MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item:

Title: Spherical harmonic inductive detection coils and their use in dynamic pre-emphasis for magnetic resonance imaging
Authors: Edler, Karl
Supervisor: Hout, David (Physics and Astronomy)
Examining Committee: Williams, Gwyn (Physics and Astronomy) Safi-Harb, Samar (Physics and Astronomy) Shafai, Lotfollah (Electrical and Computer Engineering) Turner, Robert (University of Leipzig)
Graduation Date: October 2010
Keywords: magnetic resonance imaging
eddy currents
dynamic shimming
negative feedback
quasi-static fields
vector potential
inverse curl
Issue Date: 13-Sep-2010
Abstract: The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field – an inverse curl operation – and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI.
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
edler_karl.pdf39.12 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback