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Abstract

In a mobile wireless environment, mobile nodes often form an arbitrary and dynamically
changing network topology. In some mobile networks, such as ad hoc, multicast is often
used to support data distribution to many receivers by multihop infrastructureless
communication. There have been many algorithms and protocols developed for multicast
routing in general but so far there is no simple standard approach for deciding which
multicast algorithm is the best for a network with changing topologies. It is difficult to
establish this standard since these algorithms work in different ways. For this reason, we
focus on the main feature that multicast algorithms have in common, which is the

capability to deal with a dynamic network.

A dynamic network can be characterized by its changing topology. In order to study the
effect of changing topology on the ability to maintain communication between mobile
nodes, we develop a method to assess properly any multicast algorithms based on two
new parameters. The two proposed metrics are the average number of arcs per node and
the radius of the network topology. Each arc represents direct reachability between any
pair of nodes. The radius of the network topology is important to measure the movement
of nodes within time unit. We present a new approach for using these two parameters to
represent network complexity in a simple way. These parameters are used as direct

variables input in assessing multicast algorithms.

What we are investigating is how to use our proposed metrics to measure and see if the
arrangement of the nodes in the network affects the algorithm performance. We set up an
experiment that can be used to measure the quality of the existing, and even the future,
multicast routing algorithms. The experiment involves the movement of the nodes so that
_any algorithm can be tested to analyze its robustness towards different topologies. Our
contribution is a new approach for assessing the multicast performance in a network by
exploring the characteristics of the network itself. The result is a tool that is very useful to
decide whether any multicast algorithm is good enough to be applied in mobile wireless

networks.
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Chapter 1

Introduction

1.1 Description

In mobile wireless networks, mobile nodes interact with each other. The mobile nodes
may represent users, servers, and routers. These mobile nodes form an arbitrary and
dynamically changing topology of a network because it cannot be predicted when and
where the nodes are going to move, how they will move, or why they move.
Alternatively, they might not move but simply stay dormant. The delivery of information
between those nodes has to adjust to ever changing conditions. They must maintain
interaction and communication during each session to minimize information loss. Since
high mobility is a characteristic of these nodes, how to maintain communication between

these nodes can be a problem.

Multicast is a method of sending a message from a single source to multiple destinations
in one operation. There are three primary methods of implementing multicast that differ
in the processes happening at the source. The first method is to broadcast the message to
all nodes in the networks even when some are not intended destinations (Figure 1.1(a));
hence, multicast is a subset of broadcast. The second method involves the source
duplicating the message in as many copies as the number of destinations, and have each

copy of the message sent to each destination in one operation (Figure 1.1(b)). This
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method makes use of multiple point-to-point unicast transport connections. These two
methods use a large amount of bandwidth resources only to send unnecessary copies of
the message. The last method is the pure multicast, which is the sending of only one
message in a single operation and have it duplicated where it is necessary (Figure 1.1(c)).
This method uses network bandwidth more efficiently since there is only one message (or
a copy of it) traversing the link, which means that it reduces the number of messages that
are thrown into the network. However, pure multicast needs considerable explicit
multicast support at some points, specifically at the routers that have multiple outgoing
links, so that one (copy of) message is duplicated as the number of outgoing links to

reach the destinations.

Note:

@ Source

Receiver

Node that
receives data

(a) (b (©) = Data link
Figure 1.1: Three methods of implementing multicast. (2) Broadcast. (b) Multiple unicast.

(¢} Pure multicast.

What really distinguishes multicast in a dynamic network from multicast in a static
‘network 1s that the network 1s now scattered with mobile nodes. Not only does the
location of each mobile node change dynamically within a multicast group, but also the

number of the member nodes in the multicast group changes as the current member nodes
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decide to leave the multicast group or other non-member nodes want o join the group.
With multicast, only some mobile nodes that are intended to be the source and the
receivers are grouped together. These mobile nodes are joined in a tree or in a mesh
topology. Each of these topologies has its own advantages and disadvantages. Either
approach is well suited for mobile wireless networks because they can handle the rapid
changes of the networks. The problem, however, is to select the type of multicast
approach that could improve data delivery over wireless networks by utilizing the
available network resources. In addition, it is important to understand how mobility in

wireless networks impacts the chosen multicast algorithm.

Multicast in dynamic networks should deal with obvious problems such as an unexpected
disconnectivity even if it occurs only in a short duration of time. Continuous
communication is required so that there is no delay or loss of information, which is
crucial in mobile wireless communication. Therefore, two special characteristics of
multicast in dynamic networks that are not required in static networks are: 1) an ability to
detect nodes that are not responding because they are out of range and ii) an ability to
update multicast routes any time a change in topology is detected. This leads to an
important issue of how multicast algorithms operate when mobile nodes pop up and

down rapidly and unexpectedly.

" In today’s market, people increasingly use their mobile devices to communicate with

others. It offers the freedom of being mobile while communicating. This includes data

communication as well. However, when a user chooses to send data to multiple receivers,
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multicast could be a more effeciive means of accomplishing this. In general, multicast

can help in reducing network overload in these situations.

1.2 Motivation

While mobile communication is becoming ubiquitous, technology used in mobile devices
is also changing rapidly. Now, it is possible to use mobile devices even when there is no
fixed infrastructure. This network environment, where the nodes pop up and down
unpredictably, is known as an ad hoc network. Furthermore, since pairs of nodes in ad
hoc networks are often outside the transmission range of each other, data must be relayed
over several hops before reaching its final destinations. Multicast is attractive because it
can support data distribution to many receivers where multihop wireless communication

is the only feasible means.

In emergency situations, such as serious collisions in remote areas and disaster recovery,
rapid-response is necessary to mitigate damage. When any collision or disaster happens
in a remote place, all authorities must be advised. Since there is seldom fixed
infrastructure in remote places, multicast is applicable because it can run in ad hoc
networks. If all authorities are equipped with mobile devices so that they can be
considered as a group, multicast is required to maintain communication between them.
..Multicast may also use non-member nodes to forward data reducing the dependency on
fixed infrastructure. When multicast is applied in ad hoc networks, mobile devices need
only hardware with which they connect to each other. Any pair of mobile nodes are

connected with each other when they are within the transmission range of each other. If a
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single node goes down, mobile nodes simply find other on-the-fly nodes and forward
multicast data. A major problem in ad hoc networks is that mobile nodes need enough
power to stay alert and sufficient amount of bandwidth to deliver data. The optimum use
of bandwidth is important because wireless links do not have as many resources as the
wired ones. With multicast, network links use only a minimum amount of bandwidth and

it protects data from being delayed or lost.

Many multicast routing algorithms and protocols have been developed and each has its
own features. It i1s difficult to choose among existing multicast routing protocols because
there is no simple standard approach for deciding which multicast algorithm is best for
dynamic networks. Another major problem is that existing routing protocol metrics are
dependent on the type of a protocol and its features. This problem can lead to an unfair
assessment when comparing different types of multicast routing protocols. The only way
to go further in determining which multicast algorithm to use is by having a common
foundation from which to start. Since the most obvious thing that all dynamic networks
have in common 1s a network with scattered mobile nodes, the arrangement of these

nodes is an important factor that needs further exploration.

1.3 Objectives of the Research

Since there is an increasing demand for multicast technologies, the scope of this work

could be very broad. This thesis deals with the routing of multicast in mobile wireless
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networks, specifically ad hoc networks. The focus is on introducing new metrics that can

be used for comparing different routing algorithms.

The objectives of the research are as follows:

a. To propose new metrics that are analytically determined and can be used for
measuring the performance of common multicast routing protocols.

b. To develop a method to assess any multicast algorithms based on the proposed
parameters.

¢. To study the effect of changing topology on the ability of mobile nodes to maintain

communication.

1.4 Methodology

Literature is reviewed to assess the state of the art in multicast. In order to avoid any bias
while comparing multicast algorithms, the focus is on the main feature that multicast
routing algorithms have in commen, which is the capability to deal with a dynamic
network. New metrics are analytically determined for assessing common multicast
routing algorithms. Based on these new parameters, the performance of the existing
algorithms can be analyzed to study the efficiency of these algorithms and for making
comparison with regard to different network topologies. Investigation is also done on
how to use the new parameters to measure the changes of network topology and see if the
51‘1‘&ngement of nodes affects multicast routing. A simulation study is used for doing the
experiment to measure the quality of the existing, and even the future, multicast routing

algorithms. The experiment involves the mobility of nodes so that the same algorithm can
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be tested to analyze its robustness towards different network topologies. Network
topologies are randomly generated for a fixed number of nodes so that simulations run in
consistency basis. The final step is to apply the chosen multicast routing algorithms to

cach of the topologies.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 1 presents the introduction of this work.
Chapter 2 presents a review and analysis of literature review on multicast routing in ad
hoc networks and some other works in routing performance metrics. This chapter also
presents the detail analysis of the multicast routing algorithms that are chosen to be
compared. The factors that motivate this research are also found from this review of the
literature. Chapter 3 presents the new metrics that could be used to compare the
performance of existing multicast routing algorithms. The simulation variables are then
presented in Chapter 4. Chapter 5 presents the evaluation of the performance of the
algorithms based on the proposed routing metrics. Chapter 6 concludes this work by
summarizing the major contribution of this thesis and it also presents future directions of

potential development of performance comparison study.
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Literature Review

2.1 Ad Hoc Networks

An ad hoc network is a dynamic network environment where mobile hosts can form and
deform a network “on-the-fly” without the need of any fixed infrastructures (Figure 2.1(b)).
It is a type of wireless network; the other is based on fixed infrastructures that needs support
trom base stations (Figure 2.1(a)). The ad hoc type becomes important in industry because it
enables mobile devices to communicate using whatever means available — in this case, other

mobile devices — even in remote places where there is no base station.

(b)

Figure 2.1: A wireless network that is (a) infrastructure-based, and (b) infrastructureless
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A mobile ad hoc network is formally defined in RFC 2501 [26] as an autonomous system of
mobile nodes that consists of mobile platforms that are free to move arbitrarily. It is also
defined in {1] as an autonomous system of mobile hosts (also serving as routers) connected
by wireless links, the union of which forms a communication network modeled in the form of
an arbitrary communication graph, This definition emphasizes the distinguishing feature of
ad hoc networks where each mobile host should be able to perform as a router when it is

necessary.

Ramanathan and Redi [25] presented a brief overview of ad hoc networks. They reviewed the
definition, the key assumptions, and the significant features of ad hoc networks. They also
presented open problems in ad hoc networks and their future, One of the open problems
presented 1s the scalability of a network when the number of nodes in the network increases.
This problem was identified but left unresolved. They did not come up with any possible
solution. Yet, this could actually be solved if there is a method for measuring the
performance of routing algorithms for any number of nodes in the network and investigating
the possibility that increasing number of nodes might not give major impacts to the

algorithms performance.

The latest development of ad hoc networks is wireless sensor networks (WSNs). A WSN is a
specific type of wireless ad hoc networks in which a collaboration of a large number of
“sensor nodes, that are scattered in a terrain of interest, interact with the environment to
observe its ambient physical condition. The examples of the conditions being sensed and

observed are temperature, light, sound, vibration, and radiation. Similar to ad hoc networks,
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WSNs also have to concern about limited resources availability and possibility of topological
change. For this reason, multihop communication is also the obvious solution for solving
power constraint. Mhatre and Rosenberg {22] presented various design guidelines for WSNs.
They proposed a scheme that allows the sensor nodes to periodically switch between a single
hop mode and a multihop mode. This scheme could be valuable when developing multicast

routing in ad hoc networks.

2.2 Multicast in Ad Hoc Networks

de Morais Cordeiro et al [9] presented the present and future directions of multicast over
wireless mobile ad hoc networks. They emphasized that multicasting enables people that
reside at different places to participate in the same session through wireless and mobile
devices. This means that multicast can be involved much more in the future because there
will be more applications developed that require a network ability to provide service with
sufficient bandwidth. They also stated that recent multicast protocols in ad hoc networks do
not perform well in different applications. This statement implies that there is a need of
methods that can provide an answer of which muiticast protocol is the most appropriate to

use in each application.

Royer and Toh [29] reviewed eight different routing protocols and classified them. They
classified ad hoc routing protocols into two classes: i) table-driven and ii) demand-driven
{source-initiated). Table-driven routing protocols maintain up-to-date routing information

every some period of time. On the other hand, demand-driven protocols only create routes

io
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when it is demanded by the source node. However, they was not able to conclude whether

protocols from one class are better than the other class or not.

Recently, Papavassiliou and An [24] also reviewed several multicast routing protocols and
classified them into groups. They classified ad-hoc multicast routing protocols into proactive
and reactive groups. Proactive multicast protocols are similar to table-driven routing
protocols in Royer and Toh [29]. Reactive protocols are similar to demand-driven ones.
Proactive and reactive multicast protocols are further classified as tree based and non-tree
based (Figure 2.2). Some comparisons of those protocols were made but only on qualitave
side. They were also not able to provide an answer of the more preferable protocol. They
summarized some issues such as dynamic multihop topology, routing information

(ln)accuracy, resource usage efficiency, reliability, security, and group membership.

Ad Hoc Multicast Routing
Protocols

I
+ *

[ Proactive ] [ Reactive J

[ Tree J [Non—Tree} ( Tree ] [Non-Tree]

Figure 2.2: Classification of ad hoc multicast routing protocols

Sahasrabuddhe and Mukherjee [30] presented various multicast routing algorithms and their
relationship with multicast routing protocols for packet-switched wide-area networks. They
categorized multicast algorithms based on the property they attempted to optimize. They aiso

examined various multicast protocols that are employed on the Internet.

11
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Wang and Hou [38] emphasized the QoS (Quality of Service) requirements of continuous
media applications that use multicast services. They classified multicast routing problems
according to their optimization functions and performance constraints, presented routing
algorithms in each problem class, and categorized existing multicast routing protocols. They
underlined a set of challenging problems with multicast on the Internet and the importance of
efficient solutions. However, they failed to recognize that the problems are actually also

applied for multicast in ad hoc networks.

Chiang, Gerla, and Zhang [6] proposed the Adaptive Shared Tree Multicast routing protocol
{ASTM) which is an adaptive scheme that combines shared tree and per-source tree benefits.
It is a proactive multicast routing protocol and it maintains a single shared tree rooted at a
Rendezvous Point (RP). RP is where sender sends multicast towards and receiver send join
requests to. It is preferably selected among nodes with low mobility. It aliows switchover
between the shared tree and the per-source tree to reduce any delay due to possible shorter
distance between the receiver and sender directly than the distance between receiver and RP.

The performance metrics that they considered are throughput and control message overhead.

Another proactive protocol, but non-tree based, was proposed by Garcia-Luna-Aceves and
Madruga [11]. They proposed the Core-Assisted Mesh Protocol (CAMP) that is an extension

of the notion of core-based tree (CBT), which is used in static networks. CAMP defines a

‘shared multicast mesh for each multicast group. Since it is a mesh, which provides at least

one path from any node that is a source to any node that is a receiver; it provides richer

connectivity than a tree-based topology even though the nodes within the group move

12
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frequently. It uses cores to limit the control traffic needed for receivers to join multicast
groups. When a node wants to join the group, it selects the core towards which the join
request may be sent. Any router that is a regular member of a multicast group and receives a
Join request is free to transmit a join acknowledgment (ACK) to the sending router. When the
origin or a relay of a join request receives the first ACK to its request, the router becomes

part of the group.

Royer and Perkins [28] extended the Ad-hoc On-Demand Distance Vector (AODV) routing
protocol to offer novel multicast capabilities that follow naturally from the way AODV
establishes unicast routes. This extended version is called AODVM and it falls into the

category of reactive, tree-based protocols.

Another reactive, tree-based protocol was proposed by Bhattacharya and Ephremides {4].
The protocol is called the Distributed Multicast Routing Protocol (DMRP) and it is a
distributed, source-initiated protocol that combines multicast routing with resource
reservation and maintain connections to desired destinations. This algorithm tries to
accomplish multicast routing by giving two degrees of freedom (the frequency at which to

transmit and power level) to each node.

Ji and Corson [15] presented another reactive, tree-based protocol called the Lightweight
" Adaptive Multicast protocol (LAM). LAM builds a group-shared tree for each multicast
group and takes the concept of core-based tree. The tree is centered at a pre-selected node

called a CORE. If the source is not part of the tree, it forwards the data through the CORE.

13
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LAM is coupled with a specific underlying unicast routing protocol TORA (Temporally-
Ordered Routing Algorithm), which is source-initiated. It is lightweight because the tree
maintenance phase does not utilize timers and event-triggered. LAM is claimed not to
introduce any additional overhead but, unfortunately, only during stable topology and

constant group membership, which is not the most common event in ad hoc networks.

Corson and Batsell [8] presented the Reservation-Based Multicast (RBM) which is a
reactive, tree-based routing protocol. It combines multicast routing, resource reservation, and
admission control. It uses the concept of Rendezvous Point (RP) and it is used for routing

process that can be broken into two stages: source-to-RP and RP-to-destination,

Toh and Bunchua [33] proposed the Associativity-Based Ad hoc Multicast (ABAM) which
has four components: i) multicast tree formation per multicast session, ii) handling host
membership dynamics, iii) handling the mobility of the nodes, and iv) multicast tree
deletion/expiration. They proposed a heuristic tree selection algorithm to derive the multicast

tree.

The last category is reactive, non-tree protocols. Ho er al. [13] proposed the Reliable
Multicast Routing Protocol (RMRP) based on the argument that keeping accurate state about
membership of multicast group is not practical if the set of neighbours changes rapidly.
RMRP uses plain flooding that requires each node to keep track only of its current

neighbours,

14
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Another reactive, non-tree based protocol is the Forwarding Group Multicast Protocol
(FGMP). FGMP was proposed by Chiang, Gerla, and Zhang {7]. This protocol is a mixture
between flooding and shortest tree multicast. Any node in a forwarding group is responsible
of forwarding multicast packets between any pairs of group members so that when it receives
a nonduplicate multicast packet, it will broadcast this packet to its neighbours but only the
neighbours in the group can broadcast the packet consecutively. The major problem is how to

elect and maintain the set FG of the nodes in the forwarding group.

Jetcheva and Johnson [16] presented Adaptive Demand-Driven Multicast Routing (ADMR)
protocol and it is compared to On-Demand Multicast Routing Protocol (Subchapter 2.3)
using the following metrics: packet delivery ratio, normalized packet overhead, forwarding

efficiency, and delivery latency.

Bhattacharya and Ephremides [3] established the beginnings of a complete multicast
algorithm that is capable of adapting to topological changes. The algorithm, which combines
multicast routing with dynamic frequency allocation and power control, is intended to
establish and maintain the maximum number of connection requests while making efficient

use of available bandwidth and avoiding congestion which might lead to network collapse.

Gossain, de Morais Cordeiro, and Agrawal [12] presented multicast from its definition, the
development of multicast support in the Internet, a detailed description of existing multicast
protocols in wired and wireless environment and their comparison. They did not give any

solution of which multicast protocols is more suitable for which applications. They only tried

15
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to give some basis on which people can select an appropriate multicast for their needs. Their
focus was on solutions that make use of infrastructure provided by the wired network and not

over infrastructureless ad hoc networks.

2.3 Multicast Routing Protocols

This section will discuss the detail analysis of three multicast routing protocols that are going
to be used in the simulation study. Each protocol is chosen as a sample for each category in

the classification of ad hoc multicast routing protocols.

Reactive protocols are believed to work better than the proactive ones. This can be seen from
a large number of multicast protocols, either newly proposed or developed from the existing
ones, that are reactive. It is caused by the on-demand nature of reactive protocols that
preserves the use of bandwidth when there is no multicast data in the network. Hence,
AMRIS (Ad hoc Multicast Routing protocol utilizing Increasing id-numberS) and ODMRP
(On-Demand Multicast Routing Protocol) are chosen as two of the three multicast routing
protocols for this comparison study. They are reactive and start to discover multicast routes
once a source node has data to send. More specifically, they are chosen because of their
structure difference. AMRIS is chosen because it creates a multicast tree and has an
Interesting feature, which is to use identification numbers in building the tree; while ODMRP
is chosen because it creates a mesh for providing alternative routes. ODMRP is also the most
widely used multicast routing protocol. The differences between a tree and a mesh are listed

on Table 2.1.

1o
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Structure
Category
Tree Mesh
Bandwidth required to build the structure Small amount Greater
Multiple routes Not available Available

Focus Route-updating Route-discovery

Table 2.1: Differences between a tree and 2 mesh

However, proactive protocols still deserve to be considered in multicast because they have a
different strength than the reactive ones. Proactive protocols update multicast routes
periodically. As a result, a path from the source and each destination is almost always
available when there is multicast data in the network. Hence, the time required for message
delivery with a proactive protocol is less than the reactive one. Reactive protocols have to
discover routes from the beginning before they can forward multicast data. An example of
where proactive and reactive protocols have their own advantage and disadvantage when

time is divided into five equal intervals can be seen in Table 2.2.

Bandwidth usace in Messages’ travel time
Time Multicast data ) 8 from a source to
. . creating routes .
interval exists receivers
Proactive | Reactive | Proactive | Reactive
| Vv Vv vV Fast Slower
2 A%
3 vV
4 A% Vv V Fast Slower
3 kY%

Table 2.2: An example of an advantage and a disadvantage of proactive and reactive

protocols
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AMRoute (Ad-hoc Multicast Routing} becomes the only algorithm that is proactive among

the three. It is chosen because of its special feature, which is to create a tree out of a mesh.

2.3.1 AMRIS

Wu and Tay [39] proposed AMRIS that is a reactive, tree-based protocol. It does not require
a separate unicast routing protocol. It creates a shared multicast tree to forward multicast data
and this tree is rooted at a special node called Sid. Each node in a multicast session is
dynamically assigned an ID number known as msm-id. This ordering number is used to
direct the multicast flow. The msm-id increases in numerical value as any node radiates away

from Sid. Sid, which is predetermined from amongst the senders, has the smallest msm-id.

There are two main mechanisms in AMRIS: tree initialization and tree maintenance. In tree
initialization, a multicast session is created and advertised to all nodes in the ad hoc network.
These nodes are differentiated as I-Nodes (nodes that are interested in joining the multicast
session) and U-Nodes (the rest of the nodes). This mechanism begins when Sid broadcasts a
NEW-SESSION message to its neighbours. Some of the content of this message are Sid’s
msm-id, multicast session id, and routing metrics. A node that receives the NEW-SESSION
message generates its own msm-id that is larger and not consecutive, replaces the msm-id in
the message with its own msm-id, and broadcasts the message again. Information derived
from the NEW-SESSION message is kept in the Neighbour-Status table for up to T1 seconds
to prevent broadcast storms. If a node receives multiple NEW-SESSION messages from its
neighbours, it would keep the message with the best routing metrics and generates its own

msm-id based on the values from that message.
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A node X that wants to join the session would determine its neighbouring nodes that have
smaller msm-ids than itself as its potential parent nodes. It sends a unicast JOIN-REQ to one
of its potential parent nodes called Y. If Y is already on the delivery tree, Y sends a JOIN-
ACK immediately back to X. Otherwise, Y would also try to locate its potential parent by
sending another JOIN-ACK and this process is repeated until a node is found on the delivery
tree to be the parent node and this node sends a JOIN-ACK that propagates back along the

reverse path to X.

Tree mainienance ensures that a node remains connected to the multicast session delivery
tree. When a link between two nodes breaks, the node with the larger msm-id is responsible
for rejoining. The process is similar to the process of joining in tree initialization. A node that
attempts to rejoin the tree executes the Branch Reconstruction (BR) that has two main
subroutines: BR1, which is executed when this node has neighbouring potential parent nodes;
and BR2, which is executed when this node does not have any neighbouring nodes that can

be potential parents.

A node X executing BR1 sends a unicast JOIN-REQ to one of its potential parent nodes Y. If
Y is on the tree, it sends a JOIN-ACK back to X, and X rejoins the tree. If Y is not on the
tree, Y repeats the process of sending out its own JOIN-REQ to join the tree, provided it has
af least one neighbouring potential parent node. Otherwise, Y sends a JOIN-NACK to X. f X
- receives a JOIN-NACK or timeouts of the reply, it proceeds to join with the next best

potential parent node. If none are available, X executes BR2.
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A node X executing BR2 broadcasts a JOIN-REQ. The broadcasted JOIN-REQ has a range
field R that specifies only nodes within R hops of X are allowed to rebroadcast the JOIN-
REQ. A satisfactory node Y that receives the JOIN-REQ sends a JOIN-ACK back to X, If X
receives multiple JOIN-ACKSs, it chooses one and sends a JOIN-CONF to that parent node Y

so that Y may start to forward multicast data to X.

2.3.2 ODMRP

Bae et al [2] developed ODMRP that is a demand-driven, mesh-based multicast protocol and
it uses the concept of forwarding group [6]. In ODMRP, when a source has data to send, it
floods a JOIN DATA packet with data payload attached to construct the routes and establish
the group. When a node receives a nonduplicate JOIN DATA packet, it stores the upstream
ID and rebroadcasts the packet. When a receiver receives the JOIN DATA packet, it creates a
JOIN TABLE packet and broadcasts it to its neighbors, Each node that receives the JOIN
TABLE packet would check the next node ID of one of the entries. If it matches its own ID,
it is on the right path to the source that means it is part of the forwarding group, and it sets an
FG_FLAG and broadcasts its own JOIN TABLE built on matched entries. It is done until all
JOIN TABLE packets reach the source and it creates the routes from each source to all
receivers so that a mesh of nodes is built as a result. Any multicast group member that wants
to send data just has to floods a JOIN DATA packet to refresh routes and membership

information.

The strength of ODMRP is its simplicity because it does not need any explicit control

packets if one node decides to join or leave the group. If a source wants to leave the group, it
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just has to stop sending JOIN DATA packets. And if a receiver wants to leave the group, it
just has not to send any JOIN TABLE packet as a response of the JOIN DATA packet.
Another strength of ODMRP is its ability to exist together with and operates as a unicast
routing protocol. Bae ef al. also concerned about the selection of timer values for route

refresh and forwarding group timeout intervals.

2.3.3 AMRoute

Bommaiah, Liu, McAuley, and Talpade [5] proposed AMRoute that creates bidirectional
shared multicast trees for data distribution using only the senders and receivers in the group
as tree nodes. Even though AMRoute creates a mesh and a tree in order to multicast the data,
it is a proactive, tree-based protocol. The mesh is first created, and then it creates a multicast
distribution tree using a subset of the available mesh links. The major advantage of this
procedure 1s that the tree does not need to be modified when any changes happen to the

network topology provided that the tree routes exist via mesh links.

In mesh creation, receivers and senders join the group. Each group has at least one logical
core that is responsible for maintaining the tree and group membership. New group members
select themselves as cores initially. Each core periodically floods JOIN-REQ to discover
other disjoint mesh segments for the group. When a member node receives a JOIN-REQ
from a core of the same group but a different mesh segment, it replies with a JOIN-ACK and
- marks that node as a mesh neighbour. As a consequence of mesh mergers, a mesh will have
multiple cores. One of these cores will emerge as the “winning” core of the unified mesh.

The core resolution procedure will win the node with the highest IP address among all nodes.
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After the mesh creation, each core sends a periodic control message TREE-CREATE in order
to build a shared tree. When a member node receives a nonduplicate TREE-CREATE from
one of its mesh links, it forwards the packet to all other mesh links except the incoming one,
and marks the incoming and outgoing links as tree links. If it receives a duplicate TREE-
CREATE, it sends a TREE-CREATE-NAK back to the mcoming link and this link is
designated as mesh link. Multicast data is forwarded over the tree, which is loop-free. If a
nede wants to leave the group, it has to send a JOIN-NAK to its neighbours and do not

forward any data packets for the group.

2.4 Routing Metrics

In order to improve multicasting, a performance comparison study is required for
Investigating multicast protocols. Lee ef al [19] compared the performance of some of
multicast protocols mentioned in the previous subchapter based on the following metrics:
packet delivery ratio, number of data packets transmitted per data packet delivered, number
of control bytes transmitted per data bytes delivered, and number of control and data packets
transmitted per data packet delivered. They did a simulation study under various scenarios
such as variety of mobility speed and different number of senders. The simulation results

showed that each multicast protocol has its own strength in some circumstances.

- Moustafa and Labiod [23] proposed a new multicast routing protocol called Source Routing-
based Multicast Protocol (SRMP) and compared it against ODMRP and ADMR under

various scenarios using pause time. It is not obvious why pause time is used as a metric

]
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because pause time does not represent anything about the network except that the nodes

sometimes stop moving for an interval of time.

Since there are many routing protocols in ad hoc networks and there are different metrics, it
is difficult to measure the performance of routing protocols and compare them. In his work,
Jacobson [14] states that a problem in existing routing protocol metrics is that they are based
on simulation results, not on fixed input data. This problem causes a certain metric to be

biased toward a group of routing protocols.

According to Jacobsomn, there are two types of metrics that have already existed. One is
performance metrics, which depend on the simulation results; the other is scenario metrics,
which are calculated from the input data to the simulation or from the input variables.
Jacobson [14] introduces two new scenario meitrics for ad hoc networks that are dependent on
the current physical condition of the network. Those two new metrics are the density of the
network and the direct connectivity rate for the nodes in the network. The density is defined
as the weighted number of overlapping radio transmitter areas over time and is calculated as
the total overlapping area of circles at any point in time. The direct connectivity is in place
between two nodes where they are within the transmitter range of each other and is used to
show the average number of other nodes that are in contact with each node over the

simulation time.

Density is the only metric that he used in his simulations. He drew a conclusion that density

and direct connectivity have similar values. Yet, he stated that direct connectivity could be a
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better metric to be used. And he also stated that density could accumulate without direct
connectivity because a density value exists when there are overlapping areas between two

radio transmitter ranges. There are some contradictive things behind those statements.

The density metric was varied indirectly by changing the scenario areas in a set of simulation
of this work to provide illustrative values. We could improve this work by proposing new
metrics that can be used for common routing protocols and that actually change directly with

the changes in the network topology.

Another weakness of this approach can be found in the statement “the existing routing
protocol metrics are focusing on the performance metrics and based on the simulation
results”. This is not entirely true because the performance comparison of different multicast
algorithms need to be evaluated by simulating each multicast algorithm in different
topologies. What actually exist now are routing protocol metrics that are dependent on the
type and feature of the protocol. There is a need to analyze these metrics, particularly the

effect of the application of any metrics to different algorithms.

2.5 Application of Multicast

Multicast can support many applications. One area where multicast support is an immediate
need is mobile commerce [21, 234-36]. Some class of applications in mobile commerce are
mobile and locational advertising, mobile auction, mobile entertainment, proactive service
management, and mobile inventory management. Another application is presented by

Bhattacharya and Ephremides [3], which is the use of multicast routing and resource
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allocation i the digital battlefield. Multicast can also be very useful in emergency situation
such as search and rescue. Varshney [33] presented the requirements for different
applications, such as application in military that requires minimal delay and security;
application in distance education that requires high bandwidth and near-real-time; application
in intelligent transportation systems that requires dynamic routing of individual vehicles; and
application in comumercial aircraft that requires current traffic information, the most direct

and least time-consuming routes.

2.6 The Issues in Multicast Routing

Although there have been some algorithms and protocols available in multicast over mobile
wireless networks, there is no standard approach of deciding which multicast algorithm is the
best. It is difficult to establish this standard since those algorithms and protocols run
differently in different environments. There is still scope to develop better algorithms and
protocols if the factors in multicast in ad hoc networks that really influence the performance

of those algorithms could be determined.

This research attempts to assess some of the most common multicast routing algorithms
based on new metrics. Another factor that motivates this research is the lack of works that
focus on network topology, yet a dynamic topology is one major feature of mobile wireless
~networks. Most works done in multicast only deal with the creation of new routing protocols
that claim to be improvements on others. Two of the newest protocols are ReMHoc [31] and
Family ACK Tree (FAT) [20]. Recently, as the latest effort to improve multicast, overlay

multicasting in mobile ad hoc networks is investigated. This approach gets contradictory
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responses. Detti ef al [10] investigated the effectiveness of overlay and they stated that to this
point there are doubts on which multicast protocol is best. The lack of work in developing
methods for assessing those protocols could cause an application to use a protocol that would

actually be better off using another protocol.

Some of the performance metrics that are being used do not take the variety of the type and
the feature of the protocol into account. The introduction of new metrics is the objective of
this research since some metrics are only good for particular multicast protocols and some
are not directly varied during a set of simulations. We should not evaluate the performance of
those protocols only after we apply the algorithms in the network, we must anticipate the

possible results before we apply them.

The main idea is to investigate how the arrangement of the mobile nodes in the early state of

multicast session can be used to decide which multicast algorithm is more appropriate to use.
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Proposed Metrics

3.1 Background

New metrics proposed here can be used to compare common routing protocols and they
have the ability of changing their values automatically during a set of simulations. The
proposed metrics would be based mainly on the characteristics of the network topology.
The random physical condition of the network is not dependent on any factor and the
variation of the topology is influenced solely by its randomness. There are two factors
that we exploit in order to build the new metrics, which are reachability and arrangement

of the nodes.

3.1.1 Reachability

When any one node has a message to send to some other nodes, the former takes a role of
a source while the latter destinations. Since the networks are infrastructureless, as long as
the source has at least one other node that is within reach, this other node can facilitate

the message sending to one or more destinations that are not within reach.

Reachability of a node, in mobile wireless networks, can be measured by the power level
of transmission that a node has. When transmission occurs, the signal power declines as it

travels further from its source.
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3.1.2 Arrangement of the nodes

The arrangement of the nodes might be the most important factor that influences the
performance of any multicast algorithms. This factor is strongly related to the
reachability factor mentioned previously. The location of any pair of mobile nodes has a
direct effect on the possibility for both nodes to communicate with each other. In a bigger
picture, the location of all the nodes in the network affects the likelihood that any mobile
node can receive the message intended for it from another mobile node located outside its

transmission range.

3.2 Proposed Metrics

In order to study the effect of network topology on the network and the feasibility of
maintaining communication between nodes in mobile wireless networks, first we have to
characterize a network topology as the combination of the following properties that

would become our proposed scenario metrics (3.2.1 and 3.2.2),

3.2.1 Average number of arcs per node

Since our purpose is to observe the performance of multicast algorithms in different
kinds of topology, we should focus on the arrangement of the mobile nodes. This
property considers the direct reachability of each node. Any node can use different levels
of power to transmit data. The higher the power level, the farther the data can be
transmitted. Since the power level determines the range of transmission of a node, it can
be illustrated as a circle that can be defined as the radius of the node, i.e. for any node ,

any other nodes within radius r can be reached directly by node 7.
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Figure 3.1: Direct reachability from node i to node j and node k&

Figure 3.1 shows that node i, with radius r, can reach node j and node k directly because
they are within its transmission range. We draw a line between those nodes to show their
connectivity. When a line connects two nodes, it means that either node can be reached
directly by the other node. We cannot connect node { with node [ because node [ is

outside node i’s fransmission range.

Figure 3.2: Indirect reachability from node i to node /. or multihop

Since any node outside that radius cannot be reached directly, it needs one or more

intermediate nodes for transmission to be accomplished. The example is shown in Figure

29



Chapter 3 — Proposed Metrics

3.2, where node [ can be reached by node i only through intermediate node k. So even
though node I is outside the range of node i, node / is still within the radius of node %,
which is connected directly to node i. In this case, node  needs node & to transmit data to

node [.

Since direct and indirect reachability is influenced by the radius of a node, this radius is
called the “node-reachability”-radius. This radius, which emerges because of the power
level of each node and is assumed to be uniform for each node in the network, is
important to see the connectivity among nodes. This radius will affect the average
number of arcs per node as a result of the connection that can be made beiween nodes in
the network, which depends on the number of nodes that can be reached directly and or

indirectly.

We can formulate the average number of arcs per node (NUMofARCS) with:
Z a ¥ fu
NUMOofARCS = =

where:
a = number of arcs
Jo = frequency of nodes that has a number of arcs

N = number of nodes in the network

The value of a does not necessarily have io be limited within a range. But to shorten
calculation time, the range of a is from the minimum to the maximum number of arcs

among the existing number of arcs that belongs to each node in the network.
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Figure 3.3 gives a simple example of a seven-node network where every node has
uniform propagation range. As a result of limited propagation range, those nodes are not

connected properly. Node 3 is not able to communicate with any other node.

Figure 3.3: An example of connectivity in a network

We can determine the NUMofARCS from the example in Figure 3.3 by building a table

below.
Number of arcs (a) Frequency (f,) Multiplication (a*f,)
0 1 0
1 4 4
2 2 4
3 0 0
Total 7 8

Table 3.1: An example of data that can be used to determine NUMofARCS
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When we divide the total value of multiplication in Table 3.1 with the total number of

nodes in this particular network, we get the average number of arcs per node, which is:

g
NUMOofARCS = 5= 1.1429

Figure 3.4(a) shows the same network in Figure 3.3 with the arrow indicating that a node
is moving in the direction of the arrow is pointing. Node 2 moves into the transmission
range of node 4 and node 3 into of node 7. Figure 3.4(b) shows how this movement can
affect the connectivity between nodes in the network. It creates a new topology with a

connectivity that is different from the one in Figure 3.3 { NUMofARCS = 1.7143).

(a) (b)

Figure 3.4: An example of movement effect on connectivity. (a) Nodes are moving.

(b) The new connectivity.

It is easy to observe that when a node moves closer to other on-the-fly nodes, it can reach

and be reached by more surrounding nodes and build stronger connectivity.
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In summary, when a network has a large number of arcs per node, it has a greater
possibility that the network is more robust with regard to the likelihood that each node
has more options to route data to other nodes, especially the ones that are not within ifs

propagation range.

3.2.2 Radius of the network topology
The nodes in a mobile wireless network can be grouped as a set of mobile nodes. In order
1o cluster these mobile nodes into a group, we have to create a circle that bounds all these

nodes.

For example, Figure 3.5(a) shows the beginning of a network where there are seven nodes
that are simply scattered. Figure 3.5(b) then shows the same network now with a circle

indicating the smallest circle that contains all seven nodes.

N\
® ® \\\_///

(a) (b)

Figure 3.5: An example of a network with (a) scattered nodes only, and

(b) the smallest circle that contains all nodes in the network
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When a smallest circle that contains all the nodes in the network is created, it can be used
to measure the area where the nodes are scattered (Figure 3.5(b)). We can determine this

circle by using the easy bounding circle algorithm by Rokne {27].

This smallest circle can be defined as the radius of the network topology. We can use the

radius of this circle as another property to characterize the network topology.

The changes in the radius of the network can determine the relative change in network
topology to how scattered the mobile nodes are. For example, if any of the nodes in
Figure 3.5(b) moves out of the current radius of the network topology, we should enlarge
this radius in order to handle this new topology. On the contrary, if any one of the most
"outside" nodes in Figure 3.5(b) moves in and the radius of the network topology can
become smaller, the coverage of this network will be better. Thus, any node located
inside the circle can move freely with no effect on the radius of the network topology as
long as it does not move out the circle (this movement might still affect the connectivity
between nodes, though). The movement of any node currently located on the edge of the
circle possibly affects the radius of the network topology. The latter leads us to the

importance of the rate of the changes of the radius of the network topology.

In summary, the rate of the changes of this radius should be considered in each network
topology. This radius, which might change in radius per time unit, more likely gives
better performance of the network because when it becomes smaller, it means that some

nodes would have a better chance to find any other on-the-fly nodes to maintain the
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connection with other nodes. We characterize the network topology by both properties

above and use them as direct variables input.

3.2.3 The difference between the new metrics and the others for network
characterization

The new metrics are developed for characterizing a network topology. These metrics will
then be used for assessing multicast routing protocols. Their values represent the nodes

connectivity and the coverage area of the network.

In comparing different multicast routing algorithms, these metrics are required so that the
performance of each algorithm can be measured under various scenarios. The metrics that
have been used in most comparison study are mobility speed [19], different number of
senders {19}, and pause time {23]. The last metric proposed is density [14]. However,
those metrics do not really represent what is the most important factor in routing, which

is the connectivity of nodes in the network.

When connectivity of the nodes in the network is known, it could facilitate the prediction
of how the algorithm would perform. Hence, connectivity is an important factor in

routing. The proposed metrics, that characterize the network, represent connectivity.

Mobility speed [19] and pause time [23] have been used as metrics in comparing

multicast protocols. They may be related with each other but they do not necessarily

characterize the network topology. Neither does different number of senders [19].
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Density, which is represented by the shaded area in Figure 3.6, does not necessarily
represent connectivity either. As illustrated in Figure 3.6, there exists a scenario where
density is present but there is no connectivity between the nodes. Recall that connectivity
exists when the nodes are within the transmission range (a node’s transmission range is
represented by a circle surrounding node) of each other. Density value can increase and
decrease such that there is still no connectivity between the nodes. Therefore it is not an
appropriate metric for characterizing the network. On the other hand, even a slight
change in the values of the new metrics provides information about modification

happening in the network.

Figure 3.6: An example of density with no connectivity

3.3 Example

In order to understand how the proposed metrics work, we give some illustration in
Figure 3.7. Figure 3.7 shows the network with seven mobile nodes. The gray nodes
 represent the nodes in their original position. The average number of arcs per node in this
topology is 3.2 arcs per node, which is obtained from the sum of the number of arcs that

each node has divided by the number of nodes. The circle with the dashed line represents
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the radius of this topology which is 226.20 meters. The procedures used for determining

those values will be explained in Subchapter 3.4

The white nodes represent the mobile nodes after moving from their original position.
The nodes are more scattered than before and as a result it has less connectivity. The
average number of arcs is now 2.0 arcs per node and the radius of the topology, which is

represented by the circle with the solid line, is now 234.77 meters.
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Figure 3.7: An example of the use of the proposed metrics

This illustration shows that the movement of the nodes changes the arrangement of the

nodes and also their reachability. The changes in the connectivity and the radins show
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that they might have significant effects on the performance of the multicast routing

algorithms.

3.4 Assumptions of Variables Input

3.4.1 Network Topology

For a fixed number of nodes, network topologies are randomly generated using Matlab.
The location of each node is assumed to be on the two-dimensional coordinate system (x,
y) and each location is generated randomly in a uniform distribution. We use a uniform

distribution so that the generated point sets are well distributed.

The variables input that we need in order to create a set of random topologies are:

a. The fixed number of nodes in the network.

b. The number of network topologies created in a set of simulation.

¢. The initial network area (o begin with.

d. The maximum network area that is considered to be feasible as the expansion of the

initial network area.

Included in the creation of the random topologies is the maximum distance that any node
can travel per time unit (). This is important for creating the next random topology
"'that has fundamental correlation with the current topology. We assume that each node
can pick up any random number in the interval [0, d..] and move as far as that distance

in random direction.
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3.4.2 Distance between two adjacent nodes

In order to run a multicast algorithm in any network topology, first we have to specify a
criterion to link two adjacent nodes. It is important to determine which nodes could be
categorized as neighbouring nodes of one node since multicast involves broadcast to

initiate the routing to find the multicast membership.

Assume that the criterion to connect one node to its neighbouring nodes is the maximum

distance that can be reached by the former node. We represent this criterion by:

{(i,j)]\/(xi ~x )Py —y )P g R}

where (i,/) represents two adjacent nodes i and j such that the distance between those two
nodes (represented by the coordinate of each node) is less than or equal to the

transmission range (R).

3.4.3 Transmission range
Transmission power level that each node has is assumed to be equal for all nodes in the
network. Since it is the characteristic that is represented by a circle centered at each node,

the transmission range is therefore the R mentioned in the previous subsection.

The wireless transmission range commonly used is between 100m — 250m. Sanchez er al
[31] stated that the optimum transmission range in ad hoc wireless networks cannot be
represented by a fixed number because there are many factors influence the transmission.

Different fading mechanisms have been studied and different network operational
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conditions, such as atmospheric condition and man-made obstacles, are found to affect

the transmission range.

3.5 The Code

The code that is written in Matlab that show how to determine the values of the proposed

metrics can be seen in the Appendix.
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Simulation

4.1 Description

The simulations are written in Matlab. Matlab is chosen because the routing problem can
be explained in a simple way given the vector and matrix oriented nature of Matlab. It
allows us to express the existing multicast algorithms mathematically. It also gives us the

freedom to vary any variables involved.

The Matlab program that is made as a tool to assess the performance of multicast

algorithms has the following flexibility and limitation:

1. The input to a number of mobile nodes can be changed easily with a lower limit of
three. This limitation exists due to the use of the easy bounding circle algorithm [27],
which determines the radius of the network topology. The creation of a circle using
this algorithm requires at least three nodes in the 2-D plane.

2. The representation of the transmission range of each node and other variables input

can be changed to match user’s requirements.

The goal of this simulation is to create and investigate a set of random network

topologies, run different multicast routing algorithms in each topology, and evaluate their
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performance. Simulations are important to determine if the proposed metrics are effective

in terms that they can actually be used to compare different routing algorithms.
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Figure 4.1: Flowchart of the simulation
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The flowchart in Figure 4.1 illustrates briefly how the simulation works. Further details

of the simulation procedure are explained below,

1)

2)

3)

4)

5)

Simulation variables input is required.

From the number of nodes provided, a random network topology is created. At the
beginning, which means when there is no previous topology, the random network
topology is created from a set of random nodes that are uniformly distributed.
Otherwise, the topology would still be created randomly but based on the position of
the nodes in the previous topology. The reason behind this is that the assumption that
any mobile node could only change the position within a limited distance in an
interval of time. So the program would generate for each node a random distance and
a random direction of movement from the node’s location in the previous topology.
For each node, connectivity is built. When any pair of nodes is located within a
distance that is based on the transmission range provided, they would be connected.
Otherwise, do nothing.

The graph resulted from the previous step would be a direct variable input to calculate
the average number of arcs per node. The larger the number is, the stronger the
connectivity between the mobile nodes is.

The random position of each node would be a direct variable input to calculate the
radius of this topology. The calculation is done repeatedly until one of the possible

results exists. If there is any triangle with three acute angles can be formed from three

‘of the nodes, the radius would be calculated based on these three nodes. Otherwise,

the radius would be obtained from two of the nodes which are located farthest away
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6)

7

8)

9

from each other. A detail description of this easy bounding circle algorithm used for
determining the topology radius can be found in [27].

Each multicast algorithm would be applied to this topology. Additional information
regarding the algorithms will be explained in Subsection 4.3. When the algorithm
needs a source to initiate the session, the random input of the source is required.

After the application of each algorithm, the simulation variables output would be
provided. The output includes the performance measurement of the algorithms in this
particular topology. In a set of simulations, the performance is measured using the
number of messages generated and the number of transmission loss in the multicast
routing session. They will be defined at the end of this chapter.

The next simulfation would run when the nodes are in different position. If the total
number of topologies created up to this point is still less than the number of topology
fixed as an input at the beginning of the simulation, go back to step 2 of this
procedure. Otherwise, go to the next step.

Graphs are created based on all the final variables obtained until the previous step and

observe them to evaluate the performance of the algorithms.

4.2 Simulation Variables Input

Table 4.1 summarizes the variables used as input for a set of simulations of running three

multicast routing algorithms.

At the beginning of the simulation, a source node is randomly selected. This selection is

important for two of the three algorithms, which are AMRIS and ODMRP, to initiate a
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multicast session. The assumption is that during every period of time, the same node has
messages to send to other nodes. Every new topology would indicate the position of all

nodes at the beginning of the observed time.

Variable Value
Number of nodes 10
Number of random topologies 50
Transmission range 250m
Inttial network area 500mx500m
Maximum network area 1000mx 1000m
Maximum distance of a node’s movement 150m (per time unit)
Number of sender 1

Table 4.1: Simulation variables input

Compared to the density metric proposed by Jacob [14], the metrics proposed here would
vary automatically as the topology changes. We use 250m as the transmission range since
it is typical for mobile devices. The scenario area of the simulation is permitted to expand
according to the random topology generator during a set of simulations. This expansion
needs to be considered so as not to limit the random movement of nodes. However,
maximum network area is limited to 1000mx1000m to reduce the likelihood of no
connectivity at all when the nodes are allowed to go further than that. This consideration
is based on the number of nodes that is 10. The node position affects both connectivity

and radius of the topology.
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Radio irregularity factors are not considered in these simulations. Therefore, if node i can

send a message to node j, node j can also send a message to node i.

4.3 Selected Algorithms in Simulation Environment

The description of each algorithm chosen to be compared has been discussed in
Subchapter 2.3. The following is the additional information of how each algorithm is

applied in the simulations.

4.3.1 AMRIS simulations

All nodes in the network share a multicast tree and each node is dynamically assigned an
ID number called an msm-id. The multicast session is initiated by the node that has
messages to send. This node is called Sid and it is chosen randomly. The msm-id for Sid
could be 0 or 1, depending on what is preferred as the lowest number. The tree is built

and maintained by the use of msm-ids that are generated randomly in sequence.

In the first topology, Sid executes the Tree Initialization procedure to build a shared
multicast tree among the nodes connected to Sid. At the beginning of the rest of the
network topologies, each node uses a beaconing mechanism to find out about the
neighbours™ position. If any of the nodes detects any link failure, where there arc
disconnected pair of nodes, Tree Maintenance procedure is executed. Any detached

nodes would attempt to rejoin the tree.
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4.3.2 ODMRP simulations

The multicast session is also initiated by the node that has messages to send. This node is
also chosen randomly but the node must be identical with Sid in AMRIS. This is
important for a consistency purpose. The nodes that want to receive the messages also

broadcast their messages to make sure that the messages are not lost.

At the beginning of each topology, the source floods the network with JOIN DATA

messages in order to build a mesh for the network.

4.3.3 AMRoute simulations
Since this protocol is proactive, periodic join request is broadcast to the entire network by
each node. The building of the tree is initiated by the node that is called the Core. IP

address for each node is randomly assigned.

At the beginning of each topology, each node in the network sees itself as a core until the
Core is determined. The determination of the Core is based on the highest IP address of

all the nodes.

4.4 Performance Measurement

While running the algorithms on different network topologies, the same measurement is
needed for the performance. The performance of each algorithm can be measured by:

I. Number of messages involved in one multicast routing session.
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This represents the number of packets sent from initiating a multicast session to the
establishment of the routes from the sender to the receivers. The value of this
performance metric is obtained from the total number of directed arcs emanate and
enter all the nodes in the network. A lower number indicates that network bandwidth
is well-preserved.

The number of transmission loss.

A transmission loss is defined as the number of intended destination nodes that fail to
receive the multicast data sent by the source. This number should be minimized to
study the effectiveness of the multicast routing algorithm in any topology. The
number of transmission loss is used instead of the delivery ratio because the delivery
ratio does not really show whether there are intended destinations that do not receive
messages. Transmission loss used here enables easy observation of topological

behaviour and how the arrangement of the nodes affects data forwarding.

48



Chapter 5

Evaluation of the Performance Comparison

5.1 Evaluation

Table A (Appendix) presents the simulation variables output that are a result of 50
simulations. This section contains with the explanation of graphs that represent the

performance of each multicast algorithm as a whole.

Correlation between Proposed Metrics
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Since many variables exist, the performance of the multicast routing algorithms can be

evaluated from different points of view. Therefore, it is important to determine if there is

any connection between the proposed metrics shown in Figure 5.1.

The correlation coefficient between the metrics is 0.925527 (=+/0.8566 ). This value

indicates that we can use a single metric instead of both in evaluating the multicast

algorithms performance. Either metric can meet the need of interpreting the result

because the other metric would show virtually the same information. The average number

of arcs is used as the x-axis throughout this analysis. However, a combination of both

metrics might be useful when there is a need to emphasize one metric over the other.
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Figure 5.2 is the result of plotting the number of messages of all three algorithms in one
graph. For each set of data, which represents the number of messages for each algorithm,

we draw a regression line. These lines can be used when comparing the algorithms.

With three regression lines across all sets of data in Figure 5.2, there are a small set of
ODMRP plots on the bottom left of the lines and a small set of AMRIS plots on the top

left of the lines. Since they can mean something, it will be discussed afterward.

As seen in Figure 5.2, the lines intersect with each other around the same point. From the
regression equations, the exact intersection between each pair of the regression lines can

be found as shown in Table 5.1 below.

Intersection Point AMRIS ODMRP AMRoute
AMRIS - (3.102,52.757) (2.835,49.435)
ODMRP (3.102,52.757) . (3.564,62.947)
AMRoute (2.835,49.435) (3.564,62.947) -

Table 5.1: Intersection points between regression lines of the algorithms

What is expected from multicast routing is as few messages generated as possible. From
this point of view and the regression lines, the graph shows that from low to medium
- connectivity level (represented by NUMofARCS ranging from 0.6 to around 3), ODMRP
has better behaviour than AMRoute, which has better behaviour than AMRIS. However,
from medium to high connectivity level, the opposite behaviour is noticeable. ODMRP

behaves the worst while AMRIS show fewer messages generated. AMRouie seems stable
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by generating a number of messages that is between the number of messages generated
by the other two algorithms. So when the nodes are in situations where connectivity level
1s low, ODMRP is more preferred than AMRIS; while in other situations, AMRIS is
more preferred. However, AMRoute could be a safer choice because the highest number
of messages generated by this algorithm never exceeds the highest number of messages

generated by the other two.
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Figure 5.3: Transmission loss of all three algorithms

The graph in Figure 5.3 shows the transmission loss for each multicast routing algorithm.

- There seems to be only two instead of three sets of data in Figure 5.3. This occurs

because the data sct of ODMRP overlaps the data set of AMRoute. Recall that in Chapter

52



Chapter 5 — Evaluation of the Performance Comparison

4 the transmission loss is defined as the number of destination nodes that fail to receive

multicast data sent by the source.

The transmussion loss is also expected to be as low as possible. From the regression lines
drawn for both sets of data in Figure 5.3, it is obvious that ODMRP and AMRoute are

more preferred if it based on the transmission loss.

But since the straight line drawn for each set of data might not actually be the best fit for
each set of the data, the performance of the algorithms is going to be analyzed separately.
Individual analysis is useful for studying in more detail how the algorithm performs

based on the proposed metrics.

Each of the three following subsections is a study of an individual multicast algorithm.

5.1.1 AMRIS

In analyzing the graphs, a good fit between any pair of parameters is tried to be found by
examining the scatter plots of data. This is an important step in evaluating the correlation
which is needed for explaining the behaviours of the algorithm so that they can be used in

the future for improving the performance of the algorithm.
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So after trying to fit the data in Figure 5.4 with a linear function and different nonlinear
functions, the best fit is a power function with coefficient of determination of 0.7322. The
same thing is done for data in Figure 5.5 and a straight line is the best fit with coefficient
of determination of 0.5516. The weak relationship between these pairs of parameters is
mtelligible because the plots are very scattered which show that the performance of

AMRIS is very unpredictable.

However, there is a need to find any relationship between the number of messages
generated in AMRIS and the number of transmission loss. And when we look closely and
match the plots on Figure 5.4 with the plots on Figure 5.5, we can actually divide the set
of AMRIS data into two groups. The smaller group represents the distinctive

performance of AMRIS in low to medium connectivity,

Figure 5.6 and Figure 5.7 show the distinctive performance of AMRIS. Group 2
represents the distinctive performance of AMRIS in low to medium connectivity network
when it geperates more messages and loses more transmission than Group 1. The

grouping of the plots also gives us better results of data fitting.
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5.1.1.1. NUMofARCS vs Number of messages

The performance of Group 1 and Group 2 is best described with a power function with
coefficient of determination of 0.9091 and 0.9813, respectively. The area between the
two regression lines show that AMRIS has high unpredictability when the network has
medium connectivity of nodes. As the two lines go from low to higher connectivity, the
area between the regression lines becomes broader, This shows that when the network
has medium connectivity the algorithm has tendency to generate most of its highest

number of messages.

Observing the performance of AMRIS specifically on this area, we find that the medium
connectivity can be obtained from different scenarios of topology. The topologies where
the source has no or very little connection with other nodes are the scenarios that generate
the plots in Group 2. This occurs because the nodes are trying to rejoin the tree. This
attempt is made difficult in this kind of scenarios because the source is some kind of
remote; yet the source node is the root of the multicast tree. On the other hand, the
topologies where the source still has some neighbouring nodes generate significantly
fewer messages. The latter are the scenarios that generate the plots in the Group 1. The
regression line of Group 1 is directed toward the plots when the network has strong

connectivity. It happens because the nodes can find their potential parent nodes more
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5.1.1.2. NUMofARCS vs Transmission loss

The performance of Group 1 is best described with a linear function with coefficient of
determination of 0.7614, while Group 2 a power function with coefficient of
determination of 0.9813. A straight line as the best fit for Group 1 is easily understood
because as the network has stronger connectivity, the number of transmission loss
becomes less. The unpredictability of AMRIS in losing transmission also occurs when

the network has medinm connectivity as shown in Figure 5.7.

5.1.2 ODMRP
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ODMRP: NUMofARCS vs Loss
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Figure 5.9: Transmission loss of ODMRP

After trying to fit the data in Figure 5.8 and Figure 5.9 with a linear function and different
nonlinear functions, the best fit for both set of data is a straight line with coefficient of
determination of 0.8257 and 0.6142, respectively. The better relationship between these
pairs of ODMRP parameters than AMRIS parameters is intelligible because the plots are

less scattered.

There is also a need to find the relationship between the number of messages generated in
ODMRP and the number of transmission loss. So the plots in Figure 5.8 and Figure 5.9
are observed and they can be divided into two groups as shown in Figure 5.10 and Figure

5.11.
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As in AMRIS, Figure 5.10 and Figure 5.11 show that there is some patterns in the
performance of ODMRP. Group 2 represents the distinctive performance of ODMRP in
low to medium connectivity network when it loses more transmission than Group 1. But
ODMRP shows a bit of opposite performance than AMRIS because Group 2 generates
fewer messages than Group 1 in the similar range of connectivity. The grouping of the

plots also gives us better results of data fitting.

5.1.2.1. NUMofARCS vs Number of messages

The performance of Group 1 and Group 2 is best described with a linear function with
coefficient of determination of 0.9805 and 0.1004, respectively. Like AMRIS, there is
also some unusualness from the plotted performance of ODMRP. As illustrated in Figure
5.3, Group 2 shows that ODMRP is quite unpredictable when the network has low to

medium connectivity but Group 1 shows relatively constant performance.

The performance here is described as constant when the number of messages increases as
the number of arcs increases. The constant part of ODMRP performance is revealed by
the correlation coefficient between the average number of arcs and the number of
ODMRP messages, which is 0.9902. Compared to AMRIS, Group 2 of ODMRP
generates much less messages in the same connectivity level. As a performance metric,

the less messages generated is the more preserved the bandwidth is and it is actually good

for the network. However, it is important to discuss further the possible cause of this =~~~

situation and its impact in subchapter 5.2.
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5.1.2.2, NUMofARCS vs Transmission loss

The performance of Group 1| is best described with a logarithmic function with
coetficient of determination of 0.8441, while Group 2 a linear function with coefficient of
determination of 0.1004 (as in 5.1.1.1). A curve line as the best fit for Group 1 instead of
a straight line as in AMRIS shows that ODMRP does not have as much transmission loss
as AMRIS as the connectivity decreases. The coefficient of determination of QDMRP

also represents less unpredictability of the transmission loss of ODMRP than AMRIS.

5.1.3 AMRoute
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AMRoute: NUMofARCS vs Loss
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Figure 5.13: Transmission loss of AMRoute

Figure 5.12 shows that a straight line will fit the plots almost perfectly. It is also revealed
by the correlation coefficient () of 0.9995 between the average number of arcs and the
number of AMRoute messages. The best fit for Figure 5.13 is the same as Figure 5.9

which is a straight line with coefficient of determination of 0.6142.

There is no need in dividing the plots into groups as is done to the other two algorithms
because there 18 nothing extraordinary about Figure 5.12 that can be related to Figure
.5.13. But Figure 5.12 proves that the most distinctive feature about AMRoute is its
predictability. The number of messages generated by this algorithm can be estimated in

any level of connectivity.
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5.2 Discussion

Overall, AMRoute shows a very predictable performance in creating multicast routes.
The scatter plot in Figure 5.12 reveals a strong positive relationship between the average
number of arcs per node and the number of messages generated by AMRoute. The result
shows that the behaviour of AMRoute is easily predicted which means that the more
connected the mobile nodes are (or the smaller the radius of the topology is) the more

messages are exchanged between them.

AMRIS shows the worst performance in terms that its behaviour is very unpredictable
when the network has low to medium connectivity. The use of this algorithm in this
connectivity level would not allow any advanced prediction of how it will behave when
the topology changes randomly. This was especially so when the radius of topology is
small because it could be under or over predicted. But the grouping could help in
anticipating the tendency of AMRIS of generating huge amount of messages and still

losing many transmissions,

There are situations where AMRIS shows tendency of generating huge amount of
messages while ODMRP shows tendency of generating very few and sometimes no
messages at all. But both distinctive cases of the two algorithms result in similar
behaviour of losing the transmission. AMRoute shows the most stable performance by
”generating messages within the least range among the three algorithms. The proposed

metrics are therefore useful to predict the number of messages that could be generated in
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multicast routing sessions by any multicast algorithm. The metrics also identify when a

distinctive performance of an algorithm should be anticipated.

The transmission loss would not be a behaviour that is as easily predicted as the number
of messages from the chosen three algorithms. By observing the data only, AMRIS has
the worst performance because it shows more loss than ODMRP and AMRoute. The
mode of the transmission loss of the three algorithms is 8, but the median of AMRIS
transmission loss is 7 while the other two is 6. Because of the mesh created by ODMRP
and AMRoute (AMRoute create a mesh first before building the tree), the number of

transmission loss for both algorithms is the same.

By grouping the plots whenever possible, there are some patterns might be found that can
be used for predicting the performance of each algorithm. This kind of pattern helps the
study of the algorithm so that the unusualness of performance and in what situations that
unusualness occurs could be anticipated. It can also be used to understand the importance

of the arrangement of the nodes in the network that builds the topology.

Since there are some good patterns exist between the average number of arcs and
transmission loss, the proposed metrics might be suitable parameters to predict the
transmission loss of the multicast algorithm performance. Even though the prediction of
~this transmission loss might not be as accurate as the prediction of the number of
messages, they still enable an observation of how the algorithms perform in changing

topologies.
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Sometimes the final result is quite bias when the simulations are executed for many
times. When the exchange of messages caused by each multicast algorithm in each of the
fifty topologies is observed, there are some of the least messages resulted from ODMRP
is caused by the occurrence of network partifions. The network partition is the reason
why a distinctive line can be drawn across some ODMRP plots and put them into a group
(Group 2) as shown in Figure 5.10. When the network is partitioned due the movement of
the nodes, ODMRP would have the source to be able to flood only the subset of the
network where the source is located. The more the network is partitioned, the more
ODMREP is biased toward the number of messages involved in the related topology. For
example, once the network is partitioned such that the source is only connected with only
one other node. The exchange of messages during the multicast session in this particular
topology occurs only between those two nodes. The rest of the nodes are inactive because

the activities should only be initiated by the source.

On the other hand, even when the network is divided into many sub networks, AMRIS
and AMRoute would trigger each node to try to connect itself with any available
neighbouring nodes. AMRIS triggers the detached nodes to find a way to rejoin the tree
and does nothing when the tree cannot be reconfigured. AMRoute triggers each node to
create a mesh with its surrounding nodes in order to create any possible tree from that
mesh. For this reason, if there are multiple senders during the multicast session instead of
~a single sender used in this specific simulation, AMRoute could show the best

performance because each node keeps attempting to create any possible tree with its
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neighbours and each sender can at least send its messages to any nodes that are attached

to it.

AMRIS involves too many procedures in its attempt to maintain the tree (Recall that it
uses differeni kinds of messages: NEW-SESSION, JOIN-REQ, JOIN-ACK, JOIN-
NACK, JOIN-CONF, and beaconing). The biggest problem in AMRIS is its idea of using
the msm-id in order to create and reconfigure the tree. Most of the time, the detached
nodes are still connected to any nodes that are already on the tree but the latter cannot
allow the former to rejoin the tree because the msm-id of the former nodes are smaller
than the latter’s. This causes AMRIS to simply have more transmission loss than the
other algorithms. AMRIS should let the detached nodes to modify its msm-id when it
cannot find any “feasible” parent after all attempts (Branch Reconstruction 1 and 2). This
might help reduce the magnitude of the top curve of the unpredictable area of AMRIS

performance.

However, when the network has strong connectivity and the change in the topology
radius is small, AMRIS could show the best performance because it does not use flooding
as its basic concept. This situation will lead to the movement of the nodes to be always
around the previous position and the Tree Maintenance procedure would only need any
detached node to send JOIN-REQ message and receive a JOIN-ACK as a permission of

- -rejolning the tree, -
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Conclusions and Future Directions

6.1 Conclusions

The proposed metrics are introduced as a new approach for comparing different routing
protocols by exploiting the characteristics of the network itself. The average number of
arcs per node represents the connectivity level of the nodes in the network and the larger
the number is, the stronger the connectivity becomes. This metric is shown to have strong
correlation with the other metric, which is the radius of the topology. As can be predicted,
when the nodes in the network have uniform transmission range, the larger the network

area is, the lower the connectivity is.

These metrics are needed to provide a new method for assessing the performance of
multicast routing algorithms. Most of the work in multicast has focused on the
introduction of new algorithms. There is lack of work on developing methods to compare

these algorithms properly.

Since our metrics change as the topology changes randomly, it can represent a real
wireless network where the nodes are usually mobile in random directions. Furthermore,

there is no need in maintaining a good simulation area so that the metrics can provide
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illustrative values. This becomes the basis of our set of simulations and it can be used to

measure the quality and performance of any multicast routing algorithms.

Of the three algorithms that are selected to be compared, AMRoute shows the most stable
performance compared to AMRIS and ODMRP. When AMRoute is evaluated by itself, it
appears to be the only algorithm that shows very strong correlation between the average

number of arcs and the number of messages and therefore it is predictable.

AMRIS and ODMRP show opposite performance by taking turn in generating large
amount of messages over the other and over AMRoute. If evaluated separately, AMRIS
and ODMRP show some distinctive patterns while performing in low to medium
connectivity. The distinctiveness of each of the two algorithms is measured in both the

number of messages and the transmission loss.

Even though the result presented here comes from only one set of simulations, there are
actually several other sets of simulations executed and they result in similar patterns for
each multicast routing algorithm. And so from the graphs that are the results of
simulations, the proposed metrics are not only useful in comparing the algorithms but
also in stimulating the appearance of unusual patterns of the algorithms by evaluating the
algorithm separately. A distinctive performance of an algorithm can help in studying in
~details the reason why it behaves the way it does. This study is very important for

different reasons such as to recognize the predictability of an algorithm, to anticipate the
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Chapter 6 — Conclusions and Future Directions

performance of the algorithm in different situations, and most importantly, to improve the

algorithm.

6.2 Future Directions

The major thing that should be focused on in the future is to include more metrics in our
method. The use of more metrics can be helpful in conducting more thorough assessment.
It might also stimulate the emergence of different patterns in the performance of

multicast algorithms that would lead to more detail analysis of the algorithm.

It would be very useful to consider real-life scenario such as various frequency of
communications between the source and the destinations. This is because the source
possibly communicates more frequently with a subset of its destinations and this could

affect the whole performance of the algorithms.

Since this comparison study involves only three different multicast routing algorithms,

more simulations to measure the performance of other algorithms are encouraged.

And finally, since there now exists a method that can be used to measure and study the

multicast routing algorithms with their own patterns, the future work is to use this tool to

improve the existing algorithms and to develop new ones.
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Table A

Simulation Variables Output

Topoiogy NUMofARCS topoRADIUS V1 V2 V3 vq V5 V6
1 4.6 286,172671 64 0 87 0 83 0
2 5 283.83383¢ 59 0 95 0 91 0
3 3.6 271.073729 53 0 68 0 53 0
4 3.4 320.406079 46 1 63 0 59 ¢
5 3.6 284.903309 49 0 69 0 63 0
3 2.8 296.504453 35 2 53 2 49 2
7 3.4 313.133712 55 & 64 1 &0 1
8 3.4 342.530186 69 3 64 1 60 1
9 3 380.411245 50 4 49 4 53 4
10 2.6 412.011919 35 4 41 4 45 4
11 3.4 366.48864 51 3 63 1 60 1
12 2.6 370.941819 36 3 48 2 45 2
13 3.4 382.27491 48 3 63 1 50 1
14 2.8 375.398144 52 6 54 2 49 2
15 2.8 386.256873 59 4 53 1 48 1
16 2.6 408.805042 66 9 0 9 45 9
17 2.8 418.827484 82 7 55 1 48 1
18 2.2 427.058586 66 9 0 9 38 9
19 2.5 387.145868 76 8 51 i 44 1
20 i.8 446.850381 47 8 19 5 29 5
21 1.8 492.658882 54 9 0 9 30 9
22 1.4 484.224656 40 8 3 8 23 8
23 1.4 485.639483 39 8 3 8 24 8
24 1.4 497.503411 39 8 3 8 23 8
25 1.2 527.363629 33 8 3 8 19 8
28 1.8 548.27918 51 8 3 8 30 8
27 1.4 580.288274 39 8 3 8 21 8
28 1 586.085938 25 7 10 6 15 &
29 1 601.245343 27 g 3 8 15 8
30 0.8 589.871037 21 g 3 8 12 8
31 0.8 621.007818 24 9 0 9 12 9
32 0.6 604.96604 16 8 3 8 9 8
33 1 599.541211 30 9 0 9 15 9
34 i 579.834867 30 9 0 9 15 9
35 z 600.666675 26 7 10 7 16 7
36 1.2 613.09186% 24 6 13 6 19 6
37 1.2 638.854399 23 6 13 6 19 6
38 1 605.077966 20 7 10 7 16 7
39 1 645.044274 20 6 17 4 15 4
40 0.5 643.63268 17 7 10 6 12 6
41 0.8 674.325007 16 3 9 5 12 £
42 1 663.36041% 18 7 14 5 16 6
43 1 £59.237101 21 6 14 5 15 5
44 1.4 £29.5619757 27 5 21 4 22 4
45 1.6 618,807385 25 5 24 5 27 5
46 1 578.612782 17 6 18 5 16 5
47 1 559.52682 17 6 18 5 16 5
48 1.2 540.1929893 27 5 20 5 20 5
49 1.6 526.9089 25 4 28 4 27 4
50 1.4 520.160395 21 7 25 4 23 4

Note:

V1, V3, V5 = Number of messages of AMRIS, ODMRP, AMRoute, respectively
V2, V4, V6 = Transmission loss of AMRIS, ODMRP, AMRoute, respectively




% AMRFIG 1s part of the AMRIS algorithm

% It is a short version for display purpose only
% It is needed by AMRTRYOUT.m

% It needs GENERATEIDNEW.m in order to run properly
%

% author: A. Radvasturi

% v6.5 Z6-Jan-04

Frmmememe e oo orrorozomooDmm==

% create the graph

fommmmmssse s oo oo oo ocoroooommsmz=

figure

for i = 1:n
plot({x{i},v(i}), ‘o', 'MarkerEdgeColor', 'k’', ...
‘MarkerFaceColor','c', 'MarkerSize', 15} ;
str=numZstr (i} ;
text ((x{(1)-0.5),y(i),stx);
ti = procedure;
title{['Random Points in Topology ', num2str(vi}]);
axis equal;
grid;
hold on
end
grid on
hold on
sen=sender;
plot{x(sen),y{sen), o', 'MarkerEdgeColor', ‘k’, ...
'MarkerFaceColer', 'g', 'MarkerS8ize', 15);
str=numlstr (sen) ;
text ({(x(sen)-1},y(sen),str);
hold on
for 3=1:n
v=x (i)
w=y (3);
for k={ji+1l):n
d(j, kl=sgrt{{x{k}-v)"2+(y{k}-w}"2};
dik,jr=d(i, k};
if {d{3,k)<=vrans_range)
line{([{v x(k)1,iw yik}]}
adjacency_matrix{j, k)=1;
adjacency matrix(k,j}=adjacency_matrix(i, k};
alse
adjacency matrix{j, ki=0;
adjacency_matrix{k, j)=adjacency_matrix{(j,k};

end
end
end
hold on
d;

adjacency, matrix;
a = adjacency_matrix;

ii=sender;
NODE_NUMBER=scnder
adim=adiacency matrix;
connect % call connect.m

pause{l)
% end of finding all connected nodes

"% breoadcast NEW_SESSION message
B e T S T T T T
sender;
connection;

Parent=[];
if (sender<=n}
msm_sender=1;
end
msw_i=msm_sender;
nodeszsender ;
nodesparent=0;
Allmsm_i=msm_1i;



Parent-gender;

exParent={];

AliChild={];

NEW _SESSION=0;

warn=0;

adiacency matrix;

connection;

while (iengrh{Parent)-~=0} % when we stil}l have a Parent

for pr=1:length(Parent)

Parent;
jnow = Parent (pr);

PR=jnow;
Parent;
exParent;
pause(0.1)
if (find(exParent==PR))
Parent;
rr;
warn=1;
Parent (prl=[];
pause (1)
break
end
Children=[};

connection{find(connection==pPR)}=[];
for k=1;:n % finding the Children
if (adjacency. matrix{inow,k)==0)
Children{k)=0; % it is not ceonnected or itself
elseif (adjacency_matyix{jnow,k}==1)}
Childrentk)=k;
if (length{connectlion)~=0)
££3= find{connection==k):

if {(ff3)
Children(kl=k; % it is =still available
else
Children{k}=0;
end
else
Children({k)=0; % no node is available
end
if (length{exParent)~=0)
exParent;
ff= findtexParent==k!;
if (ff)
Children(k)=0; % it is in the exParent
end
and
end
end
Children;
Children(find{Children==0)}=[];
Children;

pause (0.1)

% generate msm_id for each node

generateidnew % call generateidnew.m

for kk=i:n
if (adjacency_matrix{inow, kk)==0)
bro child(kk)=0;

aeige
bro_child (kk}=kk;
end
end
bro_child{find({bro_child==0))=[];
Children;

for bec=1:length{bro_child)
if (find{Children==bro child(bcc}))
last_ep(bce)=0;
else
last_ep(bece)=bro_child(bce);
end



end
last_ep{find({last_ep==0))=1{];

if {length{last_ep)~=0)
for besl:lengthi{last e
plot_arrow{x {FR),v(PR) ,x(last_ep(bc)}, ...
yi{last ep{bc}), ‘headwidth’,0.08, ...
‘headheight',0.15, ‘color, [1 0O 0], ...

‘facecolor', {1 1 0]);
NEW_SESSTON=NEW_SESSTON+1;
end

end

bro_child=[];

last_ep=1[1;

Br;

PR;

exParent {length{exParent)+1)=PR;
pause (0.1}
% when the Parent has no Children
if {{length{Children)==0)&{pr==laength{Parent}}
Parent=[];
AllChild;
if ((length(AllChild)~=0)&{length(connection)~=0})
AllChild{£ind(AliChild==PR}))}=[]:
AL1Child;
Parent=A11Chilgd;
glgse
Parent=[];
end
elself (length(Children)-~=0) % when there are children
while (length({Children}~-=0)
% distributing NEW_SESSION message to each node of the Children
1f (length{Children}~=0)
for ch = 1: length(Children)
xline=[{x(PR) x(Children(ch}}]"‘;
vline=[y(PR) v(Children(ch)}]"';
plet_arrow(x{PR),y{PR),x(Children(ch)),..
y{(Children(ch)), 'headwidth' ,0.08, ...
‘headheight',0.15, 'color', ...
[1 0 01, facecolor', {1 0 01);
NEW_SESSION=NEW_SESSION+1;
nodes {length (nodes) +1)=Children{ch) ;
nodesparent (length (nodesparent) +1) =PR;
hold on
end
end
if (pr==1)
A1lChild=Children;
else
for ac=1:length(Al1Child)}
Children(find(Children==a11Child(ac)))=[1;
end
AlIChild;

A11Child(length{(AllChild) +1:length(AllChild) +length{Children))=Child
ren;
end

FR;

% eliminating the Parent from the AllcChild
if {(length (AL1Child)~=0}

) AllChild{find(Al1Child==PR})={];

end

Allichilag;

% end of one set of Parent and determining the new Parent
if (pr==length{Parent))
Parent=A11Child;
AllChild=[];
end
exParent;
Parent;
nodewith_id;



msm_id;
connection;

Children={];
if (lengthiconnection)==0)
BI;
if (pr=z=zlength{Parent};
Parent=[1];
end
break
end
end
end
end
end
nodewlth_id;
msm_id;
itsParent?;
nodeas;
nodesparent;
hold on

pause{0.1)



% AMROUTETRY ig AMROUTE run with metricsbreak3

%

% Author: A. Radyastuti

% v6.5 16-Jun-04

% v7.0 Last-Modified: 25-Jun-04

all_node=1l:n

TJR=0; % TJR =Total JOIN_REQ

TTC=0; % TTC = Total TREE_CREATE
TTCN=0; % TTCHN = Total_ TREE_CREATE_NAK
JOIN_REQ=0;

TREE_CREATE=Q;

TREE_CREATE_INAK=0;

repeat=0;

messages_ar=0;

figure
for 1 = lin

plot{x{i),y (i), 0", ‘MarkerEdgeColor','k', ...
'MarkerFaceColer', 'c', 'MarkerSize', 15} ;

str=znumdscy (1) ;

text {(x{1}-0.5),y(1}),str};
ti = procedure;

xlabel ('x-~coordinate'};
ylabel (‘yv-coordinace');

title({'AMRoute in Topology ‘,num2str{ti}]};

axis equal;

adjacency matrix(k, j)~adjacency matrix{j, k):;

adjacency matrix{k, j)=adjacency matrix{j, k);

grid on
hold on
end
grid on
hold on
for j=1l:n
v=x{3);
w=y({3};
for k=(j+1l):n
dij. k)=sgrt{(xi{k)-v) 2+ {y(k)-w)"2);
dik,J)=d{3.k);
if {d{(j.,k)<=trans_range)
line{fv x(k)], [w v{k) 1)}
adjacency_matrix (i, ki=1;
else
adjacency, matrixij, k}=0;
end
end
end
hold on
d;

adjacency_matrix;

a = adjacency_matrix;

sen=sender;

plot (x{sen},.y{sen), 'o’, MarkerkdgeColor ',

‘MarkerFaceCelor', 'g', 'MarkerSize',15);

str=num2sty {sen) ;
‘text ({x(sen)-1},y{sen),str);
hold on

ip_address=[];

ipl=1;

ip2=255;
ip_address=round{ipl+ {(ip2-ipl) *rand(1,n)}

% find the group



while (length{all_node)~=0}

repeat=repeat+l;
NODE_NUMBER=&1l_node (1) :
adjm=adjacency_matrix;
connect % call connect.m
group=connection;
pause{l}
if {(find{group==sender})
mrouteRecelvers=langth{group) -1
if (procedure==1)
num_receiver ar=AmrouteRecelvers
end
end
for abc=1l:length{connection)
if {(find{all_node==connecticnlabc)})

all node(find{all_node==connection(abc)})=[1:

end
end
all_node;

fprintf(’========= Start Group %g ===========\11", repealb):

exParent=[];

Allchild=[];
Parent=connection{l);
ip_address

Core=Parent.;
ip_Core=ip_address (Parent);
Non_core=[7];

nodes=Parent ;
nodesparent=0;

while {length{Parent)-=0} % when we still have a Parent
for pr=1:length{Parent)
Parent;
jnow = Parent(pr);
PR=9now;
ip_PR=ip_address (PR) ;
fprintf(**** New Parent = %g\n',PR); % uncomment while observing
Parent;
exParent;

pause (0.1}
if (find{exParent==PR})
Parent;
pr;
warn=1;
Parentpz)=I[};
pause{l)
break
end
Children=[7;
connection{find{connaction==PR) )} =[1];
for k=1:n % finding the Children
if (adjacency_matrix{jnow, k) ==0)

Children{k}=0; % it is not connected or itself
elseif (adjacency_matrix{inow,k)==1)

Chiidren{k)=k;
end
end
Children;
Children{find{Children==0})=[];

Children; % eliminate semicolon while observing

pr;

PR;

exParent (length{exParent) +1) =PR;
pause (0.1}

% Core Resolution Procedure
frmoosooommmmssmsscocoooowess oo Commoo
if (length({exParent}>1)
if (ip_PR>ip_Core)
fprintf{'Node %g wins the

core resolution

"VPRY;



end

elself

end

fprincf{*and becomes the new core node\n');
fprintf ( 'Node %g becomes a non-core node\n*,Core);
Non_core(length{Non core)+1l)=Core;

Core=PR;

ip_Core=ip_PR;

fprintf(<***x**x*r'k‘kw‘k:\'w*w\nl ) H

{ip_PR<=1ip_Core)

fprincf{'Node %g loses the core resclutieon ', PR);
fprintf{*and becomes a ncn-core node\n‘};
fprintf{'Node %g is still the core\n', Core);
Non_core{length(Non core) +1)=PR;

Core=Core;

ip Core=ip Core;

fprintf('***’*************\n');

pause{0.1)

% end of Core Resoluticon Procedure

% when the Parent has no Children

if ({lengthi{Children)==0}& (pr==lengthi{Parentc)}}
Parent={] ;

AllChild;

1f ({length(mllcChilid)~=0)& (length{connection)~=0))

elseif

AllChild{find{AL1Child==PR))=[};
AllChild;
Parent=A11lChild;

else
Parent=1[1;
end
{length(Children)~=0} % when there are children
while {length{Children)~=0}

% distributing JOIN_REQ message to each node of the Children

if {length{Children)~=0)
for ch = 1: length({Children)
plot_arrow{x (PR}, y(PR),x(Childrenich)}, ...
viChildren(ch}), 'headwidth*,0.08, ...
‘headheight,0.1%, '‘color', ...
f1 0 01, 'facecolor',[1 0 01});
JOIN_REQ=JOTN_REQ+1;
nodes (length(nodes) +1)=Children{ch):;
nodesparent (length (nodesparent) +1}=FR;

hold on
end
JOIN REQ; % eliminate semicclon while observing
end
exParent;

$fprintf{'eliminate exParent from Childrenin')
for ep=l:length({exParent)

Children(find{Children==exParent{ep)))=[};

end

if ({pr==1}
AllChild=Children;

else
$fprincf{ ' eliminate Children & AliChiid\n'):
for ac=1:length{AlliCchild)

Children{find{Children==A11Child(ac)})=[(];

end
allchiid;
Allchild(length{(AllChild)+1:length(Al1Child} +lengthi{C
hildren})=Children;
Bpause (0.1}

end

PR;

% eliminating the Parent from the AllChild
if {length(alichild)~=0)
A1lChild(find{Al1Child==PR}}=[];
end
AllChild;
pause{0.1)
% end of cne set of Parent and determining the new Parent
if {pr==length{Parent))
Parent=Al1Child;



fprintf{'End of pr. New set of Parent

%disp (Parent) ;
Sfprintf('\n'};

Fpause(3)
Allchilg=[1};
end
exParent;
Parent;
connectlon;
Children={];
it {lengthi{connection)==0)}
nr;
1f (pr==length(Parent))
Parent=[1;
end
break
end
end
end
and
end
Core
ip_Core
Non_core
pause(l)
nodes;
nodesparent;
JOIN_REQ
nodes=[1;
nodegparent=[];
Children=][];
P E e T C P P P
% core sends out TREE_CREATE
oo omommmsssssmsmesee— oo
forintf{'+++++++ TREE_CREATE procedure ++++++++\n'};
NAaKnode=[];
exParent=1{};
Alichild={];
Parent-Core;
Core=Parent
pause (1}
nodes=Parent;
nodesparent=90;
while (length{Parent)-=0} % when we still have a Parent
for pr=1:length{Parent}
Parernt;
dnow = Parent(pr};
PR=jnoOwW;
Parent;
exParent;
pause(0.1)
if (find(exParent~==PR})
Parent;
br;
warn=1;
Parentipri=Ii:
pause{l)
break
end
Children=[};

connection{find (connection==PR})=[];

for

end
Chi
Chi
Chi

k=l:n % finding the Children
if {adjacency_matrix(inow, k)==0}

Children{k)=0; % it is not connected or itself

elseif (adjacency matrix{jnow,k)==1)
Children{k)=k;
if (find{exParent==Childreni{k}})
Children(k)=0;
end

enca

ldren;
ldren{find{Children==0))=[1];
ldren; % eliminate semicolon while observing

"y



exParent (length {exParent) +1) =PR;
$pause{0.1)

% when the Parent has no Children

{{length{Children)==0)}&ipr==langth{Parent) }}
Parent;
Parent=[1;
A11Child;
pause{(0.2)
if (length{’l1lChild)~=0)
Children;
AllChild{(find(AllChild==PR}}={[];
Al1Child;
Parent=A11Child;
pause (0.1}
else
Parent={(];
end

elseif (length(Children)-=0} % when there are children

while (length(Chiidren)-=0}
% distributing TREE_CREATE message to each node of the Children
if (length{Children) =0}
for ¢h = 1: length{Children)

plot_arrow(x (PR} ,y (PR}, x(Children{ch)},y(Childreni{ch)}), ...

'headwidth®,0.08, 'headheight',0.15, 'coler:, ...
{0 1 0], 'facecolox', [0 1 0)3;
TREE _CREATE=TREE_CREATE+1;
PR;
Chiidren;
fprintcf (' TREE _CREATE from node %g to node %$gi\n', PR,
Children(ch}};
if (find{nodes==Children{ch)})
plot_arrow(x(Children(ch}),y{Children(ch)}, ...
x(PR),v (PR}, *headwidth',0.08, 'headheight', ...
0.15, 'color’,[1 0 11, 'facecoler', [l O 11};
TREE_CREATE MNAK=TREE_CREATE_NAK+1;

fprincf (' TREE_CREATE_NAK from %g to %g\n',Childrentch),PR)

fprincf('A mesh link 1s created between node %g ',PR);
fprintf{'and node %g\n',Children(ch)};
NAKnode (length (NAKnode) +1) =PR;
else
fprintf{'A tree link is created between node %g ',DR);
fprintf('and node %g\n',Children(ch));
end
fprintf('"**********************************\n‘ )
nodes {length (nodes) +1)=Children{ch};
nodesparent {length (nodesgparent ) +1 ) =PR;
hold on
end
TREE_CREATE; & eliminate semicelon while observing
$pause (0.1)
end
exParent;
for ep=1:lengthi{exParent)
Children(find(Children==exParent(ep)))=i];

i

end
pause{0.1)
if (pr==1)

211Child=Children;
“else
for ac=l:length{AllChiid}
Children(find(Children==A11Child{ac}}}=1[1;
end
Allchild;

i

Allchild{length(AliChild)+1:length(AlIChild) +length(Children})=Child

rern;
end

PR;
% eliminarving the Parent from the Zllchild
if (length{Allchild)~=0)



A31l1Child(£ind{A11Child==PR}}=[];

end
BllChild;
Fpause (0.1)

% end of one set of Parent and determining the new Parent

if (pr==length{Parent)}
Parent=811Child;

AliChild=[1;
and
exParent;
Parent;
connection;
pause(0.1)
Children=1{1;

end

end

end
end
Core;
Non_core;
nodes;
nodesparent ;
JOIN_REQ;

TREE_CREATE;
TREE_CREATE NAK;

fprintf (' *** The Number of Messages exchanged in Group %g ***\n',repeat);

fprincf { 'JOIN_REQ = %g, TREE_CREATE = %g
fprintf (' TREE_CREATE _NAK = %g\n',6 TREE_ CREATE_NAK) ;

pause{l}
messages_ar;

messages ar=messages_ar+JOIN_REQ+TREE_CREATE+TREE CREATE_NAK

TIR{length (TJR) +1} =JOIN_REQ;
TTC (length{TTC) +1) =TREE_CREATE;

TTCH {length (TTCN) +1} =sTREE_CREATE_NAK;

JOIN_REQ=0;
TREE_CREATE=0;
TREE_CREATE_NAK=0;
connection=[1};
group=[];
pause (0.1}

end

', JOIN_REQ, TREE CREATE) ;

allMessages ar{length{allMessages_ar}+1)=messages_ar;

massages_ar=[];

raepeat_all=l:repeat;

TIR({1}=[];

TJIR;

TTC({L)=[1;

TTC;

TTCN(1l}=[];

PTON ;
tablileTotal=[repeat_all;TJR; TTC; TTCN] ;

e o g vl e
disp{'A table of Group, Number of JOIN REQ, TREE_CREATE & TREE_CREATE NAK'):
Iy inCf (e e

fprintf (" &g g
\n',tableTotal);

PN (e e

AmrouteReceivers
allMessages_ar



BMRTRYOUT starts the AMRIS algorithm
It is a short version for display purpose only
It needs AMRFIG.m in order to run properly

Author: A. Radyastuti

%
%
%
%
%
% vb. 5 19-Jan-04

format short

% n=zinput{'Enter n: '};

% x=100% (rand{n,l) -0.5);

% yv=100* (rand{n,1) -0.5};

[x,v]:

fprintf(’'=== Start algorithm: AMRIS ===\n‘};

amrfig % call amrfig.m the new_session figure

tablenode = [nodewith id;msm_id;itsParent2];

D L ( mm o o \n') ;s
disp('A table of node number, its msm_id, and ite parent'};

PL A [ m e o e \n'};
fprinti{® %g By Bg \n', tablenode) ;
B 4 A R D e L Aot g

NumberOfNEW_SESSION=NEW_SESSION;

fprincf{'The total number of NEW_SESSION message = %g\n', NumberOfNEW_SESSION) ;
fprintf{'\n'};

pause{l)

nodewith id;
nodewlth_id2-reverse({nodewith_id}:
nodewith id3=nodewith_id;
nodewith_id3(1l)=[];
nodewith_1id3;

msm_1id;

msm_id2=reverse (msm_id};

mam_1d3 =msm_id;

msm_1d3{1}=[];

msm_id;

itsParent2;
itsParent2Z=reverse(itsParent?) ;
itsParent3d=icsParent?;
icsParent3(1)=[];

itsParent3;

x;

¥Yi

JOIN_REQ=0;

JOIN_ACK=0;

axis;
for i=1:length(nodewith_1d2)-1
xn{i)=x(nodewith_1idz{i}));
xnp{i)=x{itsParent22{1)};
xnnp=[(xn{i),xnp(i)];
yr{i)=y{ncdewith_3id2(i});
ynp (i) =y (itsParent22(i});
yanp=Ilyn{i),ynp(i}];
plot_arrow(xn{i},yn{i),xnp(i) , ynp(i}. 'headwidth',0.08, 'headheight*,0.15, ...
'color', {0 1 0}, 'facecolor , [0 2 01);
JOIN_REQ=JOIN_REQ+1;
end
JOIN _REQ;
fprintf (' The total number of JOIN_REQ message = %g\n',JOIN_REQ);

pause (1}

for i=1:;length({nodewith_id3)
xn3 (i) =x(nodewith_id3(i}));
xnp3 (1) =x(ltsParent3(i}};
xnnp3={xn3 (i}, x0p3 (i) ];
vid (i}=y (nodewith _id3{i}};
ynpd{i)=y(itsParent3{i));
ymnp3=[yn3 (i} ,ynp3{i}];
plot_arrow(xnp3{i}),ynp3(i},xn3(1),yn3 (i), 'headwidth', (.08, 'headheight',0.15, ...
'colox', [0 0 O}, facecolor', [0 0 Q1);



JOIN_ ACK=JOIN_ACK+1;
end
JOIN_ACK;
fprincf( ' The total number of JOIN_ACK message = %g\n',JOIN_ACK);
if ({procedure==1)
allMessages=NEW _SESSION+JOIN_REQ+JOIN_ACK;
else
allMessages(length{allMessages)+1)=NEW_SESSION+JOIN_REQ+JOIN_ACK;
end
fprintf{'**~ The total number of all messages = %g ***\n',alllMessages)
fprintf{'\n');
numreceiver=length (nodewith id)-1;
fprintf{'Source: %g: number of recelvers= %g\n',sender,numreceiver);
fprinctf{'sn'};
fprintf{'=== End of algorithm: AMRIS ===\n'};
NEW_SESSION=0;
JOIN_REQ=0;
JOIN_ACK=0;
pause (1)



BRL is an addition procedure for BROKENLINKS2

thor: A. Radyvastuti
5 19-Jun-04

finalparent;
NTR=finalparent
potentparent=1[];
connectTOjoinregmany=0;
for lp=1:length{nodesparenc}
if (nodes{ip)==NTR}
potentparent {1p) =nadesparenc{1p};
else
potentparent {1p)=0;
end
end
poetentparent;
potentparent (find(potentparent==0))=[];
potentparent
pause(l)
if {length(potentparent)~=0}
fprinti (‘Node %g has potential parent ',NTR)
disp (potentparent) ;
for po=1:length{potentparent)
if {am{NTR, potentparent {po})==0)
fprintf (" Tt is not connected with node %g\n',potentparent{po)};
finalparent (po)=0;
alseif {am{NTR,pctentparent (po))==1)
fprintf (¢ It is connected with node %$g\n',6potentparent{po});
finzlparent (po) =potentparent (po) ;
end
end
finalparent;
finalparent (find(finalparent==0}}=[];
finalparent
pause (1)
Lf {lengthi{finaliparent)==0}
fprintf(* It has no access to another node\n'});

NTR

finalparent
L Ty T T Tt T T VO U —
% send JOIN_REQ to a potential parent
e

elself (length{finalparent)==1)

plot_arrow {x (NTR) ,y (NTR) ,x (finalparent),y{finalparent), ...
"linewidth*, 5, 'headwidth',0.08, 'headheight',0.15, ...
'color',[1 1 01, ‘facecolor',{1 1 0]};

fprintf{'-> Node %g sends a JOIN_REQ to node %g\n', NTR, finalparent);

fprintf{'In brl.m\n');

pause (1)

JOIN_REQ=JCOIN_REQ+1;

pause{(0.1)

thispart=0;

node_route{length(node_route)+1)=NTR

node route parent {lengthi{node route parentl+l}={inalparent

pause{l)

if {(find{node_tree==finalparent))
joinack % call joinack.m
while (length{node_route)~=0)
joinack % call joinack.m
end
elseif (sender==finalparent)
Joinack % call Joinack.m
while {(length{node_route)~=0)
joinack % call joinack.m
end
elseif {length(did_br)~=0)
if {find({did_br==finalparent))
if (find(node_tree==finalparent))
pause{1)



jolnack % call joinack.m
else

plot_arrow{x{finalparent)},y(finalparent},x (NTR},y{NTR), ...
‘linewidth', 2, 'headwidth',0.08, 'headheight',0.15, ...
‘color ', [C O 0], 'facecolor',{0 0 Ol};

JOIN NACK=JOIN_NACK+1;

fprintf (' -> Node $g replies with a JOIN_NACK', finalparent);

fprinti{'back to node %g\n', K NTR};

did_br{length{did br}+1}=NTR;

node_tree

node_tree_parent

pause (1)

end
elseif (find{node_to_recover==finalparent))

% call BRI
%=
brli % call prl.m
end
elseif (length{finalparent)»=2)
connectTOjolinregmany=1;
pause {1}
smallerid % call smallerid.m
end
end




% BR2
%

% Author: A. Radvastutil

% v6.5 21-Jun-04

fprintf('=== BR2 (Branch Reccnstruction 2} ===\n'};
did _br{length{did br}+1)=NTR;

ack_bra2=1{];
ack_br2 node=[1;
am = adjacency.matrix;

br2 neode = find{am(NTR, :)==1}
NTR_ld=msm_id_origin(find(nodewith_1id_origin==NTR)}
if {length{brz_node)~=0)
for brn=1:length{br2_ node)
broadcast = brZ_node{brn);
plot_arrow{x(NTR),y (NTR},x{broadcast) ,y(broadcast), ...

"linewidth', 3, 'headwidth',0.08, 'headheight',0.15, ...
‘coler', [0 1 11, 'facecolor', (0 1 11};:

fprintf('-> Node %g sends a JOIN_REQ to node %gi\n',NTR, broadcast);
JOIN_REQ=JOIN REQ+1;
pause(l}

end

for brnZ2=1:length{br2_node)
broadeast? = br2_node{brnz);
breoadecast2 id=msm_id_origin{find(nodewith id_origin==broadcast2)};:
if (broadcastZ==sender)

elself

else

plot_arrow(x(broadcast2),y(broadcast2), x (NTR),y (NTR), ...
'linewidth', 2, 'headwidth',0.08, 'headheight',0.15, ...
‘color', {1 0 1], 'facecoler',fl1 0 1});
JOTIN_ACK=JOIN_ACK~+1;
if {lengthiack _br2)==0}
ack_brz=1;
else
ack _br2{length({ack br2)+1)=ack _br2{length{ack br2))+1;
end
ack_br2_node{length{ack_br2_node)+1)=broadcast?;
{£ind{node_tree==broadcast2))
NTR;
NTR_id;
broadcast?;
broadcast2_id;
fprintf{‘msm_id node %g is %g; \n',NTR,NTR_id};
fprintf{'msm_id node %g is %g\n',broadcast?,broadcast?_id}:
pause (1)
if (NTPR_idrbroadcast2_id)
plot_arrow{x{broadcast2),y(broadcast2),x(NTR), v (NTR), ...
‘linewidth', 2, 'headwidth',0.08, 'headheight',0.15, ...
‘color', {1 0 1], 'facecolor', {1l 0 11);
JOIN_ACK=JQIN_ACK+1;
if {length{ack_br2)==0)

ack_bri=1;
else
ack_br2 {length{ack br2)+1Y=ack_br2{length(ack br2)}+1;
end
ack_br2_node{lengthl{ack_br2_node)+1)=broadcastl:;
else
nede tree;
nede_tree_parent;
fprintf('Nede %g cannot be a parent because it ',broadcast?};
fprintf(‘has a larger msm_id ');
fprintf ('than nede %g => JOIN_NACK\n',NTR);
pauge{l}
plot_arrow(x{broadcast2),y{broadcast2)},x (NTR},y (NTR}, ...
‘linewidth', 2, 'headwidth', 0.08, 'headheight',0.15, ...
‘celor', [0 O 0], 'facecclor', [0 O 01);
JOTN_NACK=JOIN_NACK+1;
fprintf (¢ -> Node %g replies with a JOIN_NACK ',broadcast2);
fprincf ('back to node %g\n',NTR}:
node tree
node_tree parent
end

node_trea;
node _tree_parent;



plot_arrowi{x{broadcast?) ,yibroadcast2), X (NTR}, y(NTR), ...
"linewidth', 2, 'headwidth',0.08, 'headheight',0.15, ...
‘color*, [0 © Q], ‘facecolor', [0 0O 0]1};

JOIN_NACK=JOIN_NACK+1;

fprintf (- ->» Node %¢g replies with a JOIN_NACK ', broadcast2);

fprintf('back te nede %g\n',NTR};

node_tree

node rfree parent

pause(l)
end

end
eise

fprintf{'There is no node arocund node %g\n',NTR);
end
ack_br2
NTR;
pause(l)

if (length{ack br2}~=0}
if (length{ack _br2)==1)
broadcast2=ack_br2 _node
elseif (lengthi{ack_br2)==2}
nodewith_id_origin
msm_id_origin
for abri=1:lengthiack_br2_node)
FFP=find(nodewith_id_crigin==ack br2 node{abr2}):;
id abr2{abr2)=msm_id_origin(FF);
end
ack briZ_ node
id_abr2
fprincf (‘=====\n');
[id_abr2, IND]=sort (id_abr2)
ack br2 node([IND1};

ack _brZ_node=ack_br2_node { [IND])
broadcastZ=ack_br2_node(l)
id_abr2=[};
plot_arrow (x(NTR) ,y(NTR} , x{broadcast?), y({broadcast2), ...
‘linewidth', 2, 'headwidth',0.08, '‘headheight',0.15,...
‘coler', [0 1 0}, 'facecolor'.[0 1 01);
JOIN_CONF=JOIN_CONF+1
pause (2)
end
node_treea{length{ncde tree)+1}=NTR
node_tree_parent (length{node_tree_parent)+1)=broadcast?
pause (1}
if (length(broken_node)~=0)
if (find{broken node==NTR))
broken_node
NTR
broken_child
pause (1)
while {find{broken node==NTR})
bn=£find (broken_node==NTR) ;
1bnzlength (node_tree) +length(bn);
node_tree parenti{length{node_tree_parent)+1:1bn)=NTR
node_tree (length(node_tree)+1:1bn)=broken_child(bn)
pause{l)
for Ibbn=1i:length (bn)
In=broken_child(bn(lbbn));
plot_arrow(x(NTR),y{NTR),x{1ln),v{in}, ...
‘linewidth', 3, ‘headwidth', (.08, ...
‘headheight',0.15, '‘color, ...
""" {1 0 11, ‘facecolor', {1 0 11);
end
broken_child(bn)=1}
broken_node ({ind (broken_node==NTR) ) =]
pause(l}
if (length{broken_node}==1})
if {(find(node_tree==broken_node))
NTHR=broken_node;
end
end
end
end



end




BROKENLINKS3 is vrying to recover the tree
if the tree becomes disconnected

%
%
%
% Author: A. Radyastuti

% v&.5 Last-Modified: 18-Jun-04
am=adiscency Mmatrix
Sid=sender

nodewith_id
node_broken=nodewith_ id;
node_broken{il}=[1;
ricde_broken;

msm_id
msm_broken=msm_3id;
mam_broken{1l)=17};
msm_proken;

itsParentz
itsPar_broken=itsParentl;
itsPar_broken(i)=[];
itsPar broken;
chack_sgign=0;
node_okay=1{1;

node_to recover={];

node left={l;
broken_parent=[1;
node_tree=[];
node_tree_parent={];
node_route={];
node_route_parent={};
msm_id_tree=[};
connectTOjoinregmnany=0;
broken_node={];
broken_child=[]};

did _br=[};

JOTN_REQ=0;

JOIN_ACK=0;

JOIN_NACK=0;

JOIN_CONF=0;

TreelLink=0;
connectTOjolinregmany=0;
bhribr2=0;

skip_step=0;

beacon=0;

adjacency_matrix;
for beacl=1:n
for beac2=1:n
if (adjacency _matrix(beacl,beac2}==1)
plot_arrow(x{beacl),y{beacl), x(beac2),yvibeac?), 'headwidth',0.08, . ..
'headheight',0.08, ‘color*, [0 © 11, 'facecclor', [0 O 11):

hold on
beacon=beacon+1;
end
end

end
beacon;
fprintf{ The number of BEACON messages: %g\n', beacon);
pause(l)
go==mm—ossooomnnss
% check if Parent and Children are still connected
RosoososSraoooEoooCoommome

for ju=1:length(node_bhroken)
for jun=l:n
if (am{node_brecken{ju},jun)==0)
June {jun)=0;
else
june {jun}=jun;
end
end
june;
if {find{june==itsPar_broken{ju)})



end
pausg
if |

else

end
fpri
if
else
end
node

node
node

fprintf(*Chiid %g is still connected ' ,node_broken{jull;
fporintf('with Parent %g\n', itsPar_broken(ju));
ipb=itsPar_broken{ju);
nb=node_broken(ju) ;
plot_arrow{x(ipb},y{ipk).xinb}), vin
'headheight',0.15, 'color, {1 O
hold on
Treelink=TreeLink+1;
if {lengthinode_okay)}==0)
if (ipb-=sender}
node_tree{lengthinode tree)+l)=nb;
node_tree_parent (length(ncde_tree_parent)+1)=1pb;
else
hroken nedea{langthi{broken node)+1}=1ipbh;
broken _child{length(broken_child)+1)=nb;
end
elseif (length(node_okay}>=1)
if (find{node_trea==inpb)}
node_tree(length({ncde tree}+1)=nb;
node_tree_parent (length{node_tree_parent)+1)=1ipb;
elseif (ipbs=sender)
node_tree{length{ncde _tree)+1l)=nb;
node_tree_parent (length{node_tree_parent)+1)=ipb;
else
broken_node (length(broken_node) +1)=iph;
broken_child{length{broken_child)+1}=nb;
end
end
node_okay {length (node_okay) +1) =nb;
elise
node_to_recover;
fprintf(Broken links between node %g '.node_broken(ju)}:
fprintf('and node %g\n', itsPar_broken{ju}):
check_sign=check _sign+l; % the sign that there is failure

'headwidth' ,0.08, ...

by,
13, ‘faceccolor:,[1 0 11);

node_to_recover (length (node_to_recover) +1)=node_broken(ju) ;

broken_parent (length (broken parent)+1ll=itsPar broken{ju):
and

a{0.1)
find{node_tree_parent==sender})
fprintf{'sid is a part of the tree\n'};

forintf('8id is not connected with any of its children\n');
newtopo=1;

transiossl=numreceiver;

pause (1)

ntf{'Based on the previous tree: \n');
check_sign>0)

fprintf{‘There are %g link failures\n’,check_sign):
it {check_sign==0)

fprintf{'The tree needs NO reconfigurationin');

_Ltree
. tree parent
_Lto_recover % Nodes with broken links

broken_node

brok
paus
node
node
node
for

end
node
paus

en_child

efl}

_okay;

_okay (length (node_ockay) +1)=nodewitch_id (1}

with id origin

jk=1:length(nodewlith_id_origin)

if (find(nodewith_ id==nodewith_id_origini{ik})}
node_left;

else
node_left(length{node_left)+l)=nodewith_id_origin(jk);

end

_left
e{0.1)



for jkl=1:lengthi{node_left}
node_to_recover;
node_left(jkl);
if (find{node_to_recover==node_left (ikl}))
node_left(3kl)=0;
elge
node left{ikl)=node_left{jkl);
end
end
node_ left;
node_left{find{node_left==0))=1{1;
if {length{node_left)~=0)
tcl=length{node_vto_recover)+length(node_left);
nede to recover {lengthinode_to_recover)+l:tcl)=node_left
broken_parent (length{broken_parent)+1l:tcl)=0
and

% BR1 (Branch Reconstruction 1)

node_to_recover
broken_parent
nodes;
nodesparent;
pause {0.1)
for nte=1l:length{node_to_recover)
node to_recover
broken_parent
NTR-node to recover (nto)
fprintf{'*** New beginning. NTR = %g\n', NTR);
if (skip_step==1)
skip_step=0;
end
pause (0.2}
BP=broken_parent{ntc)
if (length(node_tree)~=0}
if (find{node_tree==NTH})
fprintf{ 'Node %g has been recoveredin',KNTR);
pause (1)
if {ntec==length(node_to_recover)})
break
alse
skip_step=1;
pause{0.1)

end
end
end
1f {skip_step==0)
potentparent=[];

for npr=1:length(nodesparent)
if (neodes (npr)==NTR)
potentparent (npr) =nodesparent (npr) ;
else
potentparent{npr)=0;
end
end
potentparent;
potentparent {find(potentparent==0)}=[1];
potentparent{find{potentparent==RP))=[];
potentparent;
if {length({potentparent)~=0)}
for ptp=1:length(potentparent)
1f {find{broken_child==potentparent (ptp))}
fprintf{'petentparent in broken child\n'):;
potentparent (ptp) =0;
end
end
end
potentparent (find(potentparent==0))=[];
1f {(length{potentparent)~=0)
fprintf({'Node %g has another potential parent ', NTR)
disp(potentparent);
for po=1l:length{potentparent)
if (am{NTR,potentparent{po)}==0)
forincf {' It is not connected with node




$g\n' ,potentparent {(po));
finalparent {po}=0;

elseif (am(NTR,potentparent(po))==1}

end
end

fprintf(* It is connected with node
gi\n’ ,potentparent{pol);
finalparent (po) =potentparent (po};

finalparent;
finalparent (find(finalparent==0))=1[];
finaliparent

pause (1)

if {length(finalparent)}==0}
fprintf{' It has to £ind access to any other node\n');

fprintf('Call br2 in brokenlinks3sn'};

pause{0.1)
brZz % call brZ2.m
R T T T T b T T Ty e
% send JOIN _REQ to a potential parent
R CEEE E E C T o m T s o oo ommm
elself (length(finalparent}==1)
plot_arrow (x {NTR), v (NTR},x{finalparent),vy(finalparent), ...
'linewidth', 5, 'headwidth',0.08, ‘headheight ', .15, ...
‘color', [1 1 0], facecolor', {1 1 01};:
fprinti{ ' -> Node %g sends a JOIN_REQ to node %g\n', NTR, finalparent);
JOIN_REQ=JOIN_REQ+1;
pause (0.1)
thispart=0;
ST T EE o T mmmmmm e oo ooomommosommmeme
% Parent sends JOIN_ACK o a new Child
oo ETETo oo m e e oonmooooommmee
if (find(node_tree==Tinalparent))
joinack % call joinack.m
elself {sender==finalparent)
joinack % call joinack.m
elseif {lengtch(did_br)-~=0)
if (find{did_br==finalparent)})
if (find{node_tree==finalparent))
fprintf{‘Did br but on the tree\n'};
jolnack % call joinack.m
else
plot_arrow({x{finalparent),v{finalparent}, ...
X(NTR) , v {NTR} , 'linewidth',2, ...
'headwidith',0.08, 'headheight’,0.15, ...
‘color' {0 0 0}, 'facecolor', [0 O 01}
JOIN_NACK=JOIN_NACK+1;
fprintf -> Node %g replies with a JOIN_NACK',finalparent);
fprintf | 'back to node %g\n',NTR):
did _bri{iength(did_br)+1)=NTR;
nede tree
node_tree parent
pause (0.1}
end
end
else
O T L L e
% call BRI
Jommooosmmmmesme s oo oo ommmen
node_ route(lengthinade_route}+1)=NTR
node_route_parent (length{node_route parent)+1l)=Ffinalparent
fprintf ('BRL in brokenlinks3.m\n');
pause(0,1)
brl % call brl.m
and
elseif (lengthi{finalparent)>=2}
connectTOjoinregmany=1;
fprintf{'We need smallerid in brokenlinksi.m\n');
pause{0.1}
smallerid % call smallerid.m
end

elseif (length(potentparent)==0)

fprintf

{'NO potentparent AT ALL. br2 in brokenliks3.m\n‘);




pause (0.1)
br2 % call brZ.m
end
elseif (skip_step==1)
pause (0.1}
end
end
node_tree_parent
node_tree
for msid=1:length({node_tree)
msm_id_tree(msid)=msm_id_origin(find{nodewith_id_origin==node_tree{msid))};
end
msm_id_tree
pause{l)

if (length(node_tree)~=0)
if (lengthinode_tree)<numrecelver)
translossZ=numreceiver-lengthi{node_tree);
fprintf{'After reconflguration attempt, 8id can '};
fprintf{ 'multicast data to nodesi\n'};
Aiap{node_treg;;
fprintf{'==> There 1s %g transmission loss',6 transloss2);
fprintfi'in');
elseif {length(node_tree)==numreceiver)
translioss2=0;
fprintf{'==> There is no transmission loss\n');
end
pause{l}
end
if {newtopo==1)
fprintf ('No connection for 3id -» transloss? = %gin', transloss2);

[23uted

transLoss (length{translboss)+1l} =transloss2;

JOIN REQ;

JOIN_ACK;

JOIN_NACK:;

JOIN_CONF;

TreeLink;

fprintf{ Number of esach message:\n'};

fprintf{'JOIN_REQ=%qg; JOIN_ACK=%g; JOIN_NACK=%g',K JOIN_REQ,JOTN_ACK,JOIN NACK):
fprintf ('JOIN_CONF=%y; Treelink=%g; beacon=%g\n',JOIN_CONF,TreeLink, beacon);
aliMessages2~JO0IN_REQ+JOIN ACK+JOIN NACK+Trealink+beacon;

allMessages (length{allMessages)+1)=allMessages2;

fprincf{'Total number of messages = %gi\n\n',allMessagesi);

pauvse (1)

JOIN_REQ=0;JOIN_ACK=0;JOIN_NACK=0; TreelLink=0;beacon=0;

nodewith_id=[];

nodewith id=node tree:

nodewlth _id{2:length (nodewith_1d)+1)=nodewith_id;
nodewith_id{1}=8id;

nodewith_id;

wmem_id=[1;

msm_id=msm_id_tree;
mam_1d{2:length(msm_id)+1}=msm_1id;
msm_1d{l)=1;

mam_id;

itgParent2=[1};

itsParenti=node_tree_parent;

ivsParent2 (2:1length{itsParent2)+1)=itsParent?;
itsParent2 (1}=0;

. itsParent2;

tablenode = [nodewith id;msm_id;itsParent2};

it (e A\t
disp('2 table of node number, its msm_id, and its parent'};

TPEIMEE (1 o s e e e e An')
fprintf (! %g %g &g \n', tablenode} ;
fprinef( - mmrr e \n'};

nede_broken=[1;
msm_broken=[];
itsPar_broken=[];
pause{l)




CONNECT determines connection

Author: A. Radyastuti
6.5 Last-Medified: 21-Jun-04

dd 0P df 00 o o

if (NODE_NUMBER>n)
locping=0;
else
NN=NODE_NUMBER;
atoz=NN;
connection=zeros(l,n);
connection (MN) =NN;
while {lengthiatoz}~=0)}
NiN=atoz (1)
for cn=1l:n

if (find{adjm(NN,cn)=<
if {find{connection==cn)}

atoz;
else

CONMECT includes all nodes that are connected
with the source (including the source itself)

atoz (length{atoz)+1)=cn;

connection{cn)=cn;

end
end
and
atoz(1}=[1;
end
ernd
CONNaction;

connection(find{connecticon==0))={1;

connection




% GENERATEIDNEW generates own msm-id
% Tt is a short version to run
% with AMRFIG.m and AMRTRYQOUT.m
%

% Ruthor: A. Radyastuti
% v6.5 27-Jan-04

if {PR==sender)
msn_sender=1;
nodewith_id-PR;
msm_id=msm_sender;
itsParent2=0;

elgeif (PR~=zsender)
delta=round{l0*rand{1i}};
while (delta<=1}

delta=round{10%rand(1}):

end
for np=1:lengch{nodesparent)
if (nodes (np})==PR)
potparent (np)=nodesparent (np;) ;
else
potparent {np) =0;
end
end
potparent;

PotentialParent=potparent;
PotentialParent {find{PotentialParent==0})=(];
node=PR;
PotentialParent;
1f {length{PotentialParent)}==1)}
usemsm_id=msm_id({nodewith_id==PotentiaiParent);
itsParent=PotentlialParent;
alseif (length{PotentvialParent)>1}
$fprintf ('==There are mere than 1 potential parent==\n')
tist_node=nodewith_id;
list_id=msm_id;
length(list_node);
itsParent=PotentialParent;
for ls=l:length{list_node)
if (find(itsParent==1list_node(ls}})
list_node({ls)=list_necde{ls);
list_id{is)=1ligt_id(is);
aelse
list_node(ls}=0;
list_1d{ls)=0;
end
end
List_node;
list node{find{list_node==0))={];
list node;
list_id;
lisc_id{find(list_id==0})=[];
list_id;
usensm_id=min{list_iad);
itsParent=list_node(list_id==min{iist_id));
if {length{itsParent)>1)
icsParent=itsParent (1) ;
usemsm_id=list_ id{l};

end
end
nodewith_id{length (nodewith_id)+1)=PR;
delta;
msm_id{length(msm_id) +1) =usemsm_id+delta;
itsParent;

itsParentl (length{itsParent2)+1)=itsParent;
pause (. 1)

end

potparent=[1];

PotentialParent={];

list_ncode=[};

list_id=[1;

ltsParent=[];




JOINACK 1s a program to plot the JOIN_ACK
messages in the graph

Author: A. Radyastuti
vE.5 Last-Modified: 1%-Jun-04

o2 df o0 of of

fprintf (*JOINACK startsi\n')

bingung=0;

if {lengthi{node_route)~=0)

while {length{node_route}~=0)
nede route parernt;
node_route _parent=reverse (node_route_parent)
node_route;
node_route=reverse {nocde_route)
finalparent=node_route_parent (1} ;
NTR=node_rocute(l};
pause (1)
plot_arrow(x({finalparent),v{finalparent),x(NTR},v (NTR), ...
‘linewidth', 3, 'headwidth',0.08, 'headheight',0.15, ...

‘colar', [1 0 1], “facecolar:, {1 0 1));
JOIN_ACK=JOIN_ACK+1;
fprintf (¢ -» Node %g replies with a JOIN_ACK
', finalparent) ;

fprintf{'back to node %g\n',NTR);
node_tree{lengthi{node tree)+1}=NTR
node_tree_parent {lengthi{node tree parent}+1l)=£finalparent
if {lengthi(ncde_route) =0}
node_route_parent(l)=[];
node_route(li=[1;
pausa {1}
end
node_route_parent
node_route
pause (3)
if (lengthi{brcken node}~=0)
1f (find(broken_node==NTR))
while (find{broken_node==NTR))
bn=£ind(broken ncde==NTR}
lbn=length{node_tree}+length(bn):;

node_tree parent{length(node_ tree_parentc)+1:1lbn}=NTR
node_treel{length{node_tree)+1:1lbn)=broken child({bn)

broken_child{bn}=1[]
broken_node{find{broken_node==NTR)}={]
pause (1)

if {length(broken_node}==1;

if {find{node_ tree==broken_node))

NTR=broken_node;
and
elself (length{broken_node>=2})
NTR=broken_node (1)

pausea (5)
end
end
end
end
finalparent={];
NTR=[]:
if {length{node_route)==0)
bingung=1;
paugse (0.5}
break
end

. end
end
if (bingung==0}
plot_arrow(x(finalparent),v{finalparent), x (NTR), v (NFR), ...
'linewidth', 3, 'headwidth',0.08, 'headheight',0.15,...
‘color', {1 0 17, 'facecolor', !l 0 1});
JOIN_ACK=J0OIN ACK+1;
fprintf ("’ -> Node %g replies with a JOIN _ACK ', finalparent);
forintf{ 'back to node %g\n',NTR}):
node_tree(length{node tree)+1)=NTR;
node_tree_parent (length{node _tree_parent)+1l)=Ffinalparent;
if {iength{broken_node)~=0)
if {find(broken_node==NTR})



end
end
finalparent=[];
NTR={] ;

while

and

{find (broken_node==NTR) }
bn=find(broken_node==NTR)
lbn=length (node tree) +lengthi{bnl;
node_tree_parent (length{node rree_ parent)+1:1bn)=NTR
node treea{lengthincde _tree}+1:1bn)=broken_child(bn)
broken_childi{lbn)i=1{]
broken_node{find{broken_node==NTR) ) =[]
pause (1}
if (length{broken node)==1)
if (find{node_tree==broken_node))
NTR=broken ncde;
end
elself (length(broken node>=2))
NTR=broken_node (1)
pause (2}
end

if {lengthinode_route)-~=0)
nede_route_parent {i)=[];
node_route{l)=[1};

end
end
bingung=0;
finalparent=[1;



% JOINREQMANY 1s to support smallerid
%

% Author: A. Radvastutil

% v6.5 19-Jun-04

fprintf {(* JOINREQMANY startsin');
finalparent2
pause{l}
for jrg=1:length{finalparent2)
finalparent=finalparent2 {jrqg);
plot_arrow{x{NTR),y{NTR),x{finalparent),y{finalparent), ...
'linewidrh', 5, 'headwidth',0.08, 'headheight' , 0,15, ...,

‘coler', {1 1 0], 'facecoler',fl 1 0]);
fprintf{'-» Node %g sendg a JOTMN_REQ to node %gin',NTR, finalparent);
pause (1)
JOIN_REQ=JOIN_REQ+1;
pause (0.1)
thispart=0;

if (connectTOjoinregmany==1)
node_route (length(node _route)+1) =NTR
node_roure parent (lengcth{ncde route parent)+l)=finalparent
pause (1}
connectTO0jolinregmany=0;

if (find{node_tree==finaliparent))
joinack % call joinack.m
pause{l)
break
elgseif (sender==zfinalparent}
joinack % call joinack.m
pause(l}
break
elseif (length(did_br)-=0}
if (find{did_br==finalparent)}
if {findi{node_rree==finalparent)}
joinack % call joinack.m
else
plot_arrow(x{(finalparent),y{(finalparent), x(NTR),v (NTR), ...
‘linewidth', 2, 'headwidth',0.08, ‘headheight',0.15,...
‘color', [0 O 01, "facecolor', [0 O 0]});
JOIN NACK=JOIN NACK+1;
fprintf (' ~> Node %g replies with a JOIN _NACK',
finalparent) ;
fprintf{ 'back to node %g\n', NTR);
did_br{length{did_br)+1)=NTR;
pause (1)
node_route={l;
node_route_parent.=[1;
node_tree
node_Lree_parent
pausea{l)
end
end
end
and
finalparent=]|

i
finaiparentl2=[1;



METRICSBREAKS
Each network topelogy is measured to find:
the number of arcs per node
the radius of the network
It needs NUMARC.m and NETRADIUS.m in order
Lo run properly

author: A. Radvastuti
v6.5 Last-Modified: 07-Jan-04
v7.0 lLast-Modified: 29-Jun-04

o0 of of b &P dP GF of b o

.

format short
n = input ('Enter a number of nodes in the network: '};
prod=input { *How many nectwork topologies? ') ;

area=input {'Enter the start length of the network area {(in meter):
area_max=input{'Enter the maximum length of the network area (in meter):

trans_ range=input{'Enter the transmission range (in meter): '};

move_max=input {( 'Enter the maximum distance a node can move {(in meter):

¥==——==s==-==S===s==SS=-s==s-======
% random topology generator

Qe i e e

x = area*{rand(n,l} -0.5) % generate x-coordinate of random points
v = area*{rand{n,l) -0.5} % generate y-coordinate of random points
[x,¥]: % uncomment to see the random coocrdinates
%::::::r:r:::::::::::::::::::::::::::::::::"_’:“_'“z:::

% initialization

%::::::E:I:::::Z:Z:ZE:I:EZ:3:5:::::::::::::::;::::

procedure = 1;

start=1;

arcnumber=([]; % initialize arc metric

radtop=[]; % initialize radlius metric

newtopo=0;
allMessages_o=1{];
allMessages_ar=[];

while (procedure<=prcd} % repeating topology

figure

for 1 = 1:n
plotix{i),y (i}, 'or', '‘MarkerEdgeColor','k', ...

‘MarkerFaceColor’, 'r', 'MarkerSize', 15);

str = numZstr(i};
cext{(x{1}-1},v (1), stx};
xlabel ('x-coordinate'};
yviabel{'y-coordinate');
ti = procedure;

title({ 'Random Peoints in Topology ',num2str{ti)]);

$legend( 'Moblle Nodes');
axis equal;

hold on
end
grid on
hold on
s mmmss s s oSS SSSEmETSmMmmm o oommoa
% connect nodes within range
P L L L T T e e S L T
faor §=1:n
- v=x{3);
w=y (3);

for k={j+i):n
d{d.ky=sgrt((x{k)-v) "2+ (y (k) -w) "2} ;
dik,ji=da(j, ki;
if {d(j.k}<=trans_range}
line([v x{kx)}, {w y(k) 1}
adjacency_matrix{j,k)=1;

adjacency matrix(k,i)=adjacency_matrix{3i.k);

else
adjacency_matrix{j,k}=0;

adjacency matrix{k, j}=adjacency_matrix{j,k};

end



and

end
hold on
d;

adjacency matrix;
a = adjacency_matrix;

fprintf{'\n');

pause (0.5)

numarc % call numarc.m

arcnumber (length (arcnumber) +1) =avgliine;

if (start==1})

sender=input {'Enter source node: ');
fprincf("\n');

else

sender=sender;
fprintf{'Source: %g\n',sender);

end
pause (0.5)

nectradius

% call netradius.m

radtop(length(radtop)+1)=r;

if (procedure==1)

$uzmcmmommmme

% run AMRIS

frmmmmmmmmmm

amrtryout

if (procedure==1)
fprintf {'Procedure=1\n'};
cransLoss=0;
nodewith_1id _origin=nodewith_id
msm_id_origin=msm_id
itsParent2_origin=itsParent?2

end

pause (2)

Yrmmoommoomoz

fprintf ("### Preparing for ODMRP...\n'};
pause{0.5)

odmrptry % call odmrptry.m
fprintf (' ### Fnd of ODMRP ###\n'});
pause(3)

if

end
if

end

(procedure~=1})

num_receiver_o=length (receiver_o)
cransLoss_o=0
pause (2}

{newtopo==1}

transLoss_co(length{transbess o) +1)=0
num_receiver o=zlength{receiver_e)
pause {2}

receliver_o=[1;

fprintf{'### Preparing for AMRoute...\n'):;
pausa{0.5)

amroutetry % call amroutetry.m
fprintf{ ' ### End of AMRoute ###\n');

if {procedure==1)

and
if

translLoss ar=0
pause {2)

(newtopo==1}

num_receiver_ar=length(AmrouteReceivers)
transLoss_ar{length({transLoss_ar)+1)=0



pause(2)
end
mrouteReceivers=1{];

elseif (procedurer=2) % topology changes
hold on
if (newtopo==1)
newtopo=0;

end
for i = 1l:n
plot{x{i},y (i), 'or’, 'MarkerBdgeColor', 'k', ...
‘MarkerFaceColor', 'r', 'MarkerSize’, 15} ;
str = num2str{il;
text ((x{(i}-1},y(i},str);
xlabel {'x-coordinate'};
yiabel ('v-coordinate ) ;
ti = procedure;
title{['Random Points in Topology ', num2scr(tilld;
%legend{ Mobile Nodes');
axis equal;
hold on
end
grid on
holid on
hoid on

sen=sender;

plot({x{sen) . y{sen), ‘o', 'MarkerEdgeColor', 'k', ...
‘MarkerFaceColor', 'g', 'MarkerSize’,15);

str=pum2str (sen) ;

text ({x{sen})-1),yi(sen},scr);

hold on

for j=1l:n
v=x{d);
w=y (J) ;

for k={j+l):n
alj, ki=sgrev{{x(k)-v) 2+(y({k})~w)"2);
dik,jr=d{d,k};
if {d(j,k)<=trans_range}
line(f{v x{k)], [w v(k} ]}
adjacency_matrix(j, k)=1;
adjacency matrix{k, j)=adjacency_matrix(j, k};
else
adjacency matrix (j,k)=0;
adjacency.matrix{k, j)=adjacency_matrix(j,k);
end
end
end
hold on

brokenlinks3 % call brokenlinks.m

fprintf {'##¥ Preparing for ODMRP., . \n'};

pause{0.5)

odmrptry % call odmrptry.m

fprintf{'##% End of ODMRP ###\n'):

num_ receiver o

if {lengthi{receiver_o)<num_receiver o)
transLoss_of{length{transLoss_o}+1}=num receiver_ o-length{receiver_o}

alse

transLoss_o{length{transLoss_o)+1)=0
end
pause (2}
receiver_o=[];

fprintf{'##%# Preparing for AMRoute...\n'};
pause(0.5)

amroutetry % call amrcutetry.m

fprintf {*### End of AMRoute ###\n'};
AmrouteReceivers



num_recelver_ar
if (AmrouteRecelivers<num_recelver_ar}
transloss_ar{length{translLoss_ar)+1)=num_receiver_ar-
AmrouteReceivers

transLoss_ax (length{transLoss_ar)+1})=0

end

pause (2}

amrouteReceliverss[];
end

if (procedure~=prcd) % limit of iteration

fprintf {'CREATING TOPOLOGY %g\n',procedure+l};
fprintf{' -~ The nodes move randomly from their previous location --\n'};

newcolor=0;

deltax = move_max* (randin,1} -0.5);
deltay - move_max™* lrandi{n,l} -0.5);

area_max_half=area_max/2;
for delx=l:n

xn=x (delx)+delrax(delx);
while {(xnrarea_max half)

end
end
for dely=1i:n

yi=y {dely) +deltay {dely);
while ({xn»area_max_half)

end
end
x = x + deltax;
v o=y + deltay:
start=startc+1;
newcolor=0;

else

forinef{'\n'};

fprintf{'EBEnd of iteration\rin‘);

end
procedure=procedure+l;
X

Y

arcnumber

radtop
alliMessages
transhoss
alliMessages_o
Lransloss o
allMessages_ar
cransLoss_ar

i1 =arcnumber ;
Mi=radtop;
Vi=allMessages;
V2-transloss;
VizallMessages_o;
Vd=transLoss_o;
Vi=allMessages_ar;
Vée=transLoss_ar;
-topoNUM=1:length (arcnumber) ;

|

{(xn<-{area_max_half}))
deltax{delx}=move_max* {rand(l,i) -0.5);
xn=x(delx)+deltax{delix};

{xn<~{area_max_half}})
deltay{dely)=move_max*{rand(l,1) -0.3);
yn=y {delv}+deltay (dely);

tablencde final = [topoNUM;MI1;MZ;V1;V2;V3;V4;VS;VE]);

print e (e

disp (' Topology, NUMofARCS, topoRADIUS, V1, V2,

Iprin (s e
fprintf (‘1 %g %L 3£ %g &g &g
Fprint f{  ——m e ————————

figure
metldd % call metid.m
metricsresultnew % call metricsresultnew.m

\n', tablenode finalj;



NETRADIUS 1s a procedure of determining the radius
of & bounding clrcle around zll points

%
%
%
% Authorxr: A. Radvastuti
% v6.5 Sep-03

xd
vd
ymi min(yd} ; % find the smallest y-coordinate
ym ind{yd==yminj;

pl = xd(ym);

p2 = yd(ym};

il

i

‘

([ T
Hy [

P = [pl,p2]; % a point P with the smallest y-coordinate

xd{ym)=1{1];:

ydiymi={];

Cld={xd, ydi;

for qg=1:(n-1)
aqx=0kd{gg, 1)

qy=0ld{gqg, 2);
alg={aqx.qvl;
if (gx==pl)
degreel {gg)=90;
break
else
1f {aope<pl)

imnode={pl-1,p2];
aelseif (qgu»pl)
imnode={pl+l,p2];
end
veclg=imnode-P;
vaclZg=alg-P;

anglel {gg) = acos((({veclyg)*vecZq')/ (norm{veciq) *norm{vecq)));

degreel {ggl = anglel{qgq) *180/pi:
end
end
degreel;
degreeZ = min{degreel);
ndd = find(degreel==-degreelZ);
gl = old(mdd, 1} ;
gz = 0ld{mdd, 2} ;

Q = {qgl,qg2]; % a point Q@ such that the angle of the line
% segment PQ with the x axis is minimal

xd(mdd} = {];

yd{mdd} = {]:

0ld = [xd,yd];
degreeP=1inf;
degreeQ=int;
degreeR=inf;

% procedure below continues until we find triangle PQR with acute angles

% only
while {(degreer>90) | (degreeQ>90) | (degreeR>90}

P = [pl,p2];

0= [gl.g2];

T = [(P;Q}:

0ld=[xd, vd]:

for rp=1:(n-2) % check the remaining points
01d; % coordinate of remalning points
xd{rp)=018{rp,1);
yd{(rp)=01&{rp,2);
nodelast=[xd{rp) ,yvd{rp}l:
f=[pl gl xd{rp) pll;
g=[p2 g2 ydl(rp) p2l;
vecl = P-nodelast;
vec? = Q-nodelast;
normi{vecl);
normi{vec?) ;
angle{rp) = acos(({vecl)*vec2')/(norm{vecl) *norm{vec2)});
degrec{rpl=angle{rp} *180/pl;

end

degreeR = nin{degree}; % find a minimum angle (in degree)

md = find(degree==zdegreaR};
1f (degreeR<=90)
r1=01d(md, 1) ;
r2=03id{md,2);
R ={ri, z21;



RPQ1=R-P;
RPQ2=0-P;
norm{RPQ1L) ;
norm{RPQ2) ;
angleP = acos{ {{RPOL)*RPQ2 ')/ (norm{RPQL} *norm [RPO2Y ) ) ;
degreeP=angleP~180/pi;
POR1 = P-Q;
PORZ = R-Q;
norm(PORL) ;
noerm(PERZ) ;
angle = acos{{(PQR1)*PQRZ")/{norm(PORL) *norm{PQR2))};
degreeQ=angleQ*180/pi;
if (degreeP=90)
xd{md)=[};
vdimd)=1};
xd(n-2})=pl;
yd(n-2}=pZ;
pi = ri; % replace P by R
pZ = ra;
P = [pl,p2];
T = [P;0]r
0ld= [xd, yd];
elseif {(degree(>90)
xd{md}=[];
ydimd)=[1;
xd{n-2)=gl;
yd(n-2)=qg2;
gl = ri; % replace Q by R
q2 = ri;
0 = [gil.q2]:
T = [P;Q];
01ld=[xd, vydl;
end

else % a circle is determined by maximum distance BQ

x_centre = 1/2*(pl+gl);

y.centre = 1/2%(p2+q2};

centre = [x_centre,y_centrel;

r o= 1/2%sqgri{{pl-gl) 2+{p2-q2)"2};

% in order not to display tco many figures

% start comment from this point while running with metricsbreakd . m

figure

plot (xd, vd, 'or', ‘MarkerFdgeColor', 'k, ...
‘MarkerFaceColor', 'r', 'MarkerSize',12);

axizs equal;

grid;
hold on
£Z = {pl gll;

g2 = {p2 g2};

plot(f2,g2, '~ob‘, 'MarkerEdgeColor', 'k', ...
'MarkerFaceColor', 'r', 'MarkerSize’,12);

hold on

plot{x_centre,y centre, '*k'};

axis equal;

grid;

held on

% stop comment at thils peint while running with metricsbreak3.m

centre = [x_centre,y_centrel;
NOP = 100;

THETA = lingpace{0,2*pl,NOP};
RHO = onesg{l,NOP)*r;

X, ¥] = polZcart (THETA, RHO) ;
X = X + centre(l);

Y = Y + centre(2);

% in order not to display too many figures

% start comment from this point while running with metricsbreaki.m
plet (¥, ¥, '-.m'}; % draw a bounding circle

axis equal;

grid;

i on o L A A\t
forintf { 'QUTPUT\n1' ) ;

fprintf{ - \n'};
fprintf{'Maximum distance is between the following nedes:\n');




end

fprintf (*P(%.4£,%.4£) and Q(%.4£,.%.48 )\’ . pl.p2,ql,q2);

fprintf{'*** Radius of this nezwork topology is %.4f ***\n', r};
T AT E [ o o e e e e e e e
% stop comment at this point while running with metricsbreak3.m

break
end

% exitc the loop

% a circle is determined through the three points P, ¢, and R
{degreeP<=90} & {degreeQ<=90) & {degreeR«<=90)

if

end

A = gl
[=¥]
= rl
= r2

pi;
DZ;
pi;
p2;

= A% (pl + gl) + B*{(p2 + g2};

13

centre
centre
= gsgro{{pl - x_centre)"2 + {pZ - y_centre)"2};

2.0%(A*(rZ -~ g2) - B*(rl - gl)}:

= (D¥E - B*F) / G
= (A¥F - C*B) / G;

B
C
D
E
F = C*ipl + rl} + D¥(p2 + r2};
G
X_
Y
T

% in order not to display too many figures
% start comment from this point while running with metricsbreak3.m

Eigure

fl=[pl gl rl pll;
gl=[p2 g2 r2 p2i;
plot{fl,gl, -or', MarkerEdgeColor', 'k', ...

‘MarkerFaceColor®, 'r', ‘MarkerSize',12);

axis egual;

grid;
hold o

1

% stop comment at this point while running with metricsbreak3.m

centre
NOP =
THETA
RHO =
[X,v]
X=X
Y =Y

[x_centre,y_centre};

100;

linspace !0, 2*ni,NOP) ;

ones (1,NOP)} *r;

+
+

pol2cart (THETA, RHO) ;
centre(l);
centre(2);

% in order not to display tco many details and tables
% start comment from this point while running with metricsbreakd.m
ploti{x,y, 'or', 'MarkerkEdgeColor', *k', ...

'MarkerFaceColoxr', 'r', '‘MarkerSize', 12}

axis ecqual;

grid;

hold on
plot (x_centre,y_centre, ' *k');
hold on

plot (X,Y, '-.m'};

% draw a bounding circle

axis equal;

grid;

e b B Sl R e etaiait
fprintf {'OUTPUT\n');

b o o o o G e et e
fprintf{'B{%.4f,%.4f) and the degree at P = %.3f\n',pi,p2,degreel};

fprintf{ Q(%.4f,%.

4f) and the degree at O = %.3f\n',ql,qg2,degreeQ) ;

forintf{'R(%.4£,%.4f) and the degree at R = %.3f\n',rl,r2,degreeR};
% atop comment at this point while running with metricsbreakd . m

fprintf (' *** Radius of this network topology is %.4f *=*\n',r);
E ko L



% NUMARC is a procedure of determining the
% average number of arcs per node

%

% Author: A. Radyastuti

% v6.5 Sep-03

for 7 = 1:n

a = find{d(d,:}>0 & dA(3, :y<=vrans_range);

b{i} = numel(a}:
end
node = [l:n];
b;
table = {node;b];
P AT (' mmmmmm e \nt
disp{'A table of node numbers and number of lines'};
fprintf (' 5g Ee) \n', table);
P AnEE ( — o e AT ') ;

mi = min(b};
ma = max(b);
numnodel = 0;
numnode = [];
for m = mi:ma
if (mi==0)
mmd = find(h==0);
numnoded = numel (mmd) ;

mi = mi+l;
clse
mm = find({hc=m);
nurmode {m) = numel (mm]) ;
end
end
if {numnode0>0)
numline = [0:ma];
numnode (2: (end+1)} = numnode;
numncde (1, 1) = numnode0;
numnode;
else
numline = fl:mal;
numnode ;
end

table? = [numline; numnodel];

% in order not to display the following table

% start comment from this point while running with metricsbreaki.m

T intf (fmm oo e At )
disp('A table of number of lines and number of nodes'};

ANt (o m s o o e \n';
fprintf (* %g %g \n', table2};
EprAnt \nt )

% stop comment at this point while running with metricshreak3.m

avgline = numline* (numnode') /n;
fprintf{'-> The average number of lines per node:

numtine = [};
numnode [}

il

%.4f\n\n',avgline} ;



ODMRPtry

Author: A. Radyastuti
v6.5 March-2004
v7.0 Last-Modified: 25-Jun-04

%
%
%
kS
%

% start comment from this point while running with metricsbreak3.m

format shortu

n = input({'Encer a number of nodes in the network: ');

x = 100*(rand{n,l1l) ~-0.5}); % generate x-coordinate of random points
y = 100%{rand{n, 1) -0.5); % generate y-coordinate of random points
{>,¥]; % uncomment to see the random coordinates

% stop comment at this point while running with metricsbreak3.m

allMessages_od=[];
recelver_o={};
ortu=[];

figure
for i = 1l:n
plot{x{i},v (i), 0", 'MarkerBdgeColor', 'k', ...
'MarkerFaceColor', ‘¢', 'MarkerSize’,15);
atr=num2str (i} ;
text ((x(1)-0.5),y(1i),stx);
ti = procedure;
xlabel ('x-coordinate');
vilabel ('yv-coordinate'};
title{{'ODMRP in Topology . numZstriti)l);
axis equal;
grid;
hold on
end
grid on
hold on
for i=1:n
v=x{J};
w=y {J};
for k={j+l):n
A, Ky =sgrt ({x(k)-v) "2+ (y (k) -w}"2);
dik,jr=d{j k):
if (d{3,k)<=trans_rangse)
line{[v x(k)],[w y(k)}}
adjacency_matrix{j, k)=1;
adjacency_matrix{k, j)=adjacency_matrix{j.k};
else
adjacency_matrix{j, k)=0;
adjacency _matrixi{k,j}=adjacency matrix{j, k);

end
end
end
hold on
a;

adjacency matrix;

a = adjacency_matrix;

~% sender-input ('Enter scurce node: '};

sen=sender;

plot{x{sen),yi{sen}, ‘o', 'MarkerEdgeColer', ‘'k', ...
‘MarkerFaceColor', 'g', 'MarkerS8ize',159);

str=numZstr {sen) ;

text ({x(sen) -1} ,y(sen),str);

hold on

ii=sender;
NODE_NUMEER=sendexr



adim=adjacency matrix;

connect
pause (1)

% call connect.m

connection_ original=connection;
% end of finding all connected nodes

sender:;

connection;

Parent=[];

if (sender<=n)
msm_sender=1;

and

msm_I=msm_sender;
nodes=sender ;
nodesparent=0;
Allmsm_i=msm_i;
Parent=sender;
fprintE{'\n');
exParent=[1};
A11Child={}:
JOIN_DATA=0;

warn=0;

while (length({Parent)~=0) % when we still have a Parent

for

pr=1:length(Parent)
Parent;
Jnow = Parent (pr);
PR=1now;

gfprintf (' *** New Parent = %g\n',PR):; % uncomment while observing

Parent;
exParent;
pause (.1}
if {findl{exParent==PR))
Parent;
pri
warn=1;
Parent{pri=[1;
pause (1}
break
end
Children={];
connecticn{find{connection==PR}1={1;
for k=1:n % finding the Children
if {adjacency matrix{jnow, k)==0}
Children{k}=0; % it is not connected or itself
elseif (adjacency_matrix(inow,k)==1)
Children(k)=k;

end
end
Children;
Children{find(Children==0})=1];
Children; % eliminate semicclon while observing
pr;
PR;
exParent {length{exParent)+1} =PR;
Sfprintf{'--———-- \nty;

pause (0.1}
% when tChe Parent has no Children

if ({length(Children)==0)&(pr==length{Parent}))

Parent=[1}];
spause(2)
Allchild;
if {((length{AliChild)-~=0}&(length(connection)~=0)}
AllChild(find(AllChild==PR)}=[];
A11cChild;
Parent=A11Child;
else
Parent=[};
end
elseif (length{Children)~=0) % when there are children
while {(length(Children)~=0}

% distributing JOIN_DATA message to each node of the Children



if (lengthi{Children}~=0)
for ch = 1: length(Chiidren)
xline={x{PR) x(Childrenich)}]':
yline={y{PR) y(Children{ch)}]';
plot_arrow{x{PR},y (PR}, x{(Children{ch)}), ...
y{Children{ch)). 'headwidth',0.08, ...
‘headheight,0.15, ‘color', {1 0 0}, 'facecolor®, [1 0 01};
JOIN_DATA=JOIN_DATA+1;
nodes {length (nodesg) +1) =Childrenich);
nodesparent {lengthi{nodesparent) +1) =PR;
hold on
and
hoid on
JOIN_DATA; % eliminate semicolon while obhserving
end
exParent;
fprintf{'eliminate exParent from Childrenin')
for ep=l:length(exParent)
Children(find{Children--exParentiep}))=[1;

end

if (pr==1)
Alichild=Children;

alse

fprintf("eliminate Children & AllChild\n'};
for ac=1:length{allChild}
Children{find(Children==A11Child(ac}))=[];

end
ALlChild;
AliChild(length{AllChild) +1:length{AllChild} +length{Children)
}=Chiildren;
arrd
PR;

% eliminating the Parent from the AllChild

if {length(AllChild)~=0}
AlIChild(find(ALlIChild==PR})=[];

end

AllChildg;

% end of one set of Parent and determining the new Parent
if (pr==length(Parent):
Parent=A11Child;

Allchiid=[];
end
exParent;
Parent;
connection;
Children=][];
1if {lengthi{connection)==0}
B
if (pr==length(Parent)}
Parent={};
and
break
and
end
and
end
end
nodes;
nodegparent;
JOIN _DATA;
pause (0.2}
e e LN CCoooCCoDTooDmoomas
% create JOIN_TABLE and select route
R e T T T T T TP PP P

con_mesh=connection_original

child mesh=[];

if (length{nodesparent)>1)

while {length(con_mesh)~=0)

co=nodes (1)
con_mesh (find{con_mesh==co))={1;
child mesh=co;
ortu=0



pause (0.1}

while (find{nodesparent==ca})
cf=find{nodesparent==co};

child=nodes(cf};
pause (0.1)
if {length{child)~=0}

for cho=1:lengthi{child)
if {length{child_mesh)~=0)
if (findi{child_mesh==zchild{cho}})
child{cho}=0;

end
end
end
child;

child{find{child==0})=11;

end
child;

for ched=1:length{child)
con_mesh({find{con_mesh==child{chod)})=[1;

end

add_child=lengthi{chiid)+length{child_mesh);

child _mesh{length{child_mesh)+1:add_child)=child;
ortu{length{ortu)+1:add_chiid)=co;
co=nodesparent { (cf(length{ct)}})+1);

can_mesh;

if {length{con_mesh}==0)

break
end
and
end
child_mash
ortu
pause (0.1}

tablenode = [child _mesh;ortu];

Fprintf ( m e m e e e e
disp('A table of ncde number and its previous hop');
Fprintf | e e —————_

fprincf{: Fg

fprintf{ ' -

NumberOfJOIN_DATA=JOIN _DATA;

elseif (lengthi{nodesparent)<=1)

JOIN__DATA=0;

NumberOQfJOIN, DATA-JOIN DATA;

fprintf{'The total number of JOIN_DATA message

fprintf{'\n'};

pause (1)

{length(child mesh)~-=0}
JOIN_REPLY=0;
child_re=child_mesh;
ortu_resortu;

BFghn', NumberCEJOTN DATA) ;

c_re=child_re(length{child_re});

adjacency matrix;

pause (0.1}

while {lengthichild re)-=0)
c_re;
if (c_re~=sen)

plot(x{c_re),yic_re}, 'o', MarkerEdgelolor', 'k', ...
‘MarkerFaceColor', 'v', ‘MarkerSize*,15);

str=num2str{c_re};

rext {({x{c_re)-1),v{c_re),str);

hoid on
elge

fprintf({'Already arrive at the Source\n');

pause(l)
break
end
for k=1:n

if {edjacency_matrix{c_re,k)==0)

neighbo (k)=0;



elseif (adjacency_matrix{c_re,k)==1}
neighbo (k) =k;
end
and
neighbo;
neighbe(find(neighbo==0))=[]:
neighbo;
prev_hop=ortu{find{child mesh==c_re));
if (length{neighbo}==0)
fprintf{ 'Node %g has no neighbo\n',c_re};
else
if {length(neighbo)~=0)}
for chr=1:length(neighbc)
xline=[x{c_re) x(neighbo{chr}}
yviine=[y(c_re) yineighboichr})
if (neighbo{chr)~=prev_hop)
plot_arrowi{x{c_re).v{c_re),x(neighbo(chr)),yineighboi{chr}}, ...
‘headwidth®,0.08, 'headheight’, 0.15, ‘celor', [0 1 O3,...
'facecolor', [0 1 01):
elseif (neighbo(chr)==prev_hop)
plot_arrowi{x{c_re),yl{c_re),x{nelghbo{chr)),yineighbo(chr)}, ...
‘linewidth', 3, ‘headwidth',0.08, 'headheight',0.15, ...
‘color:,[1 1 01, 'facecolor',[1 1 0}});

[
i
;

]
K

and
JOIN_REPLY=JOIN_REPLY+1;
hold on

end

hold on

JCOIN_REPLY;
receliver_ol(length{receiver_o) +1)=c_re;
pause{0.1)
end
end
c re_keep=c_re;
c_re=ortu_re(find(child_re==c_re_keep));
find_o=find{ortu_re==c_re};
child_re;
1f {length(find_o)>1}
c_re=child_re{find_o);
¢_re(find{c_re==c_re_keep)i=[1;
end
ortu re(find(child _re==c_re_keep))=
child re{find{child_re=-=c_re_keep))
if ({length{find o}==1} & (c_re~=0)
c_re=child_re(length{child re})
end
if (lengthi{c_re)>1)
c_rel=c_re;
c re=[];
for cre=1l:lengthlc_re2)
c_re=c_rel{cre)
break
end
end
¥fprintf{ ==s=============z\n');
pause (0.1}
if {c_re==0)
break
end
Elatal
JOIN_REPLY;
elzseif (length(child_mesgh)==0)
JOIN_REPLY=0;
end
NunberQfJOIN_REPLY=JOIN_REPLY
allMessages od=NumberOfJOIN_DATA+NumberCLIOIN_REPLY;
allMessages_o(length(allMessages o) +1)=allMessages_od
receiver_o
tablenodes5={1;




% PLOT_ARROW

function handles = plot_arrow!( xl1,vl,xZ,y¥2.varargin )
%
% plot_arrow - plots an arrow to the current plot
%
% format: handles plot_arrow{ =x1,yl.x2,v2 [,options...] )}
%
% input: =1, vyl starting point
% X2 ,¥2 end point
% options come as pairs of "property", 'value" as defined for "line" and "patch®
% controls, see matlab help for listing of these properties.
ES note that not all properties where added, one might add them at the
% end of this file.
%
% additional options are:
% ‘headwidth': relative to complete arrow size, default value is 0.07
% ‘headheight’: relative to complete arrow size, default value is 0.15
% (encoded are maximal values if pixels, for the case that the arrow is
% very long)
%
% output: handles - handles c¢f the graphical elements building the arrow
%
% Example: plot_arrow{ -1,-1,18%,12, 'linewldth',2, 'color',[0.5 0.5 0.5], 'facecclor', [0.5
% 0.5 0.5] });
% plot_arrow! 0,0.5,4, linewidth', 2, 'headwidth',0.25, 'headheight',0.33 };
% plot_arrow; % will launch demo
e T T T T T T 7
% for debug - demo - can be erased
% mommmmmmmsmmme s s oo —————-— - oo ooprmooosmzms
if {nargin==0)
Eigure;
axis;
set{ gca, ‘nextplot’', 'add' };
for x = 0:0.3:2*pi
color = [rand rand rand}l;
h = plot_arvow{ 1,1,50*rand*cos (x}),50%rand*sin{x), ...
‘color',color, ' facecolor',color, '‘edgecolor' ,color )
set{ h, 'linewidth',2 };
end
hold off;
return
end
R L L e T T T T T T T o prprpnppge
% end of for debug
% I D O N N N O s SCC oo oo m e
¥ SemosSTCoooo oo oo mmmmsmme s oo ———ooommzo

% constants

{can be edited)

F ommmmmmme e e o T ooCooooroomsosm s s
alpha = 0.15; % head length

beta = 6.07; % head width

max _length = 22;

max_width = 10;

% CooCooooooommmmsmes s e e o o oo nomooooTmas
% check if head properties are glven

% S-S EEsSSCSCSSS oSS oo oo o o s

% if ratio is always fixed, this section can be removed!
if ~isempty( varargin !
for ¢ = l:floor{lengthi{varargin}/2)

try

switch lower({varargin{c*2-11})

% head properties - do nothing, since handied above already
case ‘headheight',alpha = max( min{ varargin{c*2},1 ),0.01 };
case ‘headwidth', beta = max{ min( varargin{c*2},1 )},0.0%1 };

end
catch

fprintf{
end

‘unrecognized property or valiue for: %s\n’,varargin{c¥*2-1} };



end

L T T T T T T T T T ——

% calculate the arrow head coordinates

% moossmsrEss=ssssssss oo CSEETIESSTommmmmme— oo oo

den = x2 - x1 + eps; % make sure nc devision by zero
oCCurs

teta = atan{ (y2-yl)/den } + pi*(x2<x1) - pi/2; % angle of arrow

oS = cos{teta); % rotation matrix

=33 = sinf{teta);

R = [¢s -ss;ss csl;

line length = sqgre{ (yv2-v1}72 + {(x2-x1}"2 }; % sizes

head _length = min{ line_length*alpha,max_length ):

head width = min{ line length*beta,max_length );

=0 = xX2*Cs + yv2*zs; % build head coordinats
bt = -x2*ss + y2¥cs;

coords = R*[x0 x0+head_width/2 x{0-head _width/2; y0 y0-head length yO-head_ lengthl];
% coozoomoommosmzssssssssscsocsocooooommooomommos

% plot arrow (= line + patch of a triangie)

% SO T TT T mmmEEmmmmS I oo oomsmmmsooo

nl = ploc{ [x1,x2],[yl,y2], k" };

h2 = patch{ cecords(l,:),cooxrds{(2,:}, [0 0 D] };

§ =z=cwmssmsssssssss—os-——-ooosomooommmmmm———————

% return handles

% =SEmso oS ST EEEEoCCC oo mmmemmeeo oo _oomo

handles = [hl h2]1;

A e T T LT T L L T T T T e pr

% check if styling is required

% SSCoCSoECEoSSSEmEmmsssssssoooonTooETOmmsmmeao

% if no styling, this section can be removed!
1f ~isempty( varargin !
for ¢ = i:flocr(lengthi{varargin)/2)
try
switch lower (varargin{c*2-1})

% only patch properties
case ‘'edgecolor', set({ h2, 'EdgeColor',varargin{c*2} });
case 'facecolor', set{ h2, 'FaceColox',varargin{c*2} };
case ‘facelighting’,set{ h2, 'Pacelighting',varargin{c*2} };
case ‘edgelighting',set{ h2, 'Edgelighting’,varargin{c*2} };

% only line properties
case ‘color’ , set( hl, 'Color'.,varargin{c*2} };

% shared properties

case 'linestyle', set{ handles, 'LineStyle’,varargin{c*2} };
case ‘'linewidth', set( handles, 'LineWidth:',varargin{c*2} };
casg 'parent', set{ handles, 'parent’,varargin{c*2}l };

% head properties - de nothing, since handled above already
case 'headwidth’.;
case 'headheight’,;

end
catch

fprintf({ 'unrecognized property or value for: %s\n',varargin{c¥*2-1} };
end



% REVERSE

function b=reverse(a)
% gives the vector in reverse order.
p=length(al ;
for c=1:p;
bilcl=al{p-c+l);
and;




% SMALLERID ig to find a smaller id
%

% Author: A. Radvastuti

% v6e.5 19-Jun-02

nodewith_id_origin;

nmem_id_origin;

fTinalparent2=finalparent;

finalparent=[];

for fp2=1l:length{finalparent?}
FrF=find{nodewith id origin==£f1
id_parent (fp2)=msm_id_origin(F

end

finalparent2;

1d_parent;

[id_parent, IND]=sort (id_parent)

finalparent2 ( [IND]);

finalparent2=finalparent? ( [IND])

id_parent={1;

pause{0.5}

jeinregmany % call jolnregmany.m

nalparent2 (fp2}}):
)

H




