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Abstract 

The attitude determination and control subsystem (ADCS) is a critical part of any sat-

ellite conducting scientific experiments that require accurate positioning (such as Earth 

observation and solar spectroscopy). The engineering design process of this subsystem 

has a long heritage; yet, it is surrounded by several limitations due to the stringent physi-

cal constraints imposed on small satellites. These limitations (e.g., limited computational 

capabilities, power, and volume) require an improved approach for the purpose of atti-

tude determination (AD) and control. Previous space missions relied mostly on the ex-

tended Kalman filter (EKF) to estimate the relative orientation of the spacecraft because 

it yields an optimal estimator under the assumption that the measurement and process 

models are white Gaussian processes. However, this filter suffers from several limitations 

such as a high computational cost. 

This thesis addresses all the limitations found in small satellites by introducing a com-

putationally efficient algorithm for AD based on a fuzzy inference system with a gradient 

decent optimization technique to calculate and optimize the bounds of the membership 

functions. Also, an optimal controller based on a fractional proportional-integral-

derivative controller has been implemented to provide an energy-efficient control 

scheme. 

The AD algorithm presented in this thesis relies on the residual information of the 

Earth magnetic field. In contrast to current approaches, the new algorithm is immune to 

several limitations such as sensitivity to initial conditions and divergence problems. Ad-

ditionally, its computational cost has been reduced. Simulation results illustrate a higher 

pointing stability, while maintaining satisfying levels of pointing accuracy and increasing 

reliability. Moreover, the optimal controller designed provides a shorter time delay, set-

tling time, and steady-state error. This demonstrates that accurate attitude determination 

and control can be conducted in small spacecraft. 
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  Chapter 1

INTRODUCTION 

“Small satellites represent robots of the future” 

Witold Kinsner, 2009 

 Conducting a space mission relying on a large satellite can be very costly; yet, if the 

satellite fails, the entire mission collapses. Relying on small satellites in a swarm and 

cluster configurations provide an alternative that mitigates the risk of failure and reduces 

the mission cost. A specific example was addressed in [Yash98], in which a study of dis-

tributed satellites systems, determination of propulsion system requirements for satellites 

clusters, and an analysis of a micro-propulsion system for use in swarms of micro-

satellites was carried out. The study indicated clearly the reduction in the mission costs 

and an increase in the reliability as compared to a single large satellite configuration. Ad-

ditionally, small satellites have gained tremendous attention from the academic commu-

nity due to their educational impact on students. The introduction of these satellites into 

university programs provides unique opportunities for collaboration on design, imple-

mentation, and testing of complex systems. Such collaboration allows students of differ-

ent backgrounds to complement their theoretical knowledge with hands-on experience. 
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The reduced cost of launching and commercial off-the-shelf (COTS) low-power electron-

ics has played a major role in encouraging the design and implementation of such space-

craft under the umbrella of competitions (e.g., the Canadian satellite design challenge 

(CSDC) run by the Geocentrix Inc.) [Geoc09]. In order to undertake these projects suc-

cessfully, an appropriate space mission engineering process has to be followed. Space 

mission engineering is the definition of mission parameters and refinement of require-

ments so as to meet the broad and often poorly defined objectives of a space mission in a 

timely manner at a minimum cost and risk [WeLa99]. This process becomes extremely 

complicated to manage when a spacecraft is subjected to stringent limitations in mass, 

volume, and power, which is the case for small spacecraft. Furthermore, the interdepend-

ency between the different subsystems makes the idea of a codesign process critical for 

optimal use of the available resources [Kins07]. This thesis addresses the challenges re-

lated to the design and implementation of one of the most difficult subsystems in a satel-

lite; that is, the attitude determination and control subsystem (ADCS). 

1.1 Problem Statement 

 The ADCS for large satellites has a deep heritage with several approaches proposed 

for the purpose of attitude determination [CrMC07]. These approaches include determin-

istic and probabilistic algorithms that have been implemented with relatively good per-

formances in satellites whose masses exceed 100 kg and power generation capabilities in 

the range of hundreds of watts. These spacecraft have sufficient computational resources 

to rely on standard algorithms and run functions associated with the rest of the entire sat-

ellite (such as the command and data handling subsystem, CDH). Furthermore, large sat-
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ellites have enough room and power to host different types of actuators for an accurate 

control of the attitude. 

 Unlike large satellites, small satellites face severe physical limitations that limit the 

computational resources and power available for all subsystems, including the ADCS. 

This section provides specifications about the targeted spacecraft with their respective 

limitations. 

1.1.1 Motivation 

 The ADCS is a critical subsystem for any satellite that requires accurate positioning 

to conduct science experiments (such as solar spectroscopy and Earth observation) or to 

conduct orbit manoeuvring (such as one-tangent burn and Hohmann transfer) [WeLa99]. 

The attitude determination and control (ADC) process is responsible for calculating the 

orientation of the spacecraft relative to either an inertial reference frame, or some specific 

object of interest (e.g., the Sun) and the application of corrective measures based on the 

mission needs. This process requires one or more sensory measurements that can be ob-

tained from onboard sensors (such as the three-axis magnetometer, TAM, Sun sensor, 

Earth-horizon sensor) and reference models (e.g., the international geomagnetic refer-

ence field model, IGRF). 

 Today’s challenges (e.g., mitigating the risks of a space mission failure and its respec-

tive costs) and modern miniaturization techniques allow for the realization of small satel-

lites such as pico- and nano-satellites. Pico-satellites are defined as satellites whose phys-

ical dimensions are 10×10×10 cm
3 

with a mass less than 1 kg. Nano-satellites are satel-

lites whose physical dimensions are 10×10×30 cm
3
 with a mass less than 10 kg 
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[KSFC12][CPKM03]. These spacecraft suffer from stringent limitations for onboard 

hardware (sensors and actuators), computational capabilities, and maximum power gen-

erated. Furthermore, all the resources ought to be shared with other subsystems (e.g., pay-

load, PLD, CDH, and communications, COM) in order to perform scientific experiments 

in orbit, process the data, and send it to the ground station for post-analysis. Some of 

these tasks have to be executed with no tolerance for missed deadlines (i.e., hard real-

time), while others can be performed within a certain tolerance (i.e., soft real-time). Con-

sidering high density computing engines has to account for the effect of radiation and its 

impact on digital errors in space. The errors are caused by single event effects that occur 

due to the impact of high energy particles with complementary metal oxide semi-

conductor (CMOS) circuitry. The excess of charge causes the memory cell to lose its cur-

rent value and changes the storage cell. Thus, considering the density of the transistors 

used in the chips is of paramount importance. The higher the transistors’ density, the 

more sensitive would be the computing engine to single event effects [Wats01]. Conse-

quently, ADCS has to share available resources with the other subsystems, while satisfy-

ing their own requirements to accomplish its mission successfully. 

 One way to achieve this goal is to evaluate and minimize the computational load of 

the algorithms selected for the attitude determination (AD). Moreover, the limitations on 

mass and volume, as well as the competition requirements (the spacecraft should carry no 

fuel) render certain type of actuators unusable (e.g., thrusters). Consequently, current op-

tions are restrained to magnetic torquers only. A magnetic torque rod, which consists of 

coils fed with an electric current to generate a magnetic moment that will interact with 

the Earth magnetic field creating the desired torque, might be extremely costly in terms 
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of power consumption. Therefore, an optimal controller has to be designed to minimize 

the overshoot, settling time, and steady-state error. A poorly tuned controller would result 

in unnecessary power consumption. 

 The extended Kalman filter (EKF) has been used extensively for the attitude estima-

tion since its development as a practical method for real-time onboard navigation in the 

Apollo mission [GrAn10][Aure12]. A Kalman filter (KF) has several limitations that in-

clude a low convergence rate and high computational load due to the intensive mathemat-

ical operations required for a single recursion. These impediments raise questions related 

to the applicability of this specific algorithm in pico- and nano-satellites. 

 Today, an improved approach for the purpose of attitude determination ought to be 

considered for such tiny spacecraft compared to standard large satellites. This approach 

must reduce the computational loads imposed on the onboard computer. Moreover, opti-

mal controllers have to be implemented for the satellite to be more energy efficient to 

keep the mission alive. 

1.1.2 Problem Definition 

 Starting from October 2010, the University of Manitoba Space Applications and 

Technology Society (UMSATS) participated in the first satellite design competition. In 

this competition, the students had to design, implement, and test a triple pico-satellite 

(TSat1) whose dimensions are 101034 cm
3
 with a mass that does not exceed 4 kg. The 

project included over 100 students who developed the satellite and over 50 advisors from 

academia, industry, military, and other groups who assisted in the development 

[KSFC12]. The objective of TSat1 was to perform two scientific experiments (the tardi-
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grade and solar spectroscopy experiments) once deployed in a Sun-synchronous orbit 

with an altitude from 600 km to 800 km [SAFG12]. Unlike the tardigrade experiment, the 

solar spectroscopy experiment requires pointing the spectrometer towards the Sun with 

an accuracy of 7.5 deg. [RCHB13]. The satellite had a single computing unit onboard 

for running, monitoring all subsystems (such as CDH, PWR, and COM), and transmitting 

the collected data to the University of Manitoba ground station. 

 TSat1 illustrates a practical example of the limitations found in small satellites. For 

example, the computational capabilities of the spacecraft put stringent constraints on the 

algorithms selected for the AD. The estimation process requires reference models for the 

Sun data and the Earth magnetic field models (e.g., IGRF) to be calculated to feed the al-

gorithms. Also, orbit propagators are extremely important with the updated two-line ele-

ments (TLE) data set (e.g., simplified general perturbation model version 4, SGP4) 

[NaNa11][HoRo80]. They are required to predict the position and velocity of the space-

craft after being ejected from the poly-picosatellite orbital deployer (P-POD). The P-

POD represents the mechanism used to launch and deploy nano-satellites. All these com-

putations will increase the computational load of the ADCS. Moreover, the error, accura-

cy, and stability of the different computational environments have to be taken into con-

sideration. Computers store numbers with a finite precision that can be packed into a 

fixed number of bits (the precision of a computer is much larger than a microcontroller 

unit). Consequently, round off and truncation errors may result. Sometimes, these errors 

get mixed into the calculations at an early stage causing successive magnifications of the 

errors; thus, an unstable behavior [PTVF07]. 
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 The maximum power generated per orbit was estimated to be about 5W for the entire 

spacecraft (an average light bulb used in a house requires 60 W). The power distribution 

for each subsystem was as follows. The ADCS, COM, CDH, and PLD were allocated a 

maximum of 2W, 1,75W, 0.5W, and 0.7W, respectively [DDTA12]. This shortcoming 

impacts directly the concept of operation of the different subsystems. For instance, due to 

the power required to transmit the data to the ground station and the power consumption 

of the actuators, COM and ADCS subsystems will never operate at the same time. Add-

ing more batteries cannot solve this problem, since it is related directly to the power gen-

eration and not to the power storage capabilities. 

 Early satellites relied mostly on probabilistic approaches (e.g., the EKF and the un-

scented Kalman filter, UKF) since it yields an optimal estimator under the assumption 

that measurement and process models are white Gaussian processes. The AD process re-

quires one or more reference vectors and sensory information that can be obtained using 

numerous sensors. For example, typical low Earth orbit (LEO) missions rely on TAM to 

measure the Earth magnetic field. Multifractal analysis has shown that the evolution of 

the Earth magnetic field is chaotic in nature approximated using a power law relationship 

[HSAD98]. Chaos, which is a class of signals originating from nonlinear dynamical sys-

tems, has unique properties (e.g., slightly different initial conditions would result in a 

signal trajectory that diverges exponentially, as well as a short horizon of predictability) 

[Kins09]. Thus, relying on approaches, based on the assumption that the process and 

measurement models follow a Gaussian distribution, will not constitute an optimal 

choice. Consequently, alternative approaches have to be considered for the identification 

and estimation of uncertainties in a dynamical environment [Kins09]. Furthermore, these 
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approaches are extremely costly in terms of space and time due to the intensive calcula-

tions required for a single recursion of the filter [NaKi13]. Other deterministic algorithms 

(e.g., tri-axis attitude determination, TRIAD, quaternion estimator, QUEST, and extend-

ed QUEST) have been considered also; however, they deal poorly with uncertainty in the 

process and measurement models as shown in Chapter 4. 

 The attitude control plays a role of paramount importance as well. Current controllers 

are based on nonlinear formulations [OrZF06][BeMF07], evolutionary algorithms, 

[NVTK03], or optimization techniques [ZeKS03]. Thus, an optimal tuning requires an 

accurate modeling of the targeted environment. A poorly tuned controller will result in 

large overshoots, long time delays, and slow convergence rates (under some conditions 

oscillatory behaviours); thus, power losses. Since the operating conditions (specifically 

during launch and early operations, LEOP) are unknown and the environment is poorly 

defined, it is important to develop a robust controller that preserves its performance in a 

nonlinear dynamical environment. 

1.1.3 Proposed Solution 

 Many challenges surround the engineering design process of a small satellite. This 

thesis addresses the challenges related to the control and optimal positioning of pico- and 

nano-satellites in LEO at an altitude between 600 and 800 km. 

 Starting from the moment the satellite is released in space, most of the operating con-

ditions are unknown and cannot be predicted accurately. Consequently, uncertainty arises 

due to the lack of information and knowledge resulting in situations in which actions 

have to be taken based on premises for which reliability has not been defined clearly 
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[LeBS06]. This type of uncertainty is referred to as epistemic uncertainty (also known as 

reducible uncertainty, type B, or knowledge uncertainty) that can be reduced through an 

increased understanding, more relevant data, and robust filtering and estimating ap-

proaches. Several approaches have been suggested for the analysis of uncertainty. They 

include probability theory, rough sets, and fuzzy theory. Current attitude determination 

approaches are either deterministic or probabilistic.  

 The proposed solution is based on an alternative approach; fuzzy theory (introduced 

by Lotfi Zadeh [Zade65]). Unlike probability theory that relies on a single measure to 

provide the likelihood of a certain event occurring, possibility theory relies on two 

measures (possibility and necessity set of measures) for a better reasoning under uncer-

tainty. This provides a more expressive power when dealing with epistemic uncertainty 

as compared to probability theory. As a result, a custom attitude determination algorithm 

based on a fuzzy inference system is implemented. Furthermore, in order to select an op-

timal structure and configuration of the membership functions (MFs), the approximation 

capabilities of the different type of MFs are considered. Also, to estimate the upper and 

lower bounds of the MFs, a gradient decent optimization technique is utilized. 

 In order to solve problems related to the controllability and power consumption of the 

spacecraft, three different types of controllers have been studied and evaluated. These 

controllers are: (i) integer-order proportional integral derivative (PID) controller, (ii) 

fractional-order PID controller, and (iii) Mamdani fuzzy controller. All these controllers 

have been implemented and evaluated in both the time and frequency domains. 
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1.1.4 Validation of the Proposed Solution 

 The challenges addressed in this thesis relate to the computational complexity and 

limitations of current stochastic and deterministic attitude determination algorithms. Ad-

ditionally, this thesis suggests an energy-efficient controller to correct for the error in the 

attitude. In order to validate the proposed solution different test cases are considered for 

the attitude determination algorithm and the controller implemented. 

1.1.4.1 Attitude Determination 

 The proposed attitude determination algorithm must satisfy the following perfor-

mance measures: (i) short transient response, (ii) minimum steady-state error, and (iii) re-

silience to errors in the initial conditions and noisy measurements. To evaluate the algo-

rithm for these performance measures the following experiments are conducted: 

1. Large initial error. This experiment considers introducing a large initial error during the 

estimation process. The error is determined based on the performance of current ap-

proaches when subjected to similar cases; that is, the error at which current approaches 

exhibit a diverging behavior constitutes the lower threshold in the experiments. The ra-

tionale behind selecting this approach to determine the lowest threshold is driven by the 

applicability of current approaches in real-life space missions; 

2. Sensitivity to noisy measurements. To evaluate the sensitivity to noisy measurements, 

an additive white Gaussian noise is added to the measurements. Similarly, the level of 

noise added is determined from the response of current approaches based on the same 

rationale; and 

3. Transient response and steady-state error. These performance measures are obtained 

from the previous cases considered. 
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 These experiments are enough to evaluate the proposed algorithm based on the 

aforementioned performance measures and limitations of current approaches. 

1.1.4.2 Attitude Control 

 The control scheme selected must be energy-efficient and robust. To evaluate for 

such characteristics, the following experiments are considered: 

1. Step response. The selected controller is subjected to a step function with a plant repre-

senting the linearized dynamics model of a satellite in space. This test allows for the 

evaluation of the overshoot, transient response, and steady-state error. Minimizing these 

performance measures will result in an energy-efficient scheme; and 

2. Frequency analysis. This analysis is conducted using bode plots to determine the sensi-

tivity to high frequency noise and distortion of the phase. 

 These experiments constitute a sufficient set of test cases to determine about the per-

formance of the selected control scheme. 

1.2 Thesis Formulation 

1.2.1 Thesis Statement 

 This thesis aims to develop a computationally efficient algorithm for the purpose of 

pico- and nano-satellites attitude determination based on a fuzzy inference systems and a 

gradient decent optimization technique for the estimation of the upper and lower bounds 

of the membership functions. Moreover, an optimal controller is implemented to mini-

mize the power consumption of the actuators during the positioning of the satellite. 
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1.2.2 Thesis Objectives 

 The primary objectives of this thesis are twofold: (i) developing a computationally ef-

ficient algorithm for the purpose of attitude determination, and (ii) implementing an op-

timal controller for small satellites. 

1.2.3 Research Questions 

 The attitude determination and control is one of the most challenging problems to 

solve for reliable navigation of a spacecraft. The ADC is surrounded by hard limitations, 

including limited computational capabilities and power. Additionally, it is subjected to a 

certain level of epistemic uncertainty. This section highlights the major questions ad-

dressed in subsections 1.2.3.1 and 1.2.3.2. 

1.2.3.1 Attitude Determination 

 Since its application in the Apollo project in 1960 [GrAn10], which required esti-

mates of the trajectories of manned spacecraft going to the moon and back, the EKF has 

been used extensively in numerous space missions. Consequently, 

1. Why is the EKF so attractive for orbital guidance and navigation? 

 Multifractal analysis of the Earth magnetic field has proven its chaotic nature. Chaos 

belongs to a class of signals approximated using a power-law relationship, and not a 

Gaussian probability density function (PDF) [Kins09]. Therfore, 

2. Can KFs filters deal with uncertainty in a dynamical non-stationary process optimally? 

 KFs are probabilistic approaches that rely on a single measure that provides the like-

lihood of certain events to occur with the assumption that the PDF is Gaussian. Further-
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more, it approximates any type of nonlinearity using a first-order linearization relying on 

the first and second moment (mean and variance) only. Consequently, 

3. What are the limitations of probabilistic approaches when dealing with epistemic un-

certainty in a dynamical environment? 

 The positioning of a satellite has to be conducted as fast as possible with minimum 

computational resources used. Therefore,  

4. What are the time and space computational complexities of current approaches? 

5. Can these approaches be implemented in a single low power-computing unit? 

6. What are the attributes of fuzzy theory in dealing with epistemic uncertainty? 

7. How is uncertainty represented and characterized using fuzzy theory? 

8. Can a computationally efficient algorithm based on a fuzzy inference system be devel-

oped to estimate the attitude of small satellites optimally? 

9. How is the granulation of data accomplished? 

10. How is the optimality of the structures and configuration of data granules defined? 

Though some of these questions will not be fully answered since they require a more ex-

tensive work that lies beyond the scope of the topics related to this thesis, they will be 

addressed partially. 

1.2.3.2 Attitude Control 

 Energy generation and consumption represent one of the most important issues small 

satellites face. Consequently, the control scheme selected has to be conducted in an opti-

mal way maximizing its performance to lengthen the battery life. Therefore, 

11. What constitutes an optimal and robust control scheme for the attitude control? 
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12. What are the relative merits of a fractional-order proportional-integral-derivative and 

fuzzy controllers when dealing with this nonlinear navigation problem? 

1.3 Organization of the Thesis 

 This thesis presents a computationally efficient algorithm based on a fuzzy inference 

system and a gradient decent optimization technique for the estimation of the upper and 

lower bounds of the membership functions for the purpose of attitude determination in 

pico- and nano-satellites. Furthermore, the design of an optimal fractional-order PID con-

troller to minimize the power consumption associated with the activation of the actuators 

is described. 

 This thesis is divided into seven chapters. It is structured as follows: (i) three chapters 

for the theoretical knowledge describing the important components related to the attitude 

determination (such as the orbital elements and parameterization techniques), as well as 

the evaluation of current approaches; and (ii) two chapters for the introduction of the im-

proved AD algorithm and the design of an optimal control scheme. 

Chapter 2 introduces a background on attitude determination. This chapter discusses the 

different orbital elements and reference frames required to define the attitude. Additional-

ly, several attitude parameterization techniques (e.g., Euler Angles, Quaternions, and 

Modified Rodrigues Parameters) are compared. 

Chapter 3 introduces current deterministic and probabilistic approaches for the purpose of 

AD. In this chapter, three different deterministic algorithms (TRIAD, QUEST, and ex-

tended QUEST) and two probabilistic ones (Kalman filters) are discussed extensively. 
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Their respective computational complexity, advantages, and disadvantages are studied as 

well. 

Chapter 4 evaluates all approaches introduced in Chapter 3 to establish conclusions re-

garding their limitations. This is based on test cases mimicking the different conditions 

that might be encountered in space. Among these cases, large initial errors in the attitude 

and noisy measurements are considered. 

Chapter 5 provides the background knowledge needed to develop an algorithm based on 

fuzzy theory. Additionally, the improved attitude determination algorithm is introduced, 

as well as its simulation results. The improved attitude algorithm is evaluated using the 

experiments described in subsection 1.2.3.1. 

Chapter 6 addresses challenges related to the controllability and power consumption of 

small satellites. This chapter introduces three different controllers (integer-order PID, 

fractional-order PID, and fuzzy) and evaluates them based on the test cases discussed in 

subsection 1.2.3.2 for the purpose of selecting an optimal control. 

Chapter 7 provides answers to the research questions addressed in Section 1.2.3, as well 

as acknowledge the limitations of the current work. Additionally, recommendations and 

suggestions for future work are mentioned. 
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  Chapter 2

BACKGROUND ON  

ATTITUDE DETERMINATION 

 The attitude determination is the process responsible for estimating the orientation of 

the spacecraft relative to either an inertial reference frame or some specific object of in-

terest such as the Sun. This process requires one or more measurements that can be ob-

tained from attitude sensors such as TAM, Sun sensors, and Earth-horizon sensor. This 

process requires the selection of key components such as the attitude representation and 

parameterization techniques. This chapter discusses the orbital elements, reference 

frames, and rotation matrices required for the attitude representation, as well as the atti-

tude parameterization techniques. 
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2.1 Attitude Representation 

 The orbit or trajectory is the path of a spacecraft or a natural body through space. 

Typically, the trajectory is specified by a state-vector (such as the position and velocity of 

the spacecraft) at some specified time or epoch. This is accomplished through the math-

ematical analysis of the orbits and their properties, referred to as astrodynamics. The 

state-vector at any point in time allows for the prediction of the position and the velocity 

of the spacecraft at all future times based on the assumptions made in the models used 

[ThSh10]. Astrodynamics provides a list of successive positions called ephemeris.  

 A Keplerian (after Johann Kepler [1571-1630]) orbit is one orbit, in which the gravity 

is the only force; the central body is spherically symmetric; the central body’s mass is 

much greater than that of the satellite; and the central body and the satellite are the only 

two objects in the system [WeLa99]. Based on these definitions, the orbital elements and 

the reference frames are introduced. 

2.1.1 Orbital Elements 

 In order to define an orbit, Keplerian elements are used for this purpose. Figure 2.1 

shows a graphical representation of the orbital elements, including: (i) the orbital inclina-

tion, (ii) the right ascension of the ascending node, (iii) the eccentricity, (iv) the argument 

of perigee, (v) the mean motion, (vi) the mean anomaly, and (vii) the epoch. 
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Fig. 2.1. Three-dimensional elements defining an orbit. 

 

 The first four orbital elements specify the orientation of the orbital ellipse and its 

shape, while the last three elements describe the motion and the position of the satellite in 

its orbit. 

2.1.1.1 Orbital Inclination 

 The orbital ellipse lies in a plane called the orbital plane. This plane goes through the 

center of the Earth and might be tilted with an angle relative to the equator, which is 

known as the orbital inclination. The orbital inclination (denoted i) is a number between 0 

deg. and 180 deg. Orbits with an inclination near zero or ninety degrees are referred to as 

equatorial or polar orbits, respectively. The line of nodes is the line resulting from the in-

tersection of the equatorial and the orbital plane that passes through the center of mass. 

The orbital inclination is shown in Figure 2.1. 
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2.1.1.2 Right Ascension of the Ascending Node 

 The right ascension of the ascending node (RAAN), denoted ϛ, is defined by the an-

gle in the equatorial plane measured eastward from the vernal equinox to the ascending 

node of the orbit. The ascending node is a result of the intersection of the line of nodes 

with the equatorial plane going from south to north [WeLa99]. 

2.1.1.3 Argument of Perigee 

 The perigee defines the point in the ellipse closest to the focus point in the Earth, 

while the apogee defines the farthest point in the ellipse from the Earth. The argument of 

perigee (denoted ϒ) is the angle between the line crossing the perigee through the center 

of the Earth to the apogee, and the line of nodes. In other words, it is the angle from the 

ascending node to the perigee. 

2.1.1.4 Eccentricity 

 The orbital eccentricity is a parameter that determines the amount by which it devi-

ates from a perfect circle. The eccentricity is calculated using Eq. (2.1).  

 

2

2
1




   (2.1) 

where α is the semi-major-axis (defined as half the distance between the apogee and the 

perigee) and β is the semi-minor axis (defined as half the distance between the edges per-

pendicular to the semi-major axis). 
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Fig. 2.2. Orbital elements. 

 

2.1.1.5 Mean Motion 

 The mean motion is the average angular velocity in rad/sec (denoted  ̅). It is also de-

fined as the number of revolutions per days. The semi-major-axis is related through Kep-

ler’s third law as shown in Eq. (2.2). 

 
2 3

e    (2.2) 

where ue=GMe represents the Earth’s gravitational constant with G representing the uni-

versal gravitational constant and Me is the mass of the Earth. 

2.1.1.6 Mean Anomaly 

 The mean anomaly is the angle that marches uniformly in time (from 0 deg. to 360 

deg.) representing where the satellite is positioned during one revolution. By convention, 

it is 0 deg. at the perigee and 180 deg. at the apogee. 
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2.1.2 Reference Frames 

 This section describes the main reference frames required to estimate the attitude with 

respect to an inertial frame [Rohd07]. 

2.1.2.1 Earth-Centered Inertial Frame 

 The Earth centered inertial (ECI) frame is a fixed non-accelerating frame where 

Newton’s laws of motion apply. The center of the ECI frame (denoted xi, yi, and zi) coin-

cides with the Earth’s center and the z-axis is directed towards the North Pole. Also, the 

x-axis is directed towards the vernal equinox and the y-axis completes the Cartesian co-

ordinate based on the right-hand rule system. 

2.1.2.2 Earth-Centered Earth-Fixed Frame 

 The Earth-centered Earth-fixed (ECEF) frame has its origins (xe, ye, and ze) fixed 

with the center of the Earth, while rotating relatively to the ECI frame with a frequency 

of rotation approximated to 7.2910
-5

. The z-axis points towards the North Pole and the 

x-axis is directed towards the intersection between the Greenwich meridian and the equa-

tor. 

2.1.2.3 Orbital Frame 

 The orbital-frame is centered in the satellite’s center of mass. The origin rotates rela-

tive to the ECI frame with an angular velocity ω0. The z-axis points towards the center of 

the Earth, the x-axis is the normal direction of the orbital plane and the y-axis completes 

the Cartesian based on a right-hand rule system. 
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2.1.2.4 Body Frame 

 The body frame is a moving Cartesian coordinate frame fixed to the satellite with its 

origin fixed on the center of mass. The x-axis points forward towards the direction of 

travel, while the z-axis points towards the nadir-side of the satellite, and the y-axis com-

pletes the Cartesian based on a right-hand rule system. 

2.2 Attitude Parameterization 

 The representation of the satellite’s orientation in space is not a trivial task. This sec-

tion describes two techniques for a three-axis attitude parameterization. These techniques 

are Euler’s and unit quaternion parameterization techniques. 

 Assuming that there exists an orthogonal, right-handed tri-axis system  ,   , and   of 

unit vectors fixed in the body such that 

 ˆ ˆ ˆ u v w  (2.3) 

The main objective is to specify the orientation of the system with respect to a reference 

coordinate frame, as illustrated in Fig 2.3. 

 

Fig. 2.3. Attitude representation using right-handed tri-axis systems. 



ADCS FOR SMALL SATS  Ch. 2: Background Knowledge 

    

   23 of 155    

 Specifying the components of  ,   , and   along the three axes of the reference coor-

dinate frame will fix the orientation completely. This requires the definition of the atti-

tude matrix (denoted A). This matrix provides the rotation that brings the axis of the ref-

erence frame onto the axis of the body frame. It is a 3×3 matrix having the following 

form 

 

1 2 3

1 2 3

1 2 3

u u u

v v v

w w w

 
 


 
  

A

 

(2.4) 

where   =(u1, u2, u3)
T

,   =(v1, v2, v3)
T
, and  =(w1, w2, w3)

T
. (•)

T
 represents the transpose op-

erator. 

Each element in the A matrix represents the cosine of the angle between a unit vector in 

the body frame and a reference axis (the attitude matrix is also referred to as the direction 

cosine matrix, DCM). This technique requires 9 elements to represent the attitude of a 

rigid body. 

2.2.1 Euler Angles 

Unlike the DCM, Euler angles require three parameters to represent the rigid body in 

space. The typical set of parameters used for describing the motions of spacecraft is the 

roll-pitch-yaw angles. Based on these parameters, a rotation matrix from a to b is given 

as  

 , ,  ( , , ) ( ) ( ) ( )a
x y z z y xb

      R R R R R
 

(2.5) 

where Rx(), Ry(), and Rz() denote a rotation around the x-axis, y-axis, and z-axis with 

angles , , and , respectively as defined in Eqs. (2.6), (2.7), and (2.8) [Rohd07]. 
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 The main disadvantages of Euler angles are: (i) they suffer from singularities under 

certain rotations (gimbal lock). The gimbal lock is the loss of one degree of freedom in a 

three-dimensional system; and (ii) they are less accurate when used to integrate incre-

mental changes in the attitude over time compared to alternative techniques (such as the 

unit-quaternion) [Dieb06]. These disadvantages have led to the selection of the unit-

quaternion as a parameterization technique. 

2.2.2 Unit-Quaternion 

William Rowan Hamilton (1805-1865) introduced quaternions as an extension to 

complex numbers. The quaternion, as shown in Fig. 2.4, is a 4×1 matrix, which consists 

of a vector part ϕ and a scalar part q4. The quaternion is defined by 

  4
T

qq φ  (2.9) 

where 

  1 2 3 ˆ sin( / 2)
T

q q q  φ e  (2.10) 

 4 cos( / 2)q   (2.11) 
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with ê is the axis of rotation and ϑ represents the angle of rotation. 

 

Fig. 2.4. Graphical representation of the quaternion. 

 

The quaternion is subjected to a single constraint given by 

 1T q q  (2.12) 

For small angles, the quaternion is approximated by 

 
ˆ

2

1

 
 
 
 

e
q  (2.13) 

The attitude matrix can be obtained from the quaternion according to the following rela-

tion [LeMS82] 

  2
3 3 44

( ) ( ) 2 2T Tq q   A q φ φ 1 φφ φ×  (2.14) 

where 13×3 is the 3×3 identity matrix and [ϕ×] is the cross product matrix, which is de-

fined by 

  
3 2

3 1

2 1

0

0

0

q q

q q

q q

 
 

 
 
  

  (2.15) 
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The quaternion kinematics equation is given by the following differential equation 

 
1

( )
2

 q q  (2.16) 

where Π is a 4×4 skew-symmetric matrix, which is a function of the three-component an-

gular rate vector ω. ω is the velocity of the body with respect to the reference frame pro-

jected onto the body frame [Chou03]. Finally, 

 
 

( )
0T

  
  

  

ω ω
ω

ω
 (2.17) 

 Though the quaternions are the preferred parameterization technique for the attitude, 

other parameterization techniques have been used for similar applications. For instance, 

the modified Rodrigues parameters (MRP) have been used for the implementation of an 

unscented Kalman filter [CrMa96]. Table 2.1 highlights the characteristics of the tech-

niques presented [Shus93][JeVi10]. 

Table 2.1: Comparison between attitude parameterization techniques. 

Representation Parameters Characteristics 

Euler Angles 3 

Minimal set 

Intuitive interpretation 

Relies on trigonometric functions. 

DCM 9 

Inherently nonsingular. 

Intuitive representation. 

Difficult to maintain orthogonality. 

Expensive computational cost. 

Six redundant parameters. 

MRP 3 

Minimal set. 

Suffer from singularities. 

Simple kinematic relation. 

Quaternions 4 

Orthogonality of rotation matrix easily 

preserved. 

Immune to singularities. 

Linear simple kinematic equations. 

One redundant parameter only. 
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 The main advantages of using the quaternion as a parameterization scheme for the at-

titude are the following: 

1. The rotations are expressed by the quaternion product. Composite rotations can be per-

formed in terms of quaternion multiplications without involving trigonometric func-

tions; 

2. Quaternion unit-norm provides an easy way to preserve the orthogonality of the rota-

tion matrix; and 

3. The kinematics equation is linear in the quaternion. 

2.3 Reference Models 

2.3.1 International Geomagnetic Reference Field Model 

 The international geomagnetic reference field (IGRF) is a standard mathematical 

model that describes the main magnetic field vector from the Earth’s core out into space 

with its secular variation (annual rate of change). The IGRF model is updated every five 

years by the international association of geomagnetism and astronomy (IAGA). Eq. 

(2.18) shows the modeling of the IGRF based on the Gauss coefficients which define a 

spherical harmonic expansion of the magnetic scalar potential. 

  
111

e 2 2 2
e 2 2

1 1 1
1 01 2

( , , ) cos sin (cos )

nnL
n n n
n n n

n n

R
V d R g n h n P

d
    



 

 
  

 
   (2.18) 

where d is the radial distance from the Earth’s center, L is the maximum degree of the 

expansion,  is East longitude,  is colatitude (the polar angle), Re is the Earth’s radius, 

   

   and    

   are Gauss coefficients, and    

  (cos) are the Schmidt normalized associated 
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Legendre functions of degree n1 and order n2 [Ghuf09]. Other mathematical models as-

sume coefficient varying in time at a constant rate [MaMa05]. Figure 2.5 shows the total 

magnetic field of the Earth in nano-Teslas. 

 

Fig. 2.5. Graphical representation of the total magnetic field in nano-Teslas [Magn13]. 

 

2.3.2 Sun Reference Model 

 A Sun reference model is required to estimate the reference data in the orbital frame. 

This estimation is based on the assumption that the Earth’s orbit has duration of 365 days 

with the satellite positioned in the center of the Earth. The error introduced by this as-

sumption is negligible and approximately equal to 

 arctan( )a

e

R
error

R
  (2.19) 

where Ra is the radius of the satellite’s orbit. 
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Fig. 2.6. The position of the Sun relative to the Earth. 

 

The elevation of the Sun (denoted εs) varies between -23 deg. and 23 deg. depending on 

the time of the year [Rohd07]. The period is given by 

 
23

sin( 2 )
180 365

s
s

T
   (2.20) 

 2
365

s
s

T
   (2.21) 

where s is called the Sun’s orbit parameter. Ts denotes the period in time. The Sun’s po-

sition when the Earth passes vernal equinox is 

 0
[1 0 0]i Ts  (2.22) 

and with this vector we can express the Sun position at any given time as 

 
0

( ) ( )i i
y s z s s R R s  (2.23) 
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2.4 Summary 

 Chapter 2 provided the background knowledge required to define and parameterize 

the attitude of a rigid body in space. Additionally, a comparison between several parame-

terization techniques was presented to justify the use of the unit-norm quaternion to rep-

resent the attitude. Finally, the Earth magnetic field and Sun reference models have been 

introduced. These models are critical for the estimation of the attitude since they are re-

quired to calculate the innovation in the body frame measurements using the determinis-

tic and stochastic algorithms that are introduced in Chapter 3. 
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  Chapter 3

ATTITUDE DETERMINATION ALGORITHMS, 

LITERATURE REVIEW 
 

 This chapter introduces standard and state-of-the-art deterministic and stochastic ap-

proaches to estimate the relative orientation of a spacecraft. Deterministic approaches 

provide point-by-point solutions, where the attitude is found based on two or more vector 

observations from a single point in time. These approaches suffer from a lack of probabil-

istic significance resulting in a poor performance when subjected to uncertainty in the es-

timation process and measurements collected from onboard sensors. On the other hand, 

stochastic approaches are recursive probabilistic estimators that statistically combine 

measurements from onboard sensors with dynamics and/or kinematics models to con-

verge towards a solution. Both of these approaches belong to the realm of the linear least 

squares (LS) estimation theory, where the term “least squares” refers to the constrained 

least square for deterministic approaches and the minimum variance least square for sto-

chastic approaches [Chou03]. 
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3.1 Literature Survey 

 Attitude determination requires the specification of a Cartesian coordinate frame ori-

entation fixed to the rigid-body with respect to a given reference. If the reference frame is 

non-moving, then it is referred to as an inertial frame. This process requires the definition 

of two coordinate systems with orthogonal unit-vectors. The first one is fixed to the 

spacecraft body and the second one is attached to the reference frame. 

The attitude matrix maps the reference frame to the body frame. This can be expressed by 

the following linear equation 

 = b Ar v  (3.1) 

 0T v Ar  (3.2) 

where r represents the reference frame vector, while    denotes sensor measurements cor-

rupted with a Gaussian noise v with the following properties 

 [ ] 0E v  (3.3) 

 
2

3 3[ ] [ ( )( ) ]T TE    R vv 1 Ar Ar
 

(3.4) 

where E[•] denotes the expected value, σ represents the standard deviation of the process. 
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3.2 Deterministic Approaches 

3.2.1 The Original TRIAD Algorithm 

 One of the first attitude determination algorithms introduced is the tri-axis attitude 

determination (TRIAD) algorithm developed by Harold Black in 1964 [TaSh07][Blac64]. 

This algorithm was used in numerous space missions (such as small astronomy satellite, 

SAS, Seasat, atmospheric explorer missions, AEM, and Magsat) for the purpose of atti-

tude estimation due to its simplicity and low computational cost [ShOh81]. The TRIAD 

algorithm knows different deterministic formulations for the estimation of the attitude 

matrix, which are guaranteed to be equivalent for data uncorrupted with noise only. 

These formulations encompass: (i) the TRIAD algorithm (TRIAD-I), (ii) the reversed 

TRIAD algorithm (TRIAD-II), (iii) the symmetric TRIAD algorithm (S-TRIAD), (iv) the 

TRAD algorithm, (v) and the optimal TRIAD algorithm (O-TRIAD) [TaSh07]. This sec-

tion discusses the original TRIAD algorithm only. 

 The TRIAD algorithm relies on a pair of unit-vectors represented in both the space-

craft body frame and the reference frame 

 
1 1 b Ar v

 (3.5)

 

    b2 = Ar2 + v  (3.6) 

The algorithm estimates the attitude matrix as a product of two proper orthogonal matri-

ces. The first matrix has its columns defined by a right-hand orthonormal triad of column 

vectors constructed from the two vector observations. Similarly, the second matrix has its 
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rows defined in the same way based on reference vectors. The original asymmetric triads 

{Tb1, Tb2, Tb3} and {Tr1, Tr2, Tr3} are constructed as follows [ShOh81] 

 
1 2

b1 1 b2 b3 b1 b2
1 2

,     ,     
b b

T b T T T T
b b


   

  
(3.7) 

 
1 2

r1 1 r2 r3 r1 r2
1 2

,     ,     


   


r r
T r T T T T

r r  
(3.8) 

with the attitude defined by 

 

3

1

T
bi ri

i

A T T
 

(3.9) 

The solution obtained based on this algorithm is not symmetric with respect to the indices 

1 and 2. This can be seen from the way the first and second observation vectors are han-

dled. The information contained in the second vector is discarded partially. Unlike the 

first vector, it contributes to the cross-product only. Moreover, this algorithm knows two 

important limitations: (i) the first one is related to the calculation of the covariance matrix 

that requires numerous partial derivatives computed as differences. Calculating the covar-

iance matrix is more computationally complex than the estimation of the attitude; (ii) it 

can handle two measurements at a time only [ShOh81]. 

 In order to deal with these limitations, alternative batch algorithms were introduced to 

provide an improved estimate of the attitude based on loss functions. These loss functions 

can take into account all or part of the available measurements at the expense of a longer 

processing time. An example of such loss functions is Wahba’s problem. 
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3.2.2 Wah a’s Pro lem 

 In 1965, Grace Wahba introduced a constrained least square optimization problem to 

estimate the attitude of a spacecraft at a single instant of time [Wahb65]. The estimation 

process relies on two or more measurements in the body reference frame. Wahba formu-

lated the problem as given two sets of m vectors denoted {r1, r2… rm} and {  1,   2…   m} 

with m  2. Each pair (ri,   i) corresponds to a generalized vector xi, where the main ob-

jective is to find the proper orthogonal matrix, A, which approximates the first set into 

the best LS coincidence with the second; that is, find A which minimizes the cost func-

tion J [Chou03].  

 

2

1

( )
m

i i i
i

J a



 A b Ar

 

(3.10) 
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1
( ) ( ) ( )

m
T

i i i i
i i

J


        q b A q r b A q r

 

(3.11) 

subjected to the constraint A
T
A= 133 and det(A)=1. ai denotes tuning parameters and σ

2
 

represents the variance of the measurement noise. 

Equations (3.10) and (3.11) define a constrained least-square cost function to be mini-

mized, where r and    represent vector observations from two different coordinate frames. 

This function penalizes the error between the body-measured unit direction vector   i and 

the transformation of the corresponding unit-reference vectors ri from inertial coordinates 

using tuning parameters. Tuning parameters (denoted ai) might be selected as the inverse 

variance of the measurement noise as indicated in Eq. (3.11) [MaMo00][Psia10]. One of 

the pitfalls of these cost functions is related to the tuning parameters. The selection of the 

tuning parameters is a heuristic choice; yet, a reformulation of the Wahba’s problem as a 
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maximum likelihood estimation problem was conducted in published literature to deter-

mine the tuning parameters [Shus89]. These reformulations target single-frame attitude 

determination algorithms; that is, they assume that the vector measurements being pro-

cessed to estimate the attitude have been taken from a constant attitude. 

3.2.3 QUEST Algorithm 

 The quaternion estimator (QUEST) is a recursive estimator introduced to solve 

Wahba’s problem based on the q-method developed by Davenport [Keat77]. This algo-

rithm computes the optimal attitude based on a batch of m simultaneous observations. 

QUEST provides a way to process more than two directional measurements. It has found 

application for the first time in MAGSAT mission in 1979 [MaMo00]. 

The loss function shown in Eq. (3.10) can be rewritten as [MaCC05][CrMC07] 

 0( ) ( )TJ trace A AB  (3.12) 

with 

 
0

1

m

i
i

a
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
 

(3.13)

 

and 

 1

m
T

i i i
i

a



B b r

 

(3.14)

 

where m denotes the total number of measurements. 
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Minimizing (3.12) is similar to maximizing the trace(AB
T
) in the same equation. Solving 

this problem yields [CrMC07]
 

 ( )T Ttrace AB q Kq  (3.15) 

where K is the symmetric traceless matrix and B is given by 
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where  
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i
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 
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 (3.16b)

 

The matrix B is propagated and updated sequentially. The optimal attitude is represented 

by the quaternion maximizing the right-hand side of Eq. (3.15)
 

 maxopt optKq q  (3.17) 

with Eqs. (3.12) and (3.15), the optimized loss function is given as 

 0 max( )optJ   A  (3.18)
 

where max denotes the greatest eigenvalue of the K matrix. 

 
1 1

1

( ) ( , ) ( )

mk
T

k k k k i i i
i

t t t t a  


 B Φ B b r  (3.19)

 

where 33(tk, tk-1) represents the state transition matrix for the attitude matrix,  denotes 

a fading memory factor ( is assumed to be < 1), and mk is the number of observations at 

time tk. An optimal estimate of the attitude is found from B(tk).
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Alternative filters such as the recursive quaternion estimator (REQUEST) have been de-

scribed also in [Bar96]. The REQUEST propagates and updates the K matrix instead of 

the B matrix. Thus, the QUEST and REQUEST are mathematically equivalent, but the 

REQUEST requires relatively more computations [ChBO04]. 

3.2.4 Extended QUEST 

 Unlike the QUEST algorithm, the extended QUEST operates in a two-stage process, 

namely prediction and correction. This allows for the inclusion of complicated dynamics 

model to estimate other critical parameters (in addition to the attitude) [Psia01]. This is 

accomplished by estimating the state-vector xk (which includes the attitude quaternion qk 

and the vector of auxiliary parameters along with the process noise wk-1) that minimizes 

the loss function [MaCC05]. This algorithm is known to be more computationally expen-

sive; yet, more robust compared to the QUEST. Equation (3.20) shows the loss function 

to be minimized 
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  (3.20) 

subject to the attitude dynamics equation, 

 1 1 1 1 1( , ; , , )k k k k k k kt t     q Φ q x w q
 (3.21) 

the transition equation for the auxiliary filter states, 

 1 1 1 1( , ; , , )k k k k k kt t     xx f q x w
 (3.22) 
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the vector qk-1 and xk-1 denotes the a posteriori estimate of q and x at sample time tk-1, re-

spectively. f denotes a known nonlinear function. Rww, Rqq, Rxq, and Rxx represent 

weights in the loss function. 

The result of the propagation step is a modified form of the loss function [MaCC05] 
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 (3.23) 

where the    matrices are obtained by a QR factorization in the propagation step that em-

ploys a linearization about a priori estimates at stage k-1. Eq. (3.24) is an approximation 

to Eq. (3.21), if the dynamics is nonlinear. Otherwise, they are equivalent. 

The extended QUEST has a second phase referred to as the measurement update.  

The optimum    is given by 
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(3.25) 

Minimizing the loss function gives the best estimate of the quaternion   k. Substituting in-

to Eq. (3.23) yields 

 
1
( ) ( ) ˆˆ ( )k k k k k k

  xx xqx x R R q q
 

(3.26) 

where the hat denotes the expected value. 

 Though these algorithms have found a wide range of applications for the purpose of 

orbital guidance and navigation, alternative approaches based on probability theory have 

been introduced to provide more accurate and robust solutions. These approaches (such 
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as KFs) have proven to be more efficient than most deterministic approaches described so 

far. This is due to the sub-optimality of the fading memory approximation on the effect of 

the process noise. Fading memory concept for continuous operators refers to the case 

where two input signals which are close in the recent past, but not necessarily close in the 

remote past results in present outputs which are close [BoCh85].Computing the fading 

memory factor by a Kalman-gain-like algorithm provides a better performance at the ex-

pense of a higher computational cost [ChBO04][Bar96]. 

3.3 Probabilistic Approaches 

3.3.1 Discrete Kalman Filter 

 KF is a recursive estimator based on a Bayesian filtering approach [WeBi06]. This 

approach provides a standard set of procedures to calculate the PDF of the state of a dy-

namic system given a prior distribution and all prior observables. Calculating the PDF al-

lows not only to estimate the state-vector of the system, but also to provide a description 

of the associated uncertainties. Bayesian filtering method is conducted in an iterative 

way, namely propagation and update. 

 Assuming a prior PDF of the state-vector xk–1 given all measurements available at time 

step k–1, it is possible to calculate the posterior PDF at time step k given by [MoMK09] 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kP P P d     x y x x x y x
 

(3.27) 

where ∫(•) denotes the integral operator, P(xk–1|y1:k–1) represents prior PDF and y1:k–1 indi-

cates the observables up to time step k–1. 
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 When a new observable is available, the predicted PDF is corrected by applying 

Bayes’ rule given by 

 
1: 1
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k k
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(3.28) 

where the normalizing constant P(yk|y1:k–1) is obtained from 

 1: 1 1: 1( | ) ( | ) ( | )k k k k k k kP P P d  y y y x x y x
 

(3.29) 

Similarly, a KF encompasses a two-stage process to estimate the current state based on 

the conditional mean theorem and the principle of orthogonality. 

The principle of orthogonality indicates that if the stochastic processes {xk} and {yk} are 

either: (i) jointly Gaussian or (ii) the optimal estimate   k is restricted to be a linear func-

tion of the observables with mean-square error as a cost function then the optimal esti-

mate   k, given the observables y1, y2,…,yk is the orthogonal projection of xk on the space 

spanned by these observables [WaMe01]. Figure 3.1 shows the principle of orthogonality 

in one-dimensional closed subspace. A visual inspection indicates that the optimal esti-

mation with minimum square error in a closed subspace denoted w (representing all pos-

sible approximation) is obtained when the error vector e is perpendicular to the subspace. 

 

Fig. 3.1. Principal of orthogonality for one dimensional approximation subspace. 
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 During the first stage (i.e., the propagation) the filter predicts the state of the system 

based on the current state and measurement data. At each time step, the posterior PDF is 

assumed to be Gaussian. Then, the predicted state is corrected during the update stage 

when new absolute observations are collected [TrRo05]. The filter can update the first 

two moments of the conditional PDF of the state only. Figure 3.2 illustrates the iterative 

process followed by the KF to estimate the state of the system. 

 

Fig. 3.2. Kalman filter estimation process. 

 

The conditional mean estimator states that given stochastic processes {xk} and {yk} are 

jointly Gaussian, then the estimate   k that minimizes the mean-square error is the condi-

tional mean estimator [WaMe01] 

 
 1 2ˆ | , , ,k k kEx x y y y

 
(3.30)

 

 Let us consider the following linear discrete-time stochastic systems 

 1k k k  x x v
 

(3.31) 

   
yk = Hxk + uk  

(3.32) 

where xk is the n×1 state-vector, uk is the control input, yk 
is the m×1 measurement vector, 

and H is a measurement matrix. The process noise wk 
and the measurement noise vk are 

assumed to be zero-mean Gaussian white noise with covariance given by [WaMe00] 
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[ ]T

k kk
E w w Q

 
(3.33)

 

The process noise wk and the measurement noise vk are uncorrelated. Thus, it follows that  

    
E[vkwi

T ] = 0
 

(3.34) 

The Kalman filtering approach attempts to jointly solve the process and measurement 

equations for the unknown state in an optimum manner. This is formally stated as fol-

lows. Using the last measured sensory data (assuming a white Gaussian process), find the 

minimum mean-square error estimate of the state xi. 

This is accomplished through two different stages, which are the propagation and the up-

date. 

3.3.1.1 The Propagation Stage 

 The prediction stage encompasses predicting the state of the system and its covari-

ance at time step k, given measurements collected at time step k–1. The state-vector is 

propagated using 

 | 1 1| 1 1 1ˆ ˆk k k k k k kx F x C u     
 

(3.35)  

where Fk and Ck-1 are known linear functions and   k–1|k–1 is the corrected estimate of the 

state. The subscript (•)k|k-1 denotes the estimate at time step k conditioned on the previous 

measurement. 

The covariance is propagated using  

 | 1 1| 1 1
T

k k k k k kk    P F P F Q
 

(3.36) 

where Pk–1|k–1 is the updated covariance matrix at time step k –1. 
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3.3.1.2 The Update Stage 

 In order to correct the estimated state and its covariance matrix, a residual vector has 

to be calculated using recent observations. This is given by 

 | | 1ˆ ˆk k k k k k x x k y
 

(3.37) 

where  k is the innovation term that provides a measure of the new information contained 

in recent measurements. 

The innovation covariance is given by 

 | 1
T

k k k k kk S H P H R
 

(3.38) 

Furthermore, the Kalman gain, which is a function of the relative certainty of the meas-

urements and current state estimate, can be calculated from 

 
1

| 1
T

k k k k k


k P H S
 

(3.39) 

where (•)
–1

 denotes the inverse operator. 

Finally, the state and error covariance are updated using  

 | | 1ˆ ˆk k k k k k x x k y
 

(3.40) 

 | | 1( )k k k k k k P 1 k H P
 

(3.41) 

The state-error vector is defined by 

 
ˆk k k e x x

 
(3.42) 

Equation (3.42) satisfies the principle of orthogonality given by 

 
[ ] 0T

kE e y
 

(3.43) 
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3.3.2 Extended Kalman Filter 

 The attitude determination based on EKF is conducted in a two-stage process. During 

the first stage, an initial prediction of the attitude is conducted based on a kinematics 

model and measurements collected from onboard sensors. During the second stage, the 

filter corrects the predicted attitude based on the new absolute orientation measurements 

[SRKB08]. 

 The filter described in [MoMK09] is based on the following model 

 1 ( , )k k k kk  x f x G w
 (3.44a) 

 ( , )k k kk y h x v  (3.44b) 

where f and h are known nonlinear functions. G represents known matrix. 

 The spacecraft attitude state is given by a seven-state space model consisting of the 

quaternion appended with three more states to determine the drift in the gyroscopes 

  ( ) ( ) ( )
T

t t tx q β
 

(3.45)

 

The system can be described using the following model 

 
1

( )
2

m v   q β q 
 

(3.46) 

 ( )wβ t
 

(3.47)
 

where the dot above the vectors indicate the derivative with respect to time. ηv and ηw rep-

resent the measurement and process noise. 
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The predicted state-vector is defined as in [LeMS82] by taking the expectation of (3.46) 

and (3.47). This yield 

 
1

ˆ ˆ( )
2

 q q
 

(3.48)
 

 3 1
ˆ

β 0
 

(3.49) 

The estimated rotational velocity is given by  

 ˆˆ m ω ω β  (3.50)
 

Equation (3.49) indicates that the bias is constant over the integration interval. As a re-

sult, assuming that the angular rate evolves linearly during the integration step Δt, a first-

order numerical integrator can be used to propagate the quaternion. More details can be 

found in [TrRo05]. 

3.3.2.1 Continuous-Time Error-State Model 

 Based on the state-space model selected, the error state provides an error in the qua-

ternion estimate and the bias [MTRH07]. The bias error is obtained by calculating the 

difference between the true and the estimated bias while a multiplicative-error representa-

tion has been selected for the quaternion. This representation requires the attitude error to 

be modeled as an infinitesimal rotation that causes the estimated attitude to match the true 

orientation [Greg04]. The error state can be expressed as 

 ˆ  β β β  (3.51) 

 
-1ˆ ˆ   q = q q q = q q

 (3.52) 

where    denotes the estimated quaternion and δ  represents the error in q. 
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Using a multiplicative error representation reduces the attitude uncertainty to a 3×3 ma-

trix. This reduction provides a solution to the loss of rank that would arise in a 4×4 covar-

iance matrix due to the unit-quaternion constraint. However, this projection results in a 

loss of information [CrMC07]. 

The continuous-time error state is given by [TrRo05] 

 c cx F x + G n
 

(3.53) 

where 

 
  3 3 3 33 3

3 3 3 33 3 3 3

ˆ-
c c

 

  

   
   

  

-1 0-1
F =      ,      G =

0 10 0



 
(3.54) 

are the system matrix and the noise matrix. The error-state is given by

 

 

(3.55) 

where δθ is the error angle vector whose dimension is 3×1 and Δβ is the error in the bias. 

3.3.2.2 Discrete-Time Error-State Model 

 For a practical implementation, the discrete-time error model, the state transition ma-

trix and the discrete-time system noise covariance are required.  

 According to [LeMS82][MTRH07], assuming a constant ω over the integration time 

step Δt, the transition matrix can be obtained using 

 1
1( , ) exp( ( ) )

tk
k k ctk

t t d 
  Φ F

 
(3.56)

 

The discrete-time system noise covariance is found using 

 1
1 1( , ) ( ) ( ) ( , )

t T Tk
d k k c c c k ktk

t t t t d  
  Q Φ G Q G Φ

 
(3.57) 
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A detailed description of the transition matrix and the discrete-time system noise covari-

ance is provided in [TrRo05] and [MTRH07]. 

According to [TrRo05], the discrete-time transition matrix has the following form 

 
( , )t t t

 
    

 

Θ Ψ
Φ

0 1
 (3.58) 

where the matrix Θ can be written as 

 
3 3cos( ) sin( ) (1 cos( ))

T

t t t

 
        

  
1

  
   

  
 

(3.59) 

The matrix Ѱ can be expressed by

 

 

   23 3 2 3

1 1
ˆ(1 cos( )) ( sin( ))t t t t           1     

 
 

(3.60) 

For small values of |ω|, the above expressions lead to a numerical instability. By taking 

the limit, and applying l’Hôpital’s rule, (3.59) and (3.60) yield  

 

   
2 3

2
3 3

0
lim

2 6

t t
t

 
1 


      

 

(3.61) 

 

   
2

2
3 3

0
lim

2

t
t




    1


  

 

(3.62) 

The covariance of the noise in the discrete-time system has the following structure  

 

 
 
 

11 12
d

12 22

Q Q
Q =

Q Q  
(3.63) 

where 

 

 

3

3
22 2

11 3 3 3 3 5

( )
2sin( ) 2

3( )
3

v w

t
t t

t
t  


   


    Q 1 1


 




  

  

(3.64) 
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   

2

2
22

12 3 3 3 4

( )
cos( ) 1sin( ) 2ˆ( )

2
w

t
tt tt

 


    

     Q 1


 

 
 

 

 

 

(3.65)

 22 3 3w t  Q 1
 

(3.66) 

 

 
3 5

2 2
11 3 3 3 3

0

2
lim ( )

3 5!
v w

t t
t   



 
    

2
Q 1 1

  

(3.67) 

 

   
2

22
12 3 3

0
lim ( )

2 3! 4!
w

t t t
 



  
     Q 1


 

 

(3.68) 

3.3.2.3 The State and Covariance Propagation 

 The discrete-time gyroscope model is given by  

 k mk k k  β v 
 

(3.69) 

 1k k kβ β w  
 (3.70) 

The estimation of the rotational velocity and the drift can be calculated using 

 1| 1|1
ˆˆ -k k m k kk 
β  

 
(3.71) 

 1| |
ˆ ˆ
k k k kβ = β

 
(3.72) 

As shown in [TrRo05], the covariance of the propagated state estimate is given by 

 1| |
T

k k k k k dkP = P + Q 
 

(3.73) 
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3.3.2.4 The Update Stage 

 In order to update the estimated attitude, a residual vector has to be calculated from 

 
ˆ

ˆ

k k
k

k k

z z
y =

z z  
(3.74) 

where zk and ẑk are the measurement and the prior estimate of the measurement at time k, 

respectively. 

The measurement matrix can be calculated according to [SRKB08] 

 

3 3

3 3

-2

)

-2

mag mag T
measref

mag mag
meas ref

sun sun T
measref

sun sun
meas ref

k

b b
0

b b

H( =

b b
0

b b





 
 
 
 
 
 
 
 
  

 

(3.75) 

where (•)ref and (•)meas represent the data obtained from reference models and measure-

ments collected using onboard sensors, respectively. Also 03×3 represents a 3×3 matrix 

whose elements are zero. 

Equation (3.74) defines the innovation of the EKF update. The covariance matrix of the 

innovation is given by 

 T
S = HPH + R  (3.76) 

The Kalman gain, which is a relative certainty between the current state and the meas-

urement matrix, can be calculated using 

 
   
kk = PkHk

T
S

-1
 (3.77) 

The correction terms are estimated from 

 ˆk k kΔx = k y  (3.78) 
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The update for the quaternion and the bias is given by  

 | | -1

1

2ˆ
1

1
4

k

k k k k
T

 
 

 
 

  
 

q

q = q

- q q
 

(3.79)

 

 | | -1
ˆ ˆ ˆ
k k k k kβ = β + β

 
(3.80)

 

Finally, the estimation of the error covariance is updated using 

 | 6 6 | -1-k k k k kP = (1 k H)P
 

(3.81) 

3.3.3 Unscented Kalman Filter 

 The EKF has performed very well in a variety of fields [LeMS82]; yet, it faces sever-

al limitations described in [WaMe00]. The limitations include: (i) nonlinear system func-

tions approximated using a first-order Taylor approximation only (if it exists), (ii) diver-

gence in case of a large initial error, and (iii) state PDF and covariance are represented 

using Gaussian random variables (GRV). This filter is prone to some major numerical 

difficulties (e.g., instability and divergence). Furthermore, it is optimal for Gaussian dis-

tributions only [WaMe00]. Additionally, not only deriving the Jacobian matrices (if they 

exist) is a nontrivial operation in most processes, but also it may result in a significant 

complexity during its implementation. Moreover, it is impractical to represent a general 

PDF using only the mean and covariance of the function [JuUW95][CrMC07]. Conse-

quently, the UKF is introduced as an alternative.  

 The UKF belongs to the class of particle filters (PFs). PFs do not require any lineari-

zation during the prediction stage [KoDj03]. However, a particle-based representation of 

a general distribution does not rely on a set of parameters such as the mean and covari-
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ance. It is based on the premise that a general PDF can be represented using a large num-

ber of samples [WaCC09]. These filters deal with nonparametric distributions in a unique 

way and thrive with nonlinearities. PFs have performed well, specifically when the ob-

servations may get extremely corrupted with noise [Gold04]. However, this performance 

comes with a high cost associated with its computational complexity. Also, using PFs re-

quire calculating a certain number of particles [KaSG05]. Thus, PFs fail to represent the 

PDF and performs poorly in case the number of samples used is not enough. Figure 3.3 

illustrates the estimation process followed by UKF. 

 

Fig. 3.3. Unscented Kalman filter estimation process. 

 

 The UKF is based on the unscented transform, which represents a Gaussian PDF us-

ing a set of 2n+1 weighted sigma points (where n is the dimension of the state-vector) 

[Gold04]. Figure 3.4 shows the difference between the EKF and UKF in propagating the 

PDF. Using a set of fixed points to represent a general PDF is more practical than relying 

on its first and second moment (i.e., the mean and variance) only. The mean and variance 

of a linearized function cannot map all the nonlinearities of a function. This can be ex-

plained by the important information contained in the original system, which is lost 
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through the linearization process. A particle-based representation can perform relatively 

better, if the number of particles used is sufficient. 

 

Fig. 3.4. Propagation process for (a) EKF and (b) UKF. 

 

 Given a system model similar to (3.44a) and (3.44b), the UKF starts the estimation 

process by calculating the sigma points to represent the PDF of the state-vector [CrMa82] 

 |2  columns from ( )[ ]k kk kn n    Q χP
 

(3.82) 

where   is a scaling factor and √M is a shorthand notation for a matrix N such that 

NN
T
=M. The matrix square-root N can be obtained using lower triangular Cholesky de-

composition [PTVF07]. 

 Due to the symmetric nature of the set of sigma points, its odd moments are equal to 

zero. Thus, the first three moments (i.e., the mean, the variance and the skew) represent 

exactly a Gaussian distribution. The scaling factor   can be utilized to provide an accu-

rate representation of higher-order moments for other types of distributions.   has to be 
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selected in a way to ensure a positive semi-definite covariance matrix Pk|k–1 

[CrMa82][Juli02]. The set of sigma points, χk, is calculated using 

 0, ˆk kχ x
 

(3.83) 

 , ˆ ( ( )[ ])   for 1, ,i k k k k in i n    x P Q
 

(3.84) 

 , ˆ ( ( )[ ])   for 1, ,i k k k k in i n    x P Q
 

(3.85) 

with 

 
2( )n k n   

  
(3.86) 

where χi,k denotes the i
th

 column of χi,k,   is a positive constant (0 ≤   ≤ 1) that deter-

mines the spread of set of sigma points around   k, and k  is a third scaling parameter used 

to provide an accurate tuning of the higher order moments [ChKi07]. Thus, the matrix of 

2n+1 sigma points can be represented by 

 
ˆ ˆ ˆ( ( )[ ]) ( ( )[ ])k k k k k k k kn n        
 
x x P Q x P Q

 
(3.87) 

3.3.3.1 Propagation Stage 

 Once the sigma points have been calculated, they are propagated through the nonline-

ar function [WaMe00] 

 , , 1( , 1)i k i k k f   (3.88) 

Using a weighted sample mean, the state-vector   k+1|k and its covariance are propagated as 

well 

 
2

( )
| 1 ,

0

ˆ
n

m
k k i ki

i




x W   (3.89) 
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2

( )
, | 1 , | 1| 1

0

ˆ ˆ( )( )
n

c T
i k k k i k k kik k

i
 



  xx
P W x x   (3.90) 

Similarly, the predicted output covariance is obtained from 

 
2

( )
| 1 | 1| ,

0
,1

ˆ ˆ( )( )
n

c T
k ki k i k kik k k

i
 



  
yy

y yyW yP  (3.91) 

where W
m

i
 and W

c

i
 represent the weights for the mean and covariance respectively given 

by 

 ( )
0
m

n







W  (3.92)

 ( ) 2
0

(1 )
c

a k
n




   


W  (3.93) 

 ( ) ( )
      for =1, ,2

2( )

c m
i i i n

n




 


W W  (3.94) 

and   denotes the predicted mean of the observation vector given by [CrMa82] 

 

2
( )

,
0

| 1ˆ
n

m
i ki

i
k k


 y W y

 
(3.95) 

where Уi,k+1 denotes the i
th

 column of the predicted observation matrix computed using 

 , ,h( , )i ki k kУ   (3.96) 

Next, the innovation covariance matrix is calculated from 

 kk k
  

yy
P P R  (3.97) 

where P
yy

k
 denotes the output covariance. Then, the Kalman gain is given by 

 1( )k k k
 

xy
k P P  (3.98) 
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where P
xy

k
 denotes the cross-correlation function computed from 

 

2
( )

, | 1 , | 1| 1
0

ˆ ˆ( )( )
n

c T
i k k k i k k kik k

i
 



  
xy

x yУP W   (3.99) 

3.3.3.2 The Update Stage 

 Once the Kalman gain has been estimated and new measurements have been collect-

ed, the corrected state-vector is given by 

 
| | 1ˆ ˆ ˆ( )k k k k k k  k Уx x y

 

(3.100) 

where yk denotes the measurement vector, and the updated covariance is obtained from 

 
| | 1 |

T
k k k k k k k k


 P P k P k

 

(3.101) 

3.3.4 Computational Complexity 

 This section addresses the time and space computational complexities of stochastic 

approaches and more specifically the EKF. Time complexity is defined as the number of 

characteristic operations it performs when given an input of size n [Kins10]. In addition 

to time complexity, space complexity plays a role of paramount importance as well. 

Space complexity is defined as the number of elementary objects that the algorithm needs 

to store during its execution. 

3.3.4.1 Time Complexity 

 The computational complexity of carrying out the two-stage process associated with 

the EKF at step k involves a state prediction xk|k-1, calculation of the covariance of the 

propagated state Pk|k-1, in which the transition matrix and the discrete-time noise covari-
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ance matrix are needed. Additionally, the update stage requires the linearized measure-

ment matrix H, the Kalman gain kk, which involves computing the residual yk and its co-

variance S. Finally, the state xk|k and the covariance Pk|k are updated. 

The time complexity can be evaluated from the number of multiplications and additions 

required during the execution of an algorithm. Knowing that the number of operations 

needed for the multiplications of two n×n matrices is equal to n
2
(2n-1), we can estimate 

the number of operations involved for the different matrices. The results of the analysis 

are shown in Table 3.1. It is seen that the time complexity of the EKF is O(n
3
). 

Table 3.1: Time complexity of the EKF.
 

Equation Number 
Number of  

Operations 
Complexity 

(3.73) f(n) = 4n
3
-n

2
 O(n

3
) 

(3.74) f(n) = 2n
2
-n O(n

2
) 

(3.76) f(n) = 4n
3
-n

2
 O(n

3
) 

(3.77) f(n) = 4n
3
-2n

2
 O(n

3
) 

(3.79) f(n) = 3n
2
-n O(n

2
) 

(3.81) f(n) = 4n
3
-n

2
 O(n

3
) 

Total f(n) = 16n
3
-3n

2
-2n O(n

3
) 

 

3.3.4.2 Space Complexity 

 To address the space complexity of the EKF, we focus on the most demanding matri-

ces in terms of memory requirements. Therefore, special attention is given to Pk|k-1, Pk|k, 

and S matrices.  
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In order to compute the covariance of the propagated states and residual, Pk|k-1 and S re-

spectively, four matrices of size n×n are required. Therefore, the space complexity is 

O(n
2
). Furthermore, updating the covariance, Pk|k, demands the availability of three matri-

ces of sizes n×n. As a result, the space complexity is O(n
2
).  

Therefore, we can conclude that the space complexity of the EKF is O(n
2
). 

 Similar evaluation can be applied to the UKF. The computational complexity of the 

UKF is of the same order as the EKF; that is, a time and space complexity are O(n
3
) and 

O(n
2
), respectively. However, the UKF requires a longer computational time to calculate 

the 2n+1 sigma points.
 

3.4 Summary 

 This chapter introduced a review of important deterministic and stochastic algorithms 

for the purpose of attitude determination. 

 Deterministic algorithms revolve mostly around Wahba’s problem formulated as a 

constrained LS problem. In order to solve this problem, several elegant closed-form algo-

rithms have been introduced during the last 50 years. The highlight of these algorithms is 

that they require no a priori estimate of the attitude. Furthermore, the unit-norm con-

straint on q is reinforced in the formulation of the problem itself. On the other hand, these 

deterministic approaches yield estimators that suffer from a lack of probabilistic signifi-

cance resulting in a poor performance when subjected to uncertainty in the process and 

measurement models. Furthermore, tuning the weighting coefficients is extremely chal-

lenging and represents another inherent pitfall of these approaches. Usually, the weights 

are chosen as scalars equal to the inverse of the associated vector measurement variance. 
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This choice is, however, heuristic. Efforts were made in order to recast Wahba’s problem 

as a maximum likelihood estimation problem [Shus89]. This was achieved by assuming 

very special measurement noise probability distributions.  

 Stochastic filters have been presented as well. These filters have been used extensive-

ly for the purpose of orbital guidance. The highlight of these algorithms is their ability to 

estimate the attitude with auxiliary parameters. However, their main limitation is related 

to their computational cost. As seen throughout this chapter, KFs are computationally ex-

pensive in time and space. 

 In order to provide a grounded comparison, deterministic algorithms (TRIAD, 

QUEST, and extended QUEST) and stochastic ones (EKF and UKF) are implemented 

and evaluated using the same reference and measurement data in Chapter 4. 
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  Chapter 4

EVALUATION OF CURRENT 

ATTITUDE DETERMINATION APPROACHES 

 The following simulations are designed to evaluate the performance and identify the 

limitations of all the deterministic and stochastic approaches introduced in Chapter 3. The 

different algorithms were developed and tested on Matlab version R2010b on Mac OS X 

version 10.6.8 using 2×2.4 GHz Quad-Core Intel Xeon processors with 12 GB of 1066 

MHz DDR3 memory. The software implementation and source code are described in 

Appendix A. 

4.1 Experimental Setup 

 Deterministic and stochastic approaches are applied to estimate the attitude of a pico-

satellite. These approaches are evaluated based on two important performance measures; 

the accuracy and the transient response. The accuracy is defined as the knowledge and 

control of the spacecraft attitude with respect to a target attitude as defined relative to an 

absolute reference over a specified range of angular motion (under which determination 

and control performance must be met). The transient response provides the allowed set-
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tling time or maximum attitude overshoot when new targets are acquired (or recovered 

from upsets). 

 The attitude determination hardware relies on sun sensors, TAM, and three-axis gyro-

scopic rate sensors. The magnetic field reference is modeled using a 13
th

 order IGRF. The 

TAM sensor noise is modeled by zero-mean Gaussian white noise with a standard devia-

tion of 50 nT. The gyro measurements are simulated with noise term set to ηv= 5×10
-6

 

(rad/sec
1/2

) for the gyros and ηw  = 2×10
-8

 (rad/sec
3/2

) for the bias drift with a sampling 

time equal to 0.864 sec. Figure 4.1 shows the Earth magnetic field and sun data used in 

these simulations. Solid lines refers to the simulated data (denoted S-data) obtained from 

mathematical models by producing digital samples above nyquist frequency. Dotted lines 

represent the physical data (denoted P-data) obtained by adding a noise to the S-data. The 

noise added is an additive white Gaussian noise (WGN) whose value is set to 5% of the 

measurements unit norm per axis. 

 The different algorithms are evaluated with respect to the performance measures that 

have been defined already. The test cases are selected in a way to identify the limitations 

of each approach. For example, the robustness of deterministic and stochastic approaches 

to noisy measurements is addressed. This is accomplished by considering cases where an 

additional additive WGN is added. Furthermore, stochastic approaches are subjected to 

three additional performance test cases. The first one considers an exact knowledge of the 

initial attitude of the spacecraft, while the second one introduces an initial error in the at-

titude. Finally, the last case presents an extreme case where a large error exists in the ini-

tial orientation of the spacecraft. 
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Fig. 4.1. S-data and P-data. (ax), (ay), and (az) magnetic field data in the x-, y-, and z-axis. (bx), 

(by), and (bz) sun sensor data in the x-, y-, and z-axis. 

(ax) (bx) 

(ay) 

(az) 

(by) 

(bz) 
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4.2 Simulation Study 

4.2.1 Deterministic Approaches 

 The TRIAD, QUEST, and extended QUEST algorithms were simulated for the pur-

pose of evaluating their pointing accuracy and transient response. Furthermore, the ro-

bustness of these algorithms while estimating the attitude of a spacecraft is addressed. 

This is accomplished by considering two experiments, where the measurements are bur-

ied in WGN (5% and 10% of the unit norm of the measurements). 

4.2.1.1 TRIAD Algorithm 

 Using the development shown in Section 3.2.1, the TRIAD algorithm is summarized 

in Table 4.1. It is worth noting that this algorithm does not require a priori knowledge of 

the spacecraft attitude or any initialization parameters to process the measurements taken. 

Additionally, this algorithm is very attractive due to its simplicity and inexpensive time 

and memory requirements. 

 The first experiment considers the pointing accuracy of the TRIAD when the meas-

urements processed are not corrupted with noise. Figure 4.2 shows the simulation results. 

 

Fig. 4.2. Simulation results of the TRIAD algorithm. 
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Table 4.1: Summary of the TRIAD algorithm. 

Algorithm 4.1 The TRIAD Algorithm 

1:  Input:   , r 

2:  repeat 

3:       Compute 

               1 2
b1 1 b2 b3 b1 b2

1 2

,     ,     


   


b b
T b T T T T

b b  

               1 2
r1 1 r2 r3 r1 r2

1 2

,     ,     


   


r r
T r T T T T

r r  

               
3

b r
1

T
i i

i

A T T  

4:  return A 

 

 The trajectory of the error (shown in Fig. 4.2) illustrates that the estimated attitude 

agrees well with the actual attitude of the spacecraft with an average error of 1.410
-3 

deg. The estimation process exhibits some patterns and peaks. These observations can be 

explained by the formulation of the algorithm itself. Relying on two measurements at the 

time does not allow the estimation process to collect enough information about the envi-

ronment. The term “information” refers to the evolution of the estimation process 

throughout the time. Moreover, the entire history of the measurements collected is not 

utilized; however, this point might also be seen as an advantage from the perspective that 

the history of the measurements does not need to be stored. 

 The second test case considers measurements corrupted with an additive WGN con-

stituting a 5% and 10% of the magnetic field and sun data unit-norm per axis. The results 

of this test case are shown in Figure 4.3. 
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Fig. 4.3. Simulation results of the TRIAD algorithm with measurements corrupted with a (a) 5% 
additive WGN and (b) 10 % additive WGN. 

 

 A visual inspection of Fig. 4.3 shows a highly nonlinear and non-differentiable be-

haviour with an important loss in the pointing accuracy for both cases. Indeed, we can see 

that the average error reaches 4.6 and 9.23 deg., when the measurements are corrupted 

with high levels of WGN. This behaviour reflects the limitations of the TRIAD algorithm 

to deal with uncertainty in the measurements. This is a result of the lack of probabilistic 

significance of the algorithm itself, in which each measurement taken is assumed to be 

error-free. Consequently, the entire estimation process may collapse when measurements 

in the body frame are subjected to a high-level of noise. Finally, Table 4.2 summarizes 

the simulation results of the TRIAD algorithm. 
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Table 4.2: TRIAD simulation results. 

Experiments Average Error [Deg] 

Uncorrupted Measurements 0.0014 

5% Additive WGN 4.6 

10% Additive WGN 9.23 

 

4.2.1.2 The QUEST Algorithm 

 The QUEST algorithm (summarized in Table 4.3) is evaluated in a similar way as the 

TRIAD algorithm. The simulation results are shown in Figure 4.4. 

Figure 4.4(a) illustrates the behaviour of the QUEST algorithm when the measurements 

are corrupted with a 5% WGN, while Figure 4.4(b) considers a 10% noise level.  

 A visual inspection of these results indicates a similar behaviour as the one observed 

with the TRIAD algorithm; that is, a highly nonlinear and non-differentiable trajectory 

(that does not converge throughout the entire estimation process). Similar to the TRIAD 

algorithm, the QUEST is also extremely sensitive to measurements corrupted with noise. 

 Table 4.4 summarizes the simulation results of the QUEST. These results indicate 

that the QUEST algorithm does not perform better than the TRIAD, though it involves 

more measurements and a higher computational cost. Furthermore, it points out the limi-

tations encountered when deterministic approaches are subjected to uncertainty. These 

observations can be explained by the loss function considered (described in (3.10)) that 

does not account for the changes in the environment and the dynamics of the process. 
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Table 4.3: Summary of the QUEST algorithm. 

Algorithm 4.2 The QUEST Algorithm 

1:   Input:     r 

2:   repeat 

3:        for  i=1 to m do 

4:             Π(  i) using (2.17) 

5:             (ri) using (3.16b) 

6:              K=∑           
 
    

7:        end for 

8:   compute λmax the greatest eigenvalue of the K matrix 
9:   compute q (the unit normalized eigenvector that corresponds to λmax) 

10: return A(q) 

 

 

Fig. 4.4. Simulation results of the QUEST algorithm with measurements corrupted with a (a) 5% 

additive WGN and (b) 10 % additive WGN. 
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Table 4.4: QUEST simulation results. 

Experiments Average Error [Deg] 

5% Additive WGN 4.53 

10% Additive WGN 9.11 

 

4.2.1.3 The Extended QUEST Algorithm 

 The extended QUEST algorithm (summarized in Table 4.5) employs an extended 

square-root information-filtering algorithm that proceeds in two phases. The first phase 

dynamically propagates a posteriori estimates at stage k-1 to compute a priori estimate at 

stage k [Psia10]. This algorithm is evaluated based on the same performance test cases as 

the TRIAD and the QUEST algorithms with the results shown in Figure 4.5. 

 The simulation results show similar behaviours as the ones observed with the previ-

ous deterministic algorithms (i.e., a highly nonlinear and non-differentiable trajectory that 

exhibits sharp peaks with some pattern). However, the extended QUEST is more robust 

when fed with noisy measurements providing a relatively more accurate estimate of the 

attitude. 

 The peaks and the nonlinearities in the deterministic algorithms error trajectories are 

due to the novelty and innovation in the process that cannot be estimated and captured by 

such approaches that suffer from a lack of probabilistic significance. Consequently, de-

terministic approaches face stringent limitations and pitfalls when subjected to uncertain-

ty resulting from noisy measurements, ill-defined environments, and process dynamic 

models. 
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Table 4.5: Summary of the extended QUEST algorithm. 

Algorithm 4.3 The Extended QUEST Algorithm 

1:   input: Φ  f, qk-1, xk-1,     r 

2:   repeat 

3:        predict   k and   k 

4:               k|k = Φ(tk, tk-1;qk-1,xk-1,wk-1)qk-1 

5:               k|k = f(tk, tk-1;qk-1,xk-1,wk-1)  

6:        end predict 

7:        update   k|k and   k|k 

8:              om   e   k|k by minimizing (3.25) 

9:             compute   k|k using (3.26) 

10:      end update  
11: return A(  k|k) 

 

 

Fig. 4.5. Simulation results of the extended QUEST algorithm with measurements corrupted with 

a (a) 5% additive WGN and (b) 10 % additive WGN. 
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Table 4.6: Summary of the comparison between deterministic algorithms. 

Algorithms 5% Additive WGN [Deg] 10% Additive WGN [Deg] 

TRIAD 4.65 9.68 

QUEST 4.58 9.02 

Extended QUEST 4.35 7.96 

 

4.2.2 Stochastic Approaches 

 The attitude determination based on KFs is conducted in a two-stage process. During 

the first stage, an initial estimate of the attitude is calculated based on a kinematics model 

and measurements collected from a three-axis gyroscope. During the second stage, the 

filter corrects the predicted attitude based on the new absolute orientation measurements 

[SRKB08]. A multiplicative quaternion-error approach is used to define the attitude error 

[Mark03]. This ensures that the quaternion normalization is maintained. The EKF and 

UKF are summarized in Tables (4.7) and (4.8), respectively. 

 For the first simulation, the EKF and UKF are executed with no initial attitude error, 

an initial bias set to zero, and measurements corrupted with a 10% WGN. Also, for the 

       1 and λ =3. Figure 4.6 shows the time history of the error for: (a) the EKF and (b) 

the UKF. 

 The results indicate that the estimated attitude agrees with the actual one with an av-

erage error of 0.05 and 0.3 deg. for the EKF and UKF, respectively. Additionally, a non-

linear diverging behaviour can be observed with a relatively larger variance for the UKF. 

Unlike the UKF, the error trajectory of the EKF does not exhibit any sharp peaks that 

may illustrate an innovation in the process; yet, a diverging behaviour is observed. 
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 These results can be explained by the linearization procedure that the process and 

measurement models are subjected to when using the EKF. Such procedures do not allow 

the filter to identify the actual PDF of the process after propagation. Therefore, it accu-

mulates an error over time leading to a diverging behaviour. Though the nonlinear dy-

namics of this process is represented using a Gaussian distribution described by its mean 

and variance only, the critical information of the process is not lost through the lineariza-

tion process when the initial conditions provided are accurate. This explains the absence 

of any innovation in the trajectory of the error. 

 Compared to the EKF, the error trajectory of the UKF indicates that the process is not 

fully captured by the algorithm. This is due to the limited number of sigma particles that 

fail to represent the nonlinear process and measurement models accurately. 

 

Fig. 4.6. Simulation results of (a) EKF and (b) UKF using exact initial conditions with measure-
ments corrupted with a 10 % additive WGN. 
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Table 4.7: Summary of the extended Kalman filter algorithm. 

Algorithm 4.4 The Extended Kalman Filter Algorithm 

1:   input: x0, Q, R, f, h,     r 

2:      
         

  
|    k 

       
      

  
|    k 

2:   repeat 

3:         predict   k|k-1 and   k|k-1 

4:               propagate the state-vector (3.35) 

5:               calculate the covariance of the propagated state-estimate (3.73) 

6:         end predict 

7:            a e   k|k and   k|k 

8:                  calculate the covariance matrix of the innovation (3.76) 

9:                  calculate the Kalman gain (3.77) 

10:                  compute   k|k using (3.79) 

11:                  update the covariance matrix (3.81) 

12:       end update 

13: return A(  k|k) 

 
 

Table 4.8: Summary of the unscented Kalman filter algorithm. 

Algorithm 4.5 The Unscented Kalman Filter Algorithm 

1:   input: x0, Q, R, f, h,     r 

2:   repeat 

3:         predict   k|k-1 and   k|k-1 

4:                 calculate the sigma points (3.87) 

5:                 calculate the weights for the mean and covariance using (3.92) to (3.94) 

6:                 compute the covariance of the state-vector (3.90) 

7:                 compute the output covariance (3.91) 

8:         end predict 

9:            a e   k|k and   k|k 

10:               calculate the Kalman gain (3.98) 

11:               correct the attitude estimate   k|k using (3.100) 

12:               update the covariance matrix (3.101) 

13:       end update 

14: return A(  k|k) 
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 For the second test case, a more realistic scenario is considered. The filters are tested 

with an initial guess estimated using the TRIAD algorithm (evaluated in subsection 

4.2.1.1). Figure 4.7 shows the time history of the attitude estimation error for the (a) EKF 

and (b) UKF, respectively. This test case considers the addition of a 5% WGN. 

 Both of the error trajectories are highly nonlinear. The EKF illustrates multiple tran-

sients exhibiting converging and diverging behaviours. The average error for the EKF is 

equal to 4.38 deg. These observations are a result of the linearized models used and the 

sensitivity to initial conditions of the model. The performance of a linearized model dete-

riorates when the system is subjected to an initial error. On the other hand, the UKF pro-

vides a more accurate estimate of the attitude with an average error of 0.3 deg. This is 

due to the sigma particles that were able to identify the actual PDF of the process during 

the prediction stage. 

 In order to evaluate the robustness of these stochastic approaches, another case is 

considered with a 10% WGN added to the measurements. The results are shown in Fig-

ure 4.8. 

 The EKF (shown in Fig. 4.8(a)) illustrates a very slow converging behaviour with an 

average error equal to 5.06 deg. The UKF (presented in Fig. 4.8(b)) provides a better per-

formance with an average error of 0.4 deg. exhibiting robustness to noisy measurements. 

Using the sigma particles, the UKF has the unique ability to estimate the PDF after each 

recursion of the algorithm. Such characteristic is extremely attractive in noisy environ-

ments since it allows the algorithm to preserve its performance. 
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Fig. 4.7. Simulation results for (a) EKF and (b) UKF with initial conditions determined using the 

TRIAD algorithm and measurements corrupted with a 5% additive WGN. 

 

Fig. 4.8. Simulation results for (a) EKF and (b) UKF with initial conditions determined using the 
TRIAD algorithm and measurements corrupted with a 10 % additive WGN. 
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 The third case considers the scenario where a large error of 36 deg. per axis is added 

to the initial attitude with an initial bias set to 0.2 (deg./hour) and no other parameter 

changed. Figure 4.9 depicts the estimation of the error for both of KFs. 

 The EKF exhibits an oscillatory behavior with an average error equal to 30 deg. Thus, 

the filter fails to estimate the actual attitude. This is due to the nonlinear nature of the 

process and sensitivity to initial conditions of the filter. A first-order linearization of the 

system model cannot contain large errors. Furthermore, nonlinear functions cannot be 

represented with the first and second moments only. Indeed, it works with a Gaussian dis-

tribution, but not with a general nonlinear function. The UKF was able to converge to the 

actual attitude with an error less than 0.4 deg. after one hour with a highly nonlinear re-

sponse. It can be justified by the ability of the particles to approximate the nonlinearity of 

the process at hand more accurately. 

 The Kalman gain, which is a relative certainty between the current state and the 

measurement, is shown in Figure 4.10. 

 The results indicate that Kalman gain for the EKF is large for the first components of 

the attitude and the bias (denoted k1 and k2). This implies that the algorithm gives more 

weight to the measurements collected by the onboard sensors and ignores the linearized 

process and measurement models; thus, justifying the poor performance of the algorithm. 

On the other hand, the Kalman gain for the UKF is relatively small. This implies that the 

algorithm relies more on the models used and the sigma points calculated. 

 These results reinforce the following points. The approach followed by the EKF to es-

timate the state of a system is not suitable for highly nonlinear and dynamical environ-

ments [Kins09]. In particular, assuming a Gaussian distribution for the noise environment 
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and linearization may cause divergence and highly unstable filters [Juli02]. Additionally, 

both filters correct their estimate after collecting new absolute measurements only. This 

may result in processing delays. 

 

 

Fig. 4.9. Simulation results of (a) EKF and (b) UKF with a large initial error of 36 deg. 
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Fig. 4.10. Kalman gain for the third test case. (a) EKF and (b) UKF. 
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4.3 Comparison between Stochastic and Deterministic 

Approaches 

 All the algorithms presented possess some attractive properties, as well as inherent 

pitfalls. The limitations and highlights are summarized in this section. 

4.3.1 Advantages 

4.3.1.1 Deterministic Approaches 

1. Offer elegant closed-form algorithms that provide a solution to Wahba’s problem; 

2. Do not require an initial guess of the attitude; 

3. Are computationally inexpensive; and 

4. Offer built-in quaternion normalization. 

4.3.1.2 Stochastic Appraoches 

1. Provide an attitude estimation accuracy within 1 deg.; 

2. Can fuse multiple sensory measurements; and 

3. Can estimate auxiliary parameters in addition to the attitude optimally. 

4.3.2 Disadvantages 

4.3.2.1 Deterministic Approaches 

1. Are sensitive to noisy measurements; 

2. Provide a poor performance when the angle between the Earth magnetic field vector 

and the sun vector is small; 
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3. Can handle only vector-type of measurements (e.g., QUEST algorithm); 

4. Cannot estimate anything but the attitude (e.g., QUEST algorithm); and 

5. Can deal with simple dynamics model only. 

4.3.2.2 Stochastic Approaches 

1. Considers an additive white Gaussian noise only; 

2. Covariance matrices have to be positive definite; 

3. Relies on one measurement from the past only;  

4. Approximates nonlinear systems using a first-order approximation (if it exists) repre-

sented using the first and second moments of a Gaussian distribution (e.g., EKF) or 

with a fixed number of sigma particles (e.g., UKF); 

5. Suffer from sensitivity to initial conditions and divergence problems; and 

6. May suffer from “brute-force” normalization of the quaternion when performed out-

side the filter algorithm. This normalization induces biases and may perturb the sto-

chastic estimation process. 

4.4  Summary 

 This chapter presented the evaluation of three deterministic algorithms (TRIAD, 

QUEST, and the extended QUEST) and two stochastic approaches (the extended and un-

scented KFs) for the estimation of a spacecraft attitude. 

 Deterministic approaches have shown attractive properties such as the ability to esti-

mate the attitude without requiring any initialization process (e.g., an initial guess of the 

attitude), while providing an elegant closed-form algorithm that offers an exact solution 
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to Wahba’s problem. On the other hand, these approaches suffer from a major limitation, 

which is sensitivity to noisy measurements. 

 Stochastic approaches can provide a very accurate estimate of the attitude within 1 

deg. with the ability to fuse multiple measurements collected from onboard sensors; yet, 

they suffer from limitations as well. For example, the EKF linearizes nonlinear functions 

describing the process and measurement models so the standard KF can be applied. The 

linearization procedure induces biases and undesirable effects. Also, The UKF is based 

on a deterministic approach to select a limited number of weighted sigma points to repre-

sent the PDF. 

 All these algorithms constitute standard and state-of-the-art approaches for the pur-

pose of attitude determination developed throughout the last 50 years. Indeed, under 

some cases, they provide a good performance that may satisfy a satellite’s mission re-

quirements. However, as discussed in the previous sections, they suffer from several limi-

tations that impact directly their performance in a real-time environment. Furthermore, 

their computational cost constitutes another major drawback for small satellites. Conse-

quently, alternative approaches ought to be considered for small satellites attitude deter-

mination. 
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  Chapter 5

ATTITUDE DETERMINATION BASED ON 

POSSIBILISTIC APPROACHES 
 

 Current deterministic and stochastic approaches have shown attractive properties, as 

well as stringent limitations. This chapter introduces an improved approach for the esti-

mation of the attitude based on a fuzzy logic. The objectives for this suggested solution 

can be summarized in twofold: (i) combine the advantages of deterministic and stochastic 

approaches under one umbrella (i.e., resilience to large error in the initial conditions and 

robustness to noisy measurements); and (ii) reduce the computational complexity for a 

potential implementation in small satellites. 

5.1  Uncertainty in a Process 

 Uncertainty arises when the available information is imprecise due to the lack of 

knowledge, vagueness, and conflict of information. It is a situation, in which an action 

has to be taken based on premises for which reliability has not been clearly defined [Du-

Ku13]. Uncertainty can be categorized into two main classes: (i) aleatory (objective) or 

(ii) epistemic (subjective). The first class of uncertainty deals with the representation of 

future events whose occurrence is governed by random phenomena (e.g., spinning a rou-
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lette wheel), while the second class express the uncertainty about the outcome of some 

events due to the lack of knowledge, ambiguity, or vagueness. Epistemic uncertainty (al-

so known as reducible uncertainty, type B, or knowledge uncertainty) refers to a type of 

uncertainty that can be reduced through an increased understanding or more relevant da-

ta. 

 Processes containing uncertainty are analyzed with probabilistic methods, which as-

sume that parameters of a model represent exactly the phenomenon modeled or the fea-

tures of the real system. Consequently, their ability to deal with uncertainty or tolerate 

imprecision is limited, while their optimal performance is achieved when data is repre-

sented with absolute certainty as shown in Figure 5.1. 

 

Fig. 5.1. Graphical representation of data with no uncertainty. 

 

 Fig.5.1 provides a graphical representation of data with no uncertainty denoted using 

the Dirac function. Similarly, the impact of uncertainty can be also be visualized. For ex-

ample, using a probabilistic approach, the uncertainty causes the true value to be most 

likely within the space defined by 6, where  represents the standard deviation of the 

PDF, as illustrated in Figure 5.2. A Gaussian distribution does not consider spikes of 

events that may occur outside 6. This shows the limitations of such distributions that are 
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inappropriate to represent chaotic processes. An in-depth description of different distribu-

tions is given in [Kins09]. 

 

Fig. 5.2. Uncertainty represented using a Gaussian distribution. 

 

 Relying on probabilistic approaches requires quantifying probabilities. An important 

approach to do so is Bayesian networks (BN) also known as belief networks. These net-

works have become an important paradigm for reasoning under uncertainty. BN have 

found a number of applications (e.g., reasoning about the oil market [Abra91]); however, 

they suffer from several constraints such as their limitations to: (i) represent propositional 

relationships between entities; and (ii) explicitly model temporal relationships. In order to 

deal with these limitations, other approaches such as dynamic belief networks 

[SMSM00], time nets [Kana91], modifiable temporal belief networks [WKYX11], and 

temporal nodes Bayesian networks have been introduced. These extensions provide more 

expressive power at the expense of efficient calculations. Another formal approach for 

dealing with uncertainty using probability theory is the knowledge based model construc-

tion (KBMC) [KYKY92]. The highlight of this approach is its ability to combine the 

strength of the probabilistic logics with computational advantages of BN relying on dis-

tinct models for knowledge specifications and probabilistic inference. However, 
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knowledge models are extremely difficult to define, specifically when the level of uncer-

tainty is high and expert knowledge is not available. 

 As the complexity of a system increases, our ability to make precise, yet significant 

statements about its behaviour diminishes until a threshold is reached beyond which pre-

cision and significance becomes almost mutually exclusive characteristics. Consequently, 

the identification and the management of uncertainty becomes a challenging problem in 

such processes. 

 Alternative approaches based on a non-crisp type of soft computing have shown a 

tremendous potential in dealing with uncertainty, as well as providing attractive perfor-

mance in poorly defined environments. Unlike probabilistic methods, these approaches 

are based on possibility and necessity measures to determine the occurrence of an event 

and granulation of data for a better reasoning under uncertainty [Yao04]. Though not 

used in this thesis, multi-granulation rough sets have been addressed in multiple publica-

tions for the purpose of data analysis [Pawl91]. This scheme is based on an optimistic and 

a pessimistic covering and the introduction of uncertainty measures (such as the degree of 

rough membership, approximation measure, and rough entropy) [LiLQ13]. Another in-

teresting point with such approaches is that they do not involve probabilistic notions such 

as PDFs. However, they require defining entities referred to as membership functions in 

order to process the data. Figure 5.3 shows a graphical representation of different mem-

bership functions subjected to uncertainty. 
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Fig. 5.3. Graphical representation of uncertainty in fuzzy systems. 

 

 Other types of classifier, such as Dempster-Sheifer classifier (based on a belief func-

tion, which is intimately related to the concept of fuzzy measures) can be considered 

[Kins04]. In essence, it provides a framework for the representation of knowledge about 

the value of an uncertain variable. Furthermore, several fuzzy measures (such as plausi-

bility measure) can be associated with such type of classifiers [Yage02]. An important re-

alization from this specific section can be summarized as follows. Traditional approach-

es, which are based on probability theory, are based and formulated upon very specific 

assumptions. These assumptions include the nature of the: (i) measurement and process 

models, (ii) environment and noise present, (iii) dynamic of the environment, as well as 

potential disturbances (if present). Furthermore, most assumptions evolve around Gaussi-

an distributions referring to PDF and linearized models to represent the dynamics of the 

systems. 

 Finally, in addition to the different approach presented, several other techniques have 

been discussed in [LaLe01]. These techniques are based on nonparametric approaches, 

including but not limited to expert systems and neural networks. These approaches were 
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used for the purpose of implementing intelligent systems capable of speech and percep-

tion based on artificial intelligence. 

5.2 Fuzzy Analysis 

 In 1965, fuzzy theory was introduced as a new paradigm of computing by Lotfi Za-

deh (advisor of Rudolf Kalman) [Zade65]. Unlike classical computing techniques that 

would rely on crisp concepts only (i.e., membership or non-membership), fuzzy theory 

relies on class of sets that generalize the concept of memberships using a fuzzy number 

between 0 and 1 (where 0 means no membership and 1 full membership). It is based on 

the possibility theory that describes imprecise (sometimes contradictory) pieces of infor-

mation, where the term “imprecision” means the value of a variable has been given, but 

not with the required statistical measure that describes the deviation between the true val-

ue and the estimated one (i.e., precision). 

 Possibility theory is a branch of the theory of evidence. Unlike probability analysis 

that relies on a single measure that provides the likelihood of a certain event to occur, 

possibility theory relies on two measures, namely: (i) possibility and (ii) necessity set of 

measures [Garm05]. Furthermore, fuzzy theory initiated a new paradigm of computing, 

which is computing with words (CW). This paradigm conveys the information using a 

collection of propositions based on a natural or synthetic language. Figure 5.4 shows a 

graphical representation of possibility and necessity. This figure indicates that any as-

sumption might be false or true. Though an assumption might be correct, there might be 

some cases that violate the assumption. Nevertheless, there might be cases for which the 
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assumption is necessarily true. A similar description can be used when an assumption is 

considered false. 

 

Fig. 5.4. Representation of possibilistic measures. 

 

 Granulation of data is critical for CW. As described by Zadeh, a granule is a fuzzy set 

of points having the form of a clump of elements drawn together by similarity (an exam-

ple of a granule in software programming can be a program module). A granule in a 

higher level can be decomposed to smaller granules in lower levels, and conversely. 

Granulation is accomplished by constraining the values of variables. Moreover, using an 

initial data set (IDS), an answer to a specific query described using terminal data set 

(TDS) is derived using natural language also. Furthermore, it is domain specific and re-

lies on the available knowledge. Therefore, it is critical to build models to provide both 

semantical and operational interpretations of these notions [Yao04]. Granulation of data 

is critical to cognitive computing since it plays an important role in mimicking human 

cognition [Zade96]. 
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 Granular computing (GrC) has received a tremendous attention from the scientific 

community due to its applications in data compression and extraction of information, 

which is critical for the design of cognitive machines. GrC consists of developing the ap-

propriate mapping that links the different representations of the same problem at different 

levels of detail. Different models of GrC have been introduced in [Yao04]. Granular 

computing requires finding an optimal approach for establishing the granules. Also, it re-

quires finding an appropriate method for establishing the granules’ structures and their in-

terpretation once constructed. Only then, a qualitative and quantitative characterization 

and analysis can take place. This will allow for the study of the different types of granula-

tions by focusing on the properties of the mappings. 

 Different techniques for establishing the granule of data have been described in 

[EsVW06]. These schemes include: (i) mosaic (also known as table look-up), (ii) gradient 

decent, (iii) clustering with gradient decent, and (iv) evolutionary algorithms. A table 

look-up scheme constructs a fuzzy model based on pre-defined antecedents of the rules 

and establishes the consequences using a least-square approach. Gradient decent scheme 

provides more flexibility as the table look-up. It requires fixing the type and number of 

the memberships only, while it calculates their positions and the value of the consequenc-

es. By combining a clustering algorithm and a gradient decent scheme all the parameters 

become adjustable, but the type of the membership functions. The clustering and gradient 

decent method calculates the initial location of the membership functions by projecting 

the partition matrices obtained from a clustering applied to the input-output data. The 

consequences are generated from the centers of their covariance matrices and refined to 

improve the approximation by applying a gradient decent optimization technique 
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[EsVW06]. Finally, evolutionary approaches provide the unique ability to adjust all the 

parameters of the fuzzy models, including the set of inputs used to construct the model 

with the ability to consider complex constraints to enforce some desired features. The 

evolutionary strategies are computational algorithms that use methods derived from the 

concept of natural evolution, including reproduction, mutation and selection. These algo-

rithms are very powerful during the investigation of a global solution in the search space. 

However, they are very expensive computationally. Consequently, they will not be con-

sidered in this thesis. The different characteristics of these approaches are summarized in 

Table 5.1. This table indicates the ability of each approach to adjust the type, number lo-

cations of the MFs, and the consequences. 

 

Table 5.1: Different data granulation schemes and their characteristics. 

Method 
Type of 

MFs 

Number 

of MFs 

Location of 

the MFs 
Consequences 

Mosaic Scheme Fixed Fixed Fixed Adjusted 

Gradient Descent Fixed Fixed Adjusted Adjusted 

Clustering + Gradient Decent Fixed Adjusted Adjusted Adjusted 

Evolutionary Strategies Adjusted Adjusted Adjusted Adjusted 
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5.3 Fuzzy Inference Systems 

 A fuzzy inference system (FIS) can be defined as the process of formulating the map-

ping from an input to an output using fuzzy logic. FISs are capable of approximating any 

continuous function into a compact domain with a high level of accuracy. Thus, they are 

considered as universal approximators. These approximators provide a unique dimension 

to define models and processes. One of which is their ability to equip their description 

with linguistic concepts that provide an intuitive sense of their behaviour. This process 

would require the development of critical building blocks such as: (i) membership func-

tions, (ii) fuzzy logic operators, and (iii) rules.  

 Figure 5.5 shows a general block diagram describing the fuzzy inference system pro-

cess. A more detailed block diagram is shown in Fig. 5.9. This process relies on an expert 

knowledge that allows for the development of the rules in a more efficient approach. Al-

so, a defuzzification technique has to be selected in order to estimate the crisp output 

based on the degree of membership of the actual inputs with respect to the defined MFs.  

 

Fig. 5.5. A description of a fuzzy inference system. 
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5.3.1 Fuzzification Process 

 Fuzzification is the process of mapping the input data from crisp values (i.e., 0 or 1) 

to values between 0 and 1. In order to do so, MFs have to be utilized. These MFs can be: 

(i) triangular, (ii) trapezoidal, or (iii) Gaussian. Figure 5.6 shows two different classes of 

membership functions (trapezoidal and triangular) as an example. 

 

Fig. 5.6. Different membership functions used during the fuzzification process. 

 

 The use of one or other type of membership functions has to be selected carefully de-

pending on several aspects. For example, Gaussian and polynomial MFs exhibit continu-

ous derivatives facilitating sensitivity analysis and differentiability in the process. On the 

other hand, triangular ones provide simple linear interpolations and simple numerical 

evaluations, while local convergence might be guaranteed using triangular and polynomi-

al MFs.  

 An input can belong to one or more MFs. Once the degree of membership has been 

established with respect to all MFs, a fuzzy arithmetic operator can be applied to deter-

mine the corresponding fuzzy level of the input variable. It is critical to mention that once 

all the computations of all the membership functions have been conducted, they do not 

need to be recalculated again, if unchanged. This is extremely important when dealing 
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with the computational complexity of algorithms based on a FIS. When the parameters 

describing the dynamics of the process are unchanged, the computational cost of the algo-

rithm is minimized. Such feature is very attractive for our specific quest. 

5.3.2 Decision-Making Process 

 The decision-making process maps fuzzy values of the inputs to fuzzy values of the 

outputs. It relies on a set of if-then rules based on an expert knowledge. They provide the 

resulting output based on the input data by combining and weighting a number of fuzzy 

sets (resulting from the fuzzy inference process during the estimation process) [Jang93]. 

 The decision-making process is conducted for each rule through the following proce-

dure: (i) estimate the degree of membership for the input data based on the defined MFs 

and fuzzy sets, (ii) establish the applicability for each rule based on the degree of mem-

bership and connectives, and (iii) calculate the output based on the applicability of each 

rule using a Max-Min or a Max-Product fuzzy inference system, as an example. The 

proper selection of these rules is critical to achieve an optimal performance. Figure 5.4 

shows a graphical representation of the fuzzy rules. It indicates the value at the output 

based on the error and the change in the error. 
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Fig. 5.7. Graphical representation of fuzzy rules. 

 

5.3.3 Defuzzification 

 This process is responsible for combining and weighting a number of fuzzy sets re-

sulting from the fuzzy inference system. This would result in a mapping from a space of 

fuzzy sets into a space of crisp values. 

 Different techniques for the purpose of defuzzification are available among which we 

find: 

1. The Center of Area (Centroid): This technique calculates the center of the area of the 

combined membership functions, given by 

 1

( )

( )

k

i i

i

i

x x

w
x







 (5.1) 

where w is the crisp value and k is the number of items in the fuzzy set. 



ADCS FOR SMALL SATS  Ch. 5: AD Based on Fuzzy Approach 

    

   94 of 155    

2. The Center of Sums: It considers the contribution of the area of each fuzzy set individ-

ually making it more computationally efficient compared to the centroid defuzzifica-

tion technique; and 

3. The First-of-Maxima: It calculates the crisp output by taking the union of the fuzzy sets 

and estimates the largest value of the domain with the maximal membership degree. 

Other defuzzification techniques (e.g., the last-of-maxima and the middle-of-maxima) 

can be found in [RaSa96]. Figure 5.8 shows a graphical representation of the defuzzifica-

tion process using: (A) the centroid, (B) center of sums, and (C) first-of-maxima. 

 

 

Fig. 5.8. An illustration of a defuzzification process. 
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5.4 Approximation Capabilities of a FIS 

 Fuzzy inference approach operates in a local way. This means that the information 

provided by each rule that belongs to the decision-making process is restricted to a com-

pact region and the union of these local descriptions achieves the approximation of the 

developed function [EsVW06]. Consequently, a FIS can approximate and represent any 

mathematical function in a compact domain.  

 Given a FIS system with an arbitrary number of normal membership functions (trian-

gular or trapezoidal) with centers cji, distributed over the intervals 
 

  ,  1, ,i ip q i N   (5.2)
 
 

and covering the interval such that at least one and at most two membership functions are 

different from zero for a given value xi and let  

 g(x) :Ân®Â (5.3) 

be an unknown function. If g(x) is continuously differentiable in the interval  

 [ , ] [ , ] [ , ]1 1 2 2U p q p q p qn n     (5.4)  

then the fuzzy system f(x) can approximate the function g(x) with an arbitrary bounded 

error  

 g(x) f(x) 


   (5.5)
 
 

where


 is defined as e( )x


= sup ( )x U e x  
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5.5 Attitude Determination Based on a FIS 

 This section describes an estimation algorithm for the purpose of calculating the atti-

tude of a spacecraft. To design a fuzzy algorithm (FA), it is critical to select the type of 

FIS; form a set of fuzzy rules; introduce the MFs in addition to fuzzy sets for the input 

data; select fuzzy logic operations and defuzzification rules. Moreover, a scheme to es-

tablish the granules of data has to be determined. 

 The FA constructed relies on triangular MFs and a gradient decent algorithm to adjust 

the location of the MFs and their consequences. Different optimization techniques were 

discussed in [BoVa04]. The selection of the gradient decent optimization scheme is driv-

en by its low computational cost and the availability of the gradient of the process at hand 

with no intensive calculations. Consequently, reactive proportional actions can be in-

ferred directly. 

 The initial position of the membership functions is another element that must be cho-

sen. The procedure is given as follows: 

1. Distribute the Ni triangular membership functions over the interval [pi, qi]. The mem-

bership functions cover the entire input interval (with at least two MFs covering each 

input domain); 

2. Identify and generate all possible combinations among the antecedents in order to set 

the rules; 
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3. Optimize the parameters of the MFs and the consequences by minimizing the cost func-

tion shown in Eq. (5.6); that is, adjusting the membership functions of the antecedents. 

The cost function is given by 

 2

1

1
( f( , ))

2

N
i

i
i

J w x



  Λ  (5.6) 

where  denotes a vector representing all the parameters of the fuzzy algorithm that can 

be tuned (such as the consequences, parameters of the membership functions). 

 This minimization problem is extremely challenging and difficult due to its nature 

since it is a nonlinear and a non-convex optimization problem. Furthermore, a gradient 

decent scheme provides a local minima resulting in an acceptable performance and not 

necessarily the global minima of the cost function. Also, a convergence to the solution is 

not guaranteed. As a result, a variable parameter (denoted r) to improve the convergence 

rate and properties is considered and selected. This parameter can be estimated using 

Newton and quasi-Newton methods [EsVW06] 

 ( 1) ( )
J

k k r

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

Λ Λ
Λ

 (5.7) 

r is sometimes referred to as the learning rate. The gradient decent method calculates pa-

rameters on the antecedents and the consequences of the fuzzy inference system. The 

method requires the definition of the antecedents’ initial location for the MFs. Addition-

ally; it can be combined with a calculation of the consequences by using a least squares 

approach. 



ADCS FOR SMALL SATS  Ch. 5: AD Based on Fuzzy Approach 

    

   98 of 155    

5.5.1 Gradient Updating for Triangular Membership Functions 

 The membership functions are parameterized using only their model values. This pa-

rameterization not only preserves the overlap but also reduces the number of parameters 

to be tuned. Triangular membership functions are parameterized by the position of their 

three vertices; but the condition of the overlap (which is set to 0.5) makes the lower right 

vertex of one membership function to be at the same position as the modal value of the 

next membership function. Consequently, instead of tuning three parameters (the verti-

ces), only one parameter is tuned for each membership function. 

 The parameterization for a triangular membership function using the modal values as 

parameters is 
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The updating formula will be 
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where u1, u2, and u3 is the set of rules with antecedent term   
 ,     

 , and     
 . 
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The adaptation must be constrained such that the condition 1
i i
j j

c c


 is preserved. 

Now that all the building blocks have been introduced, an attitude estimation algorithm 

will be described based on Mamdani model [LoMa06]. This algorithm is referred to as 

the Delta-Fuzzy Algorithm 
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5.5.2 Mamdani Model 

 Two of the most common fuzzy controllers are: Mamdani and Takagi-Sugeno (TS) 

controllers. Mamdani and Assilian were attracted by the capabilities of fuzzy logic and 

introduced a Mamdani-type fuzzy control scheme in 1975 [MaAs75], in which a fuzzy 

controller was used to convert heuristic control rules stated by a human operator into an 

automatic control scheme. Unlike the Mamdani controller which employs fuzzy sets as 

the consequent, the TS fuzzy controller relies on a linear interpolation to calculate the 

consequent [TaSu85]. Consequently, the algorithm proposed relies on a Mamdani model 

to adjust for the consequent directly. 

 The suggested Delta-Fuzzy estimator is designed based on the four important compo-

nents shown in Fig. 5.5. 

5.5.2.1 The Fuzzification Process 

 This algorithm relies on the Earth magnetic field as the only sensory data collected on 

the body frame of the satellite. This choice was driven by the availability of the magnetic 

field throughout the entire LEO (which is not the case for the sun data). Additionally, it 

provides the algorithm with a unique stability when the angle between the Earth magnetic 

field and the sun is small. The fuzzification stage proceeds as follows: 

1. Measure the Earth magnetic field using TAM; 

2. Calculate the residual using the reference Earth magnetic field data (estimated from the 

IGRF) using (3.74); and 

3. Conduct a scale mapping to transfer the range of the residual into the initial universe of 

discourse. 
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5.5.2.2 The Decision-Making Process 

 The decision-making process is conducted based on the rule base that encompasses 

knowledge of the application goals. This process consists of: 

1. Identifying the corresponding linguistic variables and fuzzy levels (i.e., identify the an-

tecedents); and 

2. Characterizing the consequences based on the rules established. 

5.5.2.3 The Defuzzification Process 

 This process can be seen as the inverse of the fuzzification stage. It proceeds by: 

1. Converting the range of the consequences into the universe of discourse by conducting 

a scale mapping; and  

2. Identifying the crisp output (correction term for the attitude) using the center of gravity 

technique given by Eq. (5.1). 

5.5.2.4 Update the Parameters of the Fuzzy Sets 

 The parameters of the antecedents are adjusted using a gradient descent optimization 

technique. This technique relies on the error and the change in the error in the attitude as 

inputs. Feeding the information to the optimization algorithm provides a unique feature 

that consists of being cognizant of the changes in the environment. Such feature did not 

exist in deterministic and stochastic approaches introduced in Chapter 3. 

 The algorithm implemented is illustrated in Figure 5.9. The dashed frames (denoting 

the reference Earth magnetic field and the desired attitude) represent the stored data, 

which are not part of the algorithm itself. 
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Fig. 5.9. Block diagram of the proposed Delta-Fuzzy algorithm. 

5.6 Simulation Results 

 In this section several performance test cases are simulated to evaluate the perfor-

mance of the FA implemented for the purpose of small satellites attitude determination. 

This algorithm relies on the S-data and P-date introduced in Chapter 4 for the evaluation 

of the different stochastic and deterministic algorithms. The simulations evaluate the al-

gorithm against four performance measures, including: (i) the sensitivity to initial condi-

tions, (ii) the robustness to noisy measurements, (iii) the transient response, and (iv) 

pointing accuracy. Figure 5.10 shows the time history of the attitude estimation error us-

ing the fuzzy algorithm with exact knowledge of the initial attitude. Results shown in Fig. 

10(b) and Fig. 10(c) consider measurements corrupted with a 5% and a 10% additive 

WGN, respectively. 

 The error trajectory exhibits a smooth behaviour for the first 40 minutes of the simu-

lations. Then, the estimation process exhibits a transient behaviour for 20 minutes before 

returning to the stable evolution encountered initially. The average error is 1.7 deg. 
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Similar behaviour can be observed when an additive WGN is added. These observations 

can be justified by the parameters used to tune the FA. These parameters may not provide 

a global solution. Additionally, the transient response is due to the gradient decent 

scheme updating its parameters to correct for the error and improve the estimation pro-

cess. Furthermore, having an overlap of two MFs per input makes the FA more resilient 

to noisy measurements and imprecisions in the development of the FIS. 

 In order to visualize the impact of the gradient decent optimization technique, the er-

ror and the change in the error for each axis is monitored and displayed in Figures (5.11) 

and (5.12), respectively. 

 Figures (5.11) and (5.12) illustrate the response of the algorithm to the error and the 

change in the error. A nonlinear behaviour can be observed for the three axes. During 

such response, the FA redefines the widths of the input and output MFs. The FA algo-

rithm suggested is fundamentally different from all the algorithms presented so far. As an 

example, the EKF tracks the initial conditions provided to converge to the exact attitude 

(in case the error is not large), while the FA can recover from large errors (as observed 

between 40 to 60 min. of Fig. (5.11) and (5.12)). 



ADCS FOR SMALL SATS  Ch. 5: AD Based on Fuzzy Approach 

    

   104 of 155    

 

Fig. 5.10. Attitude determination using Delta-Fuzzy fuzzy algorithm with the exact initial attitude. 
(a) Uncorrupted measurements. (b) A 5% WGN added to the measurements. (c) A 10% WGN 
added to the measurements. 
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Fig. 5.11. The error in the x-, y-, and z- axes using the Delta-Fuzzy algorithm. 
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Fig. 5.12. The error change in the x-, y-, and z-axes using the Delta-Fuzzy algorithm. 
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 Finally, Figure 5.13 illustrates the results of the estimation process when a large error 

is considered initially with and without the addition of a 5% WGN to the measurements 

per axis. Similar behaviour can be observed (in Fig 5.13(a) and Fig 5.13(b)) as in Fig. 

5.10; that is, a smooth estimation process with some transients. The FA corrects very rap-

idly the error of the initial attitude by updating the MFs using the gradient decent scheme. 

The update stage of the scheme appears in the trajectory of the error as a deterioration of 

the performance of the algorithm. Once an optimal solution for the locations of the MFs 

and the consequences has been estimated (i.e., the error and the change in the error do not 

diverge), the FA resumes a smooth estimation process. 

 

 

Fig. 5.13. Attitude determination using the Delta-Fuzzy algorithm with a large initial error. (a) Un-

corrupted measurements. (b) A 5% WGN added to the measurements. 
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5.7 Discussion and Comparison 

 This section compares the proposed Delta-Fuzzy algorithm with deterministic and 

stochastic approaches introduced in Chapter 3 and evaluated in Chapter 4. 

5.7.1 Algorithm Formulation 

5.7.1.1 Fuzzy Algorithms require 

1. The definition of the antecedents, MFs, as well as their initial locations; 

2. The definition of all possible rules based on the different combinations of the anteced-

ents; and 

3. A scheme to optimize the location of the MFs and the consequences, if necessary. 

5.7.1.2 Stochastic Algorithms  

1. Require the specification of the process and measurement models; 

2. Assume a process described using a GRV; 

3. Assume a process and measurements corrupted with a WGN only; 

4. Involve a two-stage process (thus computational delay); and 

5. Require the approximation of a posteriori PDF. 

5.7.1.3 Deterministic Algorithms 

1. Require the definition of a loss function; and 

2. Require a closed-form algorithm for the defined loss function. 
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5.7.2 Algorithms Performance and Computational Complexity 

 The next step in this comparison between all the approaches presented is to evaluate 

all the algorithms with respect to their performance in estimating the attitude, as well as 

their computational complexity. This comparison is summarized in Table 5.2. 

 

Table 5.2: Performance and computational complexity of fuzzy, stochastic, and deterministic al-
gorithms. 

Performance 

Measures 

Fuzzy  

Algorithm 
Stochastic Approaches 

Deterministic Ap-

proaches 

Sensitivity to  

Initial Conditions 

Can recover 

from large  

errors 

Sensitive to initial  

conditions 

Does not require  

initial conditions 

Sensitivity to 

Noisy Measure-

ments 

Resilient to 

noisy meas-

urements 

Resilient to noisy 

measurements 
Very sensitive 

Transient  

Response 

In the order of 

minutes 
In the order of hours In the order of hours 

Time Complexity O(n
2
) O(n

3
) O(n

2
) 

Space Complexity O(n) O(n
2
) O(n) 

 

5.7.2.1 Discussion 

 The algorithmic formulation of each approach, as well as their performances and 

computational complexity illustrate the strength of fuzzy logic as compared to the alter-

natives studied. Fuzzy algorithms do not involve any notions of probability theory. Con-

sequently, no a priori knowledge of the process and measurements PDF is required. Fur-

thermore, they do not require a model of the environment or the process at hand. Addi-

tionally, the computational complexity of the suggested approach is much smaller than 
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stochastic approaches, while preserving its remarkable performance when subjected to 

large errors in the initial conditions and/or noisy measurements. 

5.8 Summary 

 Chapter 5 introduced an improved approach to solve a class of nonlinear navigation 

problems for small satellites. This approach is based on fuzzy logic and a gradient decent 

optimization scheme for a granule-based type of computing. Unlike classical logic, fuzzy 

logic performs well when boundaries of a class are ill-defined (or blurred). Such charac-

teristic was fully utilized in order to develop a robust algorithm showing an important 

tolerance to uncertainty and imprecision. Additionally, the gradient decent approach pro-

vide a unique feature to the suggested Delta-Fuzzy algorithm; that is, the ability to be 

cognizant of the changes in the environment; yet, preserving a low time and space com-

putational costs. Now that the attitude determination was addressed, Chapter 6 will at-

tempt to develop an optimal and energy efficient control scheme for the attitude. 
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  Chapter 6

OPTIMAL CONTROL DESIGN 

 The controllability of the satellite at any given time is a task of tremendous im-

portance for an optimal operation of the ADCS. To successfully accomplish this task, the 

attitude control must be extremely compact and light. Furthermore, an optimal controller 

ought to be designed to minimize: (i) the time delay, (ii) the overshoot, (iii) the transient 

response, and (iv) the steady-state error. Consequently, different control schemes have to 

be evaluated for an optimal selection of the control scheme to satisfy the aforementioned 

requirements. 

6.1 Attitude Control of a Flexible Spacecraft 

 A compact control system implies a careful selection of the actuators. Usually, these 

actuators should not exceed 500g, as well as they should not require propellant (e.g., 

thrusters). Additionally, they must be strong enough to counter-act all the disturbances 

encountered in LEO. These conditions can be satisfied by the use of magnetic torque rods 

as small satellites actuators. 
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 Using magnetic torque rods for the purpose of attitude control is a challenging task. 

The controllability of the spacecraft attitude under magnetic actuation is addressed in 

[BhDh03]. The attitude dynamics of a spacecraft actuated by three magnetic torque rods 

and subjected to a time-varying magnetic field is strongly accessible and controllable, if 

the following conditions are satisfied. First, the magnetic field and its first two time-

derivatives are linearly independent at every instant; second, the magnetic field is period-

ic in time. These properties are satisfied by the time variation of a constant dipole approx-

imation of the geomagnetic field along a closed Keplerian (except in the case where the 

orbital plane does not coincide with the geomagnetic equatorial plane and does not con-

tain the magnetic poles). 

 A time delay may be defined as the time interval between the start of the event at one 

point in a system and it resulting action at another point in the system. Delays (also 

known as transport lags or dead times) arise in physical systems, as well as during the 

computation process. Dealing with time-domain compensation can be accomplished 

through several approaches. These methods encompasses parameter optimized controllers 

and possibilistic algorithms, among others. 

 Parameters optimized controllers (such as proportional integral derivative control-

lers, PID) tune the controller’s structure and parameters based on the process model to 

optimize its performance. These controllers have a solid heritage in aerospace engineer-

ing. For example, a PID controller has been implemented successfully in several missions 

for the purpose of attitude control [KuTB09]. Additionally, a self-tuning integer-order 

PID (IPID) controller for three-axis satellite stabilization with unknown parameters has 

been addressed in [Mora12]. Their results demonstrated the stability of a closed-loop sys-
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tem in the presence of disturbances and uncertainties. Furthermore, a fractional-order 

PID (FPID) controller has received considerable attention due to its robustness and per-

formance. For instance, a fractional regulator for spacecraft attitude stabilization was in-

troduced in [KMAC04]. The FPID has revealed attractive characteristics such as addi-

tional flexibility compared to the IPID, which offers the opportunity to tune the parame-

ters of the controller to a dynamical process by adjusting the order of the fractional deriv-

ative and integral. 

 Alternative controllers based on possibilistic approaches have proven to be critical for 

applications, in which the environment is unknown or ill-defined. For example, an adap-

tive fuzzy controller was applied to the attitude stabilization of a flexible satellite. The 

suggested approach does not depend on the exact model of the plant. It adjusts the rule 

parameter vector on-line. The drawbacks of this method have been illustrated by a chat-

tering phenomenon and a large dissipation of power in an actual real implementation 

[LiGL05]. In [ c z  ], a robust stabilization of a class of nonlinear systems that exhibits 

parametric uncertainty was introduced. The authors considered feedback linearizable 

nonlinear systems with a vector of unknown constant parameters perturbed about a 

known value. This work shows that linearization and stabilization of nonlinear systems 

exhibiting parametric uncertainty is possible via Lyapunov-based approach, if certain as-

sumptions are satisfied (such as a structure matching condition). The main limitation for 

this approach is its respective computational cost in terms of space and time. Finally, a 

detailed literature review provides a range of nonlinear systems controlled by fuzzy logic 

showing usually superior results over conventional control [Lee90]. 
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 Now that the three controllers that are studied in this thesis are introduced, nonlinear 

model of the attitude dynamics is presented. 

6.2 Nonlinear Model of the Attitude Dynamics 

 The attitude motion of a spacecraft can be represented using the Euler’s equation for 

the motion of a rigid body under the influence of external moments, such as the control 

moment generated by the actuators. The attitude dynamic model can be described as 

[Psia01] 

 ctrl gg dist( )t      Iω ω Iω N N N  (6.1) 

 
mag

ctrl ctrl body N m b  (6.2) 

where I denotes the satellite’s moment of inertia. Nctrl, Ngg, and Ndist refer to the magnetic 

dipole produced in the magnetic coils, the gravity gradient torque, and disturbance 

torque, respectively. Finally, mctrl represents the magnetic moment and      
   

 denotes the 

magnetic field in the body frame. 

 The different disturbance torques that affect small satellites in LEO are: (i) aerody-

namic drag, (ii) gravity gradient, (iii) magnetic torque, and (iv) solar pressure, in order of 

magnitude. These disturbances are discussed in [Pete98]. 

The kinematics and dynamics models introduced in (3.48) and (6.1), respectively, are lin-

earized about deviations from the nadir-pointing attitude assuming a circular orbit. The 

linearized equations, which accounts for gravity-gradient effects, aerodynamic drag tor-

ques and control torques are given by 
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  (6.3) 

where nd refers to a vector of disturbances. b1, b2, and b3 represent a dipole approximation 

of the Earth’s magnetic field in the absence of the Earth’s rotation in a local level frame. 

This approximation is given by: 
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 (6.4) 

where μf is equal to 7.9×10
15

 Wb.m, ω0 is the absolute angular velocity of the satellite and 

im is the inclination of the orbit with respect to the Earth’s magnetic equator [ uCa0 ]. 

Also, ϕ, θ, and ψ represent the roll, pitch, and yaw deviations about the equilibrium nadir-

pointing approach. 

As indicated in (2.13), for small deviations the quaternion is given by: 
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and 

 
 jj kk

i
ii





I I

I
 (6.6) 

for the (i,j,k) index sets (1,2,3), (2,3,1), and (3,1, 2). 

 The linearized equations are valid only when the attitude angles remain small. Conse-

quently, the controller designed is valid after detumbling only (also known as the scien-

tific mode). In order to evaluate the performance and identify the different limitations of 

the different controllers, the characteristic equations of the dynamics describing the pitch 

and roll/yaw angles are needed. They are obtained using Laplace transform, as follows 

 2 2 1 3
0

2

3 0
I I

s
I




   (6.7a) 
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where s denotes Laplace variable [TiVe06]. 
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6.3 Attitude Control, Theoretical Background 

 This section introduces the theoretical background behind the three different types of 

control schemes that are evaluated: (i) IPID, (ii) FPID, and (iii) fuzzy controller. 

6.3.1 Integer-Order PID Controller 

 Control engineers practitioners have used PID controllers for a long time because of 

their simplicity and performance. They are considered to be the second most important 

control decision and communication instrument of the 20
th

 century [Rhin00]. Throughout 

the years, the PID control scheme has dominated most of the industry applications. In 

fact, as indicated in [ViVi12], the use of PI and PID controllers is ubiquitous (they are 

found in more than 95% of process control applications). In this chapter, an ideal PID 

controller in a unity feedback block diagram is considered. The controller is given by 

 
1(s) p i dC k k s k s    (6.9) 

where kp, ki, and kd represent tuning parameters for the PID controller. 

Figure 6.1 shows an ideal PID controller with unity feedback where R(s), E(s), Y(s) repre-

sent the reference input, the error, and the output respectively. Several practical control-

lers are implemented based on this architecture, for example Honeywell TDC3000 Pro-

cess Manager Type A [Hone03]. 
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Fig. 6.1. Ideal block diagram of an IPID controller with unity feedback. 

 

 As mentioned in the beginning of this chapter, the PID consists of three different 

types of actions, namely the proportional, the derivative, and the integral ones. Their 

main effects on the controlled system behaviour can be summarized as follows: 

1. The proportional action increases the speed of the response, while decreases the steady-

state error and relative stability; 

2. The integral action attempt to eliminate the steady-state error; but, decreases the rela-

tive stability; and  

3. The derivative action increases the relative stability and sensitivity to noise. 

 The positive and negative effects of these actions can be visualized though a frequen-

cy analysis using bode plot as shown in Figure 6.2. For instance, the impact of the deriva-

tive action (increase of the relative stability) can be observed in the frequency-domain by 

introducing the π/2 phase lead, and the negative ones (increase of the sensitivity to high-

frequency noise) by increasing the gain with a slope of 20 dB/dec. Similarly, for the inte-

gral action, the positive effects (elimination of the steady-state errors) can be deduced by 

an infinite gain at zero frequency, while the negative one (decrease of the relative stabil-

ity) is indicated by a π/2 phase lag are introduced. 
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Fig. 6.2. Bode plot for the (a) integral, (b) proportional, and (c) derivative terms. 
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Using a PID controller, the control torque is given by 

 p i( ) e e d e

d
t k k k

dt
   u q q ω  (6.10) 

where qe and ωe refer to the error in the quaternion and angular velocity. 

6.3.2 Fuzzy Controller 

 Another alternative for small satellites attitude control is based on fuzzy logic. This 

specific scheme has been used in numerous applications due to its robustness to parame-

ter variations and system disturbances [AsAn12]. Fuzzy control (FC) exhibits very attrac-

tive characteristics (such as autonomy and modularity), while remaining robust to uncer-

tainty in the process, as seen in Chapter 5. 

 FC has found numerous applications. In [Chia94], a fuzzy controller was developed 

for Cassini spacecraft with specific issues investigated (e.g., tracking capability, thrust-

ers’ duty cycle). Also, the controller was compared with a conventional bang/bang 

scheme. A more complex example was introduced in [Ousa11], where a multi-axis atti-

tude maneuver for a small satellite with variable inertia matrix using fuzzy logic strategy 

was investigated. The controller was implemented by means of a multi-input multi-output 

(MIMO) system with a knowledge base composed of 75 logic rules. This specific exam-

ple reinforces the strength of fuzzy logic in dealing optimally with nonlinear navigation 

problems. The fuzzy controller designed has the following main components: (i) a fuzzi-

fication stage; (ii) a decision-making process; and (iii) a defuzzification stage, which are 

introduced in the next section. 
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6.3.2.1 The Fuzzification Process 

 The controller relies on five Gaussian membership functions to fuzzify the two in-

puts, which are the error and the change in the error. 

6.3.2.2 The Decision-Making Process 

 The decision-making process is conducted based on the 16 rules derived to achieve 

the main goal; that is, minimizing the error and the change in the error. This is accom-

plished by: 

1. Identifying the corresponding antecedents; and 

2. Characterizing the consequences based on the rules of the domain experts. 

6.3.2.3 The Defuzzification Process 

 This process converts the range of the consequences into a universe of discourse by 

conducting a scale mapping and identifying the crisp output (correction term for the con-

trol signal) based on the center of gravity technique using (5.1). 

6.3.3 Fractional-Order PID Controller 

 The FPID controller provides more flexibility as compared to the IPID. In addition to 

the proportional, integral, and derivative gains, the order of the fractional derivative and 

integral have to be specified. Such flexibility allows for an optimal trade-off between the 

advantages and disadvantages of each term as seen in subsection 6.3.1; thus, leading to a 

more satisfying result, as well as a more powerful and flexible soft-computing design 

method to satisfy the stringent limitations found in small satellites. 
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 FPID is based on a fractional-order calculus, which constitutes a trend of expanding 

integer operators to non-integer operators (e.g., integrator and differentiator) [Love04]. 

As indicated in [PoDK97], the idea of using FPID controllers for the dynamic system 

control belongs to [Oust95], while a generalized FPID was proposed by Podlubny 

[Podl97]. Fractional-order dynamics and controls are relatively new research areas in 

control engineering used for the purpose of an accurate profile tracking in a controlled-

output system. In this subsection, a review of some important notions about fractional 

calculus is introduced briefly. 

6.3.3.1 Fractional-Order Calculus 

 Calculus refers to the mathematical study of change, which encompasses two major 

branches which are differential and integral calculus dealing with rates of changes and 

slope of curves and the summation of areas under curves, respectively. 

 The motivation for introducing fractional calculus is driven by the need to analyze 

and deal with non-smooth and non-continuous functions. For instance, the integer deriva-

tive gives the linear approximation of smooth functions. Smooth functions are defined as 

functions that have derivatives of all orders. Fractional derivative provides a power-law 

(nonlinear) approximation of the local behaviour of non-smooth functions (non-

differentiable). Consequently, fractional calculus provides a more expressive power to 

deal with nonlinear behaviours. 

A fractional integral is defined as: 
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1
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   (6.11) 

where t > 0 and ξ is a positive real number. 
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 The current literature is rich in terms of the different definitions of fractional deriva-

tive; yet, the most used ones are Caputo and Riemann-Liouville definitions. Each defini-

tion has advantages, as well as disadvantages. For example, using a Riemann-Liouville 

derivative with a constant function is not zero. Additionally, if an arbitrary function is a 

constant at the origin, its fractional derivative has a singularity at the origin. Consequent-

ly, these disadvantages reduce the field of usage of the Riemann-Liouville definition. 

Therefore, the Caputo derivative has been selected for this specific application. 

The fractional derivative, Caputo derivative, is defined as: 
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  (6.12) 

where ζ is a positive real number and Euler’s Gamma function is given by 

   1

0

,    0t xx e t dt x


     (6.13) 

with the special case when x=n defined as 

   ( 1)( 2) (2)(1) ( 1)!x n n n       (6.14) 

Now, using the Laplace transformation we have  

 (s) (t)s F I f    (6.15) 

and 

 
(t)

(s)
d f

s F
dt


   (6.16) 

Then, the fractional PID controller can be written as  

 p i d(s)C k k s k s     (6.17) 



ADCS FOR SMALL SATS  Ch. 6: Optimal Control Design 

    

   124 of 155    

If we take ζ=ξ=1, then we obtain the classic PID controller. If ζ =0, a PI controller is ob-

tained. 

The control input using a FPID is given by 

 p i e d( ) e eu t k k I k D    q q ω  (6.18) 

 

Fig. 6.3. Block diagram of a FPID controller with unity feedback. 

 

Figure 6.3 shows a graphical representation of a FPID controller acting on a plant. 

6.4 Simulation Results 

 These tests evaluate the ability of the different controllers to converge to the desired 

reference input. Based on the dynamics model introduced in (6.3), two different control-

lers have to be implemented. The first controller is optimized to control the pitch angle, 

while the second one adjusts the roll/yaw angles. 

The transfer function describing the pitch angle is given by 
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and the transfer function for the roll/yaw angles can be expressed using 
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  (6.19b) 

6.4.1 PID Controller 

 The first controller is designed to adjust the pitch angle optimally. The IPID control-

ler was tuned after several iterations and the final parameters are shown in Table 6.1. One 

can observe that the contribution of the integer term is very small compared to the deriva-

tive and the proportional terms. Figure 6.4(a) shows the step response of the IPID con-

troller implemented. 

 The simulation results indicate an 8% overshoot with a settling time of 170 sec. Fur-

thermore, the steady-state error is less than 1%. This controller suffers from a long set-

tling time, which will result in a long activation of the torque rods before generating the 

wanted actuation. Such behaviour would result in power wastage, as well as extra dis-

turbances to the satellite. Consequently, a FPID controller is evaluated to adjust for the 

pitch angle. The tuning parameters are shown in Table 6.1.  

 The FPID controller provides a relatively better performance as illustrated in Figure 

6.4(b). The settling time was reduced considerably. In fact, the transient response does 

not last more than 38 sec. However, the main limitation of this controller is related to its 

larger overshoot (17%). This comparison illustrates the relative merits of FPIDs over in-

teger ones. This comparison constitutes one side of the answer only. The complete an-

swer regarding the overall performance of such controllers has to be supported by an 



ADCS FOR SMALL SATS  Ch. 6: Optimal Control Design 

    

   126 of 155    

analysis in the frequency-domain. For instance, using bode plots the sensitivity to noise 

and the distortion of the phase can be studied. 

 The frequency analysis is shown in Figure 6.5(a) and Figure 6.5(b) for the integer and 

fractional PID, respectively. A bode plot provides the frequency response of a linear time 

invariant system. These results consist of the frequency response gain and shift. They in-

dicate that the IPID will be more sensitive to high frequency noise as compared to the 

FPID (18 dB/dec for the IPID and 5 dB/dec for the FPID). Additionally, a higher phase 

shift is experienced, when the frequency increases (17deg/dec for the IPID and 13deg/dec 

for the FPID).  

 Based on these results, the FPID is more robust than the IPID. Consequently, the 

FPID is used to control the pitch angle of the satellite. A summary of the comparison be-

tween each controller is shown in Table 6.2. 

 

Table 6.1: Tuning parameters for IPID and FPID pitch controllers. 

Parameters kp ki kd ζ ξ 

IPID 0.70 9×10
-5

 29 1 1 

FPID 0.70
 

9×10
-5

 50 0.6 0.9 

 

Table 6.2: Summary of the comparison between IPID and FPID pitch controllers. 

Parameters 
Overshoot 

[%] 

Transient 

Response 

[Sec] 

Steady-State 

Error 

[%] 

Frequency  

Response  

Gain [dB/Dec] 

Phase 

Shift 

[Deg/Dec] 

IPID 8 170 1 18 17 

FPID 17
 

38 <1 5 13 
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Fig. 6.4. Step response for the pitch controller. (a) IPID and (b) FPID controllers. 
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Fig. 6.5. Bode plots for (a) IPID and (b) FPID controllers. 
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 In order to adjust for the roll/yaw angles another controller has to be designed. This 

controller is optimized by considering a plant described by (6.19b). Similarly both of the 

PID controllers are evaluated. The tuning parameters are provided in Table 6.3 and re-

sults presented in Figure 6.6. 

 A visual inspection of the results indicates that the IPID suffers from a large over-

shoot, settling time, and steady-state error as compared to the fractional one. The FPID 

exhibits a settling time of 53 sec (205 sec for the IPID), a 5% overshoot (44% for the 

IPID), and a steady-state error of 2% (7% for the IPID). Furthermore, a frequency analy-

sis of both controllers reinforces the robustness of the FPID, as seen for the pitch control-

ler. More specifically, the frequency gain is 12 dB/dec and 9 dB/dec with a phase shift of 

15 deg/dec and 8 deg/dec for the integer-order and fractional-order PID controllers, re-

spectively. A summary of this comparison is provided in Table 6.4. 

 

Table 6.3: Tuning parameters for IPID and FPID roll/yaw controllers. 

Parameters kp ki kd ζ ξ 

Integer PID 10.619 8.09×10
-9

 80 1 1 

Fractional PID 18 8.09 350 0.6 0.7 

 

 

Table 6.4: Summary of the comparison between FPID and IPID roll/yaw controllers. 

Parameters 
Overshoot 

[%] 

Transient 

Response 

[Sec] 

Steady-

State Error 

[%] 

Frequency  

Response  

Gain [dB/Dec] 

Phase 

Shift 

[Deg/Dec] 

IPID 44 205 2 12 15 

FPID 5
 

53 7 9 8 
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Fig. 6.6. Step response for the roll/ yaw controller. (a) IPID and (b) FPID controllers. 
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Fig. 6.7. Bode plot for (a) IPID and (b) FPID controllers. 
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 Based on the comparison (summarized in Table 6.4), the FPID provides a better per-

formance. This performance is not as optimal as the one obtained for the pitch controller 

(specifically for the settling time). Therefore, can an alternative type of controller (such 

fuzzy controller) provide a more attractive response? 

6.4.2 Fuzzy Controller 

 As described in Section 6.3.2, a fuzzy algorithm was implemented in order to adjust 

for the roll/yaw angles. The results are shown in Figure 6.8. 

 

Fig. 6.8. Step response for the roll/yaw fuzzy controller. 

 

 Fuzzy controller performs relatively better than the IPID controller. However, it suf-

fers from a large overshoot (75%); yet, the transient response has been reduced to 150 sec 

with a steady-state error of 5%. The transient response in this specific comparison consti-

tutes the most desirable characteristic since it allows for an important power savings 

throughout the entire attitude control process. 
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 One can notice that this controller does not provide a better performance than the 

FPID. Moreover, it exhibits an oscillatory behaviour with a diverging trajectory over 

time. 

6.5 Observations and Discussions 

 Our main quest throughout this chapter was to design an optimal controller to correct 

for the orientation of the satellite by actuating the magnetic torque rods, while tackling 

one of the most severe limitations that small satellites suffer from; that is, the limitation 

in power. The main objectives were to minimize: (i) the overshoot, (ii) the settling time, 

(iii) the transient response, and (iv) the steady-state error.  

 Based on these requirements, the FPID controller exhibits the best performance as in-

dicated in Tables 6.2 and 6.4. Moreover, the frequency analysis of the PID controllers has 

proved the relative robustness of the fractional-order controller as compared to the integer 

one. As a matter of fact, it exhibits a lower phase shift, which will result in less distorted 

output as compared to the input. Also, the gain is smaller as the frequency increases. This 

implies that high frequency noise will not impact the fractional-order PID as it would 

happen for the IPID. Finally, the FPID was compared to a fuzzy controller, as well. This 

comparison reinforced the relative merits and strengths of a FPID. 

6.6 Summary 

 This chapter discussed the design of an optimal controller for the roll, pitch, and yaw 

angles. The dynamics model indicated that the roll and yaw angles follow the same evo-
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lution in time, unlike the pitch angle. Consequently, two controllers have been imple-

mented and optimized independently. Simulation results have shown that the FPID con-

troller performs optimally in both cases, as compared to the IPID and fuzzy controllers. 
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  Chapter 7

CONCLUSIONS 

7.1 Overview  

 This thesis introduced an improved approach for the purpose of attitude determination 

and control. The attitude determination algorithm relies on a fuzzy approach in order to 

estimate the current error in the attitude, as well as a gradient decent approach to refine 

the locations of the membership functions. This work was motivated by the evaluation of 

the different deterministic algorithms (TRIAD, QUEST, and extended QUEST) and sto-

chastic ones (EKF and UKF) described in Chapter 3. These approaches exhibit inherent 

pitfalls that were extracted through a numerical analysis in Chapter 4. For example, de-

terministic algorithms suffer from a lack of probabilistic significance and sensitivity to 

noisy measurements. On the other hand, stochastic algorithms are sensitive to initial con-

ditions and subjected to divergence problems. In addition to these algorithmic pitfalls, the 

computational complexity represents an important factor in carrying this work. 

 The suggested solution illustrates attractive properties that were mutually exclusive to 

either deterministic or stochastic approaches. The new developed approach was able to 



ADCS FOR SMALL SATS  Ch. 7: Conclusions 

    

   136 of 155    

reconcile their advantages (such as robustness to noisy measurements, errors in the initial 

conditions, and a minimum steady-state error). Moreover, their respective limitations 

were minimized (e.g., high computational cost and long convergence rate). As a result, 

the Delta-Fuzzy algorithm developed can recover in less than two minutes from large ini-

tial errors with an average pointing accuracy of 1.7 deg. Furthermore, it is more robust to 

large errors in the initial conditions, as well as to measurements corrupted with a signifi-

cant level of WGN. Additionally, its performance does not deteriorate when the angle be-

tween the Earth magnetic field and the sun measured data is small. 

 The validation of the Delta-Fuzzy algorithm was conducted through different experi-

ments that were established to test for the performance measures and the limitations of 

current approaches. In order to set certain thresholds for the initial error in the attitude 

and the added WGN to the measurements, the performance of current algorithms was 

used as a reference. The rationale behind such decision relates to the fact that these algo-

rithms are used in industry and real-life space mission as indicated throughout this thesis. 

 This thesis addressed the design of an optimal control scheme to correct for the error 

in the relative orientation of the spacecraft. The optimal design was selected after the 

evaluation of different control schemes such as fuzzy, IPID, and FPID controllers as 

shown in Chapter 6. The introduction of a PID controller based on fractional calculus has 

provided an additional flexibility and a more expressive power. The evaluation conducted 

in the time domain provided measures such as overshoot, transient response, and steady-

state error. The other evaluation conducted in the frequency domain was an indicator of 

the controller robustness based on the sensitivity to high frequency noise and distortion in 
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the phase. These evaluations resulted in the selection of a FPID controller to adjust for 

both of the pitch and roll/yaw angles. 

7.2 Answers to the Research Questions Addressed 

 The thesis has raised several interesting research questions about the attitude determi-

nation and control for small satellites, as outlined in Section 1.2.3. This section links the 

results and observations to the research questions to provide insight into the answers and 

potential future research. 

 This work presented standard and state-of-the-art approaches for the purpose of atti-

tude determination developed throughout the last 50 years. These approaches encompass 

deterministic and stochastic algorithms introduced in Chapter 3. Their study indicated 

that they are costly in time and space, as well as other inherent pitfalls. Also, knowing the 

different reference models needed, it might not be possible to rely on a single computing 

unit. 

 The EKF has shown very attractive characteristics when applied for the purpose of at-

titude determination. Such characteristics include: (i) very high pointing accuracy, (ii) ro-

bustness to noisy measurements, and (iii) the need of one measurement from the past on-

ly. These three main reasons constitute the main advantages of using the EKF for the 

purpose of orbital guidance and navigation. 

 The formulations of the different KFs (the EKF and UKF) allows for the study of 

their ability to deal with uncertainty in a dynamical non-stationary process. KFs can be 

applied to stationary, as well as non-stationary processes; yet, they are optimal for Gauss-

ian processes only. As a result, Kalman filters cannot deal optimally with dynamical sys-
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tems (which are characterized by power-law relationships). Finally, a visual inspection of 

the simulation results demonstrates the limitations of the filters to deal with epistemic un-

certainty. For example, when an uncertainty related to the initial conditions (e.g., the ini-

tial attitude) arises the filters’ performance is affected directly. This can be observed 

through the deterioration of the performance, as well as a diverging behaviour of the es-

timation process. 

 Based on the different pitfalls of KFs (which are based on a probabilistic approach), 

several limitations have been identified. First, probabilistic approaches require the identi-

fication and specification of the exact PDF describing the process and measurement mod-

els. Additionally, the a priori PDF is required also. Such requirements are extremely dif-

ficult to satisfy, specifically for the space environment since it is ill-defined. For instance, 

initial conditions of the spacecraft after being released from the P-POD (e.g., tumbling 

rate) are unknown. Such characteristics make it difficult for any probabilistic approach to 

perform optimally. These limitations were addressed and resolved through the use of a 

possibilistic approach (fuzzy logic). The main attribute of fuzzy logic is that they do not 

require the definition of any PDF. Furthermore, they provide a means to establish a new 

paradigm of computing; that is, computing with words. Such paradigm allows the ap-

plicability of an expert knowledge to the problem at hand. 

 Fuzzy and rough sets are based on possibility theory. Unlike probability analysis, 

possibility theory relies on two measures, namely (i) possibility and (ii) necessity for a 

better reasoning under uncertainty. As a result, a granule-based type of computing can be 

utilized. This computing requires the definition of MFs, which will establish the granula-

tion of data. Based on the characteristics needed, different MFs are available as discussed 



ADCS FOR SMALL SATS  Ch. 7: Conclusions 

    

   139 of 155    

in Section 5.3.1. Once the MFs have been selected, different techniques can be used to 

define the optimality of the structures and configurations of data granules. Among these 

techniques, gradient decent optimization scheme is found. The highlight of this scheme is 

its low computational cost; yet, very effective to converge to an optimal solution. This 

technique has been used for the implementation of the Delta-Fuzzy algorithm in Section 

5.5.1 showing a promising performance. As a result, a computationally efficient algo-

rithm based on a FIS was implemented. 

 Other important questions addressed in this thesis are related to the power consump-

tion associated with the actuators. An optimal control scheme has been defined as the one 

that minimizes the overshoot, time delay, transient response, and steady-state error in the 

time-domain. Also, a robust controlling scheme has to be characterized by a low sensitiv-

ity to high frequency noise and a low phase distortion in the frequency domain. These 

questions lead to the evaluation of three different controllers based on fuzzy logic, integer 

and fractional calculus. The evaluation of these controllers showed that a fractional-order 

proportional integral derivative controller has the unique capability of exhibiting the 

characteristics of an optimal control scheme. This is due to relative merits of fractional 

calculus over the integer one. Fractional calculus provides unique dimensions that did not 

exist with integer calculus; it possesses the unique ability to adjust the order of the inte-

gral and derivative operator. 
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7.3 Contributions and Main Findings 

 This thesis contributes to the knowledge of current small satellites attitude determina-

tion algorithms and control, as well as suggests an improved approach based on a gran-

ule-based computing for the purpose of estimating the attitude. The main contributions 

are: 

1. The evaluation of current deterministic and stochastic algorithms under one umbrella 

and using a unified notation. This thesis provides uniquely three different deterministic 

and two stochastic algorithms for the purpose of orbital guidance. Furthermore, a de-

tailed comparison that encompasses the algorithms formulation and their respective 

computational cost is presented; 

2. For the first time, questions regarding the application of stochastic approaches (such as 

KFs) for pico- and nano-satellites due to their stringent limitations have been raised. 

Professor Witold Kinsner initiated these deep questions due to the algorithmic formula-

tion of the EKF. In particular, the assumption of a Gaussian distribution of the space 

environment can no longer be valid. Consequently, another estimator based on alterna-

tive approaches has to be developed; 

3. The novelty in this thesis encompass the development of an improved algorithm to es-

timate the relative orientation of the spacecraft based on a granule-based type of com-

puting with a gradient decent optimization technique to refine the bounds of the MFs. 

This algorithm constitutes a novel approach to conduct attitude determination that has 

never been presented in published literature to the best of my knowledge. The suggest-

ed solution is computationally efficient and relies on the Earth magnetic field only with 

the unique ability of tracking the changes in the environment by updating the MFs. 
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Moreover, this algorithm is not only applicable to small satellites, but can also be used 

for larger spacecraft; 

4. This thesis addressed for the first time the limitations in volume and power. In order to 

deal with these limitations, a comparison between fuzzy, integer-order, and fractional-

order controllers was discussed. This comparison was conducted in time- and frequen-

cy-domains allowing for the identification of a robust control scheme for small satel-

lites. As a result, two FPID controllers were designed to adjust for the pitch and 

roll/yaw angles providing a critical response with a low high-frequency noise sensitivi-

ty and phase shift distortion; and 

5. Finally, the relative merits of fractional calculus over integer ones have been addressed 

for this specific application. Fractional calculus provides an extra flexibility to adjust 

the order of the integral and derivative operator to the dynamical process leading to an 

optimal response. Such performance could not be achieved by a fuzzy or an integer-

order PID controller. 

7.4 Limitations and Future Work 

This humble work addressed one of the most challenging problems pico- and nano-

satellites are facing nowadays. This problem has been tackled from all its angles; yet, 

some limitations are still present. These limitations can be summarized as follows: 

1. The Delta-Fuzzy algorithm suffers from a constant error through the entire estimation 

process. This error has to be cancelled out without affecting the estimation process due 

to its nonlinear and non-convex nature. Consequently, the FIS used might be redefined 

or another granulation technique should be used; and 
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2. The control scheme relies on two FPID controllers. An important computational cost 

would be saved, if these controllers were combined to constitute one controller for the 

three angles. 
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Appendix A 

Software 

 This chapter provides a description of the attitude determination algorithms imple-

mented in this thesis. The source code described in this appendix is included in the DVD 

uploaded on my MSpace under a folder entitled AD_Algorithms. Matlab 2010b or later is 

recommended for these applications. 

A.1 Stochastic Algorithms 

 The extended and unscented Kalman filters algorithms were implemented based on 

the block diagram shown in Fig. A.1. The source code shares common functional blocks 

(such as the sensory measurements and reference models) and differs in the implementa-

tion of the Kalman filter algorithms only. The EKF is implemented as described in Table 

4.7 and the UKF is based on Table 4.8. The Matlab file for the EKF and UKF are named 

AD_EKF.m and AD_UKF.m, respectively. 
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Fig. A.1. Block diagram of the Kalman filters software implementation. 

 

A.2 Deterministic Algorithms 

A.2.1 TRIAD Algorithm 

 The TRIAD algorithm was implemented based on the block diagram shown in 

Fig.A.2. The algorithm estimates the relative attitude as described in Table 4.1. The 

source code is found in AD_TRIAD.m. 
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Fig. A.2. Block diagram of the TRIAD software implementation. 

 

A.2.1 QUEST Algorithm 

 The QUEST implementation is similar to the TRIAD one from the perspective of the 

required functional blocks. The QUEST algorithm is based on Table 4.3. The source code 

of this algorithm is entitled AD_QUEST.m. 

A.2.1 Extended QUEST Algorithm 

 Similar to Kalman filters, the extended QUEST estimates the attitude by applying a 

two-stage process (propagation and update). The propagation stage is conducted through 

a linearized model of the attitude kinematics, while the update stage is based on the 

QUEST algorithm as described in Table 4.5. The source code is available in 

AD_EQUEST.m. 
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Fig. A.3. Block diagram of the extended QUEST software implementation. 

A.3 Delta Fuzzy Algorithm 

 The Delta-fuzzy algorithm implemented is shown in Figure A.4. As opposed to the 

other algorithms, the algorithm relies on the Earth magnetic field only. The estimation 

process relies on a fuzzy inference system to calculate the error in the a priori attitude. 

Also, this algorithm indicates the presence of a control token. This token activates the 

gradient decent optimization scheme which recalculates the boundaries of the MFs. Such 

reaction allows the algorithm to the changes in the environment; Thus, leading to an im-

proved estimate of the attitude. The source code is available in AD-Delta-Fuzzy.m. 
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Fig. A.4. Block diagram of the Delta-Fuzzy algorithm software implementation. 
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Appendix B 

DVD Content 

 There is one DVD uploaded on MSpace of the  niversity of Manitoba’s institutional 

repository. The DVD includes all the reference and measurement data, source code, and 

Matlab libraries used for the simulations of the attitude determination algorithms and dif-

ferent controllers. The content of the appended DVD is explained below. 

 Lib: This folder contains the reference and measurement data used during the simu-

lations. Also, the desired attitude profile is included. 

 FracCalcLib: This folder provides the fractional calculus library needed to imple-

ment the FPID. 

 SimulinkLib: The Simulink models used for the implementation of an IPID and a 

FPID proportional integral derivative controller are available in this repertoire. 

 AD_Algorithms: This folder contains three subfolders for deterministic and sto-

chastic algorithms described in this thesis, as well as the Delta-Fuzzy algorithm. 

 TestCases: The different test cases considered to evaluate the performance of the 

algorithms studied in this thesis are available in this folder. 
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 IGRF2005: IGRF script used to generate the Earth magnetic field. 

 Output: All the results of the different test cases are stored here. The results are 

saved under the extension *.fig and *.png. 
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Appendix C 

Colophon 

 This thesis is typeset in MS office 2010. The body is written in 12 point Times New 

Roman with figure and table captions displayed in 10 point Arial. 

 The figures published in this thesis are created in Microsoft Visio 2010 Professional 

and generated using Matlab version 2010b and saved as a Portable Network Graphics 

(PNG) file. 

 All the work was performed using a Mac OS X version 10.6.8 and Windows 7 Pro-

fessional running as dual boots in a 2×2.4 GHz Quad-Core Intel Xeon processors with 12 

GB of 1066 MHz DDR3 memory. 


