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ABSTRACT

Multiple input multiple output (MIMO) is a promising physical layer approach to
boost the performance of multihop wireless networks such as the wireless mesh net-
works (WMNs). WMNs are dynamically self-organized and self-configured networks
which are built using a wireless mesh backbone consisting of mesh routers. The wire-
less mesh backbone, which provides multihop wireless connectivity to mesh clients,
requires high throughput and reliability in order to provide quality of service (QoS)
for real-time as well as non-real-time applications. To achieve high channel utilization
and to guarantee the QoS requirements of different types of traffic, the radio resources
such as the antennas and transmission power in a mesh router need to be allocated
optimally among the different flows. Resource allocation and end-to-end performance
analysis for MIMO-based wireless mesh backbone networks pose significant research
challenges. In order to realize the full potential of MIMO technology, higher layer
protocols must be designed to be cognizant of the MIMO link capability. In par-
ticular, channel state information (CSI) from the physical layer should be exploited
for optimal resource allocation at the medium access control (MAC) layer. An an-
tenna assignment and allocation (ASA) scheme is presented which uses only a subset
of total available antennas for each type of service and provides differentiated QoS
among different flows in a mesh router. Also, to provide efficient channel utilization,
the ASA technique considers adaptive modulation and coding (AMC) to exploit CSI.
This scheme is developed based on a Markov Decision Process (MDP) formulation of
the antenna assignment problem. The MDP formulation exploits a queueing analyt-
ical model for the data queues at a mesh router. The performance of the proposed
scheme is compared with the traditional weighted round-robin type of scheme for an-
tenna scheduling. Numerical results demonstrate the efficacy of the proposed scheme.
To this end, for performance analysis of a wireless mesh backbone in an end-to-end
MIMO transmission scenario, we propose a tandem queueing model. This model con-
siders the implementation of AMC in the physical layer and ARQ-error recovery in
the link layer. Both exact and approximate decomposition approaches are developed

to solve the tandem queueing problem. The performance analysis results obtained
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from the analytical model show the significant performance gain achieved through

using MIMO links compared to that for using single input single output (SISO) links.




Examiners:

Prof. E. Hossain, Supervisor, Dept. of Electrical & Computer Engineering

Dr. J. Diamond, TR Labs and Dept. of Electrical & Computer Engineering

Prof. P. Thulasiraman, External Examiner, Dept. of Computer Science

iv




Table of Contents

Abstract ii
Table of Contents v
List of Figures viii
Acknowledgement X
1 Introduction 1
1.1 Wireless Mesh Networks and Its Applications . . . . ... .. .. .. 1

1.2 Directional Antenna . . . . . . . . 3

1.3 Multiple Input Multiple Output (MIMO) Technology . . . . . . . .. 5
1.3.1 MIMO Channel Model . . . . . . . . . . ... .. ... .... 6

1.3.2  Spatial Diversity Gain on MIMO system . . . . . . . ... .. 7

1.3.3  Spatial Multiplexing MIMO Systems . . . . . . . ... .. .. 9

1.4 Objective, Motivation, and Scope of The Thesis . . . . . . . ... .. 11

1.5  Organization of The Thesis . . . . . . . ... ... ... .. ..... 14

2 Resource Allocation in MIMO-Based Wireless Networks 16
2.1  Medium Access Control Protocol in MIMO Wireless Networks . . . . 17

2.1.1  Centralized Medium Access Control in MIMO Wireless Networks 17
2.1.2  Distributed Medium Access Control in MIMO Wireless Networks 18
2.1.2.1  Medium Access Control Exploiting MIMO Spatial

Diversity . . . . . . . . .. ... 20
2.1.2.2  Medium Access Control Exploiting Spatial Multiplex-
ing MIMO . . . . . e 21
2.2 Power and Rate Control in MIMO Wireless Networks . . . . . . .. 22

2.3  Admission Control in MIMO Wireless Networks . . . . . . . .. ... 23




vi

9.4 Antenna Selection and Assignment in MIMO Wireless Mesh Networks 24

2.5  Cross-Layer Design in MIMO Systems: Perspectives and Challenges 25
2.5.1 Complexity in Neighbor Discovery . . . . ... ... ... .. 25
2.5.2  Difficulty in Obtaining the Channel State Information . . .. 26
2.5.3  Different Performance Objectives and Different MAC Design 27
92.5.4 Difficulty in Optimizing Resource Allocation in a High Mobility

Environment . . . . . . . . e e e 27

Quality of Service in MIMO Wireless Mesh Networks: An Antenna

Selection Approach 29

3.1 Introduction . . . . . . . . .. 29

3.2 Related Work . . . . . . . . . 30
3.3  System Model, Assumptions, Problem Definition and Solution Method-

OlOgY . . v v 32

3.3.1 Physical and Link Layer Model . . . . . ... ... . ... .. 33

3.3.1.1 Signal Model . . . . . ... ..o 33

3.3.1.2 Channel Model . . . . . . . . . ... ... 36

3.3.2 Problem Definition and Solution Methodology . . . . . . . .. 39

3.4 Formulation of the Markov Decision Process Model . . . . . . .. .. 42

3.4.1 Packet Arrival Process . . . . . . . ..o 42

3.4.2 Packet Departure Process . . . . . . .. ... ... ... ... 43

3.4.3  State Space and Transition Probability Matrix . . .. .. .. 44

3.4.4  Queueing Performance for Each Type of Service . .. .. .. 47

3.44.1 Steady State Probability . . . ... ... ... ... 47

3.4.4.2  Average Queue Length . . . ... ... ... .... 47

3.4.4.3 Packet Dropping Probability . . ... ... ... .. 48

3444 Queue Throughput . . ... ... ... ... .... 49

3.4.4.5  Average Delay for one Packet . . . . . .. ... ... 49

3.4.5 Markov Decision Process Model . . . ... ... ... .... 49

3.5 Performance Evaluation . . . . . . . . . ... . ... 54

3.5.1 Complexity of Policy Evaluation . . . .. ... .. ...... 54

3.5.2 Parameter Setting . . . . . . . . ... 55

3.5.3 Queueing Performance . . . . . . ... ... ... 56




vii

3.5.4  Simulation Methodology . . . . . . . .. .. .. ... ..... 57

4 A Tandem Queue Model for Performance Analysis in MIMO Wire-

less Mesh Networks 64
4.1 Introduction . . . . . . . .. 64
4.2  System Model and Assumptions . . . .. . ... 65
4.2.1  The physical and link layer models . . . . . .. ... .. ... 66

4.3 An Exact Tandem Queue Model . . . .. .. ... ... ... .. .. 67
4.3.1 End to End Packet Dropping Probability . . . ... ... .. 70
432 AverageDelay . . . . . ... ... 71

44 General Case (L >2) . . . .. . . . 71
4.5  Solution of the Tandem Queueing Model: Decomposition Approach . 72
4.5.1 Technical Approach . . . . . ... ... ... ... ...... 72
4.5.2 Tandem Queue with Exogenous Traffic. . . . . ... ... .. 75

4.6  Validation of Decomposition Approach and Typical Numerical Results 75
477 SUMMATY . . . . . . o 78
5 Conclusion 81
5.1 SUMMATY . .+« o o v e e e e 81
5.2 Future Research Works . . . . . . . . . ... ... .. ... ... .. 82

Bibliography 85




viii

List of Figures

Figure 1.1 A simple wireless mesh network. . . . . . ... ... ... ...
Figure 1.2 Transmission using directional and omidirectional antenna. . .
Figure 1.3 SISO, SIMO, MISO, and MIMO transmission. . . . . . .. ..
Figure 1.4 Spatial Diversity transmits the same data stream across all an-
tennas, and makes use of multipath to increase the chance of correctly
decoding the received signal, i.e. lower bit error rate. . . . . . .. .. 9

Figure 1.5 Spatial Multiplexing transmits independent data streams in the

same time slot and frequency band simultaneously. . . .. .. . ... 10
Figure 1.6 VBLAST system diagram. . . . . . .. ... ... .. ..... 11
Figure 1.7 Capacity of an i.i.d. Rayleigh channel with different SNR. . . 12
Figure 1.8 Capacities of n x n MISO channel, 1 x n SIMO channel and

n x n MIMO channel (for SNR=0dB). . . ... ... ... ..... 13

Figure 2.1 Joint design of PHY and MAC layers for MIMO links in ad hoc
networks. . .. ... 20

Figure 2.2 Complexity in neighbor discovery. . . . . . . .. ... ... .. 26

Figure 3.1 Converting a MIMO channel into a parallel eigenchannel by

using Singular Decomposition Value technique. . . . . . . . .. .. .. 35
Figure 3.2 Transmission model between two mesh routers. . . . . .. .. 39
Figure 3.3 The procedure to find the optimal solution for ASA. . . . . . . 41
Figure 3.4 Algorithm for the Antenna Assignment Controller.. . . . . . . 54

Figure 3.5 Computational complexity when the system has 2 separate sub-
channels and K is the number of transmission modes. . . . . . . . .. 55
Figure 3.6 Computational complexity when system using 5 transmission

modes and m is number of separate subchannels. . . . ... .. ... 56




Figure 3.7 Average packet delay under different packet arrival rate with
¢, = (, and subchannel assigned to best-effort queue has v, = 10dB
(from analysis). . . . . . .. ...

Figure 3.8 Average packet blocking probability under different packet ar-
rival rate with ¢, = 0.8 and subchannel assigned to best-effort queue
has v, = 10dB (from analysis). . . .. .. ... ... .. .......

Figure 3.9 Relation between states and the deterministic policy, where
(1=08(=05,v=15dBand yo=5dB. ... ...........

Figure 3.10 Packet throughput under different packet arrival rate (for {; =
08,and 1o =5dB). . . ... ... ... oo

Figure 3.11 Packet blocking probability under different SNR (for (; = (» =
0.5,and v, =5dB). ... ... .. e

Figure 3.12 Impact of connection arrival rate on average delay for QoS-
sensitive queue (for ; =05and v =5dB). . . ... ... ... ...

Figure 3.13 Average delays for best-effort and QoS-sensitive traffic (for {; =
0.7and 1 =9dB % =5dB). . ... ... ...

Figure 4.1 A multihop wireless network with multiple ongoing connections.
Figure 4.2 A tandem system of queues. . . . . . . . ... ... ... ...
Figure 4.3 A tandem system with two queues. . . . . . .. .. ... ...
Figure 4.4 Impact of packet arrival rate on average delay (for SISO: vy =
15 dB, for 2 x 3 MIMO: v = 5 dB, for 3 x 3 MIMO: v, = 3 dB,
Qi=Q2=50,L=2). . ... ...
Figure 4.5 Impact of packet arrival rate on end - end packet dropping
probability (for SISO: vy = 15 dB, for 2 x 3 MIMO: 7y = 5 dB, for
3X3IMIMO: =3dB, Q1 =Q2=50,L=2). ............
Figure 4.6 Impact of packet arrival rate on average delay in 2 x 2 MIMO
with 79 =5 dB, Q; = @, = 50, L = 2, with different exogenous traffic.
Figure 4.7 Impact of packet arrival rate on average delay in 2 x 2 MIMO

ix

57

66
66
68

76

7

78

with vy = 5 dB, @, = 50, with different number of hops, i.e., H =L —1. 79

Figure 4.8 Impact of end - end packet dropping probability on average
delay in 2 x 2 MIMO with v = 5 dB, Q) = 50, with different number
ofhops,ie, H=L—1. . . . . .. ... .. . ... ... ...




Acknowledgement

I ' would like to express my gratitude to Dr. Ekram Hossain for his abundant help,
valuable assistance, support and guidance. I am also very grateful for his encourage-
ment, patience with time for teaching me technical writing and introducing me to
several exciting research topics.

I am indebted to Dr. Jeff Diamond for his excellent comments and suggestions
during my thesis revision period. I feel providential to have learned from his remark-
able combination of technical knowledge and research enthusiasm. I also appreciate
Dr. P. Thulasiraman for her time and effort to serve in my thesis committee.

This research has been supported by TR Labs grant, for which I am grateful.

My warmest thanks are to my colleagues in the University of Manitoba for their
sharing and caring, the friendship and the cooperation. Especial thanks to Dr. Long
Bao Le and Dr. Dusit Niyato for their numerous timely advices and support. I would
also like to thank my other friends, Tien Nguyen, Hai Pham, Quy Nguyen and Trung
Nguyen, for the time we had together and the encouragement they reserved for me.

My heartfelt thanks are to the Friesen family, with whom I have shared many of
my dreams, [ am forever thankful for their sharing and caring, the support and the
happy smiles. Their hospitality is wonderful and it is very helpful for completing my
thesis. |

My deepest love is, as always, with my parents and my brother family. All my
life, they have always been there to love, to take care, to listen and to support. I am
proud of my mom and my dad for teaching me to be a good person, and I thank my

parents for letting me know that their faith in me would never fade.




Chapter 1

Introduction

1.1 Wireless Mesh Networks and Its Applications

Wireless Mesh Networks (WMNs) are dynamically self-organized and self-configured
wireless networks [6]. Nodes in these networks automatically establish an ad hoc
network and maintain connectivity in the network. This feature helps to reduce
the cost of establishing the backbone network, decreases the complexity of network
maintenance, and also improves the reliability of network coverage. In fact, there are
two types of nodes in wireless mesh networks, namely, static nodes (mesh routers)
and mobile nodes (mesh clients). The mesh routers have a minimal mobility and
they form the backbone of the network. The client nodes in WMNs can freely and
dynamically self organize into arbitrary and temporary ad hoc network topologies,
allowing wireless devices to seamlessly inter-network in coverage areas of a WMN
backbone. The network backbone provides multihop connectivity among the mesh
routers and Internet gateways. That is, when a mesh client wants to connect to the
Internet, it connects to the mesh router and then the mesh router will establish a
connection (using wireless multihop connectivity) with other mesh routers until it
finds the Internet gateway. Mesh networks are expected to play a key role to provide
last mile connections and to backhaul traffic in wireless broadband networks [6].
Note that relay-based implementation to extend the coverage and enhance the system
capacity was also proposed for centralized wireless networks (i.e., cellular and wireless
LAN networks) [77], [63].

The unique topology of WMNs leads to many strong points that are hard to find in
other access network technologies. WMNs provide a new way to access the Internet

to potential users who are currently not serviced due to geographical, financial or
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Figure 1.1. A simple wireless mesh network.

technological restrictions [40]. Users and Internet service providers are expected to

benefit from WMNs in many ways as follows:

e Scalability: The network can grow as more and more customers are added. If

the capacity becomes an issue, additional gateways can be added.

e Multiple types of network access: In WMNs, both backhaul access Internet

and peer to peer communications are supported [41].

e Low up-front investment: Incremental expansion is possible in WMNs,
which eliminates the challenge of a large initial investment required in deploying
wired Internet access services, e.g., DSL or cable-based networks.

e Reliability: The mesh structure assures the availability of multiple paths for
each node in the network. If a node fails, others will take over its traffic enabling
uninterrupted services.

e QoS: Quality of Service provisioning for multimedia traffic is crucial [71]. With
a careful design and enough gateways in appropriate locations, WMNs can

support QoS for multimedia services. This feature of WMNSs will be highlighted




in this thesis.

e Flexibility: Different configurations can be adapted to meet the requirements

of a particular situation.

e Mobile user support: Mobile users can connect to the network as long as

they stay within the range of any other user node (mobile or not).

e Roaming service: As customers travel, roaming contracts between companies

can be agreed upon for added value to the service.

Due to wireless channel impairments and complicated interactions among proto-
cols in different layers, engineering multihop wireless networks with quality of service
(QoS) assurance is a very challenging task.

WMNs are expected to support real-time applications such as video streaming
and gaming etc. These applications require low and stable packet delay, and constant
throughput. These requirements may not be easily achieved in interference-limited
mesh networks using conventional antenna technologies. In this context, the use of
smart antennas and multiple input multiple output (MIMO) is a promising PHY
approach to boost the network throughput.

To achieve high-speed wireless communications in a WMN backbone, we propose
to use MIMO links in between the mesh routers. In the physical layer, we consider
adaptive modulation and coding (AMC) and we capture the effects of correlated
channel fading by using a finite state Markov chain (FSMC) model. Automatic repeat
request (ARQ) is used for error control so that the reliability of the transmission can
be ensured. The details of the MIMO wireless mesh backbone network where each
node in the network is equipped with multiple antennas and adaptive modulation
is used in transmission links in single-hop and multihop wireless scenario will be

described in Chapter 3 and 4, respectively.

1.2 Directional Antenna

The development of RF technology and circuit design have been contributing towards
the development of efficient antenna technology for high-speed wireless communica-
tions. Traditionally, there are two types of smart antennas: directional antenna and

multiple input and multiple output (MIMO) [34]. A directional antenna generates



multiple predefined narrow beams directed to each particular direction in order to
enhance the received signal strength (RSS) and/or signal-to-noise ratio (SNR) and
applies one at a time towards the direction of interest. There are two major types of

directional antennas [46]:

e Switched-beam antenna: This type of directional antenna system measures
RF power from a set of predefined beams and then selects one from a set of

predefined beams/antennas.

e Digitally Adaptive Beamformers (DAB): These systems use adaptive tech-
niques to enhance the radio link. In such a system, each separate antenna is

down converted, digitized, and processed .

However, when we use directional antennas to design a WMN backbone, the exist-
ing standard for MAC protocols (e.g., IEEE 802.11) may not work efficiently or take
full advantage of using a directional antenna because those standards were designed
for omni-directional antenna technology. The difference between the transmission sce-
narios using directional antenna and omi-directional antenna is shown in Figure 1.2.
Using directional antennas may aggravate the hidden node problem in traditional
IEEE 802.11-based networks.

A solution was investigated in [19] to reduce the number of hidden nodes in such
networks when using directional antennas. But such a solution which requires fast
steerable directional antenna increases cost and system complexity.

The results in [57] showed that by using antenna arrays, significant improvements
in channel capacity (or spectrum efficiency) can be achieved. Also, antenna arrays
can help reduce multipath fading and thereby increase the data rate. Such an antenna
array is known as a smart antenna. Smart antenna technology can be classified into
three types [34]: adaptive antenna array technology, MIMO technology, and space
division multiple access technology. Despite its technical merits, however, recently,
beamforming has not found commercial adoption due to its requirement for rich
channel knowledge at the transmitter. We will focus on the MIMO technology in the

rest of the thesis.
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Figure 1.2. Transmassion using directional and omidirectional antenna.

1.3 Multiple Input Multiple Output (MIMO) Tech-
nology

Although there are a lot of benefits of using directional antennas, in order to reduce
the deployment cost and being closer to the users, the wireless mesh routers are
mostly deployed at low to moderate heights in order of 3-10 m where direct LOS
(main component to create beamforming in smart antenna techniques) is difficult to
be guaranteed [34]. Depending on the position of wireless routers we can have three
different commnunications scenarios that affect the channel propagation statistics [2].
The results in [2] also showed that, in the large scattering angles, MIMO performs
better than directional antennas.

MIMO wireless systems are those that have multiple antenna elements at both
sides, the transmitter and the receiver. They were first investigated by computer

simulations in the 1980s [66] and were studied analytically later. Recent research on




MIMO, related to both channel capacity and the design of communication schemes,
demontrates a great improvement of performance in a MIMO-based wireless sys-
tem. Indeed, MIMO antennas use sophisticated physical layer techniques to provide
significant benefits over conventional antenna technology. Multiple independent data
streams can be sent over the MIMO antenna elements. MIMO links can also suppress
interference from neighboring links as long as the total useful streams and interfering
streams are not greater than the number of receiving antenna elements. For these
reasons, MIMO technology is increasingly being considered for use in interference-
limited WMNSs and have been adopted in third generation (3G) cellular systems (e.g.,
WCDMA) as well as in WLAN and WIMAX standards. However, the benefits of the
MIMO technology in improving network performance are limited unless the higher
layer protocols are able to exploit these capabilities [11].

Multiple antennas in a MIMO system can be used in two different ways. One
is increasing the amount of diversity to combat channel fading and the other is the
transmission of serveral parallel data streams to increase the system capacity (this
scheme called spatial multiplexing). Given a MIMO channel both gains can in fact
be simultaneously obtained. However, the study in [73] showed that there is a
fundamental traffeoff between how much of each type of gain any coding scheme can

extract: higher spatial multiplezing gain comes at the price of sacrificing diversity.

1.3.1 MIMO Channel Model

We consider here a single user Gaussian channel, similar to [53] ,with multiple trans-
mitting and/or receiving antennas. We denote the number of transmitting anten-
nas by N; and the number of receiving antennas by N,. The varying channel im-
pulse response between the jsth (j = 1,2,...,N;) transmit antenna and the #th
(i =1,2,...,N,) receive antenna is denoted by h; ;(7,t), then the composite MIMO

channel matrix is given by N; X N, matrix H(7,t), where

hl,l(Tat) hl,Z(Tv t) T hl,Nz (T7 t)

hoi(7,t)  haa(rt) 1 haw,(T,t)

H(rt) = (1.1)

hn.a(mt)  hne2(7t) - hw,on(T1)



In this chapter, as well as the rest of the thesis, we consider the case where
elements of H follow an i.i.d. Gaussian distribution with zero-mean and have inde-
pendent real and imaginary parts each with variance 1/2. Equivalently, each entry
of H has a uniform phase and Rayleigh magnitude. This choice models a Rayleigh
fading environment with enough separation between the receiving antennas and the
transmitting antennas such that the fades for each transmitting-receiving antenna
pair are independent. In all cases, we will assume that the realization of H is known
as the receiver, or, equivalently, the channel output consists of the pair (y ; H ), and
the distribution of H is known at the transmitter.

The vector [ hy j(7,t), ko (T, %), ..., hn, ;(7,t) |7is referred to as the spatio-temporal
signature induced by the j-th transmit antenna across the receive antenna array. Fur-
thermore, given that the signal s;(¢) is launched from the j-th transmit antenna, the

signal received at the i-th receive antenna is given by

N
yit) =Y hig(7,t) x s;(t) +ni(t), i=1,2,... N, (1.2)

j=1

where n;(t) is additive white Gaussian noise (AWGN) in the receiver.

1.3.2 Spatial Diversity Gain on MIMO system

Spatial diversity can be obtained by placing multiple antennas at the transmitter
and/or the receiver (Figure 4.2). If the antennas are placed sufficiently far apart, the
channel gains (or the varying channel impluse) between different antenna pairs fade
more or less independently and independent signal paths are created [62]. The dis-
tance between two adjancent antennas determines interference between this pair and
typical antenna separation of half to one carrier wavelength is sufficient. In fact, there
are three types of antenna diversity: receive diversity (Single Input Multiple Output
or SIMO channel), transmit diversity (Multiple Input Single Output or MISO) and
diversity in both side (Multiple Input Multipe Output or MIMO channel). However,
in this work, we focus on diversity in both sides. The details of SIMO and MISO can
be found in [62].

Again, multiple antenna channel systems can provide spatial diversity which can

be used to improve the reliability of wireless communication links. The diversity here




Figure 1.3. SISO, SIMO, MISO, and MIMO transmission.

can be seen as the number of independent duplicates of the same signal at the receiver
side. The resulting signal at the reciever side can be demoluted and decoded in the
usual way. Then the probability that all the signal components fade simultaneoustly
is reduced. The results in [73] showed that at high SNR, the probability of error
(averaged over the fading gain H as well as additive noise) is much smaller than
in the situation where only one antenna is used at the receiver side. This main
achievement at high SNR, in terms of probability of error, is called diversity gain.
For a system with IN; transmit and N, receive antennas, the mazimal diversity
gain provided by the channel is N; x N, assuming that perfect channel information is
available at both sides. This information can be obtained by using pilot symbols at
the transmitter and feedback from the receiver. In fact, extracting spatial diversity
gain in the absence of channel knowledge at the transmitter is possible using suitably
designed transmit signals. The corresponding technique is known as a space-time
coding (STC) scheme [59]. The simplest STC scheme is the Almouti scheme [7] where
there are two antennas at both, transmitter and receiver, sides without any feedback

from the receiver. This scheme has been proposed in several third generation cellular




standards for transmit diversity. As an extension of the Almouti scheme, space time
block coding (STBC) was introduced in [58], which is able to use an arbitrary number
of transmit antennas and is able to achieve the full diversity promised by the transmit
and receive antennas. Also, at the receiver side, maximum likehood (ML) decoding
is used to decouple the signals transmitted from different antennas and perfect CSI

at the receiver side is assumed.

Space
time
Block

coding

Transmitting symbols)

Figure 1.4. Spatial Diversity transmits the same data stream across all antennas,
and makes use of multipath to increase the chance of correctly decoding the received

signal, i.e. lower bit error rate.

1.3.3 Spatial Multiplexing MIMO Systems

Besides providing diversity to improve the reliability of wireless links, an alternative
way of exploiting the multiple antenna elements is the so-called “spatial multiplering”
or BLAST approach [27]. The most well known model is V-BLAST [67], which is
the first spatial multiplexing technique implemented in laboratory scenarios, and the
principle of this model is shown in Figure 1.6. In this case, multiple antennas can
support higher data rate than single antenna channels, or in other words, different
data streams are transmitted (in parallel) from the different transmit antennas (Figure
1.7).

Another popular technique, with coding over signals transmitted on different an-
tennas, is D-BLAST. In D-BLAST, the input data stream is transmitted on different

antennas using time slots in a diagonal fashion. The advantage of this method is that
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each individual sub-stream passes through all the sub-channels; hence if there is an er-
ror in one sub-channel, proteced by code, it does not cause the loss of the stream [73].
However, the disadvantage of this method is the complexity in implementation. The
receiver must demultiplex the signal in order to recontrust the transmitted symbols.
Multiple receive antenna elements are used for separating the different data streams
at the receiver side. The results in [73] showed that the multiple antenna channel can
be viewed as min( Ny, N,) parallel spatial channels, so that the total number of degrees
of freedom is min(N;, N,.). Since one can transmit independent signals in parallel via

multiple spatial channels, this method is called spatial multiplexing.

Spatial
Multiplexing
in MIMO
system

Transmitting Symbols

Figure 1.5. Spatial Multiplezing transmits independent data streams in the same

time slot and frequency band simultaneously.

The advantage of this method is that the data rate can be increased by a factor of
min(Ng, N;) (i.e., either N; or NN, ) without requiring additional frequency spectrum.
There are some practical schemes such as layered space time receiver structure [26]
and space time codes [59] which allow us to achieve the highest performance in a
MIMO wireless system.

Due to the fact that wireless technology is now moving towards the era where
very high data rates are needed for multimedia services, the achivement of spatial
multiplexing in data rate is significant to the wireless system designers. A practical
MIMO system requires an algorithm to adapt the coding and transmission param-

eters to variations of the environment. This is called dynamic link adaptation in
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Figure 1.6. VBLAST system diagram.

which adaptive modulation is one of the most important solutions. Combining adap-
tive modulation with multiple antenna systems will require some feedback to change
the modulation level at the transmitter. When the channel information state (CSI)
is available at the receiver side (e.g., the VBLAST model), to achieve the highest
possible modulation level, the post processing SNR of each stream is fed back to the
transmitter [28], [42]. In this work, we focus on the case where CSI is available at both
sides. In such a case, the MIMO channel can be decomposed into multiple separate
channels by using the singular value decomposition (SVD) method. The details of
this method and the design and analysis of adaptive modulation in a MIMO system

in this particular case will be investigated later in this thesis.

1.4 Objective, Motivation, and Scope of The The-
sis

A wireless mesh backbone network will require high throughput and reliability. Also,
the QoS requirements for different users need to be satisfied. The use of multiple an-
tennas at the transmitter and the receiver (i.e., MIMO wireless links) is an emerging

cost-effective technology that offers substantial transmission rate in making high-
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speed wireless connectivity in a wireless mesh backbone a reality. To recognize the
significant improvement of using MIMO over the other schemes such as SISO, SIMO,
MISO, capacity comparison of the these schems was presented in [62] as shown in
Figures 1.7 and 1.8. Indeed, we can see clearly that, the capacity and rate of a
MIMO system is very large and there is a huge improvement compared to SISO, i.e.,
at moderate and high signal-to-noise ratio (SNR), the capacity of an n x n MIMO

system is about n times the capacity of a SISO system.
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Figure 1.7. Capacity of an v.i.d. Rayleigh channel with different SNR.

In 2 WMN, the wireless mesh backbone, which provides multihop wireless con-
nectivity to mesh clients, requires high throughput and reliability in order to provide
quality of service (QoS) for real-time as well as non-real-time applications. To achieve
high channel utilization and to guarantee the QoS requirements of different types of
traffic, the radio resources such as the antennas and transmission power in a mesh
router need to be allocated optimally among the different flows. Resource allocation
and end-to-end performance analysis for MIMO-based wireless mesh backbone net-
works pose significant research challenges. In order to realize the full potential of
MIMO technology, higher layer protocols must be designed to be cognizant of the
MIMO link capability. In particular, channel state information (CSI) from the phys-

ical layer should be exploited for optimal resource allocation at the medium access
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Figure 1.8. Capacities of n x n MISO channel, 1 x n SIMO channel and n X n
MIMO channel (for SNR = 0 dB).

control (MAC) layer.

The thesis focuses on the application of MIMO technology in WMNs. The problem
of radio resource allocation at a mesh router is addressed. In particular, the problem
of antenna selection and assignment (ASA) among different flows in a mesh router
is solved. The solution can achieve a differentiated QoS among different flows in a
mesh router. Also, to provide efficient channel utilization, the ASA scheme considers
adaptive modulation and coding (AMC) to exploit CSI. The ASA solution works at
the link layer to satisfy the QoS requirements for each type of users while taking full
advantage of high-speed transmissions achievable through the MIMO technology.

The system model assumed here considers the following physical and link layer
aspects:

e Physical layer: Singular Value Decompition is used to decompose a MIMO

channel in to m independent channels. AMC is used to enhance the transmission
rate according to CSI, and we use a finite state Markov channel (FSMC) model

for different transmission modes of AMC.

e Link layer: An Automatic Repeat Request (ARQ) protocol to retransmit

erroneous packets over a multi-rate wireless link is considered.

The ASA scheme, which uses only a subset of total available antennas for each

type of services, is promising in order to 1)achieve fairness, 2) maximize the through-
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put, and 3) guarantee the QoS requirements for different types of traffic. This scheme
is developed based on a Markov Decision Process (MDP) formulation of the antenna
assignment problem. The MDP formulation exploits a queueing analytical model for
the data queues at the transmitter node. The performance of the proposed scheme
is compared with the traditional weighted round-robin type of schemes for antenna
scheduling. Numerical results are presented to demonstrate the efficacy of the pro-
posed scheme.

To this end, for performance analysis of a wireless mesh backbone in an end-to-end
MIMO transmission scenario, a tandem queue model is developed. Both exact and
approximate decomposition approaches are proposed to solve the tandem queueing
problem. The analytical model enables us to quantify the differences in end to end
performance between SISO and MIMO scenarios in a wireless mesh backbone.

Note that, most of the works on MIMO in the existing literature have focused on
the physical layer aspects. Recent research on MIMO communication systems has
mainly focused on either increasing capacity by employing spatial multiplexing (SM)
or mitigating fading by employing spatial diversity of a single wireless link. Under-
standing the impacts of MIMO technology on higher layers in a multihop wireless
network, and in particular, the development of link adaptation, scheduling, and re-
transmission algorithms that make explicit the use of MIMO nature of the system is

of significant interest.

1.5 Organization of The Thesis

The organization of this thesis is as follows:

e Chapter 2: provides a background and discusses several key issues and tech-
niques for resource allocation and management in a MIMO-based wireless net-
work in the literature. The issues and design approaches for MAC schemes in

MIMO wireless networks are provided.

e Chapter 3: presents a service differentiation model for the singler user scenario
where wireless clients considering two types of traffic, namely, QoS-sensitive and
best-effort traffic. AMC is used at the physical layer to increase the transmission

rate by exploiting the dynamic channel variations. An optimization problem is
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formulated and a solution based MDP is obtained.

e Chapter 4: presents a tandem queueing model for multi-hop communications
in MIMO-based wireless mesh backbone networks. Both exact and approximate

decomposition approaches are presented to solve the tandem system of queues.

e Chapter 5: summarizes the contribution of the thesis and outlines several

directions for future research.
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Chapter 2

Resource Allocation in
MIMO-Based Wireless Networks

Radio resource management is one of most important components in wireless net-
work design. Traditionally, in telecommunication contexts, resource sharing models
are called trunk reservation models due to the most often used policy for admit-
ting new customers based on thresholds depending only on the currently available
resources [31]. In a wireless network, the main objective of radio resource allocation
Is to maximize the number of concurrent transmissions based on currently available
resources, so that the throughput can be maximized. Note that, packet-level per-
formances in a wireless network depend not only on the resource sharing mechanism
among multiple users, but also on the radio link level error control mechanisms.

Radio frequency spectrum is the most scarce resource for wireless communications.
In a multiple access wireless communication environment, many users may have to
share a limited amount of bandwidth. At the same time, to meet the rapidly growing
demand for different wireless communications services (e.g., video on demand, online
gaming), significant efforts are being made towards efficient radio resource manage-
ment to improve the wireless spectrum efficiency.

Although power consumption and node mobility, which are two major issues in
an ad hoc network, have been removed in a wireless mesh backbone network, ef-
ficient radio resource allocation in a wireless mesh backbone network still remains
as a major issue. To maintain wireless connectivity in the network, wireless mesh
routers in a wireless mesh backbone should not only send their own packets, but also
forward packets of other nodes. To guarantee the end-to-end QoS, resource alloca-

tion controllers should decide how much of the resoures (e.g., number of antennas,
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transmission power) must be allocated to each traffic path within the wireless mesh
backbone. Since a wireless mesh backbone does not have a centralized “base-station”
which coordinates with the mesh routers, the wireless mesh routers are expected to
have the characteristics of self-organization and auto-configuration. These character-
istics offer many benefits such as low upfront investment, increased reliability and
scalability.

In the following, we discuss several key issues and techniques for resource allocation

and management in a MIMO-based wireless network.

2.1 Medium Access Control Protocol in MIMO

Wireless Networks

2.1.1 Centralized Medium Access Control in MIMO Wire-

less Networks

A multiple access control (or medium access control) technique allows different users
to share the transmission media and it has significant impact on the higher layer
protocol performance. In centralized scenarios, there are three fundanmental multi-
ple access methods: i.e., time-division multiple access (TDMA), frequency-division
multiple access (FDMA), and space-division multiple access (SDMA). In a MIMO
transmission scenario, TDMA can be implemented by assigning the entire time slot
to only one user during one scheduling period as in [17]. In this work, a multiuser
MIMO system was considered for downlink transmissions where each user is given
an individual probability of outage constraint, defined as the probability that the
short-term signal-to-noise ratio (SNR) at the receiver is smaller than a given thresh-
old. An optimal solution for power allocation and time sharing among users was
presented with the aim to minimizing the overall transmit power while meeting the
user’s outage probability constraints by jointly optimizing the user’s power allocation
and time-sharing (i.e., the number of time slots). By solving the MPE (minimum
power equation) and the convex version of the original problem, an algorithm which
can obtain a joint solution for both power and time allocation for the users has been

proposed. Results have shown that the proposed method is nearly optimal. How-



18

ever, the MAC layer queueing dynamics and the interactions between the MAC and
physical layers were not considered.

An FDMA-based resource allocation scheme for MIMO networks was considered
in [38]. A spatially greedy scheduling scheme was used considering downlink trans-
missions in a MIMO wireless cellular packet data system. The scheduler at the base
station decides to schedule transmissions to one or more users based on their current
channel states with an aim to minimize average delays while maximizing the sum of
allocated rates to the users.

SDMA plays an important role in MIMO transmissions. SDMA divides a geo-
graphical space, where the users are located, into smaller spaces. The key element
of the design is a one-to-one map between the space divisions and the bandwidth
divisions (in time slots, frequency divisions, etc). Therefore, it is important to con-
sider how the users in the network will be grouped together. In particular, since the
different spatial channels are nonorthogonal, it is critical that only spatially compat-
ible users be chosen to be time- or frequency-coincident. However, SDMA requires
channel state information (CSI) at both the transmitters and receivers. Since the
receiving nodes cannot cooperate, transmitters have to ensure that data destined for
one node do not interfere with the data to other nodes it is attempting to communi-
cate with [56]. This is only possible if the transmitter can separate the users spatially,
which in turn is only possible if their channels are known. Also, in ad hoc networks,
all nodes can be transmitter or receiver at any time. Therefore, in order to implement
SDMA, nodes which want to communicate in a given area have to ensure that the set

of nodes in this area are in the receive mode.

2.1.2 Distributed Medium Access Control in MIMO Wire-

less Networks

In contrast to centralized scenarios, distributed scenarios requires little coordination
and adopt contention-based multiple access schemes, such as ALOHA and carrier-
sense multiple access (CSMA) protocols. In an ALOHA system, each user transmits
when it has data to send, and then waits for an acknowledgement. If a collision occurs,
the user backs off for a random period and retransmits the message. A decentralized

random access (RA) strategy in MIMO systems, a simple variation of slotted ALOHA,
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combined with OFDMA and SDMA was presented in [50]. In this strategy, users
randomly access a subcarrier with an access probability that is designed to provide a
desired number of multiple access so that by exploiting spatial processing with receive
beamforming, the signals of the transmitting users can be separated and detected.

The operation of a wireless mesh backbone network is similar to a “static” wireless
ad hoc network. When MIMO links are implemented in point to point communica-
tions in an ad hoc network, the number of successful transmissions at the receiver
side depends on the factors such as the number of available antennas, channel/or
sub-channel quality, post processing SNR etc. While a large amount of work in the
literature focused on the PHY layer aspects of a MIMO communication system, only
a few works addressed the MAC issues in a MIMO wireless network.

Research on wireless ad hoc networks based on the traditional IEEE 802.11 stan-
dard typically assumes the use of omnidirectional antennas at all nodes. A popular
model that is often adopted at the MAC layer is the use of a four-way handshake (i.e.
RTS, CTS, DATA, ACK) over single hop scenarios. When MIMO links are used in
an ad hoc network, the MAC design becomes more complex due to the issues such
as obtainning channel state information, maintaing channel state, trade-offs among
rate, range, and relaiability, and access methods [76].

For efficient MAC operations in a MIMO-based wireless network, a flexible physi-
cal layer is required which provides various modes of operations. This helps the MAC
protocol to suitably choose from multiple modes. Also, a cross-layer approach to the
MAC design can take full advantage of the lower layer, i.e., the physical layer. Futher-
more, in order to match the requirement of unattended and decentralized architecture
of an ad hoc network, this MAC mechanism has to be distributed in nature rather
than to be centralized. The importance of cross layer design in MIMO links based ad
hoc networks is shown in Figure 2.1, and more details can be found in [4].

In this section, we will review some of the works on joint design of physical layer
and MAC layer protocols for MIMO ad hoc networks using both spatial mulitplexing

and diversity multiplexing modes.
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Figure 2.1. Joint design of PHY and MAC layers for MIMO links in ad hoc net-

works.

2.1.2.1 Medium Access Control Exploiting MIMO Spatial Diversity

Spatial diversity (SD) MIMO can improve the robustness of transmission and increase
the coverage range of MIMO communications. SD is particularly useful for ad hoc
networks due to the fact that mobility of users in an ad hoc network may deteriorate
channel quality and the relability of communications.

In [37], an SD-MIMO MAC based on the RT'S/CTS mechanism of IEEE 802.11
distributed coordination function (DCF) was proposed for an ad hoc network. Here
each node is equipped with M element antennas, thus there are M? degrees of freedom
for communication. Assuming that space time codes are used for four-way handshak-

ing, the proposed scheme can achieve the full order spatial diversity. This SD-MIMO
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MAC is mostly similar to the CSMA/CA algorithm (RT'S/CTS/DATA/ACK). How-
ever, in the multiple antenna scenarios, the threshold to decide on the status of the
channel (idle or busy) is based on the average interference power across receive an-
tennas. Also, it takes into account the impact of spatial diversity (i.e. encoding and
decoding by using space time code) on overhearing and also multi-rate transmission
for DATA packets according to channel conditions. The MAC layer scheduling and

QoS issues were, however, not considered.

2.1.2.2 Medium Access Control Exploiting Spatial Multiplexing MIMO

As mentioned before, spatial multiplexing (SM) MIMO increases the transmission ca-
pacity by transmitting independent data streams in the same time slot and frequency
band simultaneously from each transmit antenna. In this case, multiple data streams
are differentiated at the receiver using channel information about each propagation
path.

The fundamental objective of a MAC protocol is to avoid collision. In a traditional
network using omnidirectional antennas, a source node broadcasts the RT'S message.
If the destination node agrees on this data transmission by sending back a CTS
message, then all nodes in the range of this RTS/CTS exchange will refain from
transmissions during the data transmission period. This reduces the interference for
the ongoing data transmissions. However, when we consider MIMO-based ad hoc
networks, multiple RTS/CTS messages can be implemented simultaneously instead
of blocking all the nodes. This is because, MIMO technology can enable mulitple
parallel transmissions in the same area by using proper channels. In other words, a
destination node can accept many RT'Ss in the same time. Then multiple flows can
be transmitted as separation is achieved in spatial domain.

In [13], the Distributed Scheduling for MIMO Ad hoc networks (DSMA) algorithm
was proposed in which RT'S/CTS exchanges were used to let the destination node
know about the overall traffic condition in the network so that it can decide how many
and which transmissions will be accepted via CTSs. A cross layer design model was
presented where the physical layer and MAC layer directly exchange information to
achieve better performance in the decoding process at the receiver. By considering a

well known spatial multiplexing model, namely, the LAST-MUD (Layered SpaceTime
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MultiUser Detection) model [55], which takes full advantage of rich scattering in a
MIMO environment, to separate superimposed incoming transmissions, then a high
data rate could be achieved. Since the superimposed incoming transmissions can be
separated in the receiving nodes, the existence of multiple transmit links becomes
completely transparent. In the MAC layer, RTS messages are first sent to request
transmissions. Then the receivers respond with CTSs if they are available. Since SM
allows multiple flows to be transmitted at the same time, RTSs may be addressed to
multiple nodes. Since receiving nodes may receive a higher number of RT'S messages
than their capacity (depending on number of available antennas at the reciveing
nodes) they have to decide which flows will be accepted or denied and this information
will be embedded into CTSs.

Instead of leaving the nodes to access the channel in an uncoordinated manner,
the receivers are able to control the state of other nodes in the following frame. By
scanning the backlog queue before composing the ACK (which will be sent after
successful reception), the receiver nodes can embed the destination address in ACK

to the nodes which they expect to receive from in the following frame.

2.2 Power and Rate Control in MIMOQO Wireless
Networks

In a wireless network, mobile devices usually rely on a battery with a limited amount
of energy. Therefore, minimization of transmission power can lead to efficient utiliza-
tion of battery energy and hence longer battery life of mobile devices. Transmission
power is thus one of the most critical resources in a wireless network. It can be con-
served by controlling the transmission power of packets and/or by putting inactive
nodes to sleep mode. It was shown in [20] that a MIMO-based transmission con-
sumes much less transmission power than a SISO-based transmission for the same
throughput. The transmission power determines the range over which the signal can
be coherently received, and is therefore crucial in determining the performance of
the network (throughput, delay, and energy consumption). For example, when the
channel state of an individual channel is improved, the transmitter has to raise the

transmission power to increase the data rate. Of course, rate adaptation can be also
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achieved through a combination of variable spreading, coding, modulation, and code
aggregation. But it was shown in [30] that, in the presence of channel state informa-
tion at the transmitter as well as the receiver, by controlling both the rate and the
power, the capacity of the channel can be significantly improved.

In a MIMO system, the MIMO links can be viewed as multiple parallel deter-
ministic AWGN channels each corresponding to a block transmission under a specific
channel state. With full availability of CSI, the capacity of the block fading channel
can be found through optimal rate and power allocations for parallel AWGN channels
based on their individual channel states. However, allocation of power and rate in
fading channels is usually performed under some constraints imposed by practical
considerations. For instance, the trade-off between the average transmission power,
delay, and packet dropping probability for different transmission models over a fading
channel with memory was presented in [22]. Using a Markov Decision Procees (MDP)
fomulation, an optimal solution was obtained by using a relative value iteration and
linear programming for both unconstrained and constrained problem, repectively.

As an extension of the above work, an approach based Q-learning (which is a
recent form of Reinforcement Learning algorithm that does not need a model of its
environment and works by learning an action-value function that gives the expected
utility of taking a given action in a given state and following a fixed policy thereafter)
was presented in [23] to solve the problem of rate and power adaptation under delay
constraints. The problem was formulated as a CMDP and the solutions was obtained
in an on-line fashion. This approach has an added advantage that transmission adap-
tation actions (that have to be negotiated between the transmitter and the receiver)
can be performed less frequently than the power control actions. Also, rate control
actions can be based on a more coarse quantization of the channel state than the

power control actions.

2.3 Admission Control in MIMO Wireless Net-

works

Admission control is necessary in a wireless network to provide quality of service

(QoS) for users. In wireless data systems, admission control is a challenging problem.
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In particular, multimedia traffic can be very bursty, and is highly heterogenous in
terms of the QoS requirements, ranging from a small text message with weak require-
ments to high-data-rate video steaming with stringent delay requirements. Further-
more, wireless channels often exhibit time-varying fading. Such high variations in
both channel conditions and traffic flows make admission control very challenging in
wireless multimedia networks.

In a MIMO-based ad hoc network, there could be many ongoing flows at the
same time, and admission control would be required so that the limited amount of
transmission resource is not overwhelmed by too many ongoing connections. Admis-
sion control in an ad hoc network should be performed to achieve end-to-end QoS
guarantee for different connections. A number of works in the literature focused on
admission control in wireless mesh/ad hoc networks [37], [11]. However, the exsiting
algorthims are not suitable for a multiple antenna environment. In [70], authors
analyzed the probability density function of interference in a MIMO-based virtual
group cell system. Based on this information, an interference-based admission con-
trol strategy with multi-level threshold was proposed. By using a multi-dimensional
Markov model, performance of the proposed admission control strategy was evalu-
ated. Another work in this area can be found in [49]. In this work, a game-theoretic
model based on Q-learning was presented for distributed admission control in IEEE
802.11n based mesh networks using MIMO-OFDM technology. The objective of the
admission control strategy is to maximize the utilities of all the routers along a rout-
ing path. The Nash equilibrium of the game was used to make the admission control

decision.

2.4 Antenna Selection and Assignment in MIMO
Wireless Mesh Networks

The transmit/receive antennas are one among the major resources in a MIMO mesh
network. In a wireless mesh router, the number of antennas allocated to a flow for
transmission determines the transmission rate for that flow, and therefore, determines
the QoS performance (e.g., packet delay, packet loss) for that flow. The antenna

allocation problem is therefore significant in the context of QoS provisioning in a
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WMN. An antenna allocation scheme should consider the physical layer as well as
the radio link layer parameters to achieve an efficient solution. That is, a cross-layer
approach should be used to design an antenna selection and assignment scheme so
that the spectrum utilization can be maximized as well as the QoS requirements can
be satisfied for the different flows. The antenna selection and assignment (ASA)
problem is focused in this thesis. A solution to this problem is presented in Chapter
3.

2.5 Cross-Layer Design in MIMO Systems: Per-

spectives and Challenges

In Section 2.1, the importance of cross-layer design for resource allocation in MIMO
systems was highlighted. In this section, we will discuss the perspectives and chal-
lenges on cross layer design in MIMO systems. The objective of cross-layer design
is to take full advantage of information at the different layers to achieve an efficient
management of system resources. This is more complex and difficult in MIMO sytems
where multiple antennas are used to independtly transmit data to increase the data
rate (SM) or improve the reliability of data transmissions (SD). For instance, in the
next section we will model a particular system where there are multiple antennas at
the transmitter and pose the antenna assignment problem for different services (or
users) as a MAC design problem. The data rate of each antenna remains however as

a physical layer issue.

2.5.1 Complexity in Neighbor Discovery

CSI is the most important factor to decide the channel capacity of MIMO links. The
most common way to obtain this information is by using the pilot signal which is
embedded in the RTS messages. However, in a MIMO-based ad hoc network, MIMO
can be used to increase the transmission range for a fixed data rate [29], specially
when using a directional antenna. In an ad hoc network environment, some users
may use omnidirectional antennas and the transmission range of different types of

antenna could be different. Thus, identifying the correct set of reachable neighbors
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with MIMO transmission would be very challenging. This issue is illustrated by a

simple example in Figure 2.2.

Figure 2.2. Complezity in neighbor discovery.

In this example, nodes A and B are neighbors when they are using an omnidi-
rectional antenna or a directional antenna. Node C and A are not neighbours in
omnidirectional antenna but they are neighbours when node C is using directional
antenna and of course it is not B’s neighbour when node B is using omnidirectional
antenna. But they are neighbors when both node C and B are using directional

antennas.

2.5.2 Difficulty in Obtaining the Channel State Information

Most of the works in literature assume perfect Channel State Information (CSI)
knowledge at the transmitter. But in fact this information is rarely available because
the random time-varying wireless medium makes it difficult and often expensive to
obtain perfect CSI. Tradditionally, receivers obtain CSI by using the tranning symbol
(usually un-coded signal) embedded in the transmitted signal. Then they send this
information back to the transmitter by using a perfect feedback channel. In MIMO
- closed-loop systems, CSI is degraded by the limited feedback resources, associated
feedback delays, and scheduling lags, especially for mobile users with a small channel
coherence time [35]. In MIMO open-loop systems, antenna calibration errors and
turn-around time lags again limit CSI accuracy [54]. Therefore, the transmitter often
only has partial channel information. Schemes exploiting partial CSI thus are both

important and necessary. However, in MIMO systems where the high data rate is
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exploited, the channel conditions during the time when the control message is sent
back to the transmitter may quickly become obsolete. In an ad hoc network with
high node mobility, obtainning the CSI in high data rate environment becomes very
challenging. High mobility causes larger Doppler spread and faster channel time vari-
ation. In other words, larger Doppler spread results in higher temporal selectivity.
A measure of the temporal selectivity is the channel coherence time, defined as the
time interval over which the channel remains strongly correlated. The shorter the

coherence time, the faster the channel changes with time.

2.5.3 Different Performance Objectives and Different MAC
Design

Results in [73] emphasized the tradeoff between spatial multiplexing (transmit inde-
pendent and separate stream in each antenna) and spatial diversity (transmit same
information over multiple antenna) at the MAC layer. Depending on the objective
of system design (reliability or high data rate) we can decide which model would be
more suitable. With diversity, due to multiple replicas at the reciever side, BER at
reciever side will be decreased which will result in improved transmission reliability,
transmission range, and reduction in interference. With spatial multiplexing, a num-
ber of paralle]l independent streams can be sent at the same time, thus increasing the
data rate. However, with a higher data rate, the reliability of data is decreased (due

to the collision or loss of data).

2.5.4 Difficulty in Optimizing Resource Allocation in a High

Mobility Environment

CSI is the most important parameter to recognize the network capacity and the per-
formance of the network. Based on the achievable link SNR, a decision will be made
to decide how many packets will be allocated to a specific link and the amount of
allocated resources will thus be determined. This decision making has to be dynamic
due to the fact that the channel state (in high mobility environment) in each sub-
channel or each link varies dynmically, and a static scheduling scheme will not give

the best performance. Also, in a MIMO-based wireless mesh/ad hoc network, the
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fairness among data flows needs to be carefully considered to avoid spatial bias due
to which users far from the gateway router may receive smaller amounts of resources

compared to the users closer to the gateway router.
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Chapter 3

Quality of Service in MIMO
Wireless Mesh Networks: An

Antenna Selection Approach

3.1 Introduction

In this chapter, we present a distributed antenna selection method for radio resource
allocation for QoS provisioning in a mesh router. While using the MIMO links in-
creases network throughput and connection reliability, the distributed scheme pro-
vides scalability and auto-configurability. The antenna selection scheme uses stochas-
tic control algorithms for instantaneous delay control for a service differentiation
model in a wireless mesh backbone using MIMO transmission. Each mesh node in
the network is equipped with multiple antennas, and adaptive modulation is used in
transmission links in a single-hop wireless scenario. In the physical layer, the MIMO
channel considered here is a point to point wireless channel with ¢ transmit and r re-
ceive antennas. The model considers two types of traffic, namely, QoS-sensitive traffic
for real-time multimedia applications and best-effort (BE) traffic for applications such
as web and e-mail. Two separate queues are used to accommodate the aggregated
traffic from the QoS-sensitive and best-effort flows. This configuration is compatible
with the DiffServ [12] model for service differentiation in which one queue is used
for QoS-sensitive flows and another one is used for best-effort flows. Moreover, the
multi-rate transmission feature in the physical layer, which can be achieved through

AMC, is also taken into account and the multi-rate transmission is captured by using
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multi-state Nakagami-m fading channel (fading occuring for multipath scattering with
relatively larger time-delay spreads, with different clusters of reflected waves, the spe-
cial case m =1, the distribution reduces to Rayleigh fading). To capture the variations
of the multi-state Nakagami fading channel, we employ the FSMC model [64]. The
main objective of the proposed radio resource allocation (i.e., antenna selection and
assignment (ASA)) approach is to maintain fairness of instantaneous delays between
the flows. The antenna selection problem is presented as a stochastic optimization
problem and we are able to obtain optimal solution for antenna allocated for each
flow subject to the instantaneous delay fairness for traffic in both queues. Due to the
consideration of instantaneous delays, which is represented by buffer occupancy, the
problem is a dynamic stochastic optimization problem and can be stated as a Markov
Decision Process (MDP).

The rest of the chapter is organized as follows. A survey of related works in the
literature is presented in Section 3.2. The system model, assumptions, the problem
definition and solution methodology are presented in Section 3.3. Section 3.4 presents
the MDP formulation for the antenna selection and assignment problem and the
corresponding solution. Simulation and numerical results are presented in Section
3.5.

3.2 Related Work

In [69], the problem of subcarrier and power allocation problems in a MIMO-OFDMA
system was investigated in order to maximize the total system capacity subject to
the total power and proportional rate constraints of each user. A greedy algorithm
was proposed for resource allocation, which makes good use of the multi-antenna av-
erage channel gains and adopts an equal power allocation scheme to determine the
number of subcarriers for each user. To reduce the complexity in resource allocation,
subcarrier and power are allocated separately. Two main steps for subcarrier allo-
cation is that the algorithm determines the number of subcarriers for each user by
using a greedy-like scheme in the first step and assigns the subcarriers for each user
by dividing the users into two groups in the second step. Power allocation among

the assigned subcarriers for each user then is decided by using the multi-dimension
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water-filling method.

An adaptive resource allocation algorithm for multiaccess MIMO/OFDM was pro-
posed in [72] where the objective of the proposed algorithm was to maximize the sys-
tem power efficiency given the QoS requirements of users. To reduce the complexity,
a local search method was also presented. However, issues such as packet retrans-
missions due to channel errors and the impact of fading channels were not taken into
account. [45] studied a joint problem of subcarrier allocation and beamforming to
increase the downlink capacity, given that the power distribution is predetermined. A
heuristic algorithm that sequentially inserts users in subcarriers was proposed without
guaranteeing the minimum achievable data rate of each user. When QoS constraints
were considered, the problem was further simplified by not allowing the reuse of
subcarriers.

In the context of maintaining fairness among nodes in a wireless MIMO system, an
optimal scheduler was proposed in [8], which optimizes users’ diversity over antennas
and provides high throughput while servicing users in a fair manner. A user utility
function and cross-layer scheduler design was presented as a general solution for the
Generalized Assignment Problem (GAP). The utility function was defined to control
the throughput fairness tradeoff in an adaptive and efficent way. A similar work
in [18] which combines spatial multiplexing with multiuser diversity, develops an
optimal cross-layer scheduling mechanism in order to maximize capacity or to support
proportional fairness. For optimal antenna assignment, the Hungarian algorithm was
considered to utilize the characteristics of MIMO systems by adopting the graph
theoretical approach. However, the optimal assignment was only achieved when the
number of antennas is equal to the number of active users.

A similar work in MAC protocol design, i.e. Mitigating Interference using Multi-
pleAntennas (MIMA-MAC) for MIMO ad hoc networks has been proposed in [52]. In
this work, MIMA-MAC employs spatial multiplexing, with antenna subset selection
for data packet transmission, while using the Alamouti space-time code for control
packet transmission, to mitigate interference from neighboring nodes, to guarantee
fairness between the traffic flows, and to increase the number of simultaneous traffic
flows, resulting in an increase in the total network throughput. However, transmitters

in this model use only a single antenna, whereas a receiver uses multiple antennas
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and somehow this system did not take the full advantage of MIMO. On the other
hand, two most common techniques, i.e. adaptive modulation and coding (AMC)
and ARQ-based error recovery in the link layer, haven’t been taken into account.
The closest work to our work is [23]. In [23] the problem of optimal rate control
for a MIMO system is formulated as a finite state, average cost CMDP and it has
been proved that the optimal policy is monotone. The authors proposed modified
Q-learning algorithms, which treat the structure of the Q-factors and the optimal
policy as constraints, to solve the inner step of the Lagrange dynamic programming
formulation. In particular, retransmissions are not allowed, and hence the channel
state does not affect the packet departure rate. In other words, channel states and

buffer states are completely decoupled.

3.3 System Model, Assumptions, Problem Defini-
tion and Solution Methodology

MIMO system which exploits multiple transmit and receive antennas as a means
to increase the information data rate. By taking advantage of the independence of
the fading statistics of different users, multiuser diversity (MD) can be exploited to
increase bandwidth utilization and decrease delay through simultaneous transmissions
to a number of users. In a simultaneous transmissions environment, the question is
how to schedule transmissions for the active users so that bandwidth utilization is
maximized while at the same time a high degree of service fairness is achieved.

We assume a number of users having the same traffic requirement in one class
and suppose that traffic from N classes will share B (bandwidth) resources in a mesh
router. Traffic of class ¢ arrives according to a Poisson process with parameter (.
Each user demands b; resources, where b; is an integer. All the resources taken by a
class ¢ user are released simultaneously after an exponentially distributed service time
with parameter p,;. States are denoted with ¢ = (¢1,...,cn) , where ¢; signifies the
number of class users in the system. We assume that Zfil bic; = B, i.e., there is no
waiting room. Therefore, users who do not find sufficient resources are automatically
blocked. There is a distributed controller at each mesh router which can reject arriving

users based on full state information. Each user who enters into the system gives rise
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to a reward of r; which is its instantaneous delay. More details on the states and
the rewards will be provided in Section 3.4. For the sake of simplicity, in the rest
of the chapter, we assume that there are only two classes of users: high priority

(QoS-sensitive) and low priority (best-effort).

3.3.1 Physical and Link Layer Model
3.3.1.1 Signal Model

We consider a spatial multiplexing due to the fact that this physical layer is com-
putationally easier to our model and also adapts with our objective, increasing the
throughput of Wireless mesh backbone, than spatial diversity which has been used
for increasing the reliability(see [73] for more details about the tradeoff between these
two types of gains). MIMO wireless mesh backbone system here is equipped with
multiple antennas. The channel considered is assumed to be a block fading channel
which remains static during a time slot of length 7. A MIMO transmission model
similar to that in [75] is considered in which a flat fading MIMO channel with M
transmitted and N received antennas is represented by a matrix H with size M x N.

Perfect channel information is assumed to be available at the transmitter side
and rate and/or power information can be fed back to the transmitter. Let z be
the M x 1 transmit signal vector, y be the N x 1 received signal vector and the
channel matrix H be an N x M matrix composed of independent complex Gaussian
random variables. The zero-mean AWGN vector at the receiver, denoted by n, has
a covariance matrix equal to the identity matrix scaled by o2. For simplicity, we
assume o2 = 1 and the variance of each component of H equals to 1. The total power
available to the transmitter is denoted by Pr. Then the received signal vector y is

expressed as follows:
y=Hz +n. (3.1)

Using the Singular Value Decomposition (SVD) technique, the channel transfer

matrix H can be diagonalized as follows:
H=UDV# (3.2)

where U and V are unitary matrices; D is a M x N diagonal matrix containing the

singular values of H which are real and non-negative; [~]%denotes complex conjugate
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transpose operator. Note that {\;}72, are eigenvalues of HH?. For convenience, we
define the eigenvalue vector A = [A1, Ay, ..., Am).

By applying the transmitting weight matrix U7 at the transmit side and the V
receiving weight matrix at the receive side, up to m = min(M, N) orthogonal sub-
channels can be realized. Let § = Ufy, & = VHz, and 7 = U¥n. Then, the original

channel is equivalent to the following channel:

7=Dz+n (3.3)
where 72 has the same distribution as n.

From (3.3) we can see that the channel matrix H has been decomposed into m =
min(M, N) parallel eigen subchannels since D is diagonal. The equivalent channel
input and output are § and Z, respectively. The subchannel gains are represented by
A which constitute a random process due to the randomness of the channel entries of
H. Therefore, the channel matrix is decomposed into m independent sub-channel as

follows:
Yi = AT+ 74, 1 <1 <m. (3.4)

The SVD decomposition can be interpreted as follows: if the input is expressed in
terms of a coordinate system defined by the columns of V and the ouput is expressed
in terms of a coordinate system defined by the columns of U, then the input/output
relationship is very simple. Equation (3.4) is a representation of the original channel
(3.1) with the input and output expressed in terms of these new coordinates, where
each )\; corresponds to an eigenmode of the channel (also called an eigenchannel, and
for more convenience, since now we call eigenchannel and sub-channel interchange-
ably). Each non-zero subchannel can support a data stream; thus, the MIMO channel
can support the spatial multiplexing of multiple streams.

The joint probability density function (pdf) of these unordered eigenvalues () is
given by [60]

A = (MK ) e T TTO6 = A% A2 de 2 A (3.5)

i i<g
where m = min (M,N), n & maz (M,N), and K,,, is a normalizing factor. Ac-

cording to [74], the performance enhancement offered by transmit-beamforming in
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Figure 3.1. Converting a MIMO channel into a parallel eigenchannel by using Sin-

gular Decomposition Value technigue.

MIMO channels is realized through the largest eigenvalue, i.e., A;. Then the density

of unordered eigenvalues can be expressed in closed form as

m—1 . % 7
1 7! ) . L -
)= — Z((@ m d)l) Z Z(__l)(h—l—lz) % All(%d)Alz(’l,d)/\gl —}—lz-i—d)6 AL (3.6)
i=0 T L1=012=0

where d £ n — m, and A(i,d) = ZZ:(‘;):!%);(T)!' Based on fy, (A1), let us define the
following integral:

Ty(c,z) & / e~ DMg (A))d\ (3.7)

Note that when ¢ = 1, equation (3.7) becomes the cumulative distribution function
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(cdf) of \;. Therefore, the CDF of the largest eigenvalue can be expressed as follows:

\Ijl(l,ﬂ?) = / f>\1 d/\l
- IS Y

" 1=013=0
x Ay, (i, d)Alz(z, AN D =N () 4 1+ d+ 1, 7) (3.8)

where I'(n, z) is the upper incomplete Gamma function which is defined as
o¢]
T(n,y) = / y"Devdy. (3.9)

3.3.1.2 Channel Model

We will adopt K square quadrature-amplitude-modulation (QAM) constellations with
size M, = 28 k =1,..., K as the component modulation formats in each sub-channel.
Generally, for an un-coded QAM with square constellation, such as 4-QAM, 16- QAM,

the bit error rate (BER) expression over SISO Gaussian channels can be approximated

by

BER; ~ 0.2.ezp {;:_571] (3.10)
where 7; is the received SNR (signal to noise ratio) per symbol of sub-channel  and &
is the used modulation level. However, in practical systems, we will try to maintain
a target BER for all sub-channels and this parameter mostly will be given. Let us
assume that the transmit power at each sub-channel is P;, and to reduce complexity,
we allocate the total transmit power equally to each sub-channel. That is, F; = %,
where P is the total transmit power. For each channel realization, the received SNR

can then be calculated as
Py;

mo?
Similar to single input single output (SISO) systems, MIMO systems need a set

Vi = = YoM (3.11)
of coding and transmission parameters along with an algorithm to adapt these pa-
rameters to the variations of the environment. Such sets are often referred to as link
adaptation modes. The employment of link adaptation techniques through AMC at
the physical layer to enhance the spectral efficiency is very common in MIMO wire-

less systems [75] -[42]. Depending on the channel quality, the transmission mode
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at the transmitter is adapted accordingly and, of course, this process essentially re-
sults in multi-rate transmission on wireless links. Basically, each modulation and
coding scheme (MCS) is called one mode and corresponds to one particular in-
terval of signal to noise plus interference ratio (SINR). Specifically, the SINR at
the receiver is partitioned into a finite number of intervals with threshold values
Xo(=0) < X1 < Xy < -+ < Xgi1(= 00). Let X be the received SNR at the re-
ceiving side, transmission mode k is employed if X < X < Xj1q (£ =0,1,2,--+, K)
which will be called channel state k in the sequel. For implementation, the receiver
estimates the channel quality and transmits this channel state information (CSI) to
the transmitter to choose the suitable transmission mode. Here we assume that the
packet length is fixed. Then there are a finite number of transmission modes each
of which corresponds to a unique modulation scheme [43]. These transmission mode

thresholds can be obtained as follows:

BERtar) (2k - 1) (3'12)

X = l”( 02 ) -15

where BER;,, is the target BER that we want to achieve in all sub-channels. The
channel is said to be in state k if X, < v < X1, and in this state, &k bits are
transmitted per symbol using 2¥-QAM which corresponds to transmission rate k,
i.e. k packets will be transmitted when the channel is in state k. To avoid possible
transmission errors, packets are not transmitted when k = 0.

From (3.8), the probability that modulation k is used in subchannel 7 can be

obtained as follows:

] ] Kes1
Pro)(k) = Pr(\ € [Xp, Xpe1)) = / Fa, (M)A
Xk
= U1, Xi/v) — ¥ (1, Xis1/7) (3.13)

where Pr(®) = [Pr(i)(O), Pr®(1)... Pr)(K )} . For m available subchannels at MIMO
link [, let p(g) denote the probability that g packets are correctly received given by
p¥(g) = () Pr®) (3.14)
i=1

where (©) denotes the dicrete convolution and maximum number of packets that can

be transmitted in one time slot over m subchannels is N = m x K.
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The number of transmitted packets can vary depending on the transmission rate
and the packet error rate. According to results from [74], the average BER for mod-

ulation k can be approximated as follows:
BERy =~ ay {\Ijl(bk')’o + 1, Xi/v0) — W1(bryo + 1»Xk+1/'70)} (3.15)

where a; and by, are the constant parameters depending on the modulation level k&
and can be obtained from table I in [32] when BER;,, is set to be 1073,

We assume that BERy, is i.i.d with the others, packet size is PL (header + pay-
load), and there are up to PLyrect Dits which can be corrected in a packet. Then

the average packet error rate for modulation k can be obtained as follows:

PLcorrect ( PL

PER; =1~ < >

=0

7

> (BERy)(1 - BERk)PL—i> (3.16)

Basically, we can calculate PERy, over sub-channel ¢, since now, to reduce the

complexity, we assume that PER of MIMO link [ is 60

Assuming that the channel is slowly fading (i.e., transitions occur only between
adjacent states), the CSI is fed back to the transmitter to choose the suitable trans-
mission mode. The state transition matrix for the FSMC can be expressed as follows:

8 & 3 0
9 @ &
HD = | 4 0 . (3.17)
€ 1x-2 f%ghx_l fﬁ}LK
0 T 51@,1{—1 5121{

For the sake of simplicity, we assume when the channel is in state k, the transmitter

transmits by = k packets. Furthermore, we assume that by = 0, i.e., there is no
transmission when the channel state is 0 to avoid the high probability of transmission
error), and bg = K. To calculate the transition probability in matrix (3.17) from
state k to k' (k' € {k — 1,k, k +1}), i.e. 51(;3;'7 we apply the results in [43], then we

can obtain & s for sub-channel ¢ as follows:

@ Nen
Shkrl = B T 7 (3.18)

: N,

= (3.19)

Pri(k) fa
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1 - 5/@&1 - I(c?c—lv f0<k<K

=1 1-&0, ifk=0 (3.20)
1 €901, k=K

where f; denotes the mobility-induced Doppler spread and N is the cross-rate of
mode k [64]. Note that the differences among the transition probability matrix of

these sub-channels is dependent on the average SNR, which is included in Ng.

3.3.2 Problem Definition and Solution Methodology

We consider a mesh router with two separate transmission queues: QoS-sensitive
queue and best-effort (BE) queue. The transmission model between two routers in a

wireless mesh backbone network is shown in Figure 3.2.

§: QoS-sensitive quene @,@
= _1I 1 _
= __[[1]]

Best-effort quene 'Transmitter Receiver

_______________________________

Figure 3.2. Transmission model between two mesh routers.

In this figure, the antenna assignment controller is responsible for assigning sub-
sets of antennas to the two queues to differentiate services between these two queues.
For this assignments it will exploit the estimated CSI in the physical layer. We can
represent the operation of this antenna assignment controller as follows:

=
Minimize:  J{w,z) := T}Lnolo sup— ZIEZ[ R(s®, a®) ] (3.21)

t=0

Subject to: di = Nsd,

where R(s®,a®) is the reward of the whole system, included number of packets in

both queues as well as channel states of m available subchannel, which is obtained by
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giving the state s and taken action a at time slot ¢, and d, d; are the instantaneous
delay of QoS-sensitive queue and best-effort (BE) queue, respectively. The details of
the algorithm for this controller will be provided in Section 3.4.

At the receiver side, to recover the transmitted signals, we consider zero-forcing
(ZF) detection [56] for its practicality and ability to exploit the MIMO channel into
m parallel independent channels. When packets arrive at the receiver, it decodes the
received packets and sends negative acknowledgments (NACKs) to the transmitter
asking for retransmission if there are any erroneous packets. An error-free and instan-
taneous feedback channel is assumed here so that the transmitter knows exactly if
there is any transmission error at the end of each service time slot. This assumption
holds in many cases because the propagation delay and the processing time for the
error detection code can be very small in comparison with the time slot interval.

The procedure to find the optimal solution for ASA is summarized as Figure 3.3.

Example: Considering a pair of mesh routers in a WMN network, we assume that
both the transmitting node and receving routers are equipped with 3 antennas thus
there are 3 independent available subchannels to transmit data at the transmitter
side. There are 2 types of traffic coming into transmitting node, i.e. real-time traffic
and non-real-time traffic, with the average incoming packet is 1 packet/timeslot for
both types of traffic. Each type of traffic is going into two separate queues. Real-time
traffic and non-real time traffice require instantaneous delay (which is defined as the
ratio between number of packets in queue and average incoming packets) of 1 time slot
and 3 time slots (i.e. d; = 1 and dy = 3), respectively and the objective of fairness is
to maintain the ratio %. We assume that at a particular time slot, among 3 available
subchannels, 2 subchannels (subchannel 1 and 2) can serve 3 packets per time slot
and the rest (subchannel 3) can serve 2 packets per time slot, thus total packets can
be transmitted in this time slot is 3 + 3 + 2 = 8 packets. The number of packets
in real-time traffic queue and non-real-time traffic queue is 7 and 6, respectively.
ASA can use all the available subchannels to transmit all packets from the real-time
traffic queue. However, since the number of packets in real-time traffic queue is 7
and total link capacity is 8 packets, it causes wastage of bandwidth. Also, the QoS
requirement for non-real-time traffic is not satisfied. A better allocation will be as

follows: use subchannel 1 and 2 to serve packets coming from real-time traffic queue




Obtain all possible states of available
subchannels as well as number of packets
in both queues

A4
Calculate the transition probability matrix
of whole system for all possible sub-sets of
subchannels assigned to each queue.

v

Calculate obtained rewards corresponding

to each possible states of above matrix

X

Apply Markov Decision Process using
value iteration dynamic programming to
find optimal solution

Apply optimal solution to ASA

Figure 3.3. The procedure to find the optimal solution for ASA.

and use subchannel 3 for non-real-time traffic. Note that the instantaneous delay is
calculated right after departure process (which is defined as the number of packets
leaving queue). Then the instantaneous delay of real-time traffic is 1 time slot and
non-real-time traffic is 4 time slots. Obviously, ASA do not really satisfies the exact
ratio between the instantaneous delay of real-time traffic and non-real-time traffic but
it nearly guarantees the fairness between these two types of flows.

Note that, the instantaneous delay d; can be defined as [23]:

di
d; = = 3.22
= (3.22)

where ¢; is the number of packets left in queue ¢ at the end of time slot ¢ and ¢ is
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the average number of incoming packets during time slot ¢ which is obtained using
(3.40).

3.4 TFormulation of the Markov Decision Process

Model

3.4.1 Packet Arrival Process

As has been mentioned before, to simplify the problem we consider only two types
of traffic, i.e. real-time and non-real-time traffic, and the corresponding data packets
are stored in two separate transmission queues. Let us assume that for each flow the
packet arrival follows a truncated Possion process, the packet arrival can be modeled
as a Poisson process in which the probability of arrival can be obtained from (3.23),
(3.24) and (3.25). The queueing problem for both classes of users can be modeled in
discrete time with one time interval equal to one time slot. Real-time traffic will have
higher priotiy (class one) than the other (class two). We assume that the packets
arrive at the buffer according to independent Poisson processes with different packet
arrival rates, i.e. (.. The maximum number packet arrivals in one transmission queue
in one time slot is A,, where c is the index of classes of users. Packets of the same
type are scheduled in a FIFO order. Then the probability of arrival of a € { 0... Ac

} packets with mean (. in time interval ¢ is given by

fa(gc):icfcg—fﬂt for A=12,. .., A—1 (3.23)
Ac—1

faC)=1— " fal) (3.24)
a=0

Then the arrival probability of each flow is obtained as follows:

APC = {fO(Cc): fl(Cc)a s 7fAc(CC)}' (325)

With this traffic modeling, there are at most A, arriving packets in one time slot.
Furthermore, packet transmissions in a time slot are assumed to finish before arriving
packets enter the queue. We assume that the buffer size of each transmmision queue

is finite with the size of Q. packets.
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3.4.2 Packet Departure Process

Before we can calculate the packet departure process for each flow, we require to
know the subset of antennas assigned to each flow. This antenna assignment will be
performed by the Antenna Assignment Controller (AAC) which will be described in
the next section. In a general system with C classes of users, let us assume that m,
is the set of antennas assigned to each class of users in the system, i.e. ch=1 Me = M.
Now, with only two types of users, let my, ms denote the subset of antennas assigned
to class one and class two of services, respectively. It is clear that m; € m and
my = m\my . Moreover, if the number of packets in one queue is zero, another queue
will automatically receive the entire service of all antennas. On the other hand, if
both queues are backlogged, QoS-sensitive queue will have preemptive priority and
the number of antennas allocated to it will be decided by the AAC. When class
two packets return to the system, the service begins with a new independent service
allocation.

Now let us define the following matrices:

e Let H,(:) (k=0,1,...,K) be the matrices of order (K +1) x (K + 1) which are
constructed by keeping the (k + 1) -st row of the channel transition probability
matrix H® in (3.17) and setting all other rows to 0, where ¢ indicates the index
of sub-channel. These matrices capture the number of packets leaving the queue
in subchannel 7 when the channel state is k at the beginning of a particular time

slot.

e Let TS,)TL, be the matrices of order (K +1) x (K +1) where elements (Tfi)n,(ll, l5))
represent the probability that n’ packets successfully leave the queue given that
there were n packets in the queue where 7 indicates the index of the sub-channel,
and channel state changes from state [; to state I, ({; and [, are indexes for the

state associated with the changing in channel state of assigned set subchannels).

e Let D,EmC) (t=0,1,...,K x my) (where m, is the number of antenna in the
set of subchannels m.) be the matrices of order (K + 1)™ x (K + 1)™ which
are similar to H,(f), where ¢ represents the number of packets leaving the queue
using the set of subchannels m..

Then, we can calculate D{™ and D) as follows:
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t
D = Y HY R H?, (3.26)
k=0
lmcl

D{m) = > Ruy (3.27)

{Broka ke 225 kj=t} 7=1
[mel

D) = (RQHY (3.28)

e Let TU™ be the matrices of order (K +1)x (K1) whose elements (T,(amC)(ll, )
represent the probability that r packets are successfully leaving the queue when
a set of sub-channels m, is assigned to this queue, and channel state changes
from state [; to state ly. It is clear that the maximum number of packets leaving

the queue in a particular time slot in this set of subchannels is [m.| x K .

We can calculate T as follows:
K x|me|
T = DY+ Y D™ (3.29)
K xime|
T(me) = Z p/D{™ for 1> 1 (3.30)

(3.31)

Based on the average packet error rate, the probability that ¢ packets are correctly
received given that j packets are transmitted when channel state is k in one time slot

can be obtained as follows:

j j—1 i .
(k) _ <Z.>9i (1-6,) f0<i<k

Pij = (3.32)

0 otherwise

where Qk = PER;C

3.4.3 State Space and Transition Probability Matrix

The state space of the proposed system model consists of buffer space @, incoming
traffic space AP, the channel state H, i.e. S = Q@ x AP x H. In other words, the
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discrete-time Markov Chain representing the system at time slot n has the following
state space: s, = {(g,api,17),0 < ¢ < Q0 < apld < A0 < I < K},
where q,(f) is the number of packets in the queue at the beginning of time slot n,
ap'® is the number of packet arrivals during time slot n, and 1) is the set of channel
states corresponding to the number of subchannels assigned to this flow during that
timeslot, and let 1) be the number of packets leaving queue correspoding to that
assignment. The number of packets leaving the queue is equal to min{qﬁlc), lﬁf”)}.

Now, let us consider the transition matrix for the QoS-sensitive queue. The other
matrix can be built in a similar way. Let Py and (2, 7,!) denote the transition matrix
and a generic system state for this discrete time Markov Chain, respectively, what
we have to obtain is the transition probability from state (z,7,1) to state (7', 5',1').
For the same i and 7', the probabilities corresponding to these state transitions can
be written in matrix blocks p;; , which correspond to transitions in level ¢ of the
transition matrix. Thus, level 7 of the transition matrix represents the system state
transitions where there are ¢ packets in the queue before the transitions.

While the packet arrival probability is obtained from the truncated Poisson pro-
cess (3.25)with maximum A; packets can arrive in one time slot, the departure
process depends on the set of subchannels assigned to this flow, channel state of these
subchannels during this time slot, and the packet error rate. With queue size @1, the

probability transition matrix Py for the QoS-sensitive queue is defined as follows:

i Po,o Po, Po,A,;
Pio Pi1a P12 T P1,4,
p PNo - PNN-1 PNN PNN+1 s s v pN,min{N+A1,Q1}
1 =
Pii-N T Diji—-1 Pi,i Pii+1 i Pimin{i+A1,Q1}
L PQ..Q:-N T PQ,.Q:-1 PQ..Q: d
(3.33)

where N = m; x K is the maximum number of packets that can leave the queue
in one time slot. The matrix element p;, of matrix P, is the probability that the
number of packets in the QoS sensitive queue is ¢ in the current time slot and it

becomes k in the next time slot. Also, the elements inside the matrix p; capture
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the transitions in set of subchannels assigned to the queue at current time slot.

Now, the matrix blocks of the transition matrix in (3.33) can be written as follows:

Pij; = Z fa(Ac)Tr(mc) (334)

{a.r|u=3}
where v = min{Q;, maz{0,7 +a —r}}.

It is clear that there are at most A; arriving packets, and at most N packets can
be successfully transmitted in one time slot. Therefore, the transitions can go up by
at most A; levels and go down by at most N levels. Note that, the maximum total
packet transmission rate can be greater than the number of packets in the queue, and
the decrease in the number of packets cannot be less than the number of packets in
the queue. Therefore, the maximum number by which the number of packets in the
queue can decrease is N = min (m; X K, 1).

Now, similar to the above process, with different assigned sets of subchannels to
the best-effort queue, i.e., my, the maximum number of packets leaving the queue
is M = my x K. Then, with a different arrival rate f,(¢2), and queue size ()2, the

probability transition matrix Py for the best-effort queue can be written as follows:

Po,o Po,1 s Po, 4.
Pi1o Pi1 P12 T P1,Q2
p PmMo - PMM-1 PMM PMM+1 e s T pN[,min{M+A2,Q1}
2 =
Dii-M e Pii-1 Pii Piid1 T Pimin{i+A2,Q1}
L PQ:,Q2~M T PQ2,Q2—1 PQ2.Q-
(3.35)

where elements of the transition matrix in (3.35) can be defined similarly as in (3.34)
Based on (3.42) and (3.35), the transition probability maxtrix between the com-
posite state
sn = {0, apl 1)), (@7, api?, 1)} and
o = {6, af? 1), (6, 0, 1)
when action y is taken, which decides the set of subchannels assigned to each
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ueue, i.e. my and my, is given b
K 3

P@ =P (X)Pa. (3.36)

3.4.4 Queueing Performance for Each Type of Service

With the assumption that mq, ms denote the subset of antennas assigned to class one
and class two services, respectively, we can obtain the QoS performance measures for

each type of service.

3.4.4.1 Steady State Probability

To evaluate the QoS performance measures, the steady state probabilities for the
system states are required. With the assumption that the size of the best-effort
queue is finite, the steady state probability of the system 7 can be simply obtained
by solving 7P = 7@ and w91 = 1, where c is the index of class of users, 1 is a
column vector of all ones with the same dimension as P,

The steady state probability for the QoS-sensitive queue is a vector with size

similar to matrix P;. We can expand w1 as follows:

) = l:ﬂ'él), S ,7?81)] (3.37)

i,my X K

where 7ri(1) = [WSO), 7r§}11), o ,7r(1) ] . The steady state probability of ¢ packets in the
queue can be simply obtained as follows:

(i+1)x(m1xK)
W@y = > 7)) (3.38)

j=ix{m1xK)

3.4.4.2 Average Queue Length

The average number of packets in queue (i.e., average queue length) for the QoS-

sensitive queue (ZM) can be calculated as follows:

Q1
7 ="z x 7W(z). (3.39)
=0
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3.4.4.3 Packet Dropping Probability

The buffer overflow probability (or packet loss probability) can be calculated as the
ratio between the average number of dropped packets at queue ¢ due to overflow
(denoted as O; ) and the average number of incoming packets in one time slot (denoted

as (;), which can be obtained as follows:

Ay
G=2 &) xJ. (3.40)
j=1
Then the buffer overflow probability for queue ¢ can be written as
P = % (3.41)

i

To caculate the average number of dropped packets due to overflow at queue i, we
need to consider the number of packet arrivals as well as the number of successfully
transmitted packet(s) in the same time slot. Given that there are j packets in the
queue and there are 7 arriving packets, the number of dropped packets is max{0,: —
(Q1—j)}. It is clear that, buffer overflow only happens when ¢+ j > Q1 To capture
the average number of dropped packets, we consider a fake matrix pd fa k ., Which has
the same packet arrival as well as packet departure process as matrix P® but has
buffer size of Q; + A;. By constructing blocks of submatrices as shown in (77),
(7?), and (?7?), where we considered both the packet arrival and the packet departure
events, we can obtain a fake transition matrix as follows:

do,0 do,1 0 90,4,
di1,0 91,1 P12 q1,4,

fake
Pla
PiitAy—2=Q1—1 QijitA—1=Q1 | Di.Qi+1 0

Qi,it+A1—2=Q Cli,Q1+1 Qi,Q1+2

L q4Q:,Q1-1 94Q:.,Q: q4Q;,Q1+1 e qQ;,Q:1+4:
(3.42)

where q; g, +m captures the situation when there are m dropped packets. Note that
submatrix p; g, +m captures the transition of channel states for subchannels assigned

to this queue.

Qi,j == Z f (Al) (ml) (343)

{a,r| max {0,i+a—s}}
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where 0 < a < A1, 0<r < |mg| x K,1€0,Q1 and j € 0,01 + A;.

Now, let 7" define as follows:

n = mpieke (3.44)

T o= {WO,WI,...,TFQI_I_AJ (3.45)

Let z; be the probability that j packets are dropped

9

2p = Z 7€ (3.46)
k=0
Q1

2 = Zﬂ'QlHe forj=1,2,..., A (3.47)
k=0

(3.48)

Then the average number of dropped packets can be obtained as follows:
O1=) iz (3.49)

3.4.4.4 Queue Throughput

The throughput (in packets/time slot) for the QoS queue and the best-effort queue
is obtained as 7; = (;(1 — Pl(l)).

3.4.4.5 Average Delay for one Packet

Using the effective arrival rate, the average delay for one packet in the QoS sensitive
(1)

queue (D;) can be obtained by applying Little’s law as follows: D, = =.

3.4.5 Markov Decision Process Model

The Markov Decision Process (MDP) is a mathematical tool which provides a math-
ematical framework for modeling decision-making in situations where outcomes are
partly random and partly under the control of the decision maker. The theory of

MDP enables us to find the optimal distributed solution for a discrete time stochastic




50

control problem. Simultaneously, the state spaces and the actions in our model corre-
spond to a discrete time process, which allows us to formulate a MDP-based model.
A MDP model is a basic and generic model which is completely described through
its state spaces, actions, transition probabilities and reward functions.

Our objective is to find a solution for antenna assignment for each flow (i.e., how
many antenna and which antenna for each flow) subject to the fairness constraint

between two flows. For this, the following MDP model can be formulated:

e State space: At each time slot, the system occupies a state among a set of
finite states which is called the state space. In our model, the state space is &
= Q x AP x H which was represented in Section 3.4.3.

e Action space: The set of available actions A4 is called the action space. In our
system model, the action refers to antenna assignment to each flow depending on
the number of packets in each queue and the channel quality of each subchannel
under the constraint of fairness in instantaneous delays for both flows.

Let A denote the finite set called the action set. The action in the resource
control problem is interpreted as the composite bit-loading allocation for the
individual transmit antennas. As has been discussed through (3.4), our model
can be decomposed into m independent subchannels, and hence the number of

total possible actions can be obtained as follows:

Q(total) = Z < m > . (3.50)

=0 \ *

With each action, there should be another transition matrix P, such as matrix
P in (3.36) corresponding to action a.

Let a{™ e A denote the action taken by the decision maker (i.e., the Antenna
Assignment Controller) at time slot n. Then, depending on the action taken,
the transmitter will know exactly how many and which antennas are allocated
to which flows. Note that, the number and index of subchannels allocated to
each flow will decide the number of packets leaving the corresponding queue.
Therefore, with different antenna assignments we will have different number of
packets in the queues in time slot (n + 1). Consequently, we will have different

instantaneous delays for the two queues.
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Now, let us define function ®(a), which represents the number of packets leaving

each queue when action a is taken, as follows:
2@ (a) = ¢ (3.51)
i=1

where m is the total subchannel after using SVD in a MIMO system and ¢;
represents the number of packets retrieved in each subchannel assigned to this
queue if action a is taken. Then the total number of packets leaving both the

queues, when action a is applied, can be presented as follows:
B(a)=» @ (3.52)
i=1

e Transition probability: When an action is chosen, the next system state
is determined by the transition probability. The evolution of the MDP based

model here is Markovian with transition probabilities given by
Pr(si,s;,a) = Pris®) = s;,s® = 5;, 0" = q] (3.53)

where s;, s; € S, a € A Note that the process to calculate this transition

probability was presented in Sections 3.4.3 and 77.

e Reward: The decision maker receives a reward when it chooses an action
among the action set. In our model, this reward is related to the instantaneous
delay of each queue.

Let us assume that the reward function R: & x A is given. Then the average

cost of a particular policy w, for a given initial condition z, is defined as

n—1
J(w, z) == lim sup-Tl—LZIE[ R, a9 |Z = 2). (3.54)
t=0

A policy w* is then called optimal if J(w*,z) <J(w, z), subject to minimize
the instantaneous delays in both queues for all policies w and any initial state

zZ.

Let the reward R(s,(lf,), al¥) ) be the instantaneous reward when policy w is applied.
In other words, R is the reward that the system receives when taking action a®) in

state s® at time slot ¢. R(sﬁ), an,)) is defined as follows:

R(s,&f),aﬁ)) =E [R(sg),s;u(“rl),asf,)) ] = Pr(Sw, Sty Q) X ’R(sg’,), SQD(HI)) (3.55)
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Now, let the instantaneous reward be defined as

R(Sg}), 'wa(t_H)) = (dl - A2d2)2 X (dl — A3d3)2 X ... X (dl - ACdC)Q = H<d1 — Azdl)z
=2

(3.56)
where d; is the instantaneous delay of queue ¢ at the end of time slot ¢ and A;
is the weight of the instantaneous delay we want to mantain compared with the
instantaneous delay for the incomming packets arriving into the QoS-sensitive queue.
From ( 3.56), we obtain £ = Z—la =...= i—li, when R(s), s, () is minimized.
Again, our goal is to solve the average cost optimal control problem (3.54) by
constructing a deterministic policy w with minimal average cost. To construct an
optimal policy, value iteration is the most common approach used in practice. The

idea is to consider a finite time problem with the following value function

Vo (s) = minlE[z—:R(s(t), a(t)) + Vo(s(n))} (3.57)

where a(t) is the sequence of actions {a(t) : ¢ € Z,} which is adapted and deter-
mined by some policy. Note that, a(t) can only depend on the history of states
{s(0),...,s(t)} and the policy should minimize (3.57). We can form a deterministic
policy w = w®(s(0)),w(s(1)),w?(s(2)),..., where for each i function w’ maps the
system states to corresponding actions, i.e., S — A, with w'(s) € A(s) for each s.

The function V; is considered as the penalty term and in the standard value
iteration is performed assuming V5 = 0. A deterministic policy is a Markov policy for
which w® =w for all 4, for some fixed state feedback law w . This deterministic policy
can be obtained based on the value iteration algorithm [16]. If the value function V,,
is given, the action w™(s) is defined as

w"(s) = arg min I:PT'(Swn, Sty G )0V (") + R(s, a)} seS. (3.58)

ayn €A(s) w

For each n the following equation has to be satisfied:

Vn+1(8)

R(s,w™) + Pr(s,s’,w™)0V,(s")
= min {R(s,a) + Pr(s,s',a)@Vn(s’)}

a€A(s)

= min Pr(s,s',a) [R(s, s') + 9Vn(s’)} (3.59)
acA(s) "
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which then makes it possibile to calculate the next function w™™, where § (0 < 8 < 1)
is the discount rate. The complete procedure of value iteration algorithm can be

expressed as follows:

Algorithm 3.4.1: VALUE ITERATION ALGORITHM(V,(s) =0)

repeat
A«—0
for each s € $
v V(s)
do { V(s) « mingeaw) >,y Pr(s, s, a) [R(s, s+ GVn(s’)]
A — min(A, | v —V(s) |)
until A <9

In the above algorithm, ¥ is a small positive value and the output is a deterministic
policy w™(s) such that (3.58) is satisfied. After the deterministic policy w™(s) is
obtained, at the beginning of time slot, the AAC checks the states in the previous
time slot (i.e., channel states of all subchannel, number of packet in queue at the end
of previous time slot) and then makes a decision based on the above policy.

The operation of the AAC for the situation where there are only two kinds of
packets in the system can be described as shown in Figure 3.4, where State; and

States can be calculated as follows:

State; = goxsize(Pp) x K™ — [(K—r§2))me6_1+(K—T§2)) X K™ 2y .+(K—7‘,(32)] —q1
(3.60)

Statey, = q x size(P,) x K™ — [(K Oy s gt (K D) ) K™ 4 (K — 7«5,13)]
— g x size(Py) x K™ — [(K — Yy x kMl 4 (K - rg,zg)] (3.61)

®

where sz is rate of channel number j** of queue 1.
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Antenna
Assignment
Controller check the|
“states of system

rNo Packets in queue c£ 0
Release all sub-channel
assigned to this queue
Yes
v
Count the number of
packets left in queue
N Number of “assigned Update system

subchannel in previous

State 1 Yes

State 2

v
Check the policy for the
decision making in next
time slot

Figure 3.4. Algorithm for the Antenna Assignment Controller.

3.5 Performance Evaluation

3.5.1 Complexity of Policy Evaluation

Before presenting the numerical and simulation results, let us first evaluate the com-
plexity of the MDP-based solution for the antenna selection and assignment problem.
Value iteration works by producing successive approximations of the optimal value
function. According to [5], the complexity of the value-iteration algorithm with full

backups, per iteration, is repesented in O(AS)> .
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3.5.2 Parameter Setting

In this section, we present typical numerical results considering an uncoded wireless
system with three transmission modes, i.e., adaptive modulation with only 3 trans-
mission rates (K = 8). First, we obtain the queueing performance of these two queues
with the assumption that at a random timeslot, the AAC decides to assign one and
two subchannel(s) to best-effort queue and QoS-sensitve queue, respectively.

To reduce the computational complexity of finding the optimal solution, in the
simulation model, the size of both queues is assumed to be 15 packets. We assume
that c() = n, time slot interval is Ty = 2ms, and the BERysrge; is set to 1072, the
packet size is 255 bits and block code is used for forward error correction in which
errors up to 2 bits can be corrected. We also assume that there are at most two
separate subchannels after using SVD to obtain these separate subchannels. For a
fading channel, we assume a Nakagami -m channel with parametter m = 1.1. An

infinite-persistent ARQ is used to ensure reliable packet transmission.

3.5.3 Queueing Performance

In this subsection, we present some typical numerical results of queueing performance.
For the purpose of illustration, we present some queueing peformance for one par-
ticular scenario with an arbitrarity chosen channel assignment. Figure 3.7 and 3.8
present the average delays and packet dropping probability versus packet arrival rate
to a QoS-sensitive queue refered to this scenario. Note that this numerical results are
only for the queueing performance, not related to MDP solution. We assume that at a
particular time slot, there are 3 available subchannels at the transmitter side, and we
assign two subchannels to the QoS-sensitive queue and the other to best-effor queue.
Among the two subcahnnels assigned to QoS-sensitive queue, we fix the average SNR
to one channel to 10 dB and vary the average SNR of the other subchannel. The
subchannel assigned to best-effort queue has a fixed average SNR of 7, = 10 dB.

3.5.4 Simulation Methodology

The simulation results are obtained for both types of services for the proposed ASA

policy. Given the system and channel parameters, the channel transition matrix Py,
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Figure 3.5. Average packet delay under different packet arrival rate with (; = (s
and subchannel assigned to best-effort queue has v, = 10dB (from analysis).

P,, and P are calculated. The simulation run time is chosen to be 2 x 10° time slots, in
which the channel states of all users are generated based on their channel states in the
previous time slot and the corresponding channel state transition probabilities (i.e.
H®). The number of packets transmitted during any service time slot is determined
by the channel state and also PER in this state. The number of packets left in the
queue is updated at every time slot by considering packet arrival and the number of
successfully transmitted packets. Based on this information, the AAC will calculate
the system State of system at a previous time slot using the algorithm in Figure 3.4.
Then, the AAC applies this State into policy w to find the corresponding action.

The weighted round-robin (WRR) scheduler in our simulation uses both the sub-
channels to transmit packets from both queues, where the QoS-sensitve queue and
the best-effort queue receive two and one service slots in one cycle, respectively. One
cycle is defined to be the smallest interval with time slot assignments and repeats
periodically.

The state space in this case contains a total of 16 x 3 x 16 x 3 = 2304 states, with
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Figure 3.6. Average packet blocking probability under different packet arrival rate
with (o = 0.8 and subchannel assigned to best-effort queue has v, = 10dB (from

analysis).

the corresponding actions shown in Figure 3.9, where

o Action number one: The best channel assigned to the high priority flow, the

rest for the other.
e Action number two: Opposite to the above situation.

e Action number three: Assign both channels to the high priority flow and no

channel is assigned to the low priority flow.

e Action number four: Opposite to the above situation.

Figure 3.11 shows the packet blocking probability versus the average SNR. of one
subchannel while the other subchannel has a fixed average SNR 5 dB. Obviously,
the packet dropping probability of for the QoS-sensitive queue is higher compared to
the scenario where two subchannels are assigned to this queue continuously, and it is
lower than the scenario where one subchannel is assigned to this queue. Also, there

is a significant improvement in packet dropping probability for best-effort traffic and
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Policy number
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Figure 3.7. Relation between states and the deterministic policy, where (; = 0.8,(2 =
0.5, v1 = 15dB and v, = 5dB.

it is more likely to guarantee fairness between these two flows compared to the case
where a fixed subchannel is assigned to best-effort traffic.

Figure 3.13 shows the average delays of both types of traffic when the arrival rate
of packets coming to the best-effort queue is set to be a fixed value, i.e., (o = 0.7.
When the packet arrival rate for the QoS-sensitive queue is smaller than the arrival
rate for the best-effort queue (i.e., ¢; < 0.4), the average delay of packets in the best-
effort queue is smaller than that for the packets in the QoS-sensitive queue. This is
because, since the packets coming to the best-effort queue have higher arrival rate
that those coming to the QoS-sensitive queue, the ASA scheme decides to allocate
more radio resources to the best-effort queue. In other words, during that period, the
best-effort traffic has higher priority than the QoS-sensitive traffic.

When the packet arrival rate to the QoS-sensitive queue is higher than the other,
ASA starts to share more resource for sensitive queue to satisfy the QoS requirements
of both flows. At the diamond shaped points in Figure 3.13, where arrival rate of

packets coming to the QoS-sensitive queue equals to the packet arrival rate for the
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Figure 3.8. Packet throughput under different packet arrival rate (for (o = 0.8, and

best-effort queue, the average delay is observed to be 5.7374 and 9.0253 corresponding
to QoS-sensitive and best-effort traffic, respectively. These obtained results conform

to our objective, where we set the instantaneous delay requirement for QoS-sensitve

traffic to be 6 timeslots and j—; = % ASA allocates more resources to best-effort

traffic since its delay exceeds the target delay requirement, and of course the delay

for QoS-sensitive traffic will increase in this case.
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Figure 3.10. Impact of connection arrival rate on average delay for QoS-sensitive
queue (for (o =0.5 and v2 = 5 dB).
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Chapter 4

A Tandem Queue Model for
Performance Analysis in MIMO
Wireless Mesh Networks

4.1 Introduction

An important research problem for MIMO-based WMN is to quantify the impacts
of different factors on QoS performance measures so that wireless protocols can be
designed and/or tuned in an optimal manner. Two of the most important performance
measures are end-to-end packet dropping probability and average delay which can
only be obtained by solving the tandem system of queues along the routing path of a
connection [61]. There are a few tandem queueing models proposed in the literature.
Tandem systems of two queues were modeled in discrete time in [47]. The end-to-end
delay for TDMA and ALOHA multiple access schemes were approximately derived
in [68] for constant bit rate traffic. Developing a general model to analyze tandem
queueing systems under realistic arrival process and wireless channel assumptions is
still an open research issue.

In this chapter, we present an exact queueing model to solve the tandem queue
system for a MIMO-based wireless mesh backbone where batch arrival and multi-rate
transmission in the physical layer, and automatic repeat request (ARQ)-based error
recovery in the link layer are taken into account. Note that, multi-rate transmission in
the physical layer using adaptive modulation and coding (AMC) and ARQ-based error

recovery in the link layer are widely used techniques for most of the current wireless
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standards,[1}-[3]. For multihop communications in a wireless mesh backbone, it is
well known when the size of network increases (counted on the number of hops from
source nodes to destination nodes), the network performance degrades significantly.
The reason is that the end to end reliability sharply drops as the scale of network
increases. By using MIMO links, instead of SISO links, we will show that there is
a significant improvement in end to end performance. Because the computational
complexity of the exact model is very high, we propose a decomposition approach for
the tandem queue system. The proposed decomposition approach allows traffic to
arrive at each node besides the relayed traffic. Using the decomposition approach, we
can calculate some performance measures, namely, the end-to-end packet dropping
probability and average delay. The model is validated and typical numerical results
are presented.

The rest of this chapter is organized as follows. Section 4.2 presents the system
model. An exact tandem queue model is described in section 4.3, and section 4.4, the
decomposition approach is presented in section 4.5. Numerical results are presented

in section 4.6 and the last section provides a summary of this chapter.

4.2 System Model and Assumptions

We consider a multihop wireless network, which can be considered as a tandem sys-
tem, with L concatenated nodes where traffic coming out of each node is fed into the
next node in the chain. This kind of tandem system models the operation of wireless
mesh backbone networks where data traffic arriving at the source node is transmit-
ted hop by hop to the destination node. The sequence of nodes that the traffic flow
traverses is obtained from a routing algorithm.

We assume that each node in this wireless mesh backbone maintains one queue
for each link emanating from the node where traffic flows from different connections
traversing through the link are buffered for transmission in a FIFO manner. A multi-
hop network model with two connections is shown in Figure 4.1 where for convenience,
we show only one queue at each node. In general, data traffic stored in each buffer
may come from different connections. For a particular connection, the tandem system

of queues along its routing path is illustrated in Figure 4.2. Note that, traffic from
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Figure 4.1. A multihop wireless network with multiple ongoing connections.

other connections (called exogenous traffic in this chapter) may arrive at any one of
the queues of the tandem system.

Exogenous Exogenous

Exogenous
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traf’ﬁc traff C

\ HIIQ_. ||||Q_. TI1]10—

Source node Destination node

Endo;,enous
traffic

Figure 4.2. A tandem system of queues.

4.2.1 The physical and link layer models

The physical and link layer models are the same as those described in Chapter 3.
However, instead of choosing the assigned solution for different flows, in this chapter
we use all available subchannels to tranmit data. Recall chapter 3, from (3.8), the

probability that modulation & is used in subchannel 7 can be obtained as follows:

Xt

PO = PrOQw € X X)) = [ POy

Xk
= Ty(1, Xi/v0) — U1(1, Xir1/0)- (4.1)
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For m available subchannels at MIMO link 7, let p(g) denote the probability that

g packets are correctly received given by

pi(g) = O P )
i=1

where () denotes the dicrete convolution and maximum number of packets that can
be transmitted in one time slot over m subchannels is N=mx K.

Basically, we can calculate PER,, (3.16)over sub-channel , since now, to reduce
the complexity, we assume that PER of MIMO link [ is 6"

Based on the average packet error rate, assuming that the transmission outcomes
of consecutive packets are independent, the probability that 7 packets are correctly

received given that j packets were transmitted over link [ can be calculated as follows:

696, 5) = (”f > (60) "1 60, (4.3)

Note that the difference in depature process between SISO and MIMO here is
depended on the number of available antennas at transmitter and receiver sides, where
SISO has only one channel while MIMO might have multiple channels. The difference
here depends on the number of antennas at the transmitter and receiver side, which
is presented by parmatter M and N in (3.6) in chapter 3, Le. SISO has only one
antenna at both transmitter and receiver sides or M = N = 1. This difference will
effect to the service time distribution of SISO and MIMO. Clearly, MIMO technology
offers a substantial performance improvement and MIMO system also does not require

additional transmit power or receive SNR to deliver such performance gains.

4.3 An Exact Tandem Queue Model

We assume that the packets arrive at the buffer according to independent Poisson
processes with different packet arrival rates, i.e. . The maximum number of packets
arriving in one transmission queue in one time slot is M, then the probability of
arrival of 2 € { 0... M } packets with mean ¢ in time interval ¢ is given by
Gty
e
a;(¢) = —— (4.4)

7!
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This arrival probability can be expressed as follows:

a = {G'O(C)’ a1 (C): ce 7a’M(C)} (45)

For simplicity, we define this arrival probability as a; = {a;}},. We will consider
a simple tandem system with two queues as in Figure 4.3 in this section. The more
general case with L queues (L > 2) is considered in the next subsection. Let g;(t)
be the number of packets in queue 4 at time slot ¢, the random process X(t) =
{q1(1), (D)}, (0 < ¢1(t) € Q1,0 < go(t) £ Qo) forms a discrete time Markov chain
(MC). For notational convenience, we omit the time index ¢ in the related variables
when it does not create confusion in the sequel. Let (z,y) be the generic system
state (i.e., 1 = 7, g2 = y) and (z1,y1) — (T2, y2) be the system transition from state
(z1,y1) to state (z2,v2). Now, we derive the transition probabilities for the underlying

MC. Specifically, we need to find the transition probability Pr{(z1,y1) — (z2,%2)}-

Wircless channel Wircless channel

Batch (link 1) l | [ l (tink 2)
Y —l ————-
arrival l I I l l O g 1
packets packets go

to application laycr

£0 10 [eXt queue

Queue 1 Queue 2

Figure 4.3. A tandem system with two queues.

Note that the number of packets transmitted on each link in any time slot is the
minimum of the number of packets in the corresponding queue and the transmission
capability of the channel, i.e., min {g;,%}, where ¢ denotes channel capacity of MIMO
link allocated to this queue. Let the maximum number of packets that can be trans-
mitted in one time slot be N (i.e., N = m x K). Then, the number of packets in each
queue can be reduced at most by N. Because there are at most M packets arriving
at queue one (from the source node) and at most N packets enter queue two (due to
successful transmissions in all possible channels allocated to queue one) in one time
slot, the number of packets can increase at most by M for queue one and by N for
queue two.

Hence, if we write the probabilities of transitions (z1,*) — (Z2,*) in a matrix
block A, 4,, the probability transition matrix of the MC X (t) can be written as in
(4.7). The order of matrix block Ay, 4, is (Q2+1) X (Q2+1) and its (y1,y2)-th element

is Az (y1,v2) = Pr{(z1, 1) — (z2,92) }-
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Let s denote the number of packets arriving at queue one in a particular time
slot and the channel capacity of link 1 k packets, we need to find the conditions
under which a general transition (z1,31) — (22,y2) occurs. The number of packets
in queue one after accepting the newly arrived packets is min(z1 + s,(Q;1) and the
number packets transmitted in link 1 is min(z;,%k) and among these transmitted
packets, w packets are correctly received at the receiving end (i.e., these w successfully
transmitted packets will enter queue 2). Thus, we have 2, = min(z; + s5,Q1) — w.
Similarly, link 2 can transmit [ packets in one time slot, and h packets among min(yy, {)
transmitted packets are correctly received at the receiving side then y, = min(y; +
w,Qz) — h. Hence, we can calculate A, ., (y1,72) by including all cases where these

two conditions hold in the following sum

Az1,zz(y17y2) = Zzzzz%p(l)(k)p(l)(l) (46)

xﬁ(l)(min {z1,k},w) x ﬁ@)(min {y1,1},h).
where all possible cases such that x, = min(z; + 5,@1) — w and y» = min(y; +

w, @2) — h are included in sum.

C Agp Ao Ag m
Ao A A . A v
P Ano Ang Ay E a AnNiM
Ag,—1.0i-1-8 AQi-1,0:-N AQ-1,0:-N o Agi—L,e
L Ag,.gi-v 0 Agiai-t Aol
(4.7)

Now, we are ready to derive the steady state probabilities for MC X (t). Let 7 be
the steady state probability vector of the MC X (). We have

aP=m, 7l=1 (4.8)

where 1 is a column vector of all ones with the same dimension as 7, which is (@1 +

1)(Q2 + 1). We can expand 7 as follows:

™= [7‘-077.‘-177"2" . 77TQ1]
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where 7; is a row vector of dimension @, + 1, which can be further expanded as
= [m-,o, i1, Ti2y " ,wi,QQ}, where 7; ; is the probability that the queueing system
is in state (i,7). Given the steady state probability vector 7 which is calculated using

(4.8), we can derive the following important end-to-end QoS measures.

4.3.1 End to End Packet Dropping Probability

The packets can be lost due to transmission errors on wireless links or due to overflow.
The buffer overflow probability for queue k of the tandem can be calculated as a ratio
between the average number of dropped packets due to overflow at queue k (denoted
as Oy,) and the average number of packets arriving at queue k& in one time slot (denoted
as A;). Hence, the buffer overflow probability for queue & can be written as Pl(k) = %.

Note that the average number of packets arriving at queue one in one time slot is
A = Zgl ia;. To calculate the average number of dropped packets due to overflow
at queue one, let us define z; be the marginal probability that there are 4 packets in
queue one. We have z; = m;1g,41, where 1g,41 18 @ column vector of all ones with
dimension @, + 1. The average number of dropped packets due to overflow at queue

one can be calculated as

M !
51:2 Z a;z;max{0,i+j — Q1}
i=1 j=Q1-M

where max {0,i + j — @1} is the number of dropped packets (if any) given there are
4§ packets in queue one and 4 arriving packets.

Now we calculate the buffer overflow probability at queue two. We first determine
the arrival probability for packets entering queue two due to successful transmissions
from queue one. In fact, the number of packets arriving at queue two are those
successfully transmitted over link one. Note that, in this case we do not consider
the exogenous traffic, then the probability that ¢ packets arrive at queue two can be
approximated as

Q1 Kxm

b; ~ Z Z zkp(l)(l)ﬁ(l)(min {k,1} 7).

k=0 [=0

The average arrival rate to queue two can be calculated as A, = Zfi 11b;. To

calculate the average number of dropped packets due to overflow at queue two, let us
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define s; to be the marginal probability that there are ¢ packets in queue two, which
can be calculated as s; = Z?:lo 7;;. Similar to queue one, the average number of

dropped packets due to overflow at queue two can be approximated as

N Q1
Oy =~ Z Z bis;jmax {0,i+ j — Q2}

i=1 j=Qa~N

Finally, the end-to-end packet dropping probability can be approximated as
P~1-(1-PRY)1-P%) (4.9)

where the loss due to overflow at both buffers and due to channel errors are taken

mnto account.

4.3.2 Average Delay

The end-to-end delay is the sum of delays that any packet experiences in all queues
and links along its routing path. We ignore the transmission delays and only include
queueing delay in the calculation. Using Little’s law, the end-to-end average delay

can be written as 0 o
1oL Q2 o
D _ Zi:l (& Zz:l 155 (410)

== +
A1~ P A(1-BY)
where the numerator of each term is the average queue length of each queue and the

denominator is the average arrival rate considering packet loss due to overflow.

4.4 General Case (L > 2)

We consider a more general tandem system with more than two queues in this sec-
tion. Only traffic flow from the considered connection is taken into account as in the
previous subsection. The more general case as shown in Figure 4.2 will be investi-
gated in Section 4.5.2. Now, the tandem system has L queues (L > 2) which are
concatenated to each other as a chain. The buffer size of queue 7 is assumed to be Q;
packets. Similar to the previous subsection, let ¢;(¢) be the number of packets in queue
i at time slot ¢ (z = 1,2,--+, L), the random process Y (¢t) = {q:1(t),¢=(t), -, qc(t)},
0<qi(t) Q1,0 < gt) < Qq, -+, 0 < got) < Qp) forms a discrete-time Markov
chain (MC).
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Obviously, a similar approach as in Section 4.3 can be pursued to obtain the
transition probabilities for this MC. The number of state transitions for this MC,
however, grows exponentially with the number of queues in the tandem system. In
fact, the order of the transition probability matrix P is [T, (Q: +1) x [T, (Q: +1).
Therefore, the computational complexity is very high for a large number of queues
and a large buffer size. However, theoretically we can follow a similar procedure as in
Section 4.3 to derive the transition probabilities, obtain the steady state probability

vector and all end-to-end performance measures.

4.5 Solution of the Tandem Queueing Model: De-

composition Approach

We present a decomposition approach to solve the general tandem queue where the
computational complexity grows only linearly with the number of queues in the sys-
tem. For ease of reference, buffers (queues) along the routing path are numbered in
an increasing sequence of integers with the buffer of the source node denoted as buffer
(queue) one.

To the best of our knowledge, a Jackson network is a queueing network with L

queues satisfying 3 properties:
e The servers in each of the L queues are independent of each other.

e The external arrivals (if any) at each queue are independent processes with

different rates.
e The network uses random routing.
The idea of decomposition approach here is basically similar to the idea of solution
for Jackson queueing networks where the service times are not exponential, buffer sizes

are finite, and any arriving packet which sees the full buffer will be dropped instead

of waiting for space in the next queue when the buffer at next queue is full.

4.5.1 Technical Approach

We first consider the simple case where only queue one in the tandem accepts traffic

from the higher layer, other queues receive packets which are successfully transmitted
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from the previous queue in the chain. The more general case with exogenous traffic
from other connections as shown in Figure 4.2 will be discussed in Section 4.5.2. For
notational convenience, we assume that ¢ packets arrive at queue k with probability
a,gk) (a?) = b; for the two queue case considered in Section 4.3.1). Note that the
maximum batch size (maximum number of packets arriving in one time slot) captured
in agk) is N (i.e., number of packets leaving this queue) while the maximum batch
size captured in agl) is M (i.e., ag\i[) is the probability of M packets arriving queue).

We observe that the behavior of queue ¢ + 1 does not impact queue 7 in the
chain but the reverse is not true. This is because the outcomes (i.e., successfully
transmitted packets) from queue ¢ are fed into queue ¢ 4 1 and packets leaving queue
¢ which cannot be accommodated at queue 7 + 1 are simply dropped, and packets do
not wait at queue i for space in queue ¢ + 1 when the buffer at 7 + 1 is full. Thus,
instead of forming the Markov chain which captures the queue length dynamics of all
queues we could find the queue length dynamics for one queue at a time where its
input is the output of the previous queue in the chain (except for queue one).

Specifically, we pursue the following steps. Form the MC for queue one, and
calculate its steady state probability vector. Based on the steady state probabilities,
calculate the packet arrival probabilities to the next queue. These arrival probabilities
are used to derive the arrival probabilities for the next queue in the chain. This
procedure is repeated until we obtain the solutions for the last queue of the tandem
system.

Obviously, using this decomposition approach the joint steady state probability
vector could not be found as in Section 4.3. However, the steady state probability
vector for each queue in the chain is what we need to calculate the desired queue-
ing performance measures. Essentially, the presented procedure requires to solve L
separate queues each of which accepts batch arrival traffic and serves packets also
in batches. Let us consider a particular queue k of the chain and form the MC

Xe(t) = {q(t)}, (0 < qu(t) < Q) where g, (t) denotes the number of packets in
(k)

queue k with an arrival process described by a;".
The transition probabilities for this MC can be found as follows. Let us consider a
general transition probability Pr{z; — z5}. Let s be the number of packets arriving

at queue k and let the number of packets leaving this queue during the considered
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time slot be I. Let us also assume that ¢ packets among min {z;,¢;} packets are
correctly received, then a number of packets at queue k in the next time slot is
Ty = min{z; +5,Q} — ¢. Thus, the transition probability Pr{z; — 22} can be

approximated as

Pr{z; — x5} =~ ZZZ&U‘) ®(1) x 8% (min {z1,1} ,1) (4.11)

where all combinations of [, s and i such that z = min {z; +s,Qx} — ¢ are included
in the sum.

Given the transition probabilities, we can easily calculate the steady state proba-
bility vector of this MC 7(®) = [ (k) 7r§k), ,71'((53] , where ng) denotes the probability
that there are 1 packets in queue k. As in Section 4.3, the buffer overflow probability

(k) _

at queue k can be calculated as P, . The average arrival rate of traffic to queue

. - (k)
k can be written as Ay = ZBi za("), Where B®) is the maximum batch size of the
arrival process.
The probability that ¢ packets are successfully transmitted at queue &k and arrive

at queue k 4+ 1 can be written as

o) = 353 A0 500 min (1)) (412)

j=0 1=0
These arrival probabilities are used to derive the queueing solution for queue k+1
as in the presented procedure. And the average number of dropped packets due to

overflow at queue k can be calculated as

Bk Qr
O = Z Z agk)wj(-k). max {0,147 — Qx}. (4.13)
=1 j=Qu—BH)

Finally, the end-to-end loss probability can be approximated as

L
A~1-]Ja-pP% (4.14)

i=1

and the end-to-end average delay can be written as

p=%" i (4.15)
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4.5.2 Tandem Queue with Exogenous Traffic

In this subsection, we generalize the queueing model further by allowing buffers of the
tandem system to accommodate exogenous traffic of other connections traversing the
links of the considered routing path. At each queue of routing path, traffic coming
from other connections also enqueues and shares the capacity of the wireless link as
shown in Figure 4.2. Traffic from the considered connection will be called endogenous
traffic and that from other connections will be called exogenous traffic in the sequel.

Beside the endogenous traffic as has been considered in subsection 4.5.1, we assume
that ¢ packets from exogenous traffic sources arrive at queue k with probability egk)
(t=0,1,---,M,k=1,--- ,L). Hence, both endogenous and exogenous traffic arrive
at each queue of the chain. The same procedure presented in subsection 4.5.1 can
be applied in this case where the aggregate traffic is multiplexed by endogenous
and exogenous traffic sources. Let fi(k) denote the probability that 7 packets of the

aggregate traffic arrive at queue £ in one time slot. Then, we put fi(k) into a row vector

as f®) = [ fék), 1(]“), R gc(l)], where B® is the maximum batch size. Similarly,
putting arrival probability for endogenous traffic a,y“) and exogenous traffic egk) into
vectors a® and e®), respectively, we have

F® = a® @ e® (4.16)

where ® denotes the convolution operation. To calculate the queueing performance
measures, fi(k) is considered as arrival probabilities at each queue of the chain (instead
of agk) as in Section 4.5.1). If exogenous traffic corresponding to some connections
leaves a queue in the middle of the chain, we have to exclude that traffic in calculating
the queueing solution for the next queue. We can approximately exclude that traffic
by turning off the traffic from that connection entering the tandem system at some

previous queue.

4.6 Validation of Decomposition Approach and Typ-

ical Numerical Results

We validate the proposed decomposition approach for the tandem queue model and

present some illustrative numerical results. We consider wireless networks employing
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M-QAM adaptive modulation without coding using six transmission modes for all
transmission links, i.e. £k =0,1,2,...5. We assume that in channel state k, k packets

are transmitted in one time slot. the time slot interval T, = 2 ms.

6.5 U
—€— SISO decomposition mode!

—#%— MIMO (2 x3) decomposition model
—0— MIMO (3 x3) decomposition model
— Exact model

55

Average delay (timeslot)

1 1.2 14 16 1.8 2
Packet arrival rate (packets/timeslot)

Figure 4.4. Impact of packet arrival rate on average delay (for SISO: vy = 15 dB,
for 2 x 3 MIMO: v =5 dB, for 3x 3 MIMO: v =3 dB, @1 = Q2 =50, L = 2).

The variations of end-to-end packet dropping probabilities and average delay with
endogenous arrival rate where there is no exogenous traffic are shown in Figure 4.4
and Figure 4.5 for average PER = 0.001. We show results obtained from both the
exact and proposed decomposition queueing models in these figure. As is evident, the
proposed decomposition model provides a very accurate queueing solutions but it has
much lower computational complexity compared with the exact model. Figure 3.12
and 4.5 also show the impacts of PHY layer design on the queueing performance.
Specifically, with more conservative PHY design, i.e. more antennas at transmitter
and receiver sides, there is a significant improvement in both the average delay and
the end-to-end packet dropping probability.

The average delay versus packet arrival rate with different exogenous traffic in the

tandem with L = 2 is shown in Figure 4.6. Here, besides endogenous traffic, we allow
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Figure 4.5. Impact of packet arrival rate on end - end packet dropping probability
(for SISO: vy = 15 dB, for 2 x 3 MIMO: vy = 5 dB, for 3 x 3 MIMO: vy, = 3 dB,

Q1=Q2:50,L:2)

exogenous traffic from one other connection to arrive at queue two of the tandem
and share wireless capacity with endogenous traffic in the onward direction. The
average delays are shown for different arrival rates of exogenous traffic. Moreover,
when multiple antennas are equipped in each node, the end-to-end packet dropping
probability decreases rapidly compared to the SISO scenario. For example, in 3 x 3
MIMO scenario packet dropping probability of packet arrival rate from 0.1 to 1.3 ~
0.

Figures 4.7 and 4.8 show the end-to-end packet dropping probability and average
delay versus packet arrival rate and exogenous traffic entering each queue has packet
arrival rate { = 0.8. We observe that both end-to-end packet dropping probability
and average delay increase rapidly with the number of hops (H) and packet arrival
rate. Therefore, the long routing paths may increase the chances of QoS requirement

being violated significantly.




77

1 T T T
—6—exorate=04 : : -

0 ~—p— exo rate = 0.8 : : :

exorate =1.2
—%— exo rate = 1.8

Average delay(timeslot)

1 1.2 1.4 1.6 1.8 2
Packet arrival rate (packet/timesiot)

Figure 4.6. Impact of packet arrival rate on average delay in 2 X 2 MIMO with
Yo =5 dB, @1 = Qo =50, L = 2, with different exogenous traffic.

4.7 Summary

We have proposed a tandem queueing model for wireless mesh backbone networks.
We have presented both exact and approximated decomposition approaches to solve
a general tandem queue system. The proposed decomposition approach achieves very
accurate queueing performance measures with much lower computational complexity
compared to the exact approach. We aslo observe that by using MIMO links, instead
of SISO links, there is a significant improvement in end to end performances. The
proposed queueing model can be used to perform QoS routing and admission control

in a multihop wireless mesh backbone network.
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Figure 4.7. Impact of packet arrival rate on average delay in 2 x 2 MIMO with
Yo =5 dB, Qr = 50, with different number of hops, i.e., H =L — 1.
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Figure 4.8. Impact of end - end packet dropping probability on average delay in 2 x 2
MIMO with vo = 5 dB, Qr = 50, with different number of hops, i.e., H =L — 1.
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Chapter 5

Conclusion

This chapter provides a summary of the works presented in this thesis and outlines a

few directons for future research.

5.1 Summary

We have presented an introduction and background on MIMO and its application on
wireless mesh networks. The advantage of using MIMO in a wireless mesh backbone
instead of a single antenna has been emphasized. We also presented a survey on the
issues and approaches to resource allocation in MIMO based wireless networks. These
issues include MAC protocol design, admission control, power and rate control, cross
layer design in MIMO wireless networks. Two analytical models, i.e. tandem queue
system and its application in wireless mesh backbone based MIMO and an Antenna
selection and assignment approach, have been developed for wireless mesh networks
considering realistic physical and link layer designs. In particular, link adaptation
techniques in the physical layer and ARQ-based error recovery in the link layer have
been taken into account in different analytical models. Both single-hop radio link
level design problems and end-to-end research issues have been considered.

The following provides a summary of the works presented in this thesis:

e Antenna Selection and Allocation in MIMO based wireless mesh networks: We
have presented a scheme for antenna selection and allocation to achieve ser-
vice differentiation between QoS-sensitive and best-effort traffic in MIMO based
wireless mesh networks. This scheme, which is based a Markov Decision Process

formulation of the antenna selection problem, prioritizes two different traffic
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types and satisfies the requirement of QoS fairness between these two traffic
types. Both channel state information and channel memory are exploited for
wireless transmission. From the analytical model, various QoS measures can
be obtained. The performance evaluation results have shown that the solution
based MDP can provide nearly the target level of QoS to both the QoS-sensitive
and the best-effort traffic.

e Performance Analysis of a MIMO-Based Wireless Mesh Backbone Network: For
performance analysis of a multihop wireless mesh backbone network, we have
proposed a tandem queue model which takes the QoS requirements such as
the end-to-end packet dropping probability and end-to-end average delay into
account. Both exact and approximate tandem queueing models considering link
adaptation and ARQ error protection have been proposed. By using spatial
multiplexing MIMO in the physical layer, a number of parallel independent
streams can be sent at the same time, thus increasing the data rate. The
results from the analysis reveal that using MIMO links, instead of SISO links,

is a key technique to improving the end to end performance.

5.2 Future Research Works

The thesis has developed some systematic methods for cross-layer analysis and re-
source allocations in MIMO-based wireless mesh networks. The results are also ap-
plicable to resource allocation problems in MIMO-based wireless ad hoc or sensor
networks. The long-term goal of this research is to derive structural results and
adaptive algorithms for MIMO-based wireless ad hoc/mesh/sensor networks. For fu-
ture research, the work in this thesis can be extended in several directions. In what

follows, we propose a few research problems related to the work in this thesis.

e Reduction in computational complexity: As it has been mentioned in Section 3.5.1,
although, in theory, MDPs can be solved in polynomial time in the size of state
space and action space, this only holds true for so called flat representations of
the system in which the states are explicitly enumerated. Due to complexity
in computations required to investigate policy, the system, in fact, takes a con-

siderable amount of memory and time to implement the optimal policy. Thus
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a stochastic approximaxition algorithm which reduces the computational com-
plexity is necessary for a practical system where the buffer size and tranmission
modes are in a large number.

There are some works in the literature which focused on how to reduce the
computational complexity. In [48], an optimal approach to find a transmission
scheduling policy that minimizes an expected total cost, which is the sum of
accumulated transmission costs and a data loss cost, has been proposed. The
concept of supermodularity was applied to the dynamic programming equations
to prove that the optimal transmission policy is a threshold policy in the resid-
ual transmission time and the buffer state. Thus if a MDP has a threshold
policy, one only needs to compute the threshold to implement the optimal pol-
icy. However, the action space in this work is quite simple, i.e., there are only
two actions where action 1 corresponds to ‘transmit’ and action 2 corresponds
to ‘no transmit’. Therefore, this approach cannot be directly applied to our
model.

The concept of supermodularity [21] was used to prove the monotone structure
of the optimal resource allocation policy. However, the proofs and the algorithm
to obtain the monotone results in [21] cannot be generalized for the case of a
Markovian system as considered in this thesis.

Another possible approach to reduce the computational complexity of natural
MDP might be the policy bound for MDP. In [44], the authors proved that an
MDP can be approximated to generate a policy bound, i.e., a function that
bounds the optimal policy from below or from above for all states. This work
also presents sufficient conditions for several computationally attractive approx-
imations to generate rigorous policy bounds. These approximations include
approximating the optimal value function, replacing the original MDP with a
separable approximate MDP, and approximating a stochastic MDP with its
deterministic counterpart. An example in fishery management problem [44]
showed that the number of calculations per iteration reduces from 10 states
to 10?9 states.

In future works, we might count on Q-learning and gradient based stochastic

approximations to solve the problem. Q-learning is a model-free method that is
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extremely useful for solving infinite horizon MDPs, where the transition prob-
abilities that characterize how the system evolves may not be available. The
principle of Q-learning is to gather information about the transition probabil-
ities, as well as costs, through sampled trajectories of the system [65]. Thus,
the agent is required to learn by interacting with the environment. Using the
learning algorithm, the expected cost of performing different actions at differ-
ent system states can be estimated, and the agent can choose the best action
accordingly.

Opportunistic resource allocation with partially observable states: In this thesis,
we have made the assumption that perfect quantized CSI is available to both
transmitter and receiver. In a practical system, channel states can only be
observed in noise, and perfect quantized CSI is not easy to obtain. A prospec-
tive extension of the work here is to consider the case when the channel state
cannot be observed perfectly. In such a situation, the opportunistic resource al-
location problem can be formulated as a partially observable MDP (POMDP).
The motivation for the POMDP formulation is the obvious fact that POMDPs
are a closer approximation to the real system. However, the drawback is that
POMDPs are much harder, and typically infeasible, to solve optimally. As a

result, analyzing a POMDP will require some sorts of approximation eventually.

Resource allocation in MIMO wireless mesh neworks in multiple-hop scenar-
i0s: In Chapter 3, we have considered the resource allocation problem from
the perspective of a single mesh router. In Chapter 4, we have presented a
queueing theoretic performance analysis model for a multihop transmission sce-
nario. Constructing an optimal resource allocation strategy involving multiple
mesh routers which optimizes the end-to-end system performance is the key to
successful implementation of wireless mesh networks. Optimization and game
theory might be important tools to investigate the solution. Also, due to the dis-
tributed nature of wireless mesh networks, both in wireless clients and routers,
routing and congestion control together with resource allocation and physical

layer design issues continue to be challenging research issues.
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