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Abstract

Heterogeneous multi-core architectures have a higher performance/power ratio

than traditional homogeneous architectures. Due to their heterogeneity, these ar-

chitectures support diverse applications but developing parallel algorithms on these

architectures can be difficult. In implementing algorithms for heterogeneous systems,

proprietary languages are often required, limiting portability. Although general pur-

pose graphics processing units (GPUs) have shown great promise in accelerating the

performance of throughput computing applications, it is still limited by the memory

wall. The memory wall can greatly affect application performance for problems that

incorporate amorphous parallelism or irregular workload. Now, AMD’s Fusion series

of Accelerated Processing Units (APUs) attempts to solve this problem. The APU is

a radical change from the traditional systems of a few years ago. This design change

enables consumers to have a capable CPU connected to a powerful, compute-capable

GPU using a Very Long Instruction Word (VLIW) architecture.

In this thesis, I address the suitability of irregular workload problems on APU

architectures. I consider four scientific computing problems of varying characteristics

and map them onto the architectural features of the APU. I develop several software
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optimizations for each problem by making effective use of VLIW static scheduling

through techniques such as loop unrolling and vectorization. Using AMD’s OpenCL

profiler, I analyze the execution of the various optimizations and provide an in-

depth performance analysis using metrics such as kernel occupancy, ALUFetchRatio,

ALUBusy Percentage and ALUPacking. Finally, I show the effect of register pressure

due to vectorization and the limitations associated with the APU architecture for

irregular workloads.
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7.3.1 Algorithm 1: Näıve . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.2 Algorithm 2: Loop Unrolling . . . . . . . . . . . . . . . . . . . 65
7.3.3 Algorithm 3: Vectorization . . . . . . . . . . . . . . . . . . . . 66

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



vi Contents

8 Binomial Lattice 70
8.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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Chapter 1

Introduction

As computing has progressed, we have gone from simple, fixed function hardware

to general purpose computing cores, capable of handling nearly any task given to

them. However, today, these single cores simply aren’t powerful enough to run the

large simulations and calculations enterprises require. The first method of increasing

performance was by adding more arithmetic hardware and increasing clock speed.

While performance did benefit, hardware constraints meant three walls were en-

countered: frequency, power and memory. First, as frequency increased, power con-

sumption increased linearly, leading to physical limitations in terms of clock speeds

(though research is being done with new materials such as graphene which may scale

into terahertz frequencies (Zheng et al. [2013])) and total power consumption, the

second wall. Given that these devices are limited in the simple aspects of form factor

and heat dissipation, power consumption is typically limited to a few hundred watts

(150W-300W), such as Intel’s QX9775 quad-core Central Processing Unit (CPU)(Intel

[2008]). Third is the memory wall which has formed because of the difference in

1



2 Chapter 1: Introduction

speed between the CPU (continually increasing in line with Moore’s Law) and mem-

ory which doesn’t follow the same trend for Moore’s Law. Adding to the difficulty

of increasing performance is that the hardware has been engineered to keep it busy

at the instruction level by calculating multiple items simultaneously (via instruction

level parallelism) as it was the lowest hanging fruit in terms of optimizations. This

approach however affects algorithm performance when the hardware makes incorrect

predictions, such as the case with incorrectly choosing a branch within the algorithm.

Thus, these three walls force architecture designers to develop novel solutions to avoid

algorithmic limitations when using traditional CPU-based architectures.

The first attempt at solving the three walls was the homogeneous multi-core CPU

where each core is simplified and runs at a lower clock speed than a single core

CPU. This method reduces heat output and power consumption at the expense of

frequency and single threaded performance. The benefit of this approach is that multi-

core systems require little to no code modification to enable existing software to run.

However, this approach cannot be scaled indefinitely since, as the number of cores

increases, so does the overall power consumption and heat dissapation. Diminshing

returns are also encountered as Amdahl’s Law states that the execution time of a

program will be limited by the sequential portion of the algorithm (Amdahl [1967]).

While homogeneous multi-cores have been promoted strongly by companies such as

Intel (Lee et al. [2010]), heterogeneous multi-core architectures are moving at a very

rapid pace into the general purpose computing market.

Heterogeneous multi-core architectures such as IBM’s Cell Broadband Engine

(Cell/B.E.), multi-core systems with Graphics Processing Units (GPUs) or any hard-
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ware specialized accelerators have a higher performance/power ratio. Due to their

heterogeneity, these architectures support diverse applications but programming these

architectures is also very difficult. In implementing algorithms for heterogeneous sys-

tems, proprietary languages are often required, limiting portability. Now, OpenCL

has become the new standard for ensuring cross-platform and device independent

code and can be written using a “write once run anywhere” methodology. Although

the GPU has shown great promise in accelerating the performance of data parallel ap-

plications, it is still limited by the memory wall as data must explicitly be transferred

between the host CPU and the discrete GPU. This data transfer can greatly affect

application performance for irregular programs where memory access is inconsistent

or the number of work items may change during runtime.

Now, one such heterogenous multi-core architecture attempts to solve this prob-

lem, AMD’s Fusion series of Accelerated Processing Units (APUs). The APU is a

radical change from the traditional systems of a few years ago; instead of a separate

CPU and GPU, they are combined onto a single die, reducing cost while increasing

performance. This design change enables consumer systems to have a capable CPU

connected to a powerful and compute-capable GPU using a Very Long Instruction

Word (VLIW) architecture (and Graphics Core Next architecture in the future). The

VLIW architecture provides a great amount of computational power in a small space,

enabling high performance work to be done that, only a few years ago, would have

been possible on a high end workstation.
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1.1 Thesis Goal and Contributions

When I started this research three years ago, the APU architecture (Brazos and

later, Llano) was still in its infancy. Now, AMD’s next generation APU Kaveri has

been released and their Carrizo APU is planned for release in 2015. A lot has changed

in this progression: memory is no longer a subset of main memory, the CPU and GPU

memory address space are now shared and coherency has been maintained, while in

the future, AMD plans to implement GPU context switching for multitasking, quality

of service, and other features.

In this work, I focus on the Llano APU’s VLIW architecture. As well, a new

standard parallel programming API for heterogeneous multicores has been proposed

(OpenCL). The goal of my thesis is to study the APU architecture in depth. To do

so, I consider four problems: 0-1 knapsack, Gaussian Elimination, Monte Carlo, and

Binomial Lattice. Each of these problems exhibit different characteristics from the

parallel computing perspective and are noted here. The 0-1 knapsack and Gaussian

Elimination problems are compute bound, memory bound, and incorporate synchro-

nization and communication latencies. The Binomial Lattice and Monte Carlo al-

gorithms are two techniques in solving the option pricing problem in finance (Spiers

and Wallez [2010]) and are compute bound. With the exception of the Monte Carlo

problem, all three problems exhibit irregular workloads at runtime.

The 0-1 knapsack problem is a well-known problem in combinatorial optimization.

Although there are many techniques to solve this problem, we use the basic dynamic

programming algorithm. The dynamic programming algorithm divides the problem

into smaller subproblems and each of these subproblems share subsubproblems. The
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subdivisions are independent, but the sharing of solutions between subdivisions intro-

duces some synchronicity. The algorithm uses a table to store the results. Since every

subsubproblem is only solved once, the amount of workload may decrease during the

course of the algorithm which creates further load imbalance. In our implementation,

we take advantage of the on-chip memory to allocate data for sharing between the

threads to increase performance. As the problem is memory bound, I investigate the

use of global memory versus local memory, loop unrolling, scalability (in terms of

APU compute units) and caching.

The Gaussian Elimination problem is a common technique used in linear algebra.

It solves Ax=y where A is a matrix, and x and y are vectors. Though a fast technique

by hand, there are problematic issues that occur when parallelizing the algorithm.

First is that the matrix A could be sparse which introduces redundant computations

and unnecessary usage of memory. Second is the pivot selection process at each

iteration, leading to synchronization latencies. Last is the need for data sharing

among the rows of the matrix which requires efficient use of memory.

The Binomial Lattice algorithm forms a tree structure with lots of concurrency

within a level, but requires synchronization between levels. The larger the depth of

the tree (time steps), the more accurate the results. This leads to a very fine-grained,

computationally intensive problem, where each node in the tree can be thought of as

a thread. The computation per node is minimal but there are many time steps and

nodes in a tree depending on the level of accuracy required. Due to the regularity

imposed in this problem, vectorization is a likely possibility. However, due to the

irregular load at different iterations, the memory accesses are scattered which makes
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optimization difficult.

The Monte Carlo simulation is a very embarassingly parallel problem. It is ex-

tremely compute intensive and exhibits regular workload. It provides a lot of paral-

lelism which requires lots of registers for concurrent operations. I wanted to study

this problem to see the net effect of register pressure on the GPU cores.

I provide different implementations for each of the problems in OpenCL on the

APU, each one improving upon the previous variant. I use AMD’s OpenCL profiler to

analyze the execution of the various implementations and study performance metrics

such as kernel occupancy, ALUFetchRatio, ALUBusy Percentage and ALUPacking.

I make use of the VLIW static scheduling available in Llano through loop unrolling

and vectorization and measure its effect on performance due to register pressure. I

also study the effect of memory access versus local memory and caching.

The work from this thesis has resulted in a book chapter and three conference

publications:

1. Matthew Doerksen, Steven Solomon, Parimala Thulasiraman, Designing APU

Oriented Scientific Computing Applications in OpenCL, International Sympo-

sium on Advances of High Performance Computing and Networking in Con-

junction with HPCC 2011, Banff, Alberta, Canada, Sept. 2-4, 2011.

2. Matthew Doerksen, Parimala Thulasiraman and Ruppa K. Thulasiram, Opti-

mizing Option Pricing Algorithms and Profiling Power Consumption on VLIW

APU Architecture, The 10th International Symposium on Parallel and Dis-

tributed Processing with Applications, Madrid, Spain, July 10-13, 2012.

3. Matthew Doerksen, Steven Solomon, Parimala Thulasiraman and Ruppa K.
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Thulasiram, Financial Option pricing on APU, The 5th International Confer-

ence on Contemporary Computing (IC3), Noida, India, August 2012.

4. Matthew Doerksen, Parimala Thulasiraman and Ruppa K. Thulasiram, “Al-

gorithm and Performance Analysis of Scientific Applications using OpenCL on

Fusion APUs”, Scalable computing and communications: theory and practice,

John Wiley & Sons, Editors: Samee U. Khan, Lizhe Wang, and Albert Y.

Zomaya, January 2013.



Chapter 2

Parallel Computing and the APU

In this chapter we detail the systems that lead up to the APU, such as homoge-

neous CPU-based systems, the heterogeneous systems that followed to overcome the

limitations of homogeneous setups and how the APU slides into the final equation.

2.1 Parallel Systems

2.1.1 Homogeneous Systems

Traditionally, parallel systems can be broken down into two categories, homoge-

neous and heterogeneous. Homogeneous parallel systems use computers with CPUs

of the same architecture and are connected via some form of interconnection network.

This type of system is very simple to build and scale: just add more machines. When

dealing with simple, regular algorithms this approach works extremely well as the

machines have very little need to communicate and can just work at their own speed,

combining results at the end.

8
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Figure 2.1: The Athlon X2, the world’s first consumer level, and AMD’s most success-
ful, multi-core CPU, which was first shown in August of 2004 (AMD [2004]). Picture
taken from CPU-World.com (Shvets [unknownb]).

Maximizing performance however can be a challenge for irregular problems since

these systems often depend on “slow” interconnection networks (IN), such as Giga-

bit ethernet (high latency, low bandwidth), when compared to custom INs such as

Infiniband which has a theoretical throughput of over 300Gb/s (Association [2013]).

In these cases, it can often be that the communication time is greater than the time

spent computing results, leading to results that take longer than computing them on

a single machine. To deal with these sorts of problems and overcome the hardware

constraints, heterogeneous systems were created.

2.1.2 Heterogeneous Systems

A heterogeneous system foregoes the traditional PC architecture to overcome one

of the 3 walls seen earlier (frequency, power and memory) to achieve better perfor-

mance (in terms of flops/watt, bandwidth or some other relevant benchmark) for a

given type of problem. One of the very first examples of a heterogeneous architecture
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were the floating point co-processors of the 1980s that could be paired with CPUs to

give them floating point capabilities (Shvets [unknowna]).

Figure 2.2: Intel’s 8087 floating point coprocessor which could be paired with the
CPU to improve compute capabilities on floating point arithmetic. Image taken from
(Shvets [unknowna]).

Eventually, these coprocessors would be integrated into the CPU, much like how

we see other hardware such as the northbridge becoming part of CPUs today like

AMD’s Llano APUs and Intel’s Sandy Bridge CPUs. A much more recent example

of a heterogeneous architecture is IBM’s Cell BE which was designed as a Single

Instruction Multiple Data (SIMD) architecture. This design has a large master core

(Power Processing Unit or PPU) to handle heavy tasks such as maintaining the

operating system, while delegating computational work to multiple smaller, simpler

cores (Synergistic Processing Units or SPUs) which run at higher frequency.

This design allows them to customize the hardware so each portion can excel at

what it does best; the PPU has more branching hardware and is better at handling

context switching between applications while the SPUs are much smaller and have

more execution units for higher computational throughput (Gflops). With this, the

Cell BE achieves better performance (230 Gflops) compared to a high end CPU such

as Intel’s i7-980x (109 Gflops (Williams [2010])).

The Cell BE also improves on the memory architecture, using a 4-ring bus (2

running in each direction) termed the Element Interconnect Bus (EIB) to connect the
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Figure 2.3: The IBM Cell Broadband Engine, a PowerPC based CPU which features a
Power Processing Unit for OS tasks and Synergistic Processing Units for computation
connected via the high bandwidth Element Interconnect Bus (Gschwind [2006]).

computing cores. This bi-directional bus has an internal bandwidth of 96 bytes/cycle/port

adding up to 205 GB/s of sustainable bandwidth and over 300 GB/s of maximum

peak bandwidth between ports. This is roughly 5 times the bandwidth than Intel’s

i7-4960X can provide with system memory, at only 60 GB/s (Intel [2013]). This ad-

vanced memory architecture allows the Cell BE to have much higher computational

and memory throughput compared to a traditional system.

2.1.3 Homogeneous with a hint of heterogeneous

Yet another approach is the GPU which uses hundreds or thousands of cores (in

a homogeneous setup) for computation. At the same time, it falls into the category

of a heterogeneous device because it is, at least currently, a non-standard computing
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Figure 2.4: An overview of the Evergreen architecture used in AMD’s Radeon 5870
GPU which contains 20 SIMD Engines (AMD [2010]).

device (compared to a CPU) and requires a different approach to programming and

algorithm design. Traditionally, GPUs have been built to manipulate things like ver-

texes and pixels which are graphical operations that require minimal communication

and can be done in a massively parallel manner. As such, GPUs have typically exhib-

ited a SIMD-style architecture with large numbers of small, slow(er) cores which work

in parallel to achieve optimal throughput. While this type of architecture is fantastic

for computational throughput, it performs very poorly with tasks that are sequen-

tial, branchy, or randomly access memory. The APU attempts to resolve these issues

by combining the sequential speed of the CPU with the parallel abilities of a GPU,

the details and implementation of which are covered later in the APU Architecture

section.
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Figure 2.5: A typical computer, with a CPU and GPU which could be used for parallel
computing (Brookwood [2010]).

Lastly, we have the APU which attempts to bridge the gap between both ho-

mogeneous systems and heterogeneous, bringing together the best of both worlds;

homogeneous CPU cores for sequential tasks and GPU cores for the parallel com-

ponents of an algorithm. Looking at Figure 2.5 we have a traditional system with

a separate CPU, and if the system is built for compute or graphics works, a high-

end GPU. Examining the image, the CPU has many layers which separate it from

the GPU including the CPU memory controller, PCI Express bus and GPU memory

controller. Each of these adds unnecessary transformation of data between protocols,

reducing bandwidth and increasing latency; worst of which is the PCI Express bus
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which limits communication between the CPU and GPU to just 16 GB/s in each

direction (PCI-SIG [2010]). Compared to even system memory in all but the lowest

end machines we can see this isn’t fast enough, and even the PCI Express 4.0 spec-

ification to only be released late in 2015 will only double this to 32 GB/s (PCI-SIG

[2014]). Knowing this, AMD decided to remove these performance hindering pieces

of hardware, putting the CPU and GPU directly next to each other on the chip, the

Accelerated Processing Unit.

Figure 2.6: An APU system which moves the GPU onto the same chip as the CPU
(Brookwood [2010]).

Comparing the two images (Figures 2.5 and 2.6) we see that the PCI Express bus

has been removed from the equation, being replaced by a high performance on-chip

bus. This has a few benefits; first, the performance regained by simply not translating

information between protocols and not requiring it to leave the chip for information
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to be communicated between the two, which saves time (latency) and bandwidth (the

custom on-chip bus provides higher bandwidth compared to PCI Express). Second,

the GPU now has faster access to system memory which is key as APUs do not

currently have dedicated memory like a traditional GPU does. This has its own

drawbacks however in that system memory is much slower than a high-end GPU’s

memory, but this can be mitigated in hardware by using the caching system already

present and used by main memory. Last is the power savings found by not having to

transform data between protocols and off the chip over the PCI Express bus. From

this, the APU provides some key advantages over “traditional” heterogeneous systems

using building blocks that are already available.



Chapter 3

APU architecture

In this chapter we examine the history of the APU, the implementations of AMD

and Intel including strengths and weaknesses that resulted from design decisions and

a comprehensive overview of AMD’s APU architecture.

3.1 History of the APU

Similar to how heterogeneous computing wasn’t a new idea, the idea of a fused

CPU + GPU was not an entirely new concept (embedded systems could technically

be labeled as APUs since they combine multiple systems using a System-on-a-Chip

architecture). AMD first proposed the idea of a large, powerful, fused processor

in 2006 when they acquired graphics manufacturer ATI (AMD [2006]). This was an

attempt to bolster their intellectual property portfolio and to help them become more

competitive with both Intel and Nvidia, their main rivals in the CPU and GPU fields

respectively. AMD saw an opportunity for this new hardware in a world that was

16



Chapter 3: APU architecture 17

becoming more media centric, with richer web applications and 3D graphics support

and wanted to be the first to break the ice.

Figure 3.1: A chip from AMD’s A8 series of APUs which integrated the GPU directly
into the core of the CPU (Wollmann [2011]).

3.2 The Competition

While AMD was the first to propose the idea of an APU, they weren’t the only

one working on it. In fact, Intel was working on the same concept, which would

incorporate their HD graphics onto the CPU. Due to delays with the manufacturing

process and difficulties in porting the GPU onto CPU optimized silicon, AMD’s APUs

were pushed back until 2011 (Lal Shimpi [2009a]) while Intel was able to release their

APUs in 2010 (Lal Shimpi [2009b]), making them the first publicly available. The

approach Intel took however was different from AMD’s; instead of a fused CPU +
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GPU, they went with on-chip graphics. By using a 32nm CPU and a 45nm GPU

they achieved a better time to market and encountered fewer frustrations in getting

the GPU to work on the same process and manufacturing technology (compared to

AMD), see Figures 3.1 and 3.2 to see how the resulting chips differ in appearance.

Figure 3.2: Intel’s Westermere CPU, the first publicly available APU (Lal Shimpi
[2009b]).

On the other end of the spectrum, we have Nvidia which is working to produce a

GPU with a CPU built onto it (as opposed to Intel and AMD’s approach of integrating

the GPU onto the CPU). This processor, codenamed Denver, will use ARM CPU cores

(and eventually their own custom ARM core) which provide very high performance

per watt and will be paired with a single SMX containing 192 cores, based on the

Kepler GPU architecture (Verduzco [2014]). One version, shown in Figure 3.3, details

the four ARM CPU cores paired with a fifth “battery-saver” core to give the best

balance of performance and battery life, and matched with a cutdown version of their

Kepler GPU. This combination of disparate parts enables Nvidia to produce a very
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high performance APU, but produce it at a low cost and have it run consuming

minimal power. As well, as you’ll see in future sections, enabling these modular

designs across CPU and GPU combinations is the exact goal of the Heterogeneous

Systems Architecture.

Figure 3.3: Nvidia’s Tegra K1 APU which uses ARM CPU cores and their own Kepler
GPU for high performance per watt at a low cost point (Smith [2014]).

3.3 APU Design Tradeoffs

Why the AMD and Intel produced different results was due to the strengths

that each posessed. AMD envisioned a die with a great emphasis on GPU computing

capabilities which could be used for general purpose computation as the world became

more media centric. Intel on the other hand, focused heavily on CPU performance

with the GPU being a second class citizen, used primarily for 2D graphics, instead

of media consumption, which they believed could be offloaded to the CPU. This was

reflected in each company’s allocation of hardware resources, where AMD dedicated

much more resources to the GPU than Intel, as shown in Figure 3.4. From Intel’s
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reaction, we see that AMD had predicted correctly, media consumption was becoming

a more important factor for consumers and Intel was forced to increase the die space

dedicated to the GPU to keep up with AMD’s APUs and consumer’s demands. We’ll

cover more of these design decisions in the next section where we take an in-depth

look at AMD’s A10-5800K APU.

Figure 3.4: The percentage of each APU die reserved for the GPU. Intel’s APUs are
shown on the left while AMD’s Richland APU appears on the right (Magee [2013]).

3.4 AMD’s APU Architecture

As an AMD A10-5800K APU was used to gather the results which are covered

in Chapters 5 through 8, we cover its implementation here, how the pieces come

together to create a powerful heterogeneous computing device, and what AMD is

working towards.
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Figure 3.5: AMD’s roadmap for the Heterogeneous Systems Architecture which moves
from combining the CPU and GPU at the die level, to transparently map memory
between devices and finally, autonomously full use of the GPU for computing (Clarke
[2013]).

3.4.1 The CPU

AMD’s first step in their Heterogeneous Systems Architecture (Figure 3.5) roadmap

was to combine the CPU and GPU into the same chip. That goal was accomplished

with the release of the Llano architecture in 2011. The A10-5800K is the result of the

second phase, platform optimization, and is a chip that contains 4 CPU cores and 384

VLIW4 GPU shaders clocked at 3.8 GHz and 800 MHz respectively which runs at a

100W TDP (see Figure 3.7). The CPU cores used belong to the Piledriver family (the

next iteration of Bulldozer) and come in groups of two that are collectively called a

module. These modules have a lower instructions per clock throughput than current

Intel CPU cores and instead use high clock rates to boost performance. The modular
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design, based in cluster multithreading (see Figure 3.6), combines two cores to share

some hardware, saving die area, lowers power consumption and increases utilization.

This is a different approach to simultaneous multithreading (termed HyperThread-

ing) that Intel employs in its CPUs, which doubles only the frontend hardware (as

well as internal registers) to try and get better utilization of hardware resources. In

practice, cluster multithreading works best at highly threaded workloads which are

heavier on integer operations while simultaneous multithreading is better when there

is a larger number of varying instructions which don’t cause resource contention.

Figure 3.6: A module used in the “Bulldozer” architecture which has separate integer
pipelines but a shared floating point pipeline which enables a “full” second core for
only 50% more die area (Lal Shimpi [2009c]).
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Figure 3.7: Two screen captures of the A10-5800K APU showing the 4 cores backed
by 384 VLIW4 shaders.

3.4.2 The GPU

The AMD Radeon 7660D is a 246mm2 GPU which has 384 shaders and runs at

up to 800 MHz and has up to 2048 MB of shared memory which runs at the speed

of main memory. This particular GPU is based on the Northern Islands architecture

which moved from VLIW5 to VLIW4 to obtain better utilization of the hardware.

This was done by removing one of the execution units as AMD found it was unused

in the majority of cases, leading to unused hardware and increased power usage. In

turn, they were able to use those extra transistors to create more SIMD Engines,

similar to Figure 2.4, and increase overall computing power. At this time however,

a newer architecture exists, Graphics Core Next (GCN), which moves the scheduling
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to hardware which could better determine dependencies at runtime as opposed to

during compilation, and as such, schedule instructions on the hardware for better

utilization. AMD’s third generation APU, codenamed Kaveri which was released in

January 2014, includes CPU cores based on the Steamroller architecture and GPU

cores rooted in the GCN-based Volcanic Islands architecture which was released in

Q4 of 2013. These changes provide a much needed boost on the CPU side and further

AMD’s advantage over rivals Intel and Nvidia on the GPU side (in the low-mid range

market targeted at APUs).

3.4.3 The Magic

Combining a CPU and GPU is not all that difficult; take one part CPU, one part

GPU, one part silicon and mix them together. This basic approach however won’t

yield very good performance as both the CPU and GPU will be performance limited

since they now have to share the same die area that a single chip previously did. The

real magic of the APU lies in the hard-to-measure category of the uncore, the glue

that combines the two in order to maximize performance.

To enable GPU communication with memory, Llano has a dedicated interface, the

Radeon Memory Bus, which is 256 bits wide in each direction and replicated for each

memory channel (Kanter [2011]). For memory accesses to coherent system memory it

has the Fusion Control Link which is 128 bits wide in each direction. The significance

of these are to simplify memory accesses from the GPU to CPU memory and vice

versa since the two are built for different use cases; the CPU for latency and the GPU

for throughput. Based on this, we can see that the limiting factor is going to be the
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throughput of main memory for the GPU (the CPU already uses caching).

To aid in the pain point of bandwidth, AMD has two technologies, Pin In Place

and Zero Copy (Demerjian [2011]). Pin In Place enables placing a chunk of memory

in a static location which prevents having to search for memory locations at runtime,

saving time, power and resources. More important is Zero Copy, which enables mem-

ory sharing between devices by simply passing a pointer from one to the other instead

of copying data between devices. These technologies, enabled by the on-chip buses,

allow programmers to finally extract maximum performance, removing hardware lim-

itations, saving massive amounts of bandwidth and lowering latency dramatically.

Regardless of these improvements, AMD’s APU still relies heavily on main mem-

ory speed, which is why they achieve roughly a 20% performance boost over DDR3-

1333 memory when using DDR3-1866 (Lal Shimpi [2011a]), an increase of approxi-

mately 40%. Faster RAM is not the end all due primarily to the cost associated with

faster memory, which is an issue in a budget oriented market. That is why companies

like Intel are working in tandum with Micron to develop memory which would be

placed directly onto the chip, and using a very wide bus for extremely high memory

bandwidth, up to 1 Tb/s (Lal Shimpi [2011b]).

3.4.4 Implementation comparison of APUs, Intel vs. AMD

While we’ve already detailed the differences in how AMD and Intel design their

APUs (in terms of transistor allocation), we haven’t yet covered some of the lower

level details regarding the implementation. One difference is that Intel has gone with

an L3 cache that is shared between both the CPU and GPU (Lal Shimpi [2010]).
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This enables higher performance for both the CPU and GPU since data can be easily

shared, and, since it is a cache, it can prefetch new data (unlike a traditional GPU),

so it becomes available before it is required. This gives it very good performance

when either the CPU or GPU is being stressed as shown by benchmarks run by the

website Anandtech (Lal Shimpi [2010]). However, when there is a blend of CPU and

GPU use (i.e., there is no heavy imbalance in the processing power used by each

component; it’s split approximately 50/50 or 60/40) such as the Dawn of War II and

HAWX games, the solution loses to a low-end dedicated GPU since the L3 cache

cannot be fully utilized due to conflicts between devices and because of the second

design difference, how the hardware is provisioned.

Intel went with the approach of scaling the CPU and GPU independently within

the TDP limit and a priority to the CPU and AMD set minimum TDP limits for both

the CPU and GPU with a priority set more towards the GPU (Demerjian [2012]).

This gives Intel the benefit of having excellent performance when one or the other is

used (most traditional benchmarks) but has lower average performance since neither

the CPU or GPU can maximize their potential (they now have to share the maximum

TDP instead of having it allocated to a single one) (Lal Shimpi [2009d]). AMD on

the other hand took the other approach and guarantees both the CPU and GPU run

at a minimum level, even when stressed which gives them better mixed performance

at the cost of single benchmark maximum performance. Each implementation has

its own advantages and disadvantages but as APUs have progressed, the methods of

maximizing performance have improved and APUs from different companies seem to

look more and more alike with every iteration.
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3.5 Future APUs

We’ve covered how APUs from competitors bear more and more resemblance with

each iteration. Starting in 2011 with the Llano architecture, AMD put forth the first

of many pieces towards their heterogeneous systems architecture, integrating the CPU

and GPU onto the same silicon. They have since moved to phase 2, optimizing the

components and enabling better resource allocation and maximum performance from

each subsystem (using the Trinity architecture). Now, in 2014 they will complete

stage 3 with the release of Kaveri, architectural integration between the systems,

enabling simple, clean communication between the CPU and GPU and removing the

bottlenecks of memory passing. This leads into the last phase, system integration

which I will cover later in Chapter 9 where I examine future APUs and technologies

currently being developed and what they mean for the computing industry.
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GPU Computing: Shaders, CUDA

and OpenCL

GPU computing isn’t exactly a brand new idea; it has been around since GPUs had

vertex and pixel shaders which were used to manipulate objects. The problem with

this approach was that there was no standardized application programming interface

(API) used to specify data and how it should be accessed. Instead, programmers

provided vertices and vectors with which the GPU performed various calculations

and when finished, the programmer would convert the data back into a usable form

such as the work done by Fung and Mann [2005]. This roundabout method required

inefficient programming methods and was not programmer friendly, meaning it was

very error prone and not easily scalable to very large projects. Nvidia later saw

the potential of the GPU for more than just graphics and in 2006 would release the

Compute Unified Device Architecture (CUDA) which would enable general purpose

computations to be performed on a standard GPU (Nvidia [2006]). Similarly, ATI

28
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(acquired by AMD in 2006) was at the same time working on their own project, Close

to Metal, which has since been discontinued in favor of OpenCL.

CUDA started out as a framework to reduce the effort required to use the GPU for

general purpose computation. Nvidia started by using a C-based language and added

extensions on top of it in both the GPU driver and programming SDK to handle the

tough work like setting up the device, transferring data and computing the results.

With such a simple model and general availability (it could be used on any GPU

starting with the GeForce 8800 series, also released in 2006), CUDA positioned itself

to allow GPU computing for the masses. CUDA however would not meet this end

goal, being far too limiting with regards to the hardware it could be run on (solely

Nvidia GPUs), never gaining the traction its creators had envisioned; it did however

pave the way for a more open computing language.

4.1 OpenCL, the Open Computing Language

OpenCL, originally developed by Apple and now owned by the Khronos group is

an open, cross-platform API enabling programming for heterogeneous devices. This

abstraction of hardware gives OpenCL a write once, run anywhere model and means

it can better handle future changes in the computing landscape, such as the inclusion

of OpenCL in ARM CPUs, as well as Application Specific Integrated Circuits (ASICs)

built in hardware to perform a single type of calculation, such as bitcoin mining. With

OpenCL’s vast reach, it can be used everywhere, giving it many advantages over its

competitors as listed in Table 4.1.

As we can see from the chart, OpenCL has the benefit of being fully open regarding
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OpenCL CUDA DirectCompute
Operating System Agnostic Y Y N
Hardware Agnostic Y N1 N2

Open standards API Y N N
Future-proof (APU ready) Y N3 N
Gaining support (e.g., ARM) Y4 N N
Easily integrated with graphics Y N Y

1Nvidia devices only,
2DirectX 10+ GPUs only
3No APU support, only compatible with Nvidia’s ARM products
4Multiple vendors are adding OpenCL support to their devices
(Steele [2011]; Lokhmotov [2010])

Table 4.1: OpenCL vs CUDA, hardware and software support.

hardware and software, making it the perfect API for developing high performance

computing applications as hardware changes rapidly. Moving forward we look to the

details of OpenCL from a programmer’s perspective, including the threading model,

memory model and data partitioning.

4.1.1 OpenCL Threading Model

The OpenCL threading model is quite simple. Each element to be computed

is a work item. These work items are then blocked into local workgroups (whose

size may vary between devices and is used to target optimal device use) which then

execute on the device (and combined make up the global workgroup). For example,

say that in Figure 4.1, the NDRange size, or global workgroup is 768x768. This

would represent a total of 589,824 work items which will be computed by the device.

Looking at the global workgroup, we see it’s broken down into 9 chunks that are

deemed local workgroups. Each of these 9 local workgroups would then contain
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256x256 (65,536) work items, though the number can and will vary based on hardware

support. The hardware then independently schedules the local workgroups to best

utilize the hardware; an important factor in maximizing algorithm performance due

to hardware constraints (such as running out of hardware registers by choosing too

large a local workgroup size).

Figure 4.1: All elements to be computed are members of the global workgroup (shown
on the left). On the right is a single local workgroup which is a subset of the global
workgroup and contains many work items that share a common hardware resource
(compute block) (Gaster and Howes [2010]).

4.1.2 OpenCL Memory Model

OpenCL’s memory model is very similar to that of CUDA, and, at a high level, that

of a regular compute device with multi-level caches to speed up operations (though

here we have some control over how and where our data is moved and located).

Looking at Figure 4.2 we see 4 types of memory: private, local, global/constant

and host. Private memory is the lowest level of memory available, registers which
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provide the fastest access to memory and are allocated to each thread (i.e., each

work item) in the same manner as memory is allocated to a CPU. As registers are

an entirely hardware managed memory, programmers cannot directly access it, but

instead declare variables within the OpenCL kernel that are placed into registers via

the compiler (if the requested resources are available at the time).

Figure 4.2: The OpenCL memory model involves four different types of memory
provided by the GPU. These include the global memory, constant memory, local
memory and private memory. Each of these has a particular purpose which will be
explained in the GPU Memory Types section (Gaster and Howes [2010]).

Local Memory

Local memory is one step above registers and is typically around the size of a

CPU’s L1 cache. This piece of memory is included in each compute block on the

device, meaning we actually have a few MegaBytes worth to use for the entire device.
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Local memory is both read and writeable from all threads in a local workgroup (which

in turn is assigned to a single compute block). The setup of local memory in hardware

makes it so that as programmers, we don’t have to perform manual coalescing of

memory reads/writes (ordered by memory address; without which, memory accesses

would be performed sequentially) to get good performance. We also have full control

over this portion of memory so we can use it in any way we like and keep data

around as long as we like (as opposed to CPUs which typically use a least recently

used setup to remove old lines from the cache). However, local memory does have the

limitation of not being able to communicate directly with other local workgroups (like

the cache sharing model employed in multi-core CPUs). Instead, we as programmers

must explicitly move information from the one workgroup’s local memory into global

memory at which point we can then read it into the other local workgroup’s local

memory.

Why not just one memory?

Now you might be asking yourself, why not just add more hardware to replace

global memory with local memory since it’s so much better? The answer to that

lies in hardware limitations. Replacing global memory with local memory would

require replacing the separate memory chips currently on a GPU and integrating

those transistors into the chip itself. This would in turn increase the power use of

the chip (high end GPUs already consume 300 watts, as defined by their thermal

design power) and would require more die area for the chip itself, and GPUs are

already bumping into the upper limits of manufacturing capability due to silicon
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wafer defects. Due to this limitation, just like CPUs, GPUs have added memory

levels for specific use cases to try and reduce the amount of time the device must wait

on input/output.

Memory Type Size per Compute Unit Total Size on GPU Peak Bandwidth
Private (registers) 256 kB 8 MB 22.2 TB/sec
Local 64 kB 2 MB 3.7 TB/sec
Constant - 128 kB 474 GB/sec
Global - 3+ GB 264 GB/sec
PCI Express v3.0 - - 16 GB/sec
DDR3-1600 - - 12.8 GB/sec

Table 4.2: GPU Memory Types and Bandwidth for AMD Radeon 7970 (AMD [2012]).

Constant Memory

On AMD hardware, constant memory (image memory is similar but for textures)

is a small portion of dedicated memory. It is smaller than the Local Data Store (LDS

or local memory) at only 48kB for the entire GPU, but is meant to hold values that

will not change during runtime, whereas the LDS is a scratch pad for information that

will be passed around and updated constantly, requiring the ultra high bandwidth

and low latency access LDS can provide. As it is implemented directly in hardware,

it has very high bandwidth at almost 500 GB/s which is extremely slow compared to

registers, but nearly twice as fast as global memory, the highest level.

Global Memory

Global memory is slow compared to all other memories (registers, local, con-

stant/texture) but has the advantage of being very large (4+ GB is becoming standard
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on the top models of current GPUs) and read/write accessible from all workgroups in

a program. This makes it the best storage location for the GPU for large data that

needs to be simulatenously worked on by all threads and which is written or read

infrequently; this approach sacrifices latency and bandwidth for the benefit of being

able to globally synchronize across all workgroups. As well, in traditional devices,

such as the GPU, it’s also the end point for communicating between the CPU and

GPU where data must be explicitly copied from the CPU to the GPU and back.

What we’ll see later with the APU however, is this model being turned upside down,

where no data needs to actually be transferred.

4.1.3 OpenCL Data Partitioning

Data partitioning with OpenCL is key to achieving good performance and there

are two things we need to keep in mind. One is that all work items are calculated

in parallel (pending hardware scheduling restrictions) and there is a balance between

having each individual work item have the resources that it needs while simultane-

ously maximizing the utilization of the device. First, we need to remember that

all work items are calculated in parallel with no guarantees regarding the order of

completion (assuming no synchronization is required in the kernel). This leads to

programmers being responsible for partitioning data correctly and at a level where

we can synchronize/transfer data in the most efficient manner, either at the local

workgroup level (most efficient; fewer threads) or at the global workgroup level (all

threads). While synchronization hinders maximum performance, without it, results

can not be guaranteed due to race conditions or improperly ordered memory accesses
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(compared to a sequential version).

Maximizing Efficiency

Given this, we need to then look at how to best optimize our available resources,

of which there are a few ways: workgroup sizes, locality and optimizing the usage of

available hardware. The most simple method of data partitioning is to split the data

across workgroups, which can vary in size (as supported by the device). There are

tradeoffs with the local workgroup size, where smaller workgroups should provide good

device utilization. However, at the same time, having too many small workgroups

may cause the hardware to spend a lot of time context switching workgroups as

they wait for, or complete work, hindering overall performance. Thus, we need to

find the optimal size for the given hardware we have (e.g., Are we limited by register

usage, the number of work groups, or something else?) which can be found via AMD’s

OpenCL Kernel Analyzer. Not unrelated is the hardware present such as the constant

and image memories. While it may have a lower total bandwidth than LDS, using

constant memory instead may free up our usage of LDS (if pushing against the 64kB

upper limit per local workgroup) allowing us to add more data to it, increasing our

data locality and making sure it is as readily accessible as possible.

4.1.4 Optimization Techniques

To obtain the best performance, we need to look at multiple techniques to optimize

our algorithm for our hardware. These range from optimizing control between devices

and eliminating memory transfers, to packing instructions to take advantage of the
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APU’s VLIW architecture.

Loop Unrolling

A relatively simple technique to reduce idle time is to keep more iterations on

the APU before transferring control back to the CPU (for memory transfers, syn-

chronization, sequential calculations, or other reasons). While not possible for every

algorithm, when it is possible to be used, it can have a very dramatic effect on per-

formance.

Memory Optimization

To optimize memory accesses we can use local memory (covered in more detail

later) as a programmer-managed cache to avoid having to make calls to the slow

global memory. A second option is to take advantage of the APU’s shared memory

space between the CPU and GPU by using host memory which transfers data between

the two by simply moving a pointer. Using this approach, transferring data no longer

involves copying memory and moving it off the device, making it incredibly efficient

when memory is read or written infrequently.

Vectorization

The final optimization I examine for the APU is vectorization. With vectoriza-

tion, we can pack instructions and data together (if there are no conflicts) which can

be executed simultaneously on the hardware (provided it also supports parallel calcu-

lations by each execution core). This organization of data enables better scheduling

of instructions to improve device utilization and optimize memory access.
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0-1 Knapsack

5.1 Problem Definition

The basic 0-1 knapsack problem is a staple of computer science. The goal of the

problem is to choose a set of items, each with a given profit and weight, so as to

maximize profit within a given weight restriction. This is known as an optimization

problem, and more specifically, resource allocation and is applicable to many real

world situations such as bin packing, route choice (similar to to the traveling salesman

problem) and cutting an item to minimize waste (see Figure 5.1). This means large

real world cost savings when a solution can be even just 1% better, which is why this

problem has been studied extensively, as I’ll cover later under related works.

38
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Figure 5.1: A short example of the 0-1 knapsack problem using the dynamic pro-
gramming approach. Here we have 5 items to choose from, each with a given profit
and weight, and a set bag capacity (up to 10). In this case, the best profit achievable
is 17 using items 1, 2, 3, and 4.

5.2 Related Works

To solve the 0-1 knapsack problem there are a number of algorithms that can

be used, each of which takes a different approach. These include greedy algorithms

which simply choose the “best” items (be it in terms of profit or some other maxi-

mizer), branch and bound algorithms which select items based on some factor (e.g.,

profit/weight ratio), approximation algorithms, or dynamic programming which builds

a 2D item/weight matrix filled with the best profit achievable using items x..y..z.. For

my work, I examined the dynamic programming approach as it provides an optimal

solution every time and, based on the matrix’s structure, should map well to the APU

architecture.

Examining related works, Boyer et al. [2012] created a solution to reduce the mem-

ory footprint of the dynamic programming 0-1 knapsack algorithm. The benefit of

this is reducing the amount of data that needs to be passed to the GPU, which should

in theory speed up the alogrithm. To do this, they removed continuous duplicated
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values within a row of the matrix with a single value. This removes unnecessary data

transfer between the CPU and GPU as well as eliminates the duplicated processing

of these values since they will be the same after the iteration completes. The result

of their optimization techniques is a matrix which took up less than one percent of

the space of the original matrix and a speedup ranging from 19 times for a 10,000

item matrix to 26 times for a 90,000 item matrix. Quantifying these values, the CPU

took nearly 59 seconds for 10,000 items while the GPU took 3.06 seconds. Moving

to the larger matrix of 90,000 items, the CPU took over 100 minutes while the GPU

completed the same work in under 4 minutes.

A second approach is branch and bound shown in Figure 5.2 and researched by

Boukedjar et al. [2012], whose work was continued by Lalami and El-Baz [2012]. The

branch and bound 0-1 knapsack algorithm attempts to prune solutions that appear

at a high level to be less than optimal so as to avoid having to traverse those branches

running calculations which cannot improve the solution. The later work by Lalami

and El-Baz [2012] showed that this type of algorithm could work on the GPU (which

traditionally does not do well with branching due to the random memory access

pattern), providing a speedup over a CPU-based algorithm. In their results, for a

matrix size of 100, the GPU was able to achieve a speedup of 8.48 times, with an

execution time of 0.18 seconds, compared to the CPU’s 1.59 seconds. At the upper

end, choosing from 500 items, the GPU completed in 0.65 seconds with respect to

the CPU’s 13.39 seconds, for a speedup of 20.48 times.
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Figure 5.2: A short example of the 0-1 knapsack problem using a greedy branching
approach (over capacity solutions not shown). We start by looking at the highest
profit items and examining all possible solutions. As we move through the tree, we
examine all solutions except ones containing items already searched (to the left). For
example, in the branch starting at 4, we don’t look at any solutions containing 8 as
we would have covered the 8+4 solution in branch 8 and found it to be invalid.

5.3 Implementation and Results

5.3.1 Algorithm 1: Näıve

In my first algorithm (Doerksen et al. [2011]), I used a single compute unit of the

GPU to obtain a basic working implementation of the 0-1 knapsack algorithm. This

approach passed control back and forth between the CPU and GPU after each row

had been computed. The next line was then transferred to the GPU, computed and

returned, etc. As the profiler was not available at the time of publication (Doerksen

et al. [2011]), I was unable to analyze the performance of the algorithm directly.



42 Chapter 5: 0-1 Knapsack

However, with my knowledge of how the APU works and GPU computing in general,

I knew that the bottleneck was the memory transfer over the PCI Express bus and the

context switching that occurs when transferring control from the CPU to the GPU and

vice versa. As shown in Figure 5.3 (which was captured using the OpenCL profiler),

we have over 1000 read/writes, one for each time the CPU had to pass information

to the GPU. The inefficiency of data transfer manifests itself in the allocation of

time spent computing vs. communicating, 1:99 percent in this first algorithm, and a

very slow execution time of over 2.5 seconds compared to the sequential algorithm’s

execution time of 0.1 seconds (see Figure 5.4). At the same time, the APU also ends

up slower than our parallel implementation which used OpenMP on the CPU. Using

this profiling information, I was able to perform guided optimizations (examining

both software and hardware counters) to iteratively improve the execution time of

my algorithms.

Figure 5.3: Algorithm 1 of the dynamic programming algorithm for 0-1 knapsack.
We can see many data transfers are being done and that our time spent executing
the kernel is less than one percent of the overall execution time.
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Figure 5.4: Execution times for the näıve algorithm where we see the penalty the
APU pays for this unnecessary data transfer.

5.3.2 Algorithm 2: Loop Unrolling

The goal of the second algorithm that I created was to remove the PCI Express

bottleneck in the system by attempting to keep data on the GPU for as long as

possible. This was done by passing multiple rows at each iteration to reduce the

number of context switches between computing on the CPU and GPU. Figures 5.5

and 5.6 show the result of eliminating these data transfers done at the beginning/end

of the GPU’s calculations. We now have only four data transfers in our algorithm but

this change now necessitated row-level synchronization (between local workgroups)

within the OpenCL kernel to avoid race conditions. We can also see that we are

transferring a relatively large amount of data, nearly 128 MB in total which takes

53 milliseconds. Compared to the kernel which only takes 13 ms, we’ve gone from

1% computation time, up to 20% of total time, with an execution time just over 0.05
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seconds, approximately twice as fast as the sequential algorithm. While an excellent

improvement, it would be better if we could take that memory time and reduce that

further.

Figure 5.5: Algorithm 2 of the dynamic programming algorithm for 0-1 knapsack. I’ve
removed the thousands of write/read cycles present in the first algorithm, enabling
data to stay on the GPU for as long as possible.

Figure 5.6: Execution times for the second algorithm where we kept the data on the
GPU as long as possible by not returning control to the CPU after each iteration.
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5.3.3 Algorithm 3: Scaling and Optimization

With the third algorithm, I implemented host memory and enabled the algorithm

to use all compute units in the APU. From Figure 5.7 we see that execution time

hasn’t actually changed much, even though we cut the memory transfer time to

almost zero as seen in Figure 5.8. Looking at this result doesn’t make much sense

since, as we’ve decreased the transfer time, shouldn’t the overall execution time be

lowered to the kernel time? To see why this happens we need to look closer, at Figure

A.1 where we see that the ALUBusy, FetchUnitBusy and WriteUnitStalled counters

have gotten worse.

Figure 5.7: Execution times for the third algorithm which uses all computation units
in the GPU and removes all GPU-located data buffers in favor of using host memory.
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Figure 5.8: Algorithm 3 of the dynamic programming algorithm for 0-1 knapsack.
Here I’ve switched to using host memory instead of global memory and enabled the
algorithm to scale across all compute cores.

Interpreting Performance

What Figure A.1 means is that our hardware is now less utilized, 27% for the

ALU, 22% for the FetchUnit, and our write unit is stalled (albeit to an unnoticeable

degree). Comparing the two we see that the proportions haven’t changed, as the

ALU:Fetch Percentage ratio is still approximately 1.2:1, so what could have caused

hardware utilization to decrease? This is answered in the other change that was made

to the algorithm, scaling it across all compute units. Remember from the section on

OpenCL, we use groups of 256 items (the optimal size for the APU for this problem)

and if we are using more, synchronization must occur to avoid race conditions. In

the second algorithm, we used a single compute unit and had it calculate all items,

meaning synchronization only occurred within a single block. Changing the algorithm

though now means we have to sync 16 workgroups across each row (with a workgroup

size of 256 and a row length of 4096). With these small problem sizes, we see this
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extra synchronization manifest itself silently in the kernel’s execution time and is

where we must now focus our attention.

5.3.4 Algorithm 4: Caching

The final algorithm change I implemented was based on the third algorithm. Now,

I also switched to using local memory in the kernel to cache data elements within

a workgroup and reduce the overall number of accesses to global memory. Looking

back to Chapter 4, you’ll see that local memory has a peak bandwidth of 3.7 TB/s,

compared to global memory’s 264 GB/s (a best case for a dedicated GPU, our system

memory is actually much slower). This has great potential to speed up our algorithm,

and as we can see in Figures 5.9 and 5.10, execution time for the kernel was cut almost

in half. As well, looking at the change in values of our hardware counters in Figure

A.2, we see that while our FetchUnitBusy percentage hasn’t increased, we did double

our ALUBusy time which shows in our results where execution time dropped from 0.06

seconds for a 4096x4096 matrix, down to 0.04 seconds. Not shown here is the result

for an 8192x8192 matrix which was 61 times faster than the sequential algorithm; not

bad for an integrated GPU.

5.4 Summary

We began with a näıve algorithm using just a single compute unit to establish a

working baseline of the 0-1 knapsack problem on an APU. Then, through profiling the

code we found the first bottleneck, data transfer between the CPU and GPU at each

iteration and were able to remove it, increasing our performance to 1.4 times that of
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Figure 5.9: A comparison of the execution times of the algorithms as we’ve progres-
sively optimized them.

Figure 5.10: Version 4 of the dynamic programming algorithm for 0-1 knapsack which
uses local memory to reduce the number of reads from global memory.

the sequential algorithm. We continued examining the algorithm to try and find more

areas hurting performance and determined that, with the advanced APU architecture,

removing memory transfer is possible and resulted in further performance gains. In
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practice, we saw only a slight benefit of the APU’s memory architecture come through

as the extra synchronization between workgroups brought our execution time almost

to where it was before, but it did provide us with an algorithm that could be scaled up

to larger inputs relatively easily. Finally, we introduced local memory to reduce the

amount of memory transfers to global memory which increased our performance by

nearly 50% over our previous APU algorithm, and 61 times faster than the sequential

algorithm for an 8192x8192 matrix.

5.5 Future Work

While we achieved excellent results, there are a few other points of interest. These

include vectorization of the algorithm so that multiple work items can be grouped

onto the hardware and computed at the same time (at an even finer grained level

than workgroups). This algorithm change may potentially increase performance up

to 16 times on current GPUs (this is the maximum vectorization level currently

supported by OpenCL), though performance in practice would likely end up in the

2-8 times range based on the hardware setup (the A10-5800K APU uses a VLIW4

GPU) and increased resource utilization that vectorization would provide. As we

see later in Chapter 7, during the implementation of the Monte Carlo algorithm,

register pressure becomes a fundamental bottleneck for performance. With the 0-1

knapsack problem though, we can not use vectorization to hide this latency due to

the amount of synchronization, which hurts our ability to scale the algorithm using

this technique. Second, and not entirely unrelated is AMD’s next generation of APUs

which use the GCN architecture which has proven to be on average almost 40% faster
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for compute work while at a 17% disadvantage in GFLOPS, a 50% disadvantage in

shaders and a 78% disadvantage in memory bandwidth (Smith and S [2012]). Finally,

while not completely solving the scaling issue as programs must still fit within GPU

memory, the problem could be broken down for incredibly large problems (hundreds

of millions) so that a subset of the problem could be worked on by the GPU. This

would however reintroduce some of the data transfer issues of the first algorithm, but

with the potential to use host memory on the APU (particularly on AMD’s Kaveri

APU which passes only memory pointers without any copying required), would likely

end up scaling far better than passing data through buffers.
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Gaussian Elimination

6.1 Problem Definition

Gaussian elimination is a method for solving a system of linear equations. It

reduces the set of equations such that we are able to find a value for each of the

variables so as to satisfy the overall system. While not as easily pliable to applications

compared to the 0-1 knapsack problem, matrices of equations define the world of

mathematics around us and as such, make up components of the systems we see

around us; an example of Gaussian Elimination can be seen in Figure 6.1.

Figure 6.1: A simple example of Gaussian Elimination which uses reverse elimination
to zero all values in one row except for one column. This value is then substituted
into the other formulas and elimination is performed again. In this simple case,
elimination isn’t used to zero out the second row after the value of z is found since
we can calculate the value of y as we know all other columns.

51
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Algorithm 1: Pseudocode for the reverse elimination portion of the näıve al-
gorithm.

for i← n− 1 to 0 do
// use the element at [i][n] as the pivot value
// matrix[i][n] = matrix[i][n] / matrix[i][i]
// matrix[i][i] = 1
for j ← i− 1 to 0 do

// zero all remaining columns leaving a single value
// matrix[j][n] -= matrix[j][i] * matrix[i][n]
// matrix[j][i] = 0

end

end

6.2 Related Works

As eliminating variables is at the heart of solving a system of linear equations, the

possible methods of solving a system of linear equations are quite limited and are in-

stead focused on optimizing the system to reduce the number of calculations (but not

reduce its time complexity unless certain conditions were met). One method, proposed

by Gohberg et al. [1995] involved transforming matrices of the forms Toeplitz-like,

Toeplitz-plus-Hankel-like and Vandermonde-like into Cauchy-like matrices for which

they were able to create an O(n2) algorithm which used partial pivoting. The work

of Demmel et al. [1999] however was able to produce a faster Gaussian Elimination

algorithm, netting speedups averaging 2.6 times over multiple machines when run

with four processors. Their algorithm was highly customized however (compared to

the standard algorithm), using graph reduction and a custom scheduler to pipeline

execution to remove dependencies. Lastly, we have the work of Che et al. [2008] which

used a customized algorithm, and found that from a cumulative clock cycle perspec-

tive, the GPU was in fact able to outperform the sequential algorithm. Concluding,
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while it is possible to speed up the Gaussian Elimination algorithm, it can’t be done

with the simple näıve algorithm just yet.

6.3 Results

In this section, I present several variants of the Gaussial Elimination algorithm.

By using profiling information, I attempt to iteratively improve the algorithm’s per-

formance.

6.3.1 Algorithm 1: Näıve

As we did for the 0-1 knapsack problem, we start with a simple port of the CPU-

based algorithm to create a baseline for algorithm performance. For this problem,

we examined the reverse elimination portion of the algorithm since it runs in O(n2)

time and would quickly show if our optimizations were successful. Our näıve approach

however leads to less than optimal performance, as seen in Figures 6.2 and 6.3, because

we return control to the CPU after each iteration for processing that must be done

before the parallel work can be started. This leads to performance worse than CPU,

which also happens with the parallel algorithm. The root cause for this performance

loss is the number of forks/joins that must take place because the inner loop is the

one that is parallelized.

Moving to the execution, we see that only 4% of our total time is spent actually

executing our kernel; the rest is spent waiting on memory operations. We also know

from the algorithm that there are very few calculations done in each iteration of the

loop, meaning overhead will have to be low in order to end up ahead. Examining the
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Figure 6.2: Profiler output for the näıve approach to parallelizing Gaussian Elimi-
nation. Note the amount of time spent waiting between iterations because the GPU
cannot deal with small input sizes.

Figure 6.3: The execution time for our first algorithm, exhibiting performance fol-
lowing that stated by Amdahl’s Law.

hardware counters in A.3 we can see the result of this, where we have an ALU/Fetch

ratio of only 3.5. and the amount of time the hardware is busy running calculations

is extremely low, averaging 3%.
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6.3.2 Algorithm 2: Optimizing Memory Transfer

In an attempt to remove the limitation of memory and play the strengths of

the APU, I used host memory in place of device buffers. Unfortunately, this didn’t

increase performance much, only 1%, but performance was still lagging behind the

sequential version by over 10%, as can be seen in Figure 6.4. The profiler also showed

that synchronization was not required after each iteration, and so removing it did

increase performance, but to the degree of only 1%.

Figure 6.4: Examining the execution time we see minimal difference to the first
algorithm due to the speed of sequential calculations, even with a reduced reliance
on memory.

The problem with this algorithm is not actually the memory maps that are taking

place, shown by Figure 6.5, but rather the fact that we must call out from our program

to the OS to make the context switch to give control back to the CPU to perform the

memory map. It is in this respect that AMD’s future generations of APUs should

perform extremely well, as they will be able to queue from the GPU to the CPU and
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vice versa without any OS interaction, eliminating all time now spent doing memory

map operations. Now, the only other way to speed up the algorithm would be to

manually remove these operations.

Figure 6.5: The second algorithm exhibits the same performance characteristics as
the first algorithm since we are not actually limited by memory.

6.3.3 Algorithm 3: Non-traditional Approach

In the final algorithm, I decided to go with a very non-traditional GPU program-

ming method, using the APU for all calculations including the sequential portion.

I chose this approach as Kaveri was not available at the time, which would benefit

from passing only memory pointers, leading to less context switching between the two

devices. To build the algorithm this way involves making the threads synchronize be-

fore and after the sequential work and have only a single thread run the sequential

calculations. In this manner, the tradeoff is using the APU’s slower GPU resources

(single-threaded) in exchange for removing the OS context switches.

Examining the results of Figure 6.6 we see something astonishing. For an input

of 1024, we match that of the sequential algorithm, and for 2048 we actually beat it
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Figure 6.6: The third algorithm’s execution time which shows we were actually faster
for smaller input sizes, meaning that with a more advanced APU like Kaveri we might
actually obtain a speedup with large inputs.

(albeit minimally). Unfortunately, as we move to 4096 items, the combination of the

extra synchronization (since we’re using even more workgroups) and more sequential

items to calculate, the program execution does not complete within a reasonable

amount of time. On the upside, this does show promise for our previous hypothesis

of using Kaveri’s heterogeneous CPU-to-GPU queues to remove context switching

and its potential for accelerating this difficult problem.

6.4 Summary

Gaussian Elimination has proven to be a very difficult algorithm to optimize for

performance. Even using host memory (playing to the APU’s strengths) we were not

able to overcome the inefficiencies of interacting with the OS every iteration to han-
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dle device memory operations. However, the attempt at non-traditional processing

methods shows promising results for small input sizes where we were able to beat the

sequential result, proving the concept of single device computing (even on a GPU).

With next generation APUs, this bottleneck will be removed as OpenCL CPU and

GPU devices will be able to queue work directly to each other, without interaction

from the OS, and while remaining in userspace. This should finally make this difficult

algorithm possible to parallelize, paving the way for optimizing similar problems.

6.5 Future Work

In the future, I would like to re-examine this problem with either Kaveri or AMD’s

next generation APU which would include the ability to heterogeneously queue from

the CPU to the GPU and vice versa. This would enable us to remove the overhead

resulting from context switching between the devices that is present in the current

systems. As well, I would like to investigate the use of vectorization to accelerate

the problem since it should provide better GPU performance once we are able to

seamlessly switch between computing devices.
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Monte Carlo Simulation

7.1 Problem Definition

A Monte Carlo algorithm works by using randomization to build a solution. For

American option pricing it calculates potential stock prices according to probability

using a function which takes many variables including: strike price, expiration date

of the option, interest rate, stock volatility and growth rate of the stock. This func-

tion is run many times and averages the results to obtain what should be a good

solution, with a given probability of the answer being incorrect. The difficulty in the

Monte Carlo method is that it is very compute intensive, often requiring hundreds of

thousands or millions of iterations to come to an answer that can be used. However,

it performs very well for systems with many coupled variables like fluid modeling,

artificial intelligence and economics and as such, any way to speed up this technique

would provide real world results.
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7.2 Related Works

As Monte Carlo simulations have been around for so many years after the intro-

duction of the first computer and they are found in so many areas, I will only cover the

techniques used to accelerate option pricing, namely parallel processing with CPUs,

GPUs and dedicated hardware.

The first method is to introduce parallel programming, where one (or many)

systems calculate a portion of the result set and combine them to determine a final

value. Dockner and Moritsch [1999] took the approach of using a distributed memory

system with SPARC computing nodes to accelerate their algorithm. As the Monte

Carlo algorithm only incurs communication time at the very beginning (to tell each

worker what to do) and very end of its work (to combine the results), the execution

time drops almost linearly with the number of cores. As such, they were able to

drop the execution time from 0.9 seconds to less than 0.1 seconds. Based on what we

know about the Monte Carlo algorithm, it will scale almost linearly as you add more

hardware, meaning these results fall in line with expectations but will likely soon run

into the minimum time to compute wall due to running out of processing power.

Next is the use of the graphics processing unit which has hundreds of cores that

can work independently, much like a multi-core system. Abbas-Turki and Lapeyre

[2009] took this approach and modified the Monte Carlo algorithm so that it could run

on the GPU. With the parallel processing capabilities of the GPU, the authors were

able to achieve a 1.4 and 64.5 times speedup (for the slowest and fastest portions of

the algorithm) over the sequential CPU-based algorithm. This type of speedup shows

that the GPU is well suited to Monte Carlo simulations and there may only be one
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device that can do better, dedicated hardware.

The last major option to speed up Monte Carlo option pricing is to use hardware

tailored for the specific purpose of calculating option prices. This was implemented

by Sanchez-Roman et al. [2013] whose approach was to design an algorithm for Asian

options to be executed in a field-programmable gate array. By implementing the

algorithm in hardware, the inefficiencies of an OS and generic hardware are removed,

resulting in better performance with the tradeoff of a non-portable algorithm. Taking

this approach, they were able to achieve a speedup of over 500 times that of the

sequential CPU algorithm when run with 3650 time steps and 10 million simulations.

These results are quite impressive, showing what dedicated hardware can do to speed

up a problem. The only downside to this approach is that it’s not easily accessible

to most people as it requires specific hardware and must be programmed with only

this function.

7.3 Results

In this section, I provide several implemantions of the Monte-Carlo method for

the APU.

7.3.1 Algorithm 1: Näıve

I began by creating a simple version which used all available hardware resources on

the GPU but communicated using global memory (Doerksen et al. [2012b]). I profiled

the execution of this algorithm and noticed a few key things: namely the memory

accesses, the kernel occupancy, ALUBusy percentage and ALUPacking percentage.
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Algorithm 2: Source code for the Monte Carlo näıve algorithm.

// initialize parameters
// K: strike price
// T: time step
// S: stock price
// δ: continuous dividend yield
// σ: volatility
// N: number of steps
// M: number of simulations

dt = T/N;

// r is the interest rate
nudt = (r − δ − (pow(σ, 2)/2))dt;
sigsdt = σ ∗ sqrt(dt);
sumCT = 0;
sumCT2 = 0;

for j ← 0 to M do
lnSt = log(S);

for i← 0 to N do
lnSt = lnSt + nudt + sigsdt*rand();

end
// stock price at time T
ST = exp(lnSt);
CT = max(0, ST - K);

// sum of payoffs at maturity date
sumCT = sumCT + CT;
sumCT2 = sumCT2 + CT*CT;

end
// final option value, averaged sumCT and discounting current date to T
c0 = sumCT/(M*exp(-r*T));
// std deviation of the option values
SD = sqrt((sumCT2 - sumCT*sumCT/M)*exp(-2*r*T)/(M-1));
// standard error
SE = SD/sqrt((float)M);
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Figure 7.1: The context summary for the Monte Carlo algorithm shows almost no
memory accesses being performed meaning there is little to optimize in this respect.

Starting with the memory accesses as shown by Figure 7.1, we see that very little

time is spent doing memory operations, meaning there is no need to optimize for

this. At the same time however, due to this behavior, we can also say that the

APU’s strengths will not be shown with this algorithm since it’s entirely compute-

bound. As well, from Figure A.4 we see that kernel occupancy is not 100%, but what

does this mean? For that we turn to Figure 7.2 which shows high level information

about our kernel running on our hardware and how it is limited. In this case, we see

that our program is limited by Vector General Purpose Registers (VGPRs), or the

number of registers used to store vectors. Due to this we can only run 28 workgroups

instead of 32 on our hardware, losing 12.5% performance immediately. Resulting from

this are the other two noteworthy variables, ALUBusy percentage and ALUPacking

percentage which are reduced because we have run into hardware limitations due to

using too many registers.

The result of this simple Monte Carlo option pricing algorithm actually turns out
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Figure 7.2: Kernel occupancy graph which examines your hardware and kernel and
advises you on what is bottlenecking your program.

to be very good, even if we aren’t running the hardware to its maximum capabilities.

From Figure 7.3, the APU’s execution time is only 0.7 seconds for 32,768 loops using

131,072 random data points while the sequential algorithm is over 10 seconds with the

multi-core OpenMP algorithm sliding in between at 2.6 seconds. As this algorithm

was the most basic form we could create (minimal effort is required to implement the

algorithm), these results are very good, showing off what the GPU can do for these

trivially parallel programs. However, we can’t stop here since more performance could

be achieved, which is why I looked to use local memory instead of registers to store

variables.
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Figure 7.3: The APU, with its limited computational resources still manages to out-
perform the CPU quite handily, even with a basic, ported algorithm.

7.3.2 Algorithm 2: Loop Unrolling

In an attempt to reduce the amount of registers used by the algorithm, I placed

all possible variables in local memory instead of creating private variables. Unfortu-

nately, this had no effect on reducing the number of VGPRs used by the algorithm.

Instead, as seen in Figure 7.4, execution time actually increased which I attribute

to the slower speed of local memory compared to registers since the hardware built

caching mechanism could not make up for the slower speed. Coupled with this, we

weren’t able to run more waves on the hardware, leading to no performance benefit.

Since altering the memory scheme didn’t help with freeing up the number of regis-

ters I examined another optimization technique, vectorization, to see if it would be

possible to “power through” this disadvantage and get more use from the hardware

we do have since some of the registers should be possible to re-use.
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Figure 7.4: Using local memory to attempt to reduce register pressure has actually
decreased performance to less than that of our parallel CPU algorithm, forcing us to
look in other areas for improvement.

7.3.3 Algorithm 3: Vectorization

This final algorithm reverted back to using global memory and vectorization to

take advantage of the APU’s VLIW4 architecture. While testing these changes, I

had to answer the question, would 8 and 16 element vectorization actually improve

performance or hurt it since the hardware itself is only built to handle 4 elements?

The short answer is yes, we do see a performance improvement even after passing

4 element vectorization. I attribute the gains to better scheduling (or instruction

queueing) which keeps the ALUs busy. The net gain can be seen in both Figures

7.5 and 7.6 where we now execute the largest input size in only 0.09 seconds, or

a speedup of 7.7 compared to our first algorithm, and 113 times faster than the

sequential algorithm. Looking one step further, we were able to execute 131,072

items for 131,072 time steps in only 0.25 seconds using 16 element vectorization,
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nearly three times as fast as our first algorithm while computing 4 times the amount

of data points.

Figure 7.5: The final algorithm uses vectorization to compute multiple items simul-
taneously on the hardware (at a finer-grained level than SIMD engines) leading to a
drastic performance improvement.

Moving to the scaling of vectorization, we see a near linear decrease in execution

time by continually doubling the number of elements to vectorize. At the same time

however, looking at Figure 7.7 we see that this has had a major effect on the number

of waves that the hardware can schedule, reducing overall performance since we can

now only run the hardware at 12.5% of its capacity. This is unfortunate since we’ve

now hit a hard limitation unless there is a way to reduce the register pressure that

occurs with vectorization. Alternatively, using a high-end GPU would likely reduce

this limitation as there would be more registers, improving performance dramatically.
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Figure 7.6: Comparing the performance of vectorized algorithms we achieve almost
linear scaling all the way up to 16 elements. For problems like Monte Carlo simula-
tions, extremely wide parallelism cannot be beaten.

7.4 Summary

We began with a simple Monte Carlo algorithm for option pricing and ported it

directly onto the APU. From this, we were able to achieve a speedup of 14 times that of

the sequential algorithm with minimal coding required. Next, since we were limited by

the number of registers in the first algorithm, I attempted to use local memory to store

private variables. Unfortunately this did not work and actually led to performance

degredation. Lastly, to try and extract more performance out of the hardware I

turned to a technique called vectorization which groups data elements together for

smarter memory accesses and, in the case of AMD’s hardware in particular, better

scheduling and packing of instructions onto the hardware for better utilization. This

increased performance dramatically, now over 110 times faster than the sequential

algorithm which is quite a feat considering this is just an APU which has nowhere
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Figure 7.7: The kernel occupancy graph for the 16-element vectorized algorithm.
Note how we can now run very few waves on the hardware because we have run out
of registers.

near the amount of computational resources compared to a dedicated GPU.

7.5 Future Work

Given that this is a trivially parallel algorithm, the amount of further optimiza-

tions are very minimal. At this time, the only work that remains to be done is to

search for a method of reducing the register pressure that currently exists in the

algorithm, particularly when vectorization is used.
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Binomial Lattice

8.1 Problem Definition

The binomial lattice for option pricing is one method to approximate the price of

an option. Using the binomial lattice method, we essentially create a tree, as shown

in Figure 8.1. Moving from left to right we have the number of time steps, which

could in theory be increased to infinity (ignoring the limitations of computational

feasibility). At the very right, or final time step, we have the maturity date of the

option, or when it must be exercised. The points in between represent the price at a

given time step, and, as we’re using a binomial method, the price can in each time

step, either increase or decrease. There are other, more advanced models such as the

trinomial method where the price could increase, remain unchanged, or decrease at

each step, as well as n-ary tree methods to enable more fine grained pricing (limited

by computational power).

The option variation we study here is the American Lookback option which tries

70
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to find the minimum or maximum value (based on buy or sell) of an option at a

given point in time between the purchase date and maturity date. The American

Lookback option is categorized as an exotic option because it has features not found

in standard options, such as the ability to exercise the option any time before the

expiration date (as opposed to a European option which can only be acted upon at

the time of expiration). Based on the large tree structure of the problem after many

time steps, and simplistic synchronization that occurs at every time step, we theorize

that the APU should perform very well for this problem.

Figure 8.1: A binomial tree structure constructed for option pricing for 3 time steps
(but could be sub-divided until we run out of computational power). Image taken
from Solomon et al. [2010].

8.2 Related Works

Option pricing is not a new field and there are many ways to try and calculate

an option’s price, like Monte Carlo (covered in Chapter 6), binomial/trinomial lattice

and finite-difference methods. As mentioned earlier, most work with Monte Carlo

methods in this area has not been towards new algorithms but rather the optimization
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of existing ones. These optimizations can be summarized to using new types of

hardware to accelerate the problem better than that of a normal CPU.

One approach, taken by Solomon et al. [2010] was to use the GPU because of

its massively parallel nature and high-speed memory. Through optimizations like us-

ing shared memory and memory coalescing, they were able to dramatically improve

performance over their näıve GPU algorithm, obtaining a speedup of over 3.5 times.

Additionally, the authors also implemented a hybrid version of their algorithm that

would use the CPU simultaneously with the GPU. The result of this however was

minimal to zero performance gain simply because the GPU dominates the overall ex-

ecution time given how many work items it is calculating. Compared to the sequential

CPU algorithm, they were able to achieve a speedup of over 100 times, demonstrating

that special purpose hardware is the best method to calculate option prices.

Furthering the idea of special purpose hardware for computing is the work by Tse

et al. [2009] who used a FPGA to accelerate quadrature methods used for option

pricing. By removing the inefficiencies of “general purpose” hardware such as the

CPU or GPU (though the GPU is better suited to this task than the CPU) they were

able to create a system that would only be able to calculate option prices, but do it

very fast and for little power. In their results, they managed to achieve a 32.8 times

speed up over the CPU for single precision work while using only 4.4 watts (maximum

power). Compared to the GPU their FPGA was approximately half as fast for single

precision, but achieved those results at 1/13 the clock speed and using 45 times less

power. These are very impressive results, but they do require specialized hardware

only suited to calculate one thing meaning they can not be used by the layman; this
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is where our research using APUs attempts to bridge the gap.

Algorithm 3: Source code for the Binomial Lattice näıve algorithm.

if globalID == 0 then
yValue = pow(u, 0);
tempOptionValues[0] = max(yValue - 1.0f, ((pu * optionValues[1] * d) +
(pd * optionValues[0] * u)) * disc);

end
if globalID <= i then

yValue = pow(u, globalID);
tempOptionValues[globalID] = max(yValue - 1, ((pu *
optionValues[globalID + 1] * d) + (pd * optionValues[globalID - 1] * u)) *
disc);

end
// synchronize workgroups before writing to global memory

if globalID <= i then
optionValues[globalID] = tempOptionValues[globalID];

end

8.3 Results

I implemented three different versions of the binomial lattice algorithm on the

APU. This section highlights these implementations and provides an analysis on in-

formation retrieved by the profiler.

8.3.1 Algorithm 1: Näıve

The first algorithm I created was näıve, and a first attempt to get a working

algorithm running on the APU (Doerksen et al. [2012a]). Given that this is a very

computationally intensive algorithm, we see that in Figure 8.2 we still manage to
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achieve better results than both the sequential and parallel algorithms without using

any optimizations. For inputs smaller than 4096 time steps the APU has no benefit

over the sequential algorithm, but once we reach 32,768 time steps, we managed to

obtain a speedup of 6.2 times faster.

Figure 8.2: Even with a basic, first attempt algorithm, the APU is able to outperform
even our parallel CPU algorithm.

Next I profiled the algorithm (see Figure 8.3) to see where it could be improved

and, just like the 0-1 knapsack and Gaussian Elimination problems, we are handing

control to/from the device after every iteration reducing performance. One good

thing to note is that we’re not performing any data transfer between iterations which

means we are at least not losing much performance. This also means that there is

little/no benefit by optimizing memory. Unfortunately as well, the APU’s strengths

will not be fully utilized with this problem.

Figure A.5 details the hardware counters which show we are using lots of VGPRs

which is reducing the number of wavefronts that can be scheduled onto the hardware
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Figure 8.3: The profiling results for the first algorithm which shows control is being
handed back to the CPU after each iteration, decreasing performance.

by half. On the upside, we are keeping the hardware relatively busy (40% according

to the ALUBusy percentage variable) and removing the overhead of returning to the

CPU each iteration was the next optimization undertaken.

8.3.2 Algorithm 2: Loop Unrolling

To begin, I used the basis of the first algorithm and added unrolling of the loops

(like we did with the 0-1 knapsack and Monte Carlo algorithms) to avoid passing

control back to the CPU which was reducing performance. I also added in local

memory to try and reduce the pressure we saw with the VGPRs, similar to that

seen in the Monte Carlo algorithm in Chapter 6. To measure this, I again profiled

the execution (Figure 8.4) where we can see that no longer is execution broken up

(this particular run unrolled all 32,768 iterations, if it was smaller we would see the

execution broken up into blocks).

From the hardware counters (see Figure A.6), we can see that using local mem-
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Figure 8.4: A screenshot of the profiler for the algorithm which has been unrolled for
groups of 32,768 iterations to stay on the device before returning control to the CPU.
Notice how the LookbackOpenCL kernel isn’t split up like it was earlier meaning the
hardware is being kept busy for longer.

ory has decreased the pressure on VGPRs, but not enough to increase our kernel

occupancy which remains at 50%. So just like in the Monte Carlo algorithm, using

local memory shows no real benefit to performance since we are so drastically lim-

ited by compute. Looking at the other effects of unrolling though we see that now

the ALUBusy percentage has actually decreased by almost 15%, ALUPacking has

decreased nearly 50% and we’ve now run into some (very) minor stalls on both the

fetch and write units.

Regardless of these small changes in the hardware counters, looking at Figure 8.5

we achieve a very good speedup, nearly nine times faster than our first GPU algo-

rithm. There is still work to be done however, as seen in the Monte Carlo algorithm,

vectorization provided a substantial benefit for performance, though it did come with

increased algorithm complexity.
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Figure 8.5: The execution time for the unrolled algorithm. Notice how unrolling
anywhere from 256-16,384 iterations doesn’t seem to change performance but having
unrolling drastically increases overall performance compared to the CPU algorithms.

8.3.3 Algorithm 3: Vectorization

The final algorithm uses vectorization to attempt to increase performance. The

decision to try vectorization was a result of the performance increase that we saw in

the Monte Carlo problem. While very parallel like the Monte Carlo algorithm, the

binomial lattice problem has a much more spread-out memory access pattern, and

we’re removing half of the available work items through each iteration, making the

problem much more difficult to optimize. Looking at Figure 8.6, we see that due to

the unrolling, the program is split into blocks of execution, but there is no time lost

between iterations as the scheduling works out very well. We can also see that there

is very little time spent doing memory operations (as Algorithm 2 was the basis for

this algorithm) meaning there is little to no performance to be gained through those

types of optimizations.

Looking at the execution time of the algorithm, we see it has not changed, even

though we have “doubled” our computing power. This is a stark contrast to the

Monte Carlo algorithm where performance doubled moving to 2-element vectoriza-

tion, doubling again for each power of 2, all the way up to 16-element vectorization.



78 Chapter 8: Binomial Lattice

Figure 8.6: A screenshot of the profiler for the algorithm which has been unrolled
for groups of 2048 iterations creating back-to-back execution blocks on the device
which are scheduled well enough to have minimal time without computations being
performed.

This then forces us to ask the question of why we don’t see the same behavior, when

the algorithm is also very parallel? To find the cause of no performance increase, we

turn to the hardware counters collected during execution.

Figure 8.7: The execution time for the unrolled and 2-element vectorized algo-
rithm. It’s interesting to see that performance has not increased through the use
of vectorization.

Examining the hardware counters of Figure A.7 we see a few points of interest.

First is that the VGPRs have not increased dramatically like they did with the Monte
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Carlo algorithm, meaning that whatever registers are being used, are being properly

re-used (this should in theory help performance). Second is the ALUFetchRatio has

actually increased to, on average, three times that of our second algorithm, mean-

ing we are doing more work per memory access. Last we have the FetchUnitBusy

percentage and Fetch/WriteUnitStalled percentages, all of which have gotten better.

This then returns us to the question of why didn’t performance increase?

Looking back to what we said earlier about the algorithm, at each iteration, we

are throwing away half of the work that is being done (due to the reduction), which

causes very inefficient use of resources. The second contributing factor is the memory

accesses themselves. Since we are combining elements into a single variable (with

multiple components), when we remove half of them (by moving to the next iteration)

we cut the usable memory in half as well, meaning we are no longer calculating x items

per compute unit, but instead we’re now computing x/2. We also run into the issue of

the memory addresses themselves which are now much more spread out and difficult

to optimize at the hardware level since we continue to remove work items. It is from

these combinations of factors that we don’t see any noticeable performance benefit

from vectorization in the binomial lattice algorithm compared to the Monte Carlo

algorithm.

8.4 Summary

Through optimizing the binomial lattice problem we managed to achieve perfor-

mance 50 times faster than the sequential algorithm. Useful techniques we saw here

involved the use of loop unrolling to keep as many iterations on the device as pos-
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sible to reduce the amount of time the device isn’t computing. We also looked at

vectorization based on the results we obtained in the Monte Carlo algorithm. Unfor-

tunately, this time we did not achieve any measurable increase in performance due to

the removal of half of the work items every iteration and with less than optimal use

of the vectorized data elements (half of which were “discarded” every iteration).

8.5 Future Work

Given what we know now about the difficulties on optimizing the binomial lat-

tice problem there are a few other areas I would like to study. First is the use of

AMD’s next generation APUs which should provide better memory management and

handling of the removal of work items at each iteration with heterogeneous queueing.

Second would be to deeply optimize the algorithm to try and reduce the number of

VPGRs which resulted in being able to schedule only half of the wavefronts on the

hardware during each execution. Lastly, I would like to look into the use of GCN

GPUs to see if their architecture, with their hardware-based scheduling, would better

handle the situation where items are being removed during execution.
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Discussion of Technologies

Like we talked about in Chapter 3, AMD has completed phases one and two of their

heterogeneous systems architecture with Llano and Trinity. Now, their third APU,

Kaveri, unifies the memory space of the CPU and GPU, making memory passing

obsolete. This is done through the use of pointers which are passed between devices

instead of copying memory and eliminates the overhead relating to retrieving data

from off the chip.

The Kaveri (and future Carrizo) APUs should also be extremely powerful for

problems in which the workload changes at runtime, such as Gaussian Elimination.

Reusing the hardware in this manner enables the APU to also take advantage of the

hardware level cache which the GPU is now free to access (with coherency being

enforced). A second benefit of the combined same address space is that the GPU

now “has” the same amount of memory as the host machine (since pages can be

swapped in automatically), making very large problem sizes now workable on the

APU (Kyriazis [2012]), just as they would be on a CPU.

81
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This is only AMD’s third step in their plan of bringing the APU to the mainstream

consumer as their final APU, Carrizo, is scheduled to be released during 2015. This

advanced APU will be the “final product” that AMD started developing almost a

decade ago and extends the capabilities to include:

• Context switching between applications accessing the GPU

• Pre-emption of GPU processes to enable low latency for time sensitive programs

• Quality of Service via enabling resource and user prioritization

• Queueing from any HSA device within an application to any other HSA device’s

queue

Figure 9.1: The current queueing model which uses the CPU to control all other
devices which requires OS intervention to move data and schedule instructions. Image
from Hruska [2013].
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Figure 9.2: The future queueing model which moves all operations into user space.
This removes the OS, reducing latency and enables any HSA device to enqueue to
any other HSA device’s queue. Image taken from Hruska [2013].

These advanced hardware-level capabilities will make programming the APU eas-

ier than ever before and will remove many of the bottlenecks that exist in current

implementations. If you look back to the chapter on Gaussian Elimination, our perfor-

mance was limited by OS interaction as it was required to do the queueing/mapping

of device buffers (or the GPU’s sequential thread performance for the final algorithm).

Now, programmers will be able to compute with the best device present in a system

without having to spend as much time examining the hardware in an attempt to find

at which input size each device becomes more efficient; they can simply choose the

best device for a given period in time since context switching and no data transfer

is now possible. What this means is that for difficult programs such as Gaussian

Elimination, we could easily switch to the GPU for just a single iteration and then

transition back to the CPU since there is now minimal overhead.
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Other exciting advancements are Mantle and AMD’s clean sweep of the consoles,

which are related to a degree. First, Mantle is an API, similar to DirectX or OpenGL,

but lower level, and optimized for AMD’s GCN architectures. The reason for Mantle

was to remove the overhead that has accumulated throughout the years in both

DirectX and OpenGL enabling better performance by reducing the dependency on

the CPU. This enables game developers to push the hardware to new limits, achieving

performance not before seen AMD [2013b,a]. First results were released in February

of 2014 and Mantle shows a performance advantage averaging 25% over DirectX 11

with a game engine built to support it Kean [2014]. Other results from the popular

video game Battlefield 4 show promising performance improvements of over 10%,

which is impressive given Mantle is a brand new technology and was added to the

game as an afterthought. Not everyone though is happy about a new player in this

market.

Some might say another API in the graphics field is doomed to fail, just like Glide

(which ran only on 3dfx hardware in the 1990s), but they are missing a few key things.

One is that Mantle is not a proprietary API like Glide was, meaning anyone can use

it in their software and/or hardware Schiesser [2013]. A second drawback commonly

mentioned is that this will enforce the need for another code branch to support this

API. While technically true, most games now are first developed on and for consoles

which don’t support the same branch of DirectX and OpenGL as PCs do (meaning

developers are already splitting the code base into console and PC). This leads into

the next advantage that AMD has, consoles.

AMD produced a clean sweep of the next generation consoles, the PlayStation 4,
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XBox One and Wii U. These consoles use an AMD CPU and GPU (aside from the Wii

U which uses an IBM CPU), glued together in an almost APU-like fashion. What this

means is that the major gaming consoles for approximately the next ten years will be

based around APUs (given the hardware life of the current PS3 and 360). Returning

to my previous point on Mantle and why it should succeed, developers currently have

to create three different versions of a game, one for the PS3, 360 and PC as they

all use different hardware. Now, because AMD has the console market, developers

can have a single code branch for both consoles and AMD PCs (with minor changes

to support features not provided by the PS4 or XBox One and for PCs using GPUs

from other manufacturers) which is much easier than the previous generation because

the hardware was different. Looking at this from a developers perspective, they now

can now re-use most of their code between consoles (reducing development time and

effort), and, if the hardware is the same on the PC, receive the same performance

benefit that the consoles receive (because of the low level access the API provides).
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Conclusion and Future Work

In this thesis I studied the Llano APU architecture in depth and studied four

problems with different characteristics. For each of these problems I provided mul-

tiple variants and implementations in OpenCL and studied the performance of the

programs in detail using the AMD’s OpenCL profiler.

For the 0-1 knapsack problem, I provide four variants or implementations. The

first algorithm indicates the bottleneck of the memory transfer over the PCI Express

bus and the context switching that occurs when transferring control from the CPU

and the GPU and vice versa. Using the profiler, I computed the number of reads and

writes and the percentage of communication and computation. Using this profiling

information, I was able to perform guided optimizations (examining both software

and hardware counters) to iteratively improve the execution time of my algorithms.

To remove the PCI Express bottleneck, I used loop unrolling in the second variant.

This modification required some amount of synchronization to avoid race conditions

but resulted in significantly improved performance with the execution time being half
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of the sequential algorithm.

The third variant used host memory and scaled across all available compute cores

(only a single compute core was used in the first and second variants). Using the

profiler, I realized the hardware was now less utilized, 27% for the ALU, 22% for the

FetchUnit and the write unit became stalled. This is the result of using more compute

units which resulted in more synchronization being required (between compute units),

but also enables us to scale the algorithm to larger input sizes.

The final change I implemented was the use of local memory in the kernel to

cache data elements within a workgroup and reduce the overall number of accesses to

global memory. This variant doubled the ALUBusy time, decreasing execution time

from 0.06 seconds for for a 4096x4096 matrix to 0.04 seconds. For a larger 8192x8192

matrix, the fourth algorithm was 61 times faster than the sequential algorithm.

I provided three variant implementations of the Gaussian Elimination algorithm.

In the first variant, profiling information showed that only 4% of the total run time

was spent executing the kernel, and the remainder was spent waiting on memory

operations. This can be seen in an ALU/Fetch ratio of only 3.5 and the amount of

time the hardware is busy running calculations is only 3%.

In the second variant, to remove the limitation of memory and play the strengths

of the APU, I used host memory in place of device buffers. The performance im-

provement was only 1% without synchronization and lagged behind the sequential

algorithm by over 10%. The profiler output indicated the significant performance de-

crease was due to the interaction of the OS when context switching between the CPU

and GPU. On the Llano APU, this interaction can not be avoided, but the removal
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of OS involvement is a planned feature in the future Carrizo APU.

The third and final variant removed the interaction of the OS and used only the

GPU cores. There was a great improvement in terms of execution time for a certain

number of data points, but beyond that, synchronization of threads on the GPU took

effect and brought down performance.

Using the profiler, I found that the Monte Carlo algorithm spends very little

time on memory operations but was limited by the number of registers used to store

vectors, reducing performance. This result in reduced ALUBusy and ALUPacking

percentages because we ran into hardware limitations.

To reduce register usage in the second variant, the data was stored in local mem-

ory. Unfortunately, since local memory is slower than registers, this did not have a

significant benefit to overall performance (and did not reduce register pressure in the

algorithm).

The third variant made use of global memory and vectorization. Although packing

several elements into a single variable decreased execution time, it also decreased the

number of waves that the hardware can schedule simultaneously. This resulted in a

utilization of only 12.5% of the device due to register pressure.

For the Binomial Lattice algrorithm, the first variant indicated that for large

time steps we were able to see significant speedups. Since there was minimal data

transfer between iterations, memory optimization was not a necessity. The profiler

also indicated the the ALUBusy percentage was about 40%, but a large number of

VGPRs were used.

The second variant used loop unrolling to avoid passing control back to the CPU,



Chapter 10: Conclusion and Future Work 89

which was reducing performance in the first variant. To decrease register pressure I

also chose to use local memory. However, after optimizations, our kernel occupancy

was only 50% and the ALUBusy percentage decreased by almost 15% and ALUPack-

ing decreased nearly 50% while local memory had relatively no benefit.

The final variant used vectorization to use the capabilities of the APU’s VLIW

architecture. However, this technique had no tangible benefit to overall performance

as the tree data structure significantly reduces the amount of work at each step,

causing an irregular workload. In vectorization, we combine data elements into a

single variable. In the Binomial Lattice algorithm, this causes irregular memory

accesses because the data themselves are spread out and global coalescing becomes

difficult.

In summary, compared to a traditional GPU the APU is of course much weaker

as it must share die space and thermal design power with a CPU. However, the

APU allows us to handle memory-bound problems due to its on-chip memory. There

are some weaknesses due to hardware limitations, but those are beyond our control

(although many will be rectified with the Carrizo APU).

My conclusion is that it requires a lot of effort in developing efficient algorithms

on these new heterogeneous architectures, even for these simple problems. The pro-

grammer requires a base understanding of the hardware in order to map the available

hardware resources to the algorithm. Profiling is also very important to understand

the performance of the program and provide hints for optimization to the programmer.

Current versions of the APU schedule statically, but future architectures will provide

more hardware scheduling, taking some of that burden away from the programmer.
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Future work I would like to do includes examining both the Kaveri and Carrizo

APUs (with an emphasis on Carrizo) for difficult problems such as Gaussian Elimi-

nation. Looking back to our results, we saw that much of the time was spent either

waiting for buffers to transfer or waiting for OS interaction. With Carrizo, this time

should be almost entirely eliminated due to not passing any memory (shared address

space) and not having to leave user space to map memory (heterogeneous queueing).

With these advantages, problems that change drastically during runtime (in terms of

input size, connections or otherwise) should be much easier to implement and achieve

a speedup using these next generation APUs. One other point of interest to return to

would be to examine the effect of core and memory speed of the APU to see how they

impact performance. As the APU relies heavily on system memory, it would be inter-

esting to see how using faster memory would help increase performance, particularly

for difficult problems that exhibit irregular workload.



Appendix A

Supporting Data

91



92 Appendix A: Supporting Data

F
ig

u
re

A
.1

:
G

P
U

p
er

fo
rm

an
ce

co
u
n
te

rs
fo

r
0-

1
k
n
ap

sa
ck

al
go

ri
th

m
s

v
2

(t
op

)
an

d
v
3

(b
ot

to
m

).
U

p
on

cl
os

er
ex

am
in

at
io

n
w

e
se

e
th

at
th

e
h
ar

d
w

ar
e

u
ti

li
za

ti
on

co
u
n
te

rs
h
av

e
d
ec

re
as

ed
go

in
g

fr
om

v
2

to
v
3.

F
ig

u
re

A
.2

:
G

P
U

p
er

fo
rm

an
ce

co
u
n
te

rs
fo

r
k
n
ap

sa
ck

al
go

ri
th

m
s

v
3

(t
op

)
an

d
v
4

(b
ot

to
m

)
w

h
ic

h
sh

ow
s

im
p
ro

ve
d

an
im

p
ro

ve
d

A
L

U
B

u
sy

ti
m

e
w

it
h

th
e

u
sa

ge
of

lo
ca

l
m

em
or

y.



Appendix A: Supporting Data 93

F
ig

u
re

A
.3

:
G

P
U

p
er

fo
rm

an
ce

co
u
n
te

rs
fo

r
th

e
n
äı
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