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ABSTRACT

This thesis proposes two methods of designing canonic wave

digital filters with a diagonal reference conductance ma-

trix. The first method is based on the exact diagonalization

of the nondiagonal reference conductance matrix which re-

sults when redundant delays are eliminated from the $¡ave di-

gital structure. The second method uses a network equiva-

lence transformation to obtain analog prototype networks

with a minimum number of reactive elements. It is shown

that, in most cases, it is necessary, and furthermore possi-

bIe, to redefine the independent design parameter set such

that the resulting entries in the scattering matrix S are

expressed as SumS of products of the nevt independent parame-

ters. This is sufficient to ensure that the subsequent quan-

tization of the independent parameters to binary fractions

also produces binary fractions for the entries in S. Solu-

tions are presented for the Brune, 3rd-, and 5th-order el-

liptic topologies.

This thesis also demonstrates that it is possible to ob-

taì.n quantized designs that satisfy the given specifications

vla a simple search in a bounded feasible region. The search

generates a J.arge number of feasible, quantized parameter

sets which are then tested to determine their suitability.
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The existence of the corresponding analog prototype provides

an efficient vray of computing the required attenuation char-

acteristic, which greatly reduces ihe total execution time.
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Chapter I

] NTRODUCTI ON

À digital filter is a structure that implements a computa-

tional algorithm which is derived from a difference equa-

tion. This strucÈure operates on an input sequence of num-

bers and produces an output sequence of numbers. A specific

filtering algorithm is characterized by the relationship ex-

isting between the ínput and output sequences' which is ei-

ther specified in the time or the frequency domain. À num-

ber of techniques exist for the implementation of the

computational algorithm. These range from a software pro-

gram executed on a general-purpose computer to a dedicated

singte chip real izat ion t 1 I .

Digital filters are synthesized and analyzed using the

discrete-time system theory. À particular class of Iinear,

shift-invariant (tSI) systems is suitable for this purpose'

and a number of important references have been published

[2]-[6]. In a practica] simulation of a discrete-time sys-

tem, signals and system coefficients are approximated using

f inite precision arithmetic. Errors arising r'iu€ to these

approximations are termed finite-word- Iength (fWl) effects,

and are placed in three categories [7]-[8]:

1
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1. Coefficient quantization refers to truncation or

rounding of multiplier coefficients or some other in-

termediate design parameters, and causes degradation

of the filter's frequency response. Thä degradation

is deterministic and the linearity of the system is

preserved.

2. Roundoff error is caused by rounding off or truncat-

ing the products formed within the digitat structure.

In most cases this error can be modelled with an un-

correlated noi se source , however per i odic roundof f

error sequences are possible and are referreC to aS

parasitic oscillations or limit cycles of the granu-

larity type. These oscillations are self-sustaining

and exist under zero-input conditions'

3. Overflow occurs when the signal is too large for

storage, using the given register length. If no com-

pensation is made, then large errors in the filter

output appear either in the form of transients or

overflow oscillations

C1early, digital f ilter structures with the ability to con-

trol and minimize FwL effects are preferred.

À particular choice of a digital filter structure is made

easier by using the well-known fact that structures with low

sensit.ivity to coefficient quantizai-ions also generate low

leveIs of roundoff noise t9l-[11]. The traditional method

of direct realization of the transfer function g(z), where
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coefficients of H(z) are the actual multipliers' suffers

from high sensitivity to coefficient quantizai-ions. Factor-

ization of H(z) into the parallel or cascade forms of first-

and second-order sections greatly reduces the" sensitivity

problems, but performance with respect to other FWL effects

is still poor. UItimateIy, firsÈ- and second-order sections

were developed that suppress aIl parasitic oscillations

t12l-t141, and generate low Jevels of roundoff noise due to

Iow coefficient sensitivities [15]-[17]' The actuaJ- choice'

however, is made difficult due to the available tradeoffs

that exist between the various sections with respect to: 1)

suppression of parasitic oscillations, 2) Iow coefficient

sensitivities, 3) number of coefficienÈs that must be quan-

tized, 4) availability of the design tools (how easy is it

to program the various design strategies), 5) complexity of

the resulting computational algorithm.

An alternative to the conventional structures, which com-

pares favorably with respect to the five points mentioned

above, v¡as developed by Fettweis et. aI. [18]-l?lJ, and is

known as the v¡ave digital (Wp) structure. Wave digital fil-

ters are based on the premise that digitat filter structures

that imitate the topology of analog ladder networks, which

are known to have low coefficient sensitivity properties,

will also have these properties and can be implemented with

low-coefficient word Iengths. To make the resulting digital

fiIter computable LZZI, Fettweis used voltage v¡aves for the
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signals which together with the bilinear z-transformation

map the analog reference network into the corresponding di-

gital structure. Using this scheme, reactive elements map

into simple delays, and the paralleI and series interconnec-

tions of ports are simulated using adaptors [23]. Further

developments include symmetrical lattice l24l and Jaumann

[25] topologies as PrototYPes.

In addition to low-coefficient sensitivity, Fettweis and

Meerkötter l26J have derived, using the concept of stored

pseudopower or equivalently the Lyapunov function' a magni-

tude truncation scheme which is sufficient to ensure the

suppression of aIl zeto-input parasitic oscillations.

The number of delays in the WD structure equals the num-

ber of reactive elements in the analog prototype. Ladder

networks with finite attenuation poLes (transmission zeros)

are nonminimal in the number of reactive elements, and WD

filters derived from them have more delays than are neces-

sary. Fettweis has developed methods for removing the re-

dundant delays at the expense of no longer being able to

guarantee the suppression of all zero-input parasitic oscil-

lations using the magnitude truncation scheme 127)-[28].

Wave digitat ladder filters consist of an interconnection

of basic adaptors. These adaptors simulate paralle1 and se-

ries interconnection of at most three ports, which is to en-

sure that the independent design parameters become the actu-

aI multipliers in the flowgraphs of the adaptors [23]. A
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consequence :t this arrangement is that WD fílters require

more adders than conventional designs 1.21. An alternative

to the above structure, developed by Martens and Meerkötter

l19l, employs an overall scattering matrix rêpresentation

for the entire network, which results in a single n-port

adaptor. Àn advantage of this approach is that networks

with arbitrary topology can be used as prototypes for WD

structures. À1so, Ashley [30] has derived methods for re-

moving aIt types of reactive redundancies without introduc-

ing additional parameters. This was not possible using

Fettweis's multiple adaptor approach. Àsh1ey has also de-

rived the necessary and sufficient conditions for the exis-

tance of a diagonal Lyapunov function which is sufficient

for ensuring the suppression of all zero-input parasitic os-

cillations. It turns out, however, that these condtions

cannot be satisfied by most neÈworks. Moon [3]l has shown

that nonlinear stability can be guaranteed by using a near-

diagonal Lyapunov function, and derived bounds on the off-

diagOnal termS. These bOundS, however, were quite re-

strictive, and De Luca l32J employed the concept of strict

pseudopassivity to derive less stringent bounds. Further-

more, Dê Luca and Martens [33] have applied the concept of

strict pseudopassivity to general state-Space structures.

An alternate approach for ensuring nonlinear stability is

to diagonalize the available nondiagonal port reference con-

ductance matrix [30]. This method necessarily introduces
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additional parameters which can be expressed as rational

functions of the independent parameters.

This thesis proposes an exact diagonalization procedure

which effectively transforms the nonminimal ]ädder proto-

types into minimal prototypes with ideal tlansformers. The

independent design parameter set is redefined such that all

entries in the new scattering matrix are expressed as Sums

of products of the independent parameters. This is suffi-

cient to ensure that subsequent quantization of the indepen-

dent parameters to FWL binary numbers results in the FWL bi-

nary scattering matrix. Thus, the resulting WD structure is

based on a canonic number of design parameters, which is

equal to the number of degrees of freedom, and consists of a

canonic number of delays which is equal to the order of the

filter. Also, a diagonal Lyapunov function exists which to-

gether with a sign- magnitude truncation scheme ensures the

complete suppression of all zeto-input parasitic oscilla-

tions.
Chapter II presents a brief sunmary of the relationship

between continuous-time and discrete-time signals, and of

the classical approach to the design of digital fiJters. WD

filters realized using n-port adaptors 9enera1ly require

more multipfications than the canonic number. Consequently,

these adaptors are better suited for implemenÈaLion using

the newly developed distributed arithmetic techniques

t34l-t401. Chapter IT concludes with a discussion of digital
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fitter implementation using distributed arithmetic struc-

tures.

chapter ÏÏI introduces the concept of wD filters. The n-

port adaptor approach is described along with" the reflec-

tion-free property which is necessary to effect the inter-

connection of various adaptors. Design examples of adaptors

based on the paral-le1, S€ries, and 3rd-order elliptic topol-

ogies are presented using the n-port adaptor approach. Next,

linear stability of WD networks is deduced using the general

propertieS of these networks. À1so, sufficient conditions

for ensuring nonlinear stability are stated. Canonic WD n-

port adaptors are obtained using the reactive redundancy re-

moval procedure developed by Àshley [30]' and the removal of

redundancies due to capacitive loops is discussed in detail.

The chapter concludes with the application of the exact di-

agonalization procedure, as introduced by Ashley [30] and

elaborated upon in [41], to the 3rd-order elliptic adaptor.

In Chapter IV we derive the independent parameter sets

for the basic minimal adaptors, including the Brune, 3rd-

and Sth-order elliptic topologies. It is shown that these

parameter sets can be derived using two distinct approaches:

1) method of redundancy removal followed by diagonalization,

2) application of a network equivalence to generate minimal

analog prototypes. AIso, it is demonstrated thal an imposi-

tion of certain element constraints leads to much simplified

designs. The entries in the resulting S matrices are ex-
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pressed as sums of products of the independent parameters,

which is sufficient to ensure that with the subsequent pa-

rameter quant ízdlions the resulting coefficient matrix S is

FWL binary.

An advantage gained in constraining the number of parame-

ter quant íza¡-ions to the canonic number, which contrasts

with the methods proposed in t30l-[¡g], is that a corre*

sponding analog network exists which can be used in evaluat-

ing the frequency response of the corresponding discrete-

t ime f i lter . As a result , the computat ional requi rement in

evaluating the attenuation characteristic is greatly re-

duced. In Chapter V we use this reduction and propose a sim-

ple quantization algorithm that is based on a finite search

in the neighborhood of an initial FWL binary approximation

of the parameter set. The search generates a large number

of feasible quantized parameter sets which are then tested

to determine their suitability. The chapter concludes with

the presentation of design examples of WD filters based on

3rd- and 5th-order elliptic prototypes.



Chapter I I

TNTRODUCTTON TO DISCRETE-TTME SYSTEMS ÀND

DIGITÀL FILTERS

This chapter presents a brief summary of the relationship

between continuous-time and discrete-time signats which is

fundamental Èo the analysis and synthesis of discrete-time

systems. The classical approach to the design of digital

filters based on the transformation of the analog transfer

function to a digital transfer function is briefly de-

scribed. AIso, implementation of digital filters based on

the principle of distributed arithmetic for the computation

of inner products is discussed.

2. 1 RELATIONSHIP BETWEEN CONTI NUOUS-TI ME AND DISCRETE_TTME
S I GNALS

Discrete-time signals are defined only for discrete va1-

ues of the independent variable, i.e., the independent vari-

able is quantized. Mathematically, such signals are repre-

sented as sequences of numbers. Discrete-time signals that

take on a continuum of values are referred to as sampled-

data signals, whereas those with quantized amplitudes are

digital signals [3]'
Discrete-time signals are usuaÌly derived from sampling a

continuous- time signal, f (t). Sampled signals f *(t) can be

expressed in a number of ways [6]:

9



*f (t) f(t)ôr(r)
f (nr) ô (t -nr)

jno t

10

(2.]a)

(2.Ib)

(2.lc)

Dirac im-

expan s i on

t rans f orm

(2.3)

æ

I
n= -æ

æ
1

T

oo
-nI f(nT)z "

n=-æ

I f(nT)e
n=-æ

S

where T is the sampling period, ur=2tt/T , ô(t) the

pulse, and (2.Ic) follows from the Fourier series

of the impulse train function, 6T(t). The Fourier

of (2.lb) yields

The two-sided

integer ], is

*-
F ((,)) - r f (nT) "-jntl-tT (2 .2)

n=-æ

z-transform of the sequence { f(nT)' n is an

defined as

F(z) 4

If the region of convergence of f(z) include, "="j" , which

is the unit circle in the z-plane, then f(ejoT ) is defined

as the frequency spectrum of { f(nt), n is an integer}.

That this definition is justified follows from (2'2) and

(2.3), i.e.

F (z) Ir¡) (2 .4)
ioT

from which it is clear that the z-transform of a sequence

evaluated on the unit circle equals the Fourier transform of

that sequence. À more general result can be obtained by us-

F



ing the Laplace

Using (2.1b)

yields

width

It 1S

@

I
fl= -æ

F(z)
æ

F (s) f [nT) e

11

transform instead of the Fourier t'ransform.

and ( 2.Ic ) , the Laplace transform of f* ( t )

- snT (2 .5a )

(2.5b)

(2.5c)

str ips of

l3l-t61.
(t¡)=0 for

sT
z=e

1 t
n=-@

sT

T
F ls+ino )

S'

The nonlinear maPPing, z=e t maps horizontal

2r/T in the s-plane onto the entire z-plane

clear f rom (2,5c) tf¡at F* (o)=F @) /T only if F

lul>,:, /2, if this condition is violated, then aliasing is

said to have occurred and f(t) cannot be recovered from its

samples {f(nT), n is an integer i. The above is stated more

generally in the form of a sampling theorem t6l.

Samplino Theorem: Let f(t) be a band-limited signal with

its highest frequency component less than W. Then, f(t) is

completely specified by its sampled values with sampling

frequency equal to or greater than 2W.

As a result of the sampling theorem, most discrete-time

systems that derive their input signal from sampling a con-

tinuous-time signal are preceded in practice by an anti-ali-

asing or guard filter. À}so, the spectrum of the input sig-

nal is periodic, hence, the frequency response of the

discrete-time system must also be periodic.
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2.2 CLÀSSICAL ÀPPROÀCHES TO THE DESIGN OF DTGTTÀL FTLTERS

Design of a digital f ilter is a search for a linear,

shift-invariant discrete-time system that satisfies given

specifications and is implemented using finite precision

arithmetic. Various approximation techniques are used to

find an appropriate discrete-time system. For infinite-im-
pulse-respose (lfR) tilters the desired frequency response

is approximaled by a rational function of z, and for finite-
impulse-response (ffn) filters a polynomial approximation is

used. For standard analog specifications, such aS Butter-

worth,Chebyshev, and el1iptic, extensive analog design ta-

bles are available. Thus, the traditional approach to the

design of IIR digitaì. f ilters involves a transformation of

an analog transfer function in,l, to a discrete-time transfer

f unction in z l3l-t61. In this approach ,1, is replaced by a

function of z which has the following properties:

1. The j n axis in therp -plane,or an appropriate part

thereof, maps into the unit circle in the z-pLane.

This property preserves the desired frequency re-

sponse in the resulting digital filter.
2. Poles in the ]ef t-half if -p1ane map into poles inside

the unit circle in the z-plane. This property en-

sures that the resulting digital" filter is linearly

stable

The most widely used transformation

sT Iz1e

sT+1 z+Lü = tanh( sT/z )
e

(2.6)



possesses the above ProperLies

z-transformation. Using (2.6) ,

comes a rational function in zl

HLz) _ r (ìp)lu

The relationshiP between the

aLog frequency Q is obtained

(2,6) , which yields

L- L

z+L

digital frequency

by setting U =jn

and is called the

a rational function

i.e.

13

bi I inear

in ü be-

(2.7 )

o and the an-
- ir¡Tand z=e- In

f,l = tan ç aT/z ) (2.8)

The nonlinear mapping between CI and urT , introduced by the

bilinear transformation, can be compensaLed for by prewarp-

ing the coef f icient values in the analog prototype transfer

function. Prewarping transforms the critical analog fre-

guencies into the desired critical digital freguencies. The

nonlinear mapping as expressed in (2.8) is depicted in Fig.

2.I.

Another common transformation used involves sampling of

the impulse response of a continous-time filter to obtain

the impulse response sequence of the digital filter. This

technique is called the impulse invariance and the relation-

ship between rÞ and z is mathematically eqivalent to the re-

lationship between s and z as derived for cor:tinuous and

discrete-time signals. This method is only applicable to

band-1 imiteo characteristics.
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a)

O=tan (uT /2)

F

o

lH("j'r) I

aoo

-IT

1T 2

r/2
:

I
I
I

(Jì

¡1
I

I

I
I

I

I
t
¡

I
I
Ì
I
I

I

I
I
I

I

!
I

s4Á¡

Tt /2

Nonlinear mapping fi =tan @t/2)
z-transf ormaÈ ion

IT t¡T

due to bilinearFigure 2,1

The discrele-time transfer function H(z ) can

according to the chosen mode of implementation,

be expressed

i.e. let



H(z)

N

I b. z-K
k=o K

N .t.

--N), a-z
k=l K

K

b IT H. (z)
o .1-

1=1

K

=c+ [ H
r- I

J- L

15

(z)
J Q.9a,b,c)

1

where K=[ (N+1),/2] ( i I denotes integer part of ), and c is

proportional to bN. Decomposition of a high-order system

( N>Z ) into a cascade form (Z.gb) or parallel form (2.9c)

reduces the sensitivity of the overall system to coefficient

quantizations t4l. H. (z) and U. (z) are either first or sec-

ond-order sections that correspond to cascade and parallel

forms, r€spectively. The realization of a second-order Sec-

tion using the direct form 2 is depicted in Fig. 2'2'

The delay operator z-L is used to transform (2.9a) into

the difference equation form

NN
y (n) - I bux (n-k) aur (n-k) ( 2 . 10 )

k=0 " k=1

This representation is most useful from the realization

point of view since it explicitly provides an algorithm for

the computation of the present value for the output. ÀIso,

(2.10) specifies a computational requirement that is common

to all digital filter algorithms, which is the computation

of one (vector) or several (matrix) linear combinations or

inner products.

Another useful representation of discrete-time systems is

the state variable representation where
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( 2 .1]a )
x (n+ 1) A B x (n)

y (n) C D u (n) (2.11b)

and u, x, and y are the input, state, and output vectors,

respec_tively; A is an N x N matrix, and B, C, and D are ma-

trices of appropriate dimensions l+Zl. The transfer func-

tion can be easily obtained by solving (2.lIa) for X(z) in

terms of U(z) and substituting the result in (2.Ilb), i.e.

( rz-A 1-1nu¡21 (2.t2)

and

x(z)

lc")

A

Ë

C

D

Y(z)=CX(z)+DU(z)

= ( C( rz-n )-1r

= H(z)U(z)

(2.13a)

(2.13b)

(2.13c)

(2.14a)

(2.r[b)
(2 ,tac)
(2.14d)

(2.14e)

structure with

the linear in-

+ D )u(z)

where I is an N x N identity matrix. À non-singular trans-

formation of the state variables as in

_1
P ^x (n)

P AP
I

I
P B

where P is non-singular, Ieads to a

different nonlinear properties while

CP

D

digital
Ieav i ng



puL-output relationship the same. À transformation

cial interest is one that results in I becoming the

ion matrix t43l for the transfer function in (2'9a),

0 0)r

boar+b*)

I7

of spe-

compan-

'ia

(2.15a)

(2.1sb)

(2.15c)

(2.15d)

the di rect

Example of

1

0

0

,2
0

1

d

I
0

uN

0

0A

B

r

00 I0

0(1

(b

b
o

ot1*b 1

D

The resulting digital network is referred

form 2 and has the canonic number of delays

a second-order network is shown in Fig' 2'2

x (n)

-1
,)

+ z

H(z) -1 -2I ^L'
,2,

to as

t4l.

b
o v n

+

bb+b
o I 2

Figure 2.2 Block diagram representation of the direct form
2 second-order section



2.3 IMPLEMENTATION OF DiGTTAL FILTERS

As mentioned in the previous section

is common to aIl digital filters is the

inner product of the form

M
y = I a.x.

j=1 J )

18

a requirement that

computation of an

(2.16)

where y can either be the next state or output signal, x' is

a vector of present states and input signals, and a. are the

filter coefficients. The conventional method of realizing

(2.16) uses a multiplier-based structure t5l. In this ap-

proach, a hardware muLtiptier or a multiply routine computes

the products ajxj which are then rounded to the alloted num-

ber of bits and added to the accumulator that ultimately

contains the result ! (Ï is different from y due to quanti-

zation effects). This method may suffer from excessive

roundoff noise accumufation sínce in the computation of

(2.16) t': quantizations are perf ormed. However, in the case

where the digital structure is fixed and the filter coeffi-

cients ã; are changed to effect a different response, the
J

multiplier-based implementation is still preferred.

There are two popular methods of formulating the computa-

tion in (2.16) such that the result is computed with fu]I

precision and thereafter an appropriate truncation is per-

formed. These methods are based on the concept of distrib-

uted arithmetic. Such computational units are amenable to

Iarge scale integration (l,St ) implemenLation due to the mod-
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overflowsularity of Lhe computing algorithm [40].

can be easily detected and corrected for.

2.3.r
Thi s

et. al.
from the

metic, i.e.,

Stored-Product or Distributed Arithmeti'c Àlsorithm

algorithm was developed independently by Croisier

[ 35] and Peled and Liu t 361 . Its derivation stems

representation of *j using 2's complement arith-

-x.lo
B-1
I x.

k=l )

J

k

-k

-k
x +

l.r .

orde r

-k

(2.17 )

(2.17 )

yields

(2.18a )

2j k

where x. is the sign bit and lx
Jo

into (2.16) and interchanging the

Substituting

of summations

B-1

Y= X

k=1
j

t-;
I ¡ a.x.

| :=r r r
2

M

Ia
j=1

x.lo

Fy2 (2.18b)

=((. . (0+Fr- )/2 +rr-)/z*. ..+F1) /2-Fo ( 2.18c )

where tn is a function of M binary valued variables which

derive from signal bit values of equal significance. Since

x 3¡ are either 0 or 1, Fk has Y possible values which for a

constant coefficient set can be conveniently stored, hence

the name stored-product, in a read-only-memory (nO¡¿), or in

a random-access-memory (neU). Thus, the M-bit argument of

F t is used as the address that decodes the memory to produce

the function value F k which is then added to the shifted

B-1
s

k=1
F

o
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value of the accumulator, as shown in Fig. 2.3. The two op-

erations of memory decoding and accumulation are pipelined

to speedup the overall computation. The computation time is

mainly dependent on the wordlength (g bits in'2.18a-c) of

the variables "j 
and is independent of the number of terms

in the linear combination in (2.L6). However, M must be

limited to a reasonabl-e number, typically 8-10, due to the

exponential grovtth of the storage requirements. The re-

quired wordlength in the ROM depends on the max {f¡}. Large

wordlength in the ROM is not only costly in terms of storage

but also causes a long carry propagation time in the adder,/

subtracter.

The restrictions of small M and smal1 coefficient word-

length can be circumvented by properly partitioning (2.16).

For Large M, the summation in (2.16) can be broken up into a

series of summantions with a smaller number of terms each of

which can be computed separateJ.y. For high coefficient

wordlength, partitioning of Fk = Ftr + fO ,U, can be em-

ployed where the wordlengths of Ftt qnd 1z are acceptable.

The problem of optimum partitioning with respect to M and

the coefficent wordlength has been addressed in [38].

A drawback of the stored-product method is that for a

coeff i.cient set {a, } that varies, aIl the function values F¡

must be reevaluated. Also, for systems described by a ma-

trix equation, each inner product (row equation) must be

evaluated separately, hence no saving in the overall storage

requirement is possible.



M

2I

bi ts

Fk

) after B+1 clock-cycles

Figure 2.3 Block diagram representation of the stored-
product algorithm

2.3 .2 The Shift /Add Àlqorithm

Another method of evaluating the inner product with ful]

precision is the shif E/add algorithm. This algorithm was

devetoped by Moon and Martens [33], and can also be classi-

fied as a distr;.ibuted arithmetic algorithm. In the stored-

product algorithm the distribution is performed with respect

to the variable. *j, and in the shifl/adð algorithm with re-

J

2M

ROM

xB

a

REGI STERREG I STER

ADDE ACCUMULATOR

!.)

spect to the coeff icients a The concePt of the shifi-/adð



algorithm derives from

a in ( 2.16 ) using the
)

the application of the

minimize the number of

22

the decomposition of the coefficients

binary series expansion, followed by

canonical signed-digit code (cSDc) to

non-zero entr ies in the -'ser ies, i . e . ,

B

La
k=0

jk2

M

I
j=1

-k j=I ,2,.'.rM

k

k=0, 1, , B

(2.t9)

(2.20)

(2.2r\

(2.22a)

examlnln9

shares the

a j

where, for convenience, larl<1, ujk e {-t,0,1}, and the num-

ber of non-zero aik is a minimum 144). The application of

CSDC is very important since, as will be shown, it drasti-

cal1y reduces the number of non-zero additive combinations

of the variables x, actually reguired, as well as the number

of adders needed to perform the shifE/add sequence using a

hardware implementation. Substituting (2.19) in (2.16) and

interchanging the order of summations yields

v
B

T

k=0
24..x.lK l

For ease of presentation, w€ define

Dk

v

M

T
j=1

4..x.
]K J

Substituting Q.2L) into (2.20) gives

B

x
k=0

k
Dk ')

=((. . (0+DB) /2+Dr_)/z*. . .+Dr) /2+Do (2.22b)

The designation "shitL/adð" becomes apparent by

(2.22ù , however, the stored-product algorithm
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same property, as shown by (2.I8c). Thus, the shift/add aI-

gorithm consists of: (1) computation of Dk, k=0,1'...,8,

which are additive (subtractive) combinations of the vari-

ables x ¡, i=!,2, . . . ,M, given by (2.2I); (2) ii sequence of

shift and add operations applied to the combinations Dk,

given by (2,22a,b) .

The combinations Dk are realized by a network of inter-

connected 2-input adders, or in a subroutine format by

2-input additions. As a result of the 2-input restri'ction,

a reduction in the number of adders can be achieved by ex-

ploiting the occurrence of common partial sums in the DU.

An algorithm that, in mosÈ cases' drastically reduces the

overall number of adders has been presented in [45], and is

based on the consecutive application of a search for and re-

moval of the most common partial sum remaining in the combi-

nations Dk AIso, for systems that must compute multiple

inner products, as in matrix multiplication, there is a pos-

sibitity of existence of a segment of a particular shiftr/add

sequence that is common to some other shift/add Sequence'

In such a case, tapping can be utilized in reducing the

overall computational reguirement (# of adders as well as

the # of shifts).
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DESIGN OF WÀVE DTGITAL FTLTERS

In the previous chapter we have briefly described the tradi-

tional approach to the design of digital filters. In this

chapter we present the concept of wave digital filtering
which vras introduced by Fettweis [18] in 1971. WD filters

imitate the properties of low-sensitivity analog networks.

The process of translating the analog prototype into the

corresponding discrete-time structure is based on using

voltage waves for signals. These ensure Èhat delay-free

loops are eliminated and that discrete-time equivalents of

the analog elements and their interconnections are simple.

In Sec.3.2 the n-port adaptor approach, derived by Martens

and Meerkötter 1291, is described along with the reflection-

free property [21] which is needed to ensure that no de]ay-

free paths exist due to the interconnection of adaptors. De-

sign examples of basic adaptors that simulate para1le1, sê-

ries, and 3rd-order elliptic topologies are derived using

the n-port adaptor approach.Next, some general properties of

WD networks are presented from which ljnear stabiliÈy as

well as sufficient. conditions for guaranÈeeing nonlinear

stability are deduced. Canonic WD filters are obtained by

using the reactive redundancy removal procedure developed by

24
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Àshley [30], and the removal of redundant capacitive ]oops

is discussed in detaiÌ. The chapter concludes with the

presentation of the exact diagonalization procedure. The

3rd-order eltiptic }adder topology is used to show that cor-

responding to the resulting diagonal reference conductance

matrix there is a canonic (number of reactive elements

equals the order of the network) analog prototype.

3.1 INTRODUCTION TO WÀVE DTGTTÀL FTLTERS

WD filters are derived from analog prototype networks. For

reasons of low sensitivity to element variations and the

availability of extensive design tables, the analog proto-

type used is the doubly-terminated lossless reciprocal net-

work displayed in Fig.3.1.

R i 
1 

(rp)
2

(Ì]; )

RL

Figure 3.1: Doub1y-terminated lossless reciprocal analog
prototyPe.

The lossless and reciprocal part of the network in Fig.3.1

consists of an interconnection of inductances, capacitances,

and ideal transformers. The overall network i s pass ive ,

I
S

v2 (if )

-t-

(qr )

+

vt (rl)

LOSSLESS

RECIPROCAL

NETWORK
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hence stable, due to the resistive Source and load ports

[49]. Translation of the analog prototype into the discrete-

time filter involves mapping, via the bilinear z-transforma-

tion, the analog elements and their intercoflnections into

the corresponding discrete-time equivalents. Fettweis [18]

has shown that using voltages and currents as signal carry-

ing guantities is not sufficient to ensure freedom from de-

Iay-free paths in the discreÈe-time Structure. The problem

is circumvented by utilizing voltage waves for signals which

are defined as follows:

a (t)

b (t)

A

^

v(t) + Ri(t)

v (t) - Ri (t)

(3.]a)

(3.lb)

( 3.Ic )

(3.Id)

and in the frequency domain

A(,1,)Av(ü)*Rr(U)

sCtl''l 4vC'l'l-RI(ü)

where a(t) and b(t) are referred to as the incídent and re-

flected voltage waves, respectively, and R is an arbitrary

port reference resistance. The references of v(t) and i (t)

with respect to an arbitrary port are shown below.

1 t
a (r)

R v (t)

.<-

b (r)
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Setting R=R, for the source port and R=RL for the ]oad port

in Fig.3.1, v¡e obtain using the given ref erences and ( 3.1)

A1(rl) = E (ú)

B1ßr) =2v{tþ) -E('l)

A, CrÞ) = o

82(U) = zvzßl))

(3.2a)

(3.2b)

(3,2c)

(3.2d)

It is nov¡ easy to show that the voltage transfer function

T(ìl ) and the voltage l¡ave transf er f unction W(U ) are equal

but for a frequency independent'constant, i.e.

w (ü) = 82 (V) /41 (q,)

= 2yz(ú)/e 6rp1 (3.3)

= 2T (tþ)

To derive the discrete-time equivalents of the anaLog eIe-

ments we use the bilinear z-transformation

z = ( 1 * tþ )/ ( 1 - rf ) (3.4)

In general, the port reference resistance R is chosen so

that the discrete-time equivalenLs have simple block diagram

representat,ions. To achieve this, wê set R equal to R' L'

l/C for resistive, inductive, and capacitive ports (branch-

es) , respectively, and obtain the following discrete-time

equi valent s :
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Capac i tance

i (r) a (n)

+ 1=rfCV + A=V(l*rþ) , B=V(l-Ü)

v (r) B/A= (l-rfr ) / (1*Ü )= '-L
b(n) = a(n-l)

1

uc
I

b (n)

I nductance

i (r) a(n)

+ y=rfll + A=LI (1*Ú) B=tI (ü-1)

B/A=-(i-qr ) /(L*þ )
-1

rlrl v (t)

b (n) -a(n- 1)
b (n)

Res i stance

R i(t) a (n)

\/=[+ft] + A=2V-E B E

e (t) v (t) a (n) 2v (n) e (n)

b (n) e (n) b (n)

For pure)-y resistive ports we set e (n ) =0.

To obtain a complete WD structure we must also have the

discrete-time equivalents that simulate the interconnections

of lhe prototype ports. These equivalents are calLed adap-
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tors, since at an interconnection, the voltage waves must be

adapted so that Kirchhoff's current (nC¡,) and voltage (XVl)

laws are satisfied. In the next section we derive an overall

n-port adaptor that simulates the topological-' constraints

for the entire network. In contrast to this approach, Fett-

weís et. al. [18]-¡191, [23] choose to construct ]adder wD

fi]Èers using 1ow-order adaptors that simulate paralleL and

series interconnection of at most three ports. This approach

has the advantage of generating multiplier coefficients for

the adaptors that are the actual design parameters. Conse-

guently, discrete optimization can be performed with respect

to these parameters to minimize the overall computational

requirement t46l-1471. À disadvantage, however, is that not

aIl prototype Èopologies can be simulated using low-order

parallel and series adaptors' e.9. bridge-tee networks l29l

and Brune networks t481. No topological restrictions exist

for designing WD filLers using the n-port adaptor approach.

capacitive
pof,ts

â1= e b =2v

b -0

-1
Discrete-time equivalent of the doubly-
terminated lossless reciprocaÌ analog prototype

I

I

t-T

n-port adaptor or an interconnection

of lower-order adaptors

portsinductive

T
Figure 3.22



The analog prototype netv¡ork in Fig.3.1 together

discrete-time eguivalents derived above translate

corresponding discrete-time structure, âS shown in

3 .2 DERIVÀTI ON OF TH E N-PORT ÀDAPTOR REPRESENTATTON

WD n-port adaPtors are

age scattering matrix

analog prototype 129J,

30

with the

into the

Fi9.3.2.

designed by deriving the n-port volt-

representation for the corresponding

i.e.

(3.5)

0 (3.8)

b Sa

where b and a are the reflected and incident voltage-wave

vectOrS, respectively, and S iS an nxn constant voltage-wave

scattering matrix. With reference to the analog prototype,

vre parÈition the available ports into.e, link ports and t

tree ports, such that l,+t=n. The current and voltage vectors

i and v can now be expressed as the linear combinations of

link current and tree voltage vectort i.q, and va, i'e'

(3.6)

(3.7)

From Tellegen's theorem (due to KVL and KCL)

',c

ut

BTI-

u=QT

Tv1=

we have together with ( 3.6,7 )

QBT 0

The incident and reflected voltage wave vectorS are

(3.e)
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(3.10)
a=v+Ri

b=v Ri

where R is a diagonal matríx of

Substituting (3.6,7) inÈo (3.10),

Prernultiplying (3. 1t)

trix of positive Port

positive port resistances.

we obtain

T
RBdtt*

utb

,L

(3.11)
at RgTi

L

by QG, where G=R-r is the diagonal ma-

conductances , vte obta in

QGa = QGQT Qsri¿

(3.12)
T

ut +

QGb QGQT QBvt- 01

t

where by definition

Solving for v by using ( 3.9 ) yields

V Y
tQat

t (3.13)

v-lqcu

is the positive

[49]. From (3.10)

v A QcQr ( 3.14 )

def inite symmetric node admittance rnatrix

we have



4 + b =2v

= 2QTvt

= 2QTy-lQGt

= zQTv-lQcu
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(3.15a)

(3.1sb)

(3.15c)

(3.15d)

(3.17)

( 3.18 )

where appropriate substitutions using (3.7,13) were made.

Solving (3.15c) for b yields

b ¡ zqrv-lqc ul a

( 3.16 )

where S is the desired voltage scattering matrix, and U is a

unit matrix of appropriate dimensions( ä designation used

throughout). Similarly, wê can solve for a using (3.15d) and

obta i n

I zQrv-lQc

As"

a ulb

Sb

Substituting (3.17) into (9.f0) yields

b S
)

which fttr an arbitrary non-zero vector b implies that

S52

b

UorS 1 (3.19,20)
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Using (3.16), the scattering matrix representation for an

arbitrary topology can be obtained if the fundamental cut-

set rnatrix Q and the port reference conductance matrix G are

known. This a.pproach, however, involves the operation of ma-

trix inversion which complicates the procedure of obtaining

binary fractions as the final entries in the S matrix[50].

More managable expressions for S can be derived by first ex-

pressing Q, B, and G in the partitioned forms, i.e.

Q= [N U] (3.21a)

!=tu -r,¡Tl (3.21b)

G ( 3.21c )

where N is a matrix of turns-ratios of an ideal transformer

multiport network which reduces to the non-unit part of the

fundamental cut-set matrix for a network which is free of

ideal transformers ( i.e. wire interconnections only) . Sub-

stituting (Z.Zt) into (3.16) yields

T -u L*tr-tG.
9" L (3.22)

-12Y .NG
L

2Yt

and into (3.14), we have

Gt (3.23)

Gg

0

0

Gt

b

b

lNc
Y2N

gNT

K A y-lt¡c¿ = [ Gt * NG*NT ]-1 nc.q,

^g"

atU
- tt.

Y +NG

To consolidate matters, we define

(3.24)



from which, using (3.23), we obtain

T
U

substituting (3.24,25) into (3.22) ,

expressions for the scattering matrix

we obtain the various

s 129,481¡

,-tar=[J-v-lNcuNT
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( 3.25 )

IO{

S

znTrc-u zNT¡u-rcvT1

2K U-2KN
T

T-UN -u0 .UN

(3.26a)

A p r p (3.26b)

A r,,rn rr,l-1 (s. zic)

T

OU -2K U

u-nTr N
T -u0

OU

U-N T

T-KU OU K U-KN

where (3,26c) displays the eigenvalues and the eigenvectors

of s, and F and T are seLf-inverse. cIearIY, using (3.26),

the problem of obtaining the scattering matrix representa-

tion is reduced to obtaining the matrices N and K.



The matrix N can be obtained

graph which is derived from the

port networks that contain ideal

simpler to solve for N using
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directly from the oriented

network topology. For multi-

transformers it is usuallY

obtained as follows:

ports in their reference

ports in their reference

a voltage source, i . e.

link voltage source vec-

ir=-NiU or (3.27a,b)

The network interPretation of K is

1. Terminate all of the tree

resiStances, i.e. "t=0 
and

2. Terminate all of the link

resistances in series with

ð,U=ê gt where eO denotes the

tor.
substituting the above conditions into (3.26) yields

v, = K eu (3'28)

which specifies K as a voltage transfer matrix that contains

the constants required in expressing tree port voltages as

linear combinations of the Iink port voltage sources. Using

the resistively terminated prototype, the symbolic solutions

for the constants can be obtained by utilizing any suitable

network analysis techniques (usuaIly Thevenin's Theorem and

superposition suffice). The number of entries in K is :c9"

which is usually greater, except in Some special caseS, than

the number of degrees of freedom (for n-ports containing

ideal transformers the number of degrees of freedom is eguaJ'

v*=NTv,

b =2v.tt
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to n-I plus the number of non- trivial turns-ratios). Conse-

quently, if a canonic solution is desired where the number

of design parameters is equal to the number of degrees of

freedom, then the entries in K cannot be definèd as the de-

sign parameters. The canonic solution yields entries in K

that are functions of the independent design parameters

which are defined in the course of solving (3.28). Further-

more, if the functions are of the sum of products (SOP)

form, then quantization of the design parameters to binary

fractions is sufficient to ensure that aIl the entries in N

and K, and consequently S, are also binary fractions (en-

tries in N are 0's, I's, -1's, and turns-ratios which are

part of the independent design parameter set). The SOP re-

quirement imposes a restriction on the possible independent

design parameter sets that can be defined.

3.2.I Ref lect ion-f ree PropertY

In many instances it is advantageous r+ith respect to the

overall computational requirement to separate the n-port

adaptor into an interconnection of lower-order adaptors. In

order to effect this separation, it is important to examine

the problem of interconnecting two adaptors, as shown in

Fig.3.3.

To make the interconnecting ports compatible, i.e. bi=u . and

a.=b., it is easy to show that R.=R. is required. Further-
i j' - 1 J

more, wê must ensure that the delay-free loop created by the
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ab
1 J

a b jI

Figure 3.3: Delay-free path created by adjacent adaptors

interconnection is broken up so that the structure is compu-

table lZZl. One solution to this problem is to insert extra

delays in the path, however, a more practical solution ex-

ists which restricts the value of the common reference re-

sistance to only two choices [21]. Depending upon whích

choice is made, either of the tvto ports can be made reflec-

tion-free, i,e. the reflected vtave at that port becomes in-

dependent of the incident wave. With reference to Fi9.3.3,

if vre select port i to be reflection-free, Èhen the value of

R. is derived as follows:
l_

1. Terminate all the remaining ports in their reference

resistances, i.e. 
"k 

=0 k=Ir2 , .. ,í-1, i*l r. .,ñ.

2. The reflected wave b is nor,¡ only dependent ona
1

i.e. bi=(ti -Ri ii)/('i +Ri\ )"i.

To make bi indePendent of â i,
i n g the two vtave s must be

(v r-R, íi ) /(v, +Rt \ )=0.

the coef f ic ient

set to zero t

relat-

1

3

R R
1 J

I

Y

I

À

i.e
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4. Solving for &, we obtain Ri=v t/i¡.
Thus, âD arbitrary port can be made reflection-free by set-

ting the reference resistance egual lo the driving point re-

sistance looking into that port when all oth€r ports are

terminated in their reference resistances. The majority of

ports are terminated with the discrete-time equivalents of

the analog elements. Consequently, theír reference resis-

tances are obtained as shown in Sec.3.1.

using the n-port adaptor approch, port i can be made re-

flection-free by setting the corresponding diagonal entry in

the S matrix equal to zero, i.e. tii =0. Clearly, this proce-

dure will ensure that b, is independent of ai . using

(3.26a), the condition 5.. =0 corresponds to setting

t
In

j=l
..n.lJ 1J. ,k..1J J1

1z
9"

TK
j=1

1

2
(3.29a,b)

for a reflection-free link and tree port, F€spectively. In

(3,29), n.. and k,. are entries of N and K matrices, respec-
11 lJ

tively. It can be shown that the conditions specified by

(3.29) are in fact equivalent to setting the reference re-

sistance of the appropriate port equal to the driving point

resistance at that port. Also, the dependence relationship

in (3.29) reduces the number of degrees of freedom for that

subnetwork by one. This ensures that the total number of de-

grees of freedom is stilI canonic.
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3 .2,2 I Ilustrat Íve Examples

To illustrate the general procedure we consider the design

of paraLlel and series adaptors using the n-port adaptor ap-

proach. These adaptors are used in the WD syntþesis of lad-

der prototyPe networks. In the third example, a 3rd order

elliptic Ior+pass f ilter is designed according to Fettweis's

procedure using the elementary adaptors as well as using the

n-port approach.

Exarnp le#1 3-port parallel adaptor

1
G

2
G

-1 0 I

0 -1 I

oriented-graPh
for obtaining N

usl

\
/l\23

Á

\

I
1

I
)

vtNTK 
".Q.

ar=2Gr/ (Gr+Gr+Gr)

1

3-port parallel
connection

ar=2G

resistivelY terminated
network for solving vr=Ken

I ar/2 ar/2
'[:

v,/ (Gr+Gr+Gt)

FI
3

Using ( 3.26b)

b

b

b 0

1

2

3

-1 0

0 -1

1

1

1

-1 0

0 -1

0

0

1

tl

,2

0 -o1 -o2 0 aI0

"2
az

o2 o1 o2 t11 2

I2CT t2 a1
1

01d2f

Gs uzel t3

ol

01 o2 a-
5
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f l-ow

1ow.

symbo I i c

diagram

repre sentat i on

for the 3-port
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corresponding s ignal-

adaptor are shown be-

and the

paralle1

aab
5 3

aa

3

3

-1-1

a b

a

1 2

b
1

lf. we choose

G 
2=G1 

*G5, o2 =I

dependence of

c or respond i ng

3

1

b
1

The general 3-port

2 multiplications,
quires 4 additions

2

b b
I 2

b

port#2 as reflection-free, then we have

, and as expected ,22=0. This ensures the in-

b, of 1.. The symbolic representation and the

signal-f l-ow diagram are shown below.

d
3

a

Iba

b-
J -1 -1 ba

^2+b

)
2

^2

I

parallel adaptor requires 6 additions and

whereas the reflection-free design re-

and 1 multiplication 1231.

b-
J



Examp 1e#2 3-port series adapt or

R
1

4T

,2

I

Rz R 32
3

ar=ZRr/ (Rr+Rr+Rr)

ar=ZLr/ (nr+Rr+Rr)

using (3.26b)

V

V

ar/2

ar/2

["r] vl = [11]

V

=}l]
T

-cl1

r-oz

3

¿r:'ntÈ!1$4;!ir?t.:'tLi,i{

ut
=Ke

9"

bz

b

b

1

3

0

I

1

0

0

0

o2

o1

111 -1 0 0

-cr1 1 0

-o20 1

I

111

010

001

t1

^2

a-
J

a
2

\} N IV¿:

€?F ¡,A/ÀNrTQtlA

+CI I2-ur-
1-cx

c 2-ot-o.2 t1
1 2

d2 -4,2 a-
5

The symbolic representation and the corresponding signal-

flow diagram for the 3-port seríes adaptor are shown below.

1

-1I
,2

a-
J

b

a

ab I
,2b-

J

bz

b

b
1

2

d,fnn¡in1\:"h



If we choose port#3 as reflection-free, then

R3=R1 *R2,o2=!, and aS eXpected s33=0' This ensures

dependence of b, of a3. The symbolic representation

corresponding signal-f low diagram are shown be1-9w.

"1
-1alb
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we have

the in-

and the

-t1

2 Ja

3b

b

a b
2

2
b

-ctl
a_

ó

2

I

The generaÌ 3-port series adaptor reguires 6 additions and 2

multiplications, whereas the reflection-free design requires

4 additions and I multiplication. AIso, the series adaptor

can be derived from the paralle} adaptor and vice versa by

the application of a procedure ca1led flow-graph reversal or

transposition, âs described in [23].

Examp 1e#3 3rd-order eIl iot ic Iowpass f i lter

As our final example, we present the design of a WD filter

based on a 3rd-order elliptic lowpass prototype, as depicted

in Fig. 3.4. The WD structure shown in Fig.3.4c was derived

using the discrete-time eguivalents of the analog elements

and the parallel and series adaptors from exampJ-es #1 and

#2. The numbering of porÈs in Fig. 3.4c corresponds to the

individual adaPtors.

The overall computational requirement includes 18 addi-

tions, 5 multiplications, and 3 negations, where 2 additions
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can be eliminated by using the fact that the incident wave

at the output port is equal to zero and the computation of

the reflected wave at the input port is optional. The dis-

tribution of reflection-free ports in Fig.3.lc imposes a

particular sequence of operations to be followed in the com-

putation of the required signals, i.e.:

1. The reflected waves at ports #2 of adaptors PI, P2,

and P3 are comPuted.

2. The reflected waves at all ports of adaptor sl are

computed.

3. The reflected waves at ports #1 and #g of adaptors

Pf, P2, and P3 are finallY comPuted.

As a ru1e, the adaptor without the reflection-free port

should be located in the centre of the structure in order to

reduce the longest cornputational path.

To derive the n-port adaptor we need to obtain the N and

K matrices. To obtain N we use the oriented graph shown be-

low:
Á3-

4./
v 1

I1

i
6j

v

v

0
1

.=--/. u2 01

11

I = NT v.t21ñ 6

/ J

u4

To determine the K matrix we use the resistively terminated

network shown below.
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G e

3

GzG
1

e1 i

Let

G1=1/R, , G2

otRl

1

t6 e
2

+

GG

+
JGs

G
1 ) 3

CI oz
G + Gz +G

6

where, with respect to Fig.3.4a, wê have

a-
J

G G
4

=c2 Gq 1/L2 , GS I Go

ds"s* (1-ar) eo ozR2

1

1

Àpplying Thevenin's Theorem to the above network results in

a simpl-ified network shown below¡

1/R¡

5

a-R-55

G.
J C C.

J

+

e u6 oz"2
+

+

+-
G e

4 4

+-

Let
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CIRct

d4= * ozRz * osRs

I 1 zRz

otRl*oZR2*oSR3
,o5 R.

1

1

G
otRl I

and we obtain using the simplified network

us o, (1-o,o) -ozo4 03o4 (1-or)oo
"1

u6 -o1o5 crr(1-crr) o3os (1-crr)au

=Ke
x̂,

The N and K matrices are combined according

tain the 6-port S maÈrix. Note that the

functions of the independent parameter set

in the required sum of products form.

"2
e.

J

"4

to (3.26 ) to ob-

entries in K are
q

{ oi } i=r and are

3.3 STÀBILITY OF WAVE DIGITAT FILTERS

In this section we examine Some important properties of WD

networks. Since WD networks are derived from stable analog

networks via the bilinear z-transformation it follows that

the resulting WD filters are also stable. In this section vre

use Lyapunov's direct method [51] in deducing linear and

nonlinear stability of WD networks. Sufficient conditions

are presented for ensuring suppression of zero-input parasi-

tic oscillations. These results serve as a summary and were

originally presented by Fettweis and Meerkötter [ 26Ji the

presentation here follows' in part, Ashley [30]'
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WD n-port networks are said to be pseudolossless

instantaneous pseudopoÌ,ter, def ined by

Tp (n) V (n) i (n)

T
= ¡aT¡nlGa(n) (n) Gb (n)) /4b

(3.30a)

(3.30b)

egual to

theorem.

(3 . 31)

(3.32 )

wave vec-

(3.33)

(3.34 )

which

zer o

For

is absorbed

[20]. rhis
Iinear n-port

by the WD n-port at time t=nT, is

result is derived from Tellegen's

adaptors we also have

b (n) S a(n)

Hence, for pseudolossless n-port adaptors we obtain

0=a T T(n)( G S GS )a(n)

which must hold for an arbitrary incident voltage

tor a(n), and t.heref ore

T
G S GS

Postmultiplying by S and using * =U, w€ obtain

GS sTc

which states that l-inear WD n-ports are reciprocal with re-

spect to the symmetric reference conductance matrix G [48].
The pseuodulossl.ess and reciprocal properties hold for n-

port adaptors that have been modified for realizability if
the number of design parameters is canonic. The n-port adap-

tors proposed in this thesis are canonic as well as pseudo-

lossless and reciprocal.
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Before investigating the stability of linear WD networks,

we first formulate the staLe-variable representation of WD

systems. To achieve this, wê partition the v'oltage-wave

vectors according to reactive and resistive ports, i.e.

S S
1 11 T2

a1

(3.35)
szt szz

^z

where b, ,al correspond to delay-terminated ports and b2,a2

to input/ output ports. with respect to the n-port adaptor

ports, vre have at the delay-terminated ports

( 3.36 )

b

bz

zPab,. I

where P is a diagonal matrix with constant entries of I's
and -1's corresponding to capacitive and inductive ports in
the prototype network, respectively. Substituting (3.36)

into (3.35) yields

,UT PS PS a11l I2
(3.37 )

b S S
2T 22 2

d

2

where we used P=P

the di screte-t ime

-1. The corresponding state equations in

dcinain are

a, (n+ 1) PS PS
11 T2 1

à (n)

a, (n)b2 (n) szt szz

(3.38 )
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where 
^r ,b2, and u2 are the state, output, and input

vectors, respectivelY. t

The zero-input stability of both linear and nonlinear WD

filters can be investigated using Lyapunov's rJirect method

1511. For the system presently under consideration, we de-

fine the stored pseudopower as the Lyapunov function, i.e.

v (al) T
i aa G

(3.39)

and

ea sy

de-

( 3. a0a )

(3.40b)

(3.a0c)

(3.40d)

(3.a0e)

(3.40f)

11 1

where G=(G' t GZZ ) is partitioned conformably with u1

a2. Using the pseudolossless property in (3.33), it is

to show that from t=nT onwards, the stored pseudopower

fined by (3.39) is a nonincreasing function of time, i.e

4 v¡"rtn)) - v(ar(n+1))

= 
"TGrra, 

(n) - .l{n*1)Grr"r (n+1)

= 'l tr,)Grra, (n) - "lcnl 
slrncrrrslra, (n)

= "l {r,) ( Gr, - t|r., rsrr ) a, (n)

= aT (n) t|r"rrtrra, (n)

= u]{") G22b2|rr-)

^v 
(a1)

Since Gzz is positive definite, we have

AV(ar) > 0 ( 3 .41)

which is sufficient for staþiIity in the sense of Lyapunov

l5Il. From (3.41) we have AV(a1 )=0 for b2=0, which for a

non-zero state vector a1 can only occur if Èhe system is

unobservable. Therefore, a pseudolossless linear WD system
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is asymptotically stable, i.e. 
^V(41)>0 

, if and only if it

is observable. Ashley tgOl has shown that reciprocal WD

networks that are observable are also controllable, and

theref ore minimal (canonic in the number of de'Iays ) ' Thus,

linear WD systems that are minimal are asymptotica)-Iy stable

in the sense of LYaPunov.

Lyapunov's stability test can be applied to nonl-inear

systems, where signals before the delays must be altered so

as to satisfy the f inite register length requirement, i.e.
tuwe compute ä, (n+t) from ar(n+I) by applying a chosen nonli-

near function. AIso, a given nonlinear finite state WÐ Sys-

tem can be ouÈpu! stable, i.e. Er(n)=0, but not completely

stable, i.e. 3, {n*I)\0. Fettweis and Meerköttet l26J used

the concept of pseudopassivity, i. e. G> STGS, tg derive a

signal modification scheme that is sufficient for ensuring

output stability. They aJso showed that if the wD system is

canonic then complete stability for the nonlinear system is

guaranteed. AshIey t30l has extended complete stability to

include nonlinear WD systems that contain extra delays'

In general, a nonlineat f.ínite state WD system is com-

pletely stable if it is derived from a linear wD system

which is asymptotically stable and

v( tr(n+1)) < v( ar(n+1'ì.) (3 .42)

If the linear sYstem is stable, then

v( lr (n+1) ) < v( a, (n+1) )
(3.43)
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is diagonal andis sufficient [30].
positive definite,

For the case where G

vre have

11

v(a1)
M

Ig
i=1 r r 11

( 3.44 )= "TGrr"i
2

where M stands for the number of delays. Using (3.44), the

conditions specified by (3.42,43) can be satisfied by choos-

ing a nonlinear function which ensures that

lÏrtn*r) I 1l"r(n+i) | | Ïr{n*r)l <lar(n+1)l (3.4s,46)

respectively. The signal modif ications impl ied by ( 3.45,46 )

can be implemented by using the sign-magnitude truncation

scheme. Using this scheme,the signals are truncated in mag-

nitude to the nearest discrete value available in the regis-

ter. In fixed-point 2's complement arithmetic, the above

scheme is realized most economically by adding the sign bit

to the least significant position in the register.

For the case where G ,, is nondiagonal, ( 3.45 ) or ( 3 .46 )

may no longer be sufficient for guaranteeing nonlinear sta-

bility. This situation occurs naturally when redundant de-

lays are removed using Ashley's t30l procedure. This proce-

dure produces minimal WD systems and is presented in the

next section. To circumvent the problem of nondiagonal G,.,.'

one possible solution is to diagonalize G r., at: the expense

of introducing new design parameters. In Chapter IV' we

show that t,he method of redundancy removal followed by diag-

nalization of Gr,. is equivalent to transforming the nonmini-
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mal analog prototype into a minimal network with ideal

transformers. The solution to the problem of reducing the

number of design parameters to the canonic number for Some

basic adaptors is also Presented.

3.4 DESTGN OF CANONIC WAVE DTG]TAL FILTERS.

In general, the number of delays in a WD filter is equal to

the number of reactive el-ements in the analog prototype net-

work. Consequently, if the analog protoÈype contains more

reactive elements than the order of the filter (eg. Iadder

filters with finite attenuation poles), then the number of

delays is greater than is necessary in the resulting Ì^fD

sÈructure. The excess delays are usually due to loops and/

or cutsets of reactive elements and can be effectively re-

moved by following a simple procedure developed by Àsh1ey

t301. This procedure does not introduce additional multi-

pliers,unlike the procedure developed by Fettweis l32l which

cannot handle reactive cutsets without introducing addition-

aI mu]Lipliers. The redundancies most often encountered are

due to capacitive loops (inductive cutsets for dual net,-

works) and are the focus of this section.

The procedure derived by Àshley that removes all four

types of react ive redundanc ies i s based on the topol-og:icaÌ

characterization of the reactive redundancies followed by

Èhe formulation of constraint equations from which one can

deduce the form of the symbolic change of variables. The
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performed with respect to the normal tree which

by definition, the maximum number of capacitive

the minimum number of inductive twigs [ 52 ] .

voltage law, when partitioned wiCh respect to

tree, yields

0

V
S

uRu00

0u0

00u

T
CS

0-N

-N
T
CR

-*1,

V
L

*äo o

T -*1',

0 (3 .47 )

(3.a8a)

( 3.48b)

(3.48c)

( 3.48C )

uc

uG
-N

GL
ur

where the subscripts s,R,L,c,G and f denote link: capaci-

tances, resistanceS, inductances; twig: capacitances, re-

sistances and inductances, respectively. The capacitance-

only 1oops, defined by the link capacitances S, appear

explicitly in the first KvL equation, i.e.

0 N
T
CS

V
C

vs-
us -*1r".+br-N
( bs - *äro.

( as - *är".

T
CS

1

bc

)( z+

)( z
-1

+

)

1 )

where we used 2v=a+b, and for capacitive ports we have a=zb.

Theoretically, the capacitive loops in the analog prototype

can, under zero-input conditiOnS, Support a non-zerO current

at lþ ,o . Thi s undes i rable mode maps , via Èhe bi l inear z-

transformation, into the corresponding mode aÈ z=-! in the
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WD network. ÀÌthough this mode is unobservable and cannot be

excited from the input ports, in the 9lD filter this mode,

however, can be excited at power-up, i.e. when the states

are initialized with random values. Consequent-ly, an oscil-

lation occurs due to the eigenvalue of -1 which drastically

reduces the dynamic range of the filter.

From (3.48c,d) we have

"s (3.4e)

for zf-|. We now show that the effect of imposing the con-

straints in (3.49), via a similarity transformation, is to

inhibit the excitation of modes at z=-L

Since the only elements that can Support a non-zero cur-

rent at V =æ are the capacitances in the capacitance-only

ì.oops, then open-circuiting all the non-capacitive elements

does not alter this current distribution. The fundamental

toop equations for this subnetwork are given by (3.48a), and

since the subnetwork is purely capacitive, the scattering

matrix S given by (3,26) becomes the state-transition matrix

with eigenvalues of 1 for capacitive cutsets and -I for ca-

bs

s"c=oru[

n[ru.=o

pacitive loops. We constrain the state vector 
" SC

(3.49), i.e.

using

(3.50)"s
*1,

"c
U

tsc =

"c



The next state, aSC

en by

ara(n+1) =

ÊÊ

(n+1), for the constrained system is giv-

s ara(n)

-UNT
-U

T
CS aa (n)CS

-u0 *ä, N

U0

HI

U

u00

0u0

OU

000

000

*lro o

( 3.51)

(3.52)

- 2Kcs U U

S

aa (n)

ara (n)

ClearIy, the constrained system can only excite the modes

that correspond to the eigenvalues equal to unity, and modes

at z=-I are suppressed. Imposing the Same constraints in

the original network will also suppress the modes at z=-I'

The constraints in (3.49) display the form of the non-

singular transformation matrix whichf without altering the

transfer function from input to output, decouples the unde-

sirable modes due to capacitance-only 1oops, i.e. Iet

00 U

T

0

0

0

0

0

0

0

U000

o

u00

0u0
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which is partitioned according to (3.47). The new system is

given by

_r -1 -lT-b=T'ST(T-a)

Ats

whe re

N
T

"c=o"s CSS
(3.s4)

=Q

and consequently, the rows and columns in 3 tf,ut correspond

to capacitive Iinks can be deleted. This decreases the di-

mension of the system by the number of capacitive loops.

The pseudolossless property must also hold for the trans-

formed system, i.e.

A!tu
=¡ia

fu fuTfufu
G = S- G S

where it is easy to show that

d
T

-I GT

( 3.53 )

( 3 " 55 )

( 3. 56 )

bsbs= *ä, o.

Writing (3.56) in the partitioned form with the redundant

rows and columns deLeted Yields
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( 3. s7 )

( 3.58 )

Gc ( 3. 5e )

0

G

GR

0

0

0

0

0
L

00 0

0 0

Nc

0
G

G

The nondiagonal part of the reduced ë maÈrix,

nIsGstrat.*

is the node conductance maÈrix for the capacitive subnetwork

discussed above.

Ashley t30l has shown that the application of the simi-

Ìarity transformation in ( 3.53 ) followed by the deletion of

the redundant rows and columns in the 3 *utrix is equivalent

to deleteting the capacitive Iink colurnns in the original N

and K matrices. Therefore, the reduced system is character-

ized by

S

R

0 Gr,

NN 0G

0

G.,

0G -

N G[=

ft= [Gt*ftcuñr]-tftGs

If the analog prototype cont.ains redundancies which are only

due to capacitive loops lhen the corresponding WD netrçork

described by ( 3.59) is minimal.
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3.5 DIÀGONALI ZÀTION OF THE REFERENCE CONDUCTANCE MATRIX G

The sufficient conditions, given by (3.45,46), for guaran-

teeing nonlinear stability are applicable to systems with a

diagonal reference conductance matrix G. The' procedure of

removing redundant delays due to capacitive loops in the

prototype produces a nondiagonal symmetric reference conduc-

tance maÈrix. Ashley [30] has shown that it is possible to

diagonalize G, given by (3.57), via a congruence transforma-

tion, i.e.

ô=wrcw ( 3.60 )

where G is diagonal and positive definite. The G matrix in

(3.57) is block diagonal with respect to the link and tree

ports. Consequently, W is also block diagonal and (3.60) can

be partítioned accordinglyt

(3.6Ia,b)

where

GL= wI*l tu ô.=rlGrw,

G G
9. 9"

0

Ç=
0

G.

0

G

w.Q, 0

wt0

tr- l,1I-- (3.62a,b,c)

0

The scattering matrix that corresponds to ô is obtained by

applying a similarity transformation to the reduced S ma-

trix, i.e. from the pseudolossless property we have

L



*TGW = ( nuT )( wrcw )( w-Is w )

and

using (3.26), it was shown in [41] that

-1K=Wt

1

10

01
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( 3.63 )

(3.64)

( 3.65,66 )

(3.68)

sTw-17

=ôtôt

=Ç

ô = w-lsw

w;l ttr w,ñr K W,q,

0

To diagonalize G, wê apply a Sequence of elementary co}-

umn and rovr operations that clear out the off-diagonaI

terms. ConSequently, W can be expressed as a product of

these elementary oPerators, i.e.

where an elementary column

wL ( 3.67 )

(row) operator is defined by [43]

W=W wz
1

0

0

0

1

0

I

0

0

0

0

0

-Y

I
I

l{I

letvJeTo diagonalize G,

l, = ert/c¡ ( 3.6e )
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where G=[gij]nxn . The operation GWi yields a zero for the

entry ij, and since G is symmetric, the operation wlc yields

a zero for the ji entry. The upper bound on the number of

elementary column operations required is one half the number

of the off-diagonal terms. The operator WI
1

is also a valid

elementary column operator and can be used instead of Wi .

The inverse of wi is obtained by replacing Yi v¡ith -Yi .

To illustrate the procedure, consider E xample#3 in

Sec.3.2.2. The single capacitive loop in Fig.3.4a is charac-

terized by

N

1

1

CS

Using (3.58), we obtain

G-
5

G+

OG

10

-Y1 I

0

I G4 ][1 1]

by

by

0 1

G +7

6

5
G

4

4

The 2 off-diagonal terms can be removed

elementary column operation followed

The diagonalizationrow operation.

hrays !

+

G

G

1

GoGq +

G.

GGq

G.
44

applying a single

the corresponding

be effected in 2

G

G

G6 * G4(l-yr)

can

0

I _Yl

1

+

Ga
q

0GsG4*

4

+

4

Gs+
4

1

G
6

Yl =
G

G
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5
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2

1
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, wâs de-

dependent

Gt

(2)

G-
Ct

G^
+

4G-
b4

0

4
G

+

y2

G + 6

and, as assumed from the outset, ho inductive redundancies

are present, thus Wg=U ana Ç =G¿ .

The canonic set of design parameters, {"ri1l1

fined in Sec.3.2.2. IÈ follows that V, and y2 are

and can be expressed as f unctions of crt , i.e

4
( 1-ar)cr.

Y1
Gq Gs (r-or)o* + (1-cr1 1i-oo-cr)

G

+

G
4

(i -ar)o,
y2

G4 * G6 (l-cr)a, + (1-cr2) (1-oO-or)

In general, the approximation of {". }l-, to binary fractions

does not yield binary fractions for yI und y2. However, it

suffices to redefine the independent parameter set such that

all dependencies are expressable as sums of products of the

independenL parameters. The solutions for various basic

adaptors using this approach are presented in C hapter IV.

The diagonalization procedure yields a diagonal reference

conductance matrix è, âS wel-l as the transformed Ñ and ?, *u-
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variables, it
minimal analog

obtain using y

is possible to

prototype [53].
and ( 3.65)

construct the

For the present
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voltage -wave

correspond i ng

example, w€

on these and the transformed

I

t1

uz

J

10

10

11

I _Y1

01
1y
01

t5

u6

G6*G4 ( 1-yr )

I
-1

lII

5

l4rt t

I _Yl

01

1 1_Y1

+ Y1u6

=ñt ;,u6

The corresponding analog network with a minimal number of

reactive elements is depicted in Fi9.3.5. The minimal prop-

erty is achieved at the expense of introducing an addÍtional

design parameter, namely the ideal Lransformer turns-ratio

Y1 '
Gg

1
G

t

e u6

+

3.5¡ 3rd-order elliptic filter with a minimal number
of reactive elements.

v2 Gz
1

+ ++

Ytuo

V
3

0

+

5 yr:1

t5

tl t5

G +G

F i gure



Chapter IV

DESIGN OF BASTC CANONIC ADAPTORS

Dependent parameters arising either from the diagonalization

process or from the soJution of the K matrix are rational

functions of the independent parameters. This chapter pres-

ents designs of basic canonic adaptors where the independent

set of parameters has been redefined such that the entries

in K and N matrices are expressed as suns of products (SOP)

of the independent parameters. This is sufficient to ensure

that subsequent quantization of the independent parameters

to binary fractions produces an S matrix with binary frac-

tions for entries. Solutions presented are for the Brune,

3rd and 5th order elliptic topologies. À1so presented are

simplified designs with a reduced number of degrees of free-

dom due to the imposition of certain element constraints.

4.! GENERAL RESULTS

The network equivalence shown in Fig.4.1 can be used in
eliminating capacitive Ioops from nonminimal analog net-

works. Application of this network eguivalence tr the net-

work in Fig. 3.4 produces the minimal network shown in Fig.

3.5. Thus, the process of redundancy removal followed by

diagonalízation is equivalent to generating the minimal pro-

totype via the network equivalence in Fig.4.I.
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t1

ctcz

,2

t1

)

2

+

uz

uz

+

u1

v
1

uI

c I
C C+

s (C, + Cr)

c)

1
.)

1

0

n:1

c2

cz

C +

I

uz,2

++

c1 + cz

II c
1 1

a

t1nv i
t

,2

The above networks are equivalent if

r=cr*c2 n=

sC
1

-n

C n

0 V
2

C

cz

c +CI

ctcz C2(I-n)
1

C + c2I

Figure 4.1: Network equivalence used in generating minimal
analog ProLotYPes.



The design of VlD

partitioning of Èhe

such that

b 2v

and using b=Sa, wê obtain

65

n-port adaptors usually begins with the

available ports into link and tree ports

Ke
L

(4.la,b)

At the outset, however, it is not clear how to partition the

available ports. Certain choices may lead to a simplified

solution. Until a particular tree is chosen, solutions to
(¿.f) cannot be obtained. one can, however, derive a gener-

aI voltage transfer matrix by terminating every port with a

resistance in series wíth a voltage source. Consequently,

vu = NTv, V t

e, a e (4.2a,b)

(a.2c)

(4.2d)
v

Le

j{s*u)"

where L=i urj

Once a choice

] is the overall voltage transfer matrix.

tree is made, theh

T

nxn

for a

N K

-U NT

OU

KN

x]\r
T

00 -U

-KU

TuT( U

U

)

L

OU

(4.3a)

(4.3b)

K

NT

*, , r + u ) F (4.3c)
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where links are numbered first, and F and T were defined in
(3.20b). A particular advantage in using the L matrix is

the ease with which one can obbain the dependence relation

which results from choosing port m reflection'free. Using

(3,29), tre obtain

(,

mm
(4.4)

as the reguired condiLion. Ànother advantage in deriving L

is the visibility of certain parameter constraints that, if
impl-emented, reduce significantly the complexity of the

overall design.

4.2 DESIGN OF THE BRUNE ÀDAPTOR

Consider Lhe Brune section shown in Fig. 4.2. Many analog

ladder networks can be Lransformed using the network equiva-

lence in Fig.4.1 into minimal networks that contain Brune

sections. To solve v=Le we use the appropriately terminaÈed

network shown in Fig.4.3. Using the given references, the

fundamental loop equations become

1

2

V
.)

V+
(4.5a)

(4.5b)

can be chosen

possible par-

equations and

1 2

v1+nv2= u4

The Brune section has 4 ports, any 2 of.

as the tree-ports. Consequently, there

titionings. These

are given below:

which

are 6

Ioopare derived using the
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(4"6)
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Figure 4.22 The Brune sectÍon.
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G
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"1
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Figure 4.32 ResisÈiveIy terminated Brune section.
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(a.6a)
4n=

G G+
4 5

is the ideal transformer turns ratio. To c'ircumvent the

problem of working with ideal transformers, we apply the

network equivalence to Fig.4.3, except that capacitances are

replaced by conductances. The resulting ladder network is

shown in Fig. 4.4.

.5

G
4

e
4

eG
3

+

G G
5 2

-nG
5

2

"4 +.) "z
-F

The ladder network used to derive the L matrix
for the Brune section.

To obtain the L matrix

and v- in terms of e. ,2í
obtained using (4.5).

it is sufficient to solve only for ul

í=!,2,3,4. The remaining voltages are

Let

G G
32

G
1

1 3
+ G.

51 3

c
G

a2
GZ - rGs

d
G +G

4

(4.7,8,9)



Using Thevenín's theorem and the above,

simplified network shown in Fig. 4.5.

G3*G4
sS"S* (f-or) eO

v¡e

69

obtain the

5
nGGz+GG

1 5

ql"t* (1-cr)eo

Furthermore, let

aztz

Figure 4.5¡ Simplified resistive network.

I 1

ct Gl*G5 Gl*Gs
+-+-

Gg*G4 G2 -nG5
- Gr-nG, Gr-nG,
lr-¿-_

G3* G4 Gt* G5

( 4 ,10,11 )
cl- =54

1

Using these and Fig. 4.5, we obtain

uI = o4 [os"s + (1-o3) eo - arer) + ¡t-co) [o1e1* (l-ot )eol4.tZ)

uz = dsla,ej* ¡t-or)"4-o1er- (1-or)eol + (1-or)are, ( 4.13 )

+-

and together with (4.5) we obtain



(l1 (1-04) -o244

v
1

-nt

l-n 1

9.LmI mJ
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4.14 )

(4.15)

(4.16)

(4.17a,b)

o3*4 1-ar+crO (ar-or)

-0 o, (l-cr) osos cl, (clr-or)

o, (1-cr*-cu) a, [1-oO-or) o3(o4*os) 1-crr+ (oo+ui) (cr-ctr)

ar(1-ao-nar) or(n(r-ar)-oo) clj(o4+no5) 1-ctr+(oo+nor¡ (or-ar)

GI 5
l=

The L matrix is used in conjunction with one of the choices

in (4.6) in deriving the corresponding K matrix. Let

{ t,z,s, 4}<=> {i, j,m, n}

then, i f i and j are l ink ports, !¡e have

evV
J

ev

NT v e
mn

v
n

9.
n1 nJ

1

L
n J

where L={ Lii}Z*Z . As an example, íf we choose ports I and

3 as link ports (choice #3 in (4.6)), then

1
uz

u4

,2 -d- c[_1.5 0-0-
J) I

V u4 ct, (1-oO-nos) os (oo+nar) e-
3

In the process of solving egn. (4.2) we have defined

{o, lrl, . with n, as an additional parameter, the total
number of parameters is 6. The independent set can only

contain 4 (# of ports - 1 plus the # of nontrivial turns-

ratios), and therefore we have 2 dependencies. Choosing G,
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as a reference, the following conductance ratios are derived

using (4.6a,7-11):

a, (o, - 1) s1d5 G 0-G-555
Gz

G+

G2

3
Gz

n (1-ar)o, oZd4

(1-or) a, (qz-r)

a, (1 -oo-or) [l-n)o,

cl, ( 1 -cl. -o, )

G (or- 1)
(4 .18 )

5,G
2 na,

The 2 dependence

i.e,

relationships are derived using (4.18),

1-o
(1-n) (1-ar)aO (4.Ìg)

I
n ( 1-o,O -a, )

(ar-I)ao
(4,20)

t0s

In order to transform these dependencies to an SOP form' a

new set of independent parameters must be defined.

In the following, we use the K matrix as defined in

(4.17). This choice is independent of a, which decreases

the number of dependencies to 1, which is given by (4.19).

4 .2.I Non-ref lection-f ree Brune Desiqns

using (4.19), the following 3

parameters exj st:
ß1 =n

ß- = clo(1) ¿

solutions for redefining the

c-
5

1- c[-
.)

ot = 1-(1-ßr)9294

os = 1-ß1 (1- g2-gì94

B-J

ß 4
n (1 -aO-or)

(4.2r)
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ß1

g2

ß-
5

g4

=n

CI

=01

3
0,.

=4
tr (1-*t)

=d1

=d4

I -0-
=J

;(1-"r)

o4 = Ê1(t-ßz)ß+

os = 1-ß4 (ß1(1 -B)*(1-ßl) (1-ß3) )

(4.22)

os = 1-ß1(1-ß2)94

0s = 1-ßs(1+(1-$r)ßo)

(4,22a)

g2

ß3

ßr=t

4ß

Clearly, the redef initions allow o,, , ds,d4 , d5 , and n to be

expressed as the SoPs of { gi iilr Generally speaking, de-

sign #Z is preferred because ßs fixes the location of the

attenuation po1e.

4.2,2 Reflection-free Brune Designs

The imposition of the reflection-free property at an ínter-

connecting port decreases the number of degrees of freedom

by one. This decrease is characterized by an additional de-

pendence relationship that exists between the design parame-

ters.
Port #1 reflection-free:

Using (4.4), the additional dependence relatíonship is ob-

tained by setting l,rr= |in (4.14). This yields

d
1

z4 )
1

(1-a
(4.23)



Substituting (4.23)

tain

B =JlI

I-o
ß

3

2 (r-ßz)

- r-ßr (r-29)g
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into (4.19) and solving forat, wê ob-

0s = çr-oO) Q-2(I-n) (1-ar)aO)

n (1-2aO)

using (4.23,24), we can etiminatecr, and cru from the entries

in the K matrix given by (4.17l., i.e.
2(r-Ð/ a-ãrl "o1

(4.24)

(4.25)

(4.27)

o1o5
2

(1-
/n(I-Za.

/\4 ¿,'

d305 = ar(1-ao)(1-
2(r-fir/f-Jrjl"o

¿l:!-jvù-'t
(4.26)

and the remaining terms in the K matrix are either constant

or f unct ions of a, , cro , and n on1y. To remove the rat ional

dependence in (4.25,26), it suffices to define the term en-

closed by the dashed ]ine as a nelr parameter, i.e let

)

1

o4g2 cÌ

c1

3

g

3

3
5

= (I-ßz) (I-2 ¡t-ßr) g2ß3)
n(r-2ao)

and { ßi }i:1 is the new indepenaent parameter set. This set

generates entries in the S matrix that are in the SOP form.

Solving (4,20 ) for o, yields

o2=1+n(l-or)o,
0.

4

(4.28)
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which is used, together with (4.27), in solving for a unique

set of conductance ratios given by (4.18).

Port #2 reflection-free
The additional dependence relationship is obtained by set-

1ting 122=à i" (4.14), which yields

o, (1-or) (4.2e)1.
2

Substituting (4.29) into (4.20), and solving foro'
we obtain

1

(2cr, - 1 )

and a3'

-cll (4.30 )

2na- f 1-cr-5' 5 )'
L- I

1-d -(¡
4 ( 4.31)1-a

3 1-n)a= (r

Using (4.30,31), we eliminate cI and oS from the entries in

the K matrix:

oO (2cr-1)

i( Jl cror-t15

cI'-
5

q 
1d5

2n (1-oU)

(1-aO-or) (2ar- 1)
d3oú5 = c5 -

2 (1-n) (1-0s)

(1-oO)ao (2or-1)
cr(1-ao) = 1-cr4-

(4.32)

2n(1-ar)

oG^ao-ar) 
(2or-I )C[

ct-cl . = c,54 4
2 (1-n)a, ¡t-or)

The redefinition process is more invoJved than in the previ-

ous case because it is not possible to obtain SOP form by
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defining only one new multiplier. For lhis case, it suffic-

es to (1) define a parameter that removes part of the ra-

t ional dependence in (4 .32) , Q) make the appropr iate sub-

stitution in (4.32), (3) define a second parametei that re-

moves the remaining rationa] dependence. Using this
procedure we obtain 2 solutions:
(1) Let

ß1 = t ct = 1:2(1-ßr)ßzßg

ß
2

= 
oo

2no, (1-ar)

= 'ou-t
2 [1-n)

ß =n

. (1^29t1zd)Bs
v--5d.

ß

c!, =
4

3

29rlruu¡r-cu)
(4.33)

(4.34 )

3

1

1-s -0
4

2 (1-n)o, ¡l-ar)

o5 = (i-ßi) gr. 
L

- (I-z(1-ßr)ßror)ß,
u-I CL-\

= L-1t1zB 
s

where ß, is contained by the dashed line in (4.30).

(2) Let

5 0

c[

g2

o4 = ¡r-ar) (1-2 (1-ßr)ßror)
2a

5
B

3
2n

where ß, is contained by the dashed line in (4.31).

1

5

1

1+ßtß=
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4.2,3 Simplified Brune Section Designs

The complexity of the Brune adaptor can be reduced signifi-
cantly by imposing the following constraint: let

CI (4.35)

whích together with (4.19) also implies that

o4 = r¡t-or) (4.36)

Substituting (4.35,36) into (4.14) yields

or(1-n¡t-cr)) -nç1-orcr) arn(1-ctu)

=os
1

t
-oro5

a, (1-or) (1-n)

o, (1-n)

1-a I

1-oro, 01GS 0

(1-n) (1-arar) o, (cr+n¡r-cr) ) 1-cr

0 arn l-ot

(4.37)

The constraint reduces the number of degrees of freedom to

3. The entries in (+.Sl ) are functions of a, , oS , and n

only, and are in the SOP form. IL follows, then, that the

reflection-free design is essentially complete. However, in-

stead of using aU , tre choose to def ine o1o5 as one of the

design parameters. This reduces the maximum number of conpo-

nents in the product Èerms in (4.37 ) from three to two.

Consequently, lower word-lengths can be achieved for the

adaptor multípIiers.
The port #2 reflection-free design is oblained by setting

9,rr=I/2, which yields

I01Gs = 7 (4.38)



and (4.37 ) reduces to

L

a, (1 -n) +| -n/ 2 
" Cor- |l

1,
t-Ð r-o1

1-o

77

(4.39)

( 4.40 )

( 4.41)

1-a
1

1
õL

1

2

G-G-55

0_1.

2

1

]cr-"t
I
2(a I2 ) (1-n)

cx, ( 1-n)

S=2L-U

0,n+

0 q1t
1

Again, aII entries are in the SOP form and the number of in-

dependent design parameters, o1 and n, is equal to the num-

ber of degrees of freedom. Consequently, the design is com-

pIete.

The constraint on the conductance vaJues that corresponds

to (4.36) is given by

GrG¿

If the elements of Lhe analog prototype satisfy (4.40)' then

either (4.37 ) or (4.39) should be used in

where (¿.¿f) was obtained using (4.2). In some cases the an-

alog prototype can be redesigned, using any suitable opti-

mization technique, such that (4.40) is satisfied.



4.3 DESIGN OF THE 3RD-ORDER ELL]PTIC ADAPTOR

Elliptic transfer functions can be realized

ladder networks with finite transmission zeros.

der case is presented in Fig.4.6.

Gs/\þ

78

by nonminimal

The 3rd or-

G
1

G
2

"1

Figure 4 .6¿ 3rd order elI ipt ic f i lter.

The design of the wD adaptor based on the above prototype

was presented in example #3, Sec.3.2.2. In this section we

present a simplif ied design as well as minimal and diagonaJ.-

ized designs.

The minimal adaptor is characterized by

u1

,2

1

01

0
5

b
( 4 .42)

J
1

ts a, (1-co) -dza4 ogo4 "l
t2

I

e-
J

t6 -01c5 or(1-ar) ojo4
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where the redundant link port #4, due to the capacitive loop

in Fig.4.6, has been deleted. Ashley t30l has derived the

corresponding diagonal Lyapunov function that is different
from the reference conductance matrix G. This function, how-

ever, is only applicable when the adaptor is operated by it-
sel-f and is not a part of a larger system.

À 3rd-order elliptic transfer function can be real-ized by

the network in Fig.4.6 with tr+o element constraints:

G- =Ç^"1"2'

as a reference

we obtain

(+.¿¡a,b)

and {
,5cr. t1 '1=L as def ined in

(1:or)c [1-or ) c

G

(4 ,44)

(4.45a,b)

the number of degrees of

and crs can be removed f rom

independent parameters. De-

G-=G-56

Using G 
4

Sec . 3.2.2 ,

Gt o1.

G

Gz o2'

5
o¿

Ge

4
o4

G-
5

44
G

4 4

cl
3

o5 G

1-oO -o,G.
J

G 1-cr 1-0
34 3

The element constraints toqether with (4.44) imply that

o2

14ith the two element constraints
freedom is 3. Using (4.45), d2,

the entries in K, thus leaving 3

fine

*5o4o1

ß1 g ß, = crrcroI
g2 o1o4 ( 4 .46)



The resulting K matrix and

respect to G become

80

the conductance ratios with

2 7

(4.47)
ß ß v ß

1 2

-ß ß ß

K

2

1
ß

1 2 3
a
tJ

1G-
J

Gß GA
T

op ß
2 3

ß
3 5

- 2ß) Gr ßi

1 (4.48)
G ß 2ß Gl ß1( ß1

1 I 2

An example using the simpJ-ified adaptor is presented in the

next chapter.

The minimal adaptor v¡ith a diagonal reference cunductance

matrix v¡as derived in Sec.3.5. To remove the rational depen-

dence, the independent design parameter set must be rede-

f ined. From Sec.3.5 v¡e have

-Y1
4

hr l{I
(4.49)

1

U Y

G

+9" 1t
51

Gq G
0

and using (3.65,66), vre obtain

-1

-Y1

1

1-y

(4.50)

1

cr, (1-cro-ytos) oz (V, (1-ar)-ao) o,a(cro+Yror)

Ñt=*;tNrlvr=

K=W

I
0

I

t KW
9"

-CI,-cL_l5 a, (1-or) 0-0-55

(4.51 )
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The single dependence rel-ationship is given by

Y1 = ,1 ,

1 + ¡t-ar) (1*oo*ou)

(1-oa) crO

4.3.1 Non-reflection-free 3rd-order El l ipt ic Adaptor
Dèsiq ns

Based on (4.52) , the following 3 solutions for redefining

the parameter set exist:
(1) Solving (4.52) for o' we obtain

3
(1-Y1)

(4.52)

( 4. s3 )

(4.s4)

1-cx ¡t%ilc,o (1-Yr)
,--_---1---_
i(1-s,-0-)y, i

l--1--J 
-t-l

o1 = 1*[1-ßl)ßsß+

oj = 1-ß1ß3(1-ß4-ßs)

I

Define ßt=Yl

ß 2
oz

1-a
3D-

'5
ç r -aO -cr, )y 

1

ß4=o4

ß cl
5 5

where ßa is enclosed by the dashed Iine in (4.53).

( 2) Solving (4.52 ) f or os, v¡e obtain

ir
-l

1-cr )
1 cL-

5
+= o4( 1 )

I

ji!t__'l)tt
( 4. s5 )
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Def ine ß o¿
1 1

ßz=o2

= 1-(1-ß1)ß3ßsc)¿

3

*s = 1-ßo (1+ (1 -ß3) ßs)

ß3=Yl

Def ine ß

t)

4 = [1-ßr)ßoß5

(4.56)

¡t-cxr)+ (1-or) (1:yr) )(¿. Sz )

(4.s8)

Gene ra I -

f ixes the

ô-^,P4-u4

-c)¿1ats 3

¡r -or)v1

where ß5 is enclosed by the dashed line in (4.55).

(3) Rewriting (4.55), we obtain

_-l
c!

41-cr
5 (l -cx

L

0, 0
1 I

os = 1-ß4 (1-ßs* (ßr-ß1) ßs)

o4

¡r-or)y1

ßs = Y1

where ßo is enclosed by the dashed line in (4.57).

1y speaking, design (4.58) is preferred because ßS

location of the attenuation Po1e.

o2

c[-
J

ou2

ß-=J

o,4
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4.3.2 Reflection-free 3rd-order Elliptic Adaptor Designs

Port #1 reflection-free:
The additionaJ- dependence relationship

o, (l-cxo) = +

is obtained using ( 3.29a ) . Substituting

and solving for os, we obtain

i:1-I'L('-þ).0 t

o3 = 1-ßlßs(I-284)

0s = (1-ß¿) (1-2 (1-ßi) ßsß4)

(4.59 )

( 4. 59 ) into (4 .52) ,

(4.60)

(4.61)

1n ( 4. 60 ) .

Y1 lc 1-crO -o,U ) çt-za o)1-a
3

Define

o-^,P1 - ï1

ou2 o2

1-aO-cl, 1

ß-
-)

o1
2 (1-ß4)

2 (1-yr) (1-oO)oO

ß o¿
4 4

where ß, is enclosed by the dashed Iine
Port #2 reflection-free:
The additional dependence relationship

cl, ( 1-a, ) (4.62)

is obtained using (l.Z9a). Using (+.02) and (4.53), we can

eliminatÊ 01, o2 , and o, from the entries in the K matrix.

The only rational term remaining

1

2
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( 4. 63 )

r-2(r-ß1) (1*ß)9394

1

2(r_ß2)

1-ß1 (1 -B)g 3G-28 4) I 4 . 64)

o4 = 2(I-g)94

4ozo4
2 (7^u

5

by def iníng ir- as one of the patatnetets,

)

can be removed

define
ß1 =Y I

I -cr
3

Vt [1-oO-ar)

oI

2
ß

ß

5
0 o2

cf
.5

4

3

o4

2 (1-cs)

which compLetes the design.

As was mentioned in Sec.3.5, the diagona)-ization can be

effected in 2 different ways. The designs based on the sec-

ond method can be shown to be equivalent to the designs de-

rived above by interchanging G1 with G, and Gs with G6. This

is because the prototype is topologicalì-y symmetrical.

Also, other simplified designs can be derived by imposing

dif ferent constraints; for example6¡, =cx, or o2= o3. These de-

signs can be shown to be equivalent to the simplified Brune

adaptors interconnected with the parallel adaptor.



4.4 DESiGN OF THE

The ladder network

5th-order elliptic
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sTH-ORDER ELLIPTIC ADAPTORS

Fig.4.7 can be used in realizing

functions.
shown in

transfer

G3Aþ G4/!)

tr
1

The above network is nonminimat with 2 redundant capacitive

loops. A minimal network can be derived by applying the

network equival-ence in Fig.4.1 two times. One possible re-

sult is shown in Fi9.4.8.

/\) hþ

I:n,
+

Gz

Figure 4.72 The 5th-order elliptic ladder topology.

G+G-
J

+
7
hzGg

n1G

-t-'4
6

aa a r¡ (Gu+Gn)

uzn2'7

G ,1, (GS*
1

G
7 2

E I
+ +

A minimal referenced 5th-order elliptic
prototype.

-n

+
3

1
1l-

+

t

+

t1 t1u7

ú (cs+G7)

Figure 4.8



With reference to Fi9.4.8, the loop equations become

I v¡ Y2, V3

t Y. to
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( 4.6s )

( 4.66 )

(4.67)

respect ively.
matrix:

5

u6

J

4

ur * t1u7

n2u 
7

,7

u7 =2

5

Gl

'L=

tt

G

u2 *

ul *

and

+

n
G G

u4

5 6
n

1 2
+ G + Gg

5

are the ideal-transformer turns-ratios. We select

T

6

u, It

as the l-ink- and tree-port voltage vectors,

Using (4.65,67) , vre can obtain the required N

u1 1

J

u4

for the K matrix

version of the

0 -n1

)

1 0 1-n
1

0 1 L-n2

(4.68 )

resistively
is shown in

-n0 1

u5

6

u7

2

NT

To soLve

terminated

Fig. 4 .9.

As was

problem of

we f i rst obta in the

which

the case

working

with

with

the

the

analog prototype

Brune design, we circumvent

ideal-transformers by using

the

the
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t1

a

+

,7

Gg*t1
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e e
G-

J
G

a +
6

G
1

G
2

)

e
1 "2

Figure 4.92 Resistively terminated prototype network

resistively terminated ladder prototype to sofve for the

easily obtainable voltages. which, together with the loop

equations in (4.65) , yield the remaining tree-port voltages.

The resistively terminated ladder prototype is dispLayed in

Fig.4.10.

e
4 4

G.
J

Ge

Gt

G
5

G
6

G
2

u1
"2

+- -+

Figure 4.10: Resistively terminated ladder prototype.
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we novr apply Thevenin's theorem to obtain a succession of

simpler networks, i.e. with reference to Fig.4.10 let

G G G
G 3 4

cL I o2 (4.69a-d)
Gt*Gz G2*Gg G-+G-55 G +G

4 6

Using these , w€ obtain the simplified network shown in

Fig.4.11.

2 o4=
3

I

G4*G6
o4" 

4
g-e-

Jó+G

+GGq

G 
O+G U+Gr+

+G
5*G1

G
5

I

Also, let

1
e0

G2 *GgG1*G7

Figure 4.11: A simplified resistive ladder.

o2"2

G +G
5 6

cL-
5

o¿ (4.70)6

from which we have using superposition

G-+G
J 7

Gg

+-

ul = 0s(ouer-vr) + (1 -or)are, (4.77)



uz au(aoe 
o-v r) (I^uU)are,
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(4.72)

network shown rn

+

Using (4.70), we also obtain the simplified

Fig.4.l2.

Finally, let

1 1

cr, (Gr+Gr)

0 e -0 4 4 2 2

Figure 4.12: A simpl-if ied resistive network.

cr. (Gr+Gn)

e-o¿eot
1e133

d=*8cL

o, (Gr+Gr)

(4.73a,b)
7 G (G

8 5 1
)7

G+1+ GB*o6 (Gr+Gn)

and from Fig.4.I2 vre have

+1

cr. (Gr+Gn)

u7 = o7 (orer-arer) ar(uoe o-arer) (4.7 4)

the firsÈ 2 loop equations in (4.65),

matrix:

+

Using , and

the K

71
vu2'

we

v

solve for



K-

cr1 (1 -o5 ) *o 
1o7 la r-n r)r/urcr, (ou -n, ) o 

3os 
-o5o7 @ s-n I 

/-crocr, (o, -n, )

-o3o7 (or-nr)
4a6-d4a6(ou-nr)orcr, (ou-nrÑ\,

_-/
¡r-cr') *o2o8 @U-nr) ("

\ o+os

90

4.'75)

the foI-

5

ozt2 Gq

Gg
6

1-o

d7

1

-oro).r -o2o8

G

1-o
1

Ge 0s

Gô _ (1-or)c,

%%

o¿ - ct-
J/

Choosing Gg as ref erence, r.¡e obtain using {

lowing conductance ratios:

G- s-c,
J JI

Gs (1-aa) c, GZ (1-crr) c,

1 -os

.8cx. t1 - 1=1.

Gt ortl

o6

G ct
8

2
Gs

8
Gs

G-þ=

%

1-cr-
5

(I^alc,
(4 .7 6)

(4.77 )

= 
o4t2

1-cr
6
0B

c c )
I -o, -cx , 1' ur -o,

The number of degrees of freedom in the prototype is 8

whereas 10 parameters r.¡ere def ined in solving for N and K.

The 2 dependence rel-ationships are obtained using (4.66) and

(4.76\:

(1-0s
_\
) (1-nr)o,

¡{'"ù

i( r -oo ) 
\r( 

1 -n, )cxu
r-oz tr\

(4.78 )

The rational dependence is eliminated by defining the terms

encl-osed by the dashed lines as new parameters, i.e. let
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ß1

ß2 = n2

c[= C[-
5tsn

97=o7

o2

o4

1
1-(1-gI)ß39s

1- (1-ß ìB 4g 6

r-ßrßs(1-ßs)

t-Bz3 q(1-ß6)

(4 .7 9)

of a WD filter
in the product

For the adaptor

achieved by im-

(4.80)

( 4 .81)

I

1 -<v,

n, (1-or)
1-*4

ß6=o6

ß8=o8

3
ß

ß

0
3 3

4 n, (1-oU)

the design is complete.

In general, the computational requirement

and

can be reduced if the number of coefficients

terms in the entries of K is also reduced.

presently under consideration, this can be

posing the following constraints¡

1I
nßs

1

G +G 1 G

Ir

I 7 7

G-
5

1 +- 1+

1

1 +-
ß

G- +G-ó5

+G 2
2 I

4
+G

n
6 G

G

91+
6

G6

which, in

pressed as

terms of the conductance values r câtl also be ex-

G-G-=5/ GtGs G4Gg= GzGe
(4.82a,b)



The above conductance

imply that

ol = os

The number of degrees of freedom is

because of (4.83), we aJso have onJ-y

onic set of design parameters can be

ß
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consÈraints together with (4.69 ) also

o2 = o4 (4.83a,b)

reduced to 6, however,

6 parameters. The can-

defined as follows:

n= O¿-
b- \t-

J

= o1o7ßr=ar=uo

cx ß

ß

ß

I 1

ß==or=n,

4

0ß

5

=^N6 -2*8

2

and (4.75 ) reduces to

J
ß1 (1-ß3)

o

u7 -ß-
--)

ß 0
"1

e-
J

( 4 .84 )

(4.85)

1 3

"2o ßz(1-ß¿) o g 
2ß 4

6 5 6 "4

The entries in (4.85) are functionally simpler than the en-

tries in (4.75). Conseguently, one can reasonably expect a

substantial reduction in the computational requirement.

In general, the 5th-order eltiptic topology can be simu-

lated using either a combination of two Brune and a single

parallel adaptor or one Brune and one 3rd-order elliptic

adaptor. Using this approach, the overall design parameter

set becomes the union of the parameter sets for the fower-

-ß ß ß
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order adaptors. This set is usually different from the Set

given by (4.79), IL turns out, however, that for the simpli-

fied design the set given by (4.84) is the union of the pa-

rameter SetS from two Brune adaptors with r"ifection-iree

ports (defined by (4.39) ) and one parallel adaptor (example

#1, Sec.3.2.2), i.e. we can partition (4.84) as foLlows:

{ ß,.,03 , ß5,ß6 ' ß2'ß4

Brune Parallel Brune

Consequently, âñ equival-ent structure composed

and one parallel adaptor can be obtained, and

Fi9.4.13.

Ì (4.86)

of two Brune

is shown in

ß6 (r -ß2)

g2ß 
4Q-94)

ß/g
5

ß /(r-g )5 3

T -1

Figure 4.13: Equivalent structure for the simplified 5th-
order adaptor

'1 n Fig.4.13, wê give the port-reference conductances 1n

terms of the design parameters. The above structure is an

alternate and can be used, âS will be shown with examples irr

Chapter V, in reducing the overalL computational- reguire-

ment.

TT

1-ßs-ß6
ßs (1-ß1)

ßlß3 (1-ß3)

ß6Iß
5

ß6/ (L-B 4)

T



Chapter V

DETERMTNATION OF QUÀNT] ZED DESIGNS USTNG À
SEARCH ALGORITHM

In the previous chapter we derived independent parameter

sets for the basic minimal adaptors. These adaptors, togeth-

er with the adaptors described in Sec.3.2.2, cân be inter-

connected to obtain higher-order Structures. In a practical

situation, the independent parameters must be approximated

with binary fractions to ensure realizabi Iity with digital

components. In this chapter we present a finite search a1-

gorithm which, beginning with an initial binary fraction ap-

proximation, varies the numerators of the approximationS and

records all solutions that meet the specifications. Design

examples of WD filters based on the 3rd and Sth-order ellip-

tic prototypes are presented.

5.1 À FINITE SEARCH ÀLGORITHM

a set of M independent parameters ß={ ßi } iÏ1
parameter quatization is achieved as follows:

^ n.
ß., = "i ! ß.; , i=1(1)M

m.
1

integers, and quantization

each rational approximation we

Consider

t ia11y,

. Ini-

let

(5.1)

empl oy s

c omput e

where n. and m.
11

rounding. Also,

the corresponding

2

are

for

error

94



i=1 (1)M

9s

(5.2)

To find approximated designs which satisfy the specifica-

tions, we propose a finite search algorithm which consists

of the following steps:

1. The numerators of the binary fraction, f â, ] are var-

ied within the specified ranges and all solutions

tha,t satisfy given specif ications are recorded. If at

least one solution is found, the search is stopped.

2, If no solution is found, then the m for the parame-

ter with maximum ei , i=I(1)M, is increased by one,

and n, and ei are recomputed.

3. The search is repeated with care being taken to en-

sure thaÈ no duplicate designs (with respect to the

previous search) are Èested.

Note, that in the limit, a solution exists because the ini-

tial sets for each successive search converge to the contin-

uous solution. The reasons for using this approach include:

1. The entries of the approximated S matrix are sums of

products of t ßi ]rYr. Consequently, in order that the

overall word length of the adaptor remain reasonably

small it suffices to ensure that ili, i=1(1)M are

small.

2. Solutions wi¡h small ffi r, i=l(1)M exist because WD

filters are known to be insensitive to parameter

quanÈ ízations 1,9,46, 47J,

e I ß./8.l-I1



3 For stabi 1 i ty reasons

i=1(1)n, where n is the

quirement results in two

corresponding parameters :

96

it is required that GitO

number of ports. This re-

types of constraints for the

ß.I
0< <1 s (ßt) >0 (5.3,4)

where g( ß1) is a continuous function derived from the

formulae for the conductance ratios. The above are

termed explicit and implicit constraints, respective-

1y. These constraints def ine the feasible region

and, for all design sets defined in Chapter IV, this

region is bounded. This means that for constant *r,

i=l (1)M, ihe nurnber of f easible design parameter sets

that can be tested, âs well as the time required to

do so, is finite.

4. Solutions from all local optimum regions are record-

ed. These can then be compared with respect to the

computat ional requirements.

It is important to note that, although theoreÈically it is

possible to test all feasible parameter sets, the computer

time to do so is prohibitive. Consequently, the ranges wíth-

in which the numerators are allowed to vary must be de-

creased. Another approach is to confine the search to a sub-

space, i.e. a subset of the parameters becomes fixed and the

rest are allowed to vary. In most cases' partitioning of the

parameter set is apparent since the parameters are defined

with respect to topologically symmetrical prototypes.



5.1.1 ComputatÍon of the Offset Vector

To generate the different parameter sets

merators, defined as q , of the rational

vary within specif ied ranges, i.e. v¡e let

97

we allow the nu-

approximations to

pi ê

Ir'rz'

i=1 (1)M ( 5. 5 )

(5.6)

(5.7)

p= ¡ p1 Ì1Yi

(5.8)

( 5.8a )

Ini n.
1I

q q+
l-

where s., i=1(1)M are positive integers. Define
1

P fnf,f2 ttl l

and

o

R

v¡here rí are integers. The nev¡ numerâtor vector

can be computed as follows:

tM

'tM]

P=P +R
o

t1*t1 *tl'l ]n2*'z

pi p2

i=1 (1)M

PMI
and

pi
ß a m.

t-
2

The R vector is referred to as the offset vector and its eI-

ements are generated by counting in a mixed base number sys-

tem. In this system, the 'dig.its' ri count f rom -5 1 to s i.
The counting algorithm is presented in Fi9.5.1.



START

ol COUNT = 0R=[ o, o,

i=0

COUNT COUNT + 1i=i+1

+ tr r
1 t

r. < s.1- 1

ï b
1I

f.
1

NO

STOP

Figure 5.1: Flowchari for generating all possible R vectors

From Fig.5.1, we see that the value for COUNT, when STOP is

reached, is

NO

c

( 2s. + 1 J''l

YES

98

M

]I
i=1

M

ÏI
i=1

A

^=

b.
1

max

COUNT

COUNT

(5.e)
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where bi, i=I(1)M are defined as the bases. The val-ue of

COUNTmax corresponds to the maximum number of possible R

vectors, and hence possible design sets, thar. can be gener-

ated given the ranges s, , i=1(1)M. In lexicographic nota-

tion the vaLue of COUNT can also be represented by

COUNT = t^,ltN,l_ 
1

t2t r
(5.10)

The decimal equivaLent is computed using

M i-l
COUNT = f, r. IT b. + r, (5 ' 11)

i=z t j=t J r

and if COUNT<0 (this is possible because r i are allowed to

be negative), then repl-ace COUNT with COUNT+COUNT,n"*. Clear-

1y then, there exists a one-to-one correspondence between

the integer set { i=1(1)COUt'ttr"* } and the R vectors gener-

ated by the algorithm in Fig.5.1. To illustrate, consider

the ca se l't|=2 , 2=I. Using (5.9), we obtain
1

COUNT
ma X

and the correspondence
,2

01
1-1

IO
11

-1-1
-1. 0

-1 1

0-1

00

between R and COUNT is shown below:
t1 COLJNT

)
IT3

i=1
9

I
2

3

4

5

6

7

8

9



The numbers 12r I vrere generated sequentially using the

gorithm in Fi9.5.1.

The numerical correspondence between R and COUNT is

to speed up the process of generating all posÊib1e R

tors, which together with P , generate feasible sets of

r00

a1-

used

vec -

de-

sign parameters. To show this, consider the offset number

tr,{tM- 
1

tjtj-l '2tr
(5.13)

(5.14 )

-(sr+rr) (5.15)

such that

â

n.+r.)1
m.

n7
¿

j

is outside the feasible region (tnis can occur for parame-

ters with implicit constraints). To cause the search to re-

turn to the feasible region, the value for tj must change'.

To accomplish this, one possible method is to count up from

R given by (5.13) until tj changes. A more economical meth-

od, takes advantage of the relat ionship given by ( 5.11 ) , i . e.

we add

0 0 1 -(s t*r¡ -1) - (sr+r r)J

to the number in (5.13). The result is given by

rMtM_1 (r.+1) -rj _t -s -q"2 "1 (s.16)

which shows that, âs required, the value for tj changes. Ad-

dition in the mixed base system with positive and negative

'digits' is analogous to the decimal system, the difference



being that the 'digits'
of [0,9]. The variable

corresponding to ( 5.15 ) ,

j -1
ACOUNT - Ii

1. _ 1A- I

r: are boundedI

COUNT changes

io

by the positive value

s. +r. )1 1'

by [ -s1 , s 1i

101

instead

(5.17)bt (sr+rr)

ClearJy, for problems where M is high, this method may sub-

stantiaLly reduce the totaL execution time by skipping over

most of the nonfeasible R vectors. To illustrate, consider

the second entry in the above table:

COIJNT = 2

and suppose that g2 is outside the feasible region. Then,

using (5.15-17)we obtain

1-1
'2" l

bL

1-1

10

;-)
r(

i=2

i-1
il

k=1

COUNTtz" r

+

2

3 <- ACOUNT

51 -1-1

where 1211 =-l-1 is the 5th entry in the tab1e, and/the carry

Cigit is ignored. The R vectors 10 and 11 were skipped over.

À procedure similar to the above v¡as used in [35] in reduc-

ing the number of complex multipJ-ications in the computation

of the discrete Fourier Transform (oft).
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5.1.2 Computation of Fiqure of Merit

To determine acceptabil-ity of a specif ic design each fea-
^sible set [ ß, , i=1(f)U ] must be assigned a frgure of mer-

it (f¡¡). To compute the FM, we first examine the specifica-

tions which are usually given in the form of a tolerance

scheme in the frequency domain. The general lowpass case is

shown in Fi9.5.2.

A(f)

AMIN

RW

RW 

- 

ripple width

AMIN 

- 

rninimum allowable attenuation in the

stopband

f_ _ passband corner
c

f_ 

- 

stopband corner
s

F_ 

- 

sampling frequency
S

A(f) 

- 

attenuation characteristic in dB

Figure 5.22 Lowpass attenuation tolerance scheme

f0

Sc
ff

F/2
S'



In Fíg.5.2, f is the discrete-time domain freguency

(F-/2 is the Nyquist frequency). To compute the.S'

merit, we first evaluate A(f) at a few selected

the passband and stopband. From these, wÊ deterririne

lowing:

a = maximum attenuation in the passband
max

a = ninimum attenuation in the passband
mln

s = minimum attenuation in the stopband
mln

Using ( 5.18 ) , we def ine

103

variable

f igure of

points in
the foI-

(5.18 )

(5.1s)a
max

a AT,IIN
A

max
m1n

FM
s -am1n m1n

CIearly, designs that satisfy the specifications have FMil.

The time required to compute the FMs for all feasible de-

sígns can be greatly reduced if only a sntal1 number of

points is examined (we suggest 4 points in both the pass and

stopbands). Once the value of COUNTmax is reached then, all

the designs that tentatively satisfy the specifications are

reexamined at L28 equally spaced points in the range

[0,F /2). Using this approach, the rate at which feasible
'S

designs that do not satisfy the specifications are rejected

i s i nc reased .

The attenuation characteristic A( f ) , at the selected

points, is evaluated using the anaì,og prototype network,

i.e.

RW



A (f) 2 01og
E- tiCI)

V (irì)
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( 5.20 )')

f,) = tan( rf/F
S

where E ,, is the voltage source at the input port and V, the

voltage accross the output port. The conductance values, Gi

i=1(1)n, are obtained from { â, , i=1(1)M } using an algor-'1

ithm based on the formulae derived in Chapter IV. The fre-

quency response algorithm can be easily obtained from the

topology of the analog proÈotype. It is important that this

algorithm compute the A(f) with the fewest number of multi-

pJ-ications and additions possible. This is because this a1-

gorithm is used extensively throughout the search. ÀIso, for

nonfeasible designs, the algorithm that computes the conduc-

tance values from the independent parameters must return the

index value of the parameter that renders the set nonfeasi-

bIe. In the case of multiple nonfeasible parameters, the

highest index is chosen in order that the largestÂ COUNT,

calculated using (5.17), is obtained. The listing of the

search algorithm, written in FORTRAN WATFIV, is given in Ap-

pendix À. Also listed are examples of routines that compute

the conductance values using (4.48) and À(f) for the

3rd-order e11 ipt ic prototyPe.

)



5.2 SUMMARY OF THE DESIGN PROCEDURE

The following points serve as a summary

canonic wD filters:
1. Based on the specifications in the

main, the corresponding requirements

the analog prototype using

0 tan( t¡f /F

105

for the design of

dicsrete-time

are obtained

do-

for

)
(5.21)

S

2. An analog prototype with specified element values is

obtained using a suitable catalog or any oÈher appro-

priate synthesis technique.

3. The analog prototype is denormalized (prewarped) us-

ing (5.21) as the frequency scaling factor. This, in

effect, maps a critical analog frequency point (usu-

alty the passband corner) into the desired discrete-

time frequency Point.
4, The adaptors, which simulate the topoLogy of the pro-

totype, âre selected. For most ladder oesigns, the

adaptors derived in Chapter IV are sufficient. Also,

i f necessary, reflection-free ports are chosen.

5. For each adaptor, the nominal independent parameter

set { ßi , i=I(I)M } is computed.

6. An algorithm that determines the feasibility of a de-

sign and computes the conductance values for the en-

tire network is obtained from the conductance ratios

formulae for each adaPtor.
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7. An algorithm that computes the attenuation character-

istic is obtained using the topology of the analog

prototype.

8. The integers *i, si i=1(1)M, and the frequency points

from which the FM is to be computed are chosen. These

are supplied to the search algorithm which, using the

algorithms from points 6 and 7, selects any suitable
quantized designs.

9. Finally, a digital f ilter algorithm is obtained using

the methods descr ibed in Sec . 2. 3 .

5.3 DESTGN EXAMPLES

a lowpass characteristic with the following speci-

f ications:

RW 0.06 dB

frlt, = 0.3125 AMIN = 32.0 dB

Using (5.21), the corresponding analog critical frequencies

are:

fì = tan( rf /Fc'cs 0.4r42r

Q_ = tan( nf _/F^ )S-S'S
r.4966r

5.3.1

Consider

The

Example #1

= 0.125f /Fc's

)

normalized

A =3.61313.
t-

value for the

Using SaaL's catalog

stopband corner i s

[54], the given speci-
S

\l



fications can be satisfied with a 3rd-order elliptic

teristic designated by CCO31017. with reference to

the normalized and denormalized element values are:

normalized denormalized

G 0. 06304s

G 0.808974
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cha rac -

Fi9.4.6,

0.40286

0.15220

G6 = 1'95304

the frequency scaling

wD f ilter, we choose

(4.46-48), i.e.

1.0GzG,= r'o
1

G
7

G

G-
J

G3 = o '97260

4
G

4

G
6

where, to denorma!íze,

factor. To design the

the 3rd-order elliptic

we used 0 as
c

corresponding

adaptor given by

G-
5 5

G
1 1

0. 33863 g2
Gt *G5ß 0.04626r

1
G +G

1 5 2+

<1

+G
3 4

G

G
3

ß 0.09915
3 Z(GS+GO)+Gr+ G-

5

To ensure that i=1(1)6, v¡e use (+.¿g) to deriveGíto'

o.ßs.Bz/ßrrl 0<ß (5.22)
1

as the necessary and sufficient conditions. A routine (writ-

ten in FORTRAN) that checks for the above constraints and

computes the conductance values is listed in Àppendix A.

The attenuation characteristic is computed using the fol-

lowing algorithm:
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1et

e
Y1=G1 + jCIG. (ia) Y (2 * Y tzz)I

v r3n)

1

z

which is derived

FORTRAN, is also

Àpproximating

yields

using Fi9.4.6, This algorithm,

listed in Appendix A.

{ ßi } ,1, with b birs, i . e.

r.¡ritten in

ffi1=ffi 2=fr3=5 ,

3

32

binary fractions
ran9es:

br=41

29

3 =25

2
jç¿/ ( Gs

Gt
G+

)
ù¿ )

11 1

3¿

and using (5.5,22), the numerators of the

can be allowed to vary within the following

Pte[11-10,7I+20 ] 1et sr=20

p2. I 1-o , 1+14 I let sr= 74

P¡ t l, 3-2 , 3+I2 f let s, = 12

â, op-
J

Þ2

bz

b

where s. , i=] ,2,3 are chosen as the maximum allowable devia-
1

tions. Using (5.9), v¡e obtain COU*Irr, =29,125, The number

of designs actually tested vlas 1739, i . e . 27 ,986 design pa-

rameter sets were rejected because Èhese did not satisfy
(5.22). The FMs were computed using 7 pointst 4 in the

passband including fc and 3 in the stopband including f s.

The search was completed in 2.5 seconds of execution tíme

(using the AMDAHL V,/8 CPU) . Out of 1739 f easible desighs, I

1
1I I 4[12 ,2

passed !
R (=) ß--

32



and using (4,48), v¡e have

G 6 3

The attenuat ion characteri st ic i s di spJ-ayed in

port numbering as shown in Fig.4.6, the state

come

4
GG-

J
Gz

1
1

109

, G5 = G6 -- 10

Fi9.5.3. I^¡ith

equations be-

bl(n)

b, (n)

a, (n+ 1)

a, (n+ 1)

au (n+ 1)

-3 -1 2

-4-44

5 -r 2

-8 -B

-1 -3 2 -r I

9 -r

1 -1

11

+
5

ar(n)

a, (n)

a (n)
3

a- (n)
J

au (n)

I
T

-1

d

52

where the redundant state a 4 has been removed. Applying the

shift/add decomposition described in Sec.2.3.2 to the above

matrix (with the second col-umn deleted since a r(n)=0) re-

sults in the following algorithm:

a_
5

b
dodl

ds

d us* 
^6

uI

d6=ul

a-
.5

+

9

1
(n) (( -dt/2 + a, )/2 a, )/2

,(r'' )
( d-/2 + a, )/4 + a.- /' 3' o

b

b

a

a (n+ 1)
3

d8/2
9

a, (n+ 1) (( -d7/2 * ,s )/2 + a, )/z

d
7

aU (n+1) /2+a 3 )/q
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Figure 5.3
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The above algorithm can be implemented with 11 adders. If we

elect not to compute bl, which is optionaf, then the count

reduces to 9 adders. Employing magnitude truncation at the

states guarantees Suppression of the zero- inptit parasitic

oscillations.

5.3.2 Example #2

specifications:

RW = 0.3 dB

AMIN = 32.0 dB

Consider the foIJ-owing

f" = 3'4 kqz

ft = 4'6 kIJ-z

F 32.0 k]Hz

An interpolator which increases the sampling rate from B kHz

to 32 kHz requires a lowpass filter with the above specifi-

cations to filter out the baseband [55,56]. From Saal [54],

we have that a 5th-order elliptic characteristic designated

by CCO51548 and frequency scaled by

ç

o = tan( nf./F, ) = 0.34677
c

satisfies the

have

specifications.
norma 1 i zed

GI = G2 = 1.0

Gs = o '86162
G4 = 1 '2460r
Gs = o '2ogrr4
G6 = o '64340s
G7 = o'983399

Gg = I.52876

with reference Èo Fi9.4.7,
denorma 1 i zed

we

G1

G.
J

G+

G-
5

Go

Gl

Gs

Gg

= G2 = 1'0

= 0.29878

= 0.432077

= 0.603034

= 1.85542

= 2.835884

= 4.40858

= 2.03186IGg = o'704588



As an initíal attempt, wê choose the

elliptic adaptor given by (4.84). Using

for G, and Gz , i.e.

LI2

simpLified 5th-order

(4.82) , we can solve

= 0.47316
G¿Gg

GG

G-G-
= 5t =1.40509

Gs
1 2

G
6

We compute the corresponding parameters using (4.84):

1

op

ß

Gt
= _--j- = 0.331313

Gr*G7

G_

= ' = 0.175356
G-+G-5/

ß1

1+
Gg*ß4 (Gr+Gn)

-E;G¡¡Z
= 0.038815 ß

= "' = 0. 18889
G2* Gg

= 
tu 

= 0.4773r
G6*Gg

ß^ ß-¿J

g2

3
ß 4

ß-
J

= 0.035578

2 2

6

c1

ßtßr(Gr+Gt)

From (4.76) and (4.84), we have

Gt ttß1

q=T;
Gs ttßt

% 
= 1-E;

G c ß
2

c, (1-ßr)-r4-
c, (1-ß1)

Gg

Gq

Gg

6
cr(I-ßr)

tzBz
=-,_Ba

G

1-ß
8 4

Gg

Gs

cr(I-Br)

>0,

ß- ß,5-t
=

1-ßs/ gr-ß6/ ß2

-- ßoßz 
-r-gs/g[ß6/92

i=1(1)4

-T;

5

Gg

G

G

G

(5.23)

,2

7

ßG g4

i=1(1)9, it is necessary and suffi-and to ensure that Gi

cient that

8 3

1

5

<1

<ß

<ß
I

0<ß

0<ß
0<ß

6 2Q-ßs/ sì
(5.24)



The attenuation characteristic is computed using

fol-lowing algorithm, which vras derived from Fig.4.7:
Yl = Gl + jflG, Y4= I * ZIYI

113

the

(5.25)

Z, = iA/( G, n2c-)
J

Y5 = Yl * Y2Y4

Y6 = Y4 * Z2Ys

Y-Y-
.5 f)

Yz

J

jaGs

G, + jQGn Y_
J

+

n2 c-tb'

E1(ja)

v2 uCI) Gt

The imposition of the element ,constraints changes the re-

sponse of the nominal filter. I f the resulting prototype

does not salisfy given specifications, then, it is necessary

to determine if a set of element values for the prototype

exists that does satisfy the specifications and the Èwo eIe-

ment constraints. If no such set can be found, then, a dif-
ferent adaptor must be used.

The optimization to determine the existence of an alter-
nate set of element values can be performed with respect to

either the eLement values or the corresponding parameters.

We used the simplex algorithm ISZ1 because it is easy to

program and does not require eval-uations of partial- deriva-

tives. For the present example, the optimized parameter set

is: a = a R = n )( I

.1 O.ss60=ä ß2=0.2016=i

0.3310 = å

Z. = jQ/ ( G^¿+

Þ-
.)

0
4

1

422453

10
îß

ß

10
256ß

5
0.03991 ß 6

= 0.05956 =



vJhere we also

tions. Usíng

give the initial binary fraction
(5.24), the following ranges can be

-2 t3=2 t4=4 t5=10 su=10

-5 bj=5 b4=9 bS=2I bU='21

114

approx ima-

used:

ç t2

bzb1

=4,

=S

Using (5.9), wê obtain COUNT^u*=893,025. The number of de-

signs actually tested was 176,400, and it took :.28 seconds

of execution time to complete the search. Out of the designs

tested 18 passed the specifications. These desigñs, however,

turned out to be equivalent and differed only with respect

to internal scaling leveIs. We chose

3

I

ft=[-l

with the

(5.23):

0 o -1 6 -7 l â= t 256
11111rî i i ß l

corresponding conductance values obtained using

48 G 16 48G
3

I 3 G 9

The attenuation characteristic is shown

state equations, with port numbering as

are derived using (3.38):

I

Gz

135Gs

r44Gz

Gg=

G-
5

64
G

256 (ì

27

in Fi9.5.4. The

shown in Fi9.4.8,

b2 n) 16 -16 61 0 768 -237 tr
---t

(n) 
i

a, (n+ 1)

aO (n+ 1)

a, (n+ 1)

aU (n+ 1)

-r44 400 -9 -768 0 -7 IT

256 0 0

48 -48 439 0 -768 -7rr

ar(n)

ao (n)

a- (n)
i

L92 64 0

0064 0

-64 64 12 0

au (n)

ri 7
{

a, (n+ 1)

5r2

0 436 (n)
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Apply i ng

equat i on

d

the shi ftladd

results in the

decomposition to the

following al-gorithm:

dl1='4*^7 dr4=^r*

116

above matrix

3

5 1 3

d ^r* ^4

aà

^L

I

d1 
o=

a

a

4 7

3
dg

bI(n)

b2 (n)

a, (n+ 1)

ao (n+ 1)

d I2 a-
5

+ u7 d15="1*"5

a-+
b

d
13

d d d
9t6 B

b2Ø) = ((( (( dB/4^ðs) / 4+ð'r3) /4*ao) / +-aro)/ 4+a)2

a, (n+ 1) = ( ( ( ( ( ( (-ds/B-dr r) / 2^d s) / 
4+ar) / z-dLù / z+d 

12) / z+a r) / 2-d r)2

ao (n+1) = ( (((((-d8/8-drr) / 2-ðs) / 4'drà / 4+dtr) /2+al /2-drc)2

au (n+1) = ( -dg/4 + drr) /2

au(n+1) = ( ao/4 + aU )/2

ar(n+l) = (( -dB/4 + clu) /4 - dI3)/B * a,

The above algorithm can be implemented using 28 adders. We

can reduce the number of adders by employing the equivaLent

structure shown in Fig.4.13. Since ß, = ß, and ßs =Bq, the

scattering matrices for the Brune adaptors are equa1. The

state equat ions and thei r shi ft/add real izaLions for the

Brune and parallel adaptor are given below:

^7^7
+ dg

b1(n)

b2 (n)

au (n+ 1)

aO (n+ 1)

-3

-8

3

3

-2

0

-6

0

-1

8

1

1

L2

0

-12

4

a, (n)

ar(n)
a, (n)

ao (n)

d aa
_L
8

6

((( d

-d_5

((((

( -ds

/) ar) /2 dì/4 + ao)2
5

-ds/2 + ar)/2

/4 + ð)/2

+ d,\/26' ar) /2 al2
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bl(n)

b2 (n)

(n+ 1)

-rr2 3 237 a, (n)

ar(n)

a- ln)
J-'

1

128
16 -r25 237

dq

d_)

d-
5

a-
J

^2

^ra-
J

16 3 109

b1 (n) = ((( (-do/4+do1 ¡ ++d) /z+ar) ¡z+ar) /2+d,

b r(n) = ( ( ( (-d 
o/ 

a+ d 
O) 

/ a+ d r) / 2+ a r) / z+ a r) / 2 -d q

a.(n+1) = ((((-d4/ 4+dl / 4+dr1 /2+ar) /2+ar) /2

with respect to Fig.4.13, w€ have that the left-hand-side

Brune adaptor requires 7 adders (computation of O, is not

required), the parallel adaptor I adders, and the right-

hand-side Brune adaptor 6 adders ( at =9 ) which brings the

total to 2I adders. The structure is operated as folJows:

compute

1. reflected waves at ports #2 from both Brune adaptors,

2. reflected waves from all ports in the parallel adap-

tor,
3. all the remaining reflected v¡aves from both Brune

adaptors.

Àlso, the reflected waves from the delay-terminated ports

become the incident waves at the next sampling instant.

5.3.3 Example #3

A lowpass filter,with specifications as shown in Fig.5.5,is

used in an interpolator that increases the sampling rate

from I kHz to 64 kHz [58]. From Saal [54], we have that a



5th-orde r

f requency

satisfies
we have:

elliptic characterist ic

scaled by

Q. = tan( 3.ar/6a.0)

these spec i f icat ions.

norna 1 iz ed

118

designated by CC055048 and

= 0.16846

With ref erence to Fí9.4,7 ,

denormalized

=Gr=r'o
= LI2338

= I.49094

= 0.272642

= 0. 769882

= 2,09392

= 2.49416

= I.7 43254

G

0.008479 =

Gt

G-
J

G+

Gs

Ge

Lr- -I
U-

5

G2 = 1.0

= 0. 18925

= 0.25II7

= 1 .6184

= 4,57

= 12,43

= 14.805

= 10.348

Gl

8

Gg

G

G

G

G

G

G

4

5

6

7

8

9

As an initial attempt, wê choose the

elliptic adaptor given by (4.84). Using

simplified
(4.92) , we

5th-orde r

obta i n

Gt= 1 .45345 G2 = 0.568727

we cornpute the corresponding parameters using (4.8a):

1
0.104694

a
l.i -J

0.115206

g2

g4

0.0s20s7 = T2

0.008822 = #

ß

ß

3

Tz

1

8

2

8
3343060

4
ß

5 m

the initial binary fraction approxima-

design, with the two el.ement constraints,

specif ications and, therefore, optimiza-

The conductance values, parameter con-

6

whe re

tions.
still
tion

vre also give

The nominal

satisfies the

I S Unnecessary.
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straints, and the attenuation -characteristic algorithm are

given by ß.23,24,25), respectively. Using (5.24), the fol-

lowing ranges can be used¡

,1 = 5 ,2= 4 ,S= 4 ,4= 4 ,S = 4 ,6="4

with the

(5.23):

11

G 42

b-=9
b

bsbqb3=9bzb

Gz 2T G

9

58 G

9 9I

Using (5.9), we obtain COUNT*"*=649,539. The number of de-

signs actuaJ-ly tested was 103,590, and it took 87 seconds of

execution time to complete the search. Out of the designs

tested, 2 passed the specifications. These desighs, however,

turned out to be equivalent and differed only with respect

to internal scaling Jevels. We chose

ft=rooooo-1 I , â=rhi?++å#, l

corresponding conductance values obtained using

1
G-

5
Gg=6

7

7G

-6 490 0

84t204160

406

315

in rig. 5. 5. The

shown in Fi 9.4 . I ,

a, (n)2 -2 14 0 960 -2s2

-77 493 -7 -928 0 -882

532ug-
64

The attenuation characteristic is shown

state eguations, with port numbering as

are derived using (3.38):

Gg105

b2 (n)

a (n+ 1)
3

a (n+ 1)
4

a, (n+ 1)

6

a (n)
3

-960 -756 ao (n)
I

0 a, (n)

aU (n+1) 0 0160448 0 au (n)

-8BB 0 496a, (n+I)

512

0 a

'(11
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AppIy i ng

equa t i on

b 2(.n)

a, (n+ 1)

a, (n+ 1)

a, (n+ 1)
o

a-
.1

drs = 
^6

-91 -16

-728 0

91 -rr2

210

dB="1

dg='4

dro= 
"1 

*

the shifL/add

results in the

decomposition to the

following algorithm:

I4

I2I

above matr ix

d
10

5 ^r

a-
J

d,
^7

du7

d,

^7

d1r=us*

^4
dn +

+

a* (n+ 1)

( ( ( ( (-dgl z+ar) / 4+ao) ¡ + -a) ¡ + -ar) / 4+au)2

(. . (d 
s/ 2 - a r) / 2 + d r) / 2 - a o) / z+ ð ro) / 2 - a r) I z - a r) / 2+ d rr) / 4 * a r) / 2 - d n) 2

(. . (ðs/z-ar) / 2+d 
rr1 / 

2+ar) ¡ z-a | /2+a6) / 4+ar) /z+a | / 2-d ß)2

( ( ( (dula+ d 
ro) /2+ar1 / 2+ar) ¡ z-ar) / 4+au

( ao/a - ^d/8 + aU

ar(n+l) = ( ðr/2 - ul)/32 + a,

The above algorithm can be implemented using 35 adders. We

can reduce the number of adders by employing the equivalent

structure shown in Fi9.4.13. The state eguations and their

shifL/a.ðd realizaLions for the two Brune and parallel adap-

tors are given below¡

b1(n)

b2 (n)

a, (n+ 1)

ao (n+ 1)

-13 232

r28 0

t3 -232

3 I04

a, (n)

ar(n)

a- fn)5''

a, (n)
+

d, = a-bl. a.
5

a_
J

=u2*'3

^4

d

dl

ds

dg

+I
r28

-d I

I u2-d

b2Ø) = -ds

a, (n+ 1) = (. . (-ds/ 4-d

ao(n+1) = ((((dr/4+du

computation of b, is

)/2-al /Z+dr) /2-ðù ¡4+d) /2-a12

1 /z+al ¡2+ar) ¡z-al / 4+a 
o

optional, ând is omitted.



Parallel adaPtor

bl(n)

b2 (n)

a, (n+ 1)

-63 L 126

r -63 126

1162

122

uLdq1

64

a, (n)

ar(n)

a, (n)

+ u2

bl(n) = ((( d4/2 - ar)/s2 - "r) /2 +at)2

b2(n) = ((( d4/2 ' ar)/32 - ^z)/2 
+ at)Z

ar(n+l) = ( d4/2 -au)/32 + a,

Right-hand-side Brune adaPtor :

b1(n)

b2.n)

a, (n+ 1)

ao (n+ 1)

1

-2r -8 -7 60

-320320
2t -24 7 -60

30r28

c

ar(n)

a, (n)

ao (n)

32
=u2*^sds

bl(n) = ((( ar/4 - ^+)/2 - ds)/a + al2

b2 (n) = 
^s

ar(n+l) = (((( -as/4 + ao)/z + dr)/4 - ar)/2 - al2

aO(n+l) = ( ar/4 - ^q)/8 
+ aO

Note that ar(n)=0.

With respect to Fig.4.13, we have that the left-hand-side

Brune adaptor reguires 14 adders (computation of b, is not

required), the parallel adapÈor 7 adders, and the right-

hand-side Brune adaptor 7 adders ( a, =0 ), which brings the

total !o 28 adders. The operation of the structure was given

in Example #2.



Chapter VI

CONCLUSIONS AND RECOMMENDÀTIONS

This thesis has proposed two methods of designing canonic WÐ

filters which suppress alI types of zero-input parasitic os-

cillations. The first method is based on the exact diagonal-

ization of the nondiagonal reference conductance matrix that

results when redundanÈ delays, due to capacitance -only

loops in the analog prototypef are removed from the WD

structure. The second method synthesizes a minimal analog

prototype via the network equivalence transformation. The

nonminimal prototype, which is usually a ladder, is used in

defining the design parameters. The resuLting WD structure
is based on the canonic number of design parameters, which

is equal to the number of degrees of freedom, and consists

of the canonic number of delays which is equal to the order

of the filter. The second method is recommended because it
is conceptually simpler and involves a fewer number of

steps.

The process of designing canonic WD adaptors produces en-

tries in S which are rational functions of the independent

design parameters. it was shown that it is possible to rede-

fine these parameters such that the entries in S are sums of

products (SOp) of the new set of parameters. The SOP re-

I23
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quiremenL is sufficient to ensure that the resulting state

equations are impJ-ementable using digital components. Canon-

ic designs for the Brune, 3rd-, and 5th-order ellipt,ic to-
pologies were presented, and these can be used-in obtaining

higher-order structures. ÀIso, it seems clear that the meth-

od of obtaining the SOP form can be extended to other proto-

type topologies.

The canonic wD adaptors presented in this thesis are

based on diagonal reference conductance matrices. Thus,

sign-magnitude truncation at the delays (states) is suffi-
cient to guarantee suppression of zero-input parasitic os-

cillations. Example #2 in Sec.5.2 was simulaÈed in real-time

using a microprocessor-based system ( the filtering algor-

ithm was encoded as a program ). No limit cycles were ob-

served under zero-input conditions.

A practical implementation of a digiLal filter requires

that the filter coefficients be quantized to finite word

length binary numbers. It was proposed that short coeffi-
cient word lengths can be obtained for canonic wD filters
using a simpte search algorithm. The design examples consid-

ered showed that it is indeed possible to obtain very short

coeffícient word lengths which leads to a correspondingly

moderate amount of hardware in the realization.
À disadvantage of our proposed search inethod is that it

is exhaustive in nature, and consequently, high-order exam-

ples require excessive amounts of execution time. As an al-
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ternative, we suggest as further research a method that is
based on a "branch and bound" type of an algorithm where the

design parameters are quantized sequentially and the remain-

ing parameters are reoptimized using any suitabTe continuous

nonlinear optimization method, e.9., using the simpJ-ex a1-

gorithm [57].
The reactive redundancies in the analog prototype that

were considered in this thesis are due to capacitance-only

1oops. Other network equivalence transformations should be

derived that effectively etiminate redundancies due to both

types of reactive cutsets and inductance-only loops.



Àppendix A

LTSTING OF THE SEÀRCH PROGRAM

THIS IS A GENERAL OPTI}lIZATION ROUTINE BASED ON EXHAUSTIVE SEARCH

DATA TO BE SUPPL I ED :

- NUI4BER OF PARAI,IETERS
- NUI'IBER OF BEST SOLUT IONS PER TR IAL RUN

- NUr'lBER 0F (c) CoNDUCTANCE RAT r0S

(t)
(2)
(3)
(4)

N

NI
N3

Rì

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

- Rl=l . D0N0T D I Vl Dt
Rì=2. DlVl DE ERROR

NP (N) - NOI'1I NAL PARAHETE
P (N) - I N IT I AL APPROX I HAT I ON PARAI'IETER SET
NV - # OF VAR IABLE PARAI,IETRS

V (NV) - ARRAY W ITH I NDECES OF VAR I ABLE PARAI'IETERS
I P (NV) - ARRAY W ITH RAD I CES OF VAR I ABLE PARAI'IETERS
N2 - NUr'lBER 0F FREQUENCY P0 TNTS T0 BE EXAH rNED rN PASSBAND

) III+ - TOTAL # OF FREQUENCY PO I NTS TO BE EXAI'II NED ( >= N2 )

) RW - I,IAX II4UI.1 ATTENUAT ION IN THE PASSBAND

)Ar4tN - r.1rNtr,lur'l ATTENUATT0N lN THE SToPBAND
I3) FS - SA¡,lP1ING FREQUENCY

t4) l./(N2

ERROR CALCULAT I ONS BY DENO¡î I NATORS

CALCULAT I ONS BY DENOI'1I NATORS

R ARRAY$
$
(6

7
I
9
l

)

)

)

)

)

)
0

ll
t2

THE PROGRA
(l) Pt(N,
Q) E (N)

) - rntquENcY P0 rNTs r0 BE EXAI,I lNED
I,1 PROVIDES FOR EACH TRIAL RUN THE FOLLOWING INFORI'IATION
2) - THE IN IT I AL RAT IONAL APPROX II'1AT ION PARAI'IETER ARRAY

- PERCENT ERROR ARRAY

c

(3) ICA - COUNTS THE TOTAL NUI'IBER OF TR I ED PARAI'IETER SETS
(4) I C4 - COUNTS THE TOTAL NUI'IBER OF TR I ED DTS IGNS

6) N I sETs 0F: (t) F0 (t) - opr tt4ut4 oBJEcr tvE FUNcr t0N vALUE
(il) Ko(t,J) - oPTt¡1AL K(N) ARRAY
(ilr) G0(r,J) - oPTl¡1utl GR(N) ARRAY

THE SEARCH rS ST0PPED AFTER A DESIGN SATISFYING FREQUENCY SPECS

I S FOUND

TNTEGER V(20), I p (20), rR (20),NB (20)
REAL Np (ZO), pt (20, 2), p (20), E (20), K (20), K0 (300, 20), cR (20),l./ (20)
REAL X2 (20) , S (t 28) , AT (ì28) , CoR (ìO) ,ATT (10) ,XF (l 28)
LOGICAL R2,FINISH

READ,N,N3,FV|'IAX,Rt, (NP (t) ,P (l) , l=t,N)
READ,NV, (V (l) ,lP (t) ,¡lg (l) ,l=l,NV)
READ,N2,N4, FtlAX, Fl'lt N, FS, (W (t ), t =t,N4)
READ, NSPEC

t F (NSPEC.NE.0) READ, (CoR(l),ATT(l), l=ì,NSPEC)
CALL EVALG (NV,V,NP,GR, R2, LI)
PRINT I,N,R2
D0 5 l=l,N
PRtNT,Np(t),P(t)
PR I NT, I NOI.I I NAL G RAT I OS '

5

I26
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D0 9 l=l'N3
g PRtNT, t,cR (t)

PRINT, rl'lAXlt4ul'1 OBJECTIVE FUNCTI 0N VALUE=', FVI'1AX

PRINT, rTHE VARIABLE Rl lS = ',Rl
PRINT,'# OF FREQUENCY P0INTS EXAt'l1¡¡9=',N!
PR I NT, I l4AX I l'lul'l PASSBAND ATTENUATI gf,l=r, Fl'lAX
PR lNT, ' l'1lN ll4ul'1 STOPBAND ATTENUAT lg|,1=r , Fl'1lN
PR lNT, I SAI'IPL ING FREQUS¡gY=r , FS

PRINT, rNUl'lBER 0F PARAI4ETERS T0 BE VARIEg=r,NV
NUl,l= ì

D0 l6 t=l,NV
lR(l)=NUl4
NUl.t=NUtl),rlp(l)
X2 (l ) =FLgAr (tP (t) /2)

t6 PRtNT,V(t) , tP (t) , tR(t) ,NB(t)
PRlNT,rl'lAX NUI'IBER 0F ITERATIONS PER TRIAL RUN =r,NUl'l
PRINT, TNUHBER 0F TXTRA SPECS lN THE PASSBAND = T,NSPEC

tF (NSPEC.NE.0) PRtNT, (CoR (t),ATT(t), t=ì,NSPEC)
PRINT I4
P I =3. 1\159265 i N5=N2+l
tpASS=tNT(w(t))+t
I ST0P= I NT (W (¡¡5) ) +Z
PRINT,'IPASS=', IPASS, I IST0P=r, IST0P
D0 ì0 l=l,N!
Wt =TAN (P t,tw ( t) /Fs)
CALL FREQ (GR,WI , FP)
PRTNT ì3,W(t),FP'10 W(l)=Y¡
CALL FRRS (GR)

AT ( I ) =AT (65) =0 .0
D0 17 l=1,128
S(l)=l-1.

17 XF (r)=TAN(Pr:rS (r) /256.)
c -------

DO 15 l=l,NV
l)=P(v(l))
I ,2) =). Q:trklrl$

l,l)=¡lNT(Pl

NP(
Pl (

Pì (

rF(Pr(r,r).EQ.o

(t)
(1,2)'tNP(l)+0.5)
.o) Pt(t,ì)=1.

r (l)=]00.,rABs (1.-pl (t , t) /pl(t ,2) /Np (t) )
lF (nl.EQ.2.) E (t)=E (t) /Pl (1,2)

t5

c

CONT I NUE

lCl=lC2=0 ; PT=$. ; l,l=l

t00

30

32

lC3=¡Cl+=Q ; lCì=lCl+ì i Ll=l
D0 30 l=l,NV
P(V(l))=Pl (t,t) /P ì (l'2)
CALL EVALG (NV,V,P,GR,R2, Lì)
D0 32 J=l,NV
K (J) =0 .0

i K2=(J=¡ ' Nl=0

PRINT
PRINT
PRINT
PRINT

PT

l) ,l=l,NV)
2) ,l=l,NV)
, l=l rNV)

,ltl,
(1,
(t,
(t)

2,lcl
3, (Pl
3, (Pl
12, (E



r28
c

4o
\5

35

50

5l

NUlll=0
K2= l
D0 40 J=Ll,NV
K (J) =¡1 (J)+l .

lF (K (J) .LE.x2 (.1) )co ro l+5

K(J)=¡(J)_tP(J)
K2=t'tAXo (K2 , 

^1t 

N0 (NV, J) )

NUllt=NUtll+lR (11)
tF(Lì.EQ.r)co ro 46
L2=Ll-l
D0 47 J-- r

DF=K (J) +X
rF(DF.NE.

)
) NUHt =NUt'1ì -DF?t I R (J)

,L2
2(J
0.0

I+7

\6
K (J) =-¡2 1¡¡
rF (NUr4ì .GT.NUr4) G0 T0 70
K3=t'rAX0 (K3, K2)
L i =1,1

rF (Af40D (ABS (K (f4) ) ,2.) .EQ.Pr) G0 T0 35
D0 50 l=ì,K3
P (v(t) )=(pl (t, t)+K (t)) /Pì (1,2)
D0 5l l=l'K3
Ll=K3+l-l
tF (P(v(rr¡¡.18.0.0)G0 r0 35
CALL EVALG (K3,V,P,GR,R2, Lì)
K3= ì
I C3=¡ g3*'
rF (.NoT.R2)G0 T0 37
IC2=IC2+l
I C4= I C4+l

c

6o

6r

F=Fl=F2=0.0
D0 60 t=1,N2
Wl=W(l)
CALL FREQ (GR,I./] , FP)
Fì=AllAXl (Fl,FP)
F2=AI,IINì (F2,FP)
Fl=(Fl-F2)/F¡1AX
F=Al'tAXì (F,F3)
rF (F.GT.FVI4AX)G0 r0 37
D0 6t t=N5,N4
frtl=W ( t)
CALL FREQ (GR,WI , FP)
F3=Fnt N/ (ABS (FP'F2) +t . E-20)
F=AI,1AXì (F,F3)
rF (F .cr. FVI'IAX) Go T0 37

c

75

37

Nl=Nl+l
D0 75 J=l,NV
Ko(Nl'J)=K(J)
tF (F.LE.l.0) PRINT 6,Nì,F, (K(l), l=l,NV)
r F (NUr4 r . LT. NUr'l) G0 TO 35

70 PRtNT,h,tCa,tC4
c



t29

I t0

t20

tt5

PRINT,Nì,' DESIGNS ARE CONSIDERED'
rF(Nr.EQ.o) c0 T0 250
J 2=0
F L0W=FVt'lAX
D0 .l05 l=l,Nl
D0 I I0 J=ì,NV
p (v (J) )= (pì (J, t)+K0 (t,J) ) /p1 (J,2)
CALL EVALG (NV, V, P, GR, R2, L I )
Wl=W(l)
cALL FREQ (GR,Wl , FP)
F=Fl=F2=0.0
Fì=AI,IAXì (FI,FP)
F2=At'1tNì (F2,tP)
D0 ìì! J=2,.l28
lF (s (J) .EQ.6l+.) c0 T0 I l5
wl=XF (J)
CALL FREQ (GR,WI , FP)
AT (J) =F P

F2=Al'llNl(F2,tP)
IF(J.GT.IPASS) GO TO I20
F l=AnAXt (F t , FP)
FJ= (F l-F2) /FtlAX
F=Ai4AXl (F,F3)
r F (F . GT. FVr,lAX) c0 T0 l 05
rF(J.LT.rSToP) c0 T0 il5
F 3=Ft'1 I N/ (F P- F 2)
F=Al'lAXl (F,F3)
r F (F . cT. FVT4AX) c0 T0 t 05
CONT I NUE

l./ I =W (N5)
cALL FREQ (cR,Wì , FP)
F3=Ft4tN/ (FP-F2)
F=Al,lAXl (F,F3)
r F (F . cT. FV¡IAX) c0 T0 l 05
rF(NSPEC.EQ.0) G0 T0 125
D0 I J0 l-=ì , NSPEC

Jl=tNT(coR(L))+t
Wl =TAN (P I rtC0R (L) /F S)
cALL FREQ(GR,tJt,Fl)
F2=AHlNl (F2,Fl)
D0 lJ! J=2,Jì
F l=AHAXI (F l,AT (J) )
FJ= (F l -F2) /ATT (L)
F=AllAXl (F,F3)
IF(F.GT.FVI4AX) GO TO I05
CONT I NUE

FLOW=AHI NI (FLOW, F)
J2=J2+ì
PRTNT 201,J2
PRINT 6,1,F, (K0 (l,J) ,J=l,NV)
PRINT 3, (K0 (t,J)+Pl (J, ì) ,J=l,NV)
PRINT 3, (Pl (J,2),J=l,NV)
D0 210 L=ì,N3
PRINT 2O2,L,GR (L)

135
130
125

210



130

215

220

225
105

250

90

95

PRINT, ITlIN I1AX ATTEN(DB) DETECTED',F2,FI
PR I NT 203
D0 215 L=\,32
PRINT 204, (S (L+32,t (¡-l) ),AT (L+32¡r (J-ì) ),J=t,4)
D0 220 L=l,Nl+
l,/ I =W (L)
cALL FREQ (cR,Wt , FP)
|JD=ATAN (Wt) r,256 . /P t

PRINT, t¡¡=r,1,/D, I ATT (DB) =r,Fp
rF(NSPEc.EQ.o) c0 T0 l05
D0 225 L=I,NSPEC
WI=TAN (P I:TCOR (L) /FS)
CALL FREQ (GR,WI , FP)
PRINT,'XF=',CoR (L), I ATT(DB) =,,Fp
CONT I NUE

tF (t¡lr(loo.'trLow) .LE.too) c0 T0 200
E I'l=0 . 0
DO 90 l=ì,NV
I F (E ( r) . LE. Er'l) c0 To go
eñ=E(l) ; tl=t
CONT I NUE

P I (l'1, 2) =P I (¡t, Z) ,tZ .
P I (t'1, I ) =A I NT (p I (¡,t, Z) 'trup 

(t4) +O . 5)
lF (Pl (t1,.|) .EQ.O.o) pl (r.1, ì) =1.
E (14) =l0o.rcABS (l .-pl (r'1, ì) /pt (n,2) /Np (t4) )
tF (nl.EQ.l.) c0 To 95
E (t't) =E (n) /P ì (f,1,2)
PT=A¡loD (pt (t'1, ì),2.)
G0 T0 r00

c
200 PRINT 8,IC2

PR lNT, I L0l./EST 0BJECT tVE FUNCT t0N VALUT = , , FL0W,¡tr T0TAL NUI4BER 0F pR TNTED S0LUT ¡g¡5=, , J2
STOP

FORI4AT('I 

"'THERE 
ARE 

"12, 
' PARA¡1ITERS AND THE NOI4INAL SET IS',xL2// | r, rNol'llNAL PARAT'IETERs' ,5x, ' lNlrlAL APPROXtttATtoNSr//)

FoR|4AT(' l','TRIAL #,,13,, t'lITH STARTTNG PARAI,IETER SET,, t3,F4.O)
FoRttAT ('0' , l3x,20F4.O)
FORI4AT('-"'# TNIED PARAI'IETER SETS"I6,' # OF TRIED DESIGNSI,I5)
F 0R|'1AT ( ' - ' , | 3 , F I . 5 ,2X ,20 F 4 . O)
FORI4AT('-"' SEARCH HAS ENDED WITH TOTAL # OF TRIID DESIGNS',I6)
F0RtlAT ('-' , ZOr8.3¡
FoR|'1AT ( | ' , lox ,t5.1,5X, Fg.4)
FORI,IAT ('O' , 'FREQUENCY PO INTS EXA¡lINED AND THE CORRESPOND ING ' ,¡tTATTENUATI0N')

rro)
' ,5X, I ATTEN (DB¡ ' , 5X) / /)

F0RÈ1AT ('', tOX,4 (F,{.O,5X, Fg.4,5X) )
END

2

3
4
6
I
12
r3
t4

201
203
202
20l+

F0R|'1AT (' ì','DES tGN #',
F0RI'1AT ('-¡ , lOX,4 ('FREQ
FoRI'1AT(||,|3,F12.7)

c
SUBROUTINE FRRS (GR)

REAL cR (20) , S (4) , AT (4)
Pt=t.227185E-02
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PRI
DO

DO

NT

l0
20

32

I

I

j
ì,

20

S(J)=l
tF(s(J).E
H=TAN (p t¡t
CALL FREQ

AT (J) =F P

PRTNT 2,(S(J),
F0RI'1AT (' - ¡,loX
F0RI'1AT (' 

" 
l0X

RETURN
END

=l r4
l .+32. t (J- ì )

)G0 T0 20

, FP)

Q.64 .
s(J))
(GR,w

AT

,4
,4

l0
I
2

(¡) ,J=ì,4
(' FREQ l' 5
(F 4 .0,5X,

)

X,
t9

' ATTEN (DB¡ ' , 5X) / /)
.4,5x) )

c THls PRoGRAI'1 INCLUDES THE RoUTTNES REQUTRED F0R THE opTt¡ltZATt0N
c PRoGRAT4 F0R A 3TH oRDER ELLtpTtC FTLTER

SUBROUTI NE EVALG (NV,V, P,GR,R2, L)
r NTEGER V (20)
REAL P (20) ,cR (20)
LOG I CAL R2
R2=. FALSE .

L=ì
rF (P(r) .GE.r.0)c0 r0 t5
c ì=p (2) /p (1)
r F (c r . cE.0.5) co ro 15
rF(P(3) .cE.Ct)c0 T0 t5
C2=P (l) -2*P 12¡
GR (3) =P (Ð /c2
GR(4)=(cì-P (Ð) /cz
cR (5) =GR (6) = (ì-P (l) ) /P (l)
GR(l)=GR(2)=1.0
R2=. TRUE .

ì 5 RETURN

END

c
SUBROUT INE FREQ (GR,I.I, FP)
REAL GR (20)
cor'lPLEX Y(6),Z(2)
W2=Wr,r$

Y (ì) =Cr'rPrx (GR (l) ,wr(cR (5) )
Z ( t ) =s¡p¡X (0 .0, w/ (cR (3) -w2,tcR (4) ) )
Y (3) = (2.,0.) +Y (t) )',2 (l)
Y (3) =Y (t) r,Y 13¡
F P=cABS (Y (3) ) /cR (l ) /z .o
FP=20.0¡tAL0G l0 (FP)
RETURN

END

S E ¡¡rny
00 .|

300
6oo
500
15
060

5
.o 2\. 20. t6.0 80. 090. ì00.

0
0
0
2

32

3 6 ì.
0.3386
o.0\62
0.099 r

3 ì4
\ 7 0.
0

25
32

.338630

.0462600

.099 r 50
295 3

.o 256.
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