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Abstract
This thesis is concerned with an algorithmic study of the Hamilton cycle problem.

Determining if a graph is Hamiitonian is well known to be an NP-Complete problem,

so a single most efficient algorithm is not known. Improvements to the understanding

of any single NP-Complete problem may also be of interest to other l/P-Complete

problems.

However, it is an important problem and creating an algorithm which is efficient

for many families of graphs is desirable.

The majority of the work described within starts with an exhaustive backtracking

search, called the N4ulti-Path method and explores two main areas:

r Creating an algorithm based upon the method which is both efficient in time

and memory when implemented in code.

o Developing a pruning condition based upon separating sets that may be found

during the execution of the method in order to maximi ze the amount of pruning

possible.

Both of these areas represent a significant evolution of previous work done with

the method. The resulting algorithm is extremely fast and requires only O(n -l e)

space in memory, where n is the number of vertices and e is the number of edges.

Additionally a class of graphs based on the Meredith graph is described. These

graphs have a property which significantly affects the performance of the multi-path

method. The insights that follow from this property lead to a reduction technique

that further improves the algorithm in a significant way when determining if graphs



Abstract

are non-Hamiltonian. Further directions for study along the lines pursued by these

insights is discussed.

Testing of the algorithm is performed on a family of graphs known as knight's

move graphs, which are known to be difficult for algorithms dealing with Hamilton

cycles.
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Chapter 1

Introduction

This thesis describes work that improves and extends upon an algorithm for fi.nding

Hami,lton cEcles in graphs.

Named lor S'ir Wi,lliam Rowan Hami,lton, the popularity of the problem of finding

Hamilton cycles originates from the lcos'ian Game invented by Hamilton. The object

of the game is to find a continuous route along the edges of a dodecahedron that visit

all of its corners exactly once and ends at the starting corner.

A graph can be visualized as a collection of points, or uert'ices, connected by lines,

or edges. A cycle is a walk along a path of edges visiting vertices until ending at the

originating vertex. A Hamilton cycle is a cycle that visits every vertex in a graph

exactly once. The difficulty of finding Hamilton cycles increases with the number of

vertices in a graph. Not all graphs contain a Hamilton cycle, and those that do are

referred to as Hamiltonian graphs.

Determining if a graph is Hamiltonian can take an extremely long time.

In the broad field of Computer Science the problem of determining if a graph is



Chapter 1 : Introduct'ion

Hamiltonian is known to be in the class of NP-complete problems.

Simply put, the time it takes to solve NP-complete problems can rise exponentially

with the problem size.

Another NP-complete problem very closely related is the Traueltng Salesman

Problem.

The nature of the Hamilton Cycle problem is such that no single most efficient

algorithm is known [Van9S]. In [Van98], Vandegriend provides a survey of differ-

ent Hamiltonian algorithms and the problems encountered that can cause extreme

slowdowns during algorithm execution.

Any improvements that can be made to speed up solutions to both determining if

a graph is Hamiltonian and finding Hamiltonian cycles are of interest. Also, because
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of the complexity of the problem, improvements may reveal more insight into the

qrialities of graphs that make them Hamiltonian. Due to the nature of NP-complete

problems, all problems in the class NP may benefit from improvements or insights

found.

The multi-path method introduced by Rubin [Rub7 ] and Chri,stofides [Chr75]

is an exhaustive search for all possible Hamilton cycles that can be found within a

$aph. The work by Kocay [Koc92], implements the method with an algorithm that

overlays additional pruning capabilities into the search. Under certain conditions the

improvements in [Koc92] can allow for significant pruning of the search tree generated

by the multi-path algorithm.

Thi,s thesi,s ertends and'improues on the worlc'in [Koc92] wi.th two rnajorirnproue-

ments and, introd,uræ o method, for d,eali,ng wi,th certai,n specr,al graphs that can lead,

to erponential increases 'in the performance of the algorithm. As with the work from

[Koc92], the work described here is for finding Hamilton cycles in undirected simple

graphs.

The first of the improvements is to the design and implementation of the algorithm

in [Koc92]. These improvements result in reduced runtime and decreased memory

use and are significant code optimizations. The memory reduction is by an order of

magnitude in terms of the number of vertices in the graph. The runtime improvement

is linear with respect to the complexity and size of the graph.

The second of the improvements is to the scope and frequency of the pruning

enhancement from [Koc92].

The new method focuses on a recursive graph reducti,on technique that can be ap-
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plied repeatedly to graphs that contain subgraphs with a certain interesting property.

The contents of this thesis is organized in the following way:

r Chapter 2 introduces and describes common graph theory concepts that are

used throughout this work.

o Chapters 3 and 4 introduce and describe the multipath method in detail.

o Chapter 5 discusses algorithm details with respect to the required data struc-

tures needed for the new multi-path algorithm and compares against those

needed by the previous algorithm from [Koc92].

o Chapters 6, 7 and 8 describe the new multi-path algorithm and its improvements

over its predecessor from [Koc92].

o Chapter 9 introduces the pruning technique and describes the improvements to

it from [Koc92].

o Chapter 10 introduces the reduction technique and shows how it can be used

to speed up detection of certain non-Hamiltonian graphs.

o Chapter 11 discusses how the work for this thesis was verified and provides some

analysis of the improvements introduced.

o Chapter 12 discusses some further directions research into this problem could

take, based upon the work provided by this thesis.



Chapter 2

Graph Theory Concepts

2.L Basic Terminology

A graph G is composed of asetV(G) of vertices and a set E(G) of edges. It

is assumed that n: lV(G)l and e : lE(G)1. Every edge e e E(G) is composed of a

set e: {u,u} where u,,'ù €V(G).In undirected graphs, edges are unordered pairs

of vertices. In directed graphs, edges or arcs are ordered pairs of vertices. Simple

graphs do not allow edges to repeat and the vertices in an edge must be distinct.

Only simple graphs are considered here.

The edges from -E(G) which contain u are said to be incident to t,. The two

vertices incident to an edge are said to be adjacent.

Given the graph G and two vertices z and ¿' from V(G), LL ---+'Ì) means that u and

u are adjacent. u þ u indicates that u and v are not adjacent.
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Figure 2.1: Three drawings of the Petersen graph.

2.2 Graphical Representation

As an abstraction, a graph G is represented mathematically as composed of two

sets I/(G) and E(G). Visually this can be represented as a collection of points, V (G),

connected by lines, E(G).The co-ordinates of the points or the shape of the lines do

not matter. The same graph G can therefore be represented visually by an infinite

number of drawings. Depending on the drawing, different attributes of a graph may

become more apparent to the observer. For instance the drawing on the right hand

side of figure 2.1 suggests that there may be a Hamilton cycle in the Petersen graph.

While the Petersen graph is not Hamiltonian, using the same graphical orientation

of fitting adjacent vertices around a circle is a useful representation to help in finding

Hamilton cycles in relatively small graphs using simple observation.

2.3 Paths and Cycles

A path in G is defined to be an ordered sequence of d'ist'inct vertices such that

every vertex in the sequence is adjacent to the vertex that immediately precedes

it and adjacent to the vertex that immediately follows it. This can be written as
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14 + 'u2 + "' --+ 'tr&, where u1 through u¡ aîe all distinct vertices from I/(G). A

cycle in the G is defined as a path in G thal terminates on the starting vertex. The

number of edges in a cycle is equal to the number of vertices.

2.4 Connectivity

Figure 2.2: Ðxample of a graph with a separating set.

If a path exists between two distinct vertices, t),t-t" €V(G), they are called con-

nected. A graph G is connected if every pair of distinct vertices from I/(G) is

connected. A component in G is a maximal subgraph of G that is connected. A

$aph with more than one component is calied disconnected.

In a connected graph G, a separating set is a set of vertices from G that when
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removed, disconnects G. A separating set, K, with rn : lKl, is called minimum when

there is no other separating set in G smaller than m.

A cutpoint in G is a single vertex from G that forms a separating set in G.

2.5 Bipartitions

A bipartition exists in a graph G, 1f V (G) can be divided into two distinct sets,

A and B, where An B : Ø and AU B : V(G), and no two vertices from the same

set are adjacent. A graph with a bipartition is referred to as bipartite.

2.6 fsomorphism

An isomorphism is a one-to-one mapping between vertices of two graphs that

preserves the connections, or edges, between vertices. If an isomorphism exists, the

two graphs are said to be isomorphic. The three drawings of the Petersen graph in

figure 2.I are isomorphic to each other.
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The Multi-Path Method

This chapter describes the multi-path method for finding Hamilton cycles. While

it was originally proposed by Rubin in [Rub74], the description of the multi-path

method within this chapter is a synthesis of the descriptions from [Koc92, Chr75] as

well as the work described by this thesis.

To facilitate understanding of both the multi-path method and the enhancements

to it some preliminary ground must be covered. Section 3.1 describes a truly ex-

haustive method of finding Hamilton cycles. Sections 3.2 and 3.3 describe two im-

provements that can be used to reduce the amount of search required and section 3.4

combines the results of the improvements to describe the multi-path method. Finally

in section 3.5, a few refinements that appear in [Koc92] are described and added to

the method.

Assume that all graphs G to be considered are connected and that all vertices are

at least of degree three.

The algorithms described in this chapter are partial algorithms used as a tool

9
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to convey general information about the multi-path method. Procedures that are

not fully defined can be implicitly understood given their names and context of use.

Each undefined procedure is assumed to be implementable by some algorithm with a

polynomial overhead in time and space.

3.1 An Exhaustive Search

By definition all vertices from V (G) must be part of any Hamilton cycle of G.

The edges that make up any Hamilton cycie are what must be varied.

One method to determine if a graph is Hamiltonian is to generate all combinations

of n edges from E(G) until a Hamilton cycle is found or until no combinations are

left. In the worst case, the number of edge combinations to try i. (å)

The order in which edges are chosen with this method is not restricted by the order

in which they would be traversed in a Hamilton cycle. When testing if the chosen

edges form a Hamilton cycle the correct traversal order will implicitly be found.

Let ,S be the subgraph of G describing a partial Hamilton cycie formed by choosing

zn edges, ffi 1 fr, to be on the Hamilton cycie. ,S forms a subgraph in G, with E(S)

and V(,S) its edges and vertices. Obviously m: lE(S)l

When rn : n we have a candidate subgraph that will form a cycle iff G is

Hamiltonian.

Algorithm 3.1.1 briefly describes a recursive procedure for generating and testing

all possible combinations of edges up to the first Hamilton cycle found.

The algorithm works by recursively fixing an edge within ^9 and attempting all

possible edge combinations for the remaining n - rn positions to be filled with the

10
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current edges available.

IsCgcle verifies if E(,S) describes a Hamilton cycle and ChooseEdge returns some

unspecified edge from the remaining edges at the current depth in the search space.

The recursive nature of the procedure allows for the search space of the algorithm

to be modeled as a tree. In this case the depth is bounded by n and the number of

leaves is bounded ¡V (å). Each node in the search tree represents this fixed position

in ,9 and the branches represent the current edge in that position.

This type of algorithm is referred to as a backtrack'ing algorithm. The ability to

return to a specific spot while searching and ensuring that all possible permutations

of decisions are attempted from that point characterize these kind of algorithms.

11

Algorithm 3.1.1: HCEocps(n, t, 3)

IAll parameters passed by value.
comment: { Initially n: lV(G)|, t : E(G) and .S is empty.

lresult: true e G is Hamiltonian

if lE(S)l : n then return (IsCvct o(S))

while t + Ø

( " - Cuoos¡EDGE(t)
do 1t<-t-e

lif nCnoGES( n, t, 3 +e ) then return ( true )

return ( false )
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3.2 Incident Edges about u

Algorithm 3.1.1 blindly generates edge combinations. If instead the focus is now

placed on vertices, a significant fact emerges. AII possible edge combinations about

a €V(G) use one of the deg(u) edges incident to u. There are up to (d"s{'l¡ ways of

selecting pairs of incident edges in any possible cycle about o.

Algorithm 3.2.1 is a modification of algorithm 3.1.1 to instead use vertices chosen

by ChooseVerter, in the selection of edges. These vertices are referred to as anchor

poi,nts. Instead of branching out with all remaining edges at the current spot in the

search space, only edges incident to the anchor vertex u are chosen for branches.

Similar to ChooseEdge from the previous algorithm, ChooseVerterUdge returns

some unspecified edge incident to'u from the remaining edges at the current depth in

the search space .

Algorithm 3.2.L: HCVonrBxEocns( fr,V, t, S )

f All parameters passed by value.
comment: { Initially n: lV(G)|, V :V(G), t : E(G) and S is empty.

lresult: true ç Ç is Hamiltonian

if lE(S)l : n then return ( IsCvcr,n(.S) )

u *- CsooseVnnrex(V)
ifu€I,r(5) thenV*-V-u

while deg(t,u) + 0

( uu *- CuoospVERTEXEDGø(u, t )
do lt*-t-eu

Iif HCVoRTEXEDGEs(n, V, t, S +eb )then return ( true )

return ( false )
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As seen in the algorithm a given vertex may be chosen twice when descending

towards a leaf in the search space. This allows for the (o"n;')) possible edge pairs

about 'u to be explored iteratively and dramatically reduces the breadth of the search

tree by limiting the total number of leaves while not removing any possible Hamilton

cycle that could be found.

The order and manner in which ChooseVerter picks vertices in V will be discussed

later in section 6.2.

3.3 Limiting Edges

Edge choices from E(G) can be limited based on the edges already chosen. For

arry u in a cycle, only two edges incident to ,u may be used and deg(u) : 2 with

respect to the subgraph the cycle defines in G.

Definition (segment). A segment i,s a path in G. Segments do not ouerlap or share

endpoints wi,th other segments.

Let,9, be a subgraph in G defined by some segment and let S :,Sr U ... U,9r be

the k segments formed from E(^9) . V",(S) denotes the external vertices, or segment

endpoints, andl\"(S) denotes the internal degree 2 vertices with respect to,9. As in

the previous section, m: lE(S)1.

When adding another edge to ^9 the choice of e*¡1 e E(G) is now limited to the

edges of E(G -U"(S)), as no more edges incident to the internal vertices in,S can

be chosen and stil satisfy the degree 2 restriction.

Inductively it can be seen when rz starts at 0 and approaches n, only two edges

13
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incident to a given a e V(G) can ever be in E(.9).

The mai,n i,dea of the multi-path method is to construct a Hami,lton cycle by piec,ing

together the di,sjoint segments formed by the edges 'in S.

3.4 Multi-Path Method

The multi-path method uses the two ideas from sections 3.2 and 3.3 to dramati-

cally reduce the search space of algorithms 3.1.1 and 3.2.1.

The selection of a new edge will eventually cause a chain reaction as each new

a €U"(S) may induce conditions that require unchosen additions to E(S).

Let the vertex and edge sets for the derived graph M be:

t4

v(M):v(G) -u"(s)
E(M): t t E(G -U.(S))

(3 1)

(3.2)

Where á is the set of edges remaining in G to be selected for E(^9). More on t

will be described later in this section. For now, assume lhat t has been inherited

from the parent node in the search space.

E(M) represents the remaining edges available that may be added to E(.9) at the

point in the search space it is defined. Deriving M may result in one or more vertices

ínV(M) that no longer have any choice in what edges are placed into E(,S), leading

to the following definitions:

Definition (forced vertex). A forced uerteris a uerter u e V(M) where deg(u) : 2

when u ø V(S) or deg(u) : I uhen u e V",(S).
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Definition (forced edge). An forced edge zs an edge e e E(M) where u e e and u 'is

a forced uerter.

Forced vertices must be added Lo V¿"(S). These additions are accomplished by

adding forced edges one at a time to E(.9).

The chain reaction occurs when the two vertices incident to a forced edge both

belong Lo V""(S). In this situation either a cycle is found or two segments are forced

to merge. The two vertices incident to the forced edge that caused two segments to

merge are called juncti,on vertices and now belong toI/,"(S). Any edges not in E(^9)

that are incident to the junction vertices must be removed from M and may result

in one or more additional forced vertices.

Definition (consistent). M i,s said to be consi,stent i,f for allu €. M, deg(u) > 7

when u e V""(S) and deg(u) > 2 when a ø V"(S).

The chain reaction continues untll M stabilizes and is found to be consistent or

until a stoppi,ng condi,ti,on occurs. A stopping condition indicates that the current

set of segments cannot lead to a Hamilton cycle, or that a Hamilton cycle has been

found.

A stopping condition can occur in three situations:

Stop Condition (14). lu e V""(S) and deg(M,u) :0

Stop Condition (te). 
=u 

øV,(S) and de7(M,u): I

Stop Condition (2). For sonxe segrnent S¿ € S there erists a forced edge, e e E(M),

such that the additi,on of e to S¿ would, form a cgcle. In thi,s case ,if m: n a Hami,lton

cycle has been found. If m < n no Hami,lton cgcle can eri,st tn the current S.

15
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After each change to ,9 a stop condition may occur in M. Algorithm 3.4.1 describes

this process of forcing edges into ,S and testing for a stop condition.

16

Algorithm 3.4.L: FoncpEocos( G, V, t, S)

[A]l parameters passed by value.
comment: { Returns the set {V, t, 3, stop } where stop is a

I boolean flag indicating a stop condition.

E¡ø * E(G -U"(S)) ) t
V¡ø *V(G) -U"(3)

while

do

V <- V )V¡rt
t*Eu

return ( { Y, t, S, false } )

then return ( { Ø, Ø, Ø, true } )

not IsCoNSrsrENT(%,(S), E

ls=5+GBTFoRCEDEDGE(
) E, *- E(G - V"(s)) ì t
\v* *- v (G) - U"(s)
I if IssroeCoNolnoN (S, E¡,¡ )

*)
V."(S), Eu)

Now that the process of forcing edges into ,S has been described, the rest of the

method follows the same design as algorithm 3.2.1.

Using the first improvement from section 3.2, an anchor poi,nt a is chosen from

V(M) and a single edge, e6, incident to u is selected from E(M) and added to E(.9).

This edge is referred to as a branchi,ng edge, and is a reflection of one of the two

locations in the search space where choice is allowed in the algorithm. The other

being the selection of anchor points. The overall shape and size of the search space

is controlled by these choices.

After removing eb, M may no longer be consistent and have edges to be forced into



Chapter 3: The Multi-Path Method

,9, ultimately reducing the number of anchor points and branching edges to choose

from. Algorithm 3.4.2 describes the multi-path method using the ideas given so far.

As previor-rsly mentioned and used in the previous algorithms, á represents the

edges remaining in G that can be chosen for ^9. Edges are removed from á in two

ways. The first is by the G -U"(S) reduction. The second is by removal of branching

edges, e6, thai, have had all possible combinations of E(.9) attempted for the current

location in the search space. Once a branching edge has been used, no more cycles

can be found that contain that edge when continuing to search at the current depth

in the search tree.

Algorithm 3.4.2: HCMulrrPern( G, V, t, S )

f Alt parameters passed, by value.
comment: { Initially V :V(G), t: E(G) and S is empty.

lresult: true + G is Hamiltonian

{V, t, S, stop } * FoncnEocns( G, V, 8, S )
if stop then return (IsEquar.(lV(C)l , lø(S)l ) )

u o- CuooseVenrnx(V)

while des(t,u) + 0

( ", 
*- CgoosBVERTEXEDGø( u, t )

do \t * t - eu

tif HCMuruPeru( G, V, t, E + eó ) then return ( true )

return ( false )

As can be seen from the use of the stop conditions, no IsCEcle test is required

with the multi-path method. This follows from the inductive reasoning provided

at the end of section 3.3. If the algorithm ever allows E(.9) to contain n edges, a

I7
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Hamilton cycle will be found. Taken together, both of the improvements reduce the

total breadth and average depth of the search space. This 'is one of the major benefits

of the mult'i-path method.

3.5 Simplifying the Search

A couple of minor improvements to the multi-path method are now described that

focus on simplifying movement through the search space. Both of these improvements

are used by [Koc92]. Section 3.5.1 introduces a reduction that can be applied to G

in order to direct the path through the search space more efficiently. Section 3.5.2

removes redundant recursive calls to the multi-path method at a given node in the

search space.

Algorithms 3.5.1 and 3.5.2 reflect these improvements, and are the basis for the

multi-path algorithm developed and presented Ìater on in this work.

3.5.1 Reducing G

At any given node in the search space there is the original $aph G, the set ,S

of segments derived from the rn edges selected so far and the derived graph M as

described by equations 3.1 and 3.2.

A reduced graph Gs¿ defined by M and ,9 may be defined for any point in the

search space.

18
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V(Gse):V(M)

E(Gst): E(M) u E,(S)

(3.3)

(3 4)

E,(S) is a set of. uirtual edges created to connect the segment endpoint s in M .

Each virtual edge represents a single segment from ,S at the current point in the

search space. Let the edge {u,'u}€ E,(S) be a virtual edge representing the segment

S¿ e S, then z, u € V""(Si). Virtual edges may be thought of as the connections

between unsearched sections of the graph. They may not be forced and can not be

chosen for any E(,9) as they already represent the edges that make up the segments

already contained by S.

Edges from M may be referred lo as real edges. Real edges are what remains of

the choices available to E(^9) for any descendent point below the current in the search

space.

Due to equation 3.4 some of the conditions that define forced vertices, consistency

and stop conditions can be simplified:

Definition (forced vertex). A uerteru €V(Gs¿) where deg(u):2.

Definition (consistent).Gse i.s sai.dto be cons'istent'if for allu €V(Gse), deg(u) > 2.

Stop Condition (1). :,u €V(Gs€) such that des(u) :1.

In algorithms 3.5.1 and 3.5.2, the variable Ç represents the reduced graph Gs¿.
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Ensuring a Simple Graph

A consequence of introducing the virtual edges from E,(^9) in the forming of Gss

is the potential for a virtual and a real edge to share the same endpoints. In this

situation Gs¿ would not represent a simple graph. With respect to G, the segment

that the virtual edge represents and the real edge would form a cycle in G. As long as

this cycle is not a Hamilton cycle, it is safe to remove the real edge, as any descendant

point in the search space below the current one will never use the real edge in any

Hamilton cycle found.

In fact its removal would reduce the size of the tree formed below the current

point in the search space.

In algorithm 3.5.1 it is to be assumed that ReduceGrøph would ensure that a

simple graph is returned, and any virtual edge takes precedence over a real edge.

3.5.2 Removal of Branching Edges

As seen in algorithm 3.4.2, once a branching edge, e6, has been attempted, it is

removed for the remaining branches at the current level in the search space. Since

all edge combinations that may exist at that point in the search space which contain

that branching edge will have been attempted, it must be removed. This removal

may cause an inconsistent G5¿.

In this case the multi-path method as currentÌy defined, wiil fail at the first call

to ForceEdges for each recursive cail to the multi-path method on the remaining

branches. It would instead be better to detect if Gs¿ is inconsistent once the recursive

call to the multi-path method returns for that branching edge. In algorithm 3.5.2, the

20
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addition of a call to ForceEdges from within the while ìoop reflects this improvement.

Algorithm 3.5.1: FoncpEocÐs( ç, S )

|.Ail parameters passed by value.
comment: { Returns the set { ç, S, stop I where súop

I boolean flag indicating a stop condition.
ISA

9 *- RpoUcEGRAPH ( ç, S )
if IsSropCoNorrroiv( ç, S) thenreturn ({Ø, Ø, true } )

while

do

return ( { ç, S, false } )

ç)

thenreturn ({Ø, Ø, true } )

not IsCoNSrsrENr(ç)
(S*-S+GoTFoRCEDEDGE(

\Ç * RBoucBGnaeH( ç, S)
Iif IsSroeCoNurroN( 9, 5 )

Algorithm 3.5.2: Mui,rrParn(n, Ç, S )

fAil parameters passed by value.
comment: { Initially Ç : G, and S is empty.

lresult: true <+ G is Hamiltonian

{ ç, S, stop } <- FoRcBEDGES( ç, 3 )
if úop then return ( n : lE(S)l )

u -- CHoosEVÐRrEX (V (ç))

while

do

return ( fatse )

des(u) I 0

( 
"o 

*- CuoosBVpRroxEocø( u, E(Ç) )
lÇ*-Ç-en
{ if Vtur,tlParu( n, ç, S + 

"o) 
then return

I { ç, s, stop } <- FoncnEocns( ç, s )
(if súop then return (n: lE(S)l )

( true

27



Chapter 4

The Search Space

To provide context on where the improvements described in this thesis are focused,

this chapter illustrates the search space of the multi-path method.

The search trees used to describe the search space are assumed to be traversed

in a depth first, left to right manner and are a reflection of the route generated by

algorithm 3.5.2.

A hypothetical example of a search tree is presented in figure 4.1. The larger cir-

cular nodes represent the anchor points chosen and the smaller solid points represent

vertices removed from Ç and placed into I{"(S). The small diamond shaped leaves

of the search tree represent the occurrence of a stopping condition.

Anchor points that exist close to the extremities of the search tree are referred to

as leaf nodes. A leaf node is an anchor point in the tree that only contains leaves as

descendants.

The edges joining points in the search tree do not correspond to edges added

to E(S). The dashed edges between points in the tree do however indicate that a
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branching edge was chosen at that point in the search space.

The rightmost solid edge descending out of an anchor point in the search tree

represents an inconsistent state occurring due to the removal of a branching edge

from Ç.

4.L Example: Petersen Graph

The search tree for the non-Hamiltonian Petersen graph is shown in this example.

This graph is used as an example because it terminates after only finding six stopping

conditions.

Figure 4.2 represents the search tree for the Petersen graph. The labeled vertices

on the drawing of the Petersen graph correspond to the labels on the search tree. In

the case of the Petersen graph, each of the six leaves terminate with stop condition 1

being encountered.

Table 4.1 describes the state of E(S) at each of the six ieaves in the search tree

moving from left to right. Note how the branching edges correspond to the anchor

points from the tree, and how E(5) behaves like a stack when moving between the

branching edges.

In figure 4.3 the state of Ç is represented for each stable state after the branching

edge has been added to E(5) for each branching edge down to the leftmost leaf. Note

stop condition 1 is detected for vertex 4 after branching edge {2,3} has been added.

Also note that virtual edge {8,9}, requires the removal of the corresponding real edge,

leading to the addition of vertex 7 to V¿"(S).

As a comparison to the first method presented for finding Hamilton cycies, this

23
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Table aJ: E(S) at the leaves of search tree for the Petersen graph. Branching edges
are bold.

Edge f

24

1

2

ù

4

5

6

7

8

{r,s} {1,8}
{L,T} {r,T}
{9,10} {9,10}
{6,10} {6,10}
{2,3} {3,5}
{b,6} {2,4}
{5,8} {2,9}
{7,8} {5,6}

{1,3} {1,3} {r,7} {1,7}
{1,10} {1,10} {1,10} {r,rO}
{7,8} {7,8} {2,3} {2,3}
{4,7} {4,7} {3,5} {3,5}
{2,3} {3,5} {2,4} {2,e}
{5,6} {2,4} {8,e} {4,7}
{5,8} {2,e} {e,10} {4,6}
{2,4} {e,10} {4,7} {5,6}

exampie of the multi-path method only generates 6 leaves, using only 5 points where

a branching is directly controlled by the algorithm. The first method would have

generated (1å), ot 3003 leaves, and. many more branchings would have to be controlled

directly by the algorithm.
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Figure.4.1: Hypothetical search tree generated during the search for Hamilton cycles
for some unknown graph using the Multi-Path method. Typically the tree generated
would be extremely large and would not be practical to display.
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Figure 4.2: Full search tree of the multi-path method for the Petersen graph.

Figure 4.3: State of. Ç after each branching edge down to the leftmost leaf.



Chapter 5

Considerations for Algorithm

I)esign

Before progressing further with the design of the multi-path algorithm, some con-

siderations with respect to data structures and implementation details for [Koc92]

must first be mentioned.

The implementation for [Koc92] is similar to what has already been introduced

for the multi-path method in algorithms 3.5.2 and 3.5.1. It is a recursive procedure

that can be configured to either stop at the first Hamilton cycle found, or to visit

each possible Hamilton cycle by examining the entire search space.

If a Hamilton cycle is treated as a stopping condition for a branch instead of a

stopping condition for the algorithm, this visiting operation is possible in the multi-

path method.

27
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5.1 Data Structures

If each vertex is labeled with a positive integer value, it can be used both as an

identifier and as an index in lookup tables, arrays and other data structures. The

special identifier of '0' is reserved, and can have specific meaning depending on use.

Typically this use will result in the 0rä entry from any table/array to be used

either as a temporary store or go unused. Entries in a table/array structure that

use the 0 value in an entry where a vertex identifier is expected typically mean the

indexed value does not belong to a set tracked by the structure.

5.1.1 Adjacency Matrix and Lists

Two ways to store the edges of a graph are by using either a matrix, refered to as

an adjacency matrir, or a linked list construct, called an adjacency li,st.

An adjacency matrix is an n x n dala structure that uses the index of two vertices

to determine the existence of an edge. An adjacency matrix however has two main

drawbacks: it is slow to determine all of the edges incident to a given vertex and it

takes O(n2) of memory to store.

A linked list has the drawback of not being able to quickly test if two vertices

are adjacent. The adjacency list for a given vertex must be scanned until the other

vertex is encountered.

The benefit of an adjacency list is when the traversal of all edges of a given vertex

is all that is required. Additionally with adjacency lists, the entire graph is stored in

O(e) space.

In [Koc92] both of these structures are used, however as will be shown in later
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chapters, there is need only for the adjacency lists.

5.I.2 Degree Values and Virtual Edges

Storing the current degree value in a lookup table/array is extremely useful, as it

avoids the overhead of recalculating them. Depending on the data structure used to

represent edges, the time overhead of recalculating is at least O(deg(u)). A lookup

table reduces this to O(1). The tradeoff here is that more memory is required to store

the degree value of each vertex.

One very useful aspect of maintaining the degree array, is that it becomes trivial

to test if a vertex is still within the currenl Ç, as it must have a non-zero value in the

alray.

With respect to the multipath method, the extra virtual edge that may exist for

any vertex can be stored using an array of vertices. At any point in the search space,

the state of Er(.9) can be reflected by an array with either a'0'value for vertices not

in ,S or a vertex value for the other end point of a virtual edge.

As will be seen later, this way of representing the virtual edge is preferable to

inserting a ne\À/ edge into an adjacency list.

5.1.3 Segment and Cycle Storage

One resuit of the work done in this thesis, is that it is unnecessary to store the

current segments and partial cycles during the running of the algorithm. Instead

only directly maintaining the stack of edges in E(S) is necessary, as both segment

and cycles can be directly derived from the contents of E(.9).
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However, in [Koc92] maintaining them is an integrai part of the algorithm. To

this effect a single array of vertices is used for segments and two arrays of vertices are

used to track the current partial and potential Hamilton cycle.

For the segments, a merge-find like structure is maintained in the array. More on

the merge-find structure can be found in [Wei95].

For the partial Hamilton cycle, the two arrays use the entries to point to the

vertices to the left and to the right of a given vertex.

5.2 Reducing Time and Space Overhead

As noted in the header comments for each of the previous algorithms described,

procedure arguments are passed by value.

The overhead required to pass variables by value increases the memory require-

ments by an order of magnitude. Additionally, passing by value implies that time

must be spent copying data. The expected overhead of copying would be in the range

of O(n * e) per branching edge in the search space.

To limit the time and space penalties of copying by value, [Koc92] uses an in-

place reduction on G. This means that a reference to the attributes in G is available

at all points during the running of the algorithm and the original state of G is not

known until the algorithm finishes. Only the current reduction of G is known and is

equivalent to that given by equation 3.4. This in-place reduction is referred to as G,.

To accomplish this in-place reduction, there must be a way to reverse changes to

G, at each point in the search space, so as to ensure that the state of the data for

each function call is equivalent to that of the pass by value model. The method used
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to restore G, for the work described in this thesis can be found in the next chapter

and differs from the way it is done in [Koc92].

One of these differences is in the extent of removing the pass by value data. While

limiting the expense of retaining a complete copy of the graph state per node, in

[Koc92] there is still a memory overhead of O(n2) consisting of degree information and

segment information. This is the remaining data that is still passed by value during

branching operations, with O(n) cost in time and space for each node. Without the

in-place reduction, memory overhead would be O(n3) in space.

This remaining overhead is eliminated by the work described in this thesis and

the entire state of the algorithm only requires O(n+ e) in space to function.

5.3 Detecting Stopping Conditions

The detection of a stopping condition has very iittle overhead. The algorithm

forces edges into E(,9) one at a time, and a stopping condition can be detected while

dealing with each edge. Assume the current forced edge is e.

The second stopping condition is easy to detect by simply checking segment mem-

bership of each of the two vertices incident to e. If both vertices belong to the same

segment, a cycle is forced and a stop flag is raised. This can be done with an time

overhead of just OG)

The first stopping condition has slightly more overhead than the second,. A forced.

vertex never has any more edges to remove from G,, but the other vertex,u incident

to e may already be an endpoint for another segment. In this case, u must be added

lo It 
"(S) 

and all remaining edges incident to o must be removed from G,. The other
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vertices incident to each of these removed edges must have their degree values reduced

by one. If the degree value for any of these vertices is reduced to one, a stopping

condition has occurred. The overhead here is j,,tst O(deg(o)), per non forced vertex

pushed into 7¿"(S).

5.4 Tracking Forced Vertices

Instead of scanning each vertex in G, for forced vertices each time the ForceEdges

method is called, it is possible to record the current forced edges in a list for quick

referencing later.

As mentioned with detecting stopping conditions, changes to ,S all occur one edge

at a time. When removing the edges incident to each new vertex in I{,(S), the

changes to the degree values for the other vertex can also be used to detect when

a vertex has become forced. Each of these vertices can be added to a list for later

processing. The list construct used in [Koc92] is a queue. In the implementation for

the multi-path algorithm for this thesis a stack is used instead. A stack was chosen

because by marking the beginning of the stack with a 0 value and not using it, no

length variable is needed. A pointer to the current position is all that is required

when a stack is used in this way.

As the order in which forced edges is unimportant with respect to the final consis-

tent G", any abstract data type for managing list addition and removal can be used

here.

The order in which forced vertices are removed from the list becomes important

when trying to detect stopping conditions sooner and more sophisticated structures

Ðô¿L
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could be used to enable this, however this is beyond the scope of the work done here

and further work could yieÌd some interesting results.
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Chapter 6

Designing the Multi-Path

Algorithm

Algorithms 3.5.1 and 3.5.2 used to describe the multi-path method are enough to

provide a broad recipe on how to go about creating a complete multi-path algorithm.

This chapter is focused on fulÌy developing the key aspects of the algorithm with

respect to efficiently managing G" and ,S, as well as the selection of anchor points.

The implementation of the multi-path algorithm resulting from the work described

in this thesis was developed incrementally, as a series of refinements and data structure

changes, each of which brought an increase in efficiency and speed. By studying the

effects of each of the changes on various graphs, the techniques \Mere continually

improved, and new approaches suggested themselves. This chapter and the next

represents the finalization of the work in this thesis on the stand alone portion of the

multi-path algorithm.

Recall that G, was introduced in the previous chapter as a representation of Ç
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from algorithm 3.5.1, with the difference being that it is the continuously changing

instance of the original graph G that is not passed by value during the execution of

the multi-path algorithm.

As mentioned in the last chapter, passing by value increases both time and space

overhead to the algorithm that would be best left avoided if possible. In order to

design an algorithm that completely removes the pass by value requirements of move-

ment between consistent states of Gr, the first section of this chapter is concerned

with the mechanics of changes to ,9 and G, during movement up and down the search

space of the multi-path algorithm. This also includes an improved algorithm for

creating and extending the segments in 5 over the one used in [Koc92].

The final section of this chapter deals with the order in which anchor points are

chosen. This can have a profound effect on the shape and size of the search space to

be navigated by the algorithm.

6.1 Efficient Reduction and Recovery

The reduction and recovery of. G, between branching edges in the search space

consumes the majority of the time spent running the algorithm. The improvements

described in this section attempt to reduce the internal changes that are required

when transforming a graph from one state to another, while additionally removing

the remaining pass by value requirements from [Koc92].

By changing how edges are added to ^9 it is possible to reverse the changes to

G" as well as restore the data structures storing segment and degree information,

subsequently reducing the memory footprint required by this portion of the algorithm

tÉ
JL,
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by a factor of n. This results in a memory footprinx of O(n*e) for the entire algorithm.

Additionally the total time overhead of managing G," is reduced to O(4.9), where

AS is the number of edges added to E(.9) between branching edges. This is instead

of the O(n + 4.9) from the previous version.

Section 6.1.1 describes a different way of creating and extending segments in ,9 that

improves on what has been used previously. The improvement here over [Koc92] is

difficult to quantify as it is heavily dependent on the structure of the graphs searched,

however at worst it will be equivalent in steps required.

Section 6.1.2 describes how removed edges from G, are managed, and section 6.1.3

describes how the state of G, is restored. The process of restoring G" used here is

the reason for the O(A,.9) claim.

6.1.1 Extending Segments

Up to this point changes to segments in ^9 occur one edge at a time. In this way

there are three possible results when adding a forced or branching edge to E(^9); either

a segment is created or extended, or two segments will be merged into a single segment.

Each time E(S), E,(S) and G" must be updated to reflect the new reduction. The

process is repeated until no more forced edges remain in G,.

Extending Segments from Forced Vertices via Paths

The new approach changes focus from single edges to paths that can be extended

from forced vertices in Gr. Ertendi,ng segments usi,ng a branch'ing edge and ,its corre-

spondi,ng anchor poi,nt i,s a speci,al case of this approach and i,s descri,bed at the end of
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Pu Pu

ues¿a

Figure 6.1: Segments S¿-t, S¿, and ,9¿a1 before extension of ^91 via forced vertex
u. Forced vertices are represented by the solid symbols. The virtual edge {u,r}
representing S, is labeled with a es and the other virtual edges are labeled likewise.

thi,s secti,on.

Let u be the next forced vertex to be processed. If o is the endpoint of some

segment, 
^9¿ e ,9, virtual edge {z,u} represents this segment.

Let P, be the first path to be extended into G, that originates at u. The first

edge in P, is the real edge, {r,r'}.This edge is added to E(5).

Let Pu be the second path to be extended into Gr lhat originates at u, but proceeds

in the opposite direction. If o is the endpoint of a segment, let the first edge in P, be

the virtual edge {2,'u}. If o is not the endpoint of a segment, Iet the first edge in P,,

be the real edge {u,r}, and ensure it'is added to E(S). Initially Iet ut : u.

During the growth of P, and Pr, the shared endpoint u remains fixed, while o'

and u' are updated to indicate the new endpoints. Figure 6.1 illustrates this initial

configuration on a cross section of an example G".

The goal is to form a nev/ segment, ,Si, represented by the following:

(6 1)

nt eSo+t

si : P"+ P"
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Path Growth

<-
't L'

Figure 6.2: Example of extension of paths Pu and P, from forced vertex o. The
numbers represent the order in which the associated edges have been added to the
paths during the extension. For real edges, the relative ordering represents the o¡der
in which they were added to E(S).

Definition (locally consistent) . A segment S¡ € ,S ¿s locally cons'istent i,f for all

w eV."(S¡), deg(G,,w) > 2.

Initially the algorithm focuses on the growth of P,. The value of 'u' and the edges

that make up P, change under the following two conditions:

1. t'l collides with another segment. The corresponding segment is absorbed by

the growing path and u' changes to the other endpoint of that segment.

2. u' is a forced vertex. Let e be the other edge incidenl to ut . e must be added to

the path as well as E(S). o'changes to the other endpoint of e.

Once P, can no longer be extended, focus switches to the growth of Pu with the

same two conditions for growth applied to endpoint z'.

If an edge from E,(S) is to be added to a path due to condition 1, the segment

it represents is now absorbed by the new segment, ,Sf. At the endpoint where a
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collision has occurred, all non-path real edges in E(G,) which are incident to that

endpoint must be removed. This is illustrated in figure 6.2, just after edges 1 and 5

are processed.

The removal of non-segment edges may cause the first stopping condition to occur

or induce new forced vertices.

If one of the current LL' ot 'ù' become a forced vertex due to a segment collision, the

growth of the other path must resume after growth stops for the current path. This

can repeatedly occur at multiple points during the growth of both paths causing the

focus of growth to alternate between P, and P, repeatedly.

Figure 6.2 illustrates this when edges 1 and 5 have been added and the subsequent

non-segment edges have been removed. After edge 1 is added, u' becomes forced,

allowing P, to grow. During the growth of. Pu, once edge 7 has been added, focus

must switch back to Pu in order to add edge 8.

Path growth stops once G, becomes locally consistent with respect to ut and t,'.

At this poi,nt'it'is 'important to ensure that the new segrnent represented bg a uir-tual

edge {u',u'} would not turn G, i.nto a multi,-graph.

In order to ensure that no real edge {u',u'} exists in Gr, the adjacency list of

one of ?.1' oru' must be scanned for the other potential endpoint. The adjacency list

for the vertex with the lower degree value is chosen. If an edge is found, it must

be compietely removed as per section 6.7.2. The removal of that edge may cause a

locally inconsistent G, at, one or both t,l' and u' and the paths must continue to grow

as before.

Once a locally consistent G,. is reached and is ensured to be a simple graph, the
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new segment ^9i can now be defined and a virtual edge can be created in E"(^9).

Figure 6.3 illustrates the new virtual edge that represents ,9i.

esi

Figure 6.3: ,9j after extension of ,9r. Segments ,9¿-1 and ^9¿*1 have been absorbed
during the extension of segment ,S¿ from the previous figure 6.2.

The process of extending segments is repeated for the next forced vertex remaining

in G, until no more forced vertices remain and a consistent G" is reached, or until a

stopping condition is encountered.

Stopping Conditions

40

Figure 6.4: Example of stopping condition 1.

extending a segment from t' eventually causes
1.

The removal of non-path edges when
vertex w to be reduced to a degree of

As briefly mentioned earlier and as illustrated in figure 6.4, the first stopping

condition is encountered while removing edges.
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The detection of the second and most important stopping condition is simplified

quite nicely here. If during a path extension the two paths are forced to collide, or

't,L' :'t)' , a cycle will have been found. Figure 6.5 iÌlustrates this condition when edge

9 is traversed.

Figure 6.5: Example of stopping condition 2. Attempting to extend P, with edge 9
leads to 'tLt :'ut.

Extending Segments from Anchor Points

When an anchor point, u, is selected during the descent down the search space, a

branching edge is chosen incident to o. In this and the previous work, the branching

edge is the first one encountered in the adjacency list for u. Let the branching edge,

e6,be the edge {u,u'}.

In order to use the method of extending segments, there are two cases in regards

to o that must be considered.

The first case is that no segment is currently incident to u. In this case P" will

initially be empty and u' : u. Pu and u' are initialized using e6 and e6 is then added

to E(.9). The growth of Pr, if required, can now start as described for forced vertices.

If during the growth of Po, o becomes forced, then as previously described, the focus

4L
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of growth will alternate to Pu once P, stops growing.

The second case is when u is already a segment endpoint. In this case, all of the

real edges except e6 that are incident to u are removed from G". This removal converts

o into a vertex of degree 2 and it can be treated the same as a forced vertex. P, and

P, can now be initialized as such, with u being the first vertex to be considered so as

to ensure that e6 is in the correct position within E(S).

fmprovements over Previous Work

Three key aspects are improved on by this approach to creating and extending

segments over what was done previously.

The first is that forced vertices can be processed when they are encountered by

the path endpoints rather then through the previous approach of dealing with a single

forced vertex at a time. This requires a constant change in focus which creates more

segments that wouid be avoided when using the new method.

The third aspect is the avoidance of using an adjacency matrix for detecting if

the new virtual edge {z',u'} would create a multi-graph. This is what allows for the

O(n + e) total space overhead for the algorithm.

The time saving of not managing an adjacency matrix to reflect the current state

of G, though-out the entire search space seems to offset the expense of scanning the

adjacency list. More analysis could be done to prove this point.
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6.L.2 Managing Removed Edges

There are two ways edges can be removed from G" during the execution of the

algorithm.

The first is a partial removal that takes advantage of the fact that one endpoint of

the edge will have been removed from G, and placed inV,"(S). This is what occurs

when non-segment edges are removed due to a segment collision.

The second is a complete removal of an edge which occurs when both endpoints

of the edge remain in G". This is what occurs with the endpoints of branching edges

and with the endpoints of real edges that have been superseded by virtual edges.

Partially Removing Edges from G,"

Let w be the endpoint that is the target of a segment collision. The vertex tt must

be added Io V,"(S) and each of the non-segment real edges incident to tt must be

removed. Since G" is where the active searching occurs during the multi-path method,

the removed edges only have to appear missing from Gr. Flom the perspective of

U"(S), each of the real edges incident to tl can remain attached.

To accomplish this partial removal of an edge, G is treated as if it \Mere a directed

graph fiom the perspective of the vertices in I.\"(S) and as an undirected graph from

the perspective of G". When using adjacency lists to represent the edges in a graph,

this ability to switch perspectives between directed and undirected graphs comes

naturally, as each vertex in the graph must have its own adjacency list.

Recall that G" is the continuously modified instance of G for the current location

in the search space. When the undirected G is initially defined in memory by the
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data structures representing it, each edge is actuaily represented by two arcs. Only

one of them must be removed.

For each non-segment real edge, e.,, incident to tr, only the other endpoint of e,.,

needs to have its corresponding arc removed from its adjacency list. The only time

a segment edge must be partially removed is when the other vertex which is incident

to that the edge is to be the new endpoint of the fully extended segment. This is

because the other vertex incident to the segment edge must remain in Gr.

The elegance of this approach of removing only one arc is that half of the work

of removing, and subsequentiy restoring, an edge is required and the adjacency li,st

of w conta'ins a complete record of what edges were i,nci,dent to it at the t'ime 'it was

remoued from Gr. This is extremely usefui for the recovery of. G, during ascent up

the search space. More on this is discussed in section 6.1.3.

Figure 6.6 is an illustration of the results of using this method of partially removing

edges from G", for some segment, ^9, e ^9. Note how the edges in E(,9) that are not

incident to a segment endpoint do not even have to be removed from G," using this

approach.

Completely Removing Edges from G"

Unfortunateiy only detaching the inactive portion of the graph does not work with

branching edges and reai edges that have been superseded by virtual edges. A way

to manage completely removed edges must be determined.

In [Koc92] all edges to be removed are compÌetely removed from G and stored in a

list of removed edges. There is a list of removed edges associated with each consistent
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u.(s - s,)

V^(S¿)

Figure 6.6: Example of the partial removal of edges from G.. Focus is provided for
some segment, 

^9¿ e ,9. The thicker lines represent edges in E(.9,). Arcs shown in
the diagram represent the remaining arcs for the detached vertices of G contained by
u"(s).

state of G, up the search tree.

During ascent up the search space, once the state returns to the branching edge of

an anchor point, the removed edges contained by the list for that consistent state are

restored and the branching edge is removed and stored in the list of edges previous to

the current one. The latest branching edge will be restored once the current anchor

point has been exhausted and the state returns to the consistent state one level above

the current one.

In essence this is a stack of lists, that are removed and added in the same manner

that branching edges in ø(S) are. In [Koc92] this stack of lists is implicitly maintained

by the recursive nature of the algorithm.

This same method of managing removed edges is used in the same manner here

for the fully removed edges. However the stack of lists must be directly managed by

the algorithm, as will be made more apparent by the next chapter.
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6.1.3 Unwinding Segments and Restoring State

Now that extending segments and managing the removed edges frorli_ G, have been

discussed, a u/ay to restore G, l,o a previous state must be introduced. In order to

restore G" without relying on any pass by value data, the adjacency lists, virtual edge

array and degree arcay must have some \May to be systematically restored.

Restoring the Adjacency Lists and the Degree Array for G,

Let f, represent the consistent state of G, that is to be restored and is some point

above the current one in the search space. This corresponds to the closest branching

edge when treating E(^9) like a stack.

By restoring the edges to G, in the reverse order in which they were removed

from G", and by restoring any partially removed edges associated with the incident

vertices of each edge, G," can be incrementally restored towards f". More on how the

edges can be processed in this reversed order will be provided in the next chapter.

Let e :{u,u} be the latest segment edge added to E(S). Without loss of generality,

assume that t,l was removed from G, and added to If"(S). AII of the arcs, except for

the arc with target T.r, listed in the adjacency list for z point to vertices still in Ç
that have had the corresponding edge for that arc partially removed.

Generally at the time of restoring e, only one of u or u will have partially removed

edges to be restored. The exception to this is for branching edges that join two

segments together.

Restoring the degree array to the correct state is trivial. The initial degree value

of any removed vertex must be 2. This is due to the vertex being part of the potential
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Hamilton cycle in V"(S).

For each arc a from the adjacency lists of u oru that represents a partially removed

edge, the corresponding opposite pointing arc is a'. The target vertex of ¿ must have

ø' restored to its adjacency list. During this restoration the target vertices of both ø

and a' must have their degree entries incremented by one each.

Additionally if a vertex from e represents a segment endpoint, the endpoint still

in G, must have an arc restored to its adjacency list with no corresponding change

to the degree entries. Knowledge about e with respect whether or not it is contains

a segment endpoint is explained in the next chapter.

Each e from S is processed in this way up to the first branching edge encountered

in E(.9).

Once this branching edge is reached, the list of completely removed edges associ-

ated with that level in the search space can be restored to the adjacency lists along

with the degree values of V(G,) for the endpoints of those edges. Since the edges

here are represented by two arcs that are to be restored, the target vertex of each arc

is used to increment the corresponding entry in the degree affay by 1 each.

Restoring the Virtual Edges Array

The virtual edge array is slightly trickier. Let, EV be the virtual edges array

for G,, where the entries in the array correctly represent E"(S) for all vertices noú

ín I/r"(S) fop the current location in the search space. The remaining entrie s in EV

reflect the prior states of E, (^9) in the levels above the current one in the search space.

By taking advantage of the fact that segments are now 'unwound' in the reverse

47



Chapter 6: Design'ing the Multi-Path Algorithm

order in which they are created, the older entries in EV that represent vertices in

V"(S) can be used to restore EV to the correct previous state of E"(S) before the

segments were created or extended.

Lel w' , z' be the endpoints of a new virtual edge representing a segment ^9] that

is about to created by the path extension algorithm from section 6.1.1. Let w be the

vertex that is the origin of the the two paths that were grown to find the segment.

If tr was not originally a segment endpoint then EV[w'l and EVlz'] prior to the

new segments creation, were equal to zero. After the segment is finalized, EVlw'l : 2'

and EVlz'f : w'. When restoring E,(S) to its previous state all that needs to be

done is setting both EVlw'] and EV[z'l back to zero.

If u was a segment endpoint, let this segment, ,9¿, be represented by virtual edge

{r,"}.
If w' I t¿ and z' I z, both tu and z will both have been added to V,"(S).

Additionally the entries for w and z tn EV will not be changed, as two new entries

are to be made f.or w' and z'. In this case when reversing changes to G, all that

needs to be done is setting the entries EVlw'l and EVlz'] to zero. Endpoints tu and

z wiII already reflect the correct values in EV for segment ,S¿.

Without loss of generality, Iet w' f w and z' -- z. In this case only tl will be

added to It 
"(S) 

and the entry Evlzl will be updated to point to tn' ,leaving the entry

EV[wl its previous value of z. When reversing changes to G, for segment ,9¿, this

unchanged entry Evlwl is used to restore the value of EVlzl and EVlw'] will be set

to zero. More explicitly EVlEVlwll : ?u and EVlz'l : 0 when restoring the old

virtual edge.
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Now that EV is explained in terms of restoring previous states of ø,(S) a way to

know when to use which form of restoring EV needs to be found.

Let e € E(^9) be the segment edge about to be restored as per the order explained

in section 7.2. If information about how that edge was removed from G, is maintained,

a decision can be made on what endpoint of e needs to have its value in EV restored

and in what way. Section 7.3 will provide details on how and what information is

stored for each e € E(S).

If it is found that a vertex r e e is a segment endpoint when e € E(^9), the

restoration of e to G, will remove that status and r will no longer be on a segment.

In this case EV[rl is set to zero. Otherwise EVlEVlr)] : r is used for all other cases,

even when EVIr] is zero, as the 0¿å entry goes unused by G,.

6.2 Vertex Selection

Selecting the next anchor point at each point in the search space where G, is con-

sistent has been modified from that used in [Koc92]. Previously after each consistent

state resulting from the selection of a branching edge, a vertex with the largest degree

in G, was chosen as the next anchor point. This can be done with an O(n) time scan

of the vertices in G".

The new algorithm has been modified to only select new anchor points once the

latest anchor point chosen has been added to l\"(S). This is accomplished by branch-

ing edges off of the latest anchor point until it is removed from G". With respect to

the search tree this appears as the same anchor point appearing up to two times in

a ro\ry during the descent towards a leaf. In th'is waA a stati,c li,st of aertzces can be
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proui,ded to control the order of anchor poi,nt select'ion.

As will be seen in the analysis done in chapter 11, by instead providing a presorted

list of vertices in descending order with respect to degree, smaller search trees are

generated, subsequently reducing the time to exhaustively search the entire space.

By default the implernentat'ion uses thts ordering.

Other presorted lists are possible as well and can sometimes yield better results

than what the default provides. For example, analysis of the results for the knight's

graph 'k7r4' show a remarkable speedup when using a presorted list based on an

ascendzng degree sequence.

' Finding new heuristics for vertex selection based on this static list has a lot of

room for new discoveries and suggestions for further study is mentioned in chapter

72.
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INavigating the Search Space using

a hring Machine

As briefly mentioned in section 4.1 and emphasized in figure 7.1, E(S) can be

treated as a stack of edges, where edges are removed until a branching edge is en-

countered and added until a stopping condition occurs. This is to be expected due to

the recursive nature of the algorithm. A drawback of using recursion is that making

the algorithm re-enterabÌe is diflÊcult.

It would be nice to remove the direct recursion and be able to leave and enter

the algorithm at any point in the search space. This has applications from easier

check-pointing of code that can run for long periods of time, with the full exploration

of the search space one Hamilton cycle at a time, and with performance gains due to

having no recursive calls of the algorithm.

This chapter describes a way of modeling the navigation of the search space using

a Turing machine to describe the movement up and down the search tree.

51



Chapter 7: Naui,gati,ng the Search Space us'ing a Turi,ng Mach'ine 52

lE(s)l

4

Leaf#

Figure 7.1: Changes to E(.9) from leaf to leaf based on the search tree for the Petersen
graph. The state of G, always returns to that of the latest branching edge added.to
E(S).

The Turing machine is an abstract notion from computer science that can be used

to model any algorithm. The use of a Turing machine here to model the movement

through the search space is used as a tool in order to help understand the manipulation

of E(S) as a stack of edges and does not exactly match the full definition of a Turing

machine. More on Turing machines can be found in work by L,inz in [Lin01].

7.L State of the Tape

A Turing Machine consists of a set of tapes and a read/write head for each tape.

Each tape is usually a 1-way infinite tape, divided into cells. Movement of the read-
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Terminate Machine

R/W Head

t Hamilton Cycle
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Figure 7.2: Tape for the Multi-Path Turing Machine.

fwrite heads of the Turing machine is controlled via a set of rules that depend solely

upon the state of the current tape positions.

The Turing machine described here uses one tape and one read/write head. The

tape is only n * 2 cells in length. For the usage here, the contents of the tape cells

and the movement of the read/write head differ somewhat from the formal definition

of a Turing machine.

There are two entries per cell on the tape, one of which is an arc representing an

edge from E(^9) and the other a bit-field representing a finite number of states.

The Turing Machine used here models the recursive nature of the algorithm by

tracking the the current state of E(S) within its cells and the current position in the

search space by the location of the read/write head. The movement of the read/write

head to the right tracks the descent into the search space while movement to the left

tracks the ascent. The bit-fields stored in the cells contain information on how to

restore each cell's edge to the graph during ascent.

The two cells on the endpoints of the tape do not have edges set and only have a

single bit permanently set in their bit-fieÌds. A illustration of the tape for this Turing

Machine can be found in figure 7.2.

On the leftmost cell of the tape, a termi,nati,on bit is set. If the read/write head



Chapter 7: Naui,gating the Search Space us'ing a Turi,ng Machi,ne

ever makes it to this cell and reads this termination bit, the entire search space will

have been exhausted.

On the rightmost cell of the tape, a Hamilton cycle bit is set. If the read/write

head reads this bit, a Hamilton Cycle will have been found.

The edges found in the cells between the endpoints are all of the edges in ø(.9)

that make up the Hamilton cycle.

If the read/write head is not at either endpoint, the current state of E(,S) is

reflected by the edges found in the cells foom the leftmost endpoint up to and including

the current cell pointed to by the read/write head.

The starting point of the Turing machine is the leftmost cell on the tape and is

the only time the machine can be in that position without terminating.

The use of a Ttrring machine here differs from the formal definition of a Turing

machine in the way the read/write head moves. Movement of the read/write head to

the right is not controlled by the state of the cells in the tape, but by the state of G".

7.2 Edges from t(S)

The arcs stored in each cell that represent the edges from E(.9) come from the

adjacency list of the path endpoint LL' or n' of the growing segment in ,S at the time

the edge was added to S. \A/ith the exception of the case when a branching edge is

added to ,S as a stand alone segment, each of these arcs always point to a forced

vertex added to I\"(S) at the time the edge was added to E(.9). Additionally if a

segment collision occurred when adding an edge the source vertex of the arc stored

will be the point of collision. In this way when moving to the left, each vertex and

54



Chapter 7: Nau'igat'ing the Search Space usi,ng a Turi.ng Machi,ne

any partially removed edges can be restored in the reverse order in which they were

removed from G,.

7.3 Status Flags represented by the Bit-Field

The following flags and their meanings are represented by the bit-field entries of

each cell:

HC-TERMINATE The search space has been exhausted, stop searching for a
Hamilton cycle in the current graph.

HC-HAMILTONIAN A Hamilton cycle has been found.

HC-ENDPOINT The source vertex of the corresponding arc stored in the current
cell is a segment endpoint.

HC-FORCED The target vertex of the corresponding arc stored in the current cell
is a forced vertex.

HC-FORCED-DEG2 The arc stored in the current cell is also the adjacency list
of arcs representing partially removed edges into the source vertex of the arc.
This source vertex is a junction point of two merged segments.

HC-ANCHOR-POINT The target of the arc stored in the current cell is an anchor
point. Additionally the arc represents a branching edge in E(S)

HC-ANCHOR-EXTEND Can only be set if HC-ANCHOR-POINT is set.
Set if the anchor point is already the endpoint of a segment.

HC-FLIP-SOURCE Can only be set if HC-ANCHOR-POINT is set. The arc
must be reversed when interpreting the anchor point. The source vertex of the
arc is the anchor point rather then the target.
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7.4 Moving Read/\Mrite Head

7.4.L Moving Right

Moving the read/write head to the right implies descent down the search space .

The status and edge information is never read while moving to the right, only written.

Control of the movement of the head to the right is controlled by the selection of

branching edges off of anchor points, and the forced edges due to an inconsistent G".

Movement to the right stops when one of the two stopping conditions is encoun-

tered.

Typically movement to the right involves selecting an anchor point, choosing a

branching edge off that point, forcing any edges from an inconsistent G" into E(,9)

and then if necessary choosing another branching edge off the same anchor point.

This is repeated until a stopping condition occurs.

7.4.2 Moving Left

Moving the read/write head to the left implies ascent up the search tree and

recovery of G, to a previous state. In this case the read/write head only reads the

tape one celi at a time, restoring the state of. G, based on the instructions in the

status flags set in the bit field and the edge provided. Nlovement to the left stops if

the Termination flag is encountered or the closest branching edge is encountered.
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7.4.3 Switching Directions

If a branching edge is encountered during movement to the left, all remaining

edges that have been removed and associated with that branching edge are restored

and the branching edge is then removed. iVlovement can now begin to the right. At

this point if G" is no longer consistent after the removal of the branching edge, forced

edges are placed onto the tape until the graph is consistent. Th'is process of changi,ng

di,rect'ions from left to ri,ght zs referred to as rotati,ng the anchor po'int.
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Implementation of the Multi-Path

Algorithm

The ideas from the previous chapters can no\M be put together and expressed as a

complete algorithm. To accomplish this, source code from the implementation of the

algorithm is provided within this chapter and in the later appendices. The language

used is the 'c' programming language.

The only code missing are the routines for loading graphs, and those for allocating,

initializing and freeing data structures.

8.1 Data

All of the data types used are found in Appendix 4.1. The HCStateRef type

references a state structure storing the current state ofthe search space. This inciudes

the attributes of G,, the removed edges and the tape of the Turing Machine. Let s be
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a reference to a variable of type HCStateRef, which represents the current instance

of the search space for some graph G.

8.1.1 Graph State

The current graph state is maintained via three variables in s. These are an array

of adjacency lists s---+adjLi,sú, a degree array s--degree and a virtual edges array

s---+u'irtualEdge. Each of these arrays are of length n*I, so that they can be indexed

by the n vertices from 7(G).

An adjacency list is defined by type VArc. It is a doubly linked list of structures

representing arcs in G. Each list, ø, is null terminated in the forward direction (ui,a

a--+nert) and circularly linked in the backwards direction (ui,a a--rpreu). There is

also a target vertex (uia a---target) and a cross reference to the opposite pointing arc

(u'ia a--.cross).

When adding arcs to an adjacency list, the arc being added is always inserted to

the top of the list.

8.L.2 Removed Edges

The removed edges from G" are maintained by a stack of adjacency lists. Each

null terminated list contains arcs from di,fferent uerti,ces. Since removal of arcs from

each list occurs all at once, there is no need to maintain the circular back reference,

'pret)'. \Ã/hen restoring each arc to its corresponding adjacency list, the cross reference,

'cross', is used to determine the correct source vertex.

A pointer to the correct adjacency list in the stack is maintained by the algorithm
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in the following way:

1. The pointer is moved upwards after restoring the completely removed edges it

points to. The branching edge that was just exhausted for that point in the

search space is then fully removed from G, and placed into the list the pointer

now references.

The pointer is moved downwards just before branching starts for some edge.

This list the pointer now references will contain all arcs from any fully removed

real edges from G, up to the next anchor point in the search space.

8.1.3 Tape State

The structure storing the tape for the Turing machine is an array of type HCTape.

The origin of the tape is stored in s---origi.n and the current position of the read/write

head is stored iv¡ s ---+ pos. Each entry of the tape contains an arc of type VArc

representing an edge in E(S) and a bit-field containing the status information.

8.2 Code

The majority of the code for the implementation of the multi-path algorithm can

be found in Appendix A. The source code that is listed here is sufficient to describe

the overall use and structure of the program.
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8.2.I Running the Turing Machine

The source code in listing 8.1 contains the implementation of runTuri,ngMachi,ne.

This top level procedure controls the overalì movement of the read/write head while

navigating the search space.

Before first starting the Turing Machine, the tape must be initialized or primed.

This simply means that the entries in the tape must be set to that of the first decent

down the search space up to the first leaf, or stopping condition. The actual machine

always starts at a leaf in the search.

The reasoning for starting at a leaf is that if a Hamilton cycle is found, the machine

will stop at a leaf with the read/write head ready to move to the left. If exploring

the entire search space is required, it is then easy to just re-enter the machine.

The function pri,meTape initializes the tape to the first leaf in the search space.

The function returns true only when runTuringMachine can be entered. A false result

is because either the first leaf represents a Hamilton cycle or a simple non-Hamiltonian

decision is detected such as a vertex with degree lower than 2. The source code in

listing 8.2 describes the use of runTuringMachine in finding and counting Hamilton

cycles.
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/x Run Turing Machine until a Hamilton cycle is found or search space is
exhausted. Ensure that tape is primed first before calling. Returns false
when search space exhausted. */

bool
runTuringMachine( HCStateRef s )
{

HCTape *hx; f* readfwrite head for tape *f
Vertex *d2 , x;

VArc *xL : s-)adjList ;

Vertex *e : s->virtualEdge;
UInt xd : s->degree;
Vertex *nv : s-)vertexOrder ; /x nv Ix] refers to next vertex i n I i st x/

s->flags.isHamiltonCycle : false ;

fx tape head must be at a leaf in search space, move tape head left to the
closest branching edge */

hx : unwindSearchEdge(L, e, d, s->pos);

while ( !(hx->status & HCjIERMINATE) ) {

/x remove the exhausted branching edge and switch directions*/
x : rotateAnchorPoint(s, L, e, d, hx, &d2);

/x removal of branching edge may have created an inconsistent state *./
x : ensureConsistent(s, L, e, d, d2, x, nv);

if (") {
/*. keep extending branching edges from anchor points */
while ( extendAnchor(s, L, e, d, x) ) {

do x : nv[x]; while (!d[x]);
Ì

Ì

/x stopping condition encountered (a leaf), stop movement to the right */
i f (s->flags . isHamiltonCycle ) return true ;

hx : unwindsearchEdge(L, e, d, s->pos);
Ì

s->pos - h*;
return false;

) /* runTuringMachine x/
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/x Find the next hamilton cycle in the search space for the graph referenced
in s. Returns false when no Hamilton cycle found. x/

bool
nextHamiltonCycle( HCStateRef s ) {

return runTuringNlachine (s ) ;

) /x nextHamiltonCycle +,/

/* Find the fi rst Hamilton cycle in the search space. Returns fa lse when no
Hamilton cycle found. */

bool
firstHamiltonCycle( HCStateRef s )
J
ì.

resetStateAndRestoreGraph ( s ) ;

if ( primeTape(s) &-& !runTuringMachine(s) ) return false;

s-)flags . isHamiltonian : s->fìags . isHamiltonCycle ;

return s->flags . isHamiltonCycle ;

I l* firstHamiltonCycle r./

/x Count a I I Hamilton cycles in search space for graph referenced in s. x/

ULonglong
hamiltonCycles( HCStateRef s )

{
Ulongl,ong c : 0;

if ( firstHamiltonCycle(s) )
do{

c++;
) while ( nextHamiltonCycle (s ) ) ;

return c;
| ¡* namiltonCycles x/

8.2.2 Extending Segments and Branching

Segment extension can occur in two points in runTuringMachi,ne. Both methods

ensurecons'istent and ertendAnchor,, found in Appendix 4.3, caII ertendsegrnents,
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found in Appendix A..2.2.

The complete implementation of the algorithm for segment extension discussed in

section 6.1.1 is contained within ertendSegrnents.

The first method in runTuringMach'ine lh.at can call ertendsegments is ensure-

Consi.stent Just as its name would suggest, ensureConsi,stent ensures that the current

state of G, is consistent after the removal of a branching edge.

The second method appearing in runTuringMachi,ne that calls ertendsegrnents is

ertendAncåor. This procedure ensures that the anchor point, 'u ', has been removed

from G" by extending up to two branching edges off of it.

8.2.3 Restoring State and Removing Branching trdges

The restoration of G" when ascending the search space is controlledby unwi,nd-

SearchUdge, found in Appendix 4.4. This method starts at the location in the search

space where a stopping condition has just occurred and 'unuinds' the changes l,o G,

one edge/arc at a time from the tape using the procedtre unrollArc, also found in

Appendix 4.4. Once the closest branching edge, or the end of the tape has reached,

unwindSearchEdge returns that location to runTuringMachi,ne for use by rotateAn-

chorP oi,nt and ensure C ons'istent.

The procedure rotateAnchorPo'inú, found in Appendix 4.3, removes this branching

edge from G" and if necessary populates the stack of forced degree 2 vertices 'd2' Iobe

later processed by ertendSegrnenús when ensuring that the graph state is consistent.
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Pruning Algorithm

In any backtracking algorithm, if conditions exist that allow for entire branches

of the search tree to be avoided with out affecting the outcome of the search, these

conditions are referred to as pruni,ng conditions.

The pruning conditions used in [Koc92] center around a powerful lemma about

Hamiltonian graphs. This lemma appears in Bondy and Murty [8M76].

Definition. The nun¿ber of connected components i,n the graph G is a(G).

Lemma L. Let K be a separati.ng set of the graph G. If a(G - K) - lKl > 0 then G

'is not Hamzltoni,an.

Searching for the existence of separating sets with this property is difficult as it

would involve enumerating over the power set for V (G) in some way. However, if one

could be found with this property for some Gs¿ while searching for a HamiÌton cycle

it may be possible to determine how far back in the search space the property holds

and continue searching from that position onwards. The ability to prune back the

search space given a separating set that satisfies lemma 1 is described in section 9.1.
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Having a way to prune back the search space using separating sets is useless

without first having a nice way to find them. Certain conditions exist that allow for

relatively quick linear detection of separating sets. Both cut points and bipartitions

can be detected in this way. Cut points automatically satisfy lemma 1, as each cut

point taken individually results in two or more components. In a bipartite graph, if

the two sets differ in length, the smaller of the sets can be chosen as a separating set

that satisfies lemma 1.

In [Koc92] a modified version of an algorithm by Hopcroft and Tarjan for finding

cut points is used. It is a depth first traversal of the vertices in G" that includes

bipartition testing in addition to finding cut-points.

The approach used for pruning the search space has been improved upon in two

ways in this thesis. First the scope of detecting cut points has been increased over

the implementation for [Koc92]. The changes to the scope allow for the results from

the bipartition condition to be compared against the results using cut points. By

choosing the set that would return the largest difference that satisfies lemma 1 more

pruning may be possible from that point in the search space.

For the second improvement, the point in the search space where detection of

separating sets occurs has been changed. This change ultimately reduces the overhead

of detecting separating sets without missing any pruning opportunities that would be

found using the method described in [Koc92]. Section 9.3 describe this improvement.
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9.1 Pruning Mechanism

As already stated the pruning condition provided by lemma 1 can be used to avoid

searching entire branches of the search space. This section describes the mechanism

used to prune back the search space once a separating set has been found for some

G, in the space.

Let Gf+r be a reference to some consistent G" in the search space for G. Assume

that the graph Gf+l has a detectable separating set K, with c: u(Gf+r - K) - lKl

Let c ) 0, then lemma 1is satisfied and Gf*t ir not Hamiltonian.

No more search is possible at Gk+\ and movement up the search tree towards the

closest anchor point must begin. Let K' be a new separating set formed from all of

the vertices from K and select vertices from V¿r(S) as they are restored to G" during

the movement up the search tree. Recall from the previous work in this thesis, that

vertices are restored to G" in the reverse order in which they were removed.

Let u the next vertex to be restored to G, on the way up the search space. u is

added lo K' so that no change could have occurred to the result of a(Gf+r - K).

After u is restored to G", u can be added to K' il a(Gf+r - K): r(G, - (K' +u)).

In this way the value of c will only decrease by 1 if u is added to K'.

Determining whether or not to add a to K' so that the number of components

remain unchanging is difficult to do optimally. However a heuristic proven in [Koc92]

can be applied based on the knowledge of how each o was removed from G".

Essentially u is added to K' when the restoration of 'u back into G, requires the

restoration of non-segment edges. Special care must be taken for any o that represent

past anchor points on the path up the root of the search tree. Vertices that \Ã/ere once
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anchor points must be added Io K' as they would involve the return of one or more

branching edges.

This process of selectively increasing K' for each u restored to G, continues until

c has been reduced to 0. Gf is the position of the closest anchor point at or above

this point. The search for a Hamilton cycle must recommence at Gf . Figure 9.1 is

an illustration of some hypothetical search space this process is applied to.

9.2 Testing for Separating Sets

9.2.I Overview of Previous Test

As can be seen from the way the pruning condition climbs up the search space

towards Gf ,the largest possible value for c is desirable. Additionally as stated in the

beginning of the chapter, the actual testing for a separating set must be reasonable

in its overhead.

To satisfy the latter, [Koc92] uses an O(n+ e) algorithm based on one developed

by Hopcroft and Tarjan. If. G, is connected at the time of testing the algorithm

produces a value for c in one of two ways.

The first is if a cut point is detected. In this case the value of c is set to be the

number of components surrounding a single cut point reduced by one, as that is the

length of the separating set. The choice of the single cut point is that of the lowest

cut point in the first branch to contain a cut point in the depth first search.

The second way c is found in a connected G," is if no cut point is found. In this case

the entire graph will have been visited by the depth first search and a determination
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on whether or not G, is bipartite can be made. In this case if a bipartition is found,

c is set to the absolute value of the difference of the two sets found.

If G" is disconnected, the depth first search is repeatedly called until all vertices

in G, have been visited. In this case c is set to the number of components visited.

This is equal to the number of times the depth first search had to be called before all

vertices were visited.

Afterwords if c > 0 the multi-path algorithm can stop f.or G, and pruning can

take place.

9.2.2 Increasiîg a(Gr - K) - lKl

If no separating set is found by the depth first search then the worst case perfor-

mance will have occurred in running the test. Typically this will be the case for the

vast majority of the times testing occurs.

Since pruning is the ultimate goal of the test, the algorithm for testing has been

modified to always run in the worst case, but with the benefit of having a larger value

of c for the pruning to take advantage of.

This larger c is obtained in the following way:

L AU cut points are found in G, and the subsequent components are calculated

during the traversal of the graph by the depth first search.

2. The bipartition condition test is always able to run to completion. If a biparti-

tion is found the absolute value of the difference in set sizes is calculated.

Of the two methods for finding components, the one that provides the largest

value to c is chosen.
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At the time of testing, G, may be disconnected. In this case each component must

be tested by the depth first search. A running total for c is calculated based upon

the best choice returned for each running of the depth first search. If no cut points

are found or no bipartition exists, c will always be able to be incremented by one for

each component tested in the disconnected case.

Ensuring a proper count for the separating set size

The depth first search is always called on a consistent G". However it may ad-

ditionallv be called after a branching edge has been attempted. The subsequent

removal of the branching edge may have a subtle impact on the size of the separating

set found by the pruning condition test. If the anchor point attached to that branch-

ing edge was not absorbed into I/,"(S) after the removal of the branching edge, it

must be considered part of the separating set for Gl. This is taken into account by

the implementation when returning the value of c for the pruning operation.
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9.3

9.3.1 Top Down vs. Bottom Up Testing

The algorithm from [Koc92] uses the top down approach to test for separating

sets. What this means is that just before each anchor point is explored and branching

occurs) the test is run against the current consistent G, for that anchor point.

By only having the tests occur on the extremities of the search space, significant

speedups in terms of the time spent testing can be achieved.

Reducing the Frequency of Testing
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In order to only run the test at the extremities of the search space, it must be

shown that no opportun'iti,es to prune the search spz,ce are missed wi,th respect to the

top down approach.

Overlapping Components for Gk+r and Gk+2

Lower instances of G, in the search space have at least as many components due

to cut points as their predecessors, and those components that do exist, overlap.

Assume Gf+l is the point in the search space where a pruning opportunity would

first be detected in the top down approach. Let Gk+2 be an instance of G, closer to

the bottom of the search space that descends from Gn*t.

For the graph state at any position in the search tree, any descendant graph from

that point wilÌ contain no ne\M connectivity, as segment edges will only be replaced by

virtual edges and non-segment edges will have been removed. Therefore tfr+1 2 û+2.

Subsequently any cut point itt ç'k+t wiil either still exist in Gl+2, or be removed. If

the cut point was removed, then more disconnected components will be detected in

Gl*'.

Additionally no additional connectivity in the graph can be introduced between

Gl*t to G**,.

By this reasoning only more components could be created from Gk+l to Gk+2.

Bipartitions in Gl+t urr¿ çn+z

Wiih similar reasoning with respect to t, any bipartition that would be detected

in G'k+1 wiil also appear in çk+2 if no disconnection occurs in G, before then.

Additionally due to the reduced edge count in Gl+2, the chance of finding a

7t
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bipartition is greater and the search becomes faster. This is also the case for cut

points as well.

9.3.2 Testing at the Extremities of the Search Space

The extremities of the search space for the purposes of this thesis is defined to be

the locations of the leaf nodes in the search space. Recall that in chapter 4leaf nodes

were defined to be anchor points that oniy have leaves descending from them in the

search tree.

The following strategy for when to run the test has been adopted by the imple-

mentation for this thesis: The test for a separat'ing set'is run on the nert cons'istent

state found for G, after a leaf node has been detected.

Determining where leaf nodes are in the search space is accomplished in the fol-

lowing way:

1. On the start of the Turing Machine a marker cailed 'Ìow', that points to a cell

on the tape is set to point to the leftmost cell on the tape.

2. If the Turing machine has been moving to the right and encounters a stopping

condition, movement commences to the left and stops at a branching edge, this

represents an anchor point in the search tree.

If the 'low' marker points at a cell to the left of the read/write head, it is

updated to point to the current position of the read/write head. This represents

the lowest anchor point in the tree so far.

If the 'low' marker points to the current position of the read/write head it means
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that the same anchor point previously marked is still the lowest point found so

far.

If the 'low' marker points to a position to the right of the reacl/write head, it

means that a leaf node has been reached, exhaustively searched and control is

currently at the anchor point directly above where the leaf node was detected.

A pruning flag can now be set.

3. If the pruning flag is set, when the next consistent state is reached the test for

a separating set can be run, and the 'low' marker can be reset to the leftmost

position of the tape.

Figure 9.2 demonstrates this with Gf being the point where a leaf node in the

search has been detected. Gf*'i" the next consistent state after Gf.

9.3.3 Ensuring a F\rll Climb up the Search Tree

Because the pruning mechanism is not optimal for a value of c, each position found

up the search space by the pruning mechanism must be tested again when using the

bottom up approach.

To do this, the pruning flag is not reset after pruning has taken place, so on the

next consistent state, the test for a separating set is repeated and further climbing

can continue. It is not until the test for a separating set comes back with no sets

found that the flag can be turned off.

/J
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9.4 Implementation

The 'c' source code that implements all of the pruning functionality discussed in

this chapter is fully included in Appendix B.

9.4.L Data Structures

The data structures required to run the depth first search is listed and documented

in appendix 8.1. A reference to the state information required to run the DFS code

is stored bv the HCStateRef instance.

9.4.2 Code

A modified version of the runTuringMach'ine method calied, runTuri,ngMachtnew'¿th-

Prun'ing is listed in appendix B.3.2.

Two extra methods along with the variables to control finding the leaf nodes in

the search space have been introduced Lo runTuri,ngMach'ineWithPruni,ng.

The first method introduced is getComponentD'iff, found in appendix 8.2.2. This

method returns true if a separating set was found and returns the difference via the

variable c.

The second method introduced is pruneSearchSpace, based upon the pruning

mechanism presented in section 9.1, given the current cell position on the tape and

the argument c, unrolls the search state to the closest branching edge at or above

where c becomes zero. This method is found in appendix 8.3.1.

The actual search for a separating set is performed by dfSeparati,ng^9eú, found in

appendix 8.2.I, and is used solely by getComponentD'iff.
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Figure 9.1: Hypothetical search space with pruning opportunity. Consistent graphs
Gf and Gf+l are iabeled. The smaller points between them represent the vertices
that may make up the ne\/ separating set K'. In this example a separating set has
been discovered at Gl+l that allows pruning up to Gf .
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Figure 9.2: Hypothetical search space with pruning opportunity. A leaf node has
been detected at Gf . 

^ 
test for a separating set will occur at Gk+2 and allow pruning

all the v/ay up to Gf-r.



Chapter 10

Reduction Technique

The previotts work described in this thesis focused on general improvements to the

multi-path algorithm that can benefit search with all graph types. In this chapter a

family of graphs is introduced that severely impact the performance of the multi-path

method, despite the improvements already made.

A reduction technique is presented in this chapter that can be used to determine

if a graph from this family is not Hamiltonian in an extremely short period of time.

Further work is needed to use the technique in determining if a graph from this family

is Hamiltonian and is discussed in chapter L2.

10.1 Hamiltonian Subgraphs

Definition (external vertex). Let A be some subgraph of the graph G. A aerter

u e V(A) is sai,d to be an erternal uerter of A xf there erists an edge {u,u}e E(G)

such that u eV(G - A).
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Figure 10.1: The Meredith graph. The multi-path algorithm is severely impacted in
performance while searching this graph. This impact is mostly due to the properties
of the marked subgraphs.

Definition (reducible subgraph). Let R be a subgraph from graph G. F.is

a reduci,bLe subgraph i,f for any Harni,lton cycle or path frorn G, a Hami,Iton

P ç R, must en'ist between some erternal uert,ices from R, and P must be

conta'ined within the Hami,lton cycle or path found in G.

If a graph has a reducible subgraph, then it belongs to this family of graphs that

can dramatically slow down the multi-path algorithm.

ftom the perspective of the rest of the graph when searching for Hamilton cycles,

a reducible subgraph must be entered, fully traversed, and then exited, much like a
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single vertex is.

In figure 10.1 a representative of this family of graphs is shown. This graph,

named the Meredith graph, contains ten reducible subgraphs that severeiy impact

the performance of the multi-path algorithm.

The reason for the dramatic effect on performance is that the multi-path algorithm

does not know about reducible subgraphs nor does it attempt to find a Hamilton path

in one first before searching the rest of a graph. Instead multiple segments can be

formed going into and out the external vertices of the individual reducible subgraphs.

This can occur at many points in the search space. The state of. G, at each of these

points needs to be exhaustively searched which represents an exponential period of

time spent fruitlessly searching for a Hamilton cycle.

The subgraphs found in the Meredith graph are a special case of reducible sub-

graphs. Called complete half-biparteúe subgraphs, section 10.1.1 details the specific

reasons on why certain half-bipartite subgraphs are reducible. Section 70.I.2 briefly

describes a fairly simple method of finding complete half-biparieúe reducible subgraphs

in a graph such as the Meredith graph.

Finally in section 70.2 a process of recursively using collections of disjoinL reducible

subgraphs to arrive at much a smaller reduced graph is described. These reduced

graphs can then be used to determine if a $aph from this family of reducible graphs

is not Hamiltonian is a very short period of time.
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10.1.1 Half-Bipartite Structures

Definition (half-bipartite subgraph). Let B be some subgraph of graph G. P ,is the

marimal subset of the i.nternal uert'ices of B such that no two uert'ices from P share

an edge. If Vl > 7 then B forms a half-bi.parti,te subgraph i.n G.

Lemma 2. Let P be the subset of internal uert'ices from a half-bi,part'ite subgraph

B ç G, wi,thp: lPl and q: IV(B) - Pl. If p> q then no Hami,lton cycle can be

found i,n G.

Proof. Let r be the number of vertices from P visited by a path through B that

starts and ends outside of P. Because vertices from V(B - P) can be connected, at

least r* 1 vertices from V(B - P) must be used in that path as no two vertices from

P are connected.

If p > q this means that the number of unvisited vertices from V (B - P) will run

out before those from P do. Fhom the perspective of finding a Hamilton cycle in G,

it becomes impossible to visit all of P, therefore G is not Hamiltonian.

If. p : q then a Hamilton cycle could be found in B, but in the process, detaching

all of V(B - P) from G with respect to finding a Hamilton cycle in G. Unless B : G,

G is not Hamiltonian.

Theorem 10.1.1. Let P be the subset of internal uert'ices from a half-bi.partite sub-

graph B, w'ithp: lPl and q: IV(B) - Pl. If p: q-I then B is a reduci,ble

subgraph.

Proof. Let B be a half-bipartite subgraph of G as described above and assume that

a single cycle segment has entered and left B without visiting all vertices.
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Then z visited vertices from P will be gone with respect to finding a Hamilton

cycle in G and at least r* 1 vertices gone ftomV(B - P),leaving a new half-bipartite

subgraph with p' - p -z and q' : q - r - I.

Since p : q- 1, then by substitution p/ - q-z - 1 and p' : q'. By lemma 2 this

new half-bipartite subgraph can not be used for any Hamilton cycle.

Therefore any cycle segment passing through B must completely visit B before

leaving. Therefore B is a reducible subgraph.

n

Definition (complete half-bipartite subgraph.). Let B be a half bi.partite subgraph of

G. If the subset P of i.nternal uertzces share an edge with each uer"ter from V (B - P) ,

then B is a complete half-bi,parti.te subgraph.

Each of the subgraphs found in the Meredith graph form a complete bipartite

$aph with four external vertices in one of the bipartitions and 3 internal ones in

the other. These sizes satisfy the requirements for being a reducible half-bipartite

subgraph.

tO.L.2 Finding Reducible Complete Half-Bipartite Structures

Complete half bipartite subgraphs have the unique property that all of the vertices

from P all share edges with the same set of vertices.

A fairiy efficient polynomial time utility for finding half-bipartite graphs based

upon this property has been created for finding all of the reducibte half bipartite

subgraphs from a graph.
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The algorithm used to find the subgraphs is based on string comparisons of strings

generated by listing all of the vertices adjacent to a given vertex in ascending order. By

matching strings that repeat to the same half-bipartition, the set P can be generated

for each half-bipartite subgraph in a graph.

Past knowing these steps, the design and implementation of the algorithm that

implement this idea of string matching is not discussed further as it is beyond the

scope this work.

The important points are that reducible complete half-bipartite subgraphs are

detectable in polynomial time, and they can be used to generate a graph reduction

as described in the next section.

LO.z Reducing G

Let Zç be a collection of disjoint reducible subgraphs from G. A new reduced

$aph G' can be formed from G and Zç by simply copying G into G' andreplacing each

subgraph, A, by a single vertex u, in G'and ensuring that all edges that connect to

vertices from .R are represented as edges incident to u, being sure to discard duplicate

edges and loops.

This new graph G' can subsequently be scanned for its own collection, Zþ, of

disjoint reducible subgraphs and the process can be repeated for some new graph G",

and so on. Let a be the number of times a reduction is performed in this way.

The recursively reduced Braph, Go, can then be searched with the multi-path

algorithm with an exponential increase in performance.
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Theorem 10.2.1. Let G" be the ultimate graph produced though a series of reducti,ons

us'ing di,sjoi.nt reducible subgraphs from each i,nterrnediate graph and the ori,g'inal graph

G. If Go i,s non-Harn'iltonian, so too i,s G

Proof. Let the series of graphs generated during the reduction of G towards G" be

G',...,Go-|. Let G" be a non-Hamiltonian gïaph. This means that no Hamilton

cycle could be formed that enters or exits any of the subgraphs in Go-|. Even if

Hamiltonian paths could be formed between two external vertices for any reducible

subgraph in Zft-r, none of them could be used. Therefore Go-1 is non-Hamiltonian

and by induction so is G.

The use of this technique on the Meredith graph results in a search performed on

the Petersen Graph. As shown in chapter 4, this graph is processed by the multi-

path with an extremeiy small search tree. As will be shown in section L1.2.3, simply

running the algorithm on the original graph takes a very long time.

Lo.z.L False positives: an IJnwanted Side Effect of Reduction

If Go is found to be Hamiltonian, there is no guarantee that G is as well. One of

the reasons for this is similar to the proof given for theorem 10.2.7.

With any Hamilton cycle, C, from Go, the two edges incident to any u eV(G")

that represent a reducible subgraph, R e G"-r, must reflect edges from E(G'-l)

incident to two separate external vertices of Æ. In fact many combinations of external

vertices are possible from ,R with a single pair of edges incident to u. If none of those

combinations of external vertices have a Hamilton path in -R, then C does not reflect

a Hamilton cycle in Go-l.
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If this is the case for all C from Gd ) Ga-r is not Hamiltonian.

The other reason why C may not reff.ect a Hamilton cycle in Go-1 is the case

where the two edges incident to u only reflect a single external vertex, t,l, from .R.

This is caused because the reduction reduces all edges out of .R to a single point. Two

edges incident on u may connect outside of -B in a way that is not done through any

other points from -R. Any Hamilton cycle f.or G" using such edges about ,u will not

reflect a Hamilton cvcle in Go-|.
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Analysis and Verification

11.1 Verification

Verification of the implementation of the multi-path algorithm was performed in

two main v/ays. The first was by comparing the Hamilton cycle counts generated by

the implementation for [Koc92] and this thesis. The second was by repeatedly modi-

fying the search space for the same Hamiltonian graph and comparing the Hamilton

cycle counts. If the counts stayed the same afber many modifications it was assumed

that the algorithm was working properly.

'The search space was modifi"ed by randomly permuting the numerical labels of a

graph's vertices and then sorting the adjacency lists in ascending order based upon

the new labeling. These isomorphic graphs were then searched using a static vertex

ordering of one through n.

Many thousands of permutations were used on the same graph to verifii that the

cycle counts were unchanging and that the implementation done for this thesis is
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correct.

In this way the subtle impact of the current anchor point on the size of the

separating set while pruning was initially discovered and finally solved. The process

of trying to discover where and why the Hamilton cycle counts differed led to many

of the improvements introduced in this thesis.

LL.2 Analysis

All of the results listed in this section \Mere generated by a PowerPC G5 running

at 2.5 GHz. The operating system was Mac OS X 10.4.10 (Tiger). While the machine

was a 2 * Dual Core Machine (4 cores), only one core v/as used as the algorithm as

implemented is purely a sequential one.

A unix command line utility was written using the source code from within this

thesis to run the implementation of the algorithm from this thesis.

The previous version of the algorithm for [Koc92] was run from within a modified

version of Groups and Graphs [gng]. This version 'ù/as ported from CodeWarrior to

the XCode programming environment in order to use the gcc compiler [ccg]. The

version label of the compiler is'powerpc-apple-darwinS-gcc-4.0.1'.

All test data is based on object code generated using the same optimization pa-

rameters during compilation (gcc -fast -mcpu:G5 -mtune:G5).

The source code of the implementation for this thesis should be fully portable

across BSD, Linux and other Posix compliant operating environments. No endian-

ness issues exist in the code and it should compile on most computing architectures.

Essentially if gcc has been ported with the standard set of c libraries, it should compile
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with little or no modification.

The testing is broken up into three parts. The first, and most extensive part,

demonstrates the performance of the new algorithm versus the old using a set of

graphs known as knight's graphs, based upon the movement of knights on a variably

sized chess board. As mentioned in [Van98], graphs of this type are suitable for

comparative analysis of Hamilton cycle algorithms because they tend to be diffi.cult

to fully explore. These tests attempt to demonstrate the improvements brought on

by the new segment extension algorithm, by the vertex selection modifications and

the changes to the pruning algorithm.

The second part of the test attempts to compare the two algorithm's performance

against complete graphs. The characteristics of the complete graphs ailow for an

examination of the improvements brought by the removal of pass by value data.

The final section of the analysis is based on the reduction algorithm and its use on

the Meredith graph, or more specifically on what the consequences are of not using

it are.

LL.2.t Knight's Move Graphs

Table 11.1 introduces a set of the knight's graphs used for testing the implemen-

tations of the algorithm. Attributes such as number of vertices and edges along with

the Hamilton cycle counts generated by the algorithms are listed. Table 11.2 lists the

timing results for various parameters on the implementations of both versions of the

algorithm and table 11.3 provides some ratios for comparing the performance of the

algorithm based on the timings from table 11.2.
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Table 11.1: Set of knight's move graphs used for primary test results. The Hamilton
cycle counts found when exhaustive searching the entire search space for each graph
is iisted.

Graph n e Hamiltoncycles

kn36898 64 136 3018210
kn35341 64 136 2772
kn4x8 32 64 0

kn5x6 30 62 8

kn5x8 40 90 44202
kn6x6 36 80 9862
kn6x7 42 98 i067638
kn7x4 24 86 207360000

Table 11.2: Times generated for the graphs from table 11.1. Each of the times listed
represent different algorithm parameters in use. Ali times listed are in seconds.

Graph told. td."r" t^o, to"" tuu tt¿

kn36898 7.58 1.67 2.42 1.78 1.68 3.27
kn35341 0.022 0.011 0.010 0.0086 0.0i9 0.023
kn4x8 0.00015 0.000077 0.00016 0.00007 0.000120 0.00013
kn5x6 0.00010 0.000026 0.000027 0.000063 0.000038 0.000034
kn5x8 0.087 0.026 0.029 0.026 0.026 0.039
kn6x6 0.022 0.0077 0.0079 0.0059 0.0081 0.011
kn6x7 2.42 0.74 0.78 0.53 0.76 1.18
knTx4 943.01 61.18 220.64 4L79 41.25 80.37

The meanings of each of the timing parameters are the following:

úo¿¿ Represents timing results from the previous implementation from ll{oc92] as im-

plemented in [gng]. Recall that the previous algorithm used a dynamic ordering

of vertices for anchor points based upon a maximum degree valued vertex.

ú¿""" Represents timing results that correspond to static orderings of the vertices with

respect to a descending degree sequence

for" Represents timing results that correspond to static orderings of the vertices with

respect to an ascending degree sequence.
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Table 11.3: Various ratio's of the timing results from table 11.2.

Graph tomlta"s, toult^o, t*
kn36898 4.54
kn35341 2.00

1.00 1.92

1.73 2.09
kn4x8
kn5x6
kn5x8
kn6x6
kn6x7
kn7x4

1.95

3.85
t 9É.J.J(J

2.86
t .)t7
ù.2I

15.47

o 10
ù.1t)

2.20

0.94
3.70
3.00
2.78

3.10
4.27

7.45

0.91

2.08
1.04

1.11

1.02

1.05

3.61

1.06

0.78
0.91
, ,1'

1.00

0.77

0.72
0.68

1.56

1.46
i.00
1.05

1.03
0.67

1.69
1.31

1.50
r.43
1.59
1.31

t*o, Represents timing results that correspond to a dynamic ordering of the vertices

similar to the method used from [Koc92].

ú¿¿ Represents timing results using the same vertex selection rules as ú¿ur" but with

pruning enabled. The pruning used is an approximation of the top down ap-

proach used from [Koc92]. It is approximate in that the pruning tests are run

after each anchor point is selected and just before ertendAncåor is run. The

subtle difference being that in [Koc92] the top down pruning occurs after each

consistent state is reached due to the selection of a s'ingle branching edge.

ú6,, Represents timing results using the same vertex selection rules as Í¿""" but with

pruning enabled. The frequency of the pruning tests use the bottom up im-

provement introduced bv this thesis.

Unless otherwise specified none of the timing results have pruning enabled. The

only timing results that use the previous algorithm from [Koc92] is the tord pa.rameter.
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Effects of Vertex Ordering

In general when comparing the results using the ratios provided in Table 11.3, the

changes to the algorithm show a substantial speed up over the previous algorithm from

[Koc92]. The exception seems to be in the case when comparing the 'kn4x8' graph

with the old algorithm when using the max degree approach in the new algorithm.

One possibility here is that because the graph is not Hamiltonian and because the

search happens so quickly, the number of branchings that occurs must be relatively

few in number. This suggests that the faster sequential copies of the pass by value

approach offsets the other gains of the new algorithm when using the max degree

approach when a lower number of branches occur. More on this is explored in the

second part of the analysis.

One graph in particular seems to gain greatly by just using a descending degree

sequence vs using the max degree approach. Graph 'kn7x4'has a great speedup over

the original in this case. When removing the affects of the static orderings using ú-o",

the speed up stays in line with the other graphs with larger search areas.

By changing to an ascending degree sequence quite a few of the graphs show a

speedup, particulariy the 'kn7x4' graph, however the impact on the other graphs

suggest that more than just degree values have an impact the size and shape of the

search space.

Pruning Algorithm

The improvements brought by changing when to test for a pruning condition are

made most apparent by the 'kn7x4' graph. Without the improvement, based on the
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results shown, it could be assumed that little or no pruning actually takes place in

this graph. But the 0.67 ratio for the t6uf t¿""" suggests that quite a bit of pruning

occurs.

In general the bottom up approach seems to provide quite a speed up compared to

the top down approach. However the results for the 'knbx8' graph suggest that in the

cases where a smaller search space exists, a larger number of calls to the separating

set test probably occur due to the nature of how the algorithm climbs up the tree in

the bottom up approach.

LI.z.2 Complete Graphs

Table 11.4: Comparison of both multi-path Algorithms using no pruning and the
default vertex otd.ri are in seconds.

n € told, td,""" tom lta"""
12 66 rI.r2 4.79 2.65
13 78 136.00 50.53 2.69
L4 91 1811.i8 660.83 2.74
15 105 26848.33 9173.40 2.92

Table 11.4 contains the second set of comparative data of the two implementations

based on tests of the complete graphs on 72 through 15 vertices. The meanings of

the timing parameters úo¿¿ and t¿¿s¿ ãle the same as in the previous section.

Because of the high degree values of each of the vertices in the complete gaph,

the impact of the new segment extension algorithm is lessened. Additionally running

the pruning algorithm on these graphs is pointless, as the majority of the leaves result

in Hamilton cycles.

Because of these factors, more emphasis can be placed upon the removal of the
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pass by value data and the expected O(n) improvements per branching edge. As can

be seen in the data provided, as the number of vertices increase so does the speedup.

While it is impossible to test, theoretically it would be expected that this speedup

would approach n for larger values of n. The initially lower speedup can partially be

attributed to the differences in random memory movements vs fast sequential ones,

since the new algorithm has more random memory reads and writes while restoring the

graph states. As the number of vertices increase, the size of the O(n ) sequential blocks

used in the pass by value approach increase, and the benefit of the fast sequential

copy of data loses ground to the lower O(AS) random memory copies.

tI.2.3 Reduction Technique on the Meredith Graph

The Meredith graph is a non-Hamiltonian graph that is extremely difficult for

the multi-path algorithm to deal with. Much of the search space consists of multiple

segments going into and out of individual half-bipartite subgraphs. This is what the

reduction technique is meant to stop. Once the Meredith graph is reduced to the

Petersen graph, the time spent running the multi-path algorithm (less than a second)

is negligible compared to the original.

While testing a previous version of the new algorithm, one that was closer to

[Koc92] in performance, the algorithm spent over twenty five days running the al-

gorithm before a power failure terminated the process. This was one of the prime

motivations for moving towards an algorithm that could easily incorporate check-

pointing.

The new algorithm without pruning takes 11 days to exhaustively prove that the
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Meredith graph is non-Hamiltonian. With pruning enabled, this drops to only 4 days!

Because of the variability in the speed up between graphs, it is hard to surmise what

the actual runtime would be for the implementation from [Koc92].

However 4 days verses less than a second is a good indicator of how powerful the

reduction technique could be when fully developed.
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F\rrther \Mork

During the course of developing the improvements described by this work many

ideas of potential further study were envisioned with respect to the multi-path method,

pruning the search space, and the reduction technique. A few of these ideas are listed

here.

L2.L Multi-Path Algorithm

L2.7.L A Closer Examination of Vertex Order

A more extensive treatment of the static ordering of anchor point selection could

allow for the identification of more properties of graphs and allow for further reduc-

tions in the size of the search space of the multi-path method.
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L2.L.2 Algorithm for Directed Graphs

The extension algorithm developed here could be adapted to work for directed

graphs as most of the concepts carry over between graph types.

L2.L.3 Fine T\rning for the TSP

As seen with the explosive growth in time to exhaustively search complete graphs,

it is still not very likely that an exhaustive approach to the Traveling Salesmen

Problem, or TSP, will be forthcoming with the results given here.

However the approximate results of the algorithms currently used by the TSP,

could be used to seed the search space of the multi-path algorithm. In this way, by

fixing certain segments and allowing others to change, a narrower area of the search

space could be navigated and possible better solutions found.

L2.L.4 A'Work-Stealing Parallel Implementation

Since most of the time searching is spent close to the right hand side of the tape

when visualizing the search space with a Thring Nlachine, the left hand side of the

tape could be used to offioad work to parallel searches of the same graph.

A parallel algorithm could be developed that uses the approach of stealing un-

searched branching edges from anchor points located on the left hand side of the

tape.

These stolen branching edges can be safely removed from anchor points already

within segments and passed to parallel searches that are initialized with the segment

edges up to the location of the anchor point on the tape. In this way a good division
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of the search tree may be achieved.

The communications overhead of such an algorithm would be minimal and the

execution would be extremeiy parallel, leading to potentially extremely good scaling

characteristics.

L2.2 Pruning Algorithm

t2.2.L Constructing Components for Better Separating Sets

The current mechanism for pruning back the search space approximates the changes

Lo a(G, - K') - lK'1. It would be nice to attempt to reconstruct the actual compo-

nents of G" while pruning back the search space. This could allow for better detection

of what vertices to add to K' and even larger values of a(G, - K') - lK'l as each new

member of the separating set may actually disconnect two components joined via the

segment the new member came from.

By utilizing existing merge-find techniques for building up components, a method

of creating a better separating set may be found.

L2.3 Reduction Technique

!2.3.I Finding More Reducible Subgraphs

Finding reducible Complete Half-Bipartite Structures is a fairly limited endeavor

for most graphs, especially when applied recursively as in the reduction technique.

However reducible Half-Bipartite Structures that are not complete may occur with a
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higher frequency, especially in reduced graphs. Strategies for finding them should be

explored.

L2.3.2 Reconstructing Hamilton Cycles in Go-l

The utility of the reduction technique is currently limited to quickly processing

otherwise hard non-Hamiltonian graphs.

Since all Hamilton cycles in Go-1 must follow the route set out by Hamilton cycles

in G" , a v/ay to recursively reconstruct Hamilton cycles from G" up to G can probably

be found and some work to that effect has already been started.
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Appendix A

Multi-Path Code

4.1 Data Types

typedef signed int SInt;
typedef unsigned i nt UInt ;

typedef int Vertex;

/x Adjacency List. *l

typedef struct vertex-arc {
Vertex target; /* Vertex adjacent to current vertex. x/
struct vertex-arc xnext; /* Next arc ( null terminated list ). */
struct vertex-arc *prev; /* Previous arc (circular list ). x/
struct vertex-arc *croSS; /* Adjacent vertex's list. r./

] VArc;

f* Graph lnformation Structure Adapted from Groups and Graphs. */

typedef struct graph {
char *name ; /* Graph t it le . x/
UInt vertex-count; /* Number of Vertices. x/
UInt edge-count ; /x Number of edges. x/
VArc xxadj-listsi /" Array of adjacency lists. x/
bool x* adj-matrix ; /* Adjacency matrix */
UInt x degree ; /* degree list x/

] Graphlnfo;

/x Flags controlling overall state of multi-path algorithm */

typedef struct hc-flags {
bool usePruning;
bool pruneOnce;
bool setPruningFlags;
bool isHamiltonian;
bool isHamiltonCycle;
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) HCFIags;

/+ Bit-field reference for edge status stored in tape entr¡es,
the status flags in code have mostly same meaning to those found in
section 7.3. The main'differences is if the anchor point
is the source vertex of the branching arc, the flag HC-FLIP-SOURCE is used.x/

typedef enum {
HC-ENDPOI}TT _ 1,
HC_ANCIIOR-POI}TT _ 2,
HCÁNCTIOR-EXTM{D : 4,
HCJ'LIP,SOURCE : 8,
HC-FORCEDJEG2 _ 16,
HCfORC,ED : 32,
HCI{AM]LTONIAN _ 64,
HC]TERMINATE : 128

) HCArcStatus;

/+ Storage Type of entries for each position in Turing Machine */

typedef struct hc-tape {
HCArcStatus status;
VArc x arc ;

] HCTape;

/x Multi-Path State */

struct hc-state {
HCFlags flags;
Graphlnfo xgraph; /* reference to target graph for search x/
HCDFSRef dfs; /* state for pruning atgorithm */
VArc i.x adjList ; /* adjacency lists for each vertex x/
UInt vertexCount; /x initial number of vertices in graph x/
HCTape t,pos; f * current position of read/write head */
HCTape x origin ; /* start of Tape for turing machine x/
UInt xdegree t /* current degree of each vertex */
Vertex xvirtualEdge; /*, current virtual edges x/
Vertex xvertexoÌder; f x order for anchor point selection */
VArc xremovedEdges ; /x cu rrent list of removed edges x/
VArc x*removedEdgesStack i /* stack of lists of removed edges *./
Vertex *deg2Stack; /x forced vertex stack */-t.

Jt

typedef struct hc-state x HCStateRef;
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^.2 
Extending Segments

4.2.L Support Routines for Extending Segments

/* lind and remove arc from adjacency I ist 'Lx' xf

void
removeArc( VArc xxl,x, VArc *a ) { t- */ }

/x insert arc to the top of adjacency I ist 'Lx' *f

void
insertArc( VArc *xl,x, VArc xa ) { /" */ I

/* Removes the bit flags that indicate an endpoint of a segment.
Restores the incoming arc 'a ' i f necessa ry . +/

void
fixlnArc ( VArc xxl,, VArc xa , Vertex x , UInt x kPtr )

{
UInt k - *kPtr;

if ( k & (HCJNDPOTNT ) ) {
insertArc( L + x, a );
k 8F -HC-ENIDPOINT;

xkPtr : k;
Ìj ¡* rtxtnArc *f

/x Remove all but one of the incoming arcs of the source vertex of arc 'a'.
The initial incoming arc (a->cross ) is not removed. x/

bool
removeForcedD2lnArcs( VArc xxl,, VArc xa, UInt xd, Vertex xxd2Ptr )
Jt

Vertex y;
UInt dy;

Vertex *d2 : xd2Ptr;
VArc *p : a-)prev i

d"{

y : p_>target;
dy: d[y];

if (dY:2 ) break;
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if(-dy:2)x(++d2) :y;

d[Y] : dY;
removeArc( L + y, p->cross );
p - p->prev;

) while ( u !: p );

if ( a !: p¡ {

/+ deg 1 vertex encountered x/
/r. restore from a to n before exiting x/

a - a->prev;
while(a!:p¡1

Y : a->target;
d Iv]++;
insertArc( L + y, a->cross);
a : a->prev;

Ì

return true;
Ì

xd2Ptr : d2;
return false;

] /* r"-oueForcedD2lnArcs x/

^.2.2 
Main Routine for Extending Segments

/* Extend a I I segments for this state of the graph .

The extention of the segment is attempted from both sides of the segment until
no further extention possible with current graph state.

This procedure follows the initial vector provided by the arc'a'and follows
the path untíl no degree 2 vertex is encountered or until a cycle is created
by h¡tt¡ng vertex 'z' ( the otherside of the segment ).

When the extent¡on in current direction provided by arc 'a' can go no further,
the endpoint 'z'may have been reduced to degree 2. ln this case the new

endpoint and z are swapped, a new initial arc is chosen at z and the process
is repeated until search terminated or until no further extention possible
from ether side of the segment.

Once a segment has been completely extended to its maximal length within it's
local domain, the process is repeated on a new segment until the degree 2
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stack'd2'is reduced to 0.

Procedure returns true if current state of graph terminates search , ie. when a

vertex is reduced to degree of 1 or a cycle is forced.

A cycle can only be forced when the current segment encounters its other
endpoint while trying to extend. x/

bool
extendsegments(HCStateRef s, VArc xa, Vertex z, UInt k, Vertex xd2)
{

Vertex €X , x;
VArc xc; /x cross arc directed at current endpoint x/

UInt xd : s->degree ;

Vertex xe : s->virtualEdge;
VArc **L : s-)adjList ;

HCTape *hz : NLTLL; f * tape position for other endpoint x/
HCTape xhx : S->pos; l* tape position for current endpoint */

extend-seqment :

/x attempt to traverse arc a *f

C : a->CTOSS;
x : a->target;

/x store cross in tape so that in negative direction arc target always
points at a vertex to be restored *f

hx*-l;
hx->arc : c;

if ( x: z ) {

/x a cycle is forced x/

if (ht) fixlnArc( L, hz-)arc, z, &hz-)status );

/x restore focal point, no longer nessary to maintain tape position
at this point */

dIc->target]:2'
s->pos : hx - 1;

/x determine if cycle is a Hamilton cycle x/

hx*f;
s->flags. isHamiltonCycle : hx-)st¿f ¡s : HCJIAMILTONIAN;
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return false;
II

if (( ex: e[x] )){

f* arc has collided with a virtual edge x/

/* attempt remove the target of arc (x) from graph and continue
to extend the segment. x/

if(d[*] >2){
if ( removeForcedD2lnArcs( L, c, d, &d2 ) ){

/+ ensure that segment endpoint info removed and
that source of arc a is placed back on graph */

if (hr) fixlnArc ( L, hz-)arc , z , khz-)status );
hx-)status : k;
s->pos - hx;
return false;

I
J

k l: HCJORCED_DEG2;

Ì

hx-)status : k I HCJORCED;
d["] - 0;

if(d[ex]!:2){

f* The other side of of virtual edge will not allow segment to
continue in current d irection *./

if ( dlrl !: 2 ) {

goto finish-seernent;
Ì

/x Otherside of segment is to be forced onto the cycle, grow
segment in the x-)z d irection .

Two possiblities on what ar'c to extend at z.

The first is that z was a degree 2 vertex not on a virtual
edge. The LIz] arc is the arc fi rst used to extend segment
towards current x. Since LIz] is of degree 2 we know that the
previous arc is the other arc þointing out of z.

The second case is that LIz] is already on a virtual edge. ln
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this case LIz] will only have one arc in its list and

L [=]-> prev : L Iz ] .

By choosing LIz]->prev in both cases an expensive branch is
avoided.

The same reasoning applies whenever LIz]->prev is chosen when

switching endpoints */

a : LIz]->prev;
d[z] : 6'

if (ht) fixlnArc ( L, hz->arc , z, khz-)status );

z : ex;
hz - hx;
l- n-Á - ur

goto extend-segment;
Ì

/x continue growing segment in the current direction xf

l- _ n.\ - u:
dIex] : g;

a : L[ex];

goto extend-seqment ;

Ì

if ( d[*] :2 ){

f* x is degree 2, add arc and continue in same direction trf
hx-)status : k;
k : 0;
d["] - 0;

a - c->prev;
goto extend-seqment ;

]

/x Segment can not be extended further in current direction,
remove arc pointing into segment. x/

hx-)statüs : k I HC-ENDPOINT;
removeArc( L + x, " );

i f ( dlrl l: 2 ) goto finish-seqment ;
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a : L Iz]->prev;

if (ht) fixlnArc ( L, hz->arc , z, &hz->status );

d[z] : s;

goto extend-seqment;

finish-seqment:

/x A multigraph may have been created. Segment end points x & z may be

physically adjacent along with their new virtual edge joining them.
Remove actual edge to take away the multigraph stãtus. */

if(d[,] <d[*] ){
a : L[z];
while ( ukk a->target !: " ) a: a->next;

) else {
a : L[x];
while (ukk a->target !:z ) u:a-)next;

Ì

if ( u ) {

c : a-)cross i

removeArc( L + a-)target, c ) ;

removeArc( L + c-)target, a ) ;

a-)next : s->removedEdges;
s->removedEdges : a;

if ( 
-d[*] 

: z ) {

d Ir]- -;
d[x] : o;

a : LIx]->prev;
fixlnArc ( L, hx-)arc , x, &hx-)status );
k : 0;
goto extend-seqment ;

II

if ( 
-dlrl 

:2 ) {a : LIz]->prev;
if (h") fixlnArc ( L, hz->arc , z, khz-)status );
d[z] : ¡'

Z :X;
hz - h*;
k : 0;
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hz : hx;
Z : Y'
l, _ n.A 

- ur

goto extend-seqment ;

Ì

f* a new virtual edge has been created that is consistant within its local
area of the graph ( its endpoints ) x/

elzl : v'
elxl : 7'

/x check if any more segments need to be grown x/

do x : xd2--; while ( x 3a& !d[x] );

if ( * ) {

f* there is a degree 2 vertex still on the stack,
create a new segment or enlarge an existing one x/

if (( z:e[x) )) d[x] :g' f*entarseasegment*/
else z: x; /x starts a new segment x/

a : Llxl;
hz : NIILL;
k : 0;

goto extend-seqment;
Ì

s->pos - hx;
return true;

Ì /* extendSegments x/

4.3 Extending Branches

/x fhe targeted arc represents a vertex already on a segment endpoint and
needs to have a I I incoming arcs removed but the arc opposite to 'a '. Returns
updated stack of new forced vertices that are passed via d2. *f

Vertex x

removelnArcs( VArc *xL, VArc xa, UInt *d, Vertex xd2 )
Jt

Vertex x;
VArc *p : a->prev;
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while(p!:a){
¡ : p_)target;
if (-d[*] :z )x(++d2):*;
removeArc( L + x, p->cross );
p - p->prev;

Ì

return d2;
] 7* re-ouelnArcs x/

/x Extend or create a segment and remove the vertex x from the graph by
marking one or two arcs extending out of it as pivot arc(s). The call to
extendAnchor must only be done while the graph is in a consistant state. */

bool
extendAnchor( HCStateRef s, VArc xxL, Vertex xe, UInt xd, Vertex x )
{

Vertex y , ex;
VArc xa;
UInt k;

Vertex xd2 : s->deg2Stack;

if (( ex: e[x] )){

f* case 1: source vertex of current arc is already on a vi rtua I edge
and must be forced onto the potential hamilton cycle *f

xs->removedEdgesStack+* : s->removedEdges ;

s->removedEdges : NIILL;

a : L[*];
k - HC_ANCHOR_POINT I HC-{NCT{OR-Ð(Tü\D;
d[x] : 6'

. return extendSegments( s, a, €x, k, removelnArcs( L, a, d, d2));

t-
J

a: L[x];
Y : a-)target ;

if (( ex: eIy] )) {

f* case 2: same as first câse but origin flipped x/

k : HC-ANCIIOR-POIIIT I HC-FLIPSOURCE I HC-ANCHORJXTEIJD;
a : a->cross;
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*s->removedEdgesStack*-f : s->removedEdges ;

s->removedEdges : NULL;

dlvl : o;
if ( !extendSegments( s, a1 €X, k, removelnArcs( L, a, d, d2) ) )

return false;

i f ( !d Ix] ) return true ;

xs->removedEdgesStack++ : s->removedEdges ;

s->removedEdges : NULL;

a - L[*];
d[x] : g'
k : HC_ANCHOR_POTNT I HC1NCTTOR-Ð(TEbID;

return extendSegments( s, a1 u[*] , k, removelnArcs( L, a, d, d2 ) );

)

f* case 3: neither the source or the target of the arc is on a virtual
edge, simple join them by a virtual edge and remove the
two arcs joining them. */

r<s->removedEdgesStack# : s->removedEdges ;

removeArc( L + y, a->cross );
removeArc( L + x, u );
efx] : y'
e[v] : *;

s-)pos**;
S->pos->arc : a->croSS;
s->pos->st atus : HC-ANCHORJOIIYT;

x s->removedEdgesStack+* : NIILL ;

s->removedEdges : NLILL;

a : Ll*];
d[x] : 9'
k :HC_ANCHOR_POTNT I HC_ANCT{OR-EXTEIJD;

return extendSegments( s, a, V, k, removelnArcs( L, a, d, d2 ) );

] /x extendAnchor x/

/x Removed edges form a null terminated singly linked list using
the a->next value of each arc , start¡ng at a. Restore each arc ,
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using the a->cross to find out the origin. Ensure to update degree
values for each vertex with a restored arc. *f

void
restoreEdges ( VArc xxl, VArc xa, UInt *d )
I
T

Vertex u ) v;
VArc *n;

while(u){
n : a->next;
u : a->target ;

v : a->cross-)target;
insertArc (L + u, a->cross );
insertArc (L a v, a );
d Iu]++;
d Iv]++;
a : n;

Ì
) /x restoreEdges x/

/+ Remove branch at hx. Return the anchor point that the branching edge
was off of . */

Vertex
rotateAnchorPoint ( HCStateRef s , VArc xxL, Vertex xe , UInt xd ,

HCTape xhx, Vertex xxd2Ptr )

{
Vertex *d2 : s->deg2Stack;
VArc r(a : hx-)arc i

UInt k : hx-)status;
Vertex x : a-)target;
VArc *c : â,-)cross i

Vertex y : c-)target;

if (k&HC-ANCTTOR_EKrEIID ) {
unrollArc( L, e, d, a, k );

e[e[x]l - x;
d[*] :2+ restorelnArcsWithCount( L, c, d );

removeArc( L + x, c );
removeArc( L + y, u );

) else {

e[x] : 0'
elvl : o;

Ì
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/* Restore edges removed during previous branch x/

restoreEdges( L, s->removedEdges, d);

/x Remove the edge current anchor point represents and give it
to the closest pivot point to the left to restore. This indicates
that no more search possible with the edge in question. ( ot ât least
until pivot point to the left encountered.) */

a->next : ,<--s->removedEdgesstack;
s->removedEdges : a;

if ( 
-d[y] 

: z ) x(++d2) : y;
if ( 

-d[*] 
: z ) *(++d2) : *;

xd2Ptr: d2;

s->pos : hx - 1;

if (k&HCJLIPSOURCE ) return y;
return x;

) /* rotateAnchorPoint x/

Vertex
ensureConsistent ( HCStateRef s , VArc xxL, Vertex xe , UInt *d, Vertex xd2 ,

Vertex x, Vertex xnv )

{
Vertex ey;
Vertex y : xd2;

/x no vertices have been forced, return x as next pivot point x/

if ( !V ) return x;

f* forced vertices, ensure graph is consistant x/

ey : e [y];
if("v)d[y] :0;
else ey : y;

if ( !extendSegments( r, LIy] , ey, 0, 
-d2)) 

return 0;

f* x may have been absorbed by a segment, ensure return of next
available pivot x/

if ( !d[x] ) {
s->pos->st at u s I 

: HC-A¡C,UOR-TYPE1 ;
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do x : nv [x] ; while ( !d [x] );
ì.
I

return x;

/x lnitialize tape to first leaf in search space. Returns true only if
runTuringMachine can be entered. */

static Vertex
primeTape( HCStateRef s, EList xrequiredEdges )

{
UInt dx;
Vertex ex ;

Vertex x : s-)vertexCount * 1;
VArc xxl, : s->adjList ;

Vertex ,(e : s-)virtualEdge;
UInt xd : s->degree ;

Vertex *nv : s->vertexOrder ; /x nv [x] is the next vertex af ter x ,rf
Vertex xd2: s->deg2Stack; /* stack of forced vertices, 0 means empty */

/* check for any degree 2 vertices, or stop condition xf
while ( 

-" ){
dx: d[x];
if ( dx < 2 ) return false;
if ( d*: 2 ) x(++d2) : x;

Ì

f+ force any degree 2 vertices onto segments x/
x : xd2;
if ( " ) {

ex: e[x];
if ( 

"* ) dIx] : 0;
else ex : x;

if ( !extendSegments( s, L[x] , €X, 0, 
-d2) )

return !s->f lags . isHamiltonCycle;
Ì

/* repeatedly place branching edges until stop condition reached x/
x : 0;
do{

do x: nv[x]; while ( !d[x] );
] while ( extendAnchor( s, L, e, d, * ) );

return ! s->flags . isHamiltonCycle ;
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ì,
J /* prtme I ape * /

4.4 Restoring Graph

static inline UInt
restorelnArcsWithCount ( VArc xi.L, VArc xa , UInt xd ) {

Vertex v;

UInt c : 0;
VArc *p - a->prev;

whÍle(p!:a){
y : p_)target;
insertArc( L + v, p->cross );
d Iv]++;
p : p_>prev;
c*-l;

Ì

return c;
] /* restorelnArcsWithCount i./

static inline void
unrollArc( VArc xxl,, Vertex xe, UInt xd, VArc *a, UInt k )

{
Vertex x;

/x Restore â rc : y(-a-x x/

if ( k & HC_ENDPOTNT ) {
x : a->cross-)target;
insertArc( L + x, a );
eIx] : g'

] else if ( k&HCJORCED ) {
x : a->cross-)target;
e[e[x]l - x;
d[*] : (k & HCJORCED-DEG2)?

restorelnArcsWithCount( L, a, d ) + Z : 2;

Ì

I /" unrollArc xf

static inline HCTape *
unwindSearchEdge( VArc xxl, Vertex *.e, UInt xd, HCTape xhx )

{
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UInt k : hx-)status;
Vertex x;
VArc *a;

f* roll back graph state to closest anchor point */
while( !(k& (HC-ANCHOR-POD{T IHCJERMINATE) ) ) {

a : hx-)arc;
x : a-)target;

/*xxx NEGATIVE DIRECTION *****/

/x restore vertex */

unrollArc( L, e, d, a1 k );

d["] - 2;
ele[x]l - x;

/x move tape head to the I eft and resta rt loop xf
L-

t

k : hx->status;
Ì

return hx;

) /x unwindSearchEdge x/



Appendix B

Pruning Algorithm

8.1 Data Types

/x Structure storing DFS state information. This is for a non-recursive
dfs algorithm that processes the entire stack manually. */

struct dfs-compbipt {

f*l .Array indexed by vertices. lndicates traversal number of each
indexed vertex. */

UInt xvisit;

fxl Array indexed by vertices. lndictates lowest traversal value
encounterd by the indexed vertex during the dfs. */

UInt x low ;

f*l Array indexed by vertices. A non-zero value at a vertex's index
indicates that said vertex is a cutpoint. The value indicates
the number of potential components surrounding the indexed vertex. */

UInt x components ;

UInt x branches ;

fx! Array indexed by vertices . Contains bi pa rt¡te set membership for
indexed vertices. x/

SInt x colour ;

f*l Array indexed by vertices. Contains node pointer of a vertex's arc
pointing to the return vertex for the non-recursive dfs algorithm.
The dfs algorithm in dfs-ccb uses the circularly linked prev
value of a node to traverse the target graph. The value stored
by the stop array is used to stop iteration over a vertex and
ascend back up the search lree. *f

VArc xxiterator;

115
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Vertex * previous ;

UInt stateSize; /* Number of vertices structure allocated with */

Ì;

8.2 Depth First Search (DFS)

8.2.I Main DFS algorithm

/*l lnitialize dfs state for first call to dfSeparatingSet

\param s dfs state to be initialized */
void
initDfSeparatingSet ( HCDFSRef dfs )

{
memset( dfs->visit, 0, dfs->stateSize x sizeof ( Uint ) );

I /* ¡nitDfseparatingSet x/

/*l

Traverses graph in a depth fi rst search , finding components , cutpo¡nts
and bipartitions.

This non recursive version requires entire stack to be allocated at once.
This is handled by allocDFS.

Prior to the first call to dfSeparatingSet for a target graph,
initDfSeparatingSet must be called.

Procedure may be called repeatedly until returned value equals number

of vertices in târget graph . This wi I I ensure proper values for
the number of components and cutpoints found in the graph.

UInt
dfSeparatingSet ( HCDFSRef dfs , VArc xxl,, Vertex xe, Vertex x, UInt pos ,

UInt *diff, bool xInSep, bool xhasCutPoint )
J
t

UInt lx , ly , bx , cmx;
SInt cx;
Vertex px;

Vertex xP : dfs-)Previous;
VArc *xn : dfs->iterator;
UInt *b : dfs->branches;
SInt xc : dfs-)colour;
UInt xl : dfs-)low;



Appendi,r B: Pruning Algori,thm r17

UInt *v : dfs->visit;
bool bp - true ;

Vertex y : x;
VArc xa :NULL;
UInt vy - 0; /" typically visit order of ,lyl */
UInt cd : 0; /x optimized components - cutpoints */
UInt cp - 0; f * cutpoints x/
UInt xcm : dfs ->components ;

SInt bd - 0; /x bipartite differe nce xf

for (;;) {
while (!"y) {

/x descend into y *f
nlxl : ¿;
plyl : ";

b[o] - o;
c[0] - 1;
x : 0;
lx - 0;

if ( bp ) t
/x bipartite so far, see if y can be added to a set x/
cx : -c [x];
c[v] : c*;
bd *: cxi

Ì

x : y;
a : L["];
b["] - 0;
cm[x] : g;
Ix : l-*pos;

"[*] : lx;
I [*] - Ix;

el"l;

if (!y) {
Y : a->target ;

a : a->next;
ì-I

vy : v[y];
Ì

/x ensure that y ¡terates to unvisited vertex *,/
px: p[x];
cx : c [x];
do{
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if(Rx!:y¡{
if ( lx > vy ) lx : vyi
if ( bp ) bp:.* !: c[y];

Ì

if ( !u ) {
y : 0;
break;

Ì

y : a->target;
a : a-)next;
vy: v[y];

) while ( ,ny );

I [x] : lx;
if ( V ) continue;

/* ascend out of x +f
d"{

v : px;
cmx : cm[x];
bx : b[x];

if ( !V ) goto done;

ly : I [y];
vy : v[y];

if ( b" ) {
/x update components - cut points */
cp**;
if (cmx>l) cd *: (cmx ' 1);

Ì

if (1":vy )cm[y]++;
else if ( l* > vy &t¿ crnx: 1 ) cm[y]++;

/x check for branch */
if ( lx >: vy ) b[y]++;
else if ( ly > lx ) t[v] : ly: lx;

x : y;
lx : ly;
a : nlx];
px: p[x];

] while ( !u );

y : a->target;
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a : a-)next;
vy : v[y];

Ì

done:

/x update components - cut points *f
if ( bx > i ) cpi*;
if ( cmx > 1 ) cd +: (cmx - 1);

fx return maximum separating set found and ensure x is counted in
separating set if required xf

xhasCutPoint:cp> 0;

if ( !"p 8a& !bp ) {
xdiff : 0;
return pos;

Ì

if (bp) {
if ( xlnSep 3¿& bd < 0 ) bd *: 2;
if ( bd < o ) bd : -bd;

) else bd : 0;

xdiff : ((UInt) bd) > cd ? (Uint)bd : cd;

return pos;

) 7* afseparatingSet x/

8.2.2 Routine for calculating Component f Separating Set
differences.

/*! \returns true if a pruning condition found. The difference in the number
of components vs separat¡ng set is returned in c. The inSepSet flag indicates

that x should be considered a part of what ever separating set found. x/

bool
getComponentDiff( HCDFSRef dfs, VArc xxl, Vertex xe, UInt xd, Vertex *nv,
Vertex x, SInt xc, bool inSepSet )

{
UInt xv;

UInt pts : xc i

UInt p - 0;
UInt diff - 0;
UInt tdiff : 0'
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bool cp : false;

initDfSeparatingSet ( dfs );

p : dfSeparatingSet( dfs, L, e, x, p, &diff , inSepSet , &cp );

if ( p < ptr ) {
v : dfs->visit;
tdiff : 0;
while ( "[*j ll !d[x] ) ": nv[x];
while ((p : dfSeparatingSet(dfs,L,e,x,p,&tdiff ,false,&cp)) < pts) {

d if f +: (tdif f >0)? r dif f :1 ;

tdiff : 0;
while ( "[*] ll !d[x] ) ": nv[x];

Ij

dif f +: (tdiff >0)? rdif f :1;
. cp - true;

I
J

xc: diff ;

return cp ll diff > 0;
] /x getComponentDiff x/

8.3 Turing Machine for Pruning Condition
8.3.1 Pruning

f* return true if unwound all the way back to initial graph state x/

static HCTape*
pruneSearchSpace( HCStateRef s, SInt c )

{
HCTape i.hx;

UInt xd : s->degree ;

Vertex xe - s->virtualEdge;
VArc xxl, : s-)adjList ;

HCTape *stop : hx : s->pos;
UInt k : stop->status;

while ( !( k & HCITERMINATE ) &J. (c > 0) ) {
if
if
if

k & HC-ANCHORT\?81 ) .--;
k & HC-ANCHOR POINT ) .--;
k&HCJORCED-DEG2) "--;

stop --;
k : stop-)status ;
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stop*f ;

hx : unwindSearchEdge( L, e, d, hx );
while ( h*) stop ) {

restoreAnchorPoint( s, L, e, d, hx );
hx : unwindSearchEdge( L, e, d, hx - 1 );

)

return hx;
)

8.3.2 Main Turing Machine Code

/x Run Turing Machine until a Hamilton cycle is found or search space is
exhausted. Ensure that tape is primed first before calling. Returns false
when search space exhausted.

The version of the Turing Machine for the Multi-Path algorithm that
implements the pruning algorithm using the bottom-up approach.to the
pruning. The leaf node, or lowest anchor point , is tracked using the
lowCell and highCell variables. The lowCell variable is updated to always
po¡nt to the lowest branching edge in the tape. lf hx is ever found to be
higher up the search space then lowCell, an exhustively searched leaf node
will have been found. At this point the prune flag can be set and a test
for a pruning condition can occur at the next consistent state in the search
space. One caviot is that some leaf nodes will be missed when re-entering
the machine after finding a Hamilton cycle. Generally the leaf nodes
closest to the stopp¡ng condition that found the Hamilton cycle are avoided,
as no separating set is likely to be found that satisfies the pruning lemma.

st at ic bool
runTuringlVf achineWithPruning ( HCStateRef s )

{
Vertex xd2 , x1 , x, v ;

SInt c;
HCTape xhx; f * read f write head f or tape xf

HCTape xhighCell : s->origin; /x tracks reset point for rowceil x/
HCTape xlowCell : highCell; /x tracks leaf node in search space x/
bool prune : false; /* indicates pruning should occur *f

UInt xd : s->degree;
Vertex xe : s->virtualEdge;
Vertex xnv : s->vertexorder;
VArc xxl, : s->adjList ;

s->flags. isHamiltonCycle : false ;

72r
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f* tape head must be at a leaf in search space, move tape head left to the
closest branching edge *,/

hx: unrvindSearchEdge(L, e, d, s->pos);

while ( ! (hx->status & HCjTERMINATE) ) {

/x remove the exhausted branching edge and switch directi ons*f
xl: rotateAnchorPoint(s, L, e, d, hx, &d2);

/x removal of branching edge may have created an inconsistent state x/
x : ensureconsistent ( r, L, €, d, d2, xl , nv );

if ( * ){

if ( prune ) {

/* reset I ea f node */
lowCell : highCell;

f* count current number of vertices left in reduced graph *f
C : 1;
V : X;
while (( r : nv[v] )) if ( d["] ) c+*;

f* get component difference from separating set test

Note that ¡:¡l ¡sfs¡s to a change in anchor points
when consistency was ensured after the last anchor po¡nt
rotation. The last anchor point x1 was absorbed into
the partial cycle found so far. This means that when

x and x1 are different , x does not have to be considered
part of the separating set, as no branching edges will
have been removed from it yet. *f

if ( getComponentDiff( s->dfs,L,e,d,nv,x,&c, x:x1 ) ){

/x prune back the search spãce as far as c lets us x/
hx: pruneSearchSpace( s, c );

/x stopped at an anchor point , keep testi ng for
pruning condition until none are found */

continue;
Ì

/x no more test¡ng needs to occur for this level x/
prune : false;

)
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/* keep extending branching edges from anchor points */
while ( extendAnchor( s, L, e, d, x ) ){

do x: nv[x]; while ( Id[x] );
Ì

I
J

/x stopping condition encountered (a leaf), stop movement to the right */
i f ( s->f I ags . isHamiltonCycle ) ret urn true ;

hx : unwindSearchEdge( L, e, d, s->pos );

/x ensure that lowCell refers to the lowest anchor point and check if
a leaf node has been exhausted. x/

if ( h* > lowCell ) IowCell - h*;
else prune : hx ( lowCell;

II

s->pos : hx;
return false;

) /x runTuringMachineWithPruning x/


