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ABSTRACT 

Measurement invariance (MI) is a prerequisite to conduct valid comparisons of Health-

related quality of life (HRQOL) measures across distinct populations. This research 

investigated the performance of estimation methods for testing MI hypotheses in complex 

survey data using a simulation study, and demonstrates the application of these methods 

for a HRQOL measure. Four forms of MI were tested using confirmatory factory 

analysis. The simulation study showed that the maximum likelihood method for small 

sample size and low intraclass correlation (ICC) performed best, whereas the 

pseudomaximum likelihood with weights and clustering effects performed better for large 

sample sizes with high ICC to test configural invariance. Both methods performed 

similarly to test other forms of MI. In the numeric example, MI of one HRQOL measure 

in the Canadian Community Health Survey was investigated and established for 

Aboriginal and non-Aboriginal populations with chronic conditions, indicating that they 

had similar conceptualizations of quality of life. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Health-related quality of life (HRQOL) is a multidimensional construct that 

encompasses physical, social, and psychological components of health, as well as general 

or global perceptions of health and well-being (Bergner, 1989; O’Boyle, 1992; 

Olschewski, Schilgen, & Schumacher, 1994; Ware, 1987; Wood-Dauphinee, 1999). The 

physical component often refers to the patient’s perceived ability to carry out daily 

activities that require energy expenditure. The social component represents the ability to 

relate and integrate with members of one’s family, neighborhood, workplace and 

community. The psychological component incorporates perceptions of emotional and 

mental well-being such as depression, anxiety, fear, anger, happiness, and peacefulness.  

HRQOL is investigated in many studies where objective measures of health may 

not be adequate or sufficient to describe individual or population health. HRQOL is used 

in clinical trials to investigate the efficacy of new treatments or interventions and in 

population-based research to compare the health of different populations. HRQOL is also 

an important outcome measure for individuals with chronic disease (Lam & Lauder, 

2000; Sprangers, de Regt, Andries, & van Agt, 2000). For example, it can be used to 

evaluate the effectiveness of different health care interventions or to monitor changes 

over time in health status.  

The validity of research that uses a HRQOL measure depends, in part, on the 

psychometric properties of the measure. Psychometric properties such as validity and 

reliability have been investigated for a number of HRQOL measures in previous research 

(de Vet, Ader, Berwee, & Pouwer, 2005; Keller et al., 1998; Schlenk et al., 1998). It is 
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only recently that researchers have begun to focus on the measurement invariance (MI) 

properties of these measures. An instrument or measure is said to possess MI if it has the 

same interpretation or meaning across different study groups. Previous research 

(Gregorich, 2006; Mora et al., 2009) has shown that MI of HRQOL measures may not be 

tenable for different ethnic or cultural groups because individuals with different 

backgrounds may not interpret questions about their health in the same way. MI of 

HRQOL measures may be influenced by other factors, including sex, age, and health 

status. Testing for differences between groups using statistical techniques such as 

analysis of variance (ANOVA) or regression analysis without first establishing MI might 

lead to erroneous conclusions (Bollen, 1989), because true group differences may be 

confounded with measurement artifact. 

The use of confirmatory factor analysis (CFA) to assess the MI of HRQOL in 

different populations is well documented (Vandenberg & Lance, 2000). CFA is a form of 

structural equation modeling (SEM).  While the use of conventional CFA techniques to 

assess MI is well-established (Lix, Metge, & Leslie, 2009), there has been only limited 

consideration of the effect of the study design on the validity of these techniques.  

Conventional CFA techniques refer to CFA techniques applied to study designs 

that adopt simple random sampling (SRS) of observations. Conventional CFA 

techniques, which are usually based on maximum likelihood (ML) estimation, ignore the 

dependencies among observations that arise in complex survey data when study 

participants are not selected using SRS. For example, study participants may be selected 

using a multistage cluster survey design, which results in non-independence of 

observations. Inferences about MI made using conventional SEM techniques with ML 
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estimation may be sensitive to the lack of independence of observations (Stapleton, 

2006). In addition, in a multistage sample survey, sample weights are generally assigned 

at each stage of the sampling process to reflect the unequal sample inclusion probabilities 

(Pfeffermann, 1993). Sample weights are included in data files and are used in analysis to 

represent the population from which sample is drawn. The use of sample weights also 

affects the selection of model estimation methods. A number of methods have been 

proposed to incorporate both survey design effects and sample weights into SEM 

analyses. These include pseudo-maximum likelihood (PML) estimation (Asparouhov & 

Muthén, 2005; Muthén & Satorra, 1995; Stapleton, 2006; Stalpeton, 2008), jackknife 

repeated replication (JRR), balanced repeated replication (BRR), and bootstrap methods 

(Stapleton, 2008). However, these techniques have never been investigated or applied in 

the context of testing MI of HRQOL measures in different populations using CFA 

techniques.  

1.2 Purpose and Objectives 

The purpose of this research is to investigate techniques for testing hypotheses 

about MI in complex survey data and to demonstrate the application of these techniques 

to real-life HRQOL data. The specific objectives are: 

(1) To compare ML and PML estimation methods by a simulation study for testing 

hypotheses about MI using CFA techniques in complex survey data; and 

(2) To demonstrate the application of estimation methods and CFA techniques to test 

hypotheses about MI by ethnicity for one HRQOL measure. 

1.3 Study Rationale 
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Assessing MI is an important prerequisite to test for differences in HRQOL across 

different groups defined by ethnic/cultural, demographic, or health variables. If MI is not 

a tenable assumption, group comparisons may produce misleading results (Hui & 

Triandis, 1985).  

While CFA, a form of SEM, is widely used as a tool to test hypotheses about MI, 

it is not known what estimation method will produce valid results for complex survey 

data. Previous work by Stapleton (2008) compared a number of methods for testing 

hypotheses in SEM using χ2 tests when the data were obtained from a complex survey 

design. She included PML method, taking the complex survey design into account and 

also ignoring the complex survey design in the estimation of model parameters. The PML 

method was also investigated in previous research for making inferences using the χ2 test, 

by including and ignoring the characteristics of a survey design in the analysis 

(Asparouhov & Muthén, 2005). In particular, the effects of clustering and stratification 

were examined for estimating the χ2 statistic. However, these methods have never been 

compared for testing hypotheses about MI using CFA for complex survey data. 

Simulation studies have been used in previous research to compare the performance of 

different methods for testing hypotheses in SEM. 

This research will help to address an important gap in the methodological 

literature about SEM. It will also add to the measurement literature on MI of HRQOL 

measures across different ethnic groups. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Measuring Health-Related Quality of Life 

There are over 800 generic and specific instruments that have been developed to 

measure HRQOL (Guyatt, Feency, & Patrick, 1993; Testa & Simonson, 1996). Generic 

measures are based on a global conceptualization of HRQOL. These measures allow 

researchers to investigate various domains of health across populations and disease states 

(Guyatt et al., 1993; Testa & Simonson, 1996). Generic HRQOL measures include the 

Sickness Impact Profile (SIP; Bergner, Bobbitt, Carter, & Gilson, 1981), Nottingham 

Health Profile (NHP; Hunt, McEwen, & McKenna, 1985), World Health Organization 

WHOQOL–BREF (WHOQOL Group, 1998a), PedsQL 4.0 Generic Core Scale (Limbers, 

Newman, & Varni, 2008) and 36-item Medical Outcomes Study Short Form (SF-36; 

Ware & Sherbourne, 1992). These measures have been administered in cross-cultural 

(Sheila, 2005), cross-national (Keller et al., 1998), and cross-ethnic (Crockett, Shen, 

Randall, Russell, & Driscoll, 2005; Lix et al., 2009) studies. 

Generic HRQOL measures include health profiles and health indices (Camilleri-

Brennan & Steele, 1999). Health profiles usually cover a wide range of health related 

domains and a separate score is computed for each domain (Guyatt et al., 1993). The SF-

36 is a well-known health profile (Ware & Sherbourne, 1992). It is useful in surveys of 

general and specific populations for comparing the relative burden of diseases, and in 

differentiating the health benefits produced by a wide range of different treatments. The 

use of the SF-36 has been investigated in chronic disease populations to compare 

HRQOL across different groups. 
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The SF-36 is a popular HRQOL measure for several reasons. It is available at no 

cost to researchers, easy to administer within a short period of time, and is a widely 

accepted general measure of quality of life (Jordan-Marsh, 2002). The SF-36 is an 

appropriate measure of HRQOL across different diseases (Yao & Wu, 2005). The SF-36 

has been translated into many languages and used in many countries. It has been 

documented in nearly 4,000 publications (Turner-Bowker, Bartley, & Ware, 2002).  

The reliability and construct validity of the SF-36 has been established (Schlenk 

et al., 1998; de Vet et al., 2005). Previous research has shown that the internal 

consistency coefficients of the eight scales that comprise this instrument ranged from 

0.62 to 0.96 with a median of 0.80. The test-retest reliabilities of the scales ranged from 

0.43 to 0.90 with a median of 0.64 after six months, but these values were from 0.60 to 

0.81 with a median of 0.76 after two weeks in patients with diabetes (Schlenk et al., 

1998). The construct validity of the SF-36 has been proven as well. For example, the 

eight scales or domains discriminated between groups differing in physical mobility, and 

seven of the eight scales were sensitive to clinically defined differences in mental health 

(Schlenk et al., 1998). The mental health scale score was lower for patients with a 

psychiatric disorder than for patients with minor medical conditions. The correlations, 

from -0.038 to -0.75, with the Centre for Epidemiologic Studies Depression Scale (CES-

D) measure, also supported the construct validity of the SF-36. MI of the SF-36 has been 

investigated in different ethnic groups (Lix et al., 2009), although the number of papers 

on this topic is sparse. 

Specific HRQOL measures have been developed for particular diseases or 

conditions, or to allow for in-depth investigation of an individual health domain (Guyatt 
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et al., 1993). For example, the European Organization for Research and Treatment of 

Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) is a disease-specific 

measure (Aaronson et al., 1993) that has been widely-used in international clinical trials 

in oncology. Other examples include the Hospital Anxiety and Depression Scale which is 

used to assess the psychological domain (Zigmond & Snaith, 1983), the mini-

Osteoporosis Quality of Life (mini-OQOL) questionnaire which is used to assess 

HRQOL of individuals with osteoporosis (Lix et al., 2009), and the Inflammatory Bowel 

Disease Questionnaire (IBDQ; Guyatt et al., 1989). 

2.2 Testing Measurement Invariance Using Conventional Structural Equation 

Modeling Techniques 

Some constructs that are commonly investigated in health research, such as 

HRQOL, intellectual ability, depression, anxiety, and attitude, cannot be measured 

directly. Measurement of these constructs is very important in decision making in a 

variety of environments (French & Finch, 2006). Researchers must ensure that 

measurements of the same attribute are equivalent under different conditions (e. g., 

stability of measurements over time, across different populations defined by 

characteristics such as age or sex, across rater groups or over different modes of 

instrument administration). 

In SEM, a measurement model defines an association among a set of observed 

variables and latent variables (i.e., factors). The measurement model can be represented 

using the regression equation,  

)1(,...............2211 njpnjpnjnjjnj ey +++++= ηληληλτ
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where ynj denotes the nth (n = 1, 2,……, N) person’s score on the jth (j = 1, 2,…., J) 

observed variable, τj is the intercept at which the latent variable score is zero, λjp are 

regression coefficients for observed variable j on the kth latent variable (k = 1,…, p), ηkn 

is the kth latent variable, and enj is the error term for the nth individual. The direct effects 

of latent variables on observed variables are also called factor loadings. 

There are a number of forms of MI that can be tested using CFA techniques in 

SEM. The tests are conducted by applying constraints to the regression coefficients of 

equation 1 across independent groups of study participants. Factor loadings may be free, 

fixed, or constrained depending on the researcher’s specifications. A free parameter is 

estimated, whereas a fixed parameter is specified to be equal to a constant. A constrained 

factor loading is a regression coefficient that is estimated under some model restriction. 

The recommended forms of MI tests are: (i) configural or pattern invariance: a test of 

equality of the pattern of factor loadings across groups, (ii) metric or weak invariance: a 

test of equality of factor loadings across groups, (iii) scalar or strong invariance: a test 

that factor loadings and intercepts of like items (i.e., same indicators) are invariant across 

groups, (iv) complete or strict invariance: a test that like item factor loadings, means, and 

error variances are equivalent across groups (Muthén & Muthén, 2007; Vandenberg & 

Lance, 2000). If configural invariance is satisfied then it can be concluded that the same 

construct or pattern of fixed and free parameters is being measured in each group. The 

model of configural invariance serves as a baseline model to which more restrictive 

models are compared. When metric or weak invariance is established, this implies that 

the same latent variables (i.e., factors) are being measured across groups. Like in metric 

invariance, scalar invariance also implies that the measurement of the latent variables is 
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the same across groups. Moreover, the invariance of intercepts allows evaluating mean 

differences in latent variables across groups. Any differences in means of the indicators 

are attributable to differences in means on the latent variables. If scalar invariance is not 

satisfied then a comparison across groups for indicator means will not be valid (Meredith 

& Teresi, 2006). The key difference between complete and scalar invariance involves 

how the variances of the indicators are accounted for. In complete invariance, group 

differences in variances of indicators are attributable only to group differences in 

variances of latent variables since error variances are invariant across groups. Complete 

invariance is a highly constrained model and may often not hold in practice, even if scalar 

invariance does hold. If complete invariance is established then comparisons across 

groups on the global or domain scores should be unbiased (Lix et al., 2009). 

To test different forms of MI, two identified measurement models must be 

specified for each group. In one model (i.e., the constrained model), one or more 

constraints on the model parameters are specified, while in the second model (i.e., the 

unconstrained model), these constraints are removed. The models are nested, that is, the 

unconstrained model is a special case of the constrained model. In order to be identified, 

a CFA model must have the following characteristics: (1) the number of parameters to be 

estimated is less than or equal to the number of observations (i.e., j(j + 1)/2, where j  is 

the number of indicators); (2) every latent variable must have a scale; and (3) a model 

with a single latent variable must have at least three observed variables, and a model with 

two or more latent variables must have at least two observed variables per latent variable 

(Kline, 2005). In a standard CFA model, each observed variable is represented by a 
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single underlying latent variable and an error term, the error terms are independent, and 

the latent variables are assumed to be correlated (Kline, 2005). 

An important distribution that is widely used for model fitting is the χ2 

distribution. This distribution is defined as  

)2(,,2,1,0,
)(2

1)( 2
1

2

2
2

=>
Γ

=
−−

ν
ν

ν
ν xexxf

x

where ν is the degrees of freedom, e is the base of the natural logarithm and Γ is gamma 

function. A variety of indices have been proposed to evaluate the overall fit of the initial 

measurement model and also to test hypotheses about MI by comparing two 

measurement models. The use of the large-sample χ2 test is recommended in conjunction 

with other quantitative fit indices (Marsh & Yeung, 1996) to test the goodness of fit of 

the initial measurement model. A non-significant χ2 test indicates adequate fit of the 

initial measurement model; however this test is sensitive to sample size and tends to 

reject the null hypothesis too often when sample size is large. Other fit indices, such as 

Tucker-Lewis index (TLI; Tucker & Lewis, 1973) or non-normed fit index (NNFI; 

Bentler & Bonett, 1980), relative non-centrality index (RNI; Bentler, 1990), root mean 

square error of approximation (RMSEA), and the standardized root mean square residual 

(SRMR) are therefore recommended to evaluate the fit of the initial measurement model 

(Vandenberg & Lance, 2000). The fit indices TLI and RNI reflect the systematic 

variation in model misspecification and are not systematically related to sample size. TLI 

and RNI values of 0.90 or above are indicative of well-fitted models (Hu & Bentler, 

1999). The RMSEA is also sensitive to model misspecification, especially to 

misspecified factor loadings (Hu & Bentler, 1999). The value of RMSEA is provided 

with its 90% confidence intervals. A common rule of thumb is that the value of RMSEA 
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less than equal to 0.05 implies close approximate fit; the values of RMSEA between 0.06 

and 0.10 indicate acceptable fit; and the values of RMSEA greater than 0.10 indicate poor 

approximate fit (Browne & Cudeck, 1993). The SRMR is sensitive to model 

misspecification among the covariances; a value of 0.08 is recommended as an indication 

of a well-fitted model, with the value of 0.10 as an upper limit. 

To test different forms of MI, the χ2 test or likelihood ratio test (LRT) is 

commonly employed. This test statistic is computed as twice the difference between the 

log-likelihood of two nested models, i.e., 

)3(),LL(2 UCC
2
ML −=χ

 

where LC and LUC are log-likelihood values of the constrained and unconstrained  

models, respectively and are computed using conventional ML estimation. The 

conventional LRT statistic follows a χ2 distribution with the degrees of freedom equal to 

the difference in the number of parameters between the unconstrained and constrained 

models. Moreover, difference in LRT statistics for two nested models (i.e., ∆  χ2) is also a 

χ2 distribution and is used for testing different forms of MI. No other fit indices used to 

test MI have known distributions (Vandenberg & Lance, 2000). However, one fit index 

that has been recommended for testing MI along with LRT is the comparative fit index 

(CFI; Yuan, 2005),  

)4(,
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where 2
Cχ  and 2

UCχ are χ2 statistics evaluated at the constrained and unconstrained  

models using conventional ML, respectively; dfC and dfUC are the corresponding degrees 
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of freedom. The CFI assesses the relative improvement in model fit compared to the 

baseline or null model. It is assumed that a value of CFI greater or equal to 0.90 indicates 

an acceptable fit of the proposed model to the data (Hu & Bentler, 1999). This fit index is 

recommended to use for MI tests because it performs very well at all sample sizes 

(Bentler, 1990). It is also recommended that the difference in CFI of 0.01 or less between 

constrained and less constrained models (i.e., ∆CFI)  indicates that null hypothesis of MI 

should not be rejected (Bentler, 1990). Both 2
MLχ and CFIML were developed for 

conducting conventional SEM analyses.  

2.3 Measurement Invariance of Health-Related Quality of Life Measures 

MI of several different HRQOL measures has been investigated in previous 

research; the majority of these studies have used CFA techniques to test MI. In cross-

sectional studies, researchers have investigated the MI of HRQOL instruments across 

independent population groups (Limbers et al., 2008; Lix et al., 2009; Yao & Wu, 2005), 

while in longitudinal studies, researchers have investigated MI over time within a single 

population group (Ahmed et al., 2005; Feldt et al., 2007; Krause, Kaltman, Goodman, & 

Dutton, 2007; Makikangas et al., 2006; Varni, Limbers, Newman, & Seid, 2008). 

A recent study (Lix et al., 2009) investigated the MI of the SF-36 and mini OQOL 

measures for Canadian Aboriginal and non-Aboriginal women using CFA techniques. 

Four forms of MI (configural, metric, scalar and complete invariance) were tested for 

both measures. All forms of MI were satisfied for the SF-36 in Aboriginal and non-

Aboriginal women, indicating that researchers can make valid comparisons of health 

across these two groups using the SF-36. Configural and metric invariance were 

established for the mini OQOL measure, which indicate that Aboriginal and non-
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Aboriginal women have equivalent conceptualizations about osteoporosis quality of life. 

But scalar and complete invariance were not satisfied in these two groups, meaning that a 

valid comparison between groups is not possible. 

The MI of the CES-D was investigated for Anglo and Latino adolescents 

(Crockett et al., 2005). Configural, metric, and scalar invariance were tested for the two 

ethnic groups. Configural invariance was established between groups of Anglo and 

Mexican Americans adolescents whereas for Cuban and Puerto Rican adolescents a lack 

of configural invariance was observed. Partial metric invariance was obtained for 

adolescents of Anglo and Mexican Americans. Scalar invariance was observed for all 

ethnic groups. Therefore, the authors concluded that the CES-D is useful in cross-ethnic 

research for assessment and treatment of depression. 

The MI of the WHOQOL was examined for healthy and chronic disease 

populations and for different disease groups (Yao & Wu, 2005). In Yao and Wu’s study, 

healthy groups of individuals were matched to individuals in each of five disease groups 

such as pulmonary, hypertension, peptic ulcer, sinusitis, and liver disease. Age and 

gender were used to match individuals in healthy and in a particular disease group. Multi-

group CFA was employed on a four-factor (first-order factors) model with a general 

quality of life factor (second-order factor). The four factors were physical, psychological, 

social relationship and environment. This study examined configural and metric 

invariance between healthy and disease groups as well as between each pair of five 

disease groups. Configural invariance was satisfied for disease groups and their matched 

healthy groups, indicating that the four-factor model was acceptable in all groups. Metric 

invariance was also found for disease and healthy groups, suggesting that disease groups 
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and the matched healthy groups may have the same interpretation about the items of the 

WHOQOL.  In addition, for each pair of five disease groups, metric invariance was 

satisfied; that is, the disease groups have the same perceptions about the WHOQOL 

questionnaire as other disease groups. 

MI of another disease-specific HRQOL measure, the Mini Asthma Quality of Life 

Questionnaire (Mini AQLQ), was assessed in a sample of Latino and African-American 

asthmatic patients (Mora et al., 2009). CFA was adopted to test the MI of three-factor 

structure of this measure; three factors were symptom and emotional function, 

environmental stimuli, and activity limitation. CFA supported configural and metric 

invariance for Latino and African-American patients. This indicates that both the 

structure and meaning of the items of Mini AQLQ were same across these two groups of 

patients. Scalar and complete invariance were supported partially in the two groups. In 

particular, 11 out of 15 items of this measure showed scalar and complete invariance. 

Therefore, authors concluded that inclusion or exclusion may be needed for making 

unbiased comparison of HRQOL across different ethnic groups. 

There are other studies that have also used CFA techniques to test for MI of 

HRQOL measures. For example, MI of the PedsQLTM 4.0 Generic Core Scales for 

children with chronic health conditions and children without any chronic conditions (i.e., 

healthy) has been examined (Limbers et al., 2008). MI of the five-factor structure on the 

PedsQLTM 4.0 Generic Core Scales was established for healthy and chronic health 

condition groups. The five factors are physical functioning, emotional functional, social 

functioning, school-related cognitive functioning, and missed school. Configural and 

metric invariance were tested for healthy and chronic health condition groups. Both 
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configural and metric invariance of the PedsQLTM 4.0 Generic Core Scales were achieved 

across healthy and chronic health condition groups. This implies that children in this 

study had a similar interpretation of the items on the PedsQLTM Generic Core Scales 

regardless of whether they were healthy or had a chronic health condition. Therefore, the 

authors concluded that when the PedsQLTM is used and differences in self-perceived 

HRQOL are found across chronic health condition and healthy groups, these are more 

likely to reflect real differences in HRQOL, rather than differences in the interpretation of 

the PedsQLTM items due to health status. 

The longitudinal MI of the PedsQLTM 4.0 Generic Core Scales was examined 

over a one-year period for children five to 17 years of age. A total of 2,887 children from 

a statewide evaluation of the California State Children’s Health Insurance Program 

(SCHIP; Varni et al., 2008) were included in the study. Multigroup CFA was used to 

study longitudinal MI of the PedsQLTM 4.0 Generic Core Scales. A five-factor structure 

was considered in the study, with the factors being physical functioning, emotional 

functioning, social functioning, school functioning, and missed school. Longitudinal MI 

was established by testing a set of MI hypotheses including invariance of covariance 

matrices, configural invariance, metric invariance, scalar invariance, and complete 

invariance. To assess the strictest form of MI, the model was further restricted by 

imposing the equality constraints of latent variances, latent covariances, and latent means 

sequentially across measurement occasions. An equivalent factor structure on the 

PedsQLTM 4.0 Generic Core Scales over time was supported by the study findings. The 

researchers concluded that children in this study interpreted items on the PedsQLTM 4.0 
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Generic Core Scales in a similar manner over time. This study as well as all other studies 

discussed in this section adopted ML as their methods of model estimation.  

2.4 Structural Equation Modeling for Complex Survey Design 

Large health surveys often employ a complex design. For example, survey 

participants may be selected using methods such as clustering, stratification, unequal 

probability of selection, and post-stratification (Longford, 1995) instead of SRS. 

Multistage survey designs may also be used to select survey participants. Data collected 

using multistage survey designs often include information about clustering and 

stratification as well as unequal selection probabilities at all levels of sampling. The 

effects of clustering, stratification, and unequal probability of selection on the analysis of 

complex survey data are discussed below. 

An assumption in conventional SEM is that observations are independent and 

identically distributed. When a complex survey design is adopted that employs a 

multistage survey method instead of SRS, observations exhibit some degree of 

dependence. Conventional estimation methods assume that the correlation of the errors 

across individuals is zero. When clustered data are used with a conventional estimation 

method, standard errors may be underestimated which subsequently result in inflated 

Type I error rates (Kish & Frankel, 1974). In the context of SEM, there may be an effect 

on the 2χ statistic when clustered data are analyzed using conventional estimation 

methods (Muthén & Satorra 1995), which may lead to an improper rejection of the 

proposed model. In a simulation study (Muthén & Satorra, 1995) with clustered data, 

conventional ML and mean-corrected ML (Satorra & Bentler, 1988) estimation methods 

were compared using the χ2 statistic for a factor model. The mean-corrected ML takes the 
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survey design into account on the analysis whereas conventional ML did not. This study 

demonstrated the superiority of the mean-corrected method over the conventional method 

for estimating the χ2 statistic. Th at is, th e valu es o f χ2 statistic were larger for 

conventional ML than for mean- corrected ML estimation procedure. 

Stratification is another design issue for modeling data from a complex survey 

design. Stratification helps to obtain more precise or efficient estimates of population 

parameters. If stratification is the part of survey design employed for data collection and 

conventional ML method is used for model estimation, then unbiased parameters 

estimates may not be obtained (Kalton, 1983b).  

Often in large-scale surveys unequal probability of selection of observations is 

part of the complex survey design. In a multistage survey design, the probability 

proportionate to size (PPS) method is commonly used. In this method, higher probability 

is assigned to select the larger clusters. This method is useful when a fixed number of 

observations are selected from each cluster. When unequal selection probability is 

ignored to select sample observations, parameter estimates may be biased if variables are 

correlated with the probability of selection. Previous SEM research has found biased 

parameter estimates when unequal selection probability was ignored (Asparouhov, 2005; 

Kaplan & Ferguson, 1999). Unequal selection probabilities are useful to calculate sample 

weights. Unequal selection probabilities can be included in the analysis by incorporating 

sample weights. A sample weight is the inverse of the selection probability.  

Let us consider a particular complex survey design as follows: a two-stage survey 

design is considered in which clusters are selected in stage one and then, in stage two, 
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observations are selected from the clusters with equal or unequal probabilities. The 

sample weight for the jth cluster (j=1, 2, …, J) is  

)5(,1

j
j p

w =

 

where pj is the probability that cluster j is included in the sample. The sample weights for 

observations within clusters are 
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where pi/j is the probability that observation i is selected in cluster j, given that cluster 

j is selected. The multiplication of the weights wj and wji produces the final weight for 

each observation. 

The issue of including sample weights in SEM analysis was addressed using a 

simulation study (Kaplan & Ferguson, 1999). In this study, observations were selected 

from two strata with unequal selection probabilities but within each stratum the selection 

probability was equal for all observations. Therefore, there were only two sample 

weights, w1 and w2, in the analysis. Sample weights were utilized in the calculation of 

weighted covariance matrices. Then both the weighted and unweighted covariance 

matrices were analyzed using the ML estimation procedure to investigate the effects of 

sample weights on goodness-of-fit indices such as RMSEA and the 2χ statistic. The 

results indicated that the values of the 2χ statistic obtained from the procedures of using 

normalized weights and ignoring sample weights were close in the analysis. 

Sample weights can not be used in ML estimation (Kaplan & Ferguson 1999; 

Muthén & Muthén, 2007; Stapleton, 2008). Therefore, the choice of estimation methods 
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for SEM analysis depends on whether sample weights are used or not. In SEM, PML 

allows the use of not only sample weights but also characteristics of the survey design in 

the analysis simultaneously. Skinner (1989) introduced the PML method that can be used 

for complex survey data including stratification, cluster, and unequal probability of 

selection. In fact this method is applicable to a more general survey design which 

includes stratified multistage sampling with unequal probability of selection at all stages 

of the survey. 

To analyze complex survey data pseudo log-likelihood values are used to perform 

the LRT. When data are obtained from a complex survey design the LRT statistic is 

defined as  
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*

C
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where L*
C and L*

UC  are pseudo log-likelihood values for the constrained and 

unconstrained models, respectively (Asparouhov & Muthén, 2005). The distribution of 

this test statistic depends on the survey design, including the sample weights, the 

stratification, and the cluster sampling. The LRT statistic has approximately a χ2 

distribution with the degrees of freedom equal to the difference in the number of 

parameters between constrained and unconstrained models (Asparouhov & Muthén, 

2005). This adjustment was done similarly to the adjustments of the Satorra-Bentler 

(2001) robust χ2 tests. The adjusted LRT statistic, based on pseudo log likelihood values, 

is defined as  
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where, the correction factor is,  
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and Cl′ , UCl′  and Cl ′′ , UCl ′′  are the first and second derivatives of the pseudo log-likelihood 

functions C
*L  and UC

*L ; Cd and UCd  are the number of parameters in the constrained and 

unconstrained models, respectively; σ2 is variance; Tr stands for Trace which sums the 

elements on the main diagonal of a square matrix. 

Similar to equation 4, the corresponding CFI for this adjusted method (equation 8) 

can be defined as  
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where 2
PMLCχ  and 2

PMLUCχ are 2χ statistics for constrained and unconstrained models, 

respectively and dfPMLC and dfPMLUC are the corresponding degrees of freedom. This 

adjustment to the LRT not only corrects for complex survey design but also for 

distributional misspecifications such as non-normality. Therefore, the LRT statistic 

(equation 8) allows researchers to conduct robust SEM analysis when observed variables 

are not normally distributed. A simulation study (Lei & Lomax, 2005) found that 

parameter estimates and the 2χ  statistic were sensitive to the non-normality of observed 

variables when conventional ML method was used. 

In SEM literature, there are not many studies available that have investigated the 

properties of a complex survey design on estimating 2χ and CFI statistics for different 

estimation methods. Some studies (Asparouhov & Muthén, 2005; Stapleton, 2006; 
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Stapleton, 2008) compared estimation methods using simulation study to justify the 

effects of complex survey design on calculation of the 2χ statistic. 

Asparouhov & Muthén (2005) demonstrated the effects of various complex 

survey designs on the estimation of 2χ statistic (equation 8) for the PML method by 

including and ignoring survey design in the analysis. A simulation study was conducted 

using a single outcome variable in the model and two hypotheses were tested using 

the 2χ statistic for PML method. The first hypothesis was that the means of the outcome 

variable in two groups were equal and the second hypothesis was that the variances of the 

outcome variable were unequal in two groups. Four different approaches were considered 

for computing the 2χ statistic such as including both stratification and clustering, 

including stratification and ignoring clustering, including clustering and ignoring 

stratification, and ignoring both clustering and stratification. The results indicated that the 

sampling features in complex survey design can affect the distribution of the 2χ statistic. 

In particular, the Type I error rates for the 2χ statistic were approximately 5% when 

α=0.05 with stratification and clustering in the analysis and all other methods produced 

erroneous results. There were almost no Type I errors for the 2χ statistic when cluster was 

included but stratification was ignored. The method of including stratification but 

ignoring clustering effects produced incorrect Type I error rates (52%) for the 2χ statistic. 

As well, Type I error rates for the 2χ statistic were high (38%) for the method of ignoring 

both clustering and stratification information. In terms of Type II errors, the error rates 

for the 2χ statistic was 24% when the effects of both stratification and clustering were 

taken into account; however this rate converged to 0% as sample size was increased. The 
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highest rates (50%) of Type II error was observed when stratification was ignored. On the 

other hand, negligible Type II error rates were seen in the methods of ignoring only 

cluster effects (Type II error rate of 1%) and ignoring both stratification and cluster 

effects (Type II error rate of 2%). 

Stapleton (2006) investigated the PML method for estimating the 2χ statistic in 

the context of SEM analysis. She examined the effects of complex survey design by 

including and ignoring clusters and stratification information in the analysis. Six different 

survey designs were investigated in single-stage, two-stage and three-stage sampling 

procedures. When PML method ignoring survey design was used, the 2χ statistic rejected 

the model too often compared to when PML method including survey design 

characteristics was used instead of SRS (Stapleton, 2006). With PML method ignoring 

survey design, Stapleton found that for a two-stage survey design, rejection rates were 

0.50 to 0.60 whereas for a three-stage design they were 0.75, where the nominal level of 

significance was 0.05. This implies that the more complex the survey design, the greater 

the probability of making a Type I error about the null hypothesis of overall goodness of 

fit if survey design is ignored. Stapleton also investigated a design effect adjusted 

2χ obtained by dividing the conventional 2χ by the average design effect, when clustering 

was a characteristic of the survey design and there was homogeneity within clusters. The 

design effect is defined as the ratio of the correct sampling variance of a statistic under 

the complex survey design to the sampling variance obtained under SRS (Kish, 1965). 

This method resulted in inappropriately low 2χ values, that is, the 2χ statistic was 

overcorrected using this method. It has been shown that the 2χ test is fairly robust (i.e., 
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Type I error rate is close to α) when PML estimation was employed with complex survey 

design instead of ignoring complex survey design (Stapleton, 2006). 

An adjusted χ2 statistic has been proposed to take survey design effects into 

account, obtained by dividing the χ2 statistic obtained from conventional CFA by the 

average design effect for the estimates of the model parameters (Stapleton, 2008). 

Stapleton compared the design effect adjusted χ2, which was estimated using re-sampling 

techniques (JRR, BRR, and bootstrap), with the χ2 statistics for PML methods with and 

without taking complex survey design into account (i.e., the same methods for PML that 

was used in Stapleton, 2006). Type I error rates for the χ2 test statistics in design effect 

adjusted and PML method with complex survey designs were near the nominal level of 

significance of 0.05, whereas this rates for the conventional test were near 0.75. 

However, these results are only for a selected three-stage complex survey design and high 

intraclass correlation (ICC).  

2.5 Software for Structural Equation Modeling   

Software available for conducting SEM analyses includes Amos 6.0 (Arbucle, 

2005), SAS (SAS Institute Inc., 2009), EQS 6 (Bentler & Wu, 2002), LISREL 8.8 

(Joreskog & Sorbom, 1996) and Mplus 5.1 (Muthén & Muthén, 2007). However, 

conducting SEM analyses for complex survey data is challenging because of lack of 

availability of appropriate analysis procedures in these software packages. Only LISREL 

and Mplus can implement PML estimation. PML estimation was implemented in Mplus 

beginning with version 3.11 (Asparouhov, 2004) and in LISREL with version 8.8 

(Asparouhov & Muthén, 2006). The performance of the LRT statistic based on PML 

estimation in Mplus and LISREL was assessed using a simulation study (Asparouhov & 
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Muthén, 2006). The Type I error rates for the LRT statistic described by equation 8 

indicated that Mplus performed better than LISREL software. Specifically, the Type I 

error rates for the LRT statistic implemented in Mplus were close to the nominal 5% 

value. On the other hand, the LRT statistic implemented in LISREL produced large error, 

that is, the Type I error were 0.65 to 0.67 when the nominal level of significance was 

0.05. Therefore, Mplus is the recommended choice for conducting multi-group CFA 

when data are sampled from a complex survey design.  

2.6 Summary of Literature Review 

In this chapter, previous literature has been summarized. The main points are highlighted 

here: A measurement model establishes the relationship between observed and latent 

variables, and must be fit to one’s data and evaluated using CFA techniques before 

testing MI of HRQOL measures. A range of statistical fit indices is recommended to 

assess the overall fit of the measurement model such as χ2 test, TLI, RMSEA, and SRMR 

Different fit indices are used because each of them address different aspects of model 

misspecification. Many forms of MI can be tested using CFA techniques. In order to 

establish MI of HRQOL measures across different groups, two nested models, 

constrained and unconstrained, must be specified and identified. Measures used to 

compare HRQOL across different groups include SF-36, SIP, WHOQOL, PedsQL 4.0 

Generic Core Scale and CES-D. CFA techniques have been employed to test MI of these 

HRQOL measures when data were collected using SRS. In complex survey designs, 

observations may be selected using methods such as clustering, stratification, unequal 

probability of selection, and post-stratification instead of SRS. These results in a lack of 

independence amongst the observations, which can affect the results of tests of MI based 
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on SEM. Moreover, sample weights are generated and included in the data set if unequal 

probability of selection is a part of complex survey design, and ignoring the sample 

weights has an impact on the estimation of model parameters and goodness-of-fit indices 

on SEM analysis.  

 In conventional CFA, it is assumed that observations are independent. ML 

methods are employed to estimate model parameters and test hypotheses. There are 

currently a number of methods available to undertake SEM analyses when data are 

collected using a complex survey methodology. These strategies include estimating 

model parameters using ML, design effect adjusted ML, PML, and computer-intensive 

re-sampling techniques (JRR, BRR and bootstrap methods). Researchers who conduct 

SEM analysis with complex survey data may often choose to ignore the survey design in 

their analysis and adopt ML estimation. But reviewing recent literatures that used the 

SEM techniques, it has been found that the ML method resulted in inflated rates of 

rejection of the LRT statistic in complex survey data. The design effect adjusted method 

was also applied in 2χ test when data were collected using complex survey design. In this 

method, adjusted 2χ was obtained by dividing the conventional 2χ by the average design 

effect. However, this method resulted in inappropriately low 2χ values, that is, 2χ was 

overcorrected using this method. The performance of the PML estimation method has 

also been investigated for different complex survey designs. This method appears to 

provide robust 2χ tests. The estimation method that is the most often suggested in SEM 

analysis with complex survey data is PML (Asparouhov & Muthén, 2005; Muthén & 

Satorra, 1995; Stapleton, 2006). 
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CHAPTER THREE: SIMULATION STUDY 

A simulation study was conducted to investigate the performance of the LRT and 

CFI statistics for testing hypotheses about four forms of MI. The estimation methods, ML 

and PML, were compared to compute the test statistics. First, the conventional method 

was used to compute the LRT (equation 3) and CFI (equation 4) statistics, based on ML 

estimation. Second, a robust method was used to compute the LRT (equation 8) and CFI 

(equation 10) statistics, based on PML estimation. In this method, results were produced 

for two approaches using only sample weights as well as using both sample weights and 

clusters in the analysis. The approach that used only sample weight was called PML1 and 

the other approach that used both sample weights and clusters was called PML2. 

Therefore three methods were used to investigate the performance of the LRT and CFI 

statistics. However, when PML is mentioned that indicates both PML1 and PML2 

methods. 

In the simulation study, data were generated for a population with two groups. 

The population contained homogeneous clusters of different sizes and observations from 

two groups were included in each cluster. The samples were drawn using a two-stage 

design. First, clusters were selected using the PPS method and then observations from the 

selected clusters were selected using SRS. 

The simulation parameters were: (1) magnitude of latent variable (i.e., factor) 

loadings, (2) intercepts of observed variables, (3) magnitude of correlation between latent 

variables, (4) standard deviations of observed variables, (5) size of the ICC, (6) cluster 

size, and (7) total sample size. These characteristics of the simulation are summarized in 

Table 1 and are described in greater detail in subsequent sections of this chapter. 
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3.1 Simulation Study Methods 

3.1.1 Study Design 

This simulation study adopted a survey design that has many similarities to the 

design of the Canadian Community Health Survey (CCHS) cycle 3.1, which is the focus 

of the numeric example presented in Chapter 4. Three sampling frames, area frame, list 

frame of telephone numbers, and random digit dialing frame, were used in the CCHS 

cycle 3.1 to select the sample of households or dwellings. In the area frame, a multistage 

stratified cluster design was used. In the first stage, homogeneous strata were created 

based on criteria such as geography, socio-economic status, and demography. Each 

stratum was comprised of dwellings or households. Within each stratum, dwellings are 

regrouped to create clusters. Clusters, or primary sampling units, were selected from each 

stratum using the PPS method, in which the probability of selecting a sample unit is 

proportional to the size of the population. Cluster sizes varied from 150 to 250 

households. In the second stage, dwelling or households lists were prepared for each 

cluster and a systematic sampling design was implemented to select households from 

each cluster. Systematic sampling is a method of selecting sample units from a sampling 

frame according to a random starting point and a fixed, periodic interval. The product of 

the probabilities for each of the two stages of selections represents the overall probability 

of selection. The inverse of this probability is used as the initial weight. Several 

adjustments (e.g., sample increase, nonresponse, removal of out-of-scope dwellings), 

were made to create the final sample weights when area frame was used (Statistics 

Canada, 2006). 
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In the list frame of telephone numbers, a list frame stratum was created for each 

health region. Then the SRS design was applied to select the telephone numbers (i.e., 

household) from the stratum. Hence, the probability of selection corresponds to the ratio 

of the number of sampled households to the number of telephone numbers in the list 

frame stratum. The inverse of the probability of selection was used as the initial weight. 

A random digit dialing frame was employed only in four health regions. In this frame, 

random digit dialing stratum was formed as an aggregation of Area Code Prefixes, each 

of which contains valid banks of one hundred numbers. So, the probability of selection 

was the ratio of the number of sampled households to one hundred times the number of 

banks within the stratum. Therefore, the inverse of this probability was used as the initial 

weight. Similar to the area frame several adjustments were done to create one set of 

initial weights for list frame and random digit dialing frame. One final set of weights was 

created through integration and post-stratification from the two initial sets of weights. 

In the simulation study, observations were drawn from the population using a 

two-stage survey design. In the first stage, clusters were selected using the PPS method 

and then in the second stage, observations were selected from each cluster using SRS. 

Both the simulation study and CCHS used a two-stage survey design, however there were 

some differences.  The same PPS method was used to select clusters in both the 

simulation study and the CCHS. However, the simulation study used the SRS method to 

select the observations instead of a combination of systematic sampling and SRS, which 

was used in the CCHS design. The probability of selection in the simulation study was 

produced by multiplying the probabilities of selection in the two stages. 
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3.1.2 Measurement Model 

This simulation study used a measurement model (Figure 1) with two latent 

variables, F1 and F2, eight observed variables represented by Y1 to Y8 and eight error 

variances represented by E1 to E8.  

 

Figure 1: The measurement model for the simulation study 
 

 

Note to Figure 1: The circles and rectangles indicate the latent variables (i.e., factors) and 
observed variables (i.e., indicators), respectively. The lines with single arrowheads from 
latent to observed variables represent the latent variable effects. The single-headed lines, 
described by E1 to E8, to the observed variables represent the error variances. The only 
single-headed lines to the observed variables represent the intercepts of observed 
variables. Finally, the double-headed curves indicate the correlation between the latent 
variables.  
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This model was chosen because it is the most common model that has been used to 

describe the measurement of the SF-36 (Stadnyk, Calder, & Rockwood, 1998), which 

was the HRQOL measure investigated in the numeric example in Chapter 4. In this 

model, it is assumed that the latent variables are correlated, which has been observed in 

previous research (Cheung & Rensvold, 2002; French & Finch, 2006). The latent 

variable, F1, was measured by the observed variables Y1 to Y4 and F2 was measured by 

the observed variables Y5 to Y8. A single arrowhead line (e.g., F1 → Y1) from a latent 

variable to an observed variable represents the direct effect, or factor loading on the 

observed variable. As well, a single arrowhead line (e.g., E1 →  Y1) fro m an erro r 

variance to an observed variable indicates the combined effect of all other sources of 

influence on the observed variable.  

3.1.3 Data Generation 

The population data were generated from a multivariate normal distribution. A 

data matrix, A, of eight standard normal variables was generated using the SAS 

RANNOR procedure (SAS Institute Inc., 2009). A was multiplied by the factor pattern 

matrix, P, to introduce correlation among the observed variables. In the resultant matrix, 

M, the variables were correlated. P is defined as the square root of the covariance matrix, 

which was calculated from the population parameters. Then the observations of the data 

matrix M were transformed using  

)11(,*t μSDMM +=
 

where * indicates matrix multiplication, µ and SD are diagonal matrices containing 

means and standard deviations, respectively. The simulation data were generated for two 
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groups. The same methodology was applied to generate the data in each group. Another 

data matrix, say O1, of 8 standard normal variables with single observation was generated 

using the SAS generator RANNOR (SAS Institute Inc., 2009) and it was transformed to 

have zero mean and pre-specified standard deviations. This observation was then added 

to all observations in each cluster to induce correlations among the observations within 

each cluster.  

A population size of 60,000 observations was generated. Previous studies have 

also generated similar population sizes (e.g., Flora & Corran, 2004). The population was 

comprised of 1200 clusters. Each cluster contained observations from both groups. 

Specifically, 40% of the observations in each cluster were from Group1 and 60% of the 

observations in each cluster were from Group2. The clusters contained different numbers 

of observations; specifically, the number of observations ranged from 25 to 75; the 

average size of each cluster was 50 observations.  

3.1.4 Simulation Parameters 

Six parameters were manipulated in the simulation study. These were: (a) 

magnitude of latent variable (i.e., factor) loadings, (b) intercepts of observed variables, 

(c) magnitude of correlation between latent variables, (d) magnitude of ICC, (e) cluster 

size and (f) total sample size (Table 1). 

Previous research (Guadagnoli & Velicer, 1988) suggested that the size of the 

factor loadings was important in determining the stability of the factor analysis solution. 

Specifically, the authors found that solutions were stable when factor loadings were equal 

to 0.80 even with small sample size. Stable solutions were obtained when factor loadings 

were close to 0.60 but the sample size was greater than 150. However, for small factor 
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loadings, for example 0.40, sample sizes of 300 to 400 observations were needed to 

obtain a stable solution. Given the different combinations of factor loadings and sample 

sizes, three different patterns of the factor loadings were considered. In the first pattern, 

Pattern A, the factor loadings of the eight indicators were set equal to 0.70 in both 

groups. In the second pattern, Pattern B, the factor loadings of the observed variables 

were set equal to values of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.9. The factor loadings 

were equal in the two groups for both of these patterns. In the third pattern, Pattern C, the 

factor loadings were not equal in the two groups. Specifically, the factor loadings in 

Group 1 were equal to 0.4, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, and 0.8 and in Group 2 they were 

equal to 0.4, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, and 0.8. In previous applied research about the 

SF-36, estimated factor loadings ranging from 0.4 to 0.9 were found for the observed 

variables (Keller et al. 1998; Peek, Ray, Patel, Stoebner-May, & Ottenbacher, 2004; Wu, 

Lee, & Yao, 2006). These studies also found a range of values (63 to 95) for the 

intercepts of the observed variables of the SF-36. In this study, the intercepts of the 

observed variables were equal and unequal in the two groups. In the equality condition, 

the value of the intercepts was 70 in both groups but in the inequality condition the values 

of intercepts were 75 and 80 in Group 1 and Group 2, respectively. Other simulation 

studies (Chen, 2007; Muthén & Satorra, 1995) were also conducted using similar values 

for the intercepts. 

The correlation, ρ, between the two latent variables was set at values of 0.20, 0.50 

and 0.80. Different values of ρ were also investigated in other studies (Cheung & 

Rensvold, 2002; Muthén & Satorra, 1995; Wu et al., 2006). The standard deviations,σ , 

of the observed variables were set to be equal in the two groups. The values of σ  were 
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assumed to be 15 in the two groups. The values of σ of 8 indicators of the SF-36 were 

found in the range of 12 to 36 (Keller et al. 1998; Peek et al., 2004; Wu et al., 2006). 

The ICC was also manipulated in this simulation study. The ICC can simply be 

expressed as 

)12(,ICC 2
W

2
B

2
B

σσ
σ
+

=

 

where 2
Bσ  is the between cluster variance and 2

Wσ is the within cluster variance. Different 

values of the ICC were assumed by changing the standard deviations in the generation of 

data matrix O1 in section 3.1.3. Three values of standard deviations, 0, 2 and 4, were used 

to generate this data matrix in order to produce different value of the ICC. The values of 

the ICC were equal to 0.00, 0.27 and 0.61 when the values of 0, 2 and 4 were used to 

generate O1 and σ  equal 15 was used to generate the data matrix M in section 3.1.3. All 

eight indicators in the CFA model were assumed to have the same ICC. Different values 

of ICC were assumed to be investigated to cover a range of survey applications. The 

values of ICC were considered from low to high to take the effect of various levels of 

ICC on estimation methods. Previous research has investigated values for the ICC 

ranging from 0.05 to 0.50 (Muthén & Satorra, 1995; Stapleton, 2008). 

The cluster size was varied, because the size of clusters is known to strongly 

affect parameter estimation (Muthén & Satorra, 1995). Different cluster sizes also reflect 

the different survey situations. In this study, four different sizes of clusters were 

considered, including clusters of size 25, 40, 60, and 75. 

The number of clusters in the sample must be equal or more than the number of 

free parameters in the model to be estimated. In some models (for example, configural 



 34  

invariance), the number of free parameters is 50, which is the maximum number of free 

parameters to be estimated in one model. Therefore, the number of clusters was assumed 

54 and this number was held fixed throughout the simulation study. 

Several rules of thumb have been proposed to decide about the sample size for a 

particular study, for example, 5 to 10 observations per parameters, 50 observations per 

variable,  no less than 100 observations, and so on (Floyd & Widaman, 1995; Joreskog & 

Sorbom, 1989; Muthén & Muthén, 2002). Three different samples of sizes N = 400, 650, 

and 1000 were investigated in this study. These sample sizes are consistent with other 

simulation studies conducting MI tests (Cheung & Rensvold, 2002; French & Finch, 

2006; Lubke & Muthen, 2004). Various sample sizes were investigated because 

the 2χ test statistic is sensitive to sample size. 

A total of 972 conditions were investigated in the simulation study: 3 patterns of 

factor loadings x 3 correlations between two factors x 3 levels of ICC x 4 cluster sizes x 3 

total sample sizes x 3 estimation methods. For each set of conditions, 1000 samples of 

data were generated. For each sample, four MI tests were conducted and information 

about rejection of the LRT and CFI tests was recorded as well as the estimates of the 

factor loadings. In cases where there was no difference between the two groups in the 

simulation parameters, rejection of the LRT and CFI tests represents a Type I error (i.e., 

erroneously rejecting a true null hypothesis). In cases where there was a different 

between the two groups in the simulation parameters, rejection of the LRT and CFI tests 

represents a correct decision and enables an investigation of statistical power. To 

investigate the power of estimation methods both factor loadings and intercepts were 
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different between the two groups for all power conditions. For all conditions four cluster 

sizes were used. 

 
Table 1: Simulation study parameters. 
Parameter Parameter values 

λ • Pattern A: 0.70 (all are equal in Group 1 & Group 2) 
 
• Pattern B: 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.90 (Group 1 &   
                    Group 2) 
 
• Pattern C: 0.40, 0.50, 0.60, 0.80, 0.50, 0.80, 0.50, 0.60 (Group 1) &  
                   0.40, 0.60, 0.60, 0.70, 0.50, 0.80, 0.70, 0.60  (Group 2) 

τ • 70-70 (Group 1 & Group 2) 
• 75-80 (Group 1 & Group 2) 

ρ •  0.20  
•  0.50  
•  0.80  

σ • 15 
ICC • 0.00 

• 0.27 
• 0.61 

Cluster size • 25 
• 40  
• 60 
• 75 

# of clusters  • 54 
N • 400 

• 650 
• 1000 

Note: λ = factor loading; τ = intercept; ρ = correlation between two factors; σ = standard 
deviation; ICC = intraclass correlation; N = sample size. 
 

3.1.5 Sample Selection Design 

From the generated population, samples were drawn in two stages. In stage 1, 54 

clusters were selected using a PPS method from 1200 clusters and the sample weights for 

selected clusters were calculated. In stage 2, a SRS design was applied to select the three 

samples of sizes of 400, 650, and 1000 observations. Samples were drawn from the 54 
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clusters selected in stage 1. The sample weights for the selected observations were also 

calculated. The final sample weights for selected observations were obtained by 

multiplying the sample weights calculated in the two stages. Unequal number of 

observations was selected from the two groups in each of the three samples.  

3.1.6 Simulation Software  

SAS software version 9.2 (SAS Institute Inc., 2009) was used to generate the data 

for the population and to select the observations. The data generation program was 

written in SAS/IML. The SURVEYSELECT procedure was used to sample the 

observations from the population. Mplus software, version 5.1 was used to estimate the 

model parameters (Muthén & Muthén, 2007) and conduct the tests of statistical 

significance for each form of MI.  

3.1.7 Measurement Invariance Tests 

Four tests of MI were conducted for each simulated dataset: configural, metric, 

scalar and complete invariance. Let M1, M2, M3, & M4 represent the configural, metric, 

scalar, and complete invariance models, respectively. The 2χ and CFI statistics were 

calculated according to equations 3 and 4, respectively, for the ML method, and 

according to equations 8 and 10, respectively, for the PML method. The estimation 

methods were evaluated based on the Type I error and power rates of 2χ and CFI for 

configural invariance. The Type I error and power rates of 2χ∆  (i.e., LRT) and ΔCFI 

were investigated for metric, scalar, and complete invariance.  

First of all, configural invariance was established if the two-factor model (Figure 

1) showed acceptable fit in each of the two groups. The statistical significance of 
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the 2χ statistic was assessed at the value of α = 0.05. The 2χ test rejected the model M1 

when the p-value was less or equal to 0.05. The CFI statistic rejected the model M1 when 

its value was less than 0.95. To examine metric invariance, the difference in 2χ values 

(i.e., 2χ∆ ) was calculated between the models of M2 & M1 for the ML estimator. For the 

PML method 2χ∆ was calculated for models of M2 & M1 based on the Satorra-

Bentler 2χ scaled difference test (Satorra & Bentler, 2001). These differences were then 

tested with the degrees of freedom (df) equal to the difference in df between the models 

M2 and M1. Non-significance of the difference in 2χ  implies the invariance of factor 

loadings across two groups, i.e., metric invariance is established. The difference in the 

CFI (i.e., ΔCFI) values of the models M2 and M1 was also obtained for ML and PML 

methods. If ΔCFI was greater than 0.01, it was suggested that the null hypothesis of the 

equality of the factor loadings in two groups should be rejected (Bentler, 1990).  

Scalar invariance of the measurement model across two groups was examined by 

calculating 2χ∆  and ΔCFI between the models M3 and M2 for the ML and PML 

methods. Again, Satorra-Bentler scaled 2χ difference tests were applied to calculate 

2χ∆ when PML was employed. The difference tests were conducted as in metric 

invariance. Finally, the complete invariance test was carried out by calculating 2χ∆  and 

ΔCFI for the models M4 and M3. Again, the difference tests were conducted as in scalar 

invariance. The 2χ∆ , ΔCFI, and model parameter estimates were calculated for 1000 

replications.  

Type I error and power rates of 2χ∆ and ΔCFI were calculated for each of MI 

tests procedures and for all three estimation methods, ML, PML1 and PML2. Moreover, 
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the percent bias of the standardized factor loadings was calculated for each replication 

using the formula as  

)13(,100
ˆ

Bias ×
−

=
θ
θθ  

where θ  is the population parameter and θ̂  is the estimate. The bias was same for the 

PML1 and PML2 because estimated factor loadings were same for these two methods. 

However, the standard errors of the factor loadings were not the same for the two 

estimation methods PML1 and PML2. 

3.2 Results 

The simulation study compared the ML, PML1, and PML2 estimation methods by 

investigating the performance of the fit statistics LRT and CFI for MI tests using CFA 

techniques. The average Type I error and power rates of the LRT and ΔCFI for MI tests 

are provided by the patterns of factor loadings, sample size, ICC, and methods of 

estimation.  In Appendix A, the Tables A-1 and A-2 described the average Type I error 

rates of the LRT and CFI statistics, respectively; while Tables A-3 and A-4 described the 

average power rates of these statistics, respectively. The average percentage biases of the 

standardized factor loadings are found in Tables A-5 to A-7 in Appendix A. Biases were 

presented for the ML and PML2 because the bias was the same for the PML1 and PML2 

methods. Type I error rates, power rates, and biases were summarized separately in a 

number of figures in this chapter. 

3.2.1 Type I Error Rates  

For the factor loadings of Pattern A and Pattern B, the rejection rates of the LRT 

for MI tests are described in Table A-1 by sample size, ICC and method of estimation. 



 39  

The Type I error rates of the LRT for configural invariance with factor loading Pattern A 

were higher for PML1 and PML2 than that of ML method when sample size and ICC 

were relatively small (Figure 2). On the other hand, ML and PML1 methods had higher 

Type I error rates than that of PML2 method in the case of high ICC and large sample 

size (Figures 3 and 4).  

 
Figure 2: Type I error rates of the likelihood ratio test by intraclass correlation (ICC) and 
estimation method for N = 400 with Pattern A factor loadings. 

0
2
4
6
8

10
12
14

0 0.27 0.61

ICC

T
yp

e 
I e

rr
or

 ra
te

s 
(%

)

ML
PML1
PML2

 
 

 

An increasing trend was observed in the Type I error rates of the LRT for the 

methods of ML and PML1 with increasing sample sizes but this trend did not exist for the 

method of PML2. The Type I error rates of the LRT for configural invariance were 

similar for factor loading Patterns A and B.  
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Figure 3: Type I error rates of the likelihood ratio test by intraclass correlation (ICC) and 
estimation method for N = 650 with Pattern A factor loadings.  
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Figure 4: Type I error rates of the likelihood ratio test by intraclass correlation (ICC) and 
estimation method for N = 1000 with Pattern A factor loadings. 
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For metric invariance, no particular trend for the Type I error rates of LRT was 

found for different sample sizes and ICC with factor loading Patterns A and B (Table A-1 

in Appendix A). The Type I error rates of the LRT for all estimation methods were close 

to the nominal 5% level, except for the condition of sample size of 650, ICC of 0.61 in 

Pattern A. For this particular condition the rejection rate (11.23%) in the PML1 method 

was almost double compared to the other methods.  The results about the Type I error 
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rates of the LRT were similar to metric invariance for scalar invariance as well (Table A-

1). However, the Type I error rates of LRT for PML1 method was approximately double 

that of the other methods when sample size was small (i.e., 400 observations) with factor 

loadings Pattern A in complete invariance. For the factor loadings Pattern B, the null 

hypothesis of complete invariance was rejected in the same way by all three methods of 

estimation. 

The rejection rate was very low for the CFI for all three methods of estimation 

when configural invariance was tested (Table A-2 in Appendix A). This was true for both 

scenarios of factor loadings Pattern A and Pattern B. In terms of the Type I error rates of 

∆CFI, an increasing tendency appeared when ICC was increased. This tendency was 

apparent when sample size was small because for high sample size the Type I error rates 

were close to zero. This fact was true except for the method of PML1 with factor 

loadings Pattern A and sample size of 400. Compared to the ML and PML2 methods, 

PML1 had rejected the null hypothesis of metric, scalar and complete invariance more 

frequently for factor loadings Pattern A. For ML and PML2 methods the Type I error 

rates of ∆CFI were less than the nominal 5% level for all forms of MI.  

3.2.2 Power Rates  

Table A-3, in Appendix A, describes the power rates of the LRT for MI tests by 

sample size, ICC and methods of estimation with factor loadings Pattern C (i.e., factor 

loadings were unequal within and between two groups). Moreover, intercepts were 

unequal in the two groups of observations.  
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In order to test the metric invariance, ML, PML1, and PML2 methods rejected the 

LRT in an increasing rate for increasing sample size but in a decreasing rate with 

increasing values of ICC (Figures 5, 6 and 7).  

 
Figure 5: Power rates of the likelihood ratio test by intraclass correlation (ICC) and 
estimation method for metric invariance with N = 400. 
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Figure 6: Power rates of the likelihood ratio test by intraclass correlation (ICC) and 
estimation method for metric invariance with N = 650. 
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The power rates of the LRT were higher for ML than for the PML1 and PML2 

methods for factor loading Pattern C with unequal intercepts in the two groups. For 
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increased sample size, power rates were very similar for all three methods. Similar 

patterns of the power rates of LRT were found for testing scalar invariance and complete 

invariance. These patterns of power rates were also similar to metric invariance. 

 
Figure 7: Power rates of the likelihood ratio test by intraclass correlation (ICC) and 
estimation method for metric invariance with N = 1000. 
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The power rates of ∆CFI were described in Table A-4 in Appendix A for factor 

loadings pattern C with unequal intercepts in the two groups. For testing metric 

invariance, an increasing pattern was found in the power rates of ∆CFI with increasing 

values of ICC for all methods of estimation (Figure 8). The rates for ∆CFI were higher 

for the PML1 and PML2 methods compared to the ML method of estimation. This same 

relationship was also found for scalar invariance. For complete invariance, the power 

rates of ∆CFI were higher for PML2 th an that of ML and PML1 (Figure 9). The 

differences were more evident when ICC was high. However, a decreasing pattern 

emerged in the power rates of ∆CFI with increasing values of ICC, which was opposite to 
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metric or scalar invariance. Moreover, there was a decreasing pattern in the power rates 

when sample sizes were increased for all forms of MI.  

 
Figure 8: Power rates for the difference in comparative fit indices for nested models by 
intraclass correlation (ICC) and estimation method for metric invariance with N = 1000. 
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Figure 9: Power rates for the difference in comparative fit indices for nested models by 
intraclass correlation (ICC) and estimation method for complete invariance with N = 
1000. 
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3.2.3 Bias of Standardized Factor Loadings 

The average percentage biases of standardized factor loadings are described in 

Table A-5 for the Pattern A factor loadings and in Table A-6 for the Pattern B factor 

loadings in Appendix A. The results are summarized in Figures 10-12. 

All the biases of factor loadings were negative when the value of ICC was 0.27 

and 0.61 except for a few conditions. Moreover, biases increased negatively with 

increasing values of ICC for all forms of MI tests. But all biases were greater or equal to -

5.2% for the factor loadings of Pattern A. It was not apparent that there was a particular 

trend in the biases of factor loadings for the methods of ML and PML2. As an example, 

Figure 10 illustrated the biases for these methods when Pattern A factor loadings were 

used for Group 2 in the configural invariance model. The biases for Group 1 were also 

similar for the two methods of estimation. For complete invariance, estimation methods 

also produced similar biases to configural invariance.    

 
Figure 10: Bias (B31) of standardized factor loadings (Pattern A) by intraclass correlation 
(ICC) and estimation method for configural invariance, Group 2 with N = 400. 
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For Pattern B factor loadings, biases tended to be high and positive in Group 1 for 

testing configural invariance with sample sizes of 400 and 650 and low factor loadings 

(from 0.40 to 0.60) (Table A-6). In particular, for a factor loading of 0.40, the bias was 

492.7% when PML2 method was employed with sample size of 400. Comparatively, the 

ML method had smaller bias than the PML2 method for this specific sample size and low 

factor loadings. On the other hand, for a sample size of 650 and factor loading of 0.40, 

the bias was 80.0% when ML was used with an ICC of 0.27 whereas the bias was 78.1% 

when PML2 was used with an ICC of 0.61. The tendency for increased bias disappeared 

when sample size was increased to 1000 with the same factor loadings. Both methods, 

ML and PML2, produced similar results of bias for Group 2 in the configural invariance 

model. As well, for complete invariance, there was no particular trend of biases for these 

two methods of estimation. 

The biases of standardized factor loadings are provided in Table A-7 in Appendix 

A for Pattern C factor loadings. As in the other factor loading patterns, negative biases 

were observed and they increased with increasing values of the ICC.  In contrast, positive 

biases decreased with increasing values of ICC. For configural invariance, the biases 

were similar for the two methods ML and PML2 regardless of sample size. This was also 

true for other patterns (Pattern A and Pattern B) of factor loadings because there was no 

impact of parameter constraints for testing configural invariance.  
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Figure 11: Bias (B41) of standardized factor loadings (Pattern C) by intraclass correlation 
(ICC) and estimation method for complete invariance, Group 1 with N = 1000. 
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For testing complete invariance, biases were both positive and negative because 

some of the factor loadings were unequal in two groups but the estimated factor loadings 

were constrained to be equal. No substantial differences were evident between ML and 

PML2 estimation methods (Figures 11 and 12). Estimation methods ML and PML2 also 

produced similar biases for different sample sizes.     

 
Figure 12: Bias (B72) of standardized factor loadings (Pattern C) by intraclass correlation 
(ICC) and estimation method for complete invariance, Group 1 with N = 1000. 
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CHAPTER FOUR: CANADIAN COMMUNITY HEALTH SURVEY DATA 

ANALYSIS 

This chapter demonstrates the application of the estimation methods and CFA 

techniques that were used in the simulation study in the previous chapter. However, 

although three estimation methods were investigated in the simulation study, only two of 

them were used to analyze the CCHS data. Specifically, in the CCHS data analysis, ML 

and PML1 were compared for testing the MI of the SF-36 (the SF-36 questionnaire is 

attached in Appendix C). The other method, PML2 which requires information about 

clustering or stratification variables, was not used because this information is not 

available in the CCHS cycle 3.1 data.   

This chapter is organized as follows: data source and study sample, study 

measures and data analysis are described in the Methods section. The Results section 

includes a description of the characteristics of the sample and subsamples, the 

measurement model, and the measurement invariance test results.    

4.1 Methods 

4.1.1 Data Source and Study Sample 

The CCHS is a national health survey that covers approximately 98% of the 

Canadian population in the provinces, including immigrants, aged 12 years or older. 

Statistics Canada conducts the CCHS to provide regular and timely cross-sectional 

estimates of health determinants, health status, and health system utilization for a total of 

136 health regions in Canada, including 10 regions in Manitoba. CCHS data are generally 

collected at two-year intervals. The CCHS excludes individuals living on Indian Reserves 
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and on Crown Lands, institutional residents, full-time members of the Canadian Forces 

and the residents of some remote areas. 

The CCHS cycle 3.1 data were collected from January 2005 to January 2006. In 

this cycle, there were 7,352 respondents 12 years of age or older from the province of 

Manitoba. All respondents aged 20 years or older were included in the analysis, to retain 

a focus on the adult population in whom chronic disease is more likely to be a significant 

issue.  

For all of Canada, the sample size for CCHS cycle 3.1 was 132,947 respondents. 

Manitoba had a response rate of 83.3% in this cycle 3.1. The national response rate was 

78.9%. The provincial response rates varied from 76.3% in Quebec to 85.7% in 

Newfoundland and Labrador (Statistics Canada, 2006).  

4.1.2 Study Measures 

The CCHS cycle 3.1 included the SF-36 as optional content, meaning that the 

data was only gathered in those provinces and territories who decided to participate in 

data collection. The SF-36 was chosen by the province of Manitoba as optional content. 

The other province that selected this measure in cycle 3.1 was Newfoundland and 

Labrador. 

The SF-36 is a well-known measure of HRQOL (Alonso et al. 2004). The items in 

the SF-36 were drawn from the 245-item Medical Outcomes Study (Ware & Sherbourne, 

1992). The Medical Outcomes Study is used to evaluate whether variations in patient 

outcomes are explained by differences in system of care, clinician specialty, and 

clinician’s technical and interpersonal styles and to develop more practical tools for the 

routine monitoring of patient outcomes in medical practices. Medical outcomes may 
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include clinical end points; physical, social and role functioning in everyday living, 

patient’s perceptions of their general health and well-being; and satisfaction with 

treatment. 

The SF-36 is composed of 36 items that are summarized into multi-item scales 

(i.e., indicators); each scale is designed to measure one of eight generic health domains: 

physical functioning (PF), role limitations due to physical health problems (RP), bodily 

pain (BP), general health perceptions (GH), vitality (VT), social functioning (SF), role 

limitation due to emotional problems (RE), and mental health (MH). The PF scale 

includes ten items regarding the limitations of physical activities (vigorous and moderate) 

including lifting and carrying groceries, climbing stairs, bending, kneeling, walking 

moderate distances, and bathing or dressing. Two scales, RP and RE, were defined in the 

SF-36 to distinguish between role limitations due to physical and mental health problems. 

Four items regarding the problems with work or other regular daily activities as a result 

of physical health were included in RP; e.g., cut down the amount of time spent on work, 

accomplished less work than expected, difficulties performing work or other activities. 

RE contains three items about problems with work or regular activities because of 

depression or anxiety. BP has two items concerning the frequency of bodily pain or 

discomfort and measuring the extent of interference with normal activities due to pain. 

There are five items in the GH perception scale about personal health. VT, a scale of four 

items, measures energy level and fatigue. The SF scale has two items that assess the 

impact of physical health or emotional problems on social activities.  The five-item MH 

scale consists of items from anxiety, depression, loss of behavioral or emotional control, 

and psychological wellbeing. The eight scales are summarized into two component 
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scores: physical health composed of PF, RP, BP, and GH, and mental health composed of 

VT, SF, RE, and MH.  To facilitate comparisons across the SF-36 scales, each scale’s 

raw scores are transformed to a 0 (worst measured health) to 100 (best measured health). 

The transformed scale scores are derived using the formula: 

Transformed scale = [(Actual score - Lowest possible score)/Possible score range] x 100. 

In the CCHS cycle 3.1, self-reported information on ethnic or cultural background 

was used to identify Aboriginal and non-Aboriginal respondents. The term Aboriginal 

may have different meanings, depending on the context. The respondents were first asked 

about their ancestor’s ethnic or cultural background as follows: “To which ethnic or 

cultural groups did your ancestors belong?” There were two questions which were used 

to define Aboriginal population. The first question which was used from January to May 

2005 was: “People living in Canada come from many different cultural and racial 

backgrounds. Are you… Aboriginal peoples of North America (North American Indian, 

Métis, Inuit/Eskimo)?” The second question which was used from June 2005 to January 

2006 was: “Are you an Aboriginal person, that is, North American Indian, Métis or 

Inuit?” The respondents who answered yes to either of these two questions were 

considered to be Aboriginal. All other respondents are considered as non-Aboriginal 

population. 

CCHS respondents were asked to provide information about several chronic 

health conditions. Chronic conditions include both physical and mental health conditions. 

A chronic condition was defined in the survey as any long-term condition that had lasted 

or was expected to last six months or more and that had been diagnosed by a health 

professional. The results of the chronic condition questions were used by CCHS 
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methodologists to define a single indicator of health status, called any chronic condition. 

Specifically, questions were asked about the following 32 chronic conditions: food 

allergies, other allergies, asthma, fibromyalgia, arthritis/rheumatism, high blood pressure, 

back problems, migraine headaches, chronic bronchitis, emphysema, chronic obstructive 

pulmonary disease, diabetes, epilepsy, heart disease, cancer, stomach or intestinal ulcers, 

stroke, urinary incontinence, bowel disorders, Alzheimer’s Disease or any other 

dementia, cataracts, glaucoma, thyroid condition, chronic fatigue syndrome, multiple 

chemical sensitivities, schizophrenia, mood disorder, anxiety disorder, autism or any 

other developmental disorder, learning disability, eating disorder such as anorexia or 

bulimia, and any other long-term physical or mental health condition that has been 

diagnosed by a health professional. For each of the chronic conditions, there was a 

dichotomous response. Moreover, a single dichotomous chronic health condition variable 

was created which represents the presence or absence of any of the chronic health 

conditions mentioned above. 

Information about age, sex, and marital status of respondents was also collected. 

Marital status was categorized as married, common-law, widowed, separated, divorced, 

and single. Respondents to the CCHS 3.1 were asked to provide their best estimate of the 

total income, before taxes and deductions, of all household members from all sources in 

the past 12 months. Respondents’ total household income was assigned to one of six 

categories: less than $10,000, $10,000-$29,999, $30,000-$49,999, $50,000-$79,999, 

$80,000-$99,999 and $100,000+. Respondents were also classified as whether they lived 

in an urban or rural area. Urban areas are those which are continuously built-up having a 
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population concentration of 1,000 or more, as well the population density of 400 or more 

per square kilometre. 

4.1.3 Data Analysis 

The study sample was used to derive two subsamples based on the criteria of 

whether survey respondents self-reported having at least one chronic condition (ALOCC) 

or did not have any chronic conditions (NCC). The data were summarized by frequencies 

and percentages on the following variables: ethnicity, age group (20-44 years, 45-64 

years, and 65+ years), sex, marital status, region, income, and chronic conditions.  

Moreover, in each of the subsamples, percentages and frequencies were separately 

generated for Aboriginal and non-Aboriginal respondents. Unweighted frequencies and 

percentages were produced. The distributional assumptions of the SF-36 indicators were 

assessed using univariate and multivariate measures of skewness and kurtosis. The 

correlations among the SF-36 indicators were also calculated for the entire sample as well 

as for the two subsamples of ALOCC and NCC, by ethnicity (see Appendix B). 

As this study focused on the MI of the SF-36 in Aboriginal and non-Aboriginal 

groups for each of the subsamples of ALOCC and NCC, it was necessary to find a 

suitable measurement model of the SF-36 that fits well to Aboriginal and non-Aboriginal 

groups in both subsamples. In order to obtain a well-fitted measurement model, the 

standard two-factor (physical health and mental health) model (i.e., Figure 1) was 

initially fit to the SF-36 data for Aboriginal and non-Aboriginal groups in both ALOCC 

and NCC subsamples. Goodness-of-fit indices that were used to evaluate the 

measurement model included the 2χ test, CFI, RMSEA, TLI, and SRMR. The model 

2χ statistic was assessed at the significance level of α=0.05. The CFI and TLI values of 
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0.90 or more were used as indicators of good fit. Values of the RMSEA less than 0.10 

were reflective of a well-fitting model. For the SRMR, the criterion of 0.08 was adopted 

as an indication of a well-fitting. These criterions for evaluating measurement model fit 

have been adopted in previous research. (Lix et al., 2009; Zimprich, Allemand, & 

Hornung, 2006).   

Model modification indices were calculated and used as a guide to re-specify the 

measurement model to improve model fit. The correlation between two factors, physical 

and mental, was also estimated for the fitted measurement model. An estimated 

correlation greater than 0.85 has been used previously as an indicator of collinearity of 

the factors (Kline, 2005). 

The measurement model for which a good fit was obtained for each of Aboriginal 

and non-Aboriginal groups in the subsamples of ALOCC and NCC was used as a final 

model to test the MI hypotheses. The four most common types of MI hypotheses 

(Vandenberg & Lance, 2000) were tested using CFA techniques: configural, metric, 

scalar, and complete invariance. 

Configural invariance was established if the measurement model shows 

acceptable fit in each subsample of ALOCC and NCC. Configural invariance was 

assessed based on several goodness of fit indices including 2χ  test, RMSEA, CFI, TLI, 

and SRMR. Each of these indicators is sensitive to different aspects of model 

misspecification (Loehlin, 2004), which is why multiple indicators are recommended for 

evaluation of MI.  

The LRT statistic was used to test the null hypothesis for each form of MI. 

Because of the sensitivity of the LRT to sample size, it is recommended to also use the 
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absolute difference in CFI values for two models to assess MI across groups (Cheung & 

Rensvold, 2002). An absolute difference in CFI values less than or equal 0.01 for two 

models is evidence that model parameters are likely to be equal across groups (Bentler, 

1990).  

If configural invariance was satisfied, then the hypothesis of metric invariance 

was tested next. To examine metric invariance, constrained (MMI) and an unconstrained 

(MUC) models were fit to the data. In the former model, factor loadings were assumed to 

be equal across Aboriginal and non-Aboriginal groups, while in the latter model they 

were freely estimated. The difference in 2χ values (i.e., 2χ∆ ) for MMI and MUC was used 

to test the invariance of factor loadings across the two groups. The 2χ∆ was compared to 

a critical value from a 2χ distribution with the degrees of freedom equal to the difference 

in degrees of freedom between the two nested models, MMI and MUC. Non-significance of 

2χ∆ statistic implies the invariance of factor loadings across two groups (i.e., complete 

metric invariance is established). The absolute difference in CFI values (i.e., ΔCFI) 

between MMI and MUC models was calculated and compared to the criterion of 0.01. If 

the value of ΔCFI was less than or equal to 0.01 then the null hypothesis of metric 

invariance was not rejected. If there was a conflict between the two statistics ∆χ2 and 

∆CFI, i.e., one rejects the null hypothesis and the other do not, then the decision was 

taken based on the ∆CFI  statistic because the ∆χ 2 statistic is sensitive to sample size 

(Meredith & Teresi, 2006). 

Scalar invariance was assessed only if metric invariance was established across 

the two groups. Scalar invariance of the measurement model was assessed by considering 

another constrained model (MSI) in which factor loadings and intercepts were constrained 
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to be equal across two groups. The 2χ∆ and ΔCFI statistics for models MMI and MSI were 

used in the same way as for the test of metric invariance to determine whether scalar 

invariance was established. If scalar invariance was established then complete invariance 

was evaluated.  For this form of invariance, the last model (MCI) was considered in which 

factor loadings, intercepts, and error variance were constrained to be equal across groups. 

Again, the 2χ∆ and ΔCFI statistics for models MSI and MCI were examined to determine 

whether complete invariance of the measurement model was achieved.  

Separate analyses were conducted for each of the subsamples, ALOCC and NCC, 

to establish the MI for Aboriginal and non-Aboriginal groups. This is because the 

presence of a chronic condition may be a confounding variable in the analysis.  

The ML and PML1 methods were employed to estimate model parameters and 

therefore to test the hypotheses about MI. The PML2 method was not employed in this 

analysis due to the unavailability of information about clusters or strata used in the CCHS 

survey design.  

The CCHS data set contained sample weights, which were developed by the 

survey methodologists. Sample weights were used in the analysis so that parameter 

estimates produced from the data were representative of the population from which 

sample was selected. 

SAS software version 9.2 was used to conduct the descriptive analyses of the 

samples (SAS Institute Inc., 2009). All MI analyses were carried out using Mplus 

software version 5.1 (Muthén & Muthén, 2007). Mplus is appropriate for conducting 

multi-group CFA when groups are of unequal size and data are obtained from a complex 

survey design.  
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4.2 Results 

4.2.1 Characteristics of Sample 

There were 7,352 Manitoba respondents to the CCHS cycle 3.1. A total of 6,437 

respondents were adults 20 years of age or older. The characteristics of the study sample 

are described in Table 2. Off-reserve Aboriginal respondents comprised 8.2% (n = 518)  

 
Table 2: Characteristics of Manitoba adult respondents, Canadian Community Health 
Survey, cycle 3.1 (2005/2006). 

            N            % 
Ethnicity Aboriginal 518 8.2 

Non-Aboriginal 5802 91.8 
Sex Male 2918 45.3 

Female 3519 54.7 
Age (years) 20-44 2502 38.9 

45-64 2148 33.4 
65+ 1787 27.8 

Marital Status Married/Common-law Partner 3693 57.5 
Single 1234 19.2 
Widowed/Separated/Divorced 1500 23.3 

Region Urban 4214 65.5 
Rural 2223 34.5 

Chronic 
Conditions 

Any chronic condition 4711 73.5 
Anxiety disorder  292 4.6 
Arthritis 1749 27.2 
Asthma 510 7.9 
Bowel disorder 295 4.6 
Cancer 127 2.0 
Chronic bronchitis 173 2.7 
Chronic obstructive pulmonary disease (COPD) 65 1.2 
Diabetes 462 7.2 
Heart disease 385 6.0 
High blood pressure 1468 22.9 
Mood disorder 395 6.2 
Stroke 125 1.9 

Annual 
Income 

<$10,000 188 3.5 
$10,000-29,999 1535 28.4 
$30,000-49,999 1291 23.9 
$50,000-79,999 1321 24.4 
$80,000-99,999 463 8.6 
$100,000+ 610 11.3 
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of the adult respondents. The percentage of females (54.7%) was higher than that of 

males. The average age of the adult respondents was 51.9 years (standard deviation 

(SD)=18.7) with the highest percentage of respondents in the youngest age group (20-44 

years) and the lowest percentage in the age group of 65+ years. More than half (57.5%) 

of the respondents were married or living common-law and less than one fifth (19.2%) 

was single. Almost two third (65.5%) of the CCHS 3.1 respondents lived in urban areas. 

Overall, there were 4711 (73.2%) respondents who reported having at least one 

chronic condition, with arthritis (27.2%) and high blood pressure (22.9%) being the most 

frequently reported chronic diseases. Chronic obstructive pulmonary disease (COPD), 

stroke, cancer, and chronic bronchitis had the lowest prevalence in the sample. 

The highest percentage (28.4%) of respondents was in the income range of 

$10,000 to $29,999, whereas the lowest percentages (3.5%) of respondents were in the 

lowest income range of less than $10,000 (Table 2). More than ten percent of respondents 

were in the highest income range ($100,000+). 

Descriptive information about the SF-36 indicators is contained in Table 3. The 

highest mean score was observed for the indicator of RE while the indicator of VT had 

the lowest mean score. The univariate measures of skewness were found to be negative 

whereas measures of kurtosis were found to be positive for all of the indicators. The 

skewness and kurtosis for the indicators of RP, BP, GH, and VT were close to zero which 

implied that indicators were approximately normally distributed. The skewness or 

kurtosis for the other indicators indicated that there was a departure from the assumption 

of normal distribution of the indicators.  
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Table 3: Means, standard deviations, skewness and kurtosis of indicators of the SF-36 for 
all Manitoba adult respondents, Canadian Community Health Survey, cycle 3.1 
(2005/2006). 

       PF       RP      BP     GH    VT      SF     RE     MH 
X  84.72 81.46 76.83 73.13 64.12 90.49 92.83 83.59 
σ  23.57 34.19 24.33 19.85 21.18 19.16 22.53 14.52 

1γ  -1.89 -1.59 -0.92 -0.94 -0.74 -2.47 -3.24 -1.72 

2γ  2.80 0.88 0.17 0.60 0.09 6.11 9.41 3.68 
Note: PF = physical functioning; RP = role limitations due to physical health problem; 
BP = bodily pain; GH = general health perception; VT = vitality; SF = social functioning; 
RE = role limitations due to emotional problems; MH = mental health; X = mean; σ  = 
standard deviation; 1γ  = skewness; 2γ  = kurtosis. 
 

4.2.2 Characteristics of Subsamples 

In the Manitoba adult population, 73.2% respondents reported having at least one 

chronic condition. Approximately 8.1% of respondents reported being of Aboriginal 

ethnicity in both the ALOCC (n = 376 respondents) and NCC (n = 138 respondents) 

subsamples.  

Table 4 described the unweighted percentages and frequencies of ALOCC 

respondents by ethnicity; the corresponding results for NCC respondents are reported in 

Table 5. In the NCC subsample (Table 5), there was a higher percentage of non-

Aboriginal than Aboriginal males. The mean ages of Aboriginal and non-Aboriginal 

groups in the ALOCC subsample were 43.9 (SD = 15.8) and 56.1 (SD = 18.3) years, 

respectively. The corresponding mean ages in the NCC subsample were 34.1 (SD = 12.2) 

and 43.1 (SD = 15.8) years, respectively. The proportion of Aboriginal respondents in the 

ALOCC subsample was almost double (53.5%) that of non-Aboriginal respondents 

(29.4%) in the lowest age group (20-44 years). On the other hand, in the highest age 

group (65+ years), the proportion of non-Aboriginal respondents in the ALOCC 

subsample was more than three times (35.4%) that of Aboriginal respondents (10.9%) 
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(Table 4). In terms of marital status, in the ALOCC subsample, about half of Aboriginal 

respondents were married or had a common-law partner, which was similar to the 

percentage for non-Aboriginal respondents.  

 
Table 4: Characteristics of Manitoba adult respondents with at least one chronic condition 
by ethnicity, Canadian Community Health Survey, cycle 3.1 (2005/2006). 
        Aboriginal         Non-Aboriginal 

       N         (%)         N          (%) 
Total 376 8.1 4251 91.9 
Sex Male 144 38.3 1778 41.8 

Female 232 61.7 2473 58.2 
Age 
(years) 

20-44  201 53.5 1252 29.5 
45-64  134 35.6 1492 35.1 
65+ 41 10.9 1507 35.5 

Marital 
Status 

Married/Common-law 
partner 193 51.5 2438 57.4 

Single 108 28.8 661 15.6 
Widowed/Separated 
/Divorced 74 19.7 1148 27.0 

Region Urban 246 65.4 2726 64.1 
Rural 130 34.6 1525 35.9 

Chronic 
Condition 
 
 
 
 
 
 
 

 

Anxiety disorder  42 11.2 248 5.9 
Arthritis 118 31.6 1587 37.4 
Asthma 49 13.0 447 10.5 
Bowel disorder 23 6.1 267 6.3 
Cancer - - 116 2.7 
Chronic bronchitis 26 6.9 140 3.3 
Chronic obstructive 
pulmonary disease (COPD) – – 60 1.6 

Diabetes 49 13.0 405 9.5 
Heart disease 25 6.7 346 8.2 
High blood pressure 92 24.5 1343 31.6 
Mood disorder 47 12.5 342 8.1 
Stroke - - 114 2.7 

Annual 
Income 

<$10,000 27 8.4 129 3.6 
$10,000-29,999 120 37.2 1108 30.6 
$30,000-49,999 67 20.7 877 24.2 
$50,000-79,999 66 20.4 825 22.8 
$80,000-99,999 21 6.5 305 8.4 
$100,000+ 22 6.8 379 10.5 

Notes: Data in columns with – are suppressed due to small cell size. 
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In the NCC subsample, there were differences between Aboriginal and non-Aboriginal 

respondents in the proportion of who were married or common-law or were single. The 

proportion of Aboriginal respondents (73.9%) with NCC was higher compare to non-

Aboriginal respondents (68.7%) in urban area (Table 5) but these proportions were 

similar for the respondents with ALOCC (Table 4). 

Anxiety disorders, asthma, chronic bronchitis, diabetes, and mood disorders were 

higher and arthritis, heart disease, and high blood pressure were lower in the Aboriginal 

than in the non-Aboriginal group in the ALOCC subsample (Table 4).  

 
Table 5: Characteristics of Manitoba adult respondents with no chronic condition by 
ethnicity, Canadian Community Health Survey, cycle 3.1 (2005/2006).  
         Aboriginal       Non-Aboriginal 

         N           (%)            N           (%) 
Total 138 8.2 1535 91.8 
Sex Male 53 38.4 855 55.7 

Female 85 61.6 680 44.3 
Age 
(years) 

20-44  116 84.1 897 58.4 
45+ 22 15.9 638 41.6 

Marital 
Status 

Married/Common-law 
partner 77 55.8 925 60.4 

Single 61† 

 
44.2† 

 

389 25.4 
Widowed/Separated 
/Divorced 217 14.2 

Region Urban 102 73.9 1054 68.7 
Rural 36 26.1 481 31.3 

Annual 
Income 

<$30,000 54 44.3 279 21.1 

$30,000-49,999 24 19.7 316 23.9 
$50,000-79,999 24 19.7 401 30.4 
$80,000+ 20 16.4 324 24.5 

Notes: † represents the combined percentages and frequencies for single, widowed, 
separated and divorced. These categories were combined due to small sample sizes. 
 

 

Based on the total household income, there were proportionately more Aboriginal 

respondents than non-Aboriginal respondents in lower income categories in both the 
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ALOCC and NCC subsamples. However, in the highest income groups, there was a 

higher proportion of non-Aboriginal than Aboriginal respondents in both the NCC and 

ALOCC subsamples.  

 
Table 6: Means, standard deviations, skewness and kurtosis of indicators of the SF-36 for 
Manitoba adult respondents by chronic disease status and ethnicity, Canadian 
Community Health Survey, cycle 3.1 (2005/2006). 
          PF          RP         BP        GH     VT      SF     RE     MH 

ALOCC 
Aboriginal 

X  81.96 75.62 71.62 66.24 60.54 86.96 85.79 78.67 
σ  23.68 37.40 26.74 21.35 21.69 21.15 30.91 17.72 

1γ  -1.55 -1.16 -0.64 -0.68 -0.53 -1.84 -2.00 -1.20 
2γ  1.67 -0.34 -0.41 0.05 -0.31 2.92 2.50 1.04 

Non-Aboriginal 
X  80.26 76.96 72.53 69.60 61.45 88.43 91.66 82.72 
σ  25.75 36.91 25.04 20.57 21.85 20.99 24.20 15.23 

1γ  -1.51 -1.25 -0.70 -0.79 -.064 -2.16 -2.93 -1.66 
2γ  1.30 -0.12 -0.21 0.17 -0.15 4.35 7.40 3.27 

NCC 
Aboriginal 

X  95.53 94.59 89.13 78.52 69.50 95.02 95.78 83.91 
σ  11.07 19.48 17.68 13.07 17.89 11.28 16.57 11.38 

1γ  -4.27 -4.06 -1.90 -0.48 -0.67 -2.97 -4.38 -0.98 
2γ  23.53 16.20 3.94 -.026 0.10 10.25 19.71 1.02 

Non-Aboriginal 
X  96.50 93.72 88.54 83.81 71.79 96.50 97.48 87.24 
σ  10.00 20.99 16.84 12.72 17.12 10.96 12.87 10.55 

1γ  -5.35 -3.59 -1.68 -0.83 -0.92 -4.42 -5.84 -1.69 
2γ  35.71 12.05 3.24 0.59 1.01 23.24 35.99 4.71 

Note: PF = physical functioning; RP = role limitations due to physical health problem; 
BP = bodily pain; GH = general health perception; VT = vitality; SF = social functioning; 
RE = role limitations due emotional problems; MH = mental health; ALOCC = at least 
one chronic condition; NCC = no chronic condition; X  = mean; σ  = standard deviation; 

1γ  = skewness; 2γ  = kurtosis. 
 

The mean scores of the eight SF-36 indicators of SF-36 were higher for non-

Aboriginal than Aboriginal respondents in the ALOCC subsample (Table 6). In the NCC 
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subsample, the mean scores of the eight SF-36 indicators, with the exception of RP and 

BP, were higher for non-Aboriginal respondents than their Aboriginal counterparts. 

Comparing Aboriginal respondents who had and did not have a chronic condition, the 

mean scores were higher for the latter. A similar pattern of results was observed for non-

Aboriginal respondents. Although all the measures of skewness were negative, the values 

were close to zero for the indicators of BP, GH, and VT in the ALOCC subsample, and 

for the indicators of GH and VT in the NCC subsample for each of the two groups (Table 

6). The univariate measures of kurtosis for almost all of these indicators were positive 

(Table 6). The values of kurtosis for the indicators of RP, BP, GH and VT were close to 

zero in the two groups of Aboriginal and non-Aboriginal respondents in the ALOCC 

subsample. Large values of kurtosis were observed for the indicators of PF, RP, SF, and 

RE in the NCC subsample.   

4.2.3 Measurement Model 

Prior to testing different forms of MI, a measurement model was fitted to the data 

for each of the Aboriginal and non-Aboriginal groups in the ALOCC and NCC 

subsamples. In the standard SF-36 model (similar to Figure 1), four indicators have high 

loadings on the physical health factor and the other four indicators have high loadings on 

the mental health factor (Ware, Snow, Kosinski, & Gandek, 1993). The fit of the 

measurement model for each of the Aboriginal and non-Aboriginal groups with and 

without additional specifications are summarized in Table 7. Fit was evaluated using both 

ML and PML1 estimation methods. 

The 2χ test results suggest that this measurement model did not fit the data for the 

Aboriginal and non-Aboriginal groups in the ALOCC and NCC subsamples when the  
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Table 7: Fit criteria for measurement models of the SF-36, Canadian Community Health 
Survey, cycle 3.1 (2005/2006). 

Sub-sample   RMSEA (90% CI) TLI SRMR 2χ
 

  p-value df CFI r 

Two-factor Confirmatory Factor Analysis Model 
  PML1 

ALOCC AB 0.09 (0.07-0.11) 0.83 0.06 75.77 0.00 19 0.89 0.81 
NAB 0.07 (0.07-0.08) 0.84 0.06 431.10 0.00 19 0.89 0.82 

 NCC AB 0.13 (0.10-0.17) 0.71 0.09 63.96 0.00 19 0.80 0.46 
NAB 0.08 (0.07-0.09) 0.50 0.07 196.78 0.00 19 0.66 0.66 

  ML 
ALOCC AB 0.12 (0.10-0.14) 0.89 0.05 120.66 0.00 19 0.92 0.81 

NAB 0.14 (0.14-0.15) 0.83 0.07 1567.25 0.00 19 0.88 0.83 
NCC AB 0.10 (0.06-0.14) 0.83 0.08 43.43 0.00 19 0.88 0.38 

NAB 0.14 (0.13-0.15) 0.62 0.08 580.25 0.00 19 0.74 0.60 
Two-factor Confirmatory Factor Analysis Model with Correlated Errors 

  PML1 
ALOCC AB 0.07 (0.04-0.10) 0.90 0.04 34.94 0.00 13 0.96 0.94 

NAB 0.05 (0.04-0.05) 0.93 0.03 127.30 0.00 13 0.97 0.91 
NCC AB 0.09 (0.04-0.14) 0.88 0.05 25.93 0.02 13 0.94 0.83 

NAB 0.04 (0.03-0.06) 0.86 0.04 46.19 0.00 13 0.94 0.97 
  ML 

ALOCC AB 0.08 (0.06-0.11) 0.95 0.03 45.74 0.00 13 0.98 0.91 
NAB 0.09 (0.08-0.10) 0.93 0.03 456.53 0.00 13 0.97 0.92 

NCC AB 0.05 (0.00-0.11) 0.96 0.05 17.40 0.18 13 0.98 0.77 
NAB 0.10 (0.08-0.11) 0.83 0.05 188.10 0.00 13 0.92 0.96 

One-factor Confirmatory Factor Analysis Model 
  PML1 

ALOCC AB 0.10 (0.08-0.12) 0.78 0.07 97.11 0.00 20 0.84  
NAB 0.08 (0.08-0.09) 0.78 0.07 598.64 0.00 20 0.84  

NCC AB 0.29 (0.26-0.32) -0.39 0.12 245.98 0.00 20 0.01  
NAB 0.08 (0.07-0.09) 0.53 0.08 197.75 0.00 20 0.66  

  ML 
ALOCC AB 0.16 (0.14-0.18) 0.81 0.06 195.51 0.00 20  0.87  

NAB 0.16 (0.15-0.16) 0.78 0.07 2083.45 0.00 20 0.84  
NCC AB 0.16 (0.13-0.20) 0.53 0.11 90.06 0.00 20 0.67  

NAB 0.15 (0.15-0.16) 0.54 0.08 729.47 0.00 20 0.67  
One-factor Confirmatory Factor Analysis Model with Correlated Errors 

  PML1 
ALOCC AB 0.06 (0.04-0.09) 0.92 0.04 34.79 0.00 14 0.96  

NAB 0.05 (0.04-0.06) 0.92 0.04 157.03 0.00 14 0.96  
NCC AB 0.08 (0.03-0.13) 0.89 0.06 26.24 0.02 14 0.95  

NAB 0.04 (0.03-0.05) 0.88 0.04 45.75 0.00 14 0.94  
  ML 

ALOCC AB 0.09 (0.06-0.11) 0.94 0.03 54.01 0.00 14 0.97  
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NAB 0.09 (0.09-0.10) 0.92 0.04 527.22 0.00 14 0.96  
NCC AB 0.05 (0.00-0.11) 0.95 0.06 19.15 0.16 14 0.98  

NAB 0.09 (0.08-0.10) 0.84 0.05 188.93 0.00 14 0.92  
Notes: RMSEA = root mean square error of approximation; CI = confidence interval; TLI 
= Tucker-Lewis index; SRMR = root mean squared residual; df = degrees of freedom; 
CFI = comparative fit index; r = estimated correlation between two latent variables; 
PML1 = pseudo-maximum likelihood with weights; ML = maximum likelihood; ALOCC 
= at least one chronic condition; NCC = no chronic condition; AB = Aboriginal; NAB = 
Non-Aboriginal. 
 

PML1 estimation method was employed. This conclusion was supported by many of the 

other goodness-of-fit indices.  The RMSEA provided support of approximately good fit 

of this model for non-Aboriginal but not for Aboriginal respondents in both ALOCC and 

NCC subsamples. Based on the SRMR values, this model can not be rejected, except for 

Aboriginal respondents in the NCC subsample. Therefore, no test criterion has shown 

good fit of this measurement model for all groups of Aboriginal and non-Aboriginal in 

ALOCC and NCC subsamples for PML1 estimator. When an ML estimator was applied 

for this measurement model, the CFI value indicated a good fit for Aboriginals in 

ALOCC subsample.  The SRMR values also demonstrated the evidence of good fit for 

Aboriginal and non-Aboriginal groups in the ALOCC subsample. All other fit statistics 

rejected this model for all groups. 

Careful investigation of the modification indices for this model suggested that a 

substantial improvement in fit could be obtained when the error variances of the 

indicators were allowed to correlate. Specifically the following correlations had high 

modification indices: RP and BP; RP and SF; VT and MH; SF and MH; SF and RE; RE 

and MH. Based on the modification indices a two-factor measurement model (Figure 13) 

with correlated errors was specified and goodness of fit was assessed using both PML1 

and ML estimation methods.  
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Figure 13: The two-factor model for the SF-36 
 

 

Note to Figure 13: The circles and rectangles indicate the factors (or latent variables) and 
observed variables (or indicators), respectively. The lines with single arrowheads from 
factors to observed variables represent the effects of factors on observed variables 
described by PF, RP, BP, GH, VT, SF, RE, and MH. The other single-headed lines to the 
observed variables represent the error variances described by E1 to E8. Finally, double-
headed curves indicate the correlation between factors or error variances. 
 

The CFI and SRMR statistics indicated an acceptable fit of this model to all groups for 

PML1 (Table 7). The TLI supported an adequate fit for Aboriginal and non-Aboriginal in 

the ALOCC subsample. For the RMSEA, a good fit of this model was found for all 

groups except the Aboriginal group in the NCC subsample. This model was rejected 

based on the 2χ test for all groups. It is worthwhile to mention that a significant result for 

the LRT statistic does not necessary mean that the measurement model is not a good fit to 

the data because this statistic is sensitive to sample size. Again for the ML estimator, the 

evaluation of the values of SRMR and CFI obtained sufficiently good fit of this model for 
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all groups. The assessment of TLI values also suggested good fit except for non-

Aboriginal groups in the NCC subsample. Another fit index RMSEA indicated 

approximately close fit of this model for the Aboriginal group in the NCC subsample; 

however, acceptable fit was also observed for the groups of Aboriginal and non-

Aboriginal in the ALOCC subsample. While the 2χ test accepted this model for the 

Aboriginal group in the NCC subsample, for other group this model was rejected by this 

test. Overall, this measurement model has an acceptable fit for the two groups in the 

ALOCC and NCC subsamples. 

Further analysis revealed that the correlations between the physical and mental 

health factors were 0.94, 0.91, 0.83, and 0.97 in the Aboriginal with ALOCC, non-

Aboriginal with ALOCC, Aboriginal with NCC, and non-Aboriginal with NCC groups, 

respectively when PML1 estimation was adopted. Kline (2005) suggests that if two 

factors have high correlations, then one should consider fitting a measurement model 

with a single factor. Thus, the two factors were combined into a single factor called 

“Health Status”. First one factor measurement model without any correlation among error 

variances was fitted. None of the fit indices indicated a good fit of the model to the data 

(Table 7). Therefore, a one-factor measurement model with correlation among error 

variances (Figure 14) was fitted for Aboriginal and non-Aboriginal groups in subsamples 

of ALOCC and NCC. Again, the measurement model was evaluated based on fit indices. 

The CFI and SRMR indices suggested adequate fit of the measurement model (Figure 14) 

for all groups for both PML1 and ML estimators (Table 7). A good fit was also obtained 
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Figure 14: The one-factor model for the SF-36 
 
 

 

Note to Figure 14: The circles and rectangles indicate the factors (or latent variables) and 
observed variables (or indicators), respectively. The lines with single arrowheads from 
factors to observed variables represent the effects of factors on observed variables 
described by PF, RP, BP, GH, VT, SF, RE, and MH. The other single-headed lines to the 
observed variables represent the error variances described by E1 to E8. Finally, double-
headed curves indicate the correlation between error variances. 
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measurement model (Figure 14) provided a better fit compared with other measurement 

models for all groups and estimation methods.   

Finally, the one-factor measurement model with correlated error variances (Figure 

14) was selected to conduct the MI tests across Aboriginal and non-Aboriginal groups in 

the ALOCC and NCC subsamples.  

4.2.4 Measurement Invariance Tests  

With the one-factor model selected as the final measurement model, MI tests were 

conducted for Aboriginal and non-Aboriginal groups. These analyses were conducted 

separately for the ALOCC and NCC subsamples using both ML and PML1 estimation 

methods. The results for the MI tests are summarized in Table 8. 

Configural invariance or the baseline model appeared to be an acceptable fit to the 

data for Aboriginal and non-Aboriginal groups in the subsample ALOCC when the ML 

was used to estimate the model parameters. The fit indices RMSEA, TLI, SRMR, and 

CFI supported configural invariance. While the LRT statistic (p < 0.05) was statistically 

significant but it is known that this test is sensitive to sample size. Thus, the hypothesis of 

configural invariance was retained for the Aboriginal and non-Aboriginal groups in the 

subsample ALOCC.  

Given that configural invariance was established for these two groups, the null 

hypothesis of metric invariance was tested next. When the ML method was used to 

estimate the model, the LRT (p=0.0001) resulted in rejection of the hypothesis of metric 

invariance across Aboriginal and non-Aboriginal groups in the ALOCC subsample. 

However, the value of ∆CFI, which was less than 0.01, did not support this conclusion. 

Therefore, the hypothesis of metric invariance was not rejected.  
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Table 8: Measurement invariance test results for Aboriginal and non-Aboriginal adult 
respondents, Canadian Community Health Survey, cycle 3.1 (2005/2006). 
Invariance 
Hypothesis 

  RMSEA 
 (90% CI) 

TLI SRMR 2χ  df CFI 2χ∆  ∆df   ∆CFI 

    ALOCC 
                                                         ML 

Configural  0.09 (0.09, 0.10) 0.92 0.04 581.23* 28 0.96    
Metric 0.09 (0.08, 0.09) 0.94 0.05 610.15 35 0.96 28.92* 7 0.00 
Scalar 0.08 (0.08, 0.09) 0.94 0.05 652.90 42 0.96 42.75* 7 0.00 
Complete 0.08 (0.07, 0.08) 0.95 0.08 713.76 50 0.95 60.86* 8 0.01 
                                                         PML1 
Configural  0.05 (0.05, 0.06) 0.92 0.04 199.56* 28 0.96    
Metric 0.05 (0.04, 0.06) 0.93 0.05 221.52 35 0.96 11.32 7 0.00 
Scalar 0.05 (0.04, 0.05) 0.94 0.06 237.20 42 0.96 18.99* 7 0.00 
Complete 0.04 (0.04, 0.05) 0.95 0.08 242.27 50 0.96 14.66* 8 0.00 

 NCC 
                                                          ML 

Configural  0.09 (0.08, 0.10) 0.85 0.05 208.09* 28 0.93    
Metric 0.09 (0.08, 0.10) 0.86 0.08 244.62 35 0.91 36.53* 7 0.02 
Scalar 0.08 (0.07, 0.09) 0.87 0.07 272.80 42 0.90 28.18* 7 0.01 
Complete 0.08 (0.07, 0.09) 0.88 0.10 301.12 50 0.89 28.32* 8 0.01 
                                                          PML1 
Configural  0.05 (0.03, 0.06) 0.89 0.04 76.31* 28 0.94    
Metric 0.06 (0.04, 0.07) 0.84 0.09 121.01 35 0.90 15.99* 7 0.04 
Scalar 0.05 (0.04, 0.06) 0.86 0.09 130.95 42 0.90 13.50* 7 0.00 
Complete 0.04 (0.03, 0.05) 0.90 0.18 123.43 50 0.91 3.98 8 0.02 
Notes: RMSEA = root mean square error of approximation; CI = confidence interval; TLI 
= Tucker-Lewis index; SRMR = root mean squared residual; df = degrees of freedom; CFI 
= comparative fit index; 2χ∆  = difference in 2χ values between two nested models; ∆df = 
difference in df of two nested models; ∆CFI = difference in CFI values between two nested 
models; PML1 = pseudo-maximum likelihood with weights; ML = maximum likelihood; 
ALOCC = at least one chronic condition; NCC = no chronic condition. * indicates that the 
values are statistically significant at α = 0.05. 
 

Given that metric invariance was established, a test for scalar invariance was 

conducted for Aboriginal and non-Aboriginal groups in the ALOCC subsample. The LRT 

statistic was statistically significant (p < 0.05), however, the value of ∆CFI was less than 

0.01 for the ML estimation method. Given this finding, there is support for the hypothesis 

of scalar invariance of the SF-36 for Aboriginal and non-Aboriginal groups. Given this 

result, the null hypothesis of complete invariance for Aboriginal and non-Aboriginal 
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groups in the ALOCC subsample was tested. According to the LRT statistic (= <0.0001), 

the null hypothesis was rejected when ML estimation was adopted. The ∆CFI value for  

this estimator was equal to 0.01. Thus, the results indicate the complete invariance of the 

SF-36 for Aboriginal and non-Aboriginal respondents in the ALOCC subsample when 

ML estimation method was used. Similar to the ML method, results were also obtained 

for all forms of MI across Aboriginal and non-Aboriginal groups in the ALOCC 

subsample when model parameters were estimated using PML1 method (Table 8). All fit 

indices except the LRT statistic (p < 0.05) indicate a good fit to the data for configural 

invariance. Therefore, the configural invariance was also established for PML1 method. 

The LRT statistic (p = 0.1253) was not statistically significant and the value of ∆CFI was 

also less than 0.01, so the hypothesis of metric invariance was supported by the PML1 

method. Then a test for scalar invariance was conducted. Even though the LRT statistics 

(p < 0.05) were statistically significant but the value of ∆CFI was less than 0.01, 

supporting the hypothesis of scalar invariance for PML1. None of the LRT statistic (p = 

0.0661) and ∆CFI test rejects the null hypothesis of complete invariance when PML1 

estimator was adopted. 

In the NCC subsample for Aboriginal and non-Aboriginal groups, configural 

invariance was established with ML method based on RMSEA, SRMR, and CFI although 

the TLI and LRT (p < 0.05) rejected. Both the LRT (p < 0.05) and ∆CFI > 0.01 resulted 

in rejection of the null hypothesis of metric invariance when ML method was used to 

estimate the model parameters. Therefore, tests of other MI hypotheses were not 

conducted for ML method. Configural invariance was tested using PML1 method as well. 

The results were consistent with ML method, i.e., configural invariance was established 
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for PML1 method. Given this result, metric invariance was tested for this method. Like 

ML method, for PML1 method the null hypothesis of metric invariance was rejected by 

the LRT (p < 0.05) and ∆CFI > 0.01. Further tests of MI hypotheses were not conducted 

for PML1 method. 
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CHAPTER FIVE: DISCUSSION AND CONCLUSIONS 

5.1 Summary and Discussion 

This research investigated estimation techniques for testing MI properties in 

complex survey data by using a simulation study and demonstrated the application of 

these techniques by a numeric example. In the simulation study, estimation techniques 

ML, PML1, and PML2 were compared. In the numeric example the MI for the SF-36 

were compared for the ML and PML1 estimation methods only. The simulation results 

suggest that the ML method offered good control of the Type I error rate for the LRT for 

testing configural invariance when sample size and ICC were small with complex survey 

data. On the other hand, for high values of the ICC and a large sample size, the PML2 

provided better control of Type I error rates for configural invariance than the other 

methods, ML and PML1. The results are consistent with previous research (Stapleton, 

2008) which compared the methods of PML1 and PML2 for SEM analysis of complex 

survey data. Stapleton found that the factors which influenced the Type I error rates of 

the LRT included the ICC and sample size, and higher values of the ICC were associated 

with higher Type I error rates. In the current study this trend was more apparent for ML 

and PML1 methods than for the PML2 method because the latter method takes the survey 

design into account but ML and PML1 do not. There was a sharp increase in the Type I 

error rates with increased sample size for ML and PML1 methods. But the Type I error 

rates were stable for different sample sizes when PML2 method was used. The Type I 

error rates were seriously affected for ML and PML1 methods when both ICC and 

sample size were relatively high. In particular, with the sample size of 1000 and ICC of 

0.61, Type I error rates were about two times greater for the ML and PML1 methods than 
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PML2 method. When constraints such as equality of factor loadings, intercepts, and error 

variances were imposed between two groups for testing metric, scalar, and complete 

invariance, respectively, all three methods of estimation rejected the null hypothesis of 

MI tests similarly. The Type I error rates were close to α = 0.05 for all methods of 

estimation. 

All three estimation methods had similar Type I error rates when using the CFI to 

test configural invariance. Type I error rates of the CFI were lower than α for all 

conditions. In terms of the Type I error rates of ∆CFI, all estimation methods produced 

similar results. The factors that influenced the Type I error rates of ∆CFI were ICC and 

sample size for testing metric, scalar, and complete invariance. Type I error rates tended 

to increase with increased values of ICC. In contrast, Type I error rates had a decreasing 

pattern for increasing sample sizes. Indeed, for a sample of size 400, error rates were 

10.97% for PML1 method. On the other hand, with a sample of size 1000, this rate 

decreased to 0.07%. Previous research has also documented that sample size had an 

impact on the Type I error rates of LRT and ∆CFI for MI tests u sing CFA (French  & 

Finch, 2006). However, in that study only the conventional ML method was used. 

The findings about the power of the test statistics suggested that the power of the 

LRT was associated with ICC and sample size. No difference was found by estimation 

methods. The power of the LRT was decreased with increased value of ICC but it was 

increased when sample size was increased for metric, scalar, and complete invariance. 

With small sample size, ML had higher power whereas similar power was observed for 

all three methods when sample size was high. The power of ∆CFI indicated that the 

PML2 and PML1 methods had higher power compared with ML but that the PML2 
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method had the highest power among all methods when ICC was high. This was true for 

metric, scalar, and complete invariance. An increasing relationship was observed between 

the power of ∆CFI and ICC for metric and scalar invariance , i.e., the power of ∆CFI 

increased when ICC was increased, whereas this relationship was opposite for complete 

invariance, i.e., the power of ∆CFI decreased when ICC was increased. 

The results regarding the bias of standardized factor loadings showed that bias 

was negative for almost all simulation conditions, which implies that on average the 

estimates of the standardized factor loadings were less than the population parameters. 

But bias was relatively small for all forms of MI tests when all factor loadings were high 

and equal in two groups. All estimation methods resulted in highly positive biased 

estimates of factor loadings when factor loadings were small and unequal in each group 

with small sample size. For this particular condition, ML was less biased than PML2 

method for estimating factor loadings. The findings are consistent with previous research 

(Enders & Bandalos, 2001) as well. ICC was a factor that had a great impact on factor 

loadings estimates. Bias increased as ICC increased. Both ML and PML2 estimation 

methods produced similar magnitudes of biases when factor loadings or sample size were 

large. 

Bias results were both positive and negative when intercepts and some of the 

factor loadings were unequal in the two groups. When biases were positive, a decreasing 

pattern was observed as ICC increased; a reverse pattern was found for negative biases. 

The magnitudes of biases were greater for unequal factor loadings than equal factor 

loadings in the two groups. However, biases were similar for estimation methods ML and 

PML2.  
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Some studies (Stapleton, 2006 & 2008) showed that the PML2 method was 

superior to the PML1 for SEM analysis using complex survey data. In this research CFA 

techniques were used to test for MI across two groups, unlike the Stapleton’s research, 

which focused on fitting a single model to complex survey data. Stapleton used a larger 

sample size (14,400) compared to a maximum sample size of 1,000 in this research. 

Higher sample size is associated with higher Type I error rates of the LRT. Moreover, she 

used only one ICC of 0.50, which is relatively high. This research also found higher Type 

I error rates for the ML and PML1 than the PML2 when ICC was high (i.e., 0.61).  In 

particular for configural invariance, with a sample size of 1,000 and ICC of 0.61, the 

Type I error rates for the ML and PML1 were about 2 times greater than for the PML2 

method. However, for testing metric, scalar, and complete invariance; all three methods 

produced similar Type I error rates for the LRT. These results were observed, probably, 

due to the fact that the LRT statistic was calculated as the difference between two χ2 

values for constrained and unconstrained models (i.e., ∆χ 2 ), which was tested for MI. On 

the other hand, for configural invariance χ2 value itself was tested.  

The analysis of the Canadian Community Health Survey data was undertaken to 

compare different estimation methods for testing hypotheses about MI in a real dataset. 

Specifically, an analysis was conducted for MI of the SF-36 across Aboriginal and non-

Aboriginal Manitoba populations with and without chronic health conditions. The 

descriptive analyses revealed that asthma, chronic bronchitis, diabetes, and heart disease 

were significantly higher in Aboriginal than non-Aboriginal groups. On the other hand, 

arthritis, bowel disorders, cancer, high blood pressure, and stroke were significantly 

lower in Aboriginal than non-Aboriginal groups. Ethnic comparisons revealed that 
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Aboriginal respondents with chronic condition had lower mean scores on all but one (PF) 

of the domains of the SF-36 than non-Aboriginal respondents with chronic conditions. 

This finding is consistent with other studies which have explored the relationship 

between HRQOL and specific chronic condition, for example, Thommasen and Zhang 

(2006) reported that mean scores of domains of the SF-36 for Aboriginal respondents 

with diabetes were lower than these for non-Aboriginal respondents.  

The SF-36 is a widely used general measure of quality of life and an appropriate 

tool to compare HRQOL in different populations (Buchholz, Krol, Rist, Nieuwkerk, & 

Schippers, 2008; Schlenk et al., 1998). The MI of the SF-36 was assessed for two ethnic 

groups, Aboriginal and non-Aboriginal, in the CCHS. The aim was to determine whether 

the SF-36 has the same conceptualization or meaning across different ethnic groups. The 

well-established and commonly used CFA techniques were applied to test hypotheses 

about MI. Based on previous research (Keller et al., 1998), initially a two-factor 

measurement model was chosen for the data; the two factors were physical and mental 

health. This model did not fit the data well for Aboriginal and non-Aboriginal groups in 

each of the subsamples of ALOCC and NCC. In order to improve the fit of this 

measurement model, under the guidance of modification indices, correlations among 

error variances were included, which was consistent with previous research (Lix et al., 

2009). There was a high correlation between the two factors.  These two factors were 

combined into a single Health Status factor, which is recommended in the SEM literature 

(Kline, 2005). Therefore, a series of CFA models was conducted for testing MI of a one-

factor structure of the SF-36 across Aboriginal and non-Aboriginal groups. The 

estimation methods PML1 and ML were used in the CCHS data analysis. The other 



 78  

method PML2 was not used because this method requires cluster or strata information 

and neither of these were found in the data. 

The results of CFA supported the configural invariance of the SF-36 for 

Aboriginal and non-Aboriginal respondents for both the ALOCC and NCC subsamples, 

regardless of the method of estimation. This implies that the same construct of the SF-36 

was measured in each of four groups. For the ALOCC subsample, metric invariance was 

also established for Aboriginal and non-Aboriginal groups for the two estimation 

methods, which suggested that the questions or items of the SF-36 had equivalent 

meaning across the two groups. But for the NCC subsample, none of the estimation 

methods supported metric invariance across Aboriginal and non-Aboriginal groups, 

implying that ethnicity can influence interpretation of one’s well-being in healthy 

populations. Further tests of MI were not conducted in the NCC subsample because 

invariance was not satisfied.  

This study used strong criteria for establishing MI, by testing the equality of 

intercepts and error variances, respectively, across groups. Vandenberg and Lance (2000) 

found that only about 12% of studies tested these forms of invariance, which are known 

as scalar and strong invariance, respectively. Scalar invariance was supported only in the 

ALOCC subsample for the two groups regardless of whether the ML and PML1 were 

employed. This result indicated that the measurement of the latent variables as well as the 

means of indicators were equivalent across groups. For valid comparison of indicator 

means across groups, scalar invariance should be satisfied (Meredith & Teresi, 2006).  

Complete invariance, the strongest form of MI, was also established in the two groups 

within the ALOCC subsample for both ML and PML1 methods of estimation, which 
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allows making unbiased group comparisons on the SF-36 global or domain scores. The 

results indicate that there is no difference between ML and PML1 estimation methods, 

which is consistent with the simulation results for testing MI using CFA techniques in 

complex survey data. A recent study also found the MI of the SF-36 for Aboriginal and 

non-Aboriginal women (Lix et al., 2009).   

5.2 Conclusions 

The results of the simulation study suggest that the performance of the three 

estimation methods (ML, PML1, and PML2) was affected by ICC and sample size for 

testing MI using CFA techniques in complex survey data. Based on the Type I error rates 

of the LRT, the following conclusions can be made: ML is an appropriate method to 

adopt for testing configural invariance when sample size and ICC are small in complex 

survey data; for large sample sizes and high ICC, the PML2 estimation method is the 

recommended method for conducting the LRT. With other types invariance (metric, 

scalar, and complete), the three estimation methods ML, PML1, and PML2 had similar 

Type I error rates for the LRT.  

The CFI behaved somewhat different for MI tests in complex survey data. For 

configural invariance, all three estimation methods produced similar Type I error rates for 

the CFI statistic. Larger sample sizes were associated with lower Type I error rates but 

the greater values of ICC were associated with higher Type I error rates for ∆CFI when 

metric, scalar, and complete invariances were tested.  In addition, any one of the three 

methods appears to be a good candidate for the ∆CFI test to investigate metric, scalar, 

and complete invariance.  
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With respect to the power of the LRT, ML was more powerful method for 

detecting the difference in factor loadings and intercepts when sample size was small.  

However, for larger sample sizes, power rates were similar with all methods of 

estimation. The Power of the LRT decreased when the ICC increased in value. Larger 

sample size was associated with decreased power of the CFI for testing configural 

invariance and also decreased power of the ∆CFI statistic for testing hypotheses about 

metric, scalar and complete invariance. But a high ICC was associated with increased 

power of the ∆CFI statistic for testing metric and scalar invariance and decreased power 

for complete invariance. Compared with the ML, the PML1 and PML2 had higher power 

for the ∆CFI statistic to detect differences in factor loadings and intercepts between two 

groups. Biases of standardized factor loadings were similar for all three methods of 

estimation.  

Overall the findings suggest that to test configural invariance using CFA 

techniques in complex survey data, ML is a good method with small ICC and small 

sample size, whereas PML2 is appropriate with high ICC and large sample size. 

Moreover, the PML1 method was similar to the PML2 method in the case of large sample 

sizes with low ICC. In addition, for testing metric, scalar, and complete invariance, no 

clear superiority was found for one method than the others.  

MI results of the SF-36 in the CCHS cycle 3.1 for Aboriginal and non-Aboriginal 

respondents who reported having at least one chronic condition imply that the two groups 

have similar conceptualizations of their quality of life. But this conceptualization appears 

to be different in healthy populations. MI of the SF-36 was not supported for respondents 

who did not report having any chronic conditions, suggesting that ethnicity can influence 
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interpretation of one’s well-being in healthy populations. In terms of estimation methods, 

the ML and PML1 performed similarly to test MI of the SF-36 when the data were 

collected using a complex survey design. It was not possible to apply the PML2 to the 

CCHS data because this method requires information about strata and cluster variables; 

neither strata nor cluster variable was available in the CCHS cycle 3.1 data. 

5.3 Strengths of the Study   

There were several strengths of the simulation study which compared the 

estimation methods of ML, PML1, and PML2 to establish MI of a two-factor structure in 

complex survey data. The strengths include the choice of factor structure, complexity of 

the study design, estimation methods, and simulation conditions investigated. The factor 

structure that was investigated for MI was similar to that of the SF-36, as evidenced in 

the published literature. The SF-36 has been validated and is a widely used general 

measure of quality of life (Bjorner, Kreiner, Ware, Damsgaard, & Bech, 1998; de Vet et 

al., 2005). In terms of the study design, a two-stage complex survey design which 

involved clusters and weights was adopted for the simulation study. The estimation 

methods that were chosen to compare for investigating MI were recommended methods 

from previous research and are not as computationally intensive as jackknife and 

bootstrap methods for researchers to implement. In particular, the ML method is 

commonly used in CFA and is available in many software packages including Mplus. 

The other methods PML1 and PML2 can take sample weights and survey design into 

account when these are applied in the context of SEM analysis for complex survey data. 

If weights or clusters are not incorporated in the analysis, bias may arise in the parameter 

estimates. Simulation conditions that were manipulated in this study were selected based 
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on previous research. The conditions included factor loadings, intercepts, correlation 

between two factors, ICC, size of clusters, and sample size, which affect parameter 

estimates and test statistics.       

The CCHS is a population-based health survey which uses a representative 

sample of Canadian population to investigate health status. Large numbers of respondents 

participate in the CCHS. As a result, it was possible to test for MI among different ethnic 

groups. The presence of chronic health conditions may be a potential confounder in the 

analysis, therefore, separate analyses was conducted for ALOCC and NCC subsamples. 

Strong criteria were adopted to test MI across Aboriginal and non-Aboriginal groups in 

each subsample. In particular, MI of the SF-36 was established only when all four forms 

(i.e., configural, metric, scalar and complete) of MI were satisfied. Previous research 

suggests that only about 12% of studies test scalar or strong invariance (Vandenberg & 

Lance, 2000). A well-established CFA method was used for conducting MI tests across 

the two groups. The effects of complex survey design were included in the CFA model to 

obtain valid results of MI tests. 

5.4 Limitations of the Study  

There were some limitations of this study. The design of the simulation study 

reflects the design of the CCHS but there are some differences. In the first stage of 

selection, clusters were selected using the same PPS method that was used in the CCHS 

design. But in the second stage of selection, SRS was used instead of systematic sampling 

that was adopted in the CCHS. However, the survey design adopted in the simulation 

study was consistent with the designs used in previous research for complex survey data 

(Stapleton, 2006).  An important aspect of this study was that a particular baseline model 
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was properly specified and simulated. It is not clear whether the results of this study can 

be applied in a situation when the baseline model is different. Imbalanced sample sizes in 

two groups may influence MI test results. This was assumed in the current simulation 

study due to disproportionate representativeness of Aboriginal and non-Aboriginal 

respondents in the CCHS. Sample size and the number of indicators per factor have been 

shown to influence the performance of the LRT (French & Finch, 2006). In this study, 

three sample sizes were considered, but the number of indicators per factor was held 

constant. Therefore the results may not generalize to other sample sizes when there are a 

different number of indicators per factor. French and Finch (2006) also commented that 

the number of factors has some impact on the power of the LRT as well as the CFI.  

A limitation in the analysis of CCHS data is that there were differences in the age 

distribution of Aboriginal and non-Aboriginal groups. Therefore, age could be a 

confounder in the analysis of MI. The sample size in the Aboriginal group was small, 

which did not allow the models to be stratified by both age and ethnicity. MI was tested 

for a single general quality of life measure; the results can not be generalized to other 

measures that might have been applied in the study populations, such as the EuroQol 

(Kind, Brooks, & Rabin, 1996) or Sickness Impact Profile (Berger et al., 1981). This 

research used only a single statistical method, CFA, to test MI. There are other methods 

besides CFA that can be used to assess MI. For example, item response theory (Bjorner et 

al., 1998) has been proposed for testing MI. However, these methods have not been 

investigated for testing MI in complex survey data. In addition, some other methods 

which may be applied to test MI in complex survey data, including JRR, BRR, and 

bootstrapping, were not investigated (Stapleton, 2008).  
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The CCHS data contain information only on self-reported ethnicity. This fact may 

influence the validity of the results because not all individuals may correctly self-report 

their ethnicity. The CCHS cycle 3.1 data excluded individuals living on Indian Reserves, 

which affects the generalizability of the results to the entire Aboriginal population in 

Manitoba. As well, the study did not investigate differences between Aboriginal and non-

Aboriginal respondents for all of Canada because the SF-36 was an optional content in 

the CCHS data collection and was not administered in all provinces and territories.  The 

non-Aboriginal population included respondents from many different ethnic groups, that 

is, who were not Aboriginal. The results may be influenced by the fact that all ethnic 

groups in Aboriginal and non-Aboriginal populations were assumed to be homogeneous, 

and we did not test for MI for different ethnic sub-groups within the non-Aboriginal 

population. 

A one-factor measurement model was used to test MI of the SF-36. Some studies 

have demonstrated that a two-factor measurement model was not a good fit to the SF-36 

data. For example, a study in a Jamaican population with chronic sickle cell disease 

found that a three-factor measurement model provided a better fit to the data: physical 

health, mental health, and role limitations (Asnani, Lipps, & Reid, 2007). Therefore, it 

was important to carefully evaluate the measurement model for the CCHS data. However, 

this one-factor model may not be valid for Aboriginal and non-Aboriginal populations in 

other provinces. 

5.5 Future Research 

This research investigated the MI of a single HRQOL measure. In a future study, 

it would be important to test the MI of other HRQOL measures. In particular, MI should 
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be evaluated for other general HRQOL measures that could be applied in population-

based studies such as the CCHS. As well, other methods of testing MI in complex survey 

data, including empirical resampling methods should be compared to the conventional 

ML method.  

Studies about the psychometric properties of HRQOL measures have drawn 

increased attention in recent years for cross-sectional as well as longitudinal studies 

(Limbers et al., 2008; Lix et al., 2009; Varni et al., 2008). Like cross-sectional studies, in 

longitudinal studies there is increasing recognition of the importance of evaluating the 

measurement properties of HRQOL measures over time to ensure that changes in 

HRQOL measures reflect true differences in the population. MI over time is also known 

as response shift (Sprangers & Schwartz, 1999). There is no published research which 

has examined the response shift in complex survey data that employs clustered or 

stratified sampling methodologies. Although estimation methods such as PML, JRR, 

BRR, and bootstrap methods (Stapleton, 2008) were recommended for SEM with cross-

sectional complex survey data, these methods have never been investigated in the context 

of assessing response shift in longitudinal using CFA techniques. Therefore, in future 

research, the investigation of these methods for response shift in SEM analysis would be 

a potential topic for making substantive contribution to the SEM literature on 

measurement of HRQOL. 

In the CCHS data analysis, MI of the SF-36 for Aboriginal and non-Aboriginal 

groups was tested in each of the subsamples of ALOCC and NCC. For a large sample 

size, MI can be tested for a sample with a single chronic health condition, e.g., diabetes.  

Also, the data for the SF-36 do not appear to exhibit a normal distribution for all 
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indicators. In particular, for the CCHS 3.1 data, univariate measures of kurtosis for some 

of the indicators of the SF-36 indicate substantial departures from normality. Therefore, 

there is a need for future research about estimation methods for non-normal data.  
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APPENDIX A: SIMULATION STUDY RESULTS 
 

Table A- 1: Average Type I error rates (%) of the likelihood ratio test for four forms of measurement invariance. 
   Configural Metric               Scalar Complete 

       N ICC ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 
                                                                              Factor loadings: Pattern A 
400 0.00 6.80 8.83 9.07 6.60 5.83 5.40 5.17 6.10 3.47 5.33 9.93 4.03 

0.27 6.07 10.17 8.53 6.13 3.90 5.00 6.17 10.10 4.03 5.43 11.13 4.50 
0.61 10.30 11.83 10.73 4.93 4.33 4.47 5.40 3.07 4.13 5.37 11.57 4.27 

650 0.00 6.20 7.27 6.57 6.70 6.00 6.17 6.10 4.63 5.30 4.40 4.83 4.70 
0.27 6.70 7.57 8.03 5.37 6.00 5.30 5.67 4.83 5.63 4.87 4.97 4.67 
0.61 10.70 11.43 7.80 5.87 11.23 5.63 4.67 11.37 4.97 5.40 11.97 5.37 

1000 0.00 6.73 6.53 7.23 5.00 3.90 4.30 5.93 4.30 5.03 4.60 4.47 3.80 
0.27 6.73 7.00 6.93 6.20 5.23 5.93 5.33 4.33 4.23 4.77 4.03 4.37 
0.61 15.27 15.00 7.97 4.83 4.03 4.67 4.10 3.67 4.33 4.40 4.27 4.47 

 Factor loadings: Pattern B 
400 0.00 6.13 10.00 9.53 7.80 3.77 6.17 6.07 4.53 4.40 5.87 4.03 4.33 

0.27 6.13 10.27 10.50 7.23 4.03 5.73 5.70 3.53 4.57 5.27 5.00 4.50 
0.61 10.13 14.20 11.87 6.50 4.57 5.10 6.13 3.30 5.00 5.70 4.80 5.47 

650 0.00 5.70 7.83 7.20 6.43 5.33 5.83 5.43 4.47 4.57 4.97 5.10 5.10 
0.27 6.23 8.30 6.80 6.27 5.57 6.00 6.20 5.17 5.87 5.27 5.47 5.43 
0.61 10.73 13.13 8.27 6.43 5.40 6.17 4.97 4.83 5.17 5.20 4.30 5.83 

1000 0.00 6.50 6.13 6.80 5.87 8.00 5.33 5.00 4.07 4.37 5.50 4.30 4.83 
0.27 6.63 6.53 6.60 6.87 4.67 5.87 4.83 5.10 4.20 4.93 4.43 4.17 
0.61 17.47 16.87 9.10 5.50 4.57 5.13 4.57 3.73 4.93 4.97 3.87 5.13 

Note: ICC = intraclass correlation; ML = maximum likelihood; PML1 = pseudomaximum likelihood with weights; PML2 = 
pseudomaximum likelihood with weights and clusters. 
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Table A- 2: Average Type I error rates (%) of differences in comparative fit indices between two nested models for four forms of 
measurement invariance. 

  Configural Metric Scalar Complete 
    N ICC ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 

 Factor loadings: Pattern A 
400 0.00 0.00 0.00 0.00 1.83 8.80 2.87 0.87 9.37 1.73 1.90 10.97 3.20 

0.27 0.00 0.10 0.03 1.70 5.30 3.20 1.40 5.93 2.23 1.77 3.77 3.63 
0.61 0.00 0.13 0.13 1.90 7.70 2.97 1.93 2.50 3.43 2.87 15.87 4.67 

650 0.00 0.00 0.07 0.00 0.20 2.00 0.43 0.13 0.17 0.10 0.27 0.13 0.33 
0.27 0.00 0.07 0.00 0.40 1.97 0.27 0.13 0.20 0.23 0.23 0.23 0.30 
0.61 0.00 0.03 0.00 0.47 3.67 0.57 0.27 4.13 0.40 0.47 4.97 0.93 

1000 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.03 0.00 0.07 0.00 
0.27 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.03 
0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.07 

 Factor loadings: Pattern B 
400 0.00 0.00 0.00 0.00 1.13 1.47 2.30 0.93 1.43 1.37 0.83 1.63 1.70 

0.27 0.00 0.03 0.00 1.60 2.20 2.97 1.00 1.40 1.73 1.00 2.43 2.33 
0.61 0.00 0.07 0.00 2.43 3.83 4.23 1.57 2.10 2.90 2.40 3.80 5.17 

650 0.00 0.00 0.00 0.00 0.10 0.20 0.20 0.03 0.10 0.13 0.13 0.07 0.13 
0.27 0.00 0.00 0.00 0.27 0.43 0.37 0.07 0.17 0.20 0.03 0.13 0.17 
0.61 0.00 0.00 0.00 0.37 0.47 1.03 0.13 0.40 0.57 0.40 0.20 0.70 

1000 0.00 0.00 0.00 0.00 0.07 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.00 
0.27 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.00 0.00 
0.61 0.00 0.00 0.00 0.13 0.03 0.20 0.07 0.17 0.07 0.00 0.00 0.07 

Note: ICC = intraclass correlation; ML = maximum likelihood; PML1 = pseudomaximum likelihood with weights; PML2 = 
pseudomaximum likelihood with weights and clusters. 
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Table A- 3: Average power rates (%) of the likelihood ratio test for four forms of measurement invariance. 
  Configural* Metric Scalar Complete 

N ICC ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 
 Factor loadings: Pattern C 
400 0 5.90 8.80 8.60 31.90 26.17 26.17 29.43 22.20 22.20 26.67 22.83 23.33 

0.27 6.80 10.07 9.60 32.40 26.67 26.27 27.97 21.97 22.30 25.20 20.80 21.80 
0.61 7.30 11.60 10.30 29.57 23.20 23.50 25.10 19.43 20.60 21.30 17.53 18.03 

650 0 5.63 6.33 6.47 52.47 49.57 48.97 47.90 44.40 44.17 42.60 41.40 41.40 
0.27 7.47 8.27 8.40 50.50 47.97 48.33 45.47 42.33 42.17 40.67 39.13 39.50 
0.61 9.20 11.27 8.03 43.63 41.23 41.57 45.07 42.47 43.13 32.70 30.53 31.30 

1000 0 5.27 6.80 6.80 72.53 68.40 68.13 69.07 64.87 64.37 64.87 61.27 61.00 
0.27 5.67 7.53 6.77 72.33 68.67 67.70 66.40 61.60 62.33 61.47 57.73 57.73 
0.61 11.60 12.07 7.83 63.60 60.27 60.13 61.27 57.87 58.43 48.77 44.50 44.97 

Note: ICC = intraclass correlation; ML = maximum likelihood; PML1 = pseudomaximum likelihood with weights; PML2 = 
pseudomaximum likelihood with weights and clusters; * the rejection rates for configural model are Type I errors because there was 
no constraint between the two groups for testing this model.   
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Table A- 4: Average power rates (%) of differences in comparative fit indices between two nested models for four forms of 
measurement invariance. 

  Configural* Metric Scalar Complete 
N ICC ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 ML PML1 PML2 

 Factor loadings: Pattern C 

400 
0 0.27 0.77 0.77 23.97 28.87 28.33 25.60 26.93 26.33 30.07 34.03 34.17 

0.27 0.27 1.20 1.27 25.33 28.33 28.03 25.93 28.10 28.07 29.37 33.50 34.30 
0.61 1.00 2.33 2.33 25.63 29.47 29.77 26.27 28.83 29.70 29.10 33.03 33.93 

650 
0 0.00 0.00 0.00 22.33 24.50 24.20 24.60 25.63 25.10 28.30 30.13 29.93 

0.27 0.00 0.00 0.00 23.87 25.20 24.93 25.60 26.40 26.73 27.90 30.00 29.83 
0.61 0.03 0.03 0.03 24.13 24.97 25.13 29.60 29.50 30.23 24.30 26.03 28.30 

1000 
0 0.00 0.00 0.00 19.53 21.13 21.47 21.90 22.67 22.70 25.97 27.43 27.20 

0.27 0.00 0.00 0.00 21.03 22.80 23.90 22.83 23.20 23.90 25.63 26.70 27.90 
0.61 0.00 0.00 0.00 23.00 24.67 24.67 25.60 26.30 29.60 20.47 22.17 25.90 

Note: ICC = intraclass correlation; ML = maximum likelihood; PML1 = pseudomaximum likelihood with weights; PML2 = pseudo-
maximum likelihood with weights and clusters; * the rejection rates for configural model are Type I errors because there was no 
constraint between the two groups for testing this model.   
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Table A- 5: Average percentage bias of standardized factor loadings (Pattern A) for configural and complete invariance 
  B21 B31 B41 B62 B72 B82 

N ICC ML PML2 ML PML2 ML PML
2 ML PML2 ML PML2 ML PML2 

400 

Configural 
Group 1 

0 -0.68 -0.86 1.01 1.00 -0.80 -0.76 -0.11 -0.21 -0.23 -0.22 -0.05 0.00 
0.27 -1.59 -1.59 -0.03 -0.03 -1.70 -1.67 -0.37 -0.35 -1.26 -1.29 -0.62 -0.53 
0.61 -4.11 -4.13 -2.78 -2.81 -3.96 -3.96 -2.78 -2.82 -3.73 -3.72 -3.95 -3.96 

Group 2 
0 -0.90 -0.87 -1.08 -1.03 -0.12 -0.19 -0.18 -0.12 -0.11 -0.14 -0.82 -0.88 

0.27 -1.59 -1.62 -2.12 -2.13 -1.03 -1.05 -0.61 -0.59 -1.06 -1.19 -1.72 -1.78 
0.61 -3.88 -3.91 -5.20 -5.14 -4.04 -4.02 -2.98 -3.06 -3.79 -3.84 -4.80 -4.83 

Complete (Group 1 and Group 2) 
0 -0.58 -0.68 -0.41 -0.40 -0.32 -0.32 0.06 0.04 -0.24 -0.30 -0.46 -0.48 

0.27 -1.37 -1.49 -1.38 -1.37 -1.37 -1.32 -0.11 -0.12 -1.08 -1.17 -1.26 -1.31 
0.61 -3.92 -3.96 -4.19 -4.18 -4.01 -3.95 -2.55 -2.53 -3.95 -3.94 -4.52 -4.48 

650 

Configural 
Group 1 

0 -0.70 -0.71 0.89 0.92 -0.47 -0.43 0.36 0.29 -0.28 -0.28 0.55 0.49 
0.27 -1.66 -1.70 0.11 0.14 -1.43 -1.47 -0.49 -0.57 -0.98 -0.95 -0.64 -0.68 
0.61 -4.28 -4.26 -2.88 -2.80 -3.86 -3.88 -2.39 -2.49 -3.69 -3.73 -3.81 -3.83 

Group 2 
0 -0.80 -0.80 -1.18 -1.17 -0.14 -0.09 0.06 0.07 -0.26 -0.23 -0.77 -0.70 

0.27 -1.54 -1.50 -2.08 -2.07 -1.19 -1.19 -0.70 -0.70 -1.23 -1.27 -1.85 -1.85 
0.61 -3.91 -3.91 -4.92 -4.90 -3.75 -3.77 -3.01 -3.04 -3.66 -3.66 -4.66 -4.60 

Complete (Group 1 and Group 2) 
0 -0.53 -0.51 -0.43 -0.43 -0.22 -0.20 0.51 0.46 -0.13 -0.16 -0.11 -0.09 

0.27 -1.36 -1.31 -1.19 -1.18 -1.24 -1.24 -0.20 -0.25 -1.09 -1.10 -1.21 -1.19 
0.61 -3.99 -3.95 -4.25 -4.21 -3.77 -3.79 -2.46 -2.52 -3.77 -3.79 -4.20 -4.19 

1000 Configural 
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Group 1 
0 -0.64 -0.68 1.01 1.02 -0.50 -0.54 0.20 0.18 -0.06 -0.06 0.52 0.48 

0.27 -1.68 -1.71 0.14 0.12 -1.45 -1.40 -0.54 -0.55 -1.02 -1.07 -0.70 -0.75 
0.61 -4.11 -4.14 -2.72 -2.72 -4.01 -3.92 -2.68 -2.72 -3.52 -3.57 -3.76 -3.81 

Group 2 
0 -0.64 -0.65 -1.09 -1.08 0.04 0.02 0.18 0.20 -0.19 -0.20 -0.66 -0.68 

0.27 -1.54 -1.56 -2.07 -2.08 -1.05 -1.06 -0.68 -0.69 -1.17 -1.19 -1.75 -1.70 
0.61 -3.94 -3.96 -4.97 -4.97 -3.61 -3.61 -2.87 -2.90 -3.78 -3.86 -4.66 -4.64 

Complete (Group 1 and Group 2) 
0 -0.38 -0.37 -0.42 -0.39 -0.23 -0.25 0.54 0.58 -0.10 -0.10 -0.03 -0.08 

0.27 -1.38 -1.41 -1.31 -1.29 -1.21 -1.22 -0.26 -0.28 -1.10 -1.14 -1.21 -1.26 
0.61 -3.93 -3.96 -4.11 -4.08 -3.73 -3.71 -2.42 -2.41 -3.71 -3.80 -4.15 -4.20 

Note: Bjk = average percentage bias of standardized factor loadings for observed variable j on the kth latent variable (j=2, 3, & 4 with 
k=1; j=6, 7, & 8 with k=2); ICC = intraclass correlation; ML = maximum likelihood; PML2 = pseudomaximum likelihood with 
weights and clusters. 
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Table A- 6: Average percentage bias of standardized factor loadings (Pattern B) for configural and complete invariance. 
  B21 B31 B41 B62 B72 B82 
N ICC ML PML2 ML PML2 ML PML2 ML PML2 ML PML2 ML PML2 

400 

Configural 
Group 1 

0 81.74 248.08 69.47 202.83 54.9 166.19 0.08 0.09 -0.12 -0.12 0.22 0.25 
0.27 -2.81 413.49 1.91 334.78 -1.73 275.68 -0.64 -0.67 -0.91 -0.94 -0.72 -0.70 
0.61 410.37 492.70 330.39 397.05 273.5 329.37 -3.17 -3.18 -3.44 -3.50 -3.61 -3.61 

Group 2 
0 -2.59 -2.62 -3.40 -3.25 0.06 0.17 0.15 0.13 0.04 0.02 -0.10 -0.09 

0.27 -3.10 -2.92 -4.68 -4.71 -1.68 -1.49 -0.62 -0.68 -0.99 -1.02 -1.20 -1.24 
0.61 -6.09 -6.20 -7.91 -7.94 -3.25 -3.25 -3.03 -3.07 -3.48 -3.50 -4.00 -4.08 

Complete (Group 1 and Group 2) 
0 -1.06 -1.32 -0.50 -0.29 -0.30 -0.21 0.64 0.66 -0.04 -0.08 0.01 0.04 

0.27 -2.32 -2.23 -1.27 -1.40 -1.38 -1.33 -0.06 -0.05 -0.85 -0.86 -1.05 -1.04 
0.61 -5.07 -5.20 -5.16 -5.15 -3.52 -3.32 -2.61 -2.57 -3.42 -3.44 -3.89 -3.90 

650 

Configural 
Group 1 

0 -1.77 -1.73 2.56 2.63 -0.58 -0.50 0.14 0.11 -0.04 -0.06 0.27 0.26 
0.27 80.00 -3.16 67.98 1.33 54.2 -1.29 -0.65 -0.67 -0.92 -0.91 -0.79 -0.80 
0.61 -5.20 78.15 -1.31 65.26 -4.03 51.37 -3.19 -3.24 -3.38 -3.40 -3.58 -3.56 

Group 2 
0 -1.71 -1.65 -3.21 -3.29 -0.37 -0.48 0.15 0.10 -0.01 -0.01 -0.17 -0.17 

0.27 -2.58 -2.80 -4.57 -4.57 -1.25 -1.37 -0.68 -0.70 -0.95 -0.96 -1.21 -1.20 
0.61 -5.24 -5.17 -7.55 -7.53 -3.44 -3.53 -3.06 -3.07 -3.51 -3.54 -4.06 -4.03 

Complete (Group 1 and Group 2) 
0 -0.72 -0.60 -0.35 -0.34 -0.33 -0.38 0.83 0.77 0.00 -0.02 -0.03 -0.03 

0.27 -2.07 -2.04 -1.73 -1.68 -0.93 -0.98 -0.02 -0.08 -0.86 -0.89 -1.17 -1.17 
0.61 -4.62 -4.58 -4.64 -4.61 -3.53 -3.62 -2.56 -2.61 -3.40 -3.43 -3.94 -3.93 

1000 
Configural 

Group 1 
0 -1.97 -2.16 2.30 2.30 -0.54 -0.62 0.02 0.01 -0.09 -0.10 0.28 0.26 
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0.27 -2.96 -3.09 1.71 1.69 -1.47 -1.39 -0.68 -0.64 -0.92 -0.93 -0.70 -0.73 
0.61 -5.07 -5.20 -1.35 -1.24 -4.09 -3.96 -3.09 -3.11 -3.39 -3.45 -3.53 -3.53 

Group 2 
0 -2.15 -2.06 -3.18 -2.97 -0.43 -0.41 0.21 0.21 -0.02 -0.02 -0.11 -0.12 

0.27 -2.65 -2.71 -4.30 -4.20 -1.36 -1.33 -0.57 -0.58 -0.95 -0.94 -1.19 -1.21 
0.61 -4.81 -4.87 -7.19 -7.06 -3.94 -3.83 -3.02 -3.05 -3.41 -3.44 -3.99 -4.02 

Complete (Group 1 and Group 2) 

 
0 -1.16 -1.25 -0.55 -0.53 -0.18 -0.26 0.65 0.66 -0.01 -0.02 0.00 -0.02 

0.27 -1.94 -2.05 -1.26 -1.21 -1.18 -1.17 -0.07 -0.07 -0.88 -0.89 -1.03 -1.06 
0.61 -4.31 -4.36 -4.26 -4.19 -3.92 -3.87 -2.54 -2.58 -3.34 -3.39 -3.87 -3.90 

Note: Bjk = average percentage bias of standardized factor loadings for observed variable j on the kth latent variable (j=2, 3, & 4 with 
k=1; j=6, 7, & 8 with k=2); ICC = intraclass correlation; ML = maximum likelihood; PML2 = pseudomaximum likelihood with 
weights and clusters. 
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Table A- 7: Average percentage bias of standardized factor loadings (Pattern C) for configural and complete invariance. 
  B21 B31 B41 B62 B72 B82 
N ICC ML PML2 ML PML2 ML PML2 ML PML2 ML PML2 ML PML2 

400 

Configural 
Group 1 

0 -0.99 -1.07 1.15 1.12 -0.23 -0.08 0.23 0.19 0.53 0.66 0.34 0.28 
0.27 -2.25 -2.13 0.29 0.34 -1.04 -1.05 -0.46 -0.44 -0.56 -0.57 -0.68 -0.78 
0.61 -4.29 -4.40 -2.57 -2.45 -3.55 -3.56 -2.62 -2.67 -3.12 -3.14 -3.80 -3.87 

Group 2 
0 -1.13 -1.15 -2.09 -2.12 -0.09 -0.21 0.57 0.58 -0.18 -0.16 -0.93 -1.16 

0.27 -1.68 -1.82 -3.18 -3.05 -1.24 -1.22 -0.12 -0.18 -1.04 -1.09 -2.19 -2.05 
0.61 -4.24 -4.18 -6.09 -5.73 -3.42 -3.59 -2.50 -2.49 -3.66 -3.77 -5.26 -5.39 

Complete 
Group 1 

0 13.4 13.23 -0.07 -0.03 -9.36 -9.44 -4.60 -4.59 21.84 21.77 -2.32 -2.36 
0.27 12.2 12.03 -0.79 -0.81 -10.3 -10.31 -5.33 -5.28 20.50 20.29 -3.60 -3.55 
0.61 9.27 9.18 -3.78 -3.60 -12.7 -12.70 -7.68 -7.72 17.23 17.10 -6.59 -6.72 

Group 2 
0 -5.47 -5.64 -0.07 -0.03 3.59 3.50 -4.60 -4.59 -12.9 -13.02 -2.32 -2.36 

0.27 -6.48 -6.65 -0.79 -0.81 2.51 2.50 -5.33 -5.28 -13.9 -14.08 -3.60 -3.55 
0.61 -8.94 -9.01 -3.78 -3.60 -0.22 -0.22 -7.68 -7.72 -16.3 -16.36 -6.59 -6.72 

650 

Configural 
Group 1 

0 -1.33 -1.35 1.59 1.61 -0.18 -0.13 0.25 0.22 0.43 0.41 0.61 0.53 
0.27 -1.72 -1.73 0.54 0.56 -1.23 -1.26 -0.49 -0.53 -0.97 -1.01 -0.82 -0.80 
0.61 -4.29 -4.05 -2.85 -2.90 -3.54 -3.61 -2.60 -2.67 -2.56 -2.84 -3.99 -4.04 

Group 2 
0 -0.98 -1.00 -2.17 -2.09 0.17 0.11 0.46 0.41 -0.28 -0.23 -1.10 -1.11 

0.27 -1.69 -1.68 -3.19 -3.18 -0.87 -0.95 -0.35 -0.40 -1.18 -1.19 -2.36 -2.37 
0.61 -4.35 -4.26 -6.10 -6.06 -3.34 -3.41 -2.53 -2.54 -3.79 -3.84 -5.26 -5.21 

Complete 
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Group 1 
0 13.3 13.36 0.19 0.23 -9.13 -9.15 -4.41 -4.48 21.59 21.56 -2.20 -2.20 

0.27 12.3 12.38 -0.80 -0.79 -10.1 -10.11 -5.40 -5.45 20.34 20.31 -3.53 -3.52 
0.61 9.27 9.38 -3.73 -3.70 -12.5 -12.56 -7.56 -7.65 17.47 17.39 -6.44 -6.44 

Group 2 
0 -5.60 -5.53 0.19 0.23 3.85 3.83 -4.41 -4.48 -13.2 -13.17 -2.20 -2.20 

0.27 -6.43 -6.35 -0.80 -0.79 2.76 2.73 -5.40 -5.45 -14.0 -14.06 -3.53 -3.52 
0.61 -8.94 -8.85 -3.73 -3.70 -0.02 -0.07 -7.56 -7.65 -16.1 -16.15 -6.44 -6.44 

1000 

Configural 
Group 1 

0 -0.88 -1.07 1.06 1.17 -0.29 -0.26 0.26 0.28 0.65 0.60 0.37 0.31 
0.27 -1.92 -2.05 0.30 0.32 -1.29 -1.24 -0.46 -0.46 -0.53 -0.61 -0.83 -0.89 
0.61 -4.12 -4.35 -2.75 -2.66 -3.72 -3.60 -2.71 -2.65 -2.97 -2.94 -4.14 -4.13 

Group 2 
0 -1.01 -0.99 -1.98 -1.96 0.14 0.15 0.36 0.37 -0.05 -0.08 -0.96 -0.93 

0.27 -1.60 -1.67 -3.17 -3.17 -1.18 -1.11 -0.29 -0.28 -1.21 -1.22 -2.15 -2.21 
0.61 -3.84 -3.94 -6.26 -6.25 -3.66 -3.63 -2.55 -2.54 -3.69 -3.77 -5.25 -5.17 

Complete 
Group 1 

0 13.3 13.29 0.07 0.11 -9.23 -9.25 -4.57 -4.57 21.72 21.68 -2.19 -2.21 
0.27 12.2 12.21 -0.95 -0.92 -10.2 -10.22 -5.29 -5.30 20.31 20.24 -3.41 -3.50 
0.61 9.51 9.47 -3.90 -3.87 -12.6 -12.54 -7.61 -7.60 17.35 17.28 -6.65 -6.69 

Group 2 
0 -5.56 -5.60 0.07 0.11 3.73 3.72 -4.57 -4.57 -13.1 -13.09 -2.19 -2.21 

0.27 -6.47 -6.49 -0.95 -0.92 2.59 2.61 -5.29 -5.30 -14.1 -14.12 -3.41 -3.50 
0.61 -8.74 -8.77 -3.90 -3.87 -0.09 -0.04 -7.61 -7.60 -16.2 -16.23 -6.65 -6.69 

Note: Bjk = average percentage biases of standardized factor loadings for observed variable j on the kth latent variable (j=2, 3, & 4 
with k=1; j=6, 7, & 8 with k=2); ICC = intraclass correlation; ML = maximum likelihood; PML2 = pseudomaximum likelihood 
with weights and clusters; B31, B62 and B82 are equal in Group 1 and Group 2 for complete invariance as the corresponding factor 
loadings were equal. 
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APPENDIX B: CANADIAN COMMUNITY HEALTH SURVEY DATA 
ANALYSIS  

 
Table B- 1: Correlations of indicators of the SF-36 for all Manitoba adult respondents, 
Canadian Community Health Survey, cycle 3.1 (2005/2006). 

 PF RP BP GH VT SF RE MH 
PF 1.00        
RP 0.55 1.00       
BP 0.55 0.60 1.00      
GH 0.57 0.44 0.49 1.00     
VT 0.46 0.46 0.49 0.55 1.00    
SF 0.50 0.57 0.52 0.47 0.54 1.00   
RE 0.17 0.27 0.21 0.24 0.33 0.42 1.00  

MH 0.22 0.25 0.29 0.39 0.55 0.47 0.50 1.00 
N 6073 6102 6111 5906 5944 6022 6100 5971 

Note: PF = physical functioning; RP = role limitations due to physical health problem; 
BP = bodily pain; GH = general health perception; VT = vitality; SF = social functioning; 
RE = role limitations due emotional problems; MH = mental health. 
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Table B- 2: Correlations of indicators of the SF-36 for Manitoba adult respondents by 
chronic disease status and ethnicity, Canadian Community Health Survey, cycle 3.1 
(2005/2006). 

 PF RP BP GH VT SF RE MH N 
ALOCC 

PF  0.54 0.53 0.56 0.47 0.49 0.14 0.19 4033 
RP 0.58  0.59 0.46 0.47 0.58 0.26 0.25 4059 
BP 0.60 0.59  0.48 0.48 0.51 0.18 0.26 4073 
GH 0.56 0.39 0.47  0.57 0.48 0.22 0.37 3936 
VT 0.46 0.46 0.50 0.54  0.55 0.33 0.53 3964 
SF 0.55 0.50 0.54 0.49 0.57  0.40 0.46 4022 
RE 0.33 0.32 0.32 0.29 0.37 0.53  0.51 4056 

MH 0.38 0.31 0.36 0.48 0.60 0.59 0.58  3981 
N 364 365 367 356 359 360 366 359  

NCC 
PF  0.24 0.20 0.26 0.14 0.19 0.03 0.03 1488 
RP 0.52  0.43 0.05 0.21 0.40 0.11 0.07 1492 
BP 0.56 0.35  0.14 0.33 0.32 0.13 0.20 1492 
GH 0.25 0.16 0.12  0.31 0.11 0.03 0.25 1456 
VT 0.34 0.34 0.21 0.32  0.31 0.22 0.54 1459 
SF 0.29 0.21 0.27 0.13 0.26  0.40 0.34 1473 
RE 0.11 0.08 0.05 0.18 0.17 0.41  0.33 1493 

MH 0.11 0.04 0.09 0.20 0.43 0.42 0.41  1468 
N 133 134 134 130 131 133 134 132  

Note: Lower and upper diagonal correlations are for Aboriginal and non-Aboriginal 
respondents, respectively, for each of the subsamples of at least one chronic condition 
(ALOCC) and no chronic condition (NCC). PF = physical functioning; RP = role 
limitations due to physical health problem; BP = bodily pain; GH = general health 
perception; VT = vitality; SF = social functioning; RE = role limitations due emotional 
problems; MH = mental health. 
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APPENDIX C: SF-36 QUESTIONNAIRE  

1. In general, would you say your health is: 

• Excellent  

• Very Good  

• Good  

• Fair  

• Poor 

2. Compared to one year ago, how would you rate your health in general now? 

• Much better now than one year ago 

• Somewhat better now than one year ago 

• About the same 

• Somewhat worse now than one year ago 

• Much worse than one year ago 

 

The following items are about activities you might do during a typical day. Does your 

health now limit you in any of the following activities? 

3. Vigorous activities, such as running, lifting heavy objects, participating in strenuous 

sports: 

• Limited a lot  

• Limited a little  

• Not at all limited 
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4. Moderate activities, such as moving a table, pushing a vacuum cleaner, bowling, or 

playing golf: 

• Limited a lot  

• Limited a little  

• Not at all limited 

5. Lifting or carrying groceries: 

• Limited a lot  

• Limited a little  

• Not at all limited 

6. Climbing several flights of stairs: 

• Limited a lot  

• Limited a little  

• Not at all limited 

7. Climbing one flight of stairs: 

• Limited a lot  

• Limited a little  

• Not at all limited 

8. Bending, kneeling, or stooping: 

• Limited a lot  

• Limited a little  

• Not at all limited 

9. Walking more than a mile: 

• Limited a lot  
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• Limited a little  

• Not at all limited 

10. Walking several blocks: 

• Limited a lot  

• Limited a little  

• Not at all limited 

11. Walking one block: 

• Limited a lot  

• Limited a little  

• Not at all limited 

12. Bathing or dressing yourself: 

• Limited a lot  

• Limited a little  

• Not at all limited 

 

Because of your physical health during the past 4 weeks, did you: 

13. Cut down the amount of time you spent on work or other activities? 

• Yes 

• No 

14. Accomplish less than you would like? 

• Yes 

• No 

15. Limit in the kind of work or other activities? 
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• Yes 

• No 

16. Had difficulty performing the work or other activities (for example, it took extra 

effort)? 

• Yes 

• No 

 

Because of emotional problems, during the past 4 weeks, did you:  

17. Cut down the amount of time you spent on work or other activities? 

• Yes 

• No 

18. Accomplish less than you would like? 

• Yes 

• No 

19. Not do work or other activities as carefully as usual? 

• Yes 

• No 

20. During the past 4 weeks, how much has your physical health or emotional problems 

interfered with your normal social activities with family, friends, neighbours or 

groups? 

• Not at all  

• A little bit 

• Moderately  
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• Quite a bit 

• Extremely  

21. During the past 4 weeks, how much bodily pain have you had? 

• None  

• Very Mild  

• Mild  

• Moderate  

• Severe  

• Very Severe 

22. During the past 4 weeks, how much did pain interfere with your normal work 

(including both work outside the home and housework)? 

• Not at all  

• A little bit  

• Moderately  

• Quite a bit  

• Extremely 

 

These questions are about how you feel and how things have been with you during the 

last 4 weeks. For each question, please give the answer that comes closest to the way you 

have been feeling. 

During the past 4 weeks, how much of the time: 

23. Did you feel full of pep? 

• All of the time 
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• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

24. Have you been a very nervous person? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

25. Have you felt so down in the dumps that nothing could cheer you up? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

26. Have you felt calm and peaceful? 

• All of the time 

• Most of the time 

• A good bit of the time 
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• Some of the time 

• A little bit of the time 

• None of the time 

27. Did you have a lot of energy? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

28. Have you felt downhearted and blue? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

29. Did you feel worn out? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 
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• None of the time 

30. Have you been a happy person? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

31. Did you feel tired? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 

32. During the past 4 weeks, how much of the time has your health limited your social 

activities (such as visiting with friends or close relatives)? 

• All of the time 

• Most of the time 

• A good bit of the time 

• Some of the time 

• A little bit of the time 

• None of the time 
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How true or false is each of the following statements for you? 

33. To get sick a little easier than other people 

• Definitely true  

• Mostly true  

• Don't know  

• Mostly false  

• Definitely false 

34. As healthy as anybody I know 

• Definitely true  

• Mostly true  

• Don't know  

• Mostly false  

• Definitely false 

35. Expect health to get worse 

• Definitely true  

• Mostly true  

• Don't know  

• Mostly false  

• Definitely false 

36. Health is excellent 

• Definitely true  

• Mostly true  



 120  

• Don't know  

• Mostly false  

• Definitely false 
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