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Supervisor: Prof. E. Hossain

Multiple input muitiple output (MIMO) is a promising physical layer approach to

boost the performance of multihop wireless networks such as the wireless mesh net-

works (WiVINs). WMlrls are dynamically self-organized and self-configured networks

which are built using a wireless mesh backbone consisting of mesh routers. The wire-

less mesh backbone, which provides multihop wireless connectivity to mesh clients,

requires high throughput and reliability in order to provide quality of service (QoS)

for reai-time as well as non-real-time applications. To achieve high channel utilization

and to guarantee the QoS requirements of different types of traffic, the radio resorlrces

such as the antennas and transmission power in a mesh router need to be allocated

optimally among the different flows. Resource allocation and end-to-end performance

analysis for MIMO-based wireless mesh backbone networks pose significant research

challenges. In order to realize the full potential of MIMO technology, higher layer

protocols must be designed to be cognizant of the MIMO link capability. In par-

ticular, channel state infor-mation (CSI) from the physical layer should be exploited

for optimal resource allocation at the medium access control (MAC) Iayer. An an-

tenna assignment and allocation (ASA) scheme is presented which uses only a subset

of total available antennas for each type of service and provides differentiated QoS

among different flows in a mesh router. Also, to provide efficient channel utilization,

the ASA technique considers adaptive modulation and coding (AMC) to exploit CSi.

This scheme is developed based on a Vlarkov Decision Process (MDP) formulation of

the antenna assignment problem. The MDP formulation exploits a queueing analyt-

ical model for the data queues at a mesh louter. The pelformance of the proposed

scheme is compared with the traditional weighted round-r'obin type of scheme for an-

tenna scheduling. Numerical results demonstrate the efficacy of the proposed scheme.

To this end, for performance analysis of a wireless mesh backbone in an end-to-end

MIMO transmission scenario, we propose a tandem queueing model. This model con-

siders the implementation of AMC in the physical layer and ARQ-error recovely in

the link layer. Both exact and approximate decomposition approaches are developed

to solve the tandem queueing problem. The performance analysis results obtained
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from the analytical model show the significant performance gain achieved through

using MIMO links compared to that for using single input single output (SISO) links.
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Chapter I

ïntroduction

1.1 \Mireless Mesh l\etworks and lts Applications

Wireless Mesh Networks (WMl\s) are dynamicaily self-organized and self-configured

wireless networks t6] Nodes in these networks automatically establish an ad hoc

network and maintain connectivity in the networ-k. This feature helps to reduce

the cost of establishing the backbone network, decreases the complexity of network

maintenance, and also improves the reliability of network coverage. In fact, there are

two types of nodes in wireless mesh networks, namely, static nodes (mesh routers)

and mobile nodes (mesh clients). The mesh routers have a minimal mobility and

they form the backbone of the network. The client nodes in WMNs can freely and

dynamically self organize into arbitrary and temporary ad hoc network topologies,

allowing wireless devices to seamlessly inter-network in coverage areas of a WMN

backbone. The network backbone provides multihop connectivity among the mesh

routers and Internet gateways. That is, when a mesh client wants to connect to the

Internet, it connects to the mesh router and then the mesh router will establish a

connection (using wireless multihop connectivity) with other mesh routers until it
finds the Internet gateway. Mesh networks are expected to play a key role to provide

last mile connections and to backhaul traffic in wir-eless broadband networks [6].

Ittrote that relay-based implementation to extend the coverage and enhance the system

capacity was aiso proposed for centralized wireless networks (i.e., cellular and wireless

LAN networks) [77], [63]

The unique topology of WMNs leads to many strong points that are hard to find in

other access network technologies. WMNs provide a nerv way to access the Internet

to potential users who are currently not serviced due to geoglaphical, financial or
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technological restrictions [40]. Users and Internet service providers are expected to

benefit from WMNs in many ways as follows:

o Scalability: The network can grow as more and more customers are added. If
the capacity becomes an issue, additional gateways can be added.

ø Multiple types of network access: In WVINs, both backhaul access Internet

and peer to peer communications are supported [41].

o Low up-front investment: Incremental expansion is possibie in WMNs,

which eliminates the challenge of a large initial investment required in deploying

wired Internet access services, e.g., DSL or cable-based networks.

o Reliability: The mesh structure assures the availability of multiple paths for

each node in the network. If a node fails, others will take over its traffic enabling

uninterrupted services.

ø QoS: Quality of Service provisioning for multimedia traffic is crucial [71]. With

a careful design and enough gateways in appropriate locations, WMNs can

support QoS for multimedia services. This feature of WVINs will be highlighted

ü

\Mreless Mesh Backbone

Figure I.1. A si,mple w'ireLess mesh networlc.



c Flexibility: Different configurations can be adapted to meet the requilements

of a particular situation.

o Mobile user support: Mobile users can connect to the network as long as

they stay within the range of any other user node (mobile or not).

o Roaming service: As customers travel, roaming contracts between companies

can be agreed upon for added value to the service.

Due to wir-eless channel impairments and complicated interactions among proto-

cols in different layers, engineering multihop wireless networks with quality of service

(QoS) assurance is a very challenging task.

WMNs are expected to support real-time applications such as video streaming

and gaming etc. These appiications require low and stable packet delay, and constant

throughput. These requirements may not be easily achieved in interference-iimited

mesh networks using conventional antenna technologies. In this context, the use of

smart antennas and multiple input multiple output (MIMO) is a promising PHY

approach to boost the network throughput.

To achieve high-speed wireless communications in a WMN backbone, v¡e propose

to use MIMO links in between the mesh routers. in the physical layer, we consider

adaptive modulation and coding (AMC) and we capture the effects of correlated

channel fading by using a finite state Markov chain (FSMC) model. Automatic repeat

request (ARQ) is used for error control so that the reliability of the transmission can

be ensured. The detaiis of the MIMO wireless mesh backbone network where each

node in the network is equipped with multiple antennas and adaptive modulation

is used in transmission links in single-hop and muitihop wireless scenario will be

described in Chapter 3 and 4, respectively.

L.2 Directional Antenna

The clevelopment of RF technoiogy and circuit design have been contributing towards

the development of efficient antenna technology for high-speed r,vireless communica-

tions. Traditionally, there are two types of smart antennas: directional antenna and

multiple input and multiple output (N4IMO) [34]. A directional antenna generates

in this thesis.
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multiple predefined narrorv beams directed to each particular direction in order to

enhance the leceived signal strength (RSS) and/or signal-to-noise ratio (SNR) and

applies one at a time towards the direction of interest. There are two major types of

directional antennas [46]:

ø Switched-beam antenna: This type of directional antenna system measules

RF power from a set of predefined beams and then selects one from a set of

predefined beams/antennas.

o Digitally Adaptive Beamformers (DAB): These systems use adaptive tech-

niques to enhance the radio link. In such a system, each separate antenna is

down converted, digitized, and processed .

Howevet, when we use directional antennas to design a \MMN backbone, the exist-

ing standard for MAC protocols (e.g., IEEE 802.11) may not work efficiently or take

full advantage of using a directional antenna because those standards were designed

for omni-directional antenna technoiogy. The difference between the transmission sce-

narios using dir-ectional antenna and omi-directional antenna is shown in Figure 1.2.

Using directional antennas may aggravate the hidden node problem in traditional

IEEE 802. 1 l-based networks.

A solution was investigated in [19] to reduce the number of hidden nodes in such

networks when using directionai antennas. But such a solution which r-equir-es fast

steerable directional antenna increases cost and system complexity.

The results in [57] showed that by using antenna arÌays) significant improvements

in channel capacity (or spectrum efficiency) can be achieved. Also, antenna arrays

can help reduce multipath fading and thereby increase the data rate. Such an antenna

array is known as a smart antenna. Smart antenna technology can be classified into

three types [34]: adaptive antenna array technology, MIMO technology, and space

division multiple access technology. Despite its technical merits, however, recentl¡

beamforming has not found commercial adoption due to its requirement for rich

channel knowledge at the transmitter. We will focus on the MIMO technology in the

rest of the thesis.



Omidirectional antenna

Figure 1.2. Transmissi,on us'ing directi,onal and om'idirecti,onal antenna.

1.3 Multiple Input Multiple Output (MIMO) Tech-

nology

Although there are a lot of benefits of using directional antennas, in order to leduce

the deployment cost and being closel to the users) the wireless mesh routers are

mostly deployed at low to moderate heights in order of 3-10 m where direct LOS

(main component to create beamforming in smart antenna techniques) is difficult to

be guaranteed 134]. Depending on the position of wireless routers we can have three

different commnunications scenarios that affect the channel propagation statistics [2].

The results in [2] also showed that, in the large scattering angles, VIIMO performs

better than directional antennas.

MIMO wireless systems are those that have multiple antenna elements at both

sides, the transmitter and the receiver. They were first investigated by computer

simulations in the 1980s 166] and were studied analytically later'. Recent research on

a

Directional ântenna
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i\4IMO, related to both channel capacity and the design of communication schemes,

demontrates a great improvement of performance in a MIMO-based wireless sys-

tem. Indeed, MIMO antennas use sophisticated physical layer techniques to provide

significant benefits over conventional antenna technology. Nlultiple independent data

streams can be sent over the MINtiO antenna elements. N4IMO links can also suppress

interference from neighboring links as long as the total useful streams and interfering

streams are not greater than the number of receiving antenna elements. For these

reasons, MIMO technology is increasingly being considered for use in interference-

limited WMNs and have been adopted in third generation (3G) cellular systems (e.g.,

WCDMA) as weÌl as in WLAN and WIMAX standards. However, the benefits of the

MIMO technology in improving network performance are limited unless the higher

layer protocols are able to exploit these capabilities [i1].
Multiple antennas in a MIMO system can be used in two different ways. One

is increasing the amount of. di,uersity to combat channel fading and the other is the

transmission of serveral parallel data streams to increase the system capacity (this

scheme cailed spati.al multi.plering). Given a MIMO channel both gains can in fact

be simultaneously obtained. However, the study in [73] showed that there is a

fundamental traffeoff between how much of each type of gain any coding scheme can

extract: higher spati,al multi,pleri,ng gain comes at the price of sacrificing d'iuers'ity.

1.3.1 MIMO Channel Model

We consider here a single user Gaussian channel, similar to [53] ,with multiple tlans-

mitting and/or receiving antennas. We denote the number of transmitting anten-

nas by 1/¿ and the number of receiving antennas by 1/,. The varying channel im-

pulse response between the fíh (j : 7,2,. . . , ¡/r) transmit antenna and the ¿-th

(z:7,2,...,1/") receive antenna is denoted by h¿,¡(r,ú), then the composite MIMO

channel matrix is given by rvr x l/" matrix H(r,ú), where

H(r,t):

h1¡(r, t)

h" , (r.t\

h¡¡,.¡(r,t)

lz. "(r.t\
h2,2(r,t)

n*,,r(r,t)

.. h1,¡¡,(r,t)

: h2,¡¡,(r,t)

' 1",u.,r, 1t, t¡

(1 1)
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In this chapter, as well as the rest of the thesis, we consider the case where

elements of H follow an i.i.d. Gaussian distribution with zero-mean and have inde-

pendent real and imaginary parts each with variance 1/2. Equivalently, each entry

of H has a uniform phase and Rayleigh magnitude. This choice models a Rayleigh

fading environment with enough sepalation between the receiving antennas and the

transmitting antennas such that the fades for each tlansmitting-receiving antenna

pair are independent. In all cases) we will assume that the realization of H is known

as the receiver, or, equivalently, the channel output consists ofthe pair (y; H ), and

the distribution of H is known at the transmitter.

The vector lht,i?,t),h2,¡(r,t),. . . ,hu,,j(r,ú) ]"is referred to as the spatio-temporal

signature induced by the j-th transmit antenna across the receive antenna array. Fur-

thermore, given that the signal si(ú) is launched from theS-th transmit antenna, the

signal received at the ¿-th receive antenna is given by

a¿(t) :Ðh.,,(r,ú) x sr(t) + n¿(t), 'i :7,2,. . . , N,.
j:1

where n¿(t) is additive white Gaussian noise (AWGlrl) in the receiver.

L.3.2 Spatial Diversity Gain on MIMO system

Spatial diversity can be obtained by placing multiple antennas at the transmitter

and/or the receiver (Figure 4.2). If the antennas are placed sufficiently far apart, the

channel gains (or the varying channel impluse) between different antenna pairs fade

more or less independently and independent signal paths are created 1621. The dis-

tance between two adjancent antennas determines interference between this pair and

typical antenna separation of half to one car-rier wavelength is sufficient. In fact, there

are three types of antenna diversity: receive diversity (Single Input Multiple Output

or SIMO channel), transmit diversity (Multiple input Single Output or MISO) and

diversity in both side (Multiple Input Multipe Output or MIMO channel). However,

in this work, we focus on diversity in both sides. The details of SIMO and MISO can

be found in [62].

Again, multiple antenna channel systems can provide spatial diuers'ity which can

be used to improve the reliability of wileless communication links. The diversity here

(1.2)



can be seen as the number of independent duplicates of the same signal at the receiver

side. The resulting signal at the recievel side can be demoluted and decoded in the

usual way. Then the probability that all the signal components fade simultaneoustly

is reduced. The results in [73] showed that at high SNR, the probability of error

(averaged over the fading gain H as well as additive noise) is much smaller than

in the situation where only one antenna is used at the receiver side. This main

achievement at high SNR, in terms of probability of error, is calied diuers'ity gai,n.

For a system with N¿ transmit and N" receive antennas, the marimal diuersity

gai,nprovtded by the channel is N¿ x N, assuming that perfect channel information is

avaiiable at both sides. This information can be obtained by using pilot symbols at

the transmitter and feedback from the receiver. In fact, extracting spatiai diversity

gain in the absence of channel knowledge at the transmitter is possible using suitably

designed transmit signals. The corresponding technique is known as a space-time

coding (STC) scheme [59]. The simplest STC scheme is the Almouti scheme 17] where

there are two antennas at both, transmitter and receiver, sides without any feedback

from the receiver. This scheme has been pr-oposed in several third generation cellular

Figure 1.3. SISO, SIMO, MISO, and MIMO transm'iss'ion.
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standards for transmit diversity. As an extension of the Almouti scheme, space time

block coding (STBC) was introduced in [58], which is able to use an arbitrary number

of transmit antennas and is able to achieve the full diversity promised by the tlansmit

and receive antennas. Also, at the receiver side, maximum likehood (ML) decoding

is used to decouple the signals transmitted from different antennas and perfect CSI

at the receiver side is assumed.

Figure L.4. Spati.al Di,uersi,ty

and makes use of multi,path, to

s'ignal, i.e. Iower bit error rate

Space
time
Block

cod ing

1.3.3 Spatial Multiplexing MIMO Systems

Besides providing diuersity to implove the reliability of wireless links, an alternative

way of exploiting the multiple antenna elements is the so-called "spatial rnulti,pleri,ng"

or BLAST approach 1271. The most well known model is V-BLAST [67], which is

the first spatial multiplexing technique implemented in laboratory scenarios, and the

principle of this model is shown in Figure 1.6. In this case, multipie antennas can

support higher data rate than single antenna channels, or in other words, different

data streams are transmitted (in parallel) from the different transmit antennas (Figure

1.7).

Another popular technique, with coding over signais transmitted on different an-

tennas, is D-BLAST. In D-BLAST, the input data stream is transmitted on different

antennas using time slots in a diagonal fashion. The advantage of this method is that

transrn'its the same

increase the chance

data stream across all antennas,

of correctly decodi,ng th,e recei,ued



l-0

each individual sub-stream passes through all the sub-channels; hence if there is an er'-

ror in one sub-channel, proteced by code, it does not cause the loss ofthe stream [73].

However-, the disadvantage of this method is the complexity in implementation. The

receiver must demultiplex the signal in order to recontrust the transmitted symbols.

Multiple receive antenna elements are used for separating the different data streams

at the receiver side. The results in [73] showed that the multiple antenna channel can

be viewed as mi,n(N¿,,n/") parallel spatial channels, so that the total number of degrees

of freedom is m'in(N¡,,Af,). Since one can transmit independent signals in parallel via

multiple spatial channels, this method is calied spatial multiplexing.

sM@

Figure 1.5. Spatial Multipleri,ng transm'its independent data strearns in the same

t'irne slot and frequency band simultaneously.

The advantage of this method is that the data rate can be increased by a factor of

rn'in(N¿,Äâ) (i.. , either N¿ or 1V") without requiring additional frequency spectrum.

There are some practicai schemes such as layered space time leceiver structure [26]

and space time codes [59] which allow us to achieve the highest performance in a

MIMO wireless system.

Due to the fact that wireless technology is now moving towards the era where

very high data rates are needed for multimedia services, the achivement of spatial

multiplexing in data rate is significant to the wireless system designers. A practical

MIMO system reqr-iires an algorithm to adapt the coding and transmission param-

eters to variations of the environment. This is called dynamic link adaptation in

Spatial
Multiplexing

in MIMO
system



Notation:

Vector symbol: a: (ar.a.,ctr.ao)T
Number of transmitters: M
Number of receivers. /V

o)
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which adaptive modulation is one of the most important solutions. Combining adap-

tive modulation with multiple antenna systems will require some feedback to change

the modulation level at the transmitter. When the channel information state (CSi)

is available at the receiver side (e.g., the VBLAST model), to achieve the highest

possible modulation level, the post processing SNR of each stream is fed back to the

transmitter [28], la2). In this work, we focus on the case whele CSI is available at both

sides. In such a case, the MIMO channei can be decomposed into multiple separate

channels by using the singulal value decomposition (SVD) method. The details of

this method and the design and analysis of adaptive modulation in a MIMO system

in this particular case will be investigated later in this thesis.

L.4 Objective, Motivation, and Scope of The The-

sis

A wireless mesh backbone network will require high throughput and reliability. Also,

the QoS requirements for different users need to be satisfled. The use of multiple an-

tennas at the transmitter and the receiver (i.e., MIMO wireless links) is an emerging

cost-effective technology that offers substantial transmission rate in making high-

Figure 1.6. VBLAST system di.agram.
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speed wireless connectivity in a wireless mesh backbone a reality. To recognize Lhe

signiflcant improvement of using iVIIN/IO over the other schemes such as SISO, SIMO,

MISO, capacity comparison of the these schems was presented in [62] as shown in

Figures 1.7 and 1.8. Indeed, r¡/e can see clearly that, the capacity and rate of a
MIMO system is very large and there is a huge improvement compared to SISO, i.e.,

at moderate and high signal-to-noise ratio (SNR), the capacity of an n x n MIMO

system is about n times the capacity of a SISO system.
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Figure 1.7. Capaci,ty of an i,.i,.d. Rayleigh, channel wi,tÍt, different SNR.

In a WMN, the wireless mesh backbone, which pr-ovides multihop wireless con-

nectivity to mesh clients, requires high throughput and reliability in order to provide

quality of service (QoS) fol real-time as well as non-real-time applications. To achieve

high channel utilization and to guarantee the QoS requirements of different types of

traffic, the radio resources such as the antennas and transmission po\Mer in a mesh

router need to be allocated optimally among the different flows. Resource aÌlocation

and end-to-end performance analysis for MIMO-based wireless mesh backbone net-

works pose significant research chalienges. In order to realize the full potential of

MIMO technology, higher layer protocols must be designed to be cognizant of the

MIMO link capability. In particular, channel state information (CSI) from the phys-

ical layer should be exploited for optimal r-esource allocation at the medium access

t0 20 30
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control (MAC) layer.

The thesis focuses on the application of MiVIO technology in WMNs. The problem

of radio resource allocation at a mesh router is addressed. In particular, the problem

of antenna selection and assignment (ASA) among different flows in a mesh router

is solved. The solution can achieve a differentiated QoS among different flows in a

mesh router. Also, to provide efficient channel utilization, the ASA scheme considers

adaptive modulation and coding (AMC) to exploit CSI. The ASA solution works at

the link layer to satisfy the QoS requirements for each type of users while taking full

advantage of high-speed transmissions achievabie through the MIMO technology.

The system model assumed here considers the following physical and link layer

aspects:

e Physical layer: Singular Value Decompition is used to decompose a MIMO

channel inLo m independent channels. AMC is used to enhance the tr-ansmission

rate according to CSI, and we use a finite state Markov channel (FSMC) model

for differ-ent tr-ansmission modes of ANIC.

o Link layer: An Automatic Repeat Request (ARQ) protocol to retransmit

erroneous packets over â multi-rate wireless link is considered.

The ASA scheme, which uses only a subset of total available antennas for each

bype of setvices, is promising in order to 1)achieve fairness, 2) maximize the through-

0 2 4 6 8 10 12 14 16

Nu¡nber ol' antcnrì¿rs (¡r)
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put, and 3) gualanteethe QoS requirements for different types of traffic. This scheme

is developed based on a Markov Decision Process (MDP) formulation of the antenna

assignment problem. The MDP formulation exploits a queueing analytical model for

the data queues at the transmitter node. The performance of the ploposed scheme

is compared with the tr-aditional weighted round-robin type of schemes for- antenna

scheduling. Numericai results ale plesented to demonstrate the efficacy of the plo-

posed scheme.

To this end, for perfolmance analysis of a wireless mesh backbone in an end-to-end

MIMO transmission scenario, a tandem queue model is developed. Both exact and

appr-oximate decomposition approaches are proposed to solve the tandem queueing

problem. The analytical model enables us to quantify the differences in end to end

performance between SiSO and MIMO scenarios in a wireless mesh backbone.

Note that, most of the works on MIMO in the existing literature have focused on

the physical layer aspects. Recent research on MIMO communication systems has

mainiy focused on either increasing capacity by employing spatial multiplexing (SM)

or mitigating fading by employing spatial diversity of a single wireless link. Under-

standing the impacts of MIMO technology on higher layers in a multihop wireless

netwolk, and in particular, the development of link adaptation, scheduling, and re-

transmission algorithms that make explicit the use of MiMO nature of the system is

of significant interest.

1.5 Organization of The Thesis

The organization of this thesis is as follows:

e Chapter 2: provides a background and discusses several key issues and tech-

niques for resource allocation and management in a MIN4O-based wireless net-

work in the literature. The issues and design approaches for N4AC schemes in

MIMO wir-eless networks are provided.

o Chapter 3: presents a service differentiation model for the singier user scenario

where wireless clients considering two types of traffic, namely, QoS-sensitive and

best-effort tr-affic. AN4C is used at the physical iayer to increase the transmission

rate by exploiting the dynamic channel variations. An optimization problem is



formulated and a solution based MDP is obtained.

Chapter 4: presents a tandem queueing model for multi-hop communications

in MIMO-based wireless mesh backbone networks. Both exact and approximate

decomposition approaches are presented to solve the tandem system of queues.

Chapter 5: summarizes the contribution of the thesis and outlines several

directions for ftrture research.

15



Chapter 2

Resource Allocation in
MIMO-Based \Mireless Networks

Radio resource management is one of most important components in wireless net-

work design. Traditionaily, in teiecommunication contexts, resoulce sharing models

are calied trunk reservation models due to the most often used poiicy for admit-

ting new customers based on thresholds depending only on the currently available

resources [31]. In a wir-eless network, the main objective of radio resoulce allocation

is to maximize the number of concurrent transmissions based on currently available

resources, so that the throughput can be maximized. Note that, packet-level per-

formances in a wireless network depend not only on the resorlrce sharing mechanism

among multiple users) but aiso on the radio link level error control mechanisms.

Radio frequency spectrum is the most scarce resource for wireless communications.

In a multiple access wireless communication environment, many users may have to

share a limited amount of bandwidth. At the same time, to meet the rapidly growing

demand for different wireless communications services (e.g., video on demand, online

gaming), significant efforts are being made towards efficient radio lesource manage-

ment to improve the wireless spectr-um efficiency.

Although power consumption and node mobility, which are two major issues in

an ad hoc network, have been removed in a wireless mesh backbone network, ef-

flcient radio resource allocation in a wireless mesh backbone network stili remains

as a major issue. To maintain wireless connectivity in the network, wireless mesh

routers in a wireless mesh backbone should not only send their own packets, but also

forward packets of other nodes. To guarantee the end-to-end QoS, resource alloca-

tion controllers should decide how much of the lesorlres (e.g., number of antennas,

16
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transmission power) must be allocated to each traffic path within the wireless mesh

backbone. Since a wireless mesh backbone does not have a centralized "base-station"

which coordinates with the mesh Lonters, the wireless mesh routers ar-e expected to

have the characteristics of self-organization and auto-configuration. These character-

istics offer many benefits such as low upfront investment, increased reliability and

scalability.

In the following, we discuss several key issues and techniques for resource allocation

and management in a MIMO-based wireless network.

2.L Medium Access Control Protocol in MIMO
Wireless Networks

z.I.L Centralized Medium Access Control in MIMO Wire-
less Net\^/orks

A multiple access control (or medium access control) technique ailows different users

to share the transmission media and it has significant impact on the higher layer

protocol performance. In centralized scenarios, there are three fundanmental multi-
pie access methods: i.e., time-division multiple access (TDMA), frequency-division

multiple access (FDMA), and space-division multiple access (SDMA). In a MIMO

transmission scenario, TDMA can be implemented by assigning the entire time slot

to only one rlser during one scheduling period as in [17]. In this work, a multiuser

MIMO system was considered for downlink transmissions where each user is given

an individual probability of outage constraint, defined as the probability that the

short-term signal-to-noise ratio (SNR) at the receiver is smaller than a given thresh-

old. An optimal soiution for power allocation and time sharing among users was

presented with the aim to minimizing the overall transmit power while meeting the

Ltser's outage probability constraints by jointly optimizing the user's por¡/er allocation

and time-sharing (i.e., the number of time siots). By solving the MPE (minimum

power equation) and the convex version of the original problem, an algorithm which

can obtain a joint solution for both power and time allocation for the users has been

proposed. Results have shown that the proposed method is neally optimal. How-
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ever, the N4AC layer queueing dynamics and the interactions between the MAC and

physical layers were not considered.

An FDMA-based resource allocation scheme for MIMO networks was considered

in [38]. A spatially greedy scheduling scheme was used considering downlink trans-

missions in a MIMO wireless cellular packet data system. The scheduler at the base

station decides to schedule transmissions to one or more users based on their current

channel states with an aim to minimize average delays while maximizing the sum of

allocated rates to the users.

SDMA plays an important role in MIMO transmissions. SDMA divides a geo-

graphical space, where the users are located, into smailer spaces. The key element

of the design is a one-to-one map between the space divisions and the bandwidth

divisions (in time slots, frequency divisions, etc). Therefore, it is important to con-

sider how the users in the network will be grouped together. In particular, since the

different spatial channels are nonorthogonai, it is critical that only spatially compat-

ible users be chosen to be time- or frequency-coincident. However, SDMA requires

channel state information (CSI) at both the transmitters and receivers. Since the

receiving nodes cannot cooperate, transmitters have to ensure that data destined for

one node do not interfere with the data to other nodes it is attempting to communi-

cate with [56]. This is only possible if the transmitter can separate the users spatially,

which in turn is only possible if their channels are known. Also, in ad hoc networks,

all nodes can be transmitter or receiver at any time. Therefore, in order to implement

SDMA, nodes which want to communicate in a given area have to ensure that the set

of nodes in this area are in the receive mode.

2.L.2 Distributed Medium Access Control in MIMO 'Wire-

less Networks

In contrast to centralized scenarios, distributed scenarios requires little coordination

and adopt contention-based multiple access schemes, such as ALOHA and carrier-

sense multiple access (CSMA) protocols. In an ALOHA system, each user transmits

when it has data to send, and then waits for an acknowledgement. If a collision occuls,

the user backs off for a random period and retransmits the message. A decentralized

random access (RA) strategy in MIMO systems, a simple variation of stotted ALOHA,
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combined with OFDMA and SDVIA was presented in [50] In this strategy, users

randomly access a subcarrier with an access probability that is designed to provide a

desired number of multiple access so that by exploiting spatial processing with receive

beamforming, the signals of the transmitting users can be separated and detected.

The operation of a wireLess mesh backbone network is similar to a "static" r,vireless

ad hoc network. When MiMO links are implemented in point to point communica-

tions in an ad hoc netwolk, the number of successful transmissions at the receivel

side depends on the factors such as the number of available antennas, channel/or

sub-channel quality, post processing SNR etc. While a large amount of work in the

literature focused on the PHY layer aspects of a MIMO communication system, only

a few works addressed the MAC issues in a MiMO wireless network.

Research on wireless ad hoc netwolks based on the traditional IEEE 802.11 stan-

dard typically assumes the use of omnidirectional antennas at all nodes. A popular

model that is often adopted at the MAC layer is the use of a four-way handshake (i.e.

KfS, CTS, DATA, ACK) over single hop scenarios. When MIMO links are used in

an ad hoc network, the MAC design becomes more complex due to the issues such

as obtainning channel state information, maintaing channei state, trade-offs among

rate, range, and relaiability, and access methods [76].

For efficient MAC operations in a MIMO-based wireless network, a flexible physi-

cal layer is required which provides various modes of operations. This helps the MAC
protocol to suitably choose from multipie modes. Also, a cross-layer approach to the

MAC design can take full advantage of the lower layer, i.e., the physical layer. Futher-

moreT in order to match the requirement of unattended and decentralized architecture

of an ad hoc network, this MAC mechanism has to be distributed in nature rather

than to be centralized. The importance of cross layer design in MIMO links based ad

hoc networks is shown in Figure 2.1, and more details can be found in [ ].
In this section, we will review some of the works on joint design of physical layer

and MAC layer protocols for MIMO ad hoc networks using both spatial mulitplexing

and diversity multiplexing modes.
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2.L.2.1 Medium Access Control Exploiting MIMO Spatial Diversity

Spatial diversity (SD) MIMO can improve the robustness of tlansmission and increase

the coverage range of MIMO communications. SD is particularly useful for ad hoc

networks due to the fact that mobility of users in an ad hoc network may deteriorate

channel quality and the relability of communications.

In [37], an SD-MIVIO MAC based on the RTS/CTS mechanism of IEEE 802.11

distributed coordination function (DCF) rvas proposed for an ad hoc network. Here

each node is equipped with Melement antennas, thus there are M2 degrees of freedom

for communication. Assuming that space time codes are used for four-way handshak-

ing, the proposed scheme can achieve the full order spatiai diversity. This SD-MIMO
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MAC is mostly similar to the CSMA/CA algorithm (H|S/CTS ID/^TAIACK). How-

ever, in the multiple antenna scenarios, the threshold to decide on the status of the

channel (idie or busy) is based on the average interference power across receive an-

tennas. Also, it takes into account the impact of spatial diversity (i.e. encoding and

decoding by using space time code) on overhealing and also multi-rate transmission

for DATA packets according to channel conditions. The MAC layer scheduling and

QoS issues were, however, not considered.

2.L.2.2 Medium Access Control Exploiting Spatial Multiplexing MIMO

As mentioned before, spatial multiplexing (SM) MIMO incleases the transmission ca-

pacity by transmitting independent data streams in the same time slot and frequency

band simultaneously from each transmit antenna. In this case, multiple data streams

are differentiated at the receiver using channel information about each propagation
* ^+LPdL11.

The fundamental objective of a MAC protocol is to avoid coliision. In a traditional

network rising omnidirectional antennas, a source node broadcasts the HfS message.

If the destination node agrees on this data transmission by sending back a CTS

message) then all nodes in the range of this RTS/CTS exchange will refain from

transmissions during the data transmission per-iod. This reduces the interference for

the ongoing data transmissions. However, when we consider MIMO-based ad hoc

networks, multiple RTS/CTS messages can be implemented simultaneously instead

of blocking all the nodes. This is because, MIMO technology can enable mulitple

parailei transmissions in the same area by using proper channels. In other words, a

destination node can accept many RTSs in the same time. Then multiple flows can

be transmitted as separation is achieved in spatial domain.

In [13], the Distributed Scheduling for-MIMO Ad hoc networks (DSMA) algorithm

was proposed in which RTS/CTS exchanges were used to let the destination node

know about the overall tr-affic condition in the network so that it can decide how many

and which transmissions wili be accepted via CTSs. A cross layer design model was

presented where the physical layer and MAC layer directly exchange information to

achieve better performance in the decoding process at the receiver. By considering a

welÌ known spatial multiplexing model, namely, the LAST-MUD (Layered SpaceTime
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MultiUser Detection) model [55], which takes full advantage of rich scattering in a

MIMO environment, to separate superimposed incoming transmissions, then a high

data rate could be achieved. Since the superimposed incoming transmissions can be

separated in the receiving nodes, the existence of multiple transmit links becomes

completely transparent. In the MAC layer, RTS messages are first sent to request

transmissions. Then the receivers respond with CTSs if they are available. Since SM

allows multipie flows to be transmitted at the same time, HfSs may be addressed to

multiple nodes. Since receiving nodes may receive a higher number of RIS messages

than their capacity (depending on number of available antennas at the reciveing

nodes) they have to decide which flows will be accepted or denied and this information

will be embedded into CTSs.

Instead of leaving the nodes to access the channel in an uncoordinated manner,

the receivers are able to controi the state of other nodes in the following frame. By

scanning the backiog queue before composing the ACK (which will be sent after

successful reception), the receiver nodes can embed the destination address in ACK

to the nodes which they expect to receive from in the following frame.

2.2 Power and Rate Control
Networks

In a wireless network, mobile devices usualiy rely on a battery with a limited amount

of energy. Therefore, minimization of tlansmission power can lead to efficient utiliza-

tion of battery energy and hence longer battery life of mobile devices. Transmission

power is thus one of the most critical resources in a wireless network. It can be con-

served by controlling the transmission power of packets and/or by putting inactive

nodes lo sleep mode. It was shown in [20] that a MIMO-based transmission con-

sumes much less transmission porver than a SISO-based transmission for the same

throughput. The transmission power determines the range over which the signal can

be coherently received, and is therefore crucial in determining the performance of

the network (throughput, delay, and energy consumption). For example, when the

channel state of an individual channel is improved, the transmitter has to raise the

transmission power to increase the data rate. Of coulse) rate adaptation can be also

tn MIMO \Mireless



23

achieved through a combination of variabie spreading, coding, modulation, and code

aggregation. But it was shown in [30] that, in the presence of channel state informa-

tion at the transmitter as r,vell as the receiver, by controlling both the rate and the

power, the capacity of the channel can be significantly improved.

In a MIMO system, the N4IMO links can be viewed as multiple parallel deter-

ministic AWGIr{ channels each corresponding to a block transmission under a specific

channel state. With full availability of CSi, the capacity of the block fading channel

can be found through optimal rate and power allocations for parallel AWGN channels

based on their individual channel states. Howevet, allocation of power and rate in

fading channels is usuaily performed under some constraints imposed by practical

considerations. For instance, the trade-off between the average transmission power,

delay, and packet dlopping probability for different transmission models over a fading

channel with memory \Mas presented 1n 122). Using a Markov Decision Procees (MDP)

fomulation, an optimal soiution was obtained by using a relative value iteration and

linear programming for both unconstrained and constrained probiem, repectively.

As an extension of the above work, an approach based Q-Ìearning (which is a

recent form of Reinfor-cement Learning algorithm that does not need a model of its

environment and works by learning an action-value function that gives the expected

utility of taking a given action in a given state and following a fixed policy thereafter)

\¡ias presented in [23] to solve the problem of rate and power adaptation under delay

constraints. The problem was formulated as a CMDP and the solutions was obtained

in an on-line fashion. This approach has an added advantage that transmission adap-

tation actions (that have to be negotiated between the transmitter and the receiver)

can be performed less frequently than the power controi actions. Also, rate control

actions can be based on a more coarse quantization of the channel state than the

power control actions.

2.3 Admission Control in MIMO \Mireless Net-

\^¡orks

Admission control is necessary in a wireless network to provide quality of service

(QoS) for users. In wireless data systems, admission control is a challenging problem.
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In particular, multimedia traffic can be very bursty, and is highly heterogenous in

terms of the QoS requirements, ranging from a small text message with weak require-

ments to high-data-rate video steaming with stlingent delay requirements. Further-

mole) wireless channels often exhibit time-varying fading. Such high variations in

both channel conditions and traffic flows make admission control very challenging in

wireless multimedia networks.

In a MIMO-based ad hoc network, there could be many ongoing flows at the

same time, and admission control would be required so that the limited amount of

transmission resource is not overwhelmed by too many ongoing connections. Admis-

sion control in an ad hoc network should be performed to achieve end-to-end QoS

guarantee for different connections. A numbel of works in the literature focused on

admission control in wireless mesh/ad hoc networks [37], [11]. However, the exsiting

algorthims are not suitable for a multiple antenna environment. In 170], authors

analyzed the probability density function of interference in a MIMO-based virtual

group cell system. Based on this information, an interference-based admission con-

trol strategy with multi-level threshold was proposed. By using a multi-dimensional

Markov model, per-formance of the pr-oposed admission control strategy was evalu-

ated. Another work in this ar-ea can be found in la9]. In this work, a game-theoretic

modei based on Q-learning was presented for distributed admission control in IEEE

802.11n based mesh networks using MIMO-OFDM technology. The objective of the

admission control strategy is to maximize the utilities of all the routers along a rout-

ing path. The Nash equilibrium of the game was used to make the admission control

decision.

2.4 Antenna Selection and Assignment

Wireless Mesh Networks

The transmit/receive antennas are one among the major resoulces in a MIMO mesh

network. In a wireless mesh router, the number of antennas allocated to a flow for

transmission determines the transmission rate for that flow, and therefore, determines

the QoS performance (e.g., packet delay, packet loss) fol that flow. The antenna

allocation probiem is therefore significant in the context of QoS provisioning in a

in MIMO
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WMN. An antenna allocation scheme should consider the physical layer as well as

the radio link layer parameters to achieve an efficient solution. That is, a cross-layer

approach should be used to design an antenna selection and assignment scheme so

that the spectrum utilization can be maximized as well as the QoS requirements can

be satisfied for the different flows. The antenna selection and assignment (ASA)

problem is focused in this thesis. A solution to this probiem is presented in Chapter

.-) -

2.5 Cross-Layer Design in MIMO Systems: Per-

spectives and Challenges

In Section 2.1, the importance of cross-layer design for resource allocation in MIMO

systems was highlighted. In this section, we will discuss the perspectives and chal-

lenges on closs layer design in MIMO systems. The objective of cross-layer design

is to take fuli advantage of information at the diffelent layers to achieve an efficient

management of system resources. This is more complex and difficult in MIMO sytems

where multiple antennas are used to independtly transmit data to increase the data

rate (SM) or improve the reliability of data transmissions (SD). For instance, in the

next section we wili modei a particular system where there are multiple antennas at

the transmitter and pose the antenna assignment problem for different services (or

users) as a MAC design problem. The data rate of each antenna remains however as

a physical layer issue.

2.5J Complexity in Neighbor Discovery

CSI is the most important factor to decide the channel capacity of MIMO links. The

most common rvay to obtain this information is by using the pilot signal which is

embedded in the HfS messages. However-, in a N¡IIMO-based ad hoc network, MIMO

can be used to increase the tlansmission range for a fixed data rate [29], specially

when using a directional antenna. In an ad hoc network environment) some users

may use omnidirectional antennas and the transmission range of different types of

antenna could be different. Thus, identifying the correct set of leachable neighbors



with MIMO transmission would be very challenging.

simple example in Figure 2.2.

In this example, nodes A and B are neighbors when they are using an omnidi-

rectional antenna or a directional antenna. I'Tode C and A are not neighbours in

omnidirectional antenna but they are neighbours when node C is using directional

antenna and of coulse it is not B's neighbour when node B is using omnidirectional

antenna. But they are neighbors when both node C and B are using directional

antennas.

2.5.2 Difficulty in Obtaining the Channel State Information

Most of the works in literature assume perfect Channel State Information (CSI)

knowledge at the transmitter. But in fact this information is rarely available because

the random time-varying wireless medium makes it difficult and often expensive to

obtain perfect CSI. Tîadditionally, receivers obtain CSI by using the tranning symbol

(usually un-coded signal) embedded in the transmitted signai. Then they sencl this

information back to the transmitter by using a perfect feedback channel. In MIMO

closed-loop systems, CSI is degraded by the limited feedback resources, associated

feedback delays, and scheduling lags, especially for mobile users with a small channel

coherence time [35]. In MIMO open-loop systems, antenna calibration errors and

turn-around time iags again limit CSI accuracy [54]. Therefore, the transmitter often

only has partial channel information. Schemes expioiting partial CSI thus are both

important and necessary. However, in NIIN4O systems where the high data rate is

26

This issue is illustrated bv a

Figure 2.2. Cornplerity i,n neigÍrbor d'iscouery,
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expioited, the channel conditions during the time when the control message is sent

back to the transmitter may quickly become obsolete. In an ad hoc network with

high node mobility, obtainning the CSI in high data late environment becomes very

challenging. High mobility causes larger Doppler spread and faster channel time vari-

ation. In other words, larger Doppler spread results in higher temporal selectivity.

A measure of the temporal selectivity is the channel coherence time, defined as the

time interval over which the channel remains strongly correlated. The shorter the

coherence time, the faster the channel changes with time.

2.5.9 Different Performance objectives and Different MAC

Design

Results in l73l emphasized the tradeoff between spatial multiplexing (transmit inde-

pendent and separate stream in each antenna) and spatial diversity (transmit same

information over- multiple antenna) at the MAC layer. Depending on the objective

of system design (reliability or high data rate) we can decide which model would be

more suitable. \Äiith diversity, due to multiple replicas at the reciever side, BER at

reciever side will be decreased which will result in improved transmission reliability,

transmission range) and reduction in inter-ference. With spatial multiplexing' a ntlm-

ber of parallel independent streams can be sent at the same time, thus increasing the

data rate. However, with a higher data rate, the reiiability of data is decreased (due

to the collision or loss of data).

2.5.4 Difficulty in optimizing Resource Allocation in a High

Mobility Environment

CSI is the most important par-ameter to recognize the network capacity and the per-

formance of the network. Based on the achievable link SNR, a decision will be made

to decide how many packets will be allocated to a specific link and the amount of

ailocated resources will thus be determined. This decision making has to be dynamic

clue to the fact that the channel state (in high mobility environment) in each sub-

channel or each link varies dynmically, and a static scheduiing scheme i,vill not give

the best performance. Also, in a MIMO-based wireless mesh/ad hoc network' the
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fairness among data flows needs to be calefuily considered to avoid spatial bias due

to which users far from the gateway router may receive smaller amounts of resources

compared to the users closer to the gateway router.



Chapter 3

Quality of Service in MIMO
Wireless Mesh l{etworks: An
Antenna Selection Apptoach

3.1 Introduction

In this chapter, we present a distributed antenna selection method for radio resource

allocation for QoS pr-ovisioning in a mesh router. While using the MIMO links in-

creases network throughput and connection reliability, the distributed scheme pro-

vides scalability and auto-configurability. The antenna selection scheme uses stochas-

tic control algor-ithms for instantaneous delay control for a service differentiation

model in a wireless mesh backbone using MIMO transmission. Each mesh node in

the network is equipped with multiple antennas, and adaptive modulation is used in

transmission links in a single-hop wireless scenario. In the physical layer, the MIMO

channel considered here is a point to point wireless channel with ú transmit and r re-

ceive antennas. The model considers two types of traffic, namely, QoS-sensitive tlaffic

for real-time multimedia applications and best-effort (BE) traffic for applications such

as web and e-mail. Two sepalate queues are used to accommodate the aggregated

traffic from the QoS-sensitive and best-effort flows. This conflguration is compatible

with the Di,ffSeru [12] model for service differentiation in which one queue is used

for QoS-sensitive flows and another one is used for best-effort flows. Moreover, the

m¡lti-rate tlansmission feature in the physical layer, which can be achieved through

AMC, is also taken into account and the multi-rate tr-ansmission is captured by using

to
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multi-state Nakagami-nz fading channel (fading occuring for multipath scattering with
relatively lalger time-delay spreads, with different clusters of reflected wavesT the spe-

cial case m:1, the distribution reduces to Rayleigh fading). To capture the variations

of the multi-state l'lakagami fading channel, we employ the FSMC model 164]. The

main objective of the proposed r-adio resource allocation (i.e., antenna selection and

assignment (ASA)) approach is to maintain failness of instantaneous delays between

the flows. The antenna selection problem is presented as a stochastic optimization

problem and we are able to obtain optimal solution for antenna allocated for each

flow subject to the instantaneous delay fairness for traffic in both queues. Due to the

consideration of instantaneous delays, which is represented by buffer occupancy, the

problem is a dynamic stochastic optimization problem and can be stated as a Markov

Decision Process (MDP).

The rest of the chapter is organized as follows. A survey of related works in the

literature is presented in Section 3.2. The system model, assumptions, the problem

deflnition and solution methodology are presented in Section 3.3. Section 3.4 presents

the MDP formulation for the antenna selection and assignment problem and the

corresponding solution. Simulation and numerical results are presented in Section

ó.Ð.

3.2 Related Work

In [69], the problem of subcarrier and power aiiocation problems in a MIMO-OFDMA

system was investigated in order to maximize the total system capacity subject to

the total power and proportional rate constraints of each user. A greedy algorithm

was proposed for resource aliocation, which makes good use of the multi-antenna av-

erage channel gains and adopts an equal porver allocation scheme to determine the

number of subcarriers for each user. To reduce the complexity in resource allocation,

subcarrier and power are aliocated separately. Two main steps for subcarrier allo-

cation is that the algorithm determines the number of subcarriers for each user by

using a greedy-like scheme in the first step and assigns the subcarriers for each user

by dividing the users into two groups in the second step. Power allocation among

the assigned subcarriers for each user then is decided by using the multi-dimension
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water-filling method.

An adaptive resource allocation algorithm for multiaccess MIMO/OFDM was pro-

posed inl72l where the objective of the proposed algorithm was to maximize the sys-

tem power efficiency given the QoS requirements of usels. To reduce the complexity,

a local search method was also presented. However, issues such as packet retrans-

missions due to channel errors and the impact of fading channels were not taken into

account. [45] studied a joint problem of subcarrier allocation and beamforming to

increase the downlink capacity, given that the power distribution is predetermined. A

heuristic algorithm that sequentially inserts users in subcarriers was proposed without

guaranteeing the minimum achievable data rate of each user. When QoS constraints

were considered, the problem was further simplified by not allowing the reuse of

subcarriers.

In the context of maintaining fairness among nodes in a wireless ÌVIIMO system, an

optimal schedulel rvas proposed in [8], which optimizes users'diversity over antennas

and provides high throughput while servicing users in a fair manner. A user utility
function and cross-layer scheduler design was presented as a general solution for the

Generalized Assignment Problem (GAP). The utility function was defined to control

the throughput fairness tradeoff in an adaptive and efficent way. A similar work

in [18] which combines spatial multiplexing with multiuser diversity, develops an

optimal cross-layer scheduling mechanism in order to maximize capacity or to support

proportional fairness. For optimal antenna assignment, the Hungarian algorithm was

considered to utilize the characteristics of MIMO systems by adopting the graph

theoretical approach. However, the optimal assignment was only achieved when the

number of antennas is equal to the number of active users.

A similar wolk in MAC protocol design, i.e. Mitigating Interference using Multi-

pleAntennas (MIMA-MAC) for MIMO ad hoc networks has been proposed in [52]. In

this work, MIMA-MAC employs spatial multiplexing, with antenna subset selection

for data packet transmission, while using the Alamouti space-time code for control

packet transmission, to mitigate interference from neighboring nodes, to guarantee

fairness between the traffic flows, and to increase the number of simultaneous tlaffic

flows, resulting in an increase in the total network throughput. However, transmitters

in this model use only a single antenna, whereas a receiver uses multiple antennas
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and somehow this system did not take the full advantage of MIMO. On the other

hand, two most common techniques, i.e. adaptive modulation and coding (AMC)

and ARQ-based error recovery in the link layer, haven't been taken into account.

The closest work to our work is [23]. In 123] the problem of optimal rate control

for a MIMO system is formulated as a finite state) average cost CMDP and it has

been proved that the optimai policy is monotone. The authors proposed modified

Q-learning algorithms, which treat the structure of the Q-factors and the optimal

policy as constraints, to solve the inner step of the Lagrange dynamic programming

formulation. In particular, retransmissions are not ailowed, and hence the channel

state does not affect the packet departure rate. In other words, channel states and

buffer states are completely decoupled.

3.3 System Model, Assumptions, Problem Defini-

tion and Solution Methodology

MIMO system which exploits multiple transmit and receive antennas as a means

to increase the information data rate. By taking advantage of the independence of

the fading statistics of different users, multiuser diversity (MD) can be exploited to

increase bandwidth utilization and decrease delay through simultaneous transmissions

to a number of users. In a simultaneous transmissions environment, the question is

how to schedule transmissions for the active users so that bandwidth utilization is

maximized while at the same time a high degree of service fairness is achieved.

We assume a number of users having the same traffic requirement in one class

and suppose that traffic from l/ classes will share B (bandwidth) resources in a mesh

router. Traffic of class z arrives according to a Poisson process with parameter Ç.

Each user demands b¿ resources, where 0¿ is an integer. All the resources taken by a

class i useÌ are released simultaneously after an exponentially distributed service time

with parameter ¡t¿. States are denoted with ": ("t,...,cx) , where c¿ signifies the

number of class users in the system. We asslrme that Ð!:rbn"o: B, í.e., there is no

waiting room. Therefore, users who do not find sufficient resources are automatically

blocked. There is a distributed controller at each mesh router which can reject arliving

users based on fuli state information. Each user who enters into the system gives rise
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to a reward of r¿ which is its instantaneous delay. Vlore detaiis on the states and

the rewards wiil be provided in Section 3.4. For the sake of simplicity, in the rest

of the chapter, we assume that there are only two classes of users: high priority

(QoS-sensitive) and low priority (best-effort).

3.3.1 Physical and Link Layer Model

3.3.1.1 Signal Model

We consider a spatial multiplexing due to the fact that this physical layer is com-

putationally easier to our model and also adapts with our objective, increasing the

throughput of Wireless mesh backbone, than spatial diversity which has been used

for increasing the reli,abiti,ty(see [73] for more details about the tradeoff between these

two types of gains). MIMO wireless mesh backbone system here is equipped with

multiple antennas. The channel considered is assumed to be a block fading channel

which remains static during a time slot of length T. A MIMO transmission model

similar to that in [75] is considered in which a flat fading MIMO channel with AI

transmitted and N received antennas is represented by a matrix H with size M x N.

Perfect channel information is assumed to be available at the transmitter side

and rate and/or power information can be fed back to the transmitter. Let z be

the M x 1 transmit signal vector, g be the l/ x 1 received signal vector and the

channel matrix H be an N x M matrix composed of independent complex Gaussian

random variables. The zero-mean AWGì{ vector at the receiver, denoted by n, has

a covariance matrix equal to the identity matrix scaled by o'. For simplicity, we

assume o2 : I and the variance of each component of H equals to 1. The total power

avaiiable to the transmitter is denoted by Pr. Then the received signal vector gt is

expressed as follows:

a:H,r+n'
Using the Singular Value Decomposition (SVD)

matrix H can be diagonalized as follows:

H: UDVH

where U and V are unitary matrices; D is a M x N diagonal matrix containing the

singular values of H which are real and non-negative; [-]Hdenotes complex conjr-rgate

(3 1)

technique, the channel transfer

(3 2)
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transpose operator. Note that {^}7, are eigenvalues of HH¡¡. For convenience, we

define the eigenvalue vector À : [Àr ,Àr,. .. , À-].

By appiying the transmitting weight matrix UHat the transmit side and the V
receiving weight matrix at the receive side, up Io nL : min(M, N) orthogonal sub-

channels can be realized. Let y:lJ'A, ":YHr, and ñ :TJHn. Then, the original

channel is equivalent to the following channel:

A:Dñ+ñ
where ñ has the same distribution as n.

From (3.3) we can see that the channel matrix H has been decomposed into m:
mrn(M, N) parallel eigen subchannels since D is diagonal. The equivalent channel

input and output are y and i, respectively. The subchannel gains are represented by

À which constitute a random process due to the randomness of the channel entries of

H. Therefore, the channel matrix is decomposed into rn independent sub-channel as

follows:

The SVD decomposition can be interpreted as follows: if the input is expressed in

terms of a coordinate system defined by the columns of V and the ouput is expressed

in terms of a coordinate system defined by the columns of IJ, then the input/output

relationship is very simple. Equation (3.a) is a representation of the original channel

(3.1) with the input and output expressed in terms of these new coordinates, where

each À¿ corresponds to an eigenmode of the channel (also called an er,gencltannel, and

for more convenience, since now we caTI ei,genchannel and sub-channel interchange-

ably). Each non-zero subchannel can support a data stream; thus, the MIMO channel

can support the spatial multiplexing of multiple streams.

The joint probability density function (pdf) of these unordered eigenvalues (À) is

given by [60]

ú¿:À¿ñ¿|-ñ'¿, 11i'1m.

/.r(À) : (mtK^,.)-rrÐt(Àr)ll{,l;--)fl(r, - À,)r, À,

where m ! min (M,N), nn" *o, çnit,nr, and. K*,n

cording to 174], fhe performance enhancement offered

(3.3)

(3 4)

)À2...>À-

is a normalizing factor. Ac-

by transmit-beamforming in

(3 5)
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Figure 3.1-. Conuert'ing a MIMO channel i,nto a parallel e'igenchannel by using Sin-

gular D ecompo si,tt on Value technzque.
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x

MIMO channels is realized through the largest eigenvalue, i.e., À1. Then the density

of unordered eigenvalues can be expressed in closed form as

.t *-I -.t ¿ ì

.fr, (À,) : ;Ðrffilãå,-t ¡(h+tz) x A¿,(i,, d)A¿,(i, ¿¡s(tr+tz+d) "-sr (3.6)

where d, 1 n- m, and, Ar(i,d) 4 Cffit. Based on ,fr,(À1), let us define the

following integral:
roo

ú1@,r)! | ¿-("-1)Àr¡^,(À1)dÀ1 Q.T)J,
Note that when c : 1, equation (3.7) becomes the cumulative distribution fi-rnction

n
^ ,,,\
/.\t¡\ !,n
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(cdf) of À1. Therefore, the CDF of the largest eigenvaiue can be expressed as follows:

v1(1, r) : [* f 
^,(À1)dÀlJ,

,m-I ., i i

: t 5-(,, '' ,,,)Dlt-t)(/r+rz¡
m 4 '(z + d)! 

rr:o Lz:o

x A¿,(i,, d) Ah(i, d) Àl'+u+a¡e-À' f (lr 1- lz t d + L, r)

where l(n,r) is the uppel incomplete Gamma function which is deflned as

| (n, a) : l"* r('-t) "-a 
¿r.

3.3.1.2 Channel Model

We will adopt K sqriare quadrature-amplitude-modulation (QAM) constellations with

size M¡:2k,k - 1,.. .,K asthecomponent modulationformats ineach sub-channel.

Generally, for an un-coded QAM with square constellation, such as 4-QAM, 16- QAM'

the bit error rate (BER) expression over SISO Gaussian channels can be approximated

by

where 7¿ is the received SNR (signal to noise ratio) per symbol of sub-channel z and k

is the used modulation level. However, in practicaì systems, we will try to maintain

a target BER for all sub-channels and this parameter mostly will be given. Let us

assume that the transmit power at each sub-channel is P¿, and to reduce complexity,

we ailocate the totai tlansmit powel equally to each sub-channet. That i", Po. : #,
where P is the total transmit power. For each channel realization, the received SNR

can then be calculated as

BER, x o2 erp[#+]

Similar to single input single output (SISO) systems, MIMO systems need a set

of coding and transmission parameters along with an algorithm to adapt these pa-

rameters to the variations of the environment. Such sets are often referred to as link

adaptation modes. The employment of link adaptation techniques through AN4C at

the physical layer to enhance the spectlal efficiency is very common in MIMO wire-

Iess systems l75l -l+Z). Depending on the channel quality, the tr-ansmission mode

(3 8)

(3 e)

D^,.t lz''li- 
^- lo/\i.

Tno'

(3.10)

(3 11)
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at the transmitter is adapted accordingly and, of course, this process essentially re-

sults in multi-rate transmission on wireiess links. Basically, each modulation and

coding scheme (MCS) is called one mode and corresponds to one particular in-

terval of signal to noise plus interference latio (SINIR). Specifically, the SINR at

the receiver is partitioned into a finite number of intervals with threshold values

Xo(: 0) < Xt 1 Xz 1 '.. < Xx+r(: *). Let X be the received SNR at the re-

ceiving side, transmission mode k is employed if Xr < X < Xr*t (k: 0,1,2,"' ,K)
which will be called channel state k in the sequel. For implementation, the receiver

estimates the channel quality and transmits this channel state information (CSI) to

the transmitter to choose the suitable transmission mode. Here we assume that the

packet length is fixed. Then there are a finite number of transmission modes each

of which corresponds to a unique modulation scheme [43]. These transmission mode

thresholds can be obtained as follows:

where BER,", is the target BER that we want to achieve in all sub-channels. The

channel is said to be in state k if Xp 1 ^/ 1 Xk+t, and in this state, k bits are

transmitted per symbol using 2k-QAM which corresponds to transmission rate k,

i.e. ,k packets will be transmitted when the channel is in state k. To avoid possible

transmission errors) packets are not transmitted when k :0.
From (3.8), the probability that modulation k is used in subchannel z can be

obtained as follows:

x":rn(ry)#

where prþ) : [fr{;)10¡, prØ(Ð . . . pr(ù(K;.l fo. m available subchannels at MIMO
I r-2, \ / . ,l

link l, let p(g) denote the probability that g packets are correctly received given by

rxr+rprØ(Ð : pr(i)(\ € [x*,xr+r)) : J*u ,f,r,(Àr)dÀr

: Ví7, X¡f %) - üt (7, X**rllo)

where Q denotes the dicrete convolution and maximum number of packets that can

be transmitted in one time slot over n¿ subchannels is N : m x K.

(3 12)

m

p(,)(g): O pr(t)

(3.13)

(3 14)
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The number of transmitted packets can vary depending on the transmission rate

and the packet error rate. According to results from [74], the average BER for mod-

ulation k can be approximated as follows:

where a¡ and b¡ are the constant parameters depending on the modulation ievel k

and can be obtained from table I in [32] when BE&o, is set to be 10-3.

r'l
BERr = a¿ 

fü1(b¿?o 
1- 1, Xrllo) - Vr(b¿lo + I, X¡"¡yl1s))

We assume that BER¿ is i.i.d r,vith the others, packet size is Ptr (header + pay-

Ioad), and there ale up to PL.-,""¿ bits which can be corrected in a packet. Then

the average packet error rate for modulation k can be obtained as follows:

/ PLco,,""t / o, \ \
PEñ-1-( t l':Iføøñl'tr--BERùPL-i| (3 16)

\ã \r') /
Basically, we can calculate PER¡ over sub-channel i, since now, to reduce the

complexity) we assume that PEE" of MIMO link I is 9(¿).

Assuming that the channel is slowly fading (i.e., transitions occur only between

adjacent states), the CSI is fed back to the transmitter to choose the suitable trans-

mission mode. The state transition matrix for the FSMC can be expressed as follows:

For the sake of simplicity, \Me assume when the channel is in state k, the transmitter

transmits bn : k packets. Furthermore) we assume that bs : 0, i.e., there is no

transmission when the channel state is 0 to avoid the high probability of transmission

error), and b¡¡ : K. To calculate the transition probability in matrix (3.i7) from

state k to k' (k' € {k - 7,k,k + 1}), i.u. eÍi|,, we apply the results in [43], then we

can obtain (¡",¡, for sub-channel i as foilows:

(3 15)

uU) -

¿(¿) ¿(i)S0,0 t0,1

¿(,) ¿(i)S1,0 S1,1

0 ".
: ¿(¿)' \K -7,K -2
0 ...

,(i) 1Vr+r
ÇÈ,k+i : Fff&)n

.(i) ¡/A
\k,/c-r py{t) (k) f a

(3.17)

(3 18)

(3.1e)



where /¿ denotes the mobility-induced Doppler spread and Nr is the cross-rate of

mode k 164]. lttrote that the differences among the transition probability matrix of

these sub-channels is dependent on the average SNR, which is included in l/r.

( r-€lil*,- €f)r-,, iro< k<K
Ë!i).:) t_ ç(i) ifk:osß,k- ì r-t0,1,

I r-r(.i.)..., if k:K
[' \K,K_l

3.3.2 Problem Definition and Solution Methodology

We consider a mesh router with two separate transmission queues: QoS-sensitive

queue and best-effort (BE) queue. The transmission model between two routels in a

wireless mesh backbone network is shown in Figure 3.2.

\ OoS-sensitive aucue

ì-1il i

v

39

I[f
Bes!-effort queue

Figure 3.2. Transm'isszon model between two rnesl'¿ routers.

In this figure, the antenna assignment controller is responsible for assigning sub-

sets of antennas to the two queues to differentiate services between these two queues.

For this assignments it will exploit the estimated CSI in the physical layer. We can

represent the operation of this antenna assignment controlier as follows:

(3 20)

Transmitter

where 7?(s(t),a(¿)) is the reward of the whole system, included number of packets in

both queues as well as channel states of r¿ available subchannel, which is obtained by

-l ,-l

Minimize: J(w, z),: j.llg t"p;ÐE'l&þ(t) ,aØ)1
ú:0

Sub.ject to: d.1: L2d,2

Receiver

(3.21)
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giving the state s and taken action ø at time slot ú, and d1 ,d,2 àrê the instantaneous

delay of QoS-sensitive queue and best-effort (BE) queue, respectively. The details of

the aigorithm for this controller will be provided in Section 3.4.

At the receiver side, to recover the transmitted signals, we consider zero-forcing

(ZF) detection [56] for its practicality and ability to exploit the MIMO channel into

rn parallel independent channeis. When packets alrive at the receiver, it decodes the

received packets and sends negative acknowledgments (NACKs) to the transmitter

asking fol retransmission if there are any erroneous packets. An error-free and instan-

taneous feedback channel is assumed here so that the transmitter knows exactly if
there is any transmission error at the end of each service time siot. This assumption

holds in many cases because the propagation delay and the processing time for the

error detection code can be very small in comparison with the time siot interval.

The procedure to find the optimal solution for ASA is summarized as Figure 3.3.

Example: Considering a pair of mesh routers in a WMI\[ network, we assume that

both the transmitting node and receving routers are equipped with 3 antennas thus

there are 3 independent available subchannels to transmit data at the transmitter

side. There are 2 types of traffic coming into transmitting node, i.e. real-time tlaffic

and non-real-time traffi.c, with the average incoming packet is 1 packet/timesiot for

both types of traffic. Each type of traffic is going into two separate queues. Real-time

traffic and non-real time traffice require instantaneous delay (which is defined as the

ratio between number of packets in queue and average incoming packets) of 1 time slot

and 3 time slots (i.e. d1 : 1 and dz:3), respectively and the objective of fairness is

to maintain the r-atio t. W" assume that at a particular time slot, among 3 available

subchannels, 2 subchannels (subchannel 1 and 2) can serve 3 packets per time siot

and the rest (subchannel 3) can serve 2 packets per time slot, thus total packets can

be transmitted in this time slot is 3+3 *2:8 packets. The number of packets

in real-time traffic queue and non-real-time traffic queue is 7 and 6, respectively.

ASA can use all the available subchannels to transmit all packets fi'om the real-time

traffic queue. However, since the number of packets in real-time tlaffic queue is 7

and total link capacity is 8 packets, it causes wastage of bandwidth. AIso, the QoS

requirement for non-r'eal-time traffic is not satisfied. A better allocation will be as

follows: use subchannel 1 and 2 to serve packets coming from real-time traffic queue



Obtain all possible states of available
subchannels as well as number of packets

in both queues

Calculate the hansition probability matrix
of whole system for all possible sub-sets of

subchannels assigned to each queue.

Calculate obtained rewards corresponding

to each possible states of above matrix

Apply Markov Decision Process using

value iteration dynamic programming to
find optimal solution

Figure 3.3. The procedure to find the opti'rnal solut'ion for ASA.

and use subchannel 3 for non-real-time traffic. Note that the instantaneous delay is

calcuìated right after departure process (which is defined as the number of packets

leaving queue). Then the instantaneous delay of real-time traffic is 1 time slot and

non-real-time traffic is 4 time slots. Obviously, ASA do not really satisfies the exact

ratio between the instantaneous delay of leal-time trafifrc and non-real-time traffic but

it nearly guarantees the fairness between these two types of flows.

Note that, the instantaneous delay d¿ can be defined as [23]:

Apply optimal solution to ASA

wher-e q¿ is the numbel of packets left in queue i at the encl of time slot ú and Ç

,Q¿
I)J; 

- -
C¿

(3.22)
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the average number of incoming packets during time slot f which is obtained using

(3 40)

g.4 Formulation of the Markov Decision Frocess

Model

3.4.L Packet Arrival Process

As has been mentioned before, to simplify the problem we consider only two types

of traffic, i.e. real-time and non-real-time traffi'c, and the corresponding data packets

are stored in two separate transmission queues. Let us assume that for each flow the

packet arrival follows a truncated Possion plocess, the packet arrival can be modeled

as a poisson process in which the probability of arrival can be obtained from (3'23),

(3.24) and (3.25). The queueing problem for both classes of users can be modeled in

discrete time with one time interval equal to one time slot. Real-time traffic will have

higher priotiy (class one) than the other (class two). we assume that the packets

arrive at the buffer according to independent Poisson plocesses with different packet

arrival rates, i.". (". The maximum number packet arrivals in one transmission queue

in one time slot is -4.", where c is the index of classes of users. Packets of the same

type are schedulecl in a FIFO order. Then the probability of arrival of- a e { 0 ' ''4.

) packets with mean Ç in time interval Ú is given by

--e&t +\a
f (a\- u \\c"'/ fot A:1,2,...,4.-IJ¿\Sc/ - a\

A.-7

f.s.G)-i_!f"{e")
a:0

Then the arrival probability of each flow is obtained as follows:

AP": {/o(Ç), /'(Ç) ,''' , f ¿"(eò}'

with this trafiñc modeling, there are at most ,4" arriving packets in one time slot'

Furthermore, packet transmissions in a time slot are asslrmed to finish before arriving

packets enter the queue. We assume that the buffer size of each transmmision queue

is finite with the size of Q" packets.

(3 23)

(3.24)

(3.25)



3.4.2 Packet Departure Process

Before r¡/e can calculate the packet departure process for each flow, we require to

know the subset of antennas assigned to each flow. This antenna assignment will be

performed by the Antenna Assignment Controller (AAC) which will be described in

the next section. In a genelal system with C classes of users, Iet us assume that m.

is the set of antennas assigned to each cÌass of users in the system, i... IÍ:r Tr¿c : Tn.

Now, with only two types of usels) leí m1, rn2 denote the subset of antennas assigned

to class one and class two of services, respectively. It is clear thal m1 Ç rn and

rnz : rm\m1 . Moreover, if the number of packets in one queue is zero, another queue

will automatically receive the entire service of all antennas. On the other hand, if
both queues are backlogged, QoS-sensitive queue will have preemptive priority and

the number of antennas allocated to it will be decided by the AAC. When class

two packets return to the system, the service begins with a new independent service

allocation.

Now let us define the following matrices:

o Letfff) (f :0,1,...,K)bethematricesof order (K+1) x(K+1) whichare

constructed by keeping the (k * 1) -st row of the channel transition probability

matrix 11@ in (3.17) and setting all other rows to 0, where z indicates the index

of sub-channel. These matrices capture the number of packets leaving the queue

in subchannel z when the channel state is ,k at the beginning of a particular time

slot.

e Let ff) , Aethe matrices of orcler (l(+ 1) x (K +1) where elements çff)*,çtt,tr¡¡
represent the probability that n' packets successfully leave the queue given that

there were n packets in the queue where 'i indicates the index of the sub-channel,

and channei state changes from state 11 to state 12 (11 and 12 are indexes for the

state associated with the changing in channel state of assigned set subchannels).

ø Let DÍ^ò (ú : 0, 1,..., K x m") (where m, isthe number of antenna in the

set of subchannels rn") be the matrices of order (K + 7)^" x (K + 1)-' which

are similar to Hf), where ú represents the number of packets leaving the queue

using the set of subchannels rn..

Then, v/e can calculate DÍ""ò ¿rr¿ p("'") as follows:
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DÍ") :

Dj-") :

o Let TÍ-") b" the matrices of order (K+r)x (lf +1) whose elements $?ò (tt,lr))

represent the probability that r packets are successfully leaving the queue when

a set of sub-channels rn" is assigned to this queue) and channel state changes

from state 11 to state 12. It is clear that the maximum number of packets leaving

the queue in a particular time slot in this set of subchannels is lm"l x K .

We can calculate TF") as follows:

t

Drtf'8nj?-
È:0

{fu ,k2... k 1*.11 Ð t t" ¡ :¡¡

l'',"l
¡(-") : Øuru

j

t l^.1

8H[','
j:1

(3 31)

Based on the average packet error rate, the probability that z packets are correctly

received given that 7 packets are transmitted when channel state is /c in one time slot

can be obtained as follows:
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TÁ-") : DÁ-') * î"' p{,)o!^ò
L:7

I{xlm.l

Tyò: Ð pl',ìor.*ò rort>l
I:7

(3.26)

(3.27)

(3 28)

tA)p;,;

where gn: PER*.

3.4.3 State Space and Tbansition Probability Matrix

:{ ("

The state space of the proposed system model consists of buffer space Q, incoming

traffic space AP,the channel slale'Ìl, i.e. S : Q x AP x'11. In other r,vords, the

\
I et*-'(I - o*)' íf o < i < k
/

0 otherwise

(3 2e)

(3 30)

(3.32)
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discrete-time Marl<ov Chain lepresenting the system at time slot n has the following

state spacei s,t : {@lf),oplî),llî\,0. qlf) 1Q.,0. op!:) 1A",0 < ¿f) < K},
,,vhere qf) ir the number of packets in the queue at the beginning of time slot n,

oplP ,, the number of packet arrivals during time slot n, and ¿f) is tfte set of channel

states co¡responding to the number of subchannels assigned to this flow during that

timeslot, and let lf) bu the number of packets leaving queue correspoding to that

assignment. The number of packets leaving the queue is equal tomi.n{qlf), ¿f)}.

Now, let us consider the transition matrix for the QoS-sensitiue queue. The other

matrix can be built in a similar way. Let P1 and (i,, j,l) denote the transition matrix

and a generic system state for this discrete time Markov Chain, respectively, what

we have to obtain is the transition probability from state (i,,i,l) to state (i',j',1').

For the same ri and ,i' , the probabilities corresponding to these state transitions can

be written in matrix blocks p¿,¿ , which correspond to tlansitions in level z of the

transition matrix. Thus, level ¿ of the transition matrix represents the system state

transitions where there are z packets in the queue before the transitions.

While the packet arrival probability is obtained from the truncated Poisson pro-

cess (3.25)with maximum ,41 packets can arrive in one time slot, the departure

process depends on the set of subchannels assigned to this flow, channel state of these

subchannels during this time slot, and the packet error rate. With queue size Q1, the

probability transition matrix P1 for the QoS-sensitiue queue is defined as follows:

Po,o Po,r

Pr,o Pr,r Pt,z

Pr:

(3 33)

where N : 7r\ x K is the maximum number of packets that can leave the queue

in one time slot. The matrix element p¿,¡ of matrix P1 is the probability that the

number of packets in the QoS sensitive queue is i in the current time slot and it

becomes k in the next time slot. Also, the elements inside the matrix pi,À capture

Po,At

Pt,A'

P¡,¡

PQr,Q'-N

Pi,i+1

PN,min{N+41,81}

P¿,*i"{¿+¿r,Qr }

PQ',Qr-r PQr,Qt
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the transitions in set of subchannels assigned to the queue at current time slot.

Now, the matrix blocks of the transition matrix in (3.33) can be written as follows:

where u : mi,n{Q1,mar{0,i + a - r}}.
It is ciear that there are at most A1 arriving packets, and at most .ly' packets can

be successfully transmitted in one time slot. Therefore, the transitions can go up by

at most ,41 levels and go down by at most ly' levels. Note that, the maximum total

packet transmission rate can be greater than the number of packets in the queue, and

the decrease in the number of packets cannot be less than the number of packets in

the queue. Therefore, the maximum number by which the number of packets in the

queue can decrease is l/ : min (^r, K, ,).
Now, similar to the above process) with different assigned sets of subchannels to

the best-effort queue, i.e., rn2, the maximum number of packets leaving the queue

is IVI : rn2 x K. Then, with a different arrival rate /"((2), and queue size Q2, lhe

probability transition matrix P2 for the best-effort queue can be written as follows:

P¿,i : t f"(A")T;*Ò
{a'rlu:¡¡

Po,o Po,r

o1,o o1,'

Pz: P/11,0

(3.34)

Po,.n,

Pt,Q,

where elements of the transition matrix in (3.35) can be defined similarly as in (3.34)

Based on (3.a2) and (3.35), the transition probability maxtrix between the com-

posite state

", 
: {(qf;) ,op[]),tf\, @*t ,opll),43))] a"a

s,. : {(1}1) ,op'}') ,A')), çq'}') ,ap'}'),tl}2)¡¡
when action g is taken, which decides the set of subchannels assigned to each

Pi,i-M P¡,¿

Pez,ez-pt Per,er-t PQ",Qz
/r oÃl
\d.J - r

Di ir1

Pl,t,n\n{M+Az,Qt}

P¿,-i"{¿+Az,Qr}



queueT i.e. m1 and m2, is given bY

3.4.4 Queueing Performance for Each Type of service

Wiih the assumption that m1, m2 denote the subset of antennas assigned to class one

and class two services, respectiveiy, we can obtain the QoS performance measures for

each type of service.

3.4.4.7 Steady State ProbabilitY

To eval¡ate the QoS performance measures, the steady state probabilities for the

system states are required. With the assumption that the size of the best-efior-t

queue is finite, the steady state probability of the system ?r can be simply obtained

by solving 7¡(")p(") - nk) and zr(")1: 1, where c is the index of class of users, 1 is a

column vector of all ones with the same dimension as P(")'

The steady state probability for the QoS-sensi,t'iue queue is a vector with size

similar to matrix Pr. We can expand zr(1) as follows:

p(,) : p,8pr.

, (1) [ rrl -(1) -(1) ] -h" steacly state probability of i packets in thewhere'Ír;' : lnì,ó,nì,i,...,Ti,^rrral. 
t

queue can be simply obtained as foliows:

(i+1) x (rn1 xK)
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(3.36)

_(r)(z) :
j:i

3.4.4.2 Average Queue Length

îç(1) - [^Át,, ^jt,, , ^8]]

The average number of packets in queue (i.e., average queue length)

sensitive queue (z(i)) can be calculated as follows:

Qt
7(t) - \-" x 

".(1)lz).L*" " \'"'/'

t
x(mt xK)

'-o) 
(i, i).

(3.37)

(3 38)

for the QoS-

(3 3e)



3.4.4.3 Packet Dropping Probability

The buffer overflow probabiiity (or packet loss probability) can be calculated as the

ratio between the average number of dropped packets at queue ¿ due to overfi.ow

(denoted ur Q ) and the average number of incoming packets in one time slot (denoted

as (,), which can be obtained as follows:

A,

Then the buffer overflow probability for queue z can be written as

To caculate the average number of dropped packets due to overflow at queue i, we

need to consider the number of packet arrivals as well as the number of successfully

transmitted packet(s) in the same time slot. Given that there are j packets in the

queue and there are i arriving packets, the number of dropped packets is max{O, z -
(Qt -j)Ì It is clear that, buffer overflow only happens when i + i > Ql. To capture

the average number of dropped packets, we consid.er a fake matrix P'ì)^", which has

the same packet arrival as well as packet departure process as matrix P(1) but has

buffer size of Qt * A1. By constructing blocks of submatrices as shown in (??),

(??), and (??), where we considered both the packet arrival and the packet departure

events, r¡/e can obtain a fake transition matrix as follows:

C:tr¡G)xi
j:1

/;\ OtT)\") _
La

t¿
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Qo,o

9t,o

:

P{"0' :

9o,r 9o,Ar

Qr,r Pt,z

(3.40)

where e¿,er+^ captures the situation when there are rn dropped packets. Note that

submatrix p¿,er+^ captures the transition of channel states for subchannels assigned

to this queue.

9r,.4'

(3.41)

Q¿,i:
{ø,rl max {0,i+a-s} }

f "(Ar)Tl^')

QQt,Qt'fAt
(3.42)

(3.43)



where 0 ( ø 1At,Ol r <l*"lx K,i €\,Qt and j €},Qt* At.

Now, let 
"r' 

defi.ne as follows:

rr' - n{t)Pfok"

rltt'ln : lno,Tt,. 
. .,'Eer+Arl

Let zi be the probability fha| j packets are dropped

Qt

26 : 
Ðn'*"
k:0
Qt

21 : Dn'er*¡" for j:1,2,...,A.
k:0

Then the avelage number of dropped packets can be obtained as follows:

Ac

A':Ði4 (3'4e)
j:o

3.4.4.4 Queue ThroughPut

The throughput (in packets/time slot) for the QoS queue and the best-effort queue

is obtained âs Tr :6(1 - P,(t)).

3.4.4.5 Average Delay for one Packet

49

Using the effective arrival rate, the average delay for one packet in

queue (D1) can be obtained by applying Little's law as follows: Di

3.4.5 Markov Decision Process Model

(3.44)

(3 45)

The Markov Decision Process (MDP) is a mathematical tool which provides a math-

ematical framework for modeling decision-making in situations where outcomes are

partly random ancl partly under the control of the decision maker'. The theory of

MDP enables us to find the optimal distributed solution for a discrete time stochastic

(3 46)

(3 47)

(3 48)

the QoS sensitive

- 
e(1).

n1
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control problem. Simultaneously, the state spaces and the actions in our model corre-

spond to a discrete time process, which ailows us to formulate a MDP-based model.

A MDP model is a basic and generic model which is completely described thr-ough

its state spaces, actions, transition probabilities and rewar-d functions.

Our objective is to find a solution for antenna assignment for each flow (i.e., how

many antenna and which antenna for each flow) subject to the fairness constraint

between two flows. For this, the following MDP model can be formulated:

c State space: At each time slot, the system occupies a state among a set of

flnite states which is called the state space. In our model, the state space is 5
: Q x AP x tl which was represented in Section 3.4.3.

o Action space: The set of available actions "4 is called the action space. In our

system model, the action refers to antenna assignment to each flow depending on

the number of packets in each queue and the channel quality of each subchannel

under the constraint of fairness in instantaneous delays for both flows.

LeL A denote the finite set called the action set. The action in the resource

control problem is interpreted as the composite bit-ioading allocation for the

individual transmit antennas. As has been discussed through (3.4), our model

can be decomposed into rn independent subchannels, and hence the number of

total possible actions can be obtained as follows:

With each action, there should be another transition matrix P, such as matrix

P(") in (3.36) corresponding to action ¿.

Lel a(") €,4 denote the action taken by the decision maker (i.e., the Antenna

Assignment Contr-oller) at time slot n. Then, depending on the action taken,

the transmitter will know exactly how many and which antennas are allocated

to which flows. Note that, the number and index of subchannels allocated to

each flow will decide the number of packets leaving the corresponding qtleue.

Therefore, with different antenna assignments we will have diffelent number of

packets in the queues in time slot (n* 1). Consequentiy, we will have clifferent

instantaneous delays for the two queues.

a,ftota¿):ä( 
;)

(3.50)
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Now, let us define function Õ (a), which represents the number of packets leaving

each queue when action a is taken, as follows:

ÍI7c

where rn is the total subchannel after using SVD in a MIMO system and þ¿

represents the number of packets retlieved in each subchannel assigned to this

queue if action a is taken. Then the total number of packets leaving both the

queues, when action ø is appiied, can be presented as follows:

o Tbansition probability: When an action is chosen, the next system state

is determined by the transition probability. The evoiution of the MDP based

model here is Markovian with transition probabilities given by

Pr(s¿, s¡, a) : Prls\+t) : sj 
' 

s(¿) : s¿, aþ) : af (3.53)

where s¿, si € S, a € A. Note that the process to calculate this transition

probability was presented in Sections 3.4.3 and ??.

o Reward: The decision maker receives a reward when it chooses an action

among the action set. In our model, this reward is reiated to the instantaneous

delay of each queue.

Let us assume that the r-eward function 7è: S x "4 is given. Then the average

cost of a particular policy tn,for a given initial condition z, is defined as

p(.)(a) :Ðóo
:-1

iÞ(a) : I tn
;_1

(3 51)

A policy t¡* is then called opti,mal If. J(w.,2) <J(tu,z), subject to minrmrze

the instantaneous delays in both queues for all policies tø and any initial state

z.

Let the rewarcl llcþ'!, oS; U" the instantaneous leward when policy u.r is applied.

In other words, 7l is the reward. that the system receives when taking action a(') in

state s(¿) at time slot ú. Rþ\!, olf ¡ ir clefined as follows:

n?\l ,o\j)) : w, lnþfl , s'-G+t) , "9) ) 
: Pr(s-, s'*, a-) x R(sfl , s'*(t+t)¡ (3'55)

t n-l

J(w,z):: lim sup:tEl R(sS, "fl) ¡z: 
"1.n--oo n _, 

^

(3.52)

(3 54)



Now, let the instantaneous reward be defined as

c

R(tÍj),s'-(t+t)¡: (ù- Lrdr)' x (dr - Lrdr)' x... x (d4- L"d.)': fJ(d, - Lodo)'.
;-u

(3 56)

where d¿ is the instantaneous delay of queue ¿ at the end of time slot ú and A¿

is the weight of the instantaneous delay we want to mantain compared with the

instantaneous delay for the incomming packets arriving into the QoS-sensit'iue queue.

From (3.56), weobtain *: *:...: S, when nþ\9,s'-(t+t)¡ is minimized.

Again, our goal is to solve the average cost optimal control probiem (3.5a) by

constructing a deterministic poiicy T¡ with minimal average cost. To constr-uct an

optimal policy, value iteration is the most common approach used in plactice. The

idea is to consider a finite time probiem with the following value function

where a(ú) is the sequence of actions {ø(ú) : t e Za} which is adapted and deter-

mined by some policy. Note that, ø(ú) can only depend on the history of states

{"(0),.. . , "(¿)} 
and the policy should minimize (3.57). We can form a deterministic

policy to : 'u0(s(0)),rlll(s(i)),w2(s(2)),..., where for each z function tri maps the

system states to corresponding actions, i.e., S ,----- A, with'ui(s) e "4(s) for each s.

The function % is consideled as the penalty term and in the standard value

iteration is performed assuming Vs = 0. A deterministic policy is a Markov policy for

which u)i :'u for all i, for some fixed state feedback law w . This deterministic policy

can be obtained based on the ualue 'iteratzon algorithm 116). If the value function V,

is given, the action w"(s) is defined as

v,(s) : min lE If æ1"1t; , o(t)) + Izr(s(n))l
t:0
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w"(s) - arg"-r,r.rl(") 
lerçr--,s'-n,a-n)TV*(r') +R(s,Qf s € 5.

For each n the following equation has to be satisfied:

V"*r(s) : R(s,u:") I Pr(s, s' ,u")?V*(s')
: 

"ËÌê, [o(t 'a) 
+ Pr('s''s"a)ow(s')f

: min \- pr(s, s' , "¡lnçt, t') + oäçt'¡)
aeAG) j

(3 57)

(3 58)

(3 5e)
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which then makes it possibile to calculate the next function u'tr, where P (0 < 0 < 7)

is the discount rate. The complete procedure of ualue iterati,on algori,tl¿m can be

expressed as follor,vs:

Algorithm 3.4.L: ValuB lroRauoN AlcontrHv(Ize(s) :0)

repeat

a<-0
foreachs€S

( u *- V(s)

do 
1 

u,r, +- mino6¡1"¡ I", Pr(s,s',o)[æ(s, s')

IA-min(A, lu-lz(s) l)

until A < ?9

In the above algorithm, r9 is a smail positive value and the output is a deterministic

policy *"(t) such that (3.58) is satisfied. After the deterministic policy u.''(s) is

obtained, at the beginning of time slot, the AAC checks the states in the previous

time slot (i.e., channel states of all subchannel, number of packet in queue at the end

of previous time slot) and then makes a decision based on the above policy.

The operation of the AAC for the situation where there are only two kinds of

packets in the system can be described as shown in Figure 3.4, where Statel and

State2 can be calculated as foliows:

Statel: ezXsize(P,\xK^'_ lf x-r\'))xK^'-r+(K-r[2)¡xK*'-2+...+(K-rft)l]-*l' L ' 
(3.60)

+ ew@)l

state2 : q1x stze(P1) x K^' - [t" - "Ít)) 
X Kmt-1'

q2 x szze(P2) x K^,- [f" - r\')) X Kmz-l

where 
"jo) 

t rate of channel number j'n of queue i.

+ (K - "lt)) r K*'-2 ...+ (K -
+ (K - rx))

"gì)]
(3 61)
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Controller check the
states of system

Releâse all suÞchannel
assigned ló th¡s queué

Packets in queue c É 0

Count the number of
packets left in queue
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Figure 3.4. Algorithm for the Antenna Assignment Controller.

3.5 Performance Evaluation

3.5.1 Complexity of Policy Evaluation

Before presenting the numerical and simulation results, let us first evaluate the com-

plexity of the MDP-based solution for the antenna selection and assignment problem.

Value iteration works by producing successive approximations of the optimal value

function. According to [5], the complexity of the value-iteration algorithm with full

baçkups, per iteration, is repesented in O(AS)'z .

Check the policy for the
dec¡sion mak¡ng in next

time slot

Update



3.5.2 Parameter Setting

In this section, we present typical numerical results considering an uncoded wireless

system with three tlansmission modes, i.e., adaptive moduiation with only 3 trans-

mission rates (K : 3). First, we obtain the queueing performance of these two queues

with the assumption that at a random timeslot, the AAC decides to assign one and

two subchannel(s) to best-effort queue and QoS-sensitae queuei respectively.

To reduce the computational complexity of finding the optimal solution, in the

simulation model, the size of both queues is assumed to be 15 packets. We assume

that c1,¡ : ??, time slot interval is ?i :2rns, and the BÐRtors"t is set to 10-3, the

packet size is 255 bits and block code is used for forward error cor-rection in which

errors up to 2 bits can be corrected. We also assume that there are at most two

separate subchannels after using SVD to obtain these separate subchannels. For a

fading channel, we assume a Nakagami -rr¿ channel with parametter m : 1.1. An

infinite-persistent ARQ is used to ensure reliable packet transmission.

3.5.3 Queueing Performance

In this subsection, we present some typical numerical results of queueing performance.

For the purpose of illustration, we present some queueing peformance for one par-

ticular scenario with an arbitrarity chosen channel assignment. Figure 3.7 and 3.8

present the average delays and packet dropping probability versus packet arrival rate

to a QoS-sensitive queue refered to this scenario. Note that this numerical results are

only for the queueing performance, not related to MDP solution. \Me assume that at a

particular time slot, there are 3 avaiiable subchannels at the transmitter side, and we

assign two subchannels to the QoS-sensitive queue and the other to best-effor queue.

Among the two subcahnnels assigned to QoS-sensitive queue, we fix the average SNR

to one channel to 10 dB and vary the average SltR of the other subchannei. The

subchannel assigned to best-effort queue has a fixed average Sl,lR o1'lr:10 dB.

3.5.4 Simulation Methodology

The simulation results are obtained for both types of services for the proposed ASA

policy. Given the system and channel parameters, the channel transition matrix P1,

bb



o
Ø
0)
E

0)

O(!
o-

(ú
q)

!
(¡)
o
(ú
q)

Figure 3.5. Auerage packet delay under di,fferent paclcet arriual rate with (t : (,
and subchannel ass'igned to best-effort queue has 12:70d,8 (from analysi,s).

P2, and P are calculated. The simulation run time is chosen to be 2 x 106 time slots, in

which the channel states of all users are generated based on their channel states in the

previous time slot and the corresponding channel state transition probabilities (i.e.

11@) The number of packets transmitted during any service time slot is determined

by the channel state and also PER in this state. The number of packets left in the

queue is updated at every time slot by considering packet alrival and the number of

successfully transmitted packets. Based on this information, the AAC will calculate

the system State of system at a previous time slot using the algorithm in Figure 3.4.

Then, the AAC appiies lhts State into policyTø to find the corresponding action.

The weighted round-robin (WRR) scheduler in our simulation uses both the sub-

channels to transmit packets from both queues, where the QoS-sensitue queue and

the best-effort queue receive two and one service slots in one cycle, respectively. One

cycle is defined to be the smallest interval with time slot assignments and repeats

periodically.

The state space in this case contains a total of 16 x 3 x 16 x 3 : 2304 states, with

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Paket arrival rate (packets/timeslot)

Ðr)
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Figure 3.6. Auerage packet blocking probabi,li,ty under di,fferent paclcet arrzual rate

with (2 : 0.8 and subch,annel assi,gned to best-effort queue has .yz : 70dB (from

analysi.s).

the corresponding actions shown in Figure 3.9, where

o Acti,on number one: The best channel assigned to the high priority flow, the

rest for the other.

o Action number two: Opposite to the above situation.

ø Actton number three: Assign both channels to the high priority flow and no

channel is assigned to the low priority flow.

o Action number four Opposite to the above situation.

Figure 3.11 shows the packet blocking probability versus the average SNR of one

subchannel while the other subchannel has a fixed aver-age SNR 5 dB. Obviously,

the packet dropping probability of for the QoS-sensitive queue is higher compared to

the scenario where two subchannels are assigned to this queue continuousiy, and it is
lower than the scenario where one subchannel is assigned to this queue. Also, there

is a significant improvement in packet dropping probability for best-effort traffic and

ol



Figure 3.7. Relationbetweenstates andthe determi'ni,sti'cpolicy, wltere (r:0.8,(z:

0.5, ?t :75d8 and' 12:5d8.

0

it is more likely to guarantee fairness between these two flows compared to the case

where a flxed subchannel is assigned to best-effor-t traffic'

Figure 3.13 shows the aver-age delays of both types of tr-affic when the arrival rate

of packets coming to the best-effort queue is set to be a fixed value, i."., e":0'7'
When the packet arrival rate for the QoS-sensitive queue is smaller than the arrival

rate for the best-effort queue (i.e., (r < 0.4), the average delay of packets in the best-

effort q¡eue is smaller than that for the packets in the QoS-sensitive queue. This is

because, since the packets coming to the best-effort queue have higher arrival rate

that those coming to the QoS-sensitive queue, the ASA scheme decides to allocate

more radio resources to the best-effort queue. In other words, during that period, the

best-effort traffic has higher priority than the Qos-sensitive traffic.

When the packet arrival rate to the QoS-sensitive queue is higher than the other,

ASA starts to share more reso¡rce for sensitive queue to satisfy the QoS requirements

of both flows. At the diamond shaped points in Figure 3.13, where arrival rate of

packets coming to the QoS-sensitive queue equals to the packet arrival rate for the
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Figure 3.8. Packet throughput under di.fferent packet arriual rate (for ez:0.8, and

n:5 dB).

best-effort queue, the average delay is observed to be 5.7374 and 9.0253 corresponding

to QoS-sensitive and best-effort traffic, respectively. These obtained results conform

to our objective, where we set the instantaneous delay requirement fol QoS-sensitve

traffic to be 6 timeslots and fr : I ASA allocates more resources to best-effort

traffic since its delay exceeds the target delay requirement, and of course the deiay

for QoS-sensitive traffic will increase in this case.

2 2.5 3 3.5
Average arrival rate (packets/timeslot)
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Figure 3.9. Packet blocki.ng probabili,ty under different sNR (for Ç: ez:0.5, and

n:5 dB).
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Figure 3.7O. Impact of connection arriual rate on auerage delay for QoS-sensi,ti,ue

queue (fo, Çr:0.5 and n : 5 dB).
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Figure 3.LI. Auerage d,elags for best-effoTt and Qos-sensi'tiue t'raffic (ro, Ç : 0'7

and11 :9 d.Bn:5 dB).
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Chapter 4

A Tanderrl Queue VIodel for

Penformance Analysis in MIMO
\Mireless Mesh Networks

4.L Introduction

An important research problem for MIMO-based WMN is to quantify the impacts

of different factors on QoS performance measures so that wireless protocols can be

designed and/or tuned in an optimal manner-. Two of the most important performance

measures are end-to-end packet dropping probability and average delay which can

only be obtained by solving the tandem system of queues along the routing path of a

connection [61]. There are a few tandem queueing models proposed in the literature.

Tandem systems of two queues were modeled in discrete time in [a7]. The end-to-end

delay for TDMA and ALOHA multiple access schemes were approximately derived

in [68] for constant bit rate traffic. Developing a general model to analyze tandem

queueing systems under realistic arrival process and wireiess channel assumptions is

still an open research issue.

In this chapter, we present an exact queueing model to solve the tandem queue

system for a N4IN4O-based wireless mesh backbone whele batch arrival and multi-rate

transmission in the physical layer', and automatic repeat request (ARQ)-based error

recovery in the link layer are taken into account. Note that, multi-r'ate transmission in

the physical layer using adaptive modulation and coding (AMC) and ARQ-based error-

recovery in the link layer ale wiclely used techniques for most of the current wireless

63
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standards,[1]-[3] For multihop communications in a wireless mesh backbone, it is

well known when the size of network increases (counted on the number of hops from

souïce nodes to destination nodes), the network performance degrades significantly.

The reason is that the end to end reliability sharply drops as the scale of network

increases. By using MIMO links, instead of SISO links, we will show that there is

a significant improvement in end to end performance. Because the computational

complexity of the exact model is very high, we propose a decomposition approach for

the tandem queue system. The proposed decomposition approach allows traffic to

arrive at each node besides the relayed traffic. Using the decomposition approach, we

can calculate some performance measures, namely, the end-to-end packet dropping

probability and average delay. The model is validated and typical numerical results

are presented.

The rest of this chapter is organized as follows. Section 4.2 presents the system

model. An exact tandem queue model is described in section 4.3, and section 4.4, the

decomposition approach is presented in section 4.5. Numerical results are presented

in section 4.6 and the last section provides a summary of this chapter.

4.2 System Model and Assumptions

We consider a multihop wireless network, which can be considered as a tandem sys-

tem, with -L concatenated nodes where traffic coming out of each node is fed into the

next node in the chain. This kind of tandem system models the operation of wireless

mesh backbone networl<s where data traffic arriving at the source node is transmit-

ted hop by hop to the destination node. The seqlrence of nodes that the traffic flow

traverses is obtained from a routing algorithm.

We assume that each node in this wireless mesh backbone maintains one queue

for each link emanating from the node where traffic flows from different connections

traversing through the link are buffered for transmission in a FIFO manner. A multi

hop network model with two connections is shown in Figure 4.1whele for convenience,

we show only one queue at each node. In general, data traffic stored in each buffer

may come fi-om different connections. For a particular connection, the tandem system

of queues along its routing path is illustrated in Figure 4.2. Note that, traffic from
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Figure 4.1. A multihop w,ireless network with rnulti,ple ongoi'ng connect'ions.

other connections (called exogenous traffic in this chapter) may arrive at any one of

the queues of the tandem sYstem.
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4.2.L The physical and link layer models
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The physical and link layer moclels are the same as those described in chapter 3'

However, instead of choosing the assigned solution for different flows, in this chapter

we use all available subchannels to tranmit data. Recall chapter 3, from (3'8), the

probability that modulation k is used in subchannei ¿ can be obtained as follows:

Figure 4.2. A tandem systern of queues'

Pr@(k) : tr(i)(Àr e lXu,Xr*r)) : [*u"Jxu

: vJr,x¡"f^¡o) - ür(7,x*tlto).

/À, (À1)dÀ1

(4 1)
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For rn available subchannels at MIMO link I, Iet p(g) denote the probability that

g packets are correctly received given by

where Q denotes the dicrete convoiution and maximum number of packets that can

betransmittedinonetimeslotovelznsrrbchanneìsisN:mxK.
Basically, r¡/e can caiculate Pîñ (3.16)over sub-channel i, since now, to reduce

the complexity, we assume tharPER' of MIMO link I is g(¿)

Based on the avelage packet error tate, assuming that the transmission outcomes

of consecutive packets are independent, the probabiiity that z packets are correctly

received given that j packets were transmitted over link I can be caiculated as follows:

m

p(t) Ø): c Pr(i)
:-1

Note that the difference in depature process between slso and MIMO here is

depended on the number of availabie antennas at transmitter and receiver sides' where

sISO has only one channel while MIMO might have multiple channeis' The difference

here depends on the number of antennas at the transmitter and receiver side' which

is presented by parm atler M and N in (3.6) in chapter 3, i.e' sISO has only one

antenna at both transmitter and receiver sides or M : N : 1. This difference will

effect to the service time distribution of sISo and MIMO' Clearly, MIMO technology

offers a substantial performance improvement and MIMO system also does not require

aclditional transmit power or receive SNR to cleliver such performance gains'

B(L) ç,;, ¡) : (;)(at'r)i-'{r -,,Ø)n'

(42)

4.3 An Exact Tandem Queue Model

\Me assume that the packets arrive at the bufier according to independent Poisson

processes with clifierent packet arrival tates, i e (. The maximum number of packets

arriving in one transmission queue in one time slot is M, then the probability of

arrival of i' e t 0. . .1i21 ) packets with mean ( in time interval f is given by

a¿(e):"-ç(Ct)". e.4)
il

(4.3)



This arrival probability can be explessed as follows:

¿ : {ao(Ç, ør((), .. . ,o*(Ç)}.

For simplicity, we define this arrival probability ãs a¿: {oo}!!0. We will consider

a simple tandem system with two quelres as in Figure 4.3 in this section. The more

general case with -L queues (L > 2) is considered in the next subsection. Let qi(t)

be the number of packets in queue i at time slot ú, the random plocess X(t) :

{qt(¿), qz(t)}, (0 < qt(¿) 1Qt,O < q2(t) < Qù forms a discrete time Markov chain

(MC) For notational convenience, we omit the time index f in the related variables

when it does not create confusion in the sequel. Let (r,g) be the generic system

state (i.e., Qr: t, ez: U) and (r1 ,At) - (rz,Az) be the system transition fi'om state

(rt,A) to state (rz,Az).Now, we derive the transition probabilities for the underlying

MC. Specifically, we need to find the transition probability Pr{(21, A) - @r,ar)}.

|{ote that the number of packets transmitted on each link in any time slot is the

minimum of the number of packets in the corresponding queue and the transmission

capability of the channel, i.e., min {qo,i,}, where z denotes channel capacity of MIMO

link allocated to this queue. Let the maximum number of packets that can be trans-

mitted in one time slot be N (i.e., N : m x K). Then, the number of packets in each

queue can be reduced at most by l/ Because there are at most /rz1 packets arriving

at queue one (from the source node) and at most N packets enter queue two (due to

successful transmissions in all possible channeÌs allocated to queue one) in one time

slot, the number of packets can increase at most by M for queue one and by l/ for'

queue two.

Hence, if we write the probabilities of transitions (r1, *) ---+ (r2,x) in a matrix

block A,,,,r, the probability tr-ansition matrix of the MC x(¿) can be written as in

(a.7). The order of matrix block A,,,,, it (Qr+ 1) x (Qz+ 1) and its (g1 ,Az)-th element

is 4,,,,, (llt,aù: Pr {(rr, At) - (rr,Ar)}.
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Figure 4.3. A tandem system with two queues.
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Let s denote the number of packets arriving at queue one in a particular time

slot and the channel capacity of link 1 k packets, we need to flnd the conditions

under which a general transition (U,At) - (rz,gz) occurs. The number of packets

in queue one after accepting the newly arrived packets is mi,n(q Ì s,Qr) ancl the

number packets transmitted in link I rs mi,n(r1,k) and among these transmitted

packets, tl packets are correctly received at the receiving end (i.e., these t¿ successfully

transmitted packets will enter queue 2). Thus, we have rz : mtn(r1 * s, Qr) - ..
Similally, link 2 can transmit I packets in one time slot, and h packets among min(g1,1)

transmitted packets are correctly received at the receiving side then y2 : min(y *
w,Qz) - h. Hence) we can calculate A,r,r"(At,ar) by including all cases where these

two conditions hold in the following sum

sgltth

xp(1)(min {*r,k},u) x B(z)(min {at,t} ,h).

where all possible cases such lhat 12 : min(ih -l s,Qt) - tu and y2 : m'in(y1 *
w, Qz) - h are included in sum.

A,,,,,(ar, uz) : t t t t Ð o,p1) (t')p(l) (¿)

Ao,o Ao,r

Ar,o Ar,r

::
A,v,o A¡¿,r

::P:

Aro

A.o

Now, we are ready to derive the steady state probabilities for MC X(t). LeL n be

the steady state probability vector of the MC X(ú). We have

iTP :7T, nI :7 (4.8)

where 1 is a column vector of all ones with the same dimension as r, which is (8r +

1)(Q, + 1). We can expand ¡' as follows:

_ t_ lT : L'l¡e1'll L)'ll2)' ' ' ,'tt Qtl

o:'

Açr-r,çr-r-,v Açr-r,çr-ru Açr-r,ç1-lø
Aer,e,-¡u

At,pt

(4 6)

AQ'-t,Q,
Aer,or-t Ae,,e,

(4 7)



69

where n-¿ is a row vector of dimension Qz * 1, which can be further expanded as

,r¿: ln¿,o,iriJ,7ri,2,"',1Ti,e2f, wher.e r¿,¡ is the probability that the queueing system

is in state (i,7). Given the steady state probability vector n which is calculated using

(4.8), we can derive the following important end-to-end QoS measules.

4.3.t trnd to trnd Packet Dropping Probability

The packets can be lost due to transmission errors on wireless links or due to overfl.ow.

The buffer- overflow probability for queue k of the tandem can be calculated as a ratio

between the average number of dropped packets due to overflo-,v at queue k (denoted

as O¡) and the average number of packets arriving at queue k in one time slot (denoted

as A¡). Hence, the bufier overflow probability for queue k can be written as P,(t) : -+

Note that the average number of packets arriving at queue one in one time slot is

Ãr:Ð,!!ria¿. To calculate the average number of dropped packets due to overflow

at queue one, Iet us define z¿ be the marginal probability that there are i packets in

queue one. We have z¿: T¿Ler+t, where ]-er*, is a column vector of all ones with

dimension Qz-ft. The average number of dropped packets due to overflow at queue

one can be calculated as

NI Qt

Õr :L t o,¿z¡màx{O,? + i - Qr}
i--r j:QrM

where max {0, i.+ i - Qi} is the number of dropped packets (if any) given there are

j packets in queue one and z arriving packets'

Now we calculate the buffer overflow plobability at queue two. We fir-st determine

the arrival probability for packets entering queue two due to successful transmissions

from queue one. In fact, the number of packets arriving at queue two are those

successfully transmitted over link one. Note that, in this case we do not consider

the exogenous traffic, then the probability that i packets arrive at queue two can be

approximated as

Qt Kxm

bo =Ðl z¡p1)(DPo) (min {k, t} ,i.).
lc:O l:0

The average arrival rate to queue two can be calculat ed. as A2 : y!:tlUt. To

calculate the average number of dropped packets due to overflow at queue two, let us



70

define s¿ to be the marginal probability that there are i packets in queue two, which

can be calculated â,s s¿ : Ðia)o"¡,¿. Simiiar to queue one, the average number of

dropped packets due to overflow at queue two can be approximated as

¡¿ Qt

Or =Ð t b¡sima.x{O,i + i - Qr}
i:7 j:ez_N

Finally, the end-to-end packet dropping plobability can be approximated as

Pt=r-(1 -P(1))(1 -Pt(2)) (49)

where the Ìoss due to overflow at both buffers and due to channel errors are taken

into account.

4.3.2 Average Delay

The end-to-end deiay is the sum of delays that any packet experiences in all queues

and links along its routing path. We ignore the transmission delays and only include

queueing delay in the caiculation. Using Little's law, the end-to-end average delay

can be written as

where the numerator of each term is the average queue length of each queue and the

denominator is the avelage arrival rate considering packet loss due to overflow.

4.4 General Case (L > 2)

We consider a more general tandem system with more than two queues in this sec-

tion. Only tr-affic flow from the considered connection is taken into account as in the

previons subsection. The more gener-al case as shown in Figure 4.2 wlII be investi-

gated in Section 4.5.2. Now, the tandem system has Z queues (L > 2) which are

concatenated to each other as a chain. The buffer size of queue z is assumed to be Ç¿

packets. Similar to the previous subsection, let q¿(ú) be the numbel of packets in queue

z at time siot ú (z :7,2,..' ,L), the random process Y(t) : {qt(¿) ,ez(t),"' ,rlt(t)},
(0 I qr(t) sQr,0 < q2(t) 1Qr, "',0 ( clz(t) < Ç¿) forms a discrete-time N4alkov

chain (MC).

\.8t;.. 5-Qr;o.
r-ì lJi:I vPt t /¿i:7 ""¿
- - 

1--------------- t

1-,(t - P,('))' Ã.rQ - Pt'))
(4.10)



7L

Obviously, a similar approach as in Section 4.3 can be pursued to obtain the

transition probabilities for this MC. The number of state transitions for this MC,

however, grows exponentiaily with the number of queues in the tandem system. In

fact, the order of the transition probability matrix P is f[!r(8t + 1) 
" ilLr(Ço + f ).

Therefore, the computational complexity is very high for a large numbel of queues

and a large buffer size. However, theoreticaliy \Ã/e can follow a similar procedure as in

Section 4.3 to derive the transition probabiiities, obtain the steady state probability

vector and all end-to-end pelformance measrlres.

4.5 Solution of the Tandem Queueing Model: De-

We present a decomposition approach to solve the general tandem queue where the

computational complexity grows only linearly with the number of queues in the sys-

tem. For ease of reference, buffers (queues) along the routing path are numbered in

an increasing sequence of integers with the buffer of the source node denoted as buffer

(queue) one.

To the best of our knowledge, a Jackson network is a queueing network with .L

queues satisfying 3 properties:

o The servers in each of the .L queues are independent of each other.

e The external arrivals (if any) at each queue are independent processes with

different lates.

c The network uses random r-outing.

The idea of decomposition approach here is basically similar-to the idea of solution

for Jackson queueing networks where the selvice times are not exponential, buffer sizes

are finite, and any arriving packet which sees the ftrll buffer wiil be dropped instead

of waiting for space in the next queue when the buffer at next queue is full.

composition Approach

4.5.L Technical Approach

We first consider the simple case where only queue one in the tandem accepts traffic

from the higher layer, other queues receive packets which are successfully transmitted
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from the previous queue in the chain. The more general case with exogenous traffic

from other connections as shown in Figure 4.2wtlI be discussed in Section 4.5.2. For

notational convenience, v/e assume that i packets arrive at queue ,k with probability

alk) ça\2): b¿ for the two queue case considered in Section 4.3.1). Note that the

maximum batch size (maximum number of packets arriving in one time slot) captured
. lk). ^t/.in ø)"/ is l/ (i.e., number of packets leaving this queue) while the maximum batch

size captured in ajt) is M (i.e., olf i. the probability of M packets arriving queue).

We observe that the behavior of queue i, -l 1 does not impact queue i in the

chain but the reverse is not true. This is because the outcomes (i.e., successfully

transmitted packets) from queue z ale fed into queue z + 1 and packets leaving queue

z which cannot be accommodated at queue i * 1 are simply dropped, and packets do

not wait at queue z for space in queue i f 1 when the buffer at i -l1 is full. Thus,

instead of forming the Markov chain which captures the queue length dynamics of all

queues we could find the queue length dynamics for one queue at a time where its

input is the output of the previous queue in the chain (except for queue one).

Specifically, we pursue the following steps. Form the MC for queue one, and

calculate its steady state probability vector. Based on the steady state probabilities,

calculate the packet arrival probabilities to the next queue. These arrival probabilities

are used to derive the arlival probabilities for the next queue in the chain. This

procedure is repeated until we obtain the solutions for the last queue of the tandem

system.

Obviously, using this decomposition approach the joint steady state probability

vector could not be found as in Section 4.3. However, the steady state probabiìity

vector for each queue in the chain is what we need to calculate the desired queue-

ing performance measures. Essentially, the presented procedure requires to soive ,L

separate queues each of which accepts batch arrival tr-affic and serves packets also

in batches. Let us consider a palticuiar queue k of the chain and form the MC

Xr(t) : {q^(t)}, (0 < qk(¿) < Qr) where q¿(ú) denotes the number of packets in

queue ,k with an arrival process described Ay o[r).

The transition plobabilities for this 1VIC can be found as follows. Let us consider a

general transition probability Pr {q --- ,r}. Let s be the number of packets arriving

at queue k and let the number of packets leaving this queue during the considered



time slot be l. Let us also assume that z packets among min{r1,c¿}

correctly received, then a number of packets at queue k in the next

xtz : min{"r + s,Qn} - i. Thus, the transition probability Pr {r, --
approximated as

Pr{ri ---, rr} = ttÐ alk)p{Ðçt¡ x p(A)(mtn {r1,t},i,)
lsi

where all combinations of l, s and'i such that 12: min{"t + s,Qn} -'i are included

in the sum.

Given the transition probabilities, v/e can easily calculate the steady state proba-

bility vector of this MC zi(À) : 
["á*' ,n\Ð , . . ,"gl), where ,.ik) denotes the probability

that there are'i packets in queue k. As in Section 4.3, the buffer overfl.ow probability

at queue k can be calculated as P,(r') : -* The average arrival rate of tr-affic to queue

k canbe written as4¡: tli'i,olk),*her" 3Q") is the maximum batch size of the

arrival process.

The probability that z pacÌ<ets are successfully transmitted at queue ,k and arrive

at queue k + 1 can be written as

Qn ¡/

Èñt.t

packets are

time slot is

z2) can be

These arrival probabilities are used to derive the queueing solution for queue k + 1

as in the presented procedure. And the average number of dropped packets due to

overflow at queue k can be calculated as

a(k+I) : Ð | r(h) rtt"t (¿) p(k) (¿ ) (m in {i, t}, z) .

j:0 t:0

6(t) Qr

ôo :Ð t o\n)n(r").max{0, i + i - Qn} .

i:r j:er-B(k)

Finally, the end-to-end loss probability can be approximated as

L
pt=r_llft _pto)

i.:7

and the end-to-end average delay can be written as

(4.11)

L

D:Ð

(4 12)

¡a'r; ¿r.!r)UX:T ¿

Ara-F5

(4 13)

(4.14)

(4.15)



4.5.2 Tandem Queue with Exogenous Traffic

In this subsection, we generali ze lhe queueing model further by allowing buffers of the

tandem system to accommodate exogenous traffic of other connections traversing the

Iinks of the considered routing path. At each queue of routing path, traffic coming

from other connections aiso enquer-les and shares the capacity of the wireless link as

shown in Figur-e 4.2. Traffic from the considered connection will be called endogenous

traffic and that from other connections will be called exogenous traffic in the sequel.

Beside the endogenous traffic as has been considered in subsection 4.5.1, we assume

that i packets from exogenous traffic sources arrive at queue k with probability eik)

(i : 0, 1,.. ., M, k :1,.. .,tr). Hence, both endogenous and exogenous traffic arrive

at each queue of the chain. The same procedure presented in subsection 4.5.1 can

be applied in this case where the aggregate traffic is multiplexed by endogenous

and exogenous traffic sources. Let /Æ) denote the probability that z packets of the

aggregate traffic arrive at queue k in one time slot. Then, we put ¡iÆ) ittto a rov/ vector

as /(k) : lfJt, , Ílo) ,. , /$)u,] , where B(A) is the maximum batch size. Similarly,

putting arrival probability for endogenous traffic oifr) and exogenous traffic 
"i*) 

ittto

vectors ø(È) and s(À), respectively, we have

f@):o@)g¿(k)

where e denotes the convolution operation. To calculate the queueing performance

measures, ¡j*) i. considered as arrival probabilities at each queue of the chain (instead

of o[*) as in Section 4.5.1). If exogenous traffic corresponding to some connections

Ieaves a queue in the middle of the chain, we have to exclude that traffic in calculating

the queueing solution for the next queue. We can approximately exclude that traffic

by turning off the traffic from that connection entering the tandem system at some

previous queue.
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4.6 validation of Decomposition Approach and Typ-

ical Numerical Results

we validate the proposed decomposition approach for the tandem queue model and

present some illustrative numerical results. We consider wireless networks employing

(4 16)
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M-QAM adaptive moduiation without coding using six transmission modes for all

transmission links, i.e. k : 0,1,2,. . .5. We assume that in channel state k, k packets

are transmitted in one time slot. the time slot interval T. : 2 ms.

---€- SISO decomposition model

--+- MIMO (2 x3) decomposition
--4- MIMO (3 x3) decomposition
-----t- Exact model

õ
0)
Eç
(ú
a)'o
0)(t)
o
0)

Figure 4.4. Impact of packet arriual rate on auerage delay (for SISO: 1o:15 dB,

for2 x 3 MIMO: 1o :5 dB, forS x 3 MIMO: 1s : 3 dB, QL: Qz:50, L : 2).

The variations of end-to-end packet dropping probabilities and average delay with
endogenous arrival rate where there is no exogenous traffic are shown in Figure 4.4

and Figure 4.5 for average PER : 0.001. We show results obtained from both the

exact and proposed decomposition queueing models in these figure. As is evident, the

proposed decomposition model provides a very accurate queueing solutions but it has

much lower computational complexity compaled with the exact model. Figure 3.12

and 4.5 also show the impacts of PHY layer design on the queueing performance.

Specifically, with more conservative PHY design) i.e. more antennas at transmitter-

and receiver sides, there is a signiflcant improvement in both the average delay and

the end-to-end packet dropping probability.

The average delay versus packet arrival rate with different exogenous traffic in the

tandem with tr : 2 is shown in Figure 4.6. Here, besides endogenous traffic, we ailow

Packet arrival rate (packets/timeslot)
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Figure 4.5. Impact of packet arriual rate on end - end paclcet dropping probabi,li,ty

(for SISO: ?o:15 dB, for2x3 MIMO''Yo- 5 dB, for3x3 MIMO: 'yo:3 dB,

Qt:Qz:50, L:2).

I o-tu

exogenous traffic from one other connection to arrive at queue two of the tandem

and share wireless capacity with endogenous traffic in the onward direction. The

average delays are shown for different arrival rates of exogenous traffic. Moreover,

when multiple antennas are equipped in each node, the end-to-end packet dropping

probability decreases rapidly compared to the SISO scenario. For exampie, in 3 x 3

MIMO scenario packet dropping probability of packet arrival rate from 0.1 to 1.3 =
0.

Figures 4.7 and 4.8 show the end-to-end packet dropping probability and avelage

delay versus packet arrival rate and exogenous traffic entering each queue has packet

arrival rate ( : 0.8. We observe that both end-to-end packet dropping probability

and average delay increase rapidly with the number of hops (11) and packet arrival

rate. Therefore, the long routing paths may increase the chances of QoS requirement

being violated significantly.
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Figure 4.6. Irnpact of packet arriual rate on aaerage delay i,n 2 x 2 MIMO uith

7o : 5 dB, Qt: Qz:50, L : 2, w'ith di'fferent erogenous trffic.

4.7 Summary

We have proposed a tandem queueing model for wireless mesh backbone networks.

We have presented both exact and approximated decomposition approaches to solve

a general tandem queue system. The proposed decomposition approach achieves very

accurate queueing performance measures with much lower computational complexity

compared to the exact approach. We aslo observe that by using MIMO links, instead

of SISO links, there is a significant improvement in end to end performances. The

proposed queueing model can be used to perform QoS routing and admission control

in a multihop wireless mesh backbone network.
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Figure 4.7. Impact of packet arrzual rate on auerage delay in 2 x 2 MIMO with

?o : 5 dB, Qn : 50, w'ith, different number of hops, i.e., H : L - 7.
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Figure 4.8. Impact of end - end packet dropping probabi,li,ty on auerz,ge delay in2x2
MIMO withls:5 dB, Qn:50, wi'th' di'fferentnumber of hops, t,.e', H: L-1.



Chapter 5

Conclusion

This chapter provides a summary of the works presented in this thesis and outlines a
few directons for future research.

5.1 Summary

We have presented an introduction and background on MIMO and its application on

wireless mesh networks. The advantage of using MIMO in a wireless mesh backbone

instead of a single antenna has been emphasized. We also presented a suïvey on the
issues and approaches to resource aliocation in MIMO based wireless networks. These

issues include MAC protocol design, admission control, power and rate control, cross

layer design in MIMO wireless networks. Two analytical modeis, i.e. tandem queue

system and its appiication in wireless mesh backbone based MIMO and an Antenna

selection and assignment approach, have been developed for wileless mesh netr,vorks

considering realistic physical and link layer designs. In particular, iink adaptation

techniques in the physical layer and ARQ-based error recovery in the link layer have

been taken into account in different analytical models. Both single-hop radio link
level design problems and end-to-end research issues have been considered.

The following provides a summary of the works presented in this thesis:

ø Antenna Selection and Allocation zn MIMO based w'ireless mesh networks: We

have presented a scheme for antenna selection and ailocation to achieve ser-

vice differentiation between QoS-sensitive and best-effort traffic in N4IN4O based

wireless mesh networks. This scheme, which is based a i\4arkov Decision Process

formulation of the antenna selection problem, prioritizes two different traffic
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types and satisfies the requirement of QoS fairness between these two traffic

types. Both channel state information and channel memory are exploited for-

wireless transmission. From the analytical model, various QoS measures can

be obtained. The performance evaluation lesults have shown that the solution

based MDP can provide nearly the talget level of QoS to both the QoS-sensitive

and the best-effolt traffic.

o Performance Analysi,s of a MIMO-Based Wi,reless Mesh Baclcbone Network: For

performance analysis of a multihop wireless mesh backbone network, we have

proposed a tandem queue model which takes the QoS requirements such as

the end-to-end packet dropping probability and end-to-end avelage delay into

account. Both exact and approximate tandem queueing models considering link
adaptation and ARQ error protection have been proposed. By using spatial

multiplexing MIMO in the physical layer, a number of parallel independent

streams can be sent at the same time, thus increasing the data rate. The

results from the analysis reveal that using MIMO links, instead of SISO links,

is a key technique to improving the end to end performance.

5.2 F\rture Research Works

The thesis has developed some systematic methods for cross-layer anaiysis and re-

source allocations in MIMO-based wireless mesh networks. The results are also ap-

plicable to resource allocation problems in NzIIMO-based wireless ad hoc or sensor

networks. The long-term goai of this research is to derive structural results and

adaptive algorithms for MIMO-based wireless ad hoc/mesh/sensor networks. For fu
ture research, the work in this thesis can be extended in several directions. In what

follows, rve propose a few research problems related to the work in this thesis.

ø Reductton'in computationaL complerity: As it has been mentioned in Section 3.5.1,

although, in theory, MDPs can be soived in polynomial time in the size of state

space and action space) this only holds true for so called fiøú representations of

the system in which the states are explicitly enumerated. Due to complexity

in computations required to investigate policy, the system, in fact, takes a con-

siderable amount of memory and time to implement the optimal policy. Thus
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a stochastic approximaxition algorithm which reduces the computational com-

plexity is necessary for a practical system where the buffel size and tranmission

modes are in a large number.

There are some works in the literature which focused on hou to reduce the

computati,onal complerity. In [48], an optimal approach to find a transmission

scheduling poiicy that minimizes an expected total cost, which is the sum of

accumulated transmission costs and a data loss cost, has been proposed. The

concept of. supermodularity was applied to the dynamic programming equations

to prove that the optimal tlansmission policy ts a threshold poti,cy in the resid-

ual transmission time and the buffer state. Thus if a MDP has a threshold

poli,cy, one only needs to compute the thresltoldto implement the optimal pol-

icy. However, the action space in this work is quite simple, i.e., there are only

two actions where action 1 corresponds to 'transmit' and action 2 corresponds

to 'no transmit'. Therefore, this approach cannot be directly applied to our

model.

The concept of. supermodularzty [21] was used to prove the monotone structure

of the optimal resource allocation policy. However, the proofs and the algorithm

to obtain the monotone results in [21] cannot be generalized for the case of a

Markovian system as considered in this thesis.

Another possible approach to reduce the computational complexity of natural

MDP might be the polzcy bound for MDP. In la\, the authors proved that an

MDP can be approximated to generate a policy bound, i.e., a function that

bounds the optimal policy from below or from above for all states. This work

also presents sufficient conditions for several computationally attractive approx-

imations to generate rigorous policy bounds. These approximations include

approximating the optimal value function, replacing the original MDP with a
separable approximate MDP, and approximating a stochastic MDP with its
deterministic counterpar-t. An exampie in fishery management problem [44]

showed that the number of calculations per iteration reduces from 1060 states

to 1020 states.

In future works, we might count on Q-learning and gradient based stochastic

approximations to solve the problem. Q-learning ts a model-free method that is
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extremely useful for solving infinite horizon MDPs, where the transition prob-

abilities that characterize how the system evolves may not be available. The

principle of Q-learning is to gather information about the transition probabil-

ities, as well as costs, through sampled tlajectories of the system [65]. Thus,

the agent is required to learn by interacting with the environment. Using the

learning aigorithm, the expected cost of performing different actions at differ-

ent system states can be estimated, and the agent can choose the best action

accordingly.

Opportun'ist'ic resource allocati,on wi,th partially obseruable states: In this thesis,

we have made the assumption that perfect quantized CSI is available to both

transmitter and receiver. In a practical system, channel states can oniy be

observed in noise, and perfect quantized CSI is not easy to obtain. A prospec-

tive extension of the work here is to consider the case when the channel state

cannot be observed perfectly. In such a situation, the opportunistic resource al-

location problem can be formulated as a partially observable MDP (POMDP).

The motivation for the POMDP formulation is the obvious fact that POMDPs

are a closer approximation to the real system. However, the drawback is that

POMDPs are much harder, and typically infeasible, to solve optimally. As a

result, analyzing a POMDP will require some solts of approximation eventually.

Resource allocati,on i,n MIMO wireless mesÍt. neworlçs i,n multi,ple-hop scenar-

'ios: In Chapter 3, we have considered the resource allocation problem from

the perspective of a single mesh router. In Chapter 4, we have presented a

queueing theoretic performance analysis model for a muitihop transmission sce-

nario. Constructing an optimal resource allocation strategy involving muitiple

mesh routers which optimizes the end-to-end system performance is the key to

successful implementation of wireless mesh networks. Optimization and game

theory might be important tools to investigate the solution. Also, due to the dis-

tributed nature of wireless mesh networks, both in wireless clients and routers,

routing and congestion control together with resource allocation and physical

layer design issues continue to be challenging research issues.
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