolase) and/or GO:0016787 

(molecular function: hydrolase activity) were compiled into a single database. 

 

5.4 Results and Discussion 
 

5.4.1 Mass spectrometry to identify serine hydrolases with the PF-biotin tag 
 

Enrichment of a specific class of proteins is a common method in proteomic analysis, 

most often used to enrich proteins with post-translational modifications (Witze, Old, Resing, & 

Ahn, 2007). This concept was applied to identify serine hydrolases in the bacterium Clostridium 

stercorarium by labelling of whole cell lysates with a biotin-containing probe that specifically 

labels the active site of this class of enzymes. To identify potential differences in serine 

hydrolases being expressed in C. stercorarium proteins were isolated from two different growth 

conditions (xylose and cellobiose) and labelled with the PF-biotin tag. Two samples grown under 
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the same conditions were left unlabelled to identify proteins with potential non-specific 

interactions to streptavidin agarose. Biotin labelled proteins were enriched by binding to 

streptavidin agarose and then digested on-bead with trypsin. Each sample was then analyzed by 

tandem-MS and data dependent acquisition to identify bound proteins. In total 262 proteins were 

identified across all samples. The log2 signal intensity between labelled and blank samples was 

subtracted to remove enzymes likely to be identified based on non-specific interactions with 

streptavidin agarose. Proteins were included if the subtracted log2 signal was ≥2 (corresponding 

to a 4 fold increase in signal intensity between blank and labelled samples). After blank 

subtraction this left 71 proteins. Of these 71 proteins, 13 were identified in xylose and cellobiose 

samples (Table 5.1), 42 were identified in only the cellobiose sample, and 15 identified only in 

the xylose sample. It is unclear if the proteins identified in only one sample (and not identified in 

any blank samples) are actually serine hydrolases. These proteins were included in further 

analysis even though they may represent non-specific binding proteins to streptavidin agarose, 

because they may also be the result of different enzyme activity between the two conditions. 

 

A significant proportion of the 13 proteins identified in both samples are annotated as 

enzymes with known serine hydrolase activity. In order of decreasing signal intensity the top 6 

proteins are all serine hydrolases. Out of the 13 proteins identified in each sample, 9 are likely to 

be serine hydrolases based on sequence annotation alone. These 9 proteins are annotated as 

various esterases, lipases, and peptidases, all which have an activated serine nucleophile for the 

purposes of hydrolysis. The remaining three proteins (Clst_1754, Clst_1262, Clst_1053, 

Clst_2261) are not hydrolases, having entirely different enzyme activities. These proteins may be 

identified as the result of reactions of nucleophilic residues in the enzyme active site with the PF-
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biotin probe. The electrophilic fluorophosphonate group may react with other nucleophiles in 

enzyme active sites even if they are not part of a serine hydrolase catalytic triad. These proteins 

may also have non-specific interactions with streptavidin agarose and are pulled down with 

enzymes labelled with the PF-biotin tag. 

 
Table 5.1 Enzymes identified in both cellobiose and xylose samples labelled with the PF-

biotin probe. 
gene description CB-

BLANK 
CB-

LABEL 
XY-

BLANK 
XY-

LABEL 
Clst_1394 Acetyl esterase (deacetylase) 14.22 22.26 NA 19.73 
Clst_2385 ATP-dependent Clp protease 

proteolytic subunit 
13.62 18.8 NA 14.45 

Clst_2436 Esterase/lipase 13.62 18.4 NA 16.34 
Clst_1002 Lysophospholipase L1 and 

related esterases 
NA 17.41 NA 13.55 

Clst_2273 hypothetical protein NA 17.07 NA 15.88 
Clst_1266 Esterase/lipase NA 16.61 NA 15.25 
Clst_1658 Beta-lactamase class C and other 

penicillin 
NA 15.75 NA 9.6 

Clst_0448 Subtilisin-like serine proteases 12.56 15.35 NA 16.21 
Clst_1754 methyl-accepting chemotaxis 

sensory transducer 
NA 14.88 NA 14.85 

Clst_0344 C-terminal peptidase (prc) NA 13.62 NA 13.29 
Clst_1262 ABC-type 

nitrate/sulfonate/bicarbonate 
transport 

NA 12.69 NA 14.05 

Clst_1053 glucose-6-phosphate isomerase 
(EC 5.3.1.9) 

NA 11.93 NA 10.13 

Clst_2261 carbamoyl-phosphate synthase, 
large subunit 

NA 9.97 NA 9.73 

 
The most abundant enzyme identified in xylose and cellobiose samples, is an already 

well-characterized acetyl xylan esterase (AXE, Clst_1394). Acetyl xylan esterases are used by 

cellulolytic bacteria to assist in the breakdown of xylan, a polymer found in plant matter 

consisting of 1,4-β-D-xylose that is heavily modified with acetyl, arabinose, and glucuornic acid 

residues (Bastawde, 1992). Specifically, this enzyme belongs to the AXE1 family of enzymes 
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that have been found to have broad substrate specificity and is not just active towards xylan 

(Degrassi, Kojic, Ljubijankic, & Venturi, 2000). This enzyme is excreted into the surrounding 

medium in some cases (Degrassi, Okeke, Bruschi, & Venturi, 1998), but also appears to be 

localized inside the cell in other bacteria (Lorenz & Wiegel, 1997). Our data suggest that this 

protein is localized inside the cell in C. stercorarium as it was one of the most abundant serine 

hydrolases identified. It is unknown if this protein is secreted from the cell at any point in time. 

This enzyme was expressed highly in both xylose and cellobiose samples, so it is likely this 

enzyme is not related to carbohydrate metabolism but plays another role in intracellular 

metabolism. 

 

At least one protein with relatively poor functional annotation was confirmed as an actual 

serine hydrolase in this analysis. The hypothetical protein (Clst_2273), identified in both 

cellobiose and xylose, serine hydrolase labelled samples has a predicted SGNH hydrolase-type 

esterase domain (Akoh, Lee, Liaw, Huang, & Shaw, 2004b) (InterPro family IPR013830) based 

on sequence annotation. This family of enzymes includes a multifunctional 

thioesterase/protease/lysophospholipase (Lo, Lin, Shaw, & Liaw, 2003) and a 

rhamnogalacturonanacetyl acetylesterase (Mølgaard, Kauppinen, & Larsen, 2000). The apparent 

diversity of enzymes in this family makes it difficult to speculate on the function of this enzyme, 

although its status as a serine hydrolase is confirmed and the function of this enzyme can be 

further characterized by testing its activity against different substrates. 

 

5.4.2 Predicted serine hydrolases in C. stercorarium. 
 

Enzymes that have been labelled with the serine hydrolase tag do not necessarily confirm 

the fact that these enzymes are serine hydrolases or give any identity to the function or substrate 
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of these enzymes. Given the sheer volume of data in mass spectrometry experiments ,it is 

difficult to identify potential serine hydrolases based on manual curation alone. It is also possible 

that the methods that annotate genomes may miss enzymes that are serine hydrolases and we can 

use the mass spectrometry results to improve the annotation of this genome. For these reasons we 

used gene ontology to identify potential serine hydrolases in C. stercorarium and then compared 

the predicted serine hydrolases with experimental results. This can help to identify serine 

hydrolases identified by probe labelling and possibly assist in assigning function to these 

enzymes. There are many tools available that predict protein function based on sequence 

homology with other proteins that have known functions (Friedberg, 2006). In general these 

tools are applied to newly sequenced genomes to predict protein function based on known 

functional information. This predicted information is compiled into protein databases such as 

Uniprot (Consortium, 2008) (www.uniprot.org) where each protein listed has information 

available on its predicted function. One such classification is gene ontology (GO) that describes 

proteins based on one of three general categories, associated biological processes, cellular 

components, or molecular functions (Botstein et al., 2000). Each GO classification consists of a 

seven-digit number and a general descriptor of molecular function that has varying levels of 

specificity. 

 

The Uniprot database provides the means to query genomes and select proteins that have 

been placed within specific a GO category. A simple R script was constructed that uses a list of 

GO terms to query the Uniprot servers, and construct a list of Uniprot identifiers based on the 

results of those queries. Two terms were used in the construction of a predicted C. stercorarium 

serine hydrolase database: GO 0017171 and GO 0016787, for proteins with predicted serine 
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hydrolase or hydrolase activity respectively, both which fall in the molecular function 

classification. Searching the C. stercorarium genome for proteins that have been classified as 

serine hydrolases (GO:0017171) gives a list of only 17 proteins (Table 5.2). If both serine 

hydrolase and hydrolase search terms (GO:0017171 and GO:0016787) are included, this list 

grows to 546 proteins after duplicate entries are removed. It should be noted that the annotation 

of the genome of this organism has been performed twice, giving slightly different results each 

time. For the purposes of this study, we used the genome under GenBank Accession: 

NC_020887 (Schellenberg et al., 2014). If proteins annotated only in the other annotation are 

removed this leaves 486 proteins with predicted hydrolase activity. Closer examination of the 

database revealed several enzymes that are likely not serine hydrolases, particularly those 

enzymes that have EC numbers of EC 6.-, EC 5.-, and EC 4.-, EC 2.- enzymes that are ligases, 

isomerases, lyases, or transferases respectively. Enzymes with EC 3.2.-, glycosyl hydrolases, 

were removed based on the fact that the active site mechanism for this class of enzyme is 

different from serine hydrolases and probably would not be labelled specifically with the serine 

hydrolase tag. After these proteins were removed, this left 339 proteins with predicted serine 

hydrolase activity in C. stercorarium. 
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Table 5.2 The 17 serine hydrolases in C. stercorarium annotated with the GO category 
0017171: serine hydrolases 

Uniprot 
ID 

Protein names Gene names  
(ORF ) 

Mass 

L7VS60 Lon protease (EC 3.4.21.53) (ATP-dependent 
protease La) 

Clst_2550 91,351 

L7VV32 ATP-dependent Clp protease proteolytic subunit 
(EC 3.4.21.92) (Endopeptidase Clp) 

Clst_2385 21,425 

L7VSH6 D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) (D-alanyl-D-alanine carboxypeptidase 

DacF) (EC 3.4.16.4) 

Clst_2268 44,978 

M4Y5H9 Peptidase Clst_2223 13,328 
L7VR52 D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) (D-alanyl-D-alanine carboxypeptidase 
DacB) (EC 3.4.16.4) 

Clst_2067 45,997 

M4Y617 D-alanyl-D-alanine carboxypeptidase (EC 
3.4.16.4) 

Clst_1546 49,821 

M4YNI2 LexA repressor (EC 3.4.21.88) Clst_1525 23,862 
L7VJM5 Peptidase S41 (Periplasmic protease) Clst_1276 136,86

7 
L7VJL4 D-alanyl-D-alanine carboxypeptidase (EC 

3.4.16.4) (D-alanyl-D-alanine carboxypeptidase 
DacB) (EC 3.4.16.4) 

Clst_1258 43,490 

L7VRM9 Signal peptidase LepB (EC 3.4.21.89) (Signal 
peptidase-1) (EC 3.4.21.89) 

Clst_1176 23,187 

L7VN74 CtpA-like serine protease (EC 3.4.21.-) 
(Peptidase) (EC 3.4.21.102) 

Clst_1158 54,928 

L7VP06 HtrA2 peptidase (EC 3.4.21.108) (Serine protease) Clst_1125 49,542 
L7VLW6 Membrane protein (Rhomboid family protein) Clst_0677 20,769 

L7VI29 Signal peptidase I (Signal peptidase-1) (EC 
3.4.21.89) 

Clst_0633 19,822 

L7VLA5 Membrane protein (Uncharacterized protein) Clst_0466 26,751 
L7VPJ3 Extracellular peptidase S8 family (Serine 

protease) 
Clst_0448 165,64

3 
L7VKW1 Carboxy-terminal-processing protease CtpA (EC 

3.4.21.102) (Peptidase) (EC 3.4.21.102) 
Clst_0344 45,550 

 

 The 17 proteins that have the specific serine hydrolase GO term are likely to be an under 

representation of true serine hydrolase activity in C. stercorarium. A cursory examination of this 

list shows that these 17 proteins are either proteases or peptidases, which are a significant 
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proportion of hydrolases, but does not include other known serine hydrolases with esterase, or 

lipase activity. The serine hydrolase family is known to contain a significant number of enzymes 

that hydrolyse not just protein bonds, but a number of different biomolecules using the same 

catalytic triad as a reaction mechanism. By using the more broad GO term 0016787 for 

hydrolases we can hope to include more potential enzymes that have serine hydrolase activity. A 

significant proportion of the 339 proteins have EC numbers related to hydrolases acting on 

carbon-nitrogen bonds (EC 3.5.-), peptide bonds (EC 3.4.-), ether bonds (EC3.3.-), and esterases 

(EC3.1.-), and it is possible some of these enzymes are indeed serine hydrolases. Thus, we can 

likely suspect that this original list of 17 proteins is not all inclusive with respect to serine 

hydrolases and by using the PF-biotin probe we should be able to identify other proteins that 

have serine hydrolase activity in a non-biased manner. 

 

5.4.3 Predicted serine hydrolases compared with experimental data 
 
 The serine hydrolase probe reacts specifically with enzymes that have specific catalytic 

residues for the purposes of hydrolysis. This reaction can be useful to identify new serine 

hydrolases that had no previous sequence homology to serine hydrolases. This can be 

particularly difficult for serine hydrolases in that the three residues that make up the catalytic 

triad are almost always present in three different areas of the protein, and not within a conserved 

domain (Dodson & Wlodawer, 1998). We compared the experimental mass spectrometry data 

obtained by enriching samples labelled with the PF-biotin tag, with the database of predicted 

serine hydrolases based on the GO terms for serine hydrolases and hydrolases (GO 0017171 and 

GO 0016787 respectively) (Table 5.3). Of the 71 proteins identified after blank subtraction 54 

were not found in the predicted serine hydrolases database, 17 were found in both experimental 
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and predicted data. There were 321 proteins in the predicted serine hydrolase database that were 

not identified in serine hydrolase experimental data. The majority of the 54 proteins detected in 

experimental data not in the predicted serine hydrolase database appear not to have any serine 

hydrolase activity. The fact that so many proteins are clearly not serine hydrolases shows some 

difficulty in using the serine hydrolase probe to identify new enzymes. Some of these enzymes 

may have nucleophilic catalytic residues that react with the electrophilic group of the serine 

hydrolase probe, but this is impossible to tell without knowing the amino acid residue that has 

been labelled with this probe. 

 

 There were five uncharacterized or hypothetical proteins (Clst_0256, Clst_1937, 

Clst_0641, Clst_1982, Clst_0824) detected in at least one of the labelled cellobiose or xylose 

samples. However, there is nothing in the current annotation to suggest that any of these proteins 

have hydrolase enzyme activity and would need further experimental confirmation before their 

activity can be assigned correctly. Given the possibility that the serine hydrolase tag can react 

with other catalytic residues, these proteins may be serine hydrolases, or they may be enzymes 

with other catalytic activities. Further experiments to isolate biotin labelled peptides by digesting 

serine hydrolase probe labelled samples in C. stercorarium would be useful in confirming the 

specific labelling site of these proteins. This could possibly identify the amino acid labelled with 

biotin and identify potential active site residues for these enzymes. 

 

 There were three proteins not in the predicted serine hydrolase database that were 

detected in our experimental data. Esterase/lipase (Clst_2436), lysophospholipase (Clst_2001), 

and lysophospholipase (Clst_0801) are enzymes that have predicted alpha-beta hydrolase folds, a 
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domain found in serine hydrolases, but were not placed into any GO category. All three of these 

proteins have predicted alpha-beta hydrolase fold domains (Holmquist, 2000) (InterPro domain 

IPR29058) so are likely to react with the serine hydrolase probe in an activity dependent manner. 

The esterase/lipase (Clst_2436) was detected in both cellobiose and xylose samples, providing 

strong evidence that this protein should be placed in GO:0017171 as a serine hydrolase. The 

other two proteins were only detected in cellobiose samples but given the detection of conserved 

domains in these proteins, and their detection in experimental data they also likely belong in the 

same GO category. 

Table 5.3 Proteins detected in serine hydrolase labelling experiments, not found in 
predicted serine hydrolase database. 

The highlighted proteins are either uncharacterized proteins or proteins with functional 
annotation not placed into a GO category 

locus description CB-
BLANK 

CB-
LABEL 

XY-
BLANK 

XY-
LABEL 

Clst_0081 rod shape-determining protein 
MreB 

NA NA NA 12.16 

Clst_0256 hypothetical protein NA NA NA 9.83 
Clst_0780 DJ-1 family protein NA NA NA 11.43 
Clst_0879 cysteine desulfurase NifS NA NA NA 12.69 
Clst_0981 Copper amine oxidase N-terminal 

domain./PrcB 
NA NA NA 12.26 

Clst_1146 aspartate semialdehyde 
dehydrogenase (EC 

NA NA NA 14.65 

Clst_1151 thioredoxin NA NA NA 11.63 
Clst_1442 zinc-ribbon domain. NA NA NA 11.19 
Clst_1718 Adenylosuccinate synthetase (EC 

6.3.4.4) 
NA NA NA 10.76 

Clst_1838 aspartyl/glutamyl-tRNA(Asn/Gln) 
amidotransferase 

NA NA NA 10.73 

Clst_1937 Uncharacterized protein conserved 
in bacteria 

NA NA NA 11.66 

Clst_2292 Alpha-glucuronidase NA NA NA 11.1 
Clst_2659 DNA gyrase subunit A (EC 

5.99.1.3) 
NA NA NA 12.36 

Clst_2436 Esterase/lipase 13.62 18.4 NA 16.34 
Clst_2001 Lysophospholipase NA 16.68 NA NA 
Clst_2540 carbohydrate ABC transporter 13.39 16.14 NA NA 
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membrane protein 2, 
Clst_1658 Beta-lactamase class C and other 

penicillin 
NA 15.75 NA 9.6 

Clst_1754 methyl-accepting chemotaxis 
sensory transducer 

NA 14.88 NA 14.85 

Clst_0880 FeS cluster assembly scaffold 
protein NifU, 

NA 14.45 NA NA 

Clst_0641 Uncharacterized protein conserved 
in bacteria 

NA 14.12 NA NA 

Clst_2593 SSU ribosomal protein S18P 11.16 14.08 NA NA 
Clst_2518 SSU ribosomal protein S8P 11.66 13.89 NA NA 
Clst_1055 bacterial translation initiation factor 

3 
NA 13.79 NA NA 

Clst_0030 heat shock protein Hsp20 NA 13.29 NA NA 
Clst_2087 Cell division protein FtsI/penicillin-

binding 
NA 13.19 NA NA 

Clst_0783 Sugar kinases, ribokinase family NA 12.79 NA NA 
Clst_1307 Single-stranded DNA-binding 

protein 
NA 12.76 NA NA 

Clst_1262 ABC-type 
nitrate/sulfonate/bicarbonate 

transport 

NA 12.69 NA 14.05 

Clst_0449 Beta-lactamase class C and other 
penicillin 

NA 12.59 NA NA 

Clst_0801 Lysophospholipase NA 12.16 NA NA 
Clst_0588 Beta-galactosidase/beta-

glucuronidase 
NA 12.09 NA NA 

Clst_1053 glucose-6-phosphate isomerase (EC 
5.3.1.9) 

NA 11.93 NA 10.13 

Clst_1648 Methyl-accepting chemotaxis 
protein 

NA 11.79 NA NA 

Clst_0310 UDP-glucose pyrophosphorylase 
(EC 2.7.7.9) 

NA 11.53 NA NA 

Clst_0251 Methyl-accepting chemotaxis 
protein 

NA 11.43 NA NA 

Clst_0434 ABC-type sugar transport system, 
periplasmic 

NA 10.96 NA NA 

Clst_2348 Archaeal/vacuolar-type H+-ATPase 
subunit A 

NA 10.93 NA NA 

Clst_2097 Predicted periplasmic protein 
(DUF2233). 

NA 10.86 NA NA 

Clst_1250 3-deoxy-D-arabinoheptulosonate-7-
phosphate 

NA 10.76 NA NA 

Clst_1185 spermidine/putrescine ABC 
transporter 

NA 10.73 NA NA 

Clst_1190 glucose-6-phosphate 1- NA 10.43 NA NA 
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dehydrogenase (EC 
Clst_1934 glycyl-tRNA synthetase (EC 

6.1.1.14) 
NA 10.4 NA NA 

Clst_2114 SSU ribosomal protein S15P NA 10.36 NA NA 
Clst_1982 Protein of unknown function 

(DUF3048). 
NA 10.33 NA NA 

Clst_0936 carbohydrate ABC transporter 
membrane protein 2, 

NA 10.3 NA NA 

Clst_1328 RNA polymerase, sigma 38 
subunit, RpoS 

NA 10.13 NA NA 

Clst_2291 prolyl-tRNA synthetase (EC 
6.1.1.15) 

NA 10.07 NA NA 

Clst_2591 LSU ribosomal protein L9P NA 10 NA NA 
Clst_2261 carbamoyl-phosphate synthase, 

large subunit 
NA 9.97 NA 9.73 

Clst_0824 Uncharacterized protein conserved 
in bacteria 

NA 9.87 NA NA 

Clst_0050 ABC-type oligopeptide transport 
system, 

NA 9.83 NA NA 

Clst_1878 diaminopimelate dehydrogenase 
(EC 1.4.1.16) 

NA 9.67 NA NA 

Clst_0629 ABC-type sugar transport system, 
permease 

NA 9.57 NA NA 

Clst_2614 Malate/L-lactate dehydrogenases NA 9.14 NA NA 
 

5.4.4 Sensitivity of fluorescence and Western blotting for the detection of serine 
hydrolases 

 
The mass spectrometry techniques discussed are useful to identify serine hydrolases that 

are being expressed in a particular organism. The serine hydrolase probe also has the capability 

to measure qualitative differences in enzyme activity through the use of SDS-PAGE based 

methods. Most ABPP probes have either a fluorescence or biotin label to act as a reporter after 

enzyme labelling reactions. This provides the capability to measure enzyme profiles by 

fluorescence or by Western blotting with streptavidin-horse radish peroxidase (streptavidin-

HRP) for the detection of biotin labelled proteins. To test the sensitivity of each method, serial 

dilutions of bovine trypsin were labelled with either FP-TAMRA or FP-biotin. Both sets of serial 

dilutions were loaded onto the same gel, which was analyzed by in-gel fluorescence, and by 
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Western blot (Figure 5.4). The in-gel fluorescence method with FP-TAMRA was able to detect 

labelled trypsin at a much lower amount than Western blotting. The lowest concentration at 

which trypsin could be detected by in-gel fluorescence was 0.030 ug while the lowest 

concentration by chemiluminescence was 0.060 µg. It is clear that the fluorescence method for 

detecting serine hydrolases can detect enzymes present in amounts well beyond 30 ng. This 

makes it the more effective method for detecting serine hydrolases without the need to perform 

more complicated Western blotting experiments. 

 

Figure 5.4 Sensitivity of the FP-TAMRA and FP-desthiobiotin probe 
Serial dilutions of bovine trypsin were labelled with either the FP-TAMRA or the FP-biotin 

activity based probe, then analyzed with SDS-PAGE. Either the fluorescence intensity or 
chemiluminescence was measured for FP-TAMRA and FP-biotin probe respectively. The FP-

TAMRA probe was able to detect labelling of trypsin at lower concentrations than the FP-biotin 
probe. 

 

 

5.4.5 Effect of temperature on enzyme activity 

 
Enzyme activity is an aspect of protein chemistry that is highly dependent on a large 

number of variables. Enzyme activity can change based on temperature, pH, oxidation state of 

cofactors, and ligand binding (Turner & Turner, 1975). Bacterial organisms grow in diverse 

environments, and are found nearly everywhere no matter the conditions (DeLong & Pace, 

2001). Lignocellulolytic bacteria, those used for the production of biofuel, range in optimal 
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growth temperature from 37 °C (usually found in the digestive systems of higher organisms), to 

80 °C (Bhalla, Bansal, Kumar, Bischoff, & Sani, 2013). ABPP can measure enzyme activity at a 

global level and we were interested in testing how enzyme activity changes with respect to the 

temperature at which enzyme labelling takes place.  

 

We first isolated protein from the thermophilic organism Clostridium thermocellum (a 

thermophile with optimum growth temperature 60 °C) (Bayer, Kenig, & Lamed, 1983) and 

reacted whole cell protein lysates with FP-TAMRA at four different termperatures (4, 25, 37, 

and 60 °C), using trypsin as a positive control (Figure 5.5). There was a clear increase in 

fluorescence intensity at 60 °C compared to the three other temperatures in C. thermocellum. The 

60 °C temperature corresponds to the optimum growth temperature of C. thermocellum so it 

might be predicted that this would provide optimal temperature for peak enzyme activity. 

Trypsin labelling confirms that this reaction is activity based, where the fluorescence intensity 

peaked at 37°C and nearly disappeared at 60°C. This matches the optimal temperature for 

enzyme activity in trypsin, and denaturation of the enzyme at higher temperatures prevented 

labelling of the FP-TAMRA to the active site. Furthermore this demonstrates that increased 

labelling of the enzymes with the probe was not a result of increased reaction kinetics based on 

an increase in temperature. 



 

 222 

 

Figure 5.5 Labelling of proteins at different temperatures, C. thermocellum, and bovine 
trypsin 

Labelling of C. thermocellum proteins (Lane 1-4) and bovine trypsin (Lane 5-8) with the FP-
TAMRA probe at 4, 25, 37 and 60 °C. An increase in fluorescence intensity was observed at 

60°C for C. thermocellum proteins (near its optimum growth temperature) while the measured 
fluorescence intensity for trypsin appeared to peak at 37°C and decreased significantly at 60°C 

suggesting the enzyme has become inactive at this temperature. 
 

 

Because of the low resolution in the first experiment, this experiment was repeated to 

hopefully obtain better resolution between bands (Figure 5.6). The fluorescence intensity again 

increased at 60°C providing more evidence that optimal enzyme activity is found at the 

organism’s optimum growth temperature. The increased resolution between fluorescent protein 

bands also revealed how enzyme activity can change over different temperatures. This was 
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pronounced in the 16 kDa range where almost no enzyme activity is noticed in that region until 

the temperature reaches 37 °C. Several regions of the gel are highlighted showing the appearance 

of new bands as the temperature changes. This experiment shows that the activity of enzymes 

can change dramatically depending on the reaction conditions used during serine hydrolase 

labelling, and may change the profile of enzymes that are identified in later experiments. 

Presumably, these protein samples could be labelled with the PF-biotin probe for identification 

by mass spectrometry and provide new results if the reaction temperature is changed. 



 

 224 

 

Figure 5.6 Labelling of C. thermocellum proteins at different temperatures 
C. thermocellum serine hydrolase labelling at different temperatures (4, 25, 37 and 60 °C ) 

showing increased serine hydrolase activity as the temperature increases, showing the highest 
effect at 60°C. The increased fluorescence signal intensity implies increased enzyme activity at 
these temperatures. The highlighted areas in the gel show changes in the enzyme profile as the 

reaction temperature is changed. 
 

 

To further explore this concept we took protein samples from two different organisms 

and increased the range of temperatures to 4, 25, 37, 60, 80, and 95 °C during the reaction with 

the FP-TAMRA probe. We used the mesophilic bacteria Clostridium termitidis (optimum growth 
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temperature 37 °C) (Hethener, Brauman, & Garcia, 1992) and the hyperthermophilic bacteria 

Thermotoga petrophila (optimum growth 80 °C) (Takahata, Nishijima, Hoaki, & Maruyama, 

2001) (GenBank Accession CP000702). After measuring in-gel fluorescence, the results show 

wide variance in enzyme activity depending on the reaction temperature used (Figure 5.7). The 

highest level of labelling in C. termitidis was observed in the range of 37-60 °C with enzyme 

activity apparently decreasing in either direction from these temperatures. Differential labelling 

patterns at the various incubation temperatures suggest that the various enzymes might actually 

have different optimal temperatures and any increase in activity as temperature increases is not 

the result of increased reaction kinetics. A similar effect noticed in C. thermocellum was also 

noticed in C. termitidis, where new bands can appear depending on the temperature, indicating 

that a different profile of enzymes is labelled at different temperatures. 
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Figure 5.7 Labelling of a mesophilic and hyperthermophilic organism at different 
temperatures 

Serine hydrolase labelling of C. termitidis (a mesophile, optimum growth at 37°C) and T. 
petrophila (a hyperthermophile, optimum growth at 80°C) at varied reaction temperatures. For 

C. termitidis the greatest fluorescence intensity was observed in between 37 and 80°C. 
Highlighted areas show new bands appearing depending on the reaction temperature. 

Fluorescence intensity appears to decrease for all enzymes at 95°C. For T. petrophila we 
observed the highlighted temperature dependent differences in enzyme activity A) enzymes 

appear to decrease in activity as the enzyme temperature increases B) enzymes appear to have 
limited change in activity in response to temperature C) enzyme increases in activity as the 

reaction temperature increases. 
 

 

Varying the reaction temperature in protein samples isolated from the hyperthermophilic 
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organism T. petrophila also showed wide variation in enzyme activity. Interestingly, several 

enzymes showed nearly no change in enzyme activity across the entire temperature range, 

perhaps indicating the presence of enzymes immune to structural changes that might affect the 

enzyme active site from changes in temperature. The ability to withstand these changes may be 

important in high temperature environments that hyperthermophilic organisms such as T. 

petrophila thrive in. Perhaps even more interesting is that peak enzyme activity for enzymes 

occurred at a number of different temperatures. Enzymes in the high molecular weight region of 

the gel appeared to have optimum enzyme activity at lower temperatures, while enzymes in the 

low molecular weight region had increased enzyme activity as the temperature increased. This 

demonstrates that peak enzyme activity may not occur at the optimal growth temperature for a 

specific organism, but may vary depending on the enzyme. Given the diversity of microbial 

systems, it is difficult to predict if this property transfers to other organisms. It appears that the 

consensus is optimal enzyme activity will be near the optimal growth temperature in 

psychrophilic  (Gügi et al., 1991; Huston, Krieger‐Brockett, & Deming, 2000) and thermophilic 

organisms  (Haki & Rakshit, 2003; Niehaus, Bertoldo, Kähler, & Antranikian, 1999). Although 

many of these studies are interested in secreted enzymes that should in theory have optimal 

activity at the corresponding environmental temperature. The results presented here show that 

the optimal temperature for intracellular enzyme activity, once these enzymes are isolated, does 

not necessarily match the optimal growth temperature for that particular organism.  

5.4.6 Effect of probe structure on serine hydrolase labelling 
 

One aspect that can affect specificity of probe binding to serine hydrolase active sites is 

the chemical structure of the serine hydrolase probe itself. The linker or reactive group used can 

modify the reactivity of the probe and have an effect on which enzymes are labelled (Fonovic & 
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Bogyo, 2008). Essentially, this means that two probes with different chemical structures may 

label a different profile of enzymes. We had access to two different probes, the commercially 

available FP-TAMRA, the phosphofluoridate-biotin and the (PF-biotin) probe from a Toronto 

Research Chemicals. The PF-biotin probe was the primary method for isolation and 

identification of serine hydrolases by mass spectrometry, so it was important to compare the 

enzymes that were labelled by this probe and the FP-TAMRA probe. To identify differences in 

probe reactivity, protein samples from C. stercorarium were either labelled with the FP-TAMRA 

probe, or labelled with FP-TAMRA after pre-treating with the PF-biotin probe. Each sample was 

separated by SDS-PAGE and analyzed with in-gel fluorescence. The premise being that any 

enzyme active sites labelled with the PF-biotin probe could not also be labelled with the FP-

TAMRA probe, as the reactive serine would be blocked after treatment with PF-biotin. In this 

case, the overlap in probe reactivity between FP-TAMRA, and PF-biotin probe could be 

determined by the disappearance of fluorescent bands in PF-biotin probe labelled samples 

(Figure 5.8). 
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Figure 5.8 Differences in probe labelling dependent on probe structure 

Variations of the FP activity based probe were tested for possible differences in enzyme 
labelling. Proteins isolated from C. stercorarium were first labeled with FP-TAMRA to show the 

range of serine hydrolase activity. Identical protein samples were then reacted with a 
phosphofluoridate-biotin (PF-biotin) probe. The absence of specific bands after PF-biotin 

labelling shows cross reactivity between FP-TAMRA and the PF-biotin probe. 
 

 

 

The in-gel fluorescence results show that there is some overlap in labelling of the FP-

TAMRA and PF-biotin. The opposite is also true where some bands brightly lit in the FP-

TAMRA labelled samples do not disappear after labelling with PF-biotin probe indicating 

enzymes that are only labelled by FP-TAMRA. The differences in labelling between the two 
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probes may indicate different reactivity towards the serine hydrolase active site but it may also 

indicate non-specific labelling of FP-TAMRA to enzymes without serine hydrolase activity, 

meaning that these proteins would be labelled regardless if another probe were added. The bands 

at 35 and 45 kDa almost completely disappeared after the reaction with PF-biotin. The band at 

55 kDa saw decreased signal intensity in PF-biotin, but the band did not completely disappear. 

Close examination of the gel reveals an overall decrease in signal intensity for all bands after 

labelling with the PF-biotin probe. This could be the result of incomplete blockage of the enzyme 

active site by the PF-biotin probe. 

5.4.7 Substrate dependent differences in serine hydrolase activity 
 

Serine hydrolases represent a diverse family of enzymes with a wide variety of activities 

(Long & Cravatt, 2011). How enzyme activity changes under different growth conditions can 

indicate important enzymes related to a specific biological process of interest.  These differences 

in enzyme activity may not be made apparent by quantitative proteomic methods that focus on 

absolute protein expression. Four biological replicates of C. stercorarium, two of each grown on 

either xylose or cellobiose as the primary carbohydrate source, were labelled with the FP-

TAMRA probe and analyzed by in-gel fluorescence to identify qualitative differences in serine 

hydrolase activity between the two growth conditions (Figure 5.9). There were three dominant 

serine hydrolase bands in between 35 and 55 kDa. The band at 55 kDa had higher fluorescence 

intensity in xylose samples compared to C. stercorarium grown on cellobiose. The two other 

bands at ~35 and 45 kDa had no apparent differences in fluorescence signal intensity between 

the two growth conditions. Acetyl esterase (Clst_1394, esterase (Clst_2436), hypothetical protein 

(Clst_2273), and beta lactamase (Clst_1658) have molecular masses in the range of ~35-45 kDa 

nearly matching the molecular weights of the three highly fluorescent bands detected by in-gel 
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fluorescence assays. These enzymes were some of the most abundant identified in mass 

spectrometry experiments and this also matches the most fluorescent bands detected by in-gel 

fluorescence. Although in-gel digestion methods will be necessary to confirm the identity of 

these bands, we have evidence that these bands are likely to have the same identity as these 

enzymes detected by mass spectrometry.  
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Figure 5.9 Substrate dependent changes in serine hydrolase activity 

Protein isolated from C. stercorarium grown either using xylose (XY) or cellobiose (CB) as the 
primary carbon source was labelled with the FP-TAMRA activity based probe then analyzed by 

SDS-PAGE and in-gel fluorescence. Possible differences in serine hydrolase activity are 
highlighted in the figure. Differences in labelling showed the possibility of different serine 

hydrolase activity dependent on growth condition likely in low-abundance enzymes that did not 
appear brightly in the gel. 

 

 

The rest of the bands detected had faint fluorescence signal showing approximately 20-30 

other enzymes with serine hydrolase activity. The molecular mass of enzymes in the predicted 
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hydrolase database constructed earlier ranges from 13,215 to 165,643 Da with an average 

molecular mass of 48,049 Da, so we could expect serine hydrolase labelling across the entire 

measureable molecular weight range. There were several bands that were only present in either 

xylose or cellobiose samples but not in both, indicating substrate dependent differences in serine 

hydrolase expression. This was also found in mass spectrometry data where some proteins were 

only identified under one condition but not the other. The differences in Coomassie protein 

labelling show some differences in protein expression, but overall the composition of proteins 

under each growth condition remain relatively the same – similar to the iTRAQ results showing 

that the majority of proteins remain unchanged.  

5.5 Conclusions: 

 Enzyme activity is affected by a number of different factors, including pH, covalent 

modifications, interactions with other proteins and temperature. The labelling of different protein 

preparations with the FP-TAMRA probe at different temperatures shows that the enzyme profile 

can change dramatically depending on the reaction temperature used. For C. thermocellum, 

optimum enzyme activity appeared to correspond with its optimal growth temperature, but 

further analysis of the hyperthermophilic organism T. petrophila under a greater range of 

temperatures revealed this might not always be the case. In this organism, enzyme bands 

appeared to reach maximum activity at multiple reaction temperatures and did not always 

correspond with the optimal growth temperature of 80 °C for T. petrophila. Furthermore, 

labelling of proteins in C. termitidis at different temperatures, showed the possibility for 

labelling of completely different enzyme profiles dependent on temperatures, which would 

clearly have an effect on attempts to isolate these proteins for downstream mass spectrometry 

analysis and identification. 
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 In-gel fluorescence experiments for C. stercorarium grown on either cellobiose or xylose 

identified ~30-40 bands that represent the possible range of serine hydrolases in this organism. 

The mass spectrometry experiments showed that there might be some binding of the FP-

TAMRA probe to other enzyme active sites, so it is unclear at this time if all of these proteins are 

actually serine hydrolases. There were approximately 300 predicted enzymes with predicted 

hydrolase activity in C. stercorarium all that may react with the probe if the reaction mechanism 

uses a nucleophile for bond hydrolysis.  Nevertheless, the probe appears to react predominantly 

with serine hydrolases containing the conserved alpha-beta hydrolase fold, and the catalytic triad 

as shown by mass spectrometry experiments. The most abundant enzymes were known serine 

hydrolases, and were detected consistently in each growth condition.  

 

Several of these bands were detected in either cellobiose or xylose samples by in-gel 

fluorescence. These proteins represent possible differences in serine hydrolase activity as the 

primary carbon source for metabolism is changed in this organism. These targets represent good 

candidates for in-gel digestion, but some have very low fluorescence signal intensity and it is 

unclear if these proteins are present in enough amounts to perform this procedure. There is likely 

to be other proteins present at this location further hindering the possibility of identifying these 

proteins by mass spectrometry. 

 

Overall these experiments show that enzyme activity can change drastically depending on 

the reaction conditions used, so careful selection of parameters is required when performing 

ABPP analysis in any organism. The selection of reaction temperature is of particular concern 
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because it is not clear that the optimal activity of an enzyme matches the natural temperature of 

the organism being studied. This may lead to the possibility of identifying enzymes with high 

activity in the reaction conditions used but may have very little activity in its natural 

environment. This effect can possibly be mediated through the use of cell membrane permeable 

click probes, which can label serine hydrolases as cell metabolism is taking place. 
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5.7 Supplementary Information 
 
Spreadsheet showing all 338 predicted hydrolases in C. stercorarium from the uniprot database. 
 
Available as Google Sheet: 
https://docs.google.com/spreadsheets/d/1wG8xiZ8xAvGobph3CC97yNCiWqIcyIl0Qhn1vCMW
xxs/edit?usp=sharing 
 
Spreadsheet showing raw MS data for serine hydrolase identification in C. stercorarium, along 
with the blank subtracted data, and the 71 serine hydrolases identified in both growth conditions 
 
Available as Google Sheet: 
https://docs.google.com/spreadsheets/d/1Z3EW9HEib2pgNwjhAA7qHZC2BgordOHyuTVoH0o
xZXA/edit?usp=sharing 
 

 

6 Significance and Future Directions 
6.1 SWATH quantitation for large-scale quantitative proteomics 
 
 Recently, several articles have been published that show the potential of using SWATH 

as a method for large-scale quantitative proteomic experiments (Haverland, Fox, & Ciborowski, 

2014; Liu et al., 2015a; Zhang et al., 2014). These groups were able to quantify large numbers of 

proteins and, most importantly, able to perform differential quantitative proteomics and show 

biologically relevant protein changes with respect to a specific process. The experiments we 

performed showed similar results, quantifying a large proportion of proteins in C. stercorarium. 

We also showed that SWATH has the capability to measure important changes in protein 

expression in response to changing substrate conditions. Furthermore, the differentially 

expressed proteins detected by SWATH showed similar ratios to those as determined by iTRAQ, 
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an already established quantitative method. The reproducibility of SWATH quantitation 

decreased for low abundance proteins. Measuring the signal intensity of low abundance proteins 

can possibly be improved by applying a first dimension separation before applying SWATH. The 

number of fractions required to increase the reliability of low abundance measurements while 

also limiting overall throughput time is unclear. This may also not be desirable if the trend in 

SWATH experiments continues to see the use of a large number of samples. Some of the issues 

may also be solved by the application of dynamic SWATH windows, where the size of the 

peptide isolation window is modified depending on the amount of peptides eluting from the 

column. The width of the window can be decreased if more peptides are eluting from the column 

and vice versa, to limit the amount of background noise. This should limit the impact that high 

abundance proteins have on the signal intensity of proteins present at a low concentration and 

increase overall signal to noise. This feature is something that is in the process of being 

developed and should see more widespread use in the near future. One of the main issues with 

SWATH is the amount of noise that can be generated by fragmenting many peptides 

simultaneously, but this appears to be something that can easily be improved upon.  

 

Isotope based methods for protein quantitation were developed because, at the time, label 

free quantitation had low accuracy and problems with reproducibility when applied to complex 

proteomic samples. This study shows that SWATH label free quantitation nearly matches the 

quantitative potential of isotope based methods, and with improvements to SWATH 

methodology we may no longer require the need for isotopic labelling methods. In one recent 

application of SWATH Liu et al. (Liu et al., 2015b) analyzed 232 plasma samples collected from 

pairs of monozygotic and dizygotic twins. With SWATH they were able to quantify 342 unique 
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plasma proteins and measure the variability of the human plasma proteome over a large number 

of samples. This type of study would be too costly and time consuming with isotope-based 

methods such as iTRAQ, requiring the consistent labelling of more than 200 samples. This 

experiment would be just as difficult with isotopic enrichment techniques such as SILAC. 

SWATH quantitation also has the added advantage of keeping a permanent record of what are 

clearly valuable samples that can be continually reanalyzed in the future. 

6.2 C. stercorarium metabolism 
 

This approach was able to identify several changes in the proteome relevant to 

carbohydrate metabolism in this organism. The changes in the mixed acid fermentation 

correspond with the notion that the phosphoenolpyruvate node is a common point of regulation 

in bacterial metabolism, related to anabolic and catabolic processes (Sauer & Eikmanns, 2005). 

Significant changes were also found in proteins found in COGs, “G” carbohydrate transport and 

metabolism, “P” inorganic ion transport and metabolism, and “C” energy production. These 

results show that ABC transporters are the main mechanism of transport for cellobiose and 

xylose and that pyruvate dehydrogenase appears to be the main complex used for pyruvate 

oxidation to acetyl-CoA when C. stercorarium is cultured with cellobiose. Genes found in 

similar areas of the genome also had consistent protein expression, likely indicating the presence 

genes under control of the same regulon. 

 

The use of proteomics to study operon expression is limited to only a few examples. The 

examples that exist only focus on limited numbers of known operons (Goodchild et al., 2004; 

Mäder et al., 2002; Wang, Prince, & Marcotte, 2005). We were able to detect 64 regions on the 

genome that had similar protein expression, some that are likely operons based on functional 
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annotation while for some, it is unclear if they are operons or not. The most interesting discovery 

was that an operon containing elements related to bifunctional AdhE, the components 

upregulated in cellobiose had a transcriptional regulator that was upregulated in xylose samples. 

While this regulator belongs to a family of regulators that are commonly positive regulators of 

transcription it may be possible that it is negatively regulating the expression of this complex 

based on this information. It is also possible that this gene is a transcriptional regulator of 

another process found elsewhere in the genome. Conducting genetic knock out experiments to 

eliminate this gene from the genome can test the effect that this regulator has on transcription. 

Genetic knock out experiments could also be conducted to eliminate components of the malate 

shunt and determine if this inhibits growth of C. stercorarium on xylose. Unfortunately, to date 

the tools for genetic manipulation in C. stercorarium are unavailable. Although experiments to 

manipulate the genome have been conducted in C. thermocellum (Tripathi et al., 2010), it is not 

known if a similar system could be used in C. stercorarium. A more viable option may be to use 

metabolomic experiments to measure the concentrations of ATP/GTP, PPi and 

NAD(P)H/NAD(P)+ to further elucidate the mechanism of substrate degradation in C. 

stercorarium. 

 

6.3 Application to biofuels research 
 

One of the main goals of this project was to identify limitations in current proteomic 

methodology and qualify new approaches to improve how we analyze and gain information from 

the proteome. The long-term goal of any proteomic study is to apply this knowledge to solve real 

life problems. The bacteria Clostridium stercorarium was originally selected as a model 

organism due to its potential as a lignocellulolytic, biofuel-producing organism, essentially an 
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organism that could be used to convert plant material into ethanol and hydrogen (Maki, Leung, 

& Qin, 2009). Bioinformatic techniques have seen widespread use in the study of these 

organisms because of their potential to characterize their biochemistry and identify potential 

targets for bioengineering and improve ethanol or other biofuel yields (Mukhopadhyay, Redding, 

Rutherford, & Keasling, 2008). 

  

A review of the recent literature reveals that the approaches described here provide 

potential benefits over the other methods used within biofuels research. We selected 21 studies 

that used differential proteomic quantitation in application to biofuel producing organisms 

(Supplementary Information 6.7). The most proteins quantified in a whole cell digest was in the 

red yeast Rhodosporidium toruloides MTCC 457, where they identified approximately 50% of 

the predicted proteome (3,108 proteins out of 5,993 predicted genes). Although, this result 

included proteins with only one peptide identified.  About 17% of these proteins were calculated 

as differentially regulated, using a 2-fold change in signal intensity limit. In this study we 

identified 1539 proteins in C. stercorarium with high confidence and more than two unique 

peptides identified for each protein by 2D-iTRAQ. These 1539 proteins represented about 60% 

of the possible proteome identified from 20 peptide fractions. The increase in the number of 

protein identifications over the selected studies is likely due to the combination of recent 

improvements in mass spectrometer technology, and also the method used in protein digestion. 

With recent mass spectrometers it is possible to perform up to 40 MS/MS per cycle, a substantial 

jump over previous generation mass spectrometers that could produce on the order of 3 MS/MS 

per cycle. The FASP procedure is also known to increase protein identifications over commonly 

used protein digestion methods as previously discussed (Wisniewski, Zougman, Nagaraj, & 
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Mann, 2009). It is acknowledged that not every lab can afford advanced mass spectrometers, but 

the FASP procedure can easily be adapted into most laboratories and significantly increase 

proteome coverage with minimal resources. 

 

The results varied widely between studies but it is clear that application of the method 

presented here could substantially improve the information available for biofuels research. 

Surprisingly, a significant number of studies used 2D-electrophoresis (2DE) to identify 

differences in protein expression. The limitations of 2DE have been outlined many times before, 

with a clear consensus that coupled LC-ESI is in general the better method for separation of 

complex peptide mixtures (Gygi & Aebersold, 2000) and protein identification. In general, 

application of 2DE provided poor coverage of the potential number of proteins that could be 

quantified. The statistical methods used are also potentially too conservative for this application. 

Microbe metabolism is complicated and can potentially involve several different pathways even 

when using similar substrates. By avoiding arbitrary cut-offs and defining them with 

experimental data we can limit the number of false negatives and important metabolic pathways 

become more apparent. False positives are significantly more important in applications when 

expensive, thorough downstream validation is required such as in commercial clinical 

applications to treat disease. In the case of biofuels research, where proteomics drives 

bioengineering decisions in microbes, false positives may lead to wasted time and money but the 

downstream effects seem less drastic. By increasing the focus on limiting false negatives, a more 

complete picture of microbe metabolism can be drawn, and may in fact drive better decision-

making processes in the future. Using the bottom up approach we were able to identify 

substantially more proteins, and are likely to see small but significant changes that would be 
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almost impossible to resolve by 2DE.  

 

It is fair to point out that some of these studies only focused on a small part of the 

proteome (such as the cellulosome), which artificially deflates the percentage of proteins 

identified with respect to the entire proteome. The cellulosome is a surface protein complex in C. 

thermocellum that assists in the degradation of lignocellulose. It consists of a scaffolding protein 

with several dockerin domains that bind a variety of different cellulases. The cellulosome is an 

important aspect of cell biology in C. thermocellum that could be the main engine for 

lignocellulose breakdown so, it would be interesting to see if FASP can be applied to identify 

and quantify proteins related to the cellulosome and intracellular metabolism simultaneously, 

without the need to separate the cellulosome from the rest of the cell. It is known to enrich 

membrane proteins, and thus might further enrich cellulosomal proteins without the need to 

purify and enrich them separately from the rest of the proteome. 

 

6.4 Activity based protein profiling 
 
 Activity based protein profiling is a technique that has been underutilized with respect to 

studying the proteome. Differential quantitative proteomic experiments that determine 

differences in protein expression are still the predominant method used. Despite this there have 

been several studies published showing the importance of measuring enzyme activity within the 

context of the proteome. The fluorophosphonate probe has been used to discover enzymes 

related to cancer and then develop inhibitors for those discovered enzymes (Nomura et al., 

2010). The probe used to measure ATPase activity has also been used to show that the binding of 

inhibitors can change when the binding constant is measured in the presence of the entire 



 

 246 

proteome (Patricelli et al., 2011). Possibly giving reasons for why many inhibitors do not 

translate well into clinical application. We have shown several examples of how the serine 

hydrolase activity of the proteome can change and how this can change even when there are no 

changes in the composition or quantity of proteins. The in-gel fluorescence method to detect 

serine hydrolases in C. stercorarium showed carbohydrate dependent differences in enzyme 

activity. Unfortunately, we were unable to identify these enzymes by mass spectrometry based 

methods. These enzymes had faint fluorescence signal intensity so are likely of very low 

abundance in the proteome. The high abundance enzymes identified in mass spectrometry 

experiments closely matched the molecular weight of the most intense bands detected in the gel 

based assays so it appears that high abundance enzymes are limiting our ability to detect low 

abundance serine hydrolases. The bias towards high abundance enzymes is a common problem 

with DDA and is usually solved by either removing the high abundance proteins by affinity 

enrichment techniques (such as those used in serum proteomics) (Ahmed et al., 2003), or by 

enriching the low abundance enzymes directly. In theory, one could modify the serine hydrolase 

probe to be more specific towards the high abundance enzymes and then treat samples with this 

probe before adding the FP-TAMRA probe. The opposite approach could also be used to find 

probes that are more specific towards low abundance serine hydrolases. Although this method 

would require extensive time and effort to develop the necessary probes using organic chemistry 

based techniques. Another option would be to label the C. stercorarium proteome with the FP-

TAMRA probe under different temperatures. If these low activity enzymes have increased 

activity under higher temperatures it may be easier to isolate them and identify them by mass 

spectrometry. This may also have the effect of reducing the activity of the high abundance 

enzymes detected in this study making these low activity enzymes even easier to identify. 
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 Another option would be to combine ABPP and DIA methods. Samples labelled with the 

PF-biotin probe could be analyzed by DIA instead of DDA in order to potentially identify serine 

hydrolases and quantify serine hydrolase activity. Ion libraries to detect serine hydrolases could 

be generated based on experimental or hypothetical transitions or some combination of both. 

SWATH based methods have shown the ability to detect peptides not identified by DDA (Gillet 

et al., 2012) so we may also be able to identify low abundance serine hydrolases with this 

method. There is also the possibility of detecting active site peptides, those peptides that contain 

a serine residue modified with biotin. In some cases the serine hydrolase active site serine is 

already known and the predicted m/z ratio of the peptide can be included in the ion library. If the 

active site peptide can be detected by this approach, this also opens the possibility to quantify the 

extent of active site labelling and comparing this with the quantity of non-active site peptides, 

essentially measuring the activity of the enzyme. 

 

 Modifying the temperature of the probe labelling reaction also had an effect on enzyme 

activity. This caused bands to appear or disappear showing enzymes that became active at 

different temperatures. These bands would also increase or decrease in intensity showing that the 

optimal temperature for maximum enzyme activity could be determined. This type of experiment 

could possibly be used to increase the activity of low activity serine hydrolases making them 

easier to identify by mass spectrometry. Several samples labelled at different temperatures and 

analyzed by mass spectrometry could also be used to increase the breadth of serine hydrolases 

identified. There are many other options to explore how enzyme activity changes that are 

potentially different from how protein composition changes. With Clostridium thermocellum it 
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was determined in a previous experiment that changing the atmosphere of cell cultures from H2 

to N2 had a minimal impact on the protein composition based on quantitative proteomic 

experiments (data not shown). This may be because different concentrations of gases may only 

affect the enzyme activity of specific enzymes and not affect the transcription of those enzymes. 

There is also the possibility that enzyme activity can change over the life cycle of the organism 

and time dependent changes can be measured with this method. These are only a few 

possibilities of the numerous opportunities to see how enzyme activity changes under a number 

of different conditions. The importance of serine hydrolase activity in bacterial systems is 

relatively unknown which means that there is a lot of opportunity for discovery, but it is unclear 

if serine hydrolases will play a role in any of these processes. One option that remains to be 

explored is the use of probe libraries to discover probes that may label enzymes that are more 

relevant to biofuel production. Probe libraries consist of an unmodified reactive group, with a 

linker that can be modified in several different ways (Speers & Cravatt, 2004). These different 

probes are screened against the proteome for labelling capability, and the enzymes labelled are 

identified by mass spectrometry. If the labelling is activity based can be measured by testing 

probe labelling at different temperatures. This method has the potential to identify new probes 

that have the capability to measure enzyme activity in biofuel related processes. 

6.5 Concluding remarks 
 
 Overall, the methods presented here show that the proteome represents a valuable source 

of biochemical information. Significant time and effort can be placed into performing relative 

quantitation experiments so it is important that these data be used to its fullest potential. The 

approach used to analyze the proteome depends on the needs of the user, and the technology 

available. DIA is an approach that was shown to be effective for large-scale quantitative 
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proteomic experiments but is something that may not be available to all laboratories. If not 

available, label free quantitation by DDA acquisition was also shown to produce similar 

quantitative results in terms of precision for high abundance proteins. Isotope based techniques 

appear to be the most effective approach if little is known about the system in question. iTRAQ 

was able to identify the most proteins and simultaneously provided effective quantitative 

information. Although this method is still expensive and labelling with stable isotopes is a 

technique that can require some practice to implement effectively. 

 

 The application of ABPP showed that enzyme activity could change even if there are no 

compositional changes in the proteome. This may appear as an obvious statement, but is an 

aspect of the proteome that has been overshadowed by quantitative studies that only examine 

protein expression. The field of ABPP is one with a lot of potential for discovery, not only 

potentially identifying important enzymes in biological systems and assigning function to these 

same enzymes, but also an approach that can aid in better annotation of gene function. This 

potential can only increase as new probes are developed in the future that increase the family of 

enzymes that can be studied with this approach. 
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