An in-depth performance analysis of irregular
workloads on VLIW APU

by

Matthew James Doerksen

A thesis submitted to
The Faculty of Graduate Studies of
The University of Manitoba
in partial fulfillment of the requirements

of the degree of
Master of Science
Department of Computer Science
The University of Manitoba
Winnipeg, Manitoba, Canada

May 2014

(© Copyright 2014 by Matthew James Doerksen

Thesis advisor Author

Dr. Parimala Thulasiraman Matthew James Doerksen

An in-depth performance analysis of irregular workloads on

VLIW APU

Abstract

Heterogeneous multi-core architectures have a higher performance/power ratio
than traditional homogeneous architectures. Due to their heterogeneity, these ar-
chitectures support diverse applications but developing parallel algorithms on these
architectures can be difficult. In implementing algorithms for heterogeneous systems,
proprietary languages are often required, limiting portability. Although general pur-
pose graphics processing units (GPUs) have shown great promise in accelerating the
performance of throughput computing applications, it is still limited by the memory
wall. The memory wall can greatly affect application performance for problems that
incorporate amorphous parallelism or irregular workload. Now, AMD’s Fusion series
of Accelerated Processing Units (APUs) attempts to solve this problem. The APU is
a radical change from the traditional systems of a few years ago. This design change
enables consumers to have a capable CPU connected to a powerful, compute-capable
GPU using a Very Long Instruction Word (VLIW) architecture.

In this thesis, I address the suitability of irregular workload problems on APU
architectures. I consider four scientific computing problems of varying characteristics

and map them onto the architectural features of the APU. I develop several software

i

Abstract 1l

optimizations for each problem by making effective use of VLIW static scheduling
through techniques such as loop unrolling and vectorization. Using AMD’s OpenCL
profiler; I analyze the execution of the various optimizations and provide an in-
depth performance analysis using metrics such as kernel occupancy, ALUFetchRatio,
ALUBusy Percentage and ALUPacking. Finally, I show the effect of register pressure
due to vectorization and the limitations associated with the APU architecture for

irregular workloads.

Contents

[Abstractl ii
(Table of Contentd vi
[List of Figures|. vii
LCistof Tabled xii
[Acknowledgments|o xiii
1__Introduction| 1
(.1 Thesis Goal and Contributions. 4

2 Parallel Computing and the APU] 8
[2.1 Parallel Systems|. oL oo 8
[2.1.1 Homogeneous Systems|, 8

[2.1.2 Heterogeneous Systems| 9

[2.1.3 Homogeneous with a hint of heterogeneous| 11
3__APU architecturel 16
[3.1 History of the APU| 16
[3.2 The Competition|, . 17
[3.3 APU Design Tradeofts| 19
3.4 AMD’s APU Architecturel oo 20
BAI The CPUl 21

3.4.2 e GPU 23

[3.4.3 The Magic|. 24

[3.4.4 Implementation comparison ot APUs, Intel vs. AMD| 25

B.5 Future APUS 27

4 GPU Computing: Shaders, CUDA and OpenCLj 28
4.1 OpenCL, the Open Computing Languagef. 29
[4.1.1 OpenCL Threading Model| 30

[4.1.2 OpenCL Memory Modell 31

[Local Memory|.o 32

v

Contents v
(Why not just one memory?| 33

[Constant Memory|. 34

(Global Memory| 34

[4.1.53 OpenCL Data Partitioning 35
[Maximizing Efficiency| 36

[4.1.4 Optimization Techniques/ 36

[Loop Unrollingl 37

(Memory Optimization| 37

Wectorizationl 37

[> 0-1 Knapsackl 38
[Hb.1 Problem Definitionl oo 38
0.2 Related Worksl. oo 39
[>.3 Implementation and Results| 41
[5.3.1 Algorithm 1: Naivel 41

[5.3.2 Algorithm 2: Loop Unrolling. 43

[5.3.3 Algorithm 3: Scaling and Optimization| 45
[[nterpreting Performance. 46

[5.3.4 Algorithm 4: Cachingl. 47

[b.4 Summary| 47
b5 Future Workl. o 49
e = Elimination 51
6.1 Problem Definitionl 51
6.2 Related Worksl. oo 52
B3 Resulfd. o 53
[6.3.1 Algorithm 1: Naivel 53

[6.3.2 Algorithm 2: Optimizing Memory Transfer| 55

[6.3.3 Algorithm 3: Non-traditional Approach|. 56

[6.4 Summary| o7
6.5 Future Workl. 58
[7_Monte Carlo Simulation| 59
((. 1 Problem Definitionl oo 59
[.2 Related Workdl. oo 60
M3 Resultd. 61
[7.3.1 Algorithm 1: Naive| 61

[7.3.2 Algorithm 2: Loop Unrollingl. 65

[7.3.3 Algorithm 3: Vectorization|. 66

[7.4 Summary| 68
(7.5 Future Workl. 69

vi Contents

8 _Binomial Latticel 70
8.1 Problem Definitionl 70
8.2 Related Worksl. oo 71
B3 Resulfsl. oo 73

[8.3.1 Algorithm 1: Naive| 73
[8.3.2 Algorithm 2: Loop Unrollingl. 75
[8.3.3 Algorithm 3: Vectorization|. 7
8.4 Summaryl 79
8.5 Future Workl. 80

[9 Discussion of Technologies| 81

10 Conclusion and Future Workl 86

[A Supporting Data| 91

[Bibliography| 103

List of Figures

P

The Athlon X2, the world’s first consumer level, and AMD’s most

successtul, multi-core CPU, which was first shown in August of 2004

| (AMD][2004]). Picture taken from CPU-World.com (Shvets/ [unknownb}).| 9
[2.2 Intel’s 8087 floating point coprocessor which could be paired with the |
CPU to improve compute capabilities on floating point arithmetic. Im- |

age taken from (Shvets| [unknownal). 10

2.3 The IBM Cell Broadband Engine, a PowerPC based CPU which fea- |

| tures a Power Processing Unit for OS tasks and Synergistic Processing |
| Units for computation connected via the high bandwidth Element In- |
| terconnect Bus (Gschwind [2006).. L. 11
[2.4 An overview of the Evergreen architecture used in AMD’s Radeon 5870 |

| GPU which contains 20 SIMD Engines (AMD| [2010]). | 12
2.5 A typical computer, with a CPU and GPU which could be used for |

| parallel computing (Brookwood| [2010]).. 13
2.6 An APU system which moves the GPU onto the same chip as the CPU |

| (Brookwood| [2010]).] 14
[3.1 A chip from AMD’s A8 series of APUs which integrated the GPU |

| directly into the core of the CPU (Wollmann| [2011]).[. 17
[3.2 Intel’s Westermere CPU, the first publicly available APU (Lal Shimpi |

| [2009b]).| 18
[3.3 Nwvidia’s Tegra K1 APU which uses ARM CPU cores and their own |
Kepler GPU for high performance per watt at a low cost point (Smith| |

12014]). . . . 19

[3.4 The percentage of each APU die reserved for the GPU. Intel’'s APUs |

| are shown on the lett while AMD’s Richland APU appears on the right |
| (Magee [2013]).] o 20

vil

viil

List of Figures

AMD'’s roadmap for the Heterogeneous Systems Architecture which

moves from combining the CPU and GPU at the die level, to trans-

parently map memory between devices and finally, autonomously full

use of the GPU for computing (Clarke [2013])

A module used in the “Bulldozer” architecture which has separate

integer pipelines but a shared floating point pipeline which enables a

“full” second core for only 50% more die area (Lal Shimpi| [2009¢]).| .

T'wo screen captures of the A10-5800K AP U showing the 4 cores backed

by 384 VLIW4 shaders.|.

All elements to be computed are members of the global workgroup

(shown on the left). On the right is a single local workgroup which

1s a subset of the global workgroup and contains many work items

that share a common hardware resource (compute block) (Gaster and

Howes [2010]).[. oo o

The OpenCL memory model involves four different types of memory

provided by the GPU. These include the global memory, constant mem-

ory, local memory and private memory. Each of these has a particular

purpose which will be explained in the GPU Memory Types section

(Gaster and Howes| [2010]).|. oL

5.1

A short example of the 0-1 knapsack problem using the dynamic pro-

gramming approach. Here we have 5 items to choose from, each with

a given profit and weight, and a set bag capacity (up to 10). In this

case, the best profit achievable i1s 17 using items 1, 2, 3, and 4.|

5.2

A short example of the 0-1 knapsack problem using a greedy branching

approach (over capacity solutions not shown). We start by looking at

the highest profit items and examining all possible solutions. As we

move through the tree, we examine all solutions except ones containing

items already searched (to the left). For example, in the branch starting

at 4, we don’t look at any solutions containing 8 as we would have

covered the 844 solution in branch 8 and found 1t to be invalid.| . . .

[.3

Algorithm 1 of the dynamic programming algorithm for 0-1 knapsack.

We can see many data transtfers are being done and that our time spent

executing the kernel is less than one percent ot the overall execution

timel . .o s,

54

Execution times for the naive algorithm where we see the penalty the

APU pays for this unnecessary data transfer.|.

[0.5

Algorithm 2 of the dynamic programming algorithm for 0-1 knapsack.

I've removed the thousands of write/read cycles present in the first

algorithm, enabling data to stay on the GPU for as long as possible.| .

List of Figures ix

[>.6 Execution times for the second algorithm where we kept the data on |
| the GPU as long as possible by not returning control to the CPU aftter |
[eachiteration. 44

[>.7 Execution times for the third algorithm which uses all computation |
| 1T CPU and TGP N Toffos T l
| of using host memory.| oL 45

[5.8 Algorithm 3 of the dynamic programming algorithm for 0-1 knapsack. |
| Here I've switched to using host memory instead of global memory and |

| enabled the algorithm to scale across all compute cores.|. 46
[5.9 A comparison of the execution times of the algorithms as we've pro- |
| gressively optimized them. 0000 48

[5.10 Version 4 of the dynamic programming algorithm for 0-1 knapsack |
| which uses local memory to reduce the number of reads from global |
| MEemory.] 48

6.1 A simple example of Gaussian Elimination which uses reverse elimina- |
tion to zero all values in one row except for one column. This value is |
then substituted into the other formulas and elimination is performed |

|
|

again. In this simple case, elimination isn't used to zero out the second

row after the value of z is found since we can calculate the value of y

as we know all other columns) ol
[6.2 Profiler output for the naive approach to parallelizing Gaussian Elim- |
| mmation. Note the amount of time spent waiting between iterations |

| because the GPU cannot deal with small input sizes| 54
[6.3 The execution time for our first algorithm, exhibiting performance fol- |
| lowing that stated by Amdahl's Law.| 54

[6.4 Examining the execution time we see minimal difference to the first |
| algorithm due to the speed of sequential calculations, even with a re- |

| duced reliance on memory.| L. 55
[6.5 The second algorithm exhibits the same performance characteristics as |
| the first algorithm since we are not actually limited by memory| . . . 56

[6.6 The third algorithm’s execution time which shows we were actually |
| taster for smaller input sizes, meaning that with a more advanced APU |
| like Kaveri we might actually obtain a speedup with large inputs.| . . 57

[7.1 The context summary tor the Monte Carlo algorithm shows almost no |
| memory accesses being performed meaning there is little to optimize |

| in this respect.| 63
[7.2 Kernel occupancy graph which examines your hardware and kernel and |
| advises you on what is bottlenecking your program. 64

7.3 The APU, with its limited computational resources still manages to |
| outpertorm the CPU quite handily, even with a basic, ported algorithm.| 65

List of Figures

!

Using local memory to attempt to reduce register pressure has actually

decreased performance to less than that of our parallel CPU algorithm,

forcing us to look in other areas for improvement.|

75

The final algorithm uses vectorization to compute multiple items simul-

taneously on the hardware (at a finer-grained level than SIMD engines)

leading to a drastic performance improvement.|

[7.6

Comparing the performance of vectorized algorithms we achieve almost

linear scaling all the way up to 16 elements. For problems like Monte

Carlo simulations, extremely wide parallelism cannot be beaten.| . . .

[7.7

The kernel occupancy graph for the 16-element vectorized algorithm.

Note how we can now run very few waves on the hardware because we

have run out of registers.|

B

A binomial tree structure constructed for option pricing for 3 time steps

(but could be sub-divided until we run out of computational power).

Image taken from [Solomon et al|[[2010]f

B2

Even with a basic, first attempt algorithm, the APU is able to outper-

form even our parallel CPU algorithm.

(8.3

The profiling results for the first algorithm which shows control is being

handed back to the CPU after each iteration, decreasing performance.|

75

R

A screenshot of the profiler for the algorithm which has been unrolled

for groups of 32,768 iterations to stay on the device before returning

control to the CPU. Notice how the LookbackOpenCL kernel isn’t split

up like it was earlier meaning the hardware is being kept busy for longer.| 76

[8.5

The execution time for the unrolled algorithm. Notice how unrolling

anywhere from 256-16,384 iterations doesn’'t seem to change perfor-

mance but having unrolling drastically increases overall performance

compared to the CPU algorithms.|

[3.6

A screenshot of the profiler for the algorithm which has been unrolled

for groups of 2048 iterations creating back-to-back execution blocks

on the device which are scheduled well enough to have minimal time

without computations being performed.|.

[8.7

The execution time for the unrolled and 2-element vectorized algo-

rithm. [t’s interesting to see that performance has not increased through

[theuseof vectorizationl

0.1

The current queueing model which uses the CPU to control all other

devices which requires OS intervention to move data and schedule in-

structions. Image from [Hruska/ [2013].|.

82

List of Figures xi

[9.2 "T'he tuture queueing model which moves all operations into user space. |
| 'This removes the OS, reducing latency and enables any HSA device to |
| enqueue to any other HSA device’s queue. Image taken from |Hruska) |
| 2013 . . . 83

[A.1 GPU performance counters for 0-1 knapsack algorithms v2 (top) and

v3 (bottom). Upon closer examination we see that the hardware uti-
lization counters have decreased going from v2 to v3] 92

[A.2 GPU performance counters for knapsack algorithms v3 (top) and v4
| (bottom) which shows improved an improved ALUBusy time with the
| usage of local memory,| Lo 92

[A.3 GPU pertormance counters for the naive Gaussian Elimination algorithm.| 93

[A.4 GPU performance counters for Monte Carlo algorithm v1.| 93

[A.5 GPU performance counters for the naive Binomial Lattice algorithm. 93

[A.6 GPU pertormance counters for the unrolled Binomial Lattice algorithm.| 94

[A.7 GPU pertformance counters for the vectorized Binomial Lattice algorithm.| 94

List of Tables

4.1 OpenCL vs CUDA, hardware and software support.| 30
4.2 GPU Memory Types and Bandwidth for AMD Radeon 7970 (AMD| |
| 120120).). .« « 34

x1i

Acknowledgments

I would like to begin by thanking my advisor, my committee, my parents, and all
the people who have supported me along the way while completing my research.
Additionally, I would like to thank Michael S. Doyle for the Michael S. Doyle

Graduate Fellowship award which aided in my research and furthering my education.

xiil

Chapter 1

Introduction

As computing has progressed, we have gone from simple, fixed function hardware
to general purpose computing cores, capable of handling nearly any task given to
them. However, today, these single cores simply aren’t powerful enough to run the
large simulations and calculations enterprises require. The first method of increasing
performance was by adding more arithmetic hardware and increasing clock speed.

While performance did benefit, hardware constraints meant three walls were en-
countered: frequency, power and memory. First, as frequency increased, power con-
sumption increased linearly, leading to physical limitations in terms of clock speeds
(though research is being done with new materials such as graphene which may scale
into terahertz frequencies (Zheng et al.|[2013])) and total power consumption, the
second wall. Given that these devices are limited in the simple aspects of form factor
and heat dissipation, power consumption is typically limited to a few hundred watts
(150W-300W), such as Intel’s QX9775 quad-core Central Processing Unit (CPU) (Intel

[2008]). Third is the memory wall which has formed because of the difference in

2 Chapter 1: Introduction

speed between the CPU (continually increasing in line with Moore’s Law) and mem-
ory which doesn’t follow the same trend for Moore’s Law. Adding to the difficulty
of increasing performance is that the hardware has been engineered to keep it busy
at the instruction level by calculating multiple items simultaneously (via instruction
level parallelism) as it was the lowest hanging fruit in terms of optimizations. This
approach however affects algorithm performance when the hardware makes incorrect
predictions, such as the case with incorrectly choosing a branch within the algorithm.
Thus, these three walls force architecture designers to develop novel solutions to avoid
algorithmic limitations when using traditional CPU-based architectures.

The first attempt at solving the three walls was the homogeneous multi-core CPU
where each core is simplified and runs at a lower clock speed than a single core
CPU. This method reduces heat output and power consumption at the expense of
frequency and single threaded performance. The benefit of this approach is that multi-
core systems require little to no code modification to enable existing software to run.
However, this approach cannot be scaled indefinitely since, as the number of cores
increases, so does the overall power consumption and heat dissapation. Diminshing
returns are also encountered as Amdahl’s Law states that the execution time of a
program will be limited by the sequential portion of the algorithm (Amdahl [1967]).
While homogeneous multi-cores have been promoted strongly by companies such as
Intel (Lee et al.|[2010]), heterogeneous multi-core architectures are moving at a very
rapid pace into the general purpose computing market.

Heterogeneous multi-core architectures such as IBM’s Cell Broadband Engine

(Cell/B.E.), multi-core systems with Graphics Processing Units (GPUs) or any hard-

Chapter 1: Introduction 3

ware specialized accelerators have a higher performance/power ratio. Due to their
heterogeneity, these architectures support diverse applications but programming these
architectures is also very difficult. In implementing algorithms for heterogeneous sys-
tems, proprietary languages are often required, limiting portability. Now, OpenCL
has become the new standard for ensuring cross-platform and device independent

¢

code and can be written using a “write once run anywhere” methodology. Although
the GPU has shown great promise in accelerating the performance of data parallel ap-
plications, it is still limited by the memory wall as data must explicitly be transferred
between the host CPU and the discrete GPU. This data transfer can greatly affect
application performance for irregular programs where memory access is inconsistent
or the number of work items may change during runtime.

Now, one such heterogenous multi-core architecture attempts to solve this prob-
lem, AMD’s Fusion series of Accelerated Processing Units (APUs). The APU is a
radical change from the traditional systems of a few years ago; instead of a separate
CPU and GPU, they are combined onto a single die, reducing cost while increasing
performance. This design change enables consumer systems to have a capable CPU
connected to a powerful and compute-capable GPU using a Very Long Instruction
Word (VLIW) architecture (and Graphics Core Next architecture in the future). The
VLIW architecture provides a great amount of computational power in a small space,

enabling high performance work to be done that, only a few years ago, would have

been possible on a high end workstation.

4 Chapter 1: Introduction

1.1 Thesis Goal and Contributions

When I started this research three years ago, the APU architecture (Brazos and
later, Llano) was still in its infancy. Now, AMD’s next generation APU Kaveri has
been released and their Carrizo APU is planned for release in 2015. A lot has changed
in this progression: memory is no longer a subset of main memory, the CPU and GPU
memory address space are now shared and coherency has been maintained, while in
the future, AMD plans to implement GPU context switching for multitasking, quality
of service, and other features.

In this work, I focus on the Llano APU’s VLIW architecture. As well, a new
standard parallel programming API for heterogeneous multicores has been proposed
(OpenCL). The goal of my thesis is to study the APU architecture in depth. To do
so, I consider four problems: 0-1 knapsack, Gaussian Elimination, Monte Carlo, and
Binomial Lattice. Each of these problems exhibit different characteristics from the
parallel computing perspective and are noted here. The 0-1 knapsack and Gaussian
Elimination problems are compute bound, memory bound, and incorporate synchro-
nization and communication latencies. The Binomial Lattice and Monte Carlo al-
gorithms are two techniques in solving the option pricing problem in finance (Spiers
and Wallez [2010]) and are compute bound. With the exception of the Monte Carlo
problem, all three problems exhibit irregular workloads at runtime.

The 0-1 knapsack problem is a well-known problem in combinatorial optimization.
Although there are many techniques to solve this problem, we use the basic dynamic
programming algorithm. The dynamic programming algorithm divides the problem

into smaller subproblems and each of these subproblems share subsubproblems. The

Chapter 1: Introduction 5)

subdivisions are independent, but the sharing of solutions between subdivisions intro-
duces some synchronicity. The algorithm uses a table to store the results. Since every
subsubproblem is only solved once, the amount of workload may decrease during the
course of the algorithm which creates further load imbalance. In our implementation,
we take advantage of the on-chip memory to allocate data for sharing between the
threads to increase performance. As the problem is memory bound, I investigate the
use of global memory versus local memory, loop unrolling, scalability (in terms of
APU compute units) and caching.

The Gaussian Elimination problem is a common technique used in linear algebra.
It solves Ax=y where A is a matrix, and x and y are vectors. Though a fast technique
by hand, there are problematic issues that occur when parallelizing the algorithm.
First is that the matrix A could be sparse which introduces redundant computations
and unnecessary usage of memory. Second is the pivot selection process at each
iteration, leading to synchronization latencies. Last is the need for data sharing
among the rows of the matrix which requires efficient use of memory.

The Binomial Lattice algorithm forms a tree structure with lots of concurrency
within a level, but requires synchronization between levels. The larger the depth of
the tree (time steps), the more accurate the results. This leads to a very fine-grained,
computationally intensive problem, where each node in the tree can be thought of as
a thread. The computation per node is minimal but there are many time steps and
nodes in a tree depending on the level of accuracy required. Due to the regularity
imposed in this problem, vectorization is a likely possibility. However, due to the

irregular load at different iterations, the memory accesses are scattered which makes

6 Chapter 1: Introduction

optimization difficult.

The Monte Carlo simulation is a very embarassingly parallel problem. It is ex-
tremely compute intensive and exhibits regular workload. It provides a lot of paral-
lelism which requires lots of registers for concurrent operations. I wanted to study
this problem to see the net effect of register pressure on the GPU cores.

I provide different implementations for each of the problems in OpenCL on the
APU, each one improving upon the previous variant. I use AMD’s OpenCL profiler to
analyze the execution of the various implementations and study performance metrics
such as kernel occupancy, ALUFetchRatio, ALUBusy Percentage and ALUPacking.
I make use of the VLIW static scheduling available in Llano through loop unrolling
and vectorization and measure its effect on performance due to register pressure. I
also study the effect of memory access versus local memory and caching.

The work from this thesis has resulted in a book chapter and three conference

publications:

1. Matthew Doerksen, Steven Solomon, Parimala Thulasiraman, Designing APU
Oriented Scientific Computing Applications in OpenCL, International Sympo-
sium on Advances of High Performance Computing and Networking in Con-

junction with HPCC 2011, Banff, Alberta, Canada, Sept. 2-4, 2011.

2. Matthew Doerksen, Parimala Thulasiraman and Ruppa K. Thulasiram, Opti-
mizing Option Pricing Algorithms and Profiling Power Consumption on VLIW
APU Architecture, The 10th International Symposium on Parallel and Dis-

tributed Processing with Applications, Madrid, Spain, July 10-13, 2012.

3. Matthew Doerksen, Steven Solomon, Parimala Thulasiraman and Ruppa K.

Chapter 1: Introduction 7

Thulasiram, Financial Option pricing on APU, The 5th International Confer-

ence on Contemporary Computing (IC3), Noida, India, August 2012.

4. Matthew Doerksen, Parimala Thulasiraman and Ruppa K. Thulasiram, “Al-
gorithm and Performance Analysis of Scientific Applications using OpenCL on
Fusion APUs”, Scalable computing and communications: theory and practice,
John Wiley & Sons, Editors: Samee U. Khan, Lizhe Wang, and Albert Y.

Zomaya, January 2013.

Chapter 2

Parallel Computing and the APU

In this chapter we detail the systems that lead up to the APU, such as homoge-
neous CPU-based systems, the heterogeneous systems that followed to overcome the

limitations of homogeneous setups and how the APU slides into the final equation.

2.1 Parallel Systems

2.1.1 Homogeneous Systems

Traditionally, parallel systems can be broken down into two categories, homoge-
neous and heterogeneous. Homogeneous parallel systems use computers with CPUs
of the same architecture and are connected via some form of interconnection network.
This type of system is very simple to build and scale: just add more machines. When
dealing with simple, regular algorithms this approach works extremely well as the
machines have very little need to communicate and can just work at their own speed,

combining results at the end.

Chapter 2: Parallel Computing and the APU 9

Figure 2.1: The Athlon X2, the world’s first consumer level, and AMD’s most success-
ful, multi-core CPU, which was first shown in August of 2004 (AMD] [2004]). Picture
taken from CPU-World.com (]Shvets| ﬂunknownbﬂ).

Maximizing performance however can be a challenge for irregular problems since
these systems often depend on “slow” interconnection networks (IN), such as Giga-

bit ethernet (high latency, low bandwidth), when compared to custom INs such as

Infiniband which has a theoretical throughput of over 300Gb/s (Association| [2013]).

In these cases, it can often be that the communication time is greater than the time
spent computing results, leading to results that take longer than computing them on
a single machine. To deal with these sorts of problems and overcome the hardware

constraints, heterogeneous systems were created.

2.1.2 Heterogeneous Systems

A heterogeneous system foregoes the traditional PC architecture to overcome one
of the 3 walls seen earlier (frequency, power and memory) to achieve better perfor-
mance (in terms of flops/watt, bandwidth or some other relevant benchmark) for a

given type of problem. One of the very first examples of a heterogeneous architecture

10 Chapter 2: Parallel Computing and the APU

were the floating point co-processors of the 1980s that could be paired with CPUs to

give them floating point capabilities (Shvets Junknownal).

Figure 2.2: Intel’s 8087 floating point coprocessor which could be paired with the
CPU to improve compute capabilities on floating point arithmetic. Image taken from
(]Shvets| ﬂunknownaﬂ).

Eventually, these coprocessors would be integrated into the CPU, much like how
we see other hardware such as the northbridge becoming part of CPUs today like
AMD’s Llano APUs and Intel’s Sandy Bridge CPUs. A much more recent example
of a heterogeneous architecture is IBM’s Cell BE which was designed as a Single
Instruction Multiple Data (SIMD) architecture. This design has a large master core
(Power Processing Unit or PPU) to handle heavy tasks such as maintaining the
operating system, while delegating computational work to multiple smaller, simpler
cores (Synergistic Processing Units or SPUs) which run at higher frequency.

This design allows them to customize the hardware so each portion can excel at
what it does best; the PPU has more branching hardware and is better at handling
context switching between applications while the SPUs are much smaller and have
more execution units for higher computational throughput (Gflops). With this, the

Cell BE achieves better performance (230 Gflops) compared to a high end CPU such

as Intel’s i7-980x (109 Gflops (Williams| [2010])).

The Cell BE also improves on the memory architecture, using a 4-ring bus (2

running in each direction) termed the Element Interconnect Bus (EIB) to connect the

Chapter 2: Parallel Computing and the APU 11

PU PU
SXU [sxu]
f f
LS LS

EIB (up to 96B/cycle)

SPE

7] 7]
[sxu_JII[_sxu Jf|Il sxu ‘stu |
|

LS LS Ls

P P E 16B/cycle 16B/cycle 16B/cycle (2x)

PPU MIC BIC

‘ [y
A v

Dual XDR™ FlexlO™

=

" PXU

Figure 2.3: The IBM Cell Broadband Engine, a PowerPC based CPU which features a
Power Processing Unit for OS tasks and Synergistic Processing Units for computation
connected via the high bandwidth Element Interconnect Bus (]Gschwind| ﬂ2006ﬂ).

computing cores. This bi-directional bus has an internal bandwidth of 96 bytes/cycle/port
adding up to 205 GB/s of sustainable bandwidth and over 300 GB/s of maximum
peak bandwidth between ports. This is roughly 5 times the bandwidth than Intel’s
17-4960X can provide with system memory, at only 60 GB/s [2013]). This ad-
vanced memory architecture allows the Cell BE to have much higher computational

and memory throughput compared to a traditional system.

2.1.3 Homogeneous with a hint of heterogeneous

Yet another approach is the GPU which uses hundreds or thousands of cores (in
a homogeneous setup) for computation. At the same time, it falls into the category

of a heterogeneous device because it is, at least currently, a non-standard computing

12 Chapter 2: Parallel Computing and the APU

Tera Scale 2 Architecture Radeon™ HD 5870

14 8 Thread Group Generator

L
+— Ultra Threaded Dispatch Processor

SIMD !ngine SIMD Engine 1
SIMD Engine ; SIMD Engine 3
SIMD Engine 4 SIMD Engine 5
SIMD Engine SIMD Engine 7
SIMD Engine SIMD Engine 9
SIMD Engine 10 SIMD Engine. 11
SIMD Engine SIMD Engine 13
SIMD Engine 14 SIMD Engine 15
SIMD Engine 16 : SIMD Engine 17
SIMD Engine 18 SIMD Engine 19
[¥

¥ ¥
Write Combine Caches e Caches Write Combine Caches
. 4= 4dkb

Address, Filter, L1s

0
-
ol

e

a
=
=

"y

i

b

o
el
T
g

Memory Controllers (& Channels)

Figure 2.4: An overview of the Evergreen architecture used in AMD’s Radeon 5870
GPU which contains 20 SIMD Engines (AMD) [2010]).

device (compared to a CPU) and requires a different approach to programming and
algorithm design. Traditionally, GPUs have been built to manipulate things like ver-
texes and pixels which are graphical operations that require minimal communication
and can be done in a massively parallel manner. As such, GPUs have typically exhib-
ited a SIMD-style architecture with large numbers of small, slow(er) cores which work
in parallel to achieve optimal throughput. While this type of architecture is fantastic
for computational throughput, it performs very poorly with tasks that are sequen-
tial, branchy, or randomly access memory. The APU attempts to resolve these issues
by combining the sequential speed of the CPU with the parallel abilities of a GPU,
the details and implementation of which are covered later in the APU Architecture

section.

Chapter 2: Parallel Computing and the APU 13

Figure 2.5: A typical computer, with a CPU and GPU which could be used for parallel
computing (Brookwood| [2010]).

Lastly, we have the APU which attempts to bridge the gap between both ho-
mogeneous systems and heterogeneous, bringing together the best of both worlds;
homogeneous CPU cores for sequential tasks and GPU cores for the parallel com-
ponents of an algorithm. Looking at Figure we have a traditional system with
a separate CPU, and if the system is built for compute or graphics works, a high-
end GPU. Examining the image, the CPU has many layers which separate it from
the GPU including the CPU memory controller, PCI Express bus and GPU memory
controller. Each of these adds unnecessary transformation of data between protocols,

reducing bandwidth and increasing latency; worst of which is the PCI Express bus

14 Chapter 2: Parallel Computing and the APU

which limits communication between the CPU and GPU to just 16 GB/s in each

direction (PCI-SIG|[2010]). Compared to even system memory in all but the lowest

end machines we can see this isn’t fast enough, and even the PCI Express 4.0 spec-
ification to only be released late in 2015 will only double this to 32 GB/s
2014]). Knowing this, AMD decided to remove these performance hindering pieces
of hardware, putting the CPU and GPU directly next to each other on the chip, the

Accelerated Processing Unit.

Figure 2.6: An APU system which moves the GPU onto the same chip as the CPU
(Brookwood, [2010]).

Comparing the two images (Figures and we see that the PCI Express bus
has been removed from the equation, being replaced by a high performance on-chip
bus. This has a few benefits; first, the performance regained by simply not translating

information between protocols and not requiring it to leave the chip for information

Chapter 2: Parallel Computing and the APU 15

to be communicated between the two, which saves time (latency) and bandwidth (the
custom on-chip bus provides higher bandwidth compared to PCI Express). Second,
the GPU now has faster access to system memory which is key as APUs do not
currently have dedicated memory like a traditional GPU does. This has its own
drawbacks however in that system memory is much slower than a high-end GPU’s
memory, but this can be mitigated in hardware by using the caching system already
present and used by main memory. Last is the power savings found by not having to
transform data between protocols and off the chip over the PCI Express bus. From
this, the APU provides some key advantages over “traditional” heterogeneous systems

using building blocks that are already available.

Chapter 3

APU architecture

In this chapter we examine the history of the APU, the implementations of AMD
and Intel including strengths and weaknesses that resulted from design decisions and

a comprehensive overview of AMD’s APU architecture.

3.1 History of the APU

Similar to how heterogeneous computing wasn’t a new idea, the idea of a fused
CPU + GPU was not an entirely new concept (embedded systems could technically
be labeled as APUs since they combine multiple systems using a System-on-a-Chip
architecture). AMD first proposed the idea of a large, powerful, fused processor
in 2006 when they acquired graphics manufacturer ATI (AMD] [2006]). This was an
attempt to bolster their intellectual property portfolio and to help them become more
competitive with both Intel and Nvidia, their main rivals in the CPU and GPU fields

respectively. AMD saw an opportunity for this new hardware in a world that was

16

Chapter 3: APU architecture 17

becoming more media centric, with richer web applications and 3D graphics support

and wanted to be the first to break the ice.

Figure 3.1: A chip from AMD’s A8 series of APUs which integrated the GPU directly
into the core of the CPU QWollmann| [|2011[]).

3.2 The Competition

While AMD was the first to propose the idea of an APU, they weren’t the only
one working on it. In fact, Intel was working on the same concept, which would
incorporate their HD graphics onto the CPU. Due to delays with the manufacturing

process and difficulties in porting the GPU onto CPU optimized silicon, AMD’s APUs

were pushed back until 2011 (Lal Shimpi [2009a]) while Intel was able to release their

APUs in 2010 (Lal Shimpi [2009b]), making them the first publicly available. The

approach Intel took however was different from AMD’s; instead of a fused CPU +

18 Chapter 3: APU architecture

GPU, they went with on-chip graphics. By using a 32nm CPU and a 45nm GPU
they achieved a better time to market and encountered fewer frustrations in getting
the GPU to work on the same process and manufacturing technology (compared to

AMD), see Figures and to see how the resulting chips differ in appearance.

First 32nm Westmere Products

Key Features
* |ntel® Turbo Boost Technology

* |ntel® Hyper-Threading
Technology

Intel® Graphics Media
Accelerator
45nm .
Integrated \. Integrated Memory Controller

Graphics & :
.m.,g.ﬁﬁd ﬁamw with 2 Channel DDR3

Controller

Figure 3.2: Intel’s Westermere CPU, the first publicly available APU (Lal Shimpi
[2009Db]).

On the other end of the spectrum, we have Nvidia which is working to produce a
GPU with a CPU built onto it (as opposed to Intel and AMD’s approach of integrating
the GPU onto the CPU). This processor, codenamed Denver, will use ARM CPU cores
(and eventually their own custom ARM core) which provide very high performance
per watt and will be paired with a single SMX containing 192 cores, based on the
Kepler GPU architecture (Verduzco [2014]). One version, shown in Figure[3.3] details
the four ARM CPU cores paired with a fifth “battery-saver” core to give the best
balance of performance and battery life, and matched with a cutdown version of their

Kepler GPU. This combination of disparate parts enables Nvidia to produce a very

Chapter 3: APU architecture 19

high performance APU, but produce it at a low cost and have it run consuming
minimal power. As well, as you’ll see in future sections, enabling these modular
designs across CPU and GPU combinations is the exact goal of the Heterogeneous

Systems Architecture.

Figure 3.3: Nvidia’s Tegra K1 APU which uses ARM CPU cores and their own Kepler
GPU for high performance per watt at a low cost point (Smith|[2014]).

3.3 APU Design Tradeoffs

Why the AMD and Intel produced different results was due to the strengths
that each posessed. AMD envisioned a die with a great emphasis on GPU computing
capabilities which could be used for general purpose computation as the world became
more media centric. Intel on the other hand, focused heavily on CPU performance
with the GPU being a second class citizen, used primarily for 2D graphics, instead
of media consumption, which they believed could be offloaded to the CPU. This was
reflected in each company’s allocation of hardware resources, where AMD dedicated

much more resources to the GPU than Intel, as shown in Figure 3.4 From Intel’s

20 Chapter 3: APU architecture

reaction, we see that AMD had predicted correctly, media consumption was becoming
a more important factor for consumers and Intel was forced to increase the die space
dedicated to the GPU to keep up with AMD’s APUs and consumer’s demands. We’ll
cover more of these design decisions in the next section where we take an in-depth

look at AMD’s A10-5800K APU.

AND NOW THE APU IS EVERYWHERE

ELITE AMD A-SERIES |

L 21 i 7 1) i ATK v L :
SANDY BRIDGE VY BRIDGE HASWELL CODENAMED "RICHLAND”

b Balanced architectures are F Open CL™ s the future
the future of computing of parallel computing

Figure 3.4: The percentage of each APU die reserved for the GPU. Intel’s APUs are
shown on the left while AMD’s Richland APU appears on the right 1 12013)).

3.4 AMD’s APU Architecture

As an AMD A10-5800K APU was used to gather the results which are covered
in Chapters |p| through |8, we cover its implementation here, how the pieces come
together to create a powerful heterogeneous computing device, and what AMD is

working towards.

Chapter 3: APU architecture 21

HSA FEATURE ROADMAP
. :

Physical Optimized Architectural ' System
Platforms Integration Integration

Integration

Integrate CPU & GPU
in silicon

GPU Compute C++ Unified Address Space GPU compute
support for CPU and GPU context switch

GPU uses pageable
User mode scheduling system memory via
CPU pointers

Unified Memory
Controller

GPU graphics
pre-emption

Bi-Directional Power
Mgmt between CPU
and GPU

Common
Manufacturing
Technology

Fully coherent memory

between CPU & GPU Quality of Service

Figure 3.5: AMD’s roadmap for the Heterogeneous Systems Architecture which moves
from combining the CPU and GPU at the die level, to transparently map memory
between devices and finally, autonomously full use of the GPU for computing (Clarke
2013)).

3.4.1 The CPU

AMD’s first step in their Heterogeneous Systems Architecture (Figure roadmap
was to combine the CPU and GPU into the same chip. That goal was accomplished
with the release of the Llano architecture in 2011. The A10-5800K is the result of the
second phase, platform optimization, and is a chip that contains 4 CPU cores and 384
VLIW4 GPU shaders clocked at 3.8 GHz and 800 MHz respectively which runs at a
100W TDP (see Figure. The CPU cores used belong to the Piledriver family (the
next iteration of Bulldozer) and come in groups of two that are collectively called a
module. These modules have a lower instructions per clock throughput than current

Intel CPU cores and instead use high clock rates to boost performance. The modular

22 Chapter 3: APU architecture

design, based in cluster multithreading (see Figure , combines two cores to share
some hardware, saving die area, lowers power consumption and increases utilization.
This is a different approach to simultaneous multithreading (termed HyperThread-
ing) that Intel employs in its CPUs, which doubles only the frontend hardware (as
well as internal registers) to try and get better utilization of hardware resources. In
practice, cluster multithreading works best at highly threaded workloads which are
heavier on integer operations while simultaneous multithreading is better when there

is a larger number of varying instructions which don’t cause resource contention.

“Bulldozer”

Fetch
Decode

Int ' FP | Int
Scheduler Scheduler Scheduler

o [o ()
E = i €
] [] [
By = = Eh
a o o a

L1 DCache L1 DCache |

Shared L2 Cache

Shared L3 Cache and NB

Figure 3.6: A module used in the “Bulldozer” architecture which has separate integer
pipelines but a shared floating point pipeline which enables a “full” second core for
only 50% more die area (]Lal Shimpi| ﬂ?OOQcﬂ).

Chapter 3: APU architecture 23

TechPowerUp GPU-Z 0.7.1 - & BB
E CPU-Z = ! Sensors | Validation | (O]
Name AMD Radeon HD 7660D

CPU]Caches] Mainboard] Memaory] SPD] Graphics] About]

Processor - GPU | Devastator Fewigion | M AT‘

N | B AN Technology | 32nm Die Size | 246 mm? H?EEO..N
Code Name | Trinity MaxTDP | 99'W . : SRATHIC
Packace Socket FM2 (904) > Release Date | May 15,2012 Transistors | 1300M .
Technology | 32 nm Core Voltage | 0888V BIOS Version | 015.022,000.000.000000 (113-DVST-106) w
Specification | AMD A10-5800K APU with Radeon(tm) HD Graphics Device ID | 1002-9501 Subvendor | ASLS (1043)
Famty (SRt Wodel | O Stepping | 1 ROPs/TMUs | 8/48 Bus Interface N/A 7
Ext Family | 15 Ext. Model | 10 Revision | TN-A1 = >
instructions | MMX(+), SSE, SSE2, 5SE3, 55563, 5SE4.1, 55642, S5E4A, Shaders | 384 Unfied DirectX Suppot | 11.0/5M5.0
DEEiE, £ IOMELVEBES NG XUE B, BN Pucel Filate | 6AGPxel/s Texture Filcte | 384 GTexel/s
fhecdes (Core 10 e e e Memory Type DDR3 Bus Width | 128 Bit
Core Speed | 4000.01 MHz L1 Data 4 x 16 KBytes 4-way e ——
Muttipier [x40.0 Liinst | 2x64KBytes | 2-way Memory Size 2048 MB Bandwidth | 213GB/s

Bus Speed | 100.00 MHz Level2 | 2x 2048 KBytes | 16-way Driver Version atiumdag 13.152.1.1000 / Win& 64
e il GPUCck | 800MHz Memory | 667 MHz i

Selection |Processor #1 - Cores | 4 Threads | 4 Defauit Clock | 800 MHz LT BE?MHZ
= ATl Crosshire | Disabled
CPU-Z version 163.0x64 __ Validate ‘ x| Computing [¥]0penCL [JCUDA []PhysX [+] DirectCompute 5.0

AMD Radeon HD 76600 W Close

Figure 3.7: Two screen captures of the A10-5800K APU showing the 4 cores backed
by 384 VLIW4 shaders.

3.4.2 The GPU

The AMD Radeon 7660D is a 246mm? GPU which has 384 shaders and runs at
up to 800 MHz and has up to 2048 MB of shared memory which runs at the speed
of main memory. This particular GPU is based on the Northern Islands architecture
which moved from VLIW5 to VLIW4 to obtain better utilization of the hardware.
This was done by removing one of the execution units as AMD found it was unused
in the majority of cases, leading to unused hardware and increased power usage. In
turn, they were able to use those extra transistors to create more SIMD Engines,
similar to Figure 2.4] and increase overall computing power. At this time however,

a newer architecture exists, Graphics Core Next (GCN), which moves the scheduling

24 Chapter 3: APU architecture

to hardware which could better determine dependencies at runtime as opposed to
during compilation, and as such, schedule instructions on the hardware for better
utilization. AMD’s third generation APU, codenamed Kaveri which was released in
January 2014, includes CPU cores based on the Steamroller architecture and GPU
cores rooted in the GCN-based Volcanic Islands architecture which was released in
Q4 of 2013. These changes provide a much needed boost on the CPU side and further
AMD’s advantage over rivals Intel and Nvidia on the GPU side (in the low-mid range

market targeted at APUs).

3.4.3 The Magic

Combining a CPU and GPU is not all that difficult; take one part CPU, one part
GPU, one part silicon and mix them together. This basic approach however won’t
yield very good performance as both the CPU and GPU will be performance limited
since they now have to share the same die area that a single chip previously did. The
real magic of the APU lies in the hard-to-measure category of the uncore, the glue
that combines the two in order to maximize performance.

To enable GPU communication with memory, Llano has a dedicated interface, the
Radeon Memory Bus, which is 256 bits wide in each direction and replicated for each
memory channel (Kanter [2011]). For memory accesses to coherent system memory it
has the Fusion Control Link which is 128 bits wide in each direction. The significance
of these are to simplify memory accesses from the GPU to CPU memory and vice
versa since the two are built for different use cases; the CPU for latency and the GPU

for throughput. Based on this, we can see that the limiting factor is going to be the

Chapter 3: APU architecture 25

throughput of main memory for the GPU (the CPU already uses caching).

To aid in the pain point of bandwidth, AMD has two technologies, Pin In Place
and Zero Copy (Demerjian| [2011]). Pin In Place enables placing a chunk of memory
in a static location which prevents having to search for memory locations at runtime,
saving time, power and resources. More important is Zero Copy, which enables mem-
ory sharing between devices by simply passing a pointer from one to the other instead
of copying data between devices. These technologies, enabled by the on-chip buses,
allow programmers to finally extract maximum performance, removing hardware lim-
itations, saving massive amounts of bandwidth and lowering latency dramatically.

Regardless of these improvements, AMD’s APU still relies heavily on main mem-
ory speed, which is why they achieve roughly a 20% performance boost over DDR3-
1333 memory when using DDR3-1866 (Lal Shimpi [2011a]), an increase of approxi-
mately 40%. Faster RAM is not the end all due primarily to the cost associated with
faster memory, which is an issue in a budget oriented market. That is why companies
like Intel are working in tandum with Micron to develop memory which would be

placed directly onto the chip, and using a very wide bus for extremely high memory

bandwidth, up to 1 Th/s (Lal Shimpi| [2011b]).

3.4.4 Implementation comparison of APUs, Intel vs. AMD

While we've already detailed the differences in how AMD and Intel design their
APUs (in terms of transistor allocation), we haven’t yet covered some of the lower

level details regarding the implementation. One difference is that Intel has gone with

an L3 cache that is shared between both the CPU and GPU (Lal Shimpi [2010]).

26 Chapter 3: APU architecture

This enables higher performance for both the CPU and GPU since data can be easily
shared, and, since it is a cache, it can prefetch new data (unlike a traditional GPU),
so it becomes available before it is required. This gives it very good performance
when either the CPU or GPU is being stressed as shown by benchmarks run by the
website Anandtech (Lal Shimpi| [2010]). However, when there is a blend of CPU and
GPU use (i.e., there is no heavy imbalance in the processing power used by each
component; it’s split approximately 50/50 or 60/40) such as the Dawn of War IT and
HAWX games, the solution loses to a low-end dedicated GPU since the L3 cache
cannot be fully utilized due to conflicts between devices and because of the second
design difference, how the hardware is provisioned.

Intel went with the approach of scaling the CPU and GPU independently within
the TDP limit and a priority to the CPU and AMD set minimum TDP limits for both
the CPU and GPU with a priority set more towards the GPU (Demerjian [2012]).
This gives Intel the benefit of having excellent performance when one or the other is
used (most traditional benchmarks) but has lower average performance since neither
the CPU or GPU can maximize their potential (they now have to share the maximum
TDP instead of having it allocated to a single one) (Lal Shimpi| [2009d]). AMD on
the other hand took the other approach and guarantees both the CPU and GPU run
at a minimum level, even when stressed which gives them better mixed performance
at the cost of single benchmark maximum performance. Each implementation has
its own advantages and disadvantages but as APUs have progressed, the methods of
maximizing performance have improved and APUs from different companies seem to

look more and more alike with every iteration.

Chapter 3: APU architecture 27

3.5 Future APUs

We’ve covered how APUs from competitors bear more and more resemblance with
each iteration. Starting in 2011 with the Llano architecture, AMD put forth the first
of many pieces towards their heterogeneous systems architecture, integrating the CPU
and GPU onto the same silicon. They have since moved to phase 2, optimizing the
components and enabling better resource allocation and maximum performance from
each subsystem (using the Trinity architecture). Now, in 2014 they will complete
stage 3 with the release of Kaveri, architectural integration between the systems,
enabling simple, clean communication between the CPU and GPU and removing the
bottlenecks of memory passing. This leads into the last phase, system integration
which I will cover later in Chapter [9] where I examine future APUs and technologies

currently being developed and what they mean for the computing industry.

Chapter 4

GPU Computing: Shaders, CUDA

and OpenCL

GPU computing isn’t exactly a brand new idea; it has been around since GPUs had
vertex and pixel shaders which were used to manipulate objects. The problem with
this approach was that there was no standardized application programming interface
(API) used to specify data and how it should be accessed. Instead, programmers
provided vertices and vectors with which the GPU performed various calculations
and when finished, the programmer would convert the data back into a usable form
such as the work done by Fung and Mann| [2005]. This roundabout method required
inefficient programming methods and was not programmer friendly, meaning it was
very error prone and not easily scalable to very large projects. Nvidia later saw
the potential of the GPU for more than just graphics and in 2006 would release the
Compute Unified Device Architecture (CUDA) which would enable general purpose

computations to be performed on a standard GPU (Nvidia [2006]). Similarly, ATI

28

Chapter 4: GPU Computing: Shaders, CUDA and OpenCL 29

(acquired by AMD in 2006) was at the same time working on their own project, Close
to Metal, which has since been discontinued in favor of OpenCL.

CUDA started out as a framework to reduce the effort required to use the GPU for
general purpose computation. Nvidia started by using a C-based language and added
extensions on top of it in both the GPU driver and programming SDK to handle the
tough work like setting up the device, transferring data and computing the results.
With such a simple model and general availability (it could be used on any GPU
starting with the GeForce 8800 series, also released in 2006), CUDA positioned itself
to allow GPU computing for the masses. CUDA however would not meet this end
goal, being far too limiting with regards to the hardware it could be run on (solely
Nvidia GPUs), never gaining the traction its creators had envisioned; it did however

pave the way for a more open computing language.

4.1 OpenCL, the Open Computing Language

OpenCL, originally developed by Apple and now owned by the Khronos group is
an open, cross-platform API enabling programming for heterogeneous devices. This
abstraction of hardware gives OpenCL a write once, run anywhere model and means
it can better handle future changes in the computing landscape, such as the inclusion
of OpenCL in ARM CPUs, as well as Application Specific Integrated Circuits (ASICs)
built in hardware to perform a single type of calculation, such as bitcoin mining. With
OpenCL’s vast reach, it can be used everywhere, giving it many advantages over its
competitors as listed in Table [.1]

As we can see from the chart, OpenCL has the benefit of being fully open regarding

30 Chapter 4: GPU Computing: Shaders, CUDA and OpenCL

OpenCL | CUDA | DirectCompute
Operating System Agnostic Y Y N
Hardware Agnostic Y
Open standards API Y N N
Future-proof (APU ready) Y NP N
Gaining support (e.g., ARM) YH N N
Easily integrated with graphics | Y N Y

'Nvidia devices only,

2DirectX 10+ GPUs only

3No APU support, only compatible with Nvidia’s ARM products
4Multiple vendors are adding OpenCL support to their devices
(Steele| [2011]; [ILokhmotov| [2010])

Table 4.1: OpenCL vs CUDA, hardware and software support.

hardware and software, making it the perfect API for developing high performance
computing applications as hardware changes rapidly. Moving forward we look to the
details of OpenCL from a programmer’s perspective, including the threading model,

memory model and data partitioning.

4.1.1 OpenCL Threading Model

The OpenCL threading model is quite simple. Each element to be computed
is a work item. These work items are then blocked into local workgroups (whose
size may vary between devices and is used to target optimal device use) which then
execute on the device (and combined make up the global workgroup). For example,
say that in Figure [4.I, the NDRange size, or global workgroup is 768x768. This
would represent a total of 589,824 work items which will be computed by the device.
Looking at the global workgroup, we see it’s broken down into 9 chunks that are

deemed local workgroups. Each of these 9 local workgroups would then contain

Chapter 4: GPU Computing: Shaders, CUDA and OpenCL 31

256x256 (65,536) work items, though the number can and will vary based on hardware
support. The hardware then independently schedules the local workgroups to best
utilize the hardware; an important factor in maximizing algorithm performance due
to hardware constraints (such as running out of hardware registers by choosing too

large a local workgroup size).

work-group size Sx

work-group (Wx > wy)

work-item work-item
Wy Sy#s Wy S25) | aaa | (W Syos,. W, Syes)

‘s‘vsyn:‘d 0 "S‘vsy::-'SX»'. o)

work-group size Sy

TTTE

(5y. 8 =(0.5,1) — (5.8)= (8,1, Sy

NDRange size Gy @

|

=

o
NDRange size Gy

, - = " T
work-item work-item
ﬁ Wy S8, w, Sy-s/ Wy Sy#s, . W, Sy's,/

Figure 4.1: All elements to be computed are members of the global workgroup (shown
on the left). On the right is a single local workgroup which is a subset of the global
workgroup and contains many work items that share a common hardware resource
(compute block) (Gaster and Howes [2010]).

4.1.2 OpenCL Memory Model

OpenCL’s memory model is very similar to that of CUDA, and, at a high level, that
of a regular compute device with multi-level caches to speed up operations (though
here we have some control over how and where our data is moved and located).
Looking at Figure we see 4 types of memory: private, local, global/constant

and host. Private memory is the lowest level of memory available, registers which

32 Chapter 4: GPU Computing: Shaders, CUDA and OpenCL

provide the fastest access to memory and are allocated to each thread (i.e., each
work item) in the same manner as memory is allocated to a CPU. As registers are
an entirely hardware managed memory, programmers cannot directly access it, but
instead declare variables within the OpenCL kernel that are placed into registers via

the compiler (if the requested resources are available at the time).

Private Private Private Private
Memory Memory Memory Memory

Work-ltem Woaork-ltem Work-Item Work-Item

Local Memory Local Memory

Workgroup Workgroup

Global/Constant Memory |

Computer Device

Host Memory

Figure 4.2: The OpenCL memory model involves four different types of memory
provided by the GPU. These include the global memory, constant memory, local
memory and private memory. Each of these has a particular purpose which will be
explained in the GPU Memory Types section (]Gaster and Howes| ﬂ2010ﬂ).

Local Memory

Local memory is one step above registers and is typically around the size of a
CPU’s L1 cache. This piece of memory is included in each compute block on the

device, meaning we actually have a few MegaBytes worth to use for the entire device.

Chapter 4: GPU Computing: Shaders, CUDA and OpenCL 33

Local memory is both read and writeable from all threads in a local workgroup (which
in turn is assigned to a single compute block). The setup of local memory in hardware
makes it so that as programmers, we don’t have to perform manual coalescing of
memory reads/writes (ordered by memory address; without which, memory accesses
would be performed sequentially) to get good performance. We also have full control
over this portion of memory so we can use it in any way we like and keep data
around as long as we like (as opposed to CPUs which typically use a least recently
used setup to remove old lines from the cache). However, local memory does have the
limitation of not being able to communicate directly with other local workgroups (like
the cache sharing model employed in multi-core CPUs). Instead, we as programmers
must explicitly move information from the one workgroup’s local memory into global
memory at which point we can then read it into the other local workgroup’s local

memory.

Why not just one memory?

Now you might be asking yourself, why not just add more hardware to replace
global memory with local memory since it’s so much better? The answer to that
lies in hardware limitations. Replacing global memory with local memory would
require replacing the separate memory chips currently on a GPU and integrating
those transistors into the chip itself. This would in turn increase the power use of
the chip (high end GPUs already consume 300 watts, as defined by their thermal
design power) and would require more die area for the chip itself, and GPUs are

already bumping into the upper limits of manufacturing capability due to silicon

34 Chapter 4: GPU Computing: Shaders, CUDA and OpenCL

wafer defects. Due to this limitation, just like CPUs, GPUs have added memory
levels for specific use cases to try and reduce the amount of time the device must wait

on input/output.

Memory Type Size per Compute Unit | Total Size on GPU | Peak Bandwidth
Private (registers) | 256 kB 8 MB 22.2 TB/sec
Local 64 kB 2 MB 3.7 TB/sec
Constant - 128 kB 474 GB/sec
Global - 3+ GB 264 GB/sec

PCI Express v3.0 | - - 16 GB/sec
DDR3-1600 - - 12.8 GB/sec

Table 4.2: GPU Memory Types and Bandwidth for AMD Radeon 7970 (AMD) [2012]).

Constant Memory

On AMD hardware, constant memory (image memory is similar but for textures)
is a small portion of dedicated memory. It is smaller than the Local Data Store (LDS
or local memory) at only 48kB for the entire GPU, but is meant to hold values that
will not change during runtime, whereas the LDS is a scratch pad for information that
will be passed around and updated constantly, requiring the ultra high bandwidth
and low latency access LDS can provide. As it is implemented directly in hardware,
it has very high bandwidth at almost 500 GB/s which is extremely slow compared to

registers, but nearly twice as fast as global memory, the highest level.

Global Memory

Global memory is slow compared to all other memories (registers, local, con-

stant /texture) but has the advantage of being very large (4+ GB is becoming standard

Chapter 4: GPU Computing: Shaders, CUDA and OpenCL 35

on the top models of current GPUs) and read/write accessible from all workgroups in
a program. This makes it the best storage location for the GPU for large data that
needs to be simulatenously worked on by all threads and which is written or read
infrequently; this approach sacrifices latency and bandwidth for the benefit of being
able to globally synchronize across all workgroups. As well, in traditional devices,
such as the GPU, it’s also the end point for communicating between the CPU and
GPU where data must be explicitly copied from the CPU to the GPU and back.
What we’ll see later with the APU however, is this model being turned upside down,

where no data needs to actually be transferred.

4.1.3 OpenCL Data Partitioning

Data partitioning with OpenCL is key to achieving good performance and there
are two things we need to keep in mind. One is that all work items are calculated
in parallel (pending hardware scheduling restrictions) and there is a balance between
having each individual work item have the resources that it needs while simultane-
ously maximizing the utilization of the device. First, we need to remember that
all work items are calculated in parallel with no guarantees regarding the order of
completion (assuming no synchronization is required in the kernel). This leads to
programmers being responsible for partitioning data correctly and at a level where
we can synchronize/transfer data in the most efficient manner, either at the local
workgroup level (most efficient; fewer threads) or at the global workgroup level (all
threads). While synchronization hinders maximum performance, without it, results

can not be guaranteed due to race conditions or improperly ordered memory accesses

36 Chapter 4: GPU Computing: Shaders, CUDA and OpenCL

(compared to a sequential version).

Maximizing Efficiency

Given this, we need to then look at how to best optimize our available resources,
of which there are a few ways: workgroup sizes, locality and optimizing the usage of
available hardware. The most simple method of data partitioning is to split the data
across workgroups, which can vary in size (as supported by the device). There are
tradeoffs with the local workgroup size, where smaller workgroups should provide good
device utilization. However, at the same time, having too many small workgroups
may cause the hardware to spend a lot of time context switching workgroups as
they wait for, or complete work, hindering overall performance. Thus, we need to
find the optimal size for the given hardware we have (e.g., Are we limited by register
usage, the number of work groups, or something else?) which can be found via AMD’s
OpenCL Kernel Analyzer. Not unrelated is the hardware present such as the constant
and image memories. While it may have a lower total bandwidth than LDS, using
constant memory instead may free up our usage of LDS (if pushing against the 64kB
upper limit per local workgroup) allowing us to add more data to it, increasing our

data locality and making sure it is as readily accessible as possible.

4.1.4 Optimization Techniques

To obtain the best performance, we need to look at multiple techniques to optimize
our algorithm for our hardware. These range from optimizing control between devices

and eliminating memory transfers, to packing instructions to take advantage of the

Chapter 4: GPU Computing: Shaders, CUDA and OpenCL 37

APU’s VLIW architecture.

Loop Unrolling

A relatively simple technique to reduce idle time is to keep more iterations on
the APU before transferring control back to the CPU (for memory transfers, syn-
chronization, sequential calculations, or other reasons). While not possible for every
algorithm, when it is possible to be used, it can have a very dramatic effect on per-

formance.

Memory Optimization

To optimize memory accesses we can use local memory (covered in more detail
later) as a programmer-managed cache to avoid having to make calls to the slow
global memory. A second option is to take advantage of the APU’s shared memory
space between the CPU and GPU by using host memory which transfers data between
the two by simply moving a pointer. Using this approach, transferring data no longer
involves copying memory and moving it off the device, making it incredibly efficient

when memory is read or written infrequently.

Vectorization

The final optimization I examine for the APU is vectorization. With vectoriza-
tion, we can pack instructions and data together (if there are no conflicts) which can
be executed simultaneously on the hardware (provided it also supports parallel calcu-
lations by each execution core). This organization of data enables better scheduling

of instructions to improve device utilization and optimize memory access.

Chapter 5

0-1 Knapsack

5.1 Problem Definition

The basic 0-1 knapsack problem is a staple of computer science. The goal of the
problem is to choose a set of items, each with a given profit and weight, so as to
maximize profit within a given weight restriction. This is known as an optimization
problem, and more specifically, resource allocation and is applicable to many real
world situations such as bin packing, route choice (similar to to the traveling salesman
problem) and cutting an item to minimize waste (see Figure . This means large
real world cost savings when a solution can be even just 1% better, which is why this

problem has been studied extensively, as I'll cover later under related works.

38

Chapter 5: 0-1 Knapsack 39

Item 1 2 3 4
Profit 5 3 7 2 8
Weight 4 1 3 2 8

Capacity/Item | 1 2 3 4 5 B 7 8 9 10
1 0 0 0 5 5 5 5
2 3 3 3 5 8 8 8 8 B 8
3 3 2 7 10 10 10 10 15 15 15
4 3 2 7 10 10 12 12 15 15 17
5 3 2 7 10 10 12 12 15 15 17

Figure 5.1: A short example of the 0-1 knapsack problem using the dynamic pro-
gramming approach. Here we have 5 items to choose from, each with a given profit
and weight, and a set bag capacity (up to 10). In this case, the best profit achievable
is 17 using items 1, 2, 3, and 4.

5.2 Related Works

To solve the 0-1 knapsack problem there are a number of algorithms that can
be used, each of which takes a different approach. These include greedy algorithms
which simply choose the “best” items (be it in terms of profit or some other maxi-
mizer), branch and bound algorithms which select items based on some factor (e.g.,
profit /weight ratio), approximation algorithms, or dynamic programming which builds
a 2D item/weight matrix filled with the best profit achievable using items x..y..z.. For
my work, I examined the dynamic programming approach as it provides an optimal
solution every time and, based on the matrix’s structure, should map well to the APU
architecture.

Examining related works, Boyer et al. [2012] created a solution to reduce the mem-
ory footprint of the dynamic programming 0-1 knapsack algorithm. The benefit of
this is reducing the amount of data that needs to be passed to the GPU, which should

in theory speed up the alogrithm. To do this, they removed continuous duplicated

40 Chapter 5: 0-1 Knapsack

values within a row of the matrix with a single value. This removes unnecessary data
transfer between the CPU and GPU as well as eliminates the duplicated processing
of these values since they will be the same after the iteration completes. The result
of their optimization techniques is a matrix which took up less than one percent of
the space of the original matrix and a speedup ranging from 19 times for a 10,000
item matrix to 26 times for a 90,000 item matrix. Quantifying these values, the CPU
took nearly 59 seconds for 10,000 items while the GPU took 3.06 seconds. Moving
to the larger matrix of 90,000 items, the CPU took over 100 minutes while the GPU
completed the same work in under 4 minutes.

A second approach is branch and bound shown in Figure and researched by
Boukedjar et al.|[2012], whose work was continued by |Lalami and El-Baz| [2012]. The
branch and bound 0-1 knapsack algorithm attempts to prune solutions that appear
at a high level to be less than optimal so as to avoid having to traverse those branches
running calculations which cannot improve the solution. The later work by |Lalami
and El-Baz [2012] showed that this type of algorithm could work on the GPU (which
traditionally does not do well with branching due to the random memory access
pattern), providing a speedup over a CPU-based algorithm. In their results, for a
matrix size of 100, the GPU was able to achieve a speedup of 8.48 times, with an
execution time of 0.18 seconds, compared to the CPU’s 1.59 seconds. At the upper
end, choosing from 500 items, the GPU completed in 0.65 seconds with respect to

the CPU’s 13.39 seconds, for a speedup of 20.48 times.

Chapter 5: 0-1 Knapsack 41

@ Removed for
size

Figure 5.2: A short example of the 0-1 knapsack problem using a greedy branching
approach (over capacity solutions not shown). We start by looking at the highest
profit items and examining all possible solutions. As we move through the tree, we
examine all solutions except ones containing items already searched (to the left). For
example, in the branch starting at 4, we don’t look at any solutions containing 8 as
we would have covered the 8+4 solution in branch 8 and found it to be invalid.

5.3 Implementation and Results

5.3.1 Algorithm 1: Naive

In my first algorithm (Doerksen et al.|[2011]), I used a single compute unit of the
GPU to obtain a basic working implementation of the 0-1 knapsack algorithm. This
approach passed control back and forth between the CPU and GPU after each row
had been computed. The next line was then transferred to the GPU, computed and
returned, etc. As the profiler was not available at the time of publication (Doerksen

et al. [2011]), I was unable to analyze the performance of the algorithm directly.

42 Chapter 5: 0-1 Knapsack

However, with my knowledge of how the APU works and GPU computing in general,
I knew that the bottleneck was the memory transfer over the PCI Express bus and the
context switching that occurs when transferring control from the CPU to the GPU and
vice versa. As shown in Figure (which was captured using the OpenCL profiler),
we have over 1000 read/writes, one for each time the CPU had to pass information
to the GPU. The inefficiency of data transfer manifests itself in the allocation of
time spent computing vs. communicating, 1:99 percent in this first algorithm, and a
very slow execution time of over 2.5 seconds compared to the sequential algorithm’s
execution time of 0.1 seconds (see Figure [5.4)). At the same time, the APU also ends
up slower than our parallel implementation which used OpenMP on the CPU. Using
this profiling information, I was able to perform guided optimizations (examining
both software and hardware counters) to iteratively improve the execution time of

my algorithms.

P [))] L] [A] e] [] N e e
- a7 13 1 o7 12287 1405426 16311 175572 1932461 21081 283813 2 2835.174 281028

(T == | AN N O O [[A

#of #of Kernel Dispatch - Total Kernel Time(ms) # of Memory Total Memory ~ #of Total Read Sizeof #of TotalWrite Sizeof #of TotalMap Sizeof #of TotalCopy Sizeof
Images Devastator - Devastator Transfer Time(ms) Read Time(ms) Read Write Time(ms) Write Map Time(ms) Map Copy Time(ms) Copy

o 3 0 1024 11.60624 2050 1699.78352 1024 | 82486382 B.OOMB | 1026 | 8749170 BoiMe |0 0 OByte | 0
[Tomt |3 [0 | 104 11.60624 | 2050 169978352 1@ |masssm |[mooms 16 | s7asrmo soime [0 |o [oByte |0 [0 [0 |

Figure 5.3: Algorithm 1 of the dynamic programming algorithm for 0-1 knapsack.
We can see many data transfers are being done and that our time spent executing
the kernel is less than one percent of the overall execution time.

Chapter 5: 0-1 Knapsack 43

0-1 Knapsack V1 Execution Time

A]

=
in

=]

==Sequential
== Paralle|

=

== APU

Execution Time (seconds)
[
Ln

=]
n

| o ——

256 512 1024 2048 4096
Matrix Size (N x M)

=]
|

Figure 5.4: Execution times for the naive algorithm where we see the penalty the
APU pays for this unnecessary data transfer.

5.3.2 Algorithm 2: Loop Unrolling

The goal of the second algorithm that I created was to remove the PCI Express
bottleneck in the system by attempting to keep data on the GPU for as long as
possible. This was done by passing multiple rows at each iteration to reduce the
number of context switches between computing on the CPU and GPU. Figures [5.5
and show the result of eliminating these data transfers done at the beginning/end
of the GPU’s calculations. We now have only four data transfers in our algorithm but
this change now necessitated row-level synchronization (between local workgroups)
within the OpenCL kernel to avoid race conditions. We can also see that we are
transferring a relatively large amount of data, nearly 128 MB in total which takes
53 milliseconds. Compared to the kernel which only takes 13 ms, we’ve gone from

1% computation time, up to 20% of total time, with an execution time just over 0.05

44 Chapter 5: 0-1 Knapsack

seconds, approximately twice as fast as the sequential algorithm. While an excellent

improvement, it would be better if we could take that memory time and reduce that

further.
seomes R e S A s e e e e e e A R e
[ElHost
i | 4
T
(= Context 0 (0x00000000030A4E20)
bR e
DeTrstr @i
-]
Host Thread 12648 Summary ‘

O rreios 01 T ||

Context #of #of #of Kernel Dispatch - Total Kemel Time(ms) #of Memory Total Memory #of Total Read Sizeof #of Total Write Sizeof #of TotalMap Sizeof #of TotalCopy Sizeof

- Devastator Transfer Time(ms) Read Time{ms) Read Write Time(ms) Write Map Time(ms) Map Copy Time(ms) Copy.

0 3 0 1 12.93460 4 5309960 20.61028 64.00 MB | 3 32.48932 64.03 MB | 0 OByte |0 0 0Byte

1 0
[Tow |3 [o [1 12.93460 [4 53.09%0 BT [ss0m |3 | 3240, smme [0 |0 loge [0 [0 [oge |

Figure 5.5: Algorithm 2 of the dynamic programming algorithm for 0-1 knapsack. I've
removed the thousands of write/read cycles present in the first algorithm, enabling
data to stay on the GPU for as long as possible.

0-1 Knapsack V2 Execution Time

0.35
E 0.3 ,—
=
8 025 /
P
w 02
E / == Sequential
= pas
= P —8—paralle|
[¥] *
5§ 005 —A

D = T T 1

256 512 1024 2048 4096

Matrix Size (N x M)

Figure 5.6: Execution times for the second algorithm where we kept the data on the
GPU as long as possible by not returning control to the CPU after each iteration.

Chapter 5: 0-1 Knapsack 45

5.3.3 Algorithm 3: Scaling and Optimization

With the third algorithm, I implemented host memory and enabled the algorithm
to use all compute units in the APU. From Figure we see that execution time
hasn’t actually changed much, even though we cut the memory transfer time to
almost zero as seen in Figure [5.8] Looking at this result doesn’t make much sense
since, as we've decreased the transfer time, shouldn’t the overall execution time be
lowered to the kernel time? To see why this happens we need to look closer, at Figure
where we see that the ALUBusy, FetchUnitBusy and WriteUnitStalled counters

have gotten worse.

0-1 Knapsack V3 Execution Time

0.35

D.2.5 /-_
/

/ = Sequential
== Paralle|

ol
- f —

=]
23]

=
Q B @
[T

Execution Time (seconds)

o
o
un

=]

256 512 1024 2048 4056
Matrix Size (N x M)

Figure 5.7: Execution times for the third algorithm which uses all computation units
in the GPU and removes all GPU-located data buffers in favor of using host memory.

46 Chapter 5: 0-1 Knapsack

S e

-
R N

1110 — | — o

Host Thread 18496 | Summary
€ Previous () Next |

Context #of #of #of Kemel Dispatch - Total Kernel Time{ms) # of Memory Total Memory ~ #of TotalRead Sizeof #of Total Write Sizeof #0f TotalMap Sizeof #of TotalCopy Sizeof
D Buffers Images Devastator - Devastator Transfer Time{ms) Read Time(ms) Read Write Timefms) Write Map Time(ms) Map. Copy Timefms) Copy.

0 3 0 1 55.36714 3 0.00008 0 0 OByte |0 0 OByte |3 0.00008 i [] 0Byte

Total 3 0 1 55.36714 3 0.00008 0 0 OByte |0 0 OByte |2 0.00008 :::u 0 0 0Byte

Figure 5.8: Algorithm 3 of the dynamic programming algorithm for 0-1 knapsack.
Here I've switched to using host memory instead of global memory and enabled the
algorithm to scale across all compute cores.

Interpreting Performance

What Figure means is that our hardware is now less utilized, 27% for the
ALU, 22% for the FetchUnit, and our write unit is stalled (albeit to an unnoticeable
degree). Comparing the two we see that the proportions haven’t changed, as the
ALU:Fetch Percentage ratio is still approximately 1.2:1, so what could have caused
hardware utilization to decrease? This is answered in the other change that was made
to the algorithm, scaling it across all compute units. Remember from the section on
OpenCL, we use groups of 256 items (the optimal size for the APU for this problem)
and if we are using more, synchronization must occur to avoid race conditions. In
the second algorithm, we used a single compute unit and had it calculate all items,
meaning synchronization only occurred within a single block. Changing the algorithm
though now means we have to sync 16 workgroups across each row (with a workgroup

size of 256 and a row length of 4096). With these small problem sizes, we see this

Chapter 5: 0-1 Knapsack 47

extra synchronization manifest itself silently in the kernel’s execution time and is

where we must now focus our attention.

5.3.4 Algorithm 4: Caching

The final algorithm change I implemented was based on the third algorithm. Now,
I also switched to using local memory in the kernel to cache data elements within
a workgroup and reduce the overall number of accesses to global memory. Looking
back to Chapter 4] you'll see that local memory has a peak bandwidth of 3.7 TB/s,
compared to global memory’s 264 GB/s (a best case for a dedicated GPU, our system
memory is actually much slower). This has great potential to speed up our algorithm,
and as we can see in Figures[5.9|and execution time for the kernel was cut almost
in half. As well, looking at the change in values of our hardware counters in Figure
[A.2] we see that while our FetchUnitBusy percentage hasn’t increased, we did double
our ALUBusy time which shows in our results where execution time dropped from 0.06
seconds for a 4096x4096 matrix, down to 0.04 seconds. Not shown here is the result
for an 8192x8192 matrix which was 61 times faster than the sequential algorithm; not

bad for an integrated GPU.

5.4 Summary

We began with a naive algorithm using just a single compute unit to establish a
working baseline of the 0-1 knapsack problem on an APU. Then, through profiling the
code we found the first bottleneck, data transfer between the CPU and GPU at each

iteration and were able to remove it, increasing our performance to 1.4 times that of

48

Chapter 5: 0-1 Knapsack

0-1 Knapsack APU Execution Times

Between Algorithms
10

my
=
=
g 1 - . . |
E, 256 512 1024 2048 4096 A PU V1
)
E 01 == APU V2
=
g == APU V3
2
g oot e APU V4
8

0.001

Matrix Size (M x M)

Figure 5.9: A comparison of the execution times of the algorithms as we’'ve progres-
sively optimized them.

291

Mitiseconds ‘
bowo arr

04854 142281

189708 23713 2453 331990 W04 438844 47211 WUsS5 S5 6165E2 63979 71140 TSN 808261 853688
EIHost.
1111 e ——— | = -
= 0pencL
5 Context 0 (0x00000000030E2090)
5 Queue 0 - Devasiator (0x0000000003510400)
Data Transfer p ‘
Kernel Execution
Host Thread 54432 | Summary |
Qoreins @i

#of #of #of Kernel Dispatch - Total Kemnel Time(ms) ~ # of Memory Total Memory ~ #0of TotalRead Sizeof #of Total Write Sizeof #of TotalMap Sizeof #of TotalCopy Sizeof
Buffers Images Devastator - Devastator Transfer Time(ms) Read Time(ms) Read Write Time(ms) Write Map Time(ms) Map Copy Time(ms) Copy
0 4 0 1 30.93690 4 499716 0 0 oByte |1 499704 e g 0.00012 oum 1y 0 0Byte
Byte M8
Total 4 0 1 30.93690 4 499716 o 0 0Byt |1 499704 1Bm‘4' " |2 0.00012 ;‘ém o 0 0Byte
yte

Figure 5.10: Version 4 of the dynamic programming algorithm for 0-1 knapsack which
uses local memory to reduce the number of reads from global memory.

the sequential algorithm. We continued examining the algorithm to try and find more

areas hurting performance and determined that, with the advanced APU architecture,

removing memory transfer is possible and resulted in further performance gains. In

Chapter 5: 0-1 Knapsack 49

practice, we saw only a slight benefit of the APU’s memory architecture come through
as the extra synchronization between workgroups brought our execution time almost
to where it was before, but it did provide us with an algorithm that could be scaled up
to larger inputs relatively easily. Finally, we introduced local memory to reduce the
amount of memory transfers to global memory which increased our performance by
nearly 50% over our previous APU algorithm, and 61 times faster than the sequential

algorithm for an 8192x8192 matrix.

5.5 Future Work

While we achieved excellent results, there are a few other points of interest. These
include vectorization of the algorithm so that multiple work items can be grouped
onto the hardware and computed at the same time (at an even finer grained level
than workgroups). This algorithm change may potentially increase performance up
to 16 times on current GPUs (this is the maximum vectorization level currently
supported by OpenCL), though performance in practice would likely end up in the
2-8 times range based on the hardware setup (the A10-5800K APU uses a VLIW4
GPU) and increased resource utilization that vectorization would provide. As we
see later in Chapter [7] during the implementation of the Monte Carlo algorithm,
register pressure becomes a fundamental bottleneck for performance. With the 0-1
knapsack problem though, we can not use vectorization to hide this latency due to
the amount of synchronization, which hurts our ability to scale the algorithm using
this technique. Second, and not entirely unrelated is AMD’s next generation of APUs

which use the GCN architecture which has proven to be on average almost 40% faster

50 Chapter 5: 0-1 Knapsack

for compute work while at a 17% disadvantage in GFLOPS, a 50% disadvantage in
shaders and a 78% disadvantage in memory bandwidth (Smith and S| [2012]). Finally,
while not completely solving the scaling issue as programs must still fit within GPU
memory, the problem could be broken down for incredibly large problems (hundreds
of millions) so that a subset of the problem could be worked on by the GPU. This
would however reintroduce some of the data transfer issues of the first algorithm, but
with the potential to use host memory on the APU (particularly on AMD’s Kaveri
APU which passes only memory pointers without any copying required), would likely

end up scaling far better than passing data through buffers.

Chapter 6

Gaussian Elimination

6.1 Problem Definition

Gaussian elimination is a method for solving a system of linear equations. It
reduces the set of equations such that we are able to find a value for each of the
variables so as to satisfy the overall system. While not as easily pliable to applications
compared to the 0-1 knapsack problem, matrices of equations define the world of
mathematics around us and as such, make up components of the systems we see

around us; an example of Gaussian Elimination can be seen in Figure [6.1]

Ix 2y 4z | 5 FE Ix 2y 4z | 5 |z=1| 1x 2y 4 5 |y=5] 1x 10 4 5 |x=-9[x=-9
2x 3y 7z| 4 |—>| 0 -y -1z| -6 |—>|0 -y 1| 6|—> 0 5 1| 6 |—>|y=5
3x 6y 22| 5 0 0 -10z| -10 | RS 0 0 1 1 RS 0 0 1 |-10| RS | z=1

Figure 6.1: A simple example of Gaussian Elimination which uses reverse elimination
to zero all values in one row except for one column. This value is then substituted
into the other formulas and elimination is performed again. In this simple case,
elimination isn’t used to zero out the second row after the value of z is found since
we can calculate the value of y as we know all other columns.

o1

52 Chapter 6: Gaussian Elimination

Algorithm 1: Pseudocode for the reverse elimination portion of the naive al-
gorithm.

fori<n—1to0do

// use the element at [i][n] as the pivot value

// matrix[i][n] = matrix[i][n] / matrix[i][i]

// matrix[i][i] = 1

for j«1—1to0do
// zero all remaining columns leaving a single value
// matrix[j][n] -= matrix[j][i] * matrix[i][n]
// matrix[j|[i] = 0

end

end

6.2 Related Works

As eliminating variables is at the heart of solving a system of linear equations, the
possible methods of solving a system of linear equations are quite limited and are in-
stead focused on optimizing the system to reduce the number of calculations (but not
reduce its time complexity unless certain conditions were met). One method, proposed
by |Gohberg et al. [1995] involved transforming matrices of the forms Toeplitz-like,
Toeplitz-plus-Hankel-like and Vandermonde-like into Cauchy-like matrices for which
they were able to create an O(n?) algorithm which used partial pivoting. The work
of Demmel et al.| [1999] however was able to produce a faster Gaussian Elimination
algorithm, netting speedups averaging 2.6 times over multiple machines when run
with four processors. Their algorithm was highly customized however (compared to
the standard algorithm), using graph reduction and a custom scheduler to pipeline
execution to remove dependencies. Lastly, we have the work of (Che et al.|[2008] which
used a customized algorithm, and found that from a cumulative clock cycle perspec-

tive, the GPU was in fact able to outperform the sequential algorithm. Concluding,

Chapter 6: Gaussian Elimination 53

while it is possible to speed up the Gaussian Elimination algorithm, it can’t be done

with the simple naive algorithm just yet.

6.3 Results

In this section, I present several variants of the Gaussial Elimination algorithm.
By using profiling information, I attempt to iteratively improve the algorithm’s per-

formance.

6.3.1 Algorithm 1: Naive

As we did for the 0-1 knapsack problem, we start with a simple port of the CPU-
based algorithm to create a baseline for algorithm performance. For this problem,
we examined the reverse elimination portion of the algorithm since it runs in O(n?)
time and would quickly show if our optimizations were successful. Our naive approach
however leads to less than optimal performance, as seen in Figures[6.2|and [6.3], because
we return control to the CPU after each iteration for processing that must be done
before the parallel work can be started. This leads to performance worse than CPU,
which also happens with the parallel algorithm. The root cause for this performance
loss is the number of forks/joins that must take place because the inner loop is the
one that is parallelized.

Moving to the execution, we see that only 4% of our total time is spent actually
executing our kernel; the rest is spent waiting on memory operations. We also know
from the algorithm that there are very few calculations done in each iteration of the

loop, meaning overhead will have to be low in order to end up ahead. Examining the

54 Chapter 6: Gaussian Elimination

e e T o s o T A e S A ma et £
Miliseconss [Saz07 123 [[I [[I [[[|

Lo ool e EEL ol ol wdde el el ol ol ol ooy oo
[l Host

£
e r—— ||| T (] T — | (]
wonh

] Context 0 (0x0000000002C57570)
=l Queue 0 - Devastator (0x0000000004178500)

o e GokaRe o s 0KaRE e 50KBREAD 50 kel
R i [

< >

Host Thread 62652 | Summary |

Context & of #of # of Kernel Dispatch - Total Kernel Time(ms) # of Memory Total Memory ~ #of Total Read Sizeof #of Total Write Sizeof #of Total Map Sizeof #of TotalCopy Sizeof

D Buffers Images Devastator - Devastator Transfer Time(ms) Read Time(ms) Read Write Time(ms) Write Map Time(ms) Map Copy Time(ms) Copy
0 3584 0 1792 1015134 5376 24048378 | 10681716 TOOME | 3584 | 13362662 14.00 M | 0 0 0Byte | 0 [} 0Byte
[Tom Jame o R 10.151%4 5376 240.44378 [[mwsiris | 7oome |4 | 13seen [1eoome [0 o [o8re |0 [0 [opte |

Figure 6.2: Profiler output for the naive approach to parallelizing Gaussian Elimi-
nation. Note the amount of time spent waiting between iterations because the GPU
cannot deal with small input sizes.

Gaussian Elimination V1 Execution Time

1000
¥ 100
=
g
&
E 10 B Sequential
[= B Parallel
= 1 1
2 HAPU
=
[¥]
F 01 -

512 1024 2048 4096
0.01
Input Size

Figure 6.3: The execution time for our first algorithm, exhibiting performance fol-
lowing that stated by Amdahl’s Law.

hardware counters in we can see the result of this, where we have an ALU/Fetch
ratio of only 3.5. and the amount of time the hardware is busy running calculations

is extremely low, averaging 3%.

Chapter 6: Gaussian Elimination 55

6.3.2 Algorithm 2: Optimizing Memory Transfer

In an attempt to remove the limitation of memory and play the strengths of
the APU, I used host memory in place of device buffers. Unfortunately, this didn’t
increase performance much, only 1%, but performance was still lagging behind the
sequential version by over 10%, as can be seen in Figure . The profiler also showed
that synchronization was not required after each iteration, and so removing it did

increase performance, but to the degree of only 1%.

Gaussian Elimination V2 Execution Time

1000
B 100
=
g
&
E 10 B Sequential
= ‘N B Paraliel
= = T T T
F 'm
g
i 01

512 1024 20458 4096
0.01
Input Size

Figure 6.4: Examining the execution time we see minimal difference to the first
algorithm due to the speed of sequential calculations, even with a reduced reliance
on memory.

The problem with this algorithm is not actually the memory maps that are taking
place, shown by Figure[6.5] but rather the fact that we must call out from our program
to the OS to make the context switch to give control back to the CPU to perform the
memory map. It is in this respect that AMD’s future generations of APUs should

perform extremely well, as they will be able to queue from the GPU to the CPU and

56 Chapter 6: Gaussian Elimination

vice versa without any OS interaction, eliminating all time now spent doing memory
map operations. Now, the only other way to speed up the algorithm would be to

manually remove these operations.

Total Write Time Sizeof ~ #of TotalMapTime Sizeof #of Total Copy Time Size of

of Kernel Dispatch -
5 Write Map (ms) Map Copy (ms)
] 0

Total Kernel Time{ms) -

of Memory Total Memory Time #of Total Read Time Sizeof #of
Devastator R

ransfer (ms) Read (ms) Read Wiite (ms)
0 0 oByte |0 0

Figure 6.5: The second algorithm exhibits the same performance characteristics as
the first algorithm since we are not actually limited by memory.

6.3.3 Algorithm 3: Non-traditional Approach

In the final algorithm, I decided to go with a very non-traditional GPU program-
ming method, using the APU for all calculations including the sequential portion.
I chose this approach as Kaveri was not available at the time, which would benefit
from passing only memory pointers, leading to less context switching between the two
devices. To build the algorithm this way involves making the threads synchronize be-
fore and after the sequential work and have only a single thread run the sequential
calculations. In this manner, the tradeoff is using the APU’s slower GPU resources
(single-threaded) in exchange for removing the OS context switches.

Examining the results of Figure we see something astonishing. For an input

of 1024, we match that of the sequential algorithm, and for 2048 we actually beat it

Chapter 6: Gaussian Elimination 57

Gaussian Elimination V3 Execution Time

1000
Z 100
=
E -
‘5 y
E a0 B Sequential
= - B Parallel
E 1 T - T T T
- WAPU
g
F 01 -

512 1024 2048 4095
0.01
Input Size

Figure 6.6: The third algorithm’s execution time which shows we were actually faster
for smaller input sizes, meaning that with a more advanced APU like Kaveri we might
actually obtain a speedup with large inputs.

(albeit minimally). Unfortunately, as we move to 4096 items, the combination of the
extra synchronization (since we’re using even more workgroups) and more sequential
items to calculate, the program execution does not complete within a reasonable
amount of time. On the upside, this does show promise for our previous hypothesis
of using Kaveri’s heterogeneous CPU-to-GPU queues to remove context switching

and its potential for accelerating this difficult problem.

6.4 Summary

Gaussian Elimination has proven to be a very difficult algorithm to optimize for
performance. Even using host memory (playing to the APU’s strengths) we were not

able to overcome the inefficiencies of interacting with the OS every iteration to han-

58 Chapter 6: Gaussian Elimination

dle device memory operations. However, the attempt at non-traditional processing
methods shows promising results for small input sizes where we were able to beat the
sequential result, proving the concept of single device computing (even on a GPU).
With next generation APUs, this bottleneck will be removed as OpenCL CPU and
GPU devices will be able to queue work directly to each other, without interaction
from the OS, and while remaining in userspace. This should finally make this difficult

algorithm possible to parallelize, paving the way for optimizing similar problems.

6.5 Future Work

In the future, I would like to re-examine this problem with either Kaveri or AMD’s
next generation APU which would include the ability to heterogeneously queue from
the CPU to the GPU and vice versa. This would enable us to remove the overhead
resulting from context switching between the devices that is present in the current
systems. As well, I would like to investigate the use of vectorization to accelerate
the problem since it should provide better GPU performance once we are able to

seamlessly switch between computing devices.

Chapter 7

Monte Carlo Simulation

7.1 Problem Definition

A Monte Carlo algorithm works by using randomization to build a solution. For
American option pricing it calculates potential stock prices according to probability
using a function which takes many variables including: strike price, expiration date
of the option, interest rate, stock volatility and growth rate of the stock. This func-
tion is run many times and averages the results to obtain what should be a good
solution, with a given probability of the answer being incorrect. The difficulty in the
Monte Carlo method is that it is very compute intensive, often requiring hundreds of
thousands or millions of iterations to come to an answer that can be used. However,
it performs very well for systems with many coupled variables like fluid modeling,
artificial intelligence and economics and as such, any way to speed up this technique

would provide real world results.

29

60 Chapter 7: Monte Carlo Simulation

7.2 Related Works

As Monte Carlo simulations have been around for so many years after the intro-
duction of the first computer and they are found in so many areas, I will only cover the
techniques used to accelerate option pricing, namely parallel processing with CPUs,
GPUs and dedicated hardware.

The first method is to introduce parallel programming, where one (or many)
systems calculate a portion of the result set and combine them to determine a final
value. [Dockner and Moritsch [1999] took the approach of using a distributed memory
system with SPARC computing nodes to accelerate their algorithm. As the Monte
Carlo algorithm only incurs communication time at the very beginning (to tell each
worker what to do) and very end of its work (to combine the results), the execution
time drops almost linearly with the number of cores. As such, they were able to
drop the execution time from 0.9 seconds to less than 0.1 seconds. Based on what we
know about the Monte Carlo algorithm, it will scale almost linearly as you add more
hardware, meaning these results fall in line with expectations but will likely soon run
into the minimum time to compute wall due to running out of processing power.

Next is the use of the graphics processing unit which has hundreds of cores that
can work independently, much like a multi-core system. |Abbas-Turki and Lapeyre
[2009] took this approach and modified the Monte Carlo algorithm so that it could run
on the GPU. With the parallel processing capabilities of the GPU, the authors were
able to achieve a 1.4 and 64.5 times speedup (for the slowest and fastest portions of
the algorithm) over the sequential CPU-based algorithm. This type of speedup shows

that the GPU is well suited to Monte Carlo simulations and there may only be one

Chapter 7: Monte Carlo Simulation 61

device that can do better, dedicated hardware.

The last major option to speed up Monte Carlo option pricing is to use hardware
tailored for the specific purpose of calculating option prices. This was implemented
by Sanchez-Roman et al.| [2013] whose approach was to design an algorithm for Asian
options to be executed in a field-programmable gate array. By implementing the
algorithm in hardware, the inefficiencies of an OS and generic hardware are removed,
resulting in better performance with the tradeoff of a non-portable algorithm. Taking
this approach, they were able to achieve a speedup of over 500 times that of the
sequential CPU algorithm when run with 3650 time steps and 10 million simulations.
These results are quite impressive, showing what dedicated hardware can do to speed
up a problem. The only downside to this approach is that it’s not easily accessible
to most people as it requires specific hardware and must be programmed with only

this function.

7.3 Results

In this section, I provide several implemantions of the Monte-Carlo method for

the APU.

7.3.1 Algorithm 1: Naive

I began by creating a simple version which used all available hardware resources on
the GPU but communicated using global memory (Doerksen et al. [2012b]). I profiled
the execution of this algorithm and noticed a few key things: namely the memory

accesses, the kernel occupancy, ALUBusy percentage and ALUPacking percentage.

62 Chapter 7: Monte Carlo Simulation

Algorithm 2: Source code for the Monte Carlo naive algorithm.

// initialize parameters

// K: strike price

// T: time step

// S: stock price

// 0: continuous dividend yield
// o: volatility

// N: number of steps

// M: number of simulations

dt = T/N;

// 1 is the interest rate

nudt = (r — 0 — (pow(o,2)/2))dt;
sigsdt = o * sqrt(dt);

sumCT = 0;

sumCT2 = 0;

for j < 0 to M do
InSt = log(S);

for : < 0 to N do
| InSt = InSt + nudt + sigsdt*rand();
end
// stock price at time T
ST = exp(InSt);
CT = max(0, ST - K);

// sum of payoffs at maturity date

sumCT = sumCT + CT;

sumCT2 = sumCT2 + CT*CT,;

end

// final option value, averaged sumCT and discounting current date to T
c0 = sumCT /(M*exp(-r*T));

// std deviation of the option values

SD = sqrt((sumCT2 - sumCT*sumCT /M)*exp(-2*1r*T) /(M-1));

// standard error

SE = SD/sqrt((float)M);

Chapter 7: Monte Carlo Simulation 63

e s S e e e e
Miliseconds 2950 | [[[| [[[[| I

12926777 12963.380 13039.983 13095585 13183.168 13208.791 13266393 13322 996 13379.599 13436201 13492804 13549.407 13606.009 13662612 13719215
ElHost

Sopenct
[Context 0 (0x00000000038635F 0)
©utie - Drasatr (xctOTOCTE

KemlExooden i onecaro

- >
Host Thread 63992 | Summary |
[T LRI o ntext Summary

Context #of #of #ofKemel Dispstch- Total Kemel Time(ms) #of Memory Total Memory ~ #0of TotalRead Sizeof #of TotalWrite Sizeof #of Total Map Sizeof #of TotalCopy Sizsof
astator Transfer Time{ms) Read Time(ms) Resd Write Time(ms) Write Map Time(ms) Map Copy Time(ms) Copy

o |2 [o [1 | 708.0009 |2 | 5.94048 |2 | 59488 | s12.0048 | 0 [0 [oBee |0 0 |oBte |0 [0 | oByte
[Tomt |2 [0 [1 | 708.00056 |2 | 5.9ua8 |2 | 59048 | 5120048 | 0 [o [osee [0 o [oBe |0 [0 [oByte |

Figure 7.1: The context summary for the Monte Carlo algorithm shows almost no
memory accesses being performed meaning there is little to optimize in this respect.

Starting with the memory accesses as shown by Figure [7.1], we see that very little
time is spent doing memory operations, meaning there is no need to optimize for
this. At the same time however, due to this behavior, we can also say that the
APU’s strengths will not be shown with this algorithm since it’s entirely compute-
bound. As well, from Figure we see that kernel occupancy is not 100%, but what
does this mean? For that we turn to Figure which shows high level information
about our kernel running on our hardware and how it is limited. In this case, we see
that our program is limited by Vector General Purpose Registers (VGPRs), or the
number of registers used to store vectors. Due to this we can only run 28 workgroups
instead of 32 on our hardware, losing 12.5% performance immediately. Resulting from
this are the other two noteworthy variables, ALUBusy percentage and ALUPacking
percentage which are reduced because we have run into hardware limitations due to
using too many registers.

The result of this simple Monte Carlo option pricing algorithm actually turns out

64 Chapter 7: Monte Carlo Simulation

Number of waves limited by Work-group size Number of waves limited by VGPRs Number of waves limited by LDS

12 = 1 o £ 122 256 oo B0k 160k 200 .0k

Number of VGPRs

Variable Value

Device name Devastator

Number of compute units 6

Max number of waves per compute unit 2

Max number of work-groups per compute unit 8

Wavefront size 64

Kernel name MonteCarlo

Vector GPR usage per work-item 3 256
LDS usage per work-group 0 22768
Flattened work-group size 256 256
Flattened global work size 32768 16777216
Number of waves per work-group 4 4
Number of waves limited by Vector GPR and Work-group size 2 2
Number of waves limited by LDS and Work-group size 2 2
Number of waves limited by Work-group size 32 2
Limiting factor(s) VGPR

Estimated occupancy 87.5%

Figure 7.2: Kernel occupancy graph which examines your hardware and kernel and
advises you on what is bottlenecking your program.

to be very good, even if we aren’t running the hardware to its maximum capabilities.
From Figure[7.3] the APU’s execution time is only 0.7 seconds for 32,768 loops using
131,072 random data points while the sequential algorithm is over 10 seconds with the
multi-core OpenMP algorithm sliding in between at 2.6 seconds. As this algorithm
was the most basic form we could create (minimal effort is required to implement the
algorithm), these results are very good, showing off what the GPU can do for these
trivially parallel programs. However, we can’t stop here since more performance could
be achieved, which is why I looked to use local memory instead of registers to store

variables.

Chapter 7: Monte Carlo Simulation 65

Monte Carlo V1 Execution Time

£ mapmn
A / +z?alie|t
iy AP
5 / A

2048 4096 8192 16384 32768
M [above), N (131072)

=
=]

=
=]

oo

Execution Time (seconds)
[ay]

Figure 7.3: The APU, with its limited computational resources still manages to out-
perform the CPU quite handily, even with a basic, ported algorithm.

7.3.2 Algorithm 2: Loop Unrolling

In an attempt to reduce the amount of registers used by the algorithm, I placed
all possible variables in local memory instead of creating private variables. Unfortu-
nately, this had no effect on reducing the number of VGPRs used by the algorithm.
Instead, as seen in Figure [7.4] execution time actually increased which I attribute
to the slower speed of local memory compared to registers since the hardware built
caching mechanism could not make up for the slower speed. Coupled with this, we
weren’t able to run more waves on the hardware, leading to no performance benefit.
Since altering the memory scheme didn’t help with freeing up the number of regis-
ters I examined another optimization technique, vectorization, to see if it would be
possible to “power through” this disadvantage and get more use from the hardware

we do have since some of the registers should be possible to re-use.

66 Chapter 7: Monte Carlo Simulation

Monte Carlo V2 Execution Time

/ =5Sequential
a / = Parallel
/ == APU
2

2048 4096 8192 16384 32768
M [above), N (131072)

=
=]

[
=]

[2x]

Execution Time (seconds)
(=]

Figure 7.4: Using local memory to attempt to reduce register pressure has actually
decreased performance to less than that of our parallel CPU algorithm, forcing us to
look in other areas for improvement.

7.3.3 Algorithm 3: Vectorization

This final algorithm reverted back to using global memory and vectorization to
take advantage of the APU’s VLIW4 architecture. While testing these changes, I
had to answer the question, would 8 and 16 element vectorization actually improve
performance or hurt it since the hardware itself is only built to handle 4 elements?
The short answer is yes, we do see a performance improvement even after passing
4 element vectorization. I attribute the gains to better scheduling (or instruction
queueing) which keeps the ALUs busy. The net gain can be seen in both Figures
and where we now execute the largest input size in only 0.09 seconds, or
a speedup of 7.7 compared to our first algorithm, and 113 times faster than the
sequential algorithm. Looking one step further, we were able to execute 131,072

items for 131,072 time steps in only 0.25 seconds using 16 element vectorization,

Chapter 7: Monte Carlo Simulation 67

nearly three times as fast as our first algorithm while computing 4 times the amount

of data points.

Monte Carlo V3 Execution Time

12
iy
'g 10
8
2 8
]
E & #=Seguential
-
i / == Paralie|
3 / N
g > A -APU -vecls
IE M
0 4 3 T - T 35 T T —

2048 4096 8192 16384 32768
M (above), N (131072)

Figure 7.5: The final algorithm uses vectorization to compute multiple items simul-
taneously on the hardware (at a finer-grained level than SIMD engines) leading to a
drastic performance improvement.

Moving to the scaling of vectorization, we see a near linear decrease in execution
time by continually doubling the number of elements to vectorize. At the same time
however, looking at Figure[7.7] we see that this has had a major effect on the number
of waves that the hardware can schedule, reducing overall performance since we can
now only run the hardware at 12.5% of its capacity. This is unfortunate since we’ve
now hit a hard limitation unless there is a way to reduce the register pressure that
occurs with vectorization. Alternatively, using a high-end GPU would likely reduce

this limitation as there would be more registers, improving performance dramatically.

68 Chapter 7: Monte Carlo Simulation

Monte Carlo V3 Vectorized Execution Time

0.45
0.4 ,
0.35
0.3
0.25
0.2
0.15
01
0.05 - ;
0 T ; : - T ,
2048 4096 B192 16384 32768 131072
M (above], N [131072)

A =—=APU-vec2

== AP - vecd

i A P - v CB

Execution Time (seconds)

#=APU - veclb

Figure 7.6: Comparing the performance of vectorized algorithms we achieve almost
linear scaling all the way up to 16 elements. For problems like Monte Carlo simula-
tions, extremely wide parallelism cannot be beaten.

7.4 Summary

We began with a simple Monte Carlo algorithm for option pricing and ported it
directly onto the APU. From this, we were able to achieve a speedup of 14 times that of
the sequential algorithm with minimal coding required. Next, since we were limited by
the number of registers in the first algorithm, I attempted to use local memory to store
private variables. Unfortunately this did not work and actually led to performance
degredation. Lastly, to try and extract more performance out of the hardware I
turned to a technique called vectorization which groups data elements together for
smarter memory accesses and, in the case of AMD’s hardware in particular, better
scheduling and packing of instructions onto the hardware for better utilization. This
increased performance dramatically, now over 110 times faster than the sequential

algorithm which is quite a feat considering this is just an APU which has nowhere

Chapter 7: Monte Carlo Simulation 69

Number of waves limited by Work-group size Number of waves limited by VGPRs Number of waves limited by LDS

Variable: Value Device Limit

Device name Devastator
Number of compute units. 6

E 256
] 2768
256 256
Flattened global work size 8192 16777216

Number of waves per work-group 4 4

Number of waves limited by Vector GPR and Work-group size 4

®

Number of waves limited by LS and Work-group size 2 2

Number of waves limited by Work-group size 2 2

Limiting factors) VGPR

Estimated occupancy 5%

Figure 7.7: The kernel occupancy graph for the 16-element vectorized algorithm.
Note how we can now run very few waves on the hardware because we have run out
of registers.

near the amount of computational resources compared to a dedicated GPU.

7.5 Future Work

Given that this is a trivially parallel algorithm, the amount of further optimiza-
tions are very minimal. At this time, the only work that remains to be done is to
search for a method of reducing the register pressure that currently exists in the

algorithm, particularly when vectorization is used.

Chapter 8

Binomial Lattice

8.1 Problem Definition

The binomial lattice for option pricing is one method to approximate the price of
an option. Using the binomial lattice method, we essentially create a tree, as shown
in Figure 8.1l Moving from left to right we have the number of time steps, which
could in theory be increased to infinity (ignoring the limitations of computational
feasibility). At the very right, or final time step, we have the maturity date of the
option, or when it must be exercised. The points in between represent the price at a
given time step, and, as we’re using a binomial method, the price can in each time
step, either increase or decrease. There are other, more advanced models such as the
trinomial method where the price could increase, remain unchanged, or decrease at
each step, as well as n-ary tree methods to enable more fine grained pricing (limited
by computational power).

The option variation we study here is the American Lookback option which tries

70

Chapter 8: Binomial Lattice 71

to find the minimum or maximum value (based on buy or sell) of an option at a
given point in time between the purchase date and maturity date. The American
Lookback option is categorized as an exotic option because it has features not found
in standard options, such as the ability to exercise the option any time before the
expiration date (as opposed to a European option which can only be acted upon at
the time of expiration). Based on the large tree structure of the problem after many
time steps, and simplistic synchronization that occurs at every time step, we theorize

that the APU should perform very well for this problem.

S*u?
S*u Q
S
S
S
S*d
S

Figure 8.1: A binomial tree structure constructed for option pricing for 3 time steps
(but could be sub-divided until we run out of computational power). Image taken
from [Solomon et al.| [2010].

8.2 Related Works

Option pricing is not a new field and there are many ways to try and calculate
an option’s price, like Monte Carlo (covered in Chapter @, binomial /trinomial lattice
and finite-difference methods. As mentioned earlier, most work with Monte Carlo

methods in this area has not been towards new algorithms but rather the optimization

72 Chapter 8: Binomial Lattice

of existing ones. These optimizations can be summarized to using new types of
hardware to accelerate the problem better than that of a normal CPU.

One approach, taken by Solomon et al.| [2010] was to use the GPU because of
its massively parallel nature and high-speed memory. Through optimizations like us-
ing shared memory and memory coalescing, they were able to dramatically improve
performance over their naive GPU algorithm, obtaining a speedup of over 3.5 times.
Additionally, the authors also implemented a hybrid version of their algorithm that
would use the CPU simultaneously with the GPU. The result of this however was
minimal to zero performance gain simply because the GPU dominates the overall ex-
ecution time given how many work items it is calculating. Compared to the sequential
CPU algorithm, they were able to achieve a speedup of over 100 times, demonstrating
that special purpose hardware is the best method to calculate option prices.

Furthering the idea of special purpose hardware for computing is the work by [T'se
et al| [2009] who used a FPGA to accelerate quadrature methods used for option
pricing. By removing the inefficiencies of “general purpose” hardware such as the
CPU or GPU (though the GPU is better suited to this task than the CPU) they were
able to create a system that would only be able to calculate option prices, but do it
very fast and for little power. In their results, they managed to achieve a 32.8 times
speed up over the CPU for single precision work while using only 4.4 watts (maximum
power). Compared to the GPU their FPGA was approximately half as fast for single
precision, but achieved those results at 1/13 the clock speed and using 45 times less
power. These are very impressive results, but they do require specialized hardware

only suited to calculate one thing meaning they can not be used by the layman; this

Chapter 8: Binomial Lattice 73

is where our research using APUs attempts to bridge the gap.

Algorithm 3: Source code for the Binomial Lattice naive algorithm.
if globallD == 0 then
yValue = pow(u, 0);
tempOptionValues|[0] = max(yValue - 1.0f, ((pu * optionValues[1] * d) +
(pd * optionValues[0] * u)) * disc);

end

f globallD <= i then

yValue = pow(u, globallD);

tempOptionValues[globallD] = max(yValue - 1, ((pu *
optionValues[globallD + 1] * d) 4+ (pd * optionValues|globallD - 1] * u)) *
disc);

o

end
// synchronize workgroups before writing to global memory

if globallD <= 1 then
optionValues[globallD| = tempOptionValues|globalID];

end

8.3 Results

I implemented three different versions of the binomial lattice algorithm on the
APU. This section highlights these implementations and provides an analysis on in-

formation retrieved by the profiler.

8.3.1 Algorithm 1: Naive

The first algorithm I created was naive, and a first attempt to get a working
algorithm running on the APU (Doerksen et al. [2012a]). Given that this is a very

computationally intensive algorithm, we see that in Figure 8.2 we still manage to

74 Chapter 8: Binomial Lattice

achieve better results than both the sequential and parallel algorithms without using
any optimizations. For inputs smaller than 4096 time steps the APU has no benefit
over the sequential algorithm, but once we reach 32,768 time steps, we managed to

obtain a speedup of 6.2 times faster.

Binomial Lattice V1 Execution Time

/
/

w
=]

s
un

]
=]

#==Sequential

/
/ =f=Paralle|
p
s

=
=]

Execution Time (seconds)
wn tn

O +—F T — .
1024 2048 4096 8192 16384 32768
Time Steps

Figure 8.2: Even with a basic, first attempt algorithm, the APU is able to outperform
even our parallel CPU algorithm.

Next I profiled the algorithm (see Figure to see where it could be improved
and, just like the 0-1 knapsack and Gaussian Elimination problems, we are handing
control to/from the device after every iteration reducing performance. One good
thing to note is that we're not performing any data transfer between iterations which
means we are at least not losing much performance. This also means that there is
little/no benefit by optimizing memory. Unfortunately as well, the APU’s strengths
will not be fully utilized with this problem.

Figure details the hardware counters which show we are using lots of VGPRs

which is reducing the number of wavefronts that can be scheduled onto the hardware

Chapter 8: Binomial Lattice 75

Miliseconss i T] I I I I I I
ioi ste s mea2 ESM G0 ea GSOID TAMR 7RS4 7S48 mesls OATID si092 oamore sea 10207

ElHost

E1OpenCL

1 Context 0 (0x0000000003340C00)
£ Queve 0.- Devastator (0x0000000000F 153E0)

Diata Transfer

| SR P SOCEOEE 0 9EEADRB YYD O S SRR AN PR o

< >

Host Thread 125020 | Summary

[T LTSNS Contert Summary

#0f Kenel Dispatch - Total Kernel Time(ms) ~ # of Memory ~ Total Memory ~ #of TotalRead Sizeof #of Total Write Sizeof #of TotalMap Sizeof #of TotalCopy Sizeof

Devastator - Devastator Transfer Time(ms) Read Time(ms) Read Write Time(ms) Write Map Time(ms) Map Copy Time{ms) Copy

0 2 0 4097 53862194 3 5.93302 2 0.276% ;tn: 1 5.65604 8.00Byte | 0 0 OByte |0 0 0Byte

12,00

Total 2] 4097 53862194 3 5.93302 2 0.276%
Byte

5.65604 8.00Byte | 0 0 OByte |0 0 0Byte

Figure 8.3: The profiling results for the first algorithm which shows control is being
handed back to the CPU after each iteration, decreasing performance.

by half. On the upside, we are keeping the hardware relatively busy (40% according
to the ALUBusy percentage variable) and removing the overhead of returning to the

CPU each iteration was the next optimization undertaken.

8.3.2 Algorithm 2: Loop Unrolling

To begin, I used the basis of the first algorithm and added unrolling of the loops
(like we did with the 0-1 knapsack and Monte Carlo algorithms) to avoid passing
control back to the CPU which was reducing performance. I also added in local
memory to try and reduce the pressure we saw with the VGPRs, similar to that
seen in the Monte Carlo algorithm in Chapter [6] To measure this, I again profiled
the execution (Figure where we can see that no longer is execution broken up
(this particular run unrolled all 32,768 iterations, if it was smaller we would see the
execution broken up into blocks).

From the hardware counters (see Figure [A.6)), we can see that using local mem-

76 Chapter 8: Binomial Lattice

Host Thread 115532 | Summary |
€ Previous (3 Next [T

Context #of #of # of Kemnel Dispatch - Total Kemel Time(ms) # of Memory Total Memory ~ #of TotalRead Sizeof #of Total Write Sizeof #of TotalMap Sizeof #of TotalCopy Sizeof

] - Devastator Transfer Time(ms) Read Time(ms) Read Write Time(ms) Write Map Time(ms) Map Copy Time(ms) Copy

0 4 0 3 52257024 1 0.16244 1 0.16244

Total 4 0 3 52257024 1 0.16244 1 0.16244 o 0 0 OByte | O 0 OByte |0 0 OByte

Figure 8.4: A screenshot of the profiler for the algorithm which has been unrolled for
groups of 32,768 iterations to stay on the device before returning control to the CPU.
Notice how the LookbackOpenCL kernel isn’t split up like it was earlier meaning the
hardware is being kept busy for longer.

ory has decreased the pressure on VGPRs, but not enough to increase our kernel
occupancy which remains at 50%. So just like in the Monte Carlo algorithm, using
local memory shows no real benefit to performance since we are so drastically lim-
ited by compute. Looking at the other effects of unrolling though we see that now
the ALUBusy percentage has actually decreased by almost 15%, ALUPacking has
decreased nearly 50% and we’ve now run into some (very) minor stalls on both the
fetch and write units.

Regardless of these small changes in the hardware counters, looking at Figure |8.5
we achieve a very good speedup, nearly nine times faster than our first GPU algo-
rithm. There is still work to be done however, as seen in the Monte Carlo algorithm,
vectorization provided a substantial benefit for performance, though it did come with

increased algorithm complexity.

Chapter 8: Binomial Lattice 7

Binomial Lattice V2 Execution Time Binomial Lattice V1 Execution Time

0.53 30
§ 0525 /' 52 /
§ os2 7 H /
B o515 g0
g 051 o / —#—Sequential
- E 15
= 0505 M £ / == Parslle|
2 0s =+#=Unrolled APU g 10 -
3 =1 / /‘ APU
g O 8 s i APU - w2

049 - : . - . . & _.4(/,,/ b

qf’b g?'\. & F P e S @ 0 +—f=— el =
R A S 1024 2048 409 8192 16384 32768
Iterations unrolled Time Steps

Figure 8.5: The execution time for the unrolled algorithm. Notice how unrolling
anywhere from 256-16,384 iterations doesn’t seem to change performance but having
unrolling drastically increases overall performance compared to the CPU algorithms.

8.3.3 Algorithm 3: Vectorization

The final algorithm uses vectorization to attempt to increase performance. The
decision to try vectorization was a result of the performance increase that we saw in
the Monte Carlo problem. While very parallel like the Monte Carlo algorithm, the
binomial lattice problem has a much more spread-out memory access pattern, and
we're removing half of the available work items through each iteration, making the
problem much more difficult to optimize. Looking at Figure [8.6] we see that due to
the unrolling, the program is split into blocks of execution, but there is no time lost
between iterations as the scheduling works out very well. We can also see that there
is very little time spent doing memory operations (as Algorithm 2 was the basis for
this algorithm) meaning there is little to no performance to be gained through those
types of optimizations.

Looking at the execution time of the algorithm, we see it has not changed, even
though we have “doubled” our computing power. This is a stark contrast to the
Monte Carlo algorithm where performance doubled moving to 2-element vectoriza-

tion, doubling again for each power of 2, all the way up to 16-element vectorization.

78 Chapter 8: Binomial Lattice

mseseas e e e e e e e T
ElHost
v oo i | £ | |
= Context 0 (0x0000000003 180C30)
[———
Data Transrer ‘

Host Thread 158640 | Summary |

) Previous €3 Next Context Summary

#of Kernel Dispatch - Total Kernel Time(ms) #of Memory Total Memory ~ #of TotalRead Sizeof #of Total Write #of TotalMap Sizeof #of TotalCopy Sizeof |
- Devastator Transfer Time(ms) Read Time(ms) Read Write Time(ms) Map Time(ms) Map Copy Timefms) Copy

337.39982 1 0.21802 1 021802

0 Byte 0 0 0 Byte
Byte i i

8.00
Byte

337.39982 0.21802 021802 0Byte

Figure 8.6: A screenshot of the profiler for the algorithm which has been unrolled
for groups of 2048 iterations creating back-to-back execution blocks on the device
which are scheduled well enough to have minimal time without computations being
performed.

This then forces us to ask the question of why we don’t see the same behavior, when

the algorithm is also very parallel? To find the cause of no performance increase, we

turn to the hardware counters collected during execution.

Binomial Lattice V3 Execution Time Binomial Lattice V2 Execution Time
0.55 0.53
Fosa | g 0525 /'
8 0.53 7 8 052
4 052 / \ £ 4515 /
g0t J/ g o5 -
£ o0s | \— £
= 0.0 | [T 5‘ = 0505 -
2 ==Vec2 +Unroll APU 2 ok ==Unrolled APU
% 048 3
£ 047 8 o4ss
046 . . o 049 — : -
SR TS FF ST

Iterations unrolled Iterations unrolled

Figure 8.7: The execution time for the unrolled and 2-element vectorized algo-
rithm. It’s interesting to see that performance has not increased through the use
of vectorization.

Examining the hardware counters of Figure [A.7] we see a few points of interest.

First is that the VGPRs have not increased dramatically like they did with the Monte

Chapter 8: Binomial Lattice 79

Carlo algorithm, meaning that whatever registers are being used, are being properly
re-used (this should in theory help performance). Second is the ALUFetchRatio has
actually increased to, on average, three times that of our second algorithm, mean-
ing we are doing more work per memory access. Last we have the FetchUnitBusy
percentage and Fetch/WriteUnitStalled percentages, all of which have gotten better.
This then returns us to the question of why didn’t performance increase?

Looking back to what we said earlier about the algorithm, at each iteration, we
are throwing away half of the work that is being done (due to the reduction), which
causes very inefficient use of resources. The second contributing factor is the memory
accesses themselves. Since we are combining elements into a single variable (with
multiple components), when we remove half of them (by moving to the next iteration)
we cut the usable memory in half as well, meaning we are no longer calculating x items
per compute unit, but instead we’re now computing x/2. We also run into the issue of
the memory addresses themselves which are now much more spread out and difficult
to optimize at the hardware level since we continue to remove work items. It is from
these combinations of factors that we don’t see any noticeable performance benefit
from vectorization in the binomial lattice algorithm compared to the Monte Carlo

algorithm.

8.4 Summary

Through optimizing the binomial lattice problem we managed to achieve perfor-
mance 50 times faster than the sequential algorithm. Useful techniques we saw here

involved the use of loop unrolling to keep as many iterations on the device as pos-

80 Chapter 8: Binomial Lattice

sible to reduce the amount of time the device isn’t computing. We also looked at
vectorization based on the results we obtained in the Monte Carlo algorithm. Unfor-
tunately, this time we did not achieve any measurable increase in performance due to
the removal of half of the work items every iteration and with less than optimal use

of the vectorized data elements (half of which were “discarded” every iteration).

8.5 Future Work

Given what we know now about the difficulties on optimizing the binomial lat-
tice problem there are a few other areas I would like to study. First is the use of
AMD’s next generation APUs which should provide better memory management and
handling of the removal of work items at each iteration with heterogeneous queueing.
Second would be to deeply optimize the algorithm to try and reduce the number of
VPGRs which resulted in being able to schedule only half of the wavefronts on the
hardware during each execution. Lastly, I would like to look into the use of GCN
GPUs to see if their architecture, with their hardware-based scheduling, would better

handle the situation where items are being removed during execution.

Chapter 9

Discussion of Technologies

Like we talked about in Chapter[3}, AMD has completed phases one and two of their
heterogeneous systems architecture with Llano and Trinity. Now, their third APU,
Kaveri, unifies the memory space of the CPU and GPU, making memory passing
obsolete. This is done through the use of pointers which are passed between devices
instead of copying memory and eliminates the overhead relating to retrieving data
from off the chip.

The Kaveri (and future Carrizo) APUs should also be extremely powerful for
problems in which the workload changes at runtime, such as Gaussian Elimination.
Reusing the hardware in this manner enables the APU to also take advantage of the
hardware level cache which the GPU is now free to access (with coherency being
enforced). A second benefit of the combined same address space is that the GPU
now “has” the same amount of memory as the host machine (since pages can be
swapped in automatically), making very large problem sizes now workable on the

APU (Kyriazis| [2012]), just as they would be on a CPU.

81

82 Chapter 9: Discussion of Technologies

This is only AMD’s third step in their plan of bringing the APU to the mainstream
consumer as their final APU, Carrizo, is scheduled to be released during 2015. This
advanced APU will be the “final product” that AMD started developing almost a

decade ago and extends the capabilities to include:

e Context switching between applications accessing the GPU

e Pre-emption of GPU processes to enable low latency for time sensitive programs

e Quality of Service via enabling resource and user prioritization

e Queueing from any HSA device within an application to any other HSA device’s

queue

Application

Application [Task Queues
OS Service

Kernel Driver

Figure 9.1: The current queueing model which uses the CPU to control all other
devices which requires OS intervention to move data and schedule instructions. Image

from skl 2013

Chapter 9: Discussion of Technologies 83

Application

Application Task Queues Application Task Queues

Figure 9.2: The future queueing model which moves all operations into user space.
This removes the OS, reducing latency and enables any HSA device to enqueue to

any other HSA device’s queue. Image taken from 12013].

These advanced hardware-level capabilities will make programming the APU eas-
ier than ever before and will remove many of the bottlenecks that exist in current
implementations. If you look back to the chapter on Gaussian Elimination, our perfor-
mance was limited by OS interaction as it was required to do the queueing/mapping
of device buffers (or the GPU’s sequential thread performance for the final algorithm).
Now, programmers will be able to compute with the best device present in a system
without having to spend as much time examining the hardware in an attempt to find
at which input size each device becomes more efficient; they can simply choose the
best device for a given period in time since context switching and no data transfer
is now possible. What this means is that for difficult programs such as Gaussian
Elimination, we could easily switch to the GPU for just a single iteration and then

transition back to the CPU since there is now minimal overhead.

84 Chapter 9: Discussion of Technologies

Other exciting advancements are Mantle and AMD’s clean sweep of the consoles,
which are related to a degree. First, Mantle is an API, similar to DirectX or OpenGL,
but lower level, and optimized for AMD’s GCN architectures. The reason for Mantle
was to remove the overhead that has accumulated throughout the years in both
DirectX and OpenGL enabling better performance by reducing the dependency on
the CPU. This enables game developers to push the hardware to new limits, achieving
performance not before seen AMD) [2013blla]. First results were released in February
of 2014 and Mantle shows a performance advantage averaging 25% over DirectX 11
with a game engine built to support it Kean [2014]. Other results from the popular
video game Battlefield 4 show promising performance improvements of over 10%,
which is impressive given Mantle is a brand new technology and was added to the
game as an afterthought. Not everyone though is happy about a new player in this
market.

Some might say another API in the graphics field is doomed to fail, just like Glide
(which ran only on 3dfx hardware in the 1990s), but they are missing a few key things.
One is that Mantle is not a proprietary API like Glide was, meaning anyone can use
it in their software and/or hardware Schiesser| [2013]. A second drawback commonly
mentioned is that this will enforce the need for another code branch to support this
API. While technically true, most games now are first developed on and for consoles
which don’t support the same branch of DirectX and OpenGL as PCs do (meaning
developers are already splitting the code base into console and PC). This leads into
the next advantage that AMD has, consoles.

AMD produced a clean sweep of the next generation consoles, the PlayStation 4,

Chapter 9: Discussion of Technologies 85

XBox One and Wii U. These consoles use an AMD CPU and GPU (aside from the Wii
U which uses an IBM CPU), glued together in an almost APU-like fashion. What this
means is that the major gaming consoles for approximately the next ten years will be
based around APUs (given the hardware life of the current PS3 and 360). Returning
to my previous point on Mantle and why it should succeed, developers currently have
to create three different versions of a game, one for the PS3, 360 and PC as they
all use different hardware. Now, because AMD has the console market, developers
can have a single code branch for both consoles and AMD PCs (with minor changes
to support features not provided by the PS4 or XBox One and for PCs using GPUs
from other manufacturers) which is much easier than the previous generation because
the hardware was different. Looking at this from a developers perspective, they now
can now re-use most of their code between consoles (reducing development time and
effort), and, if the hardware is the same on the PC, receive the same performance

benefit that the consoles receive (because of the low level access the API provides).

Chapter 10

Conclusion and Future Work

In this thesis I studied the Llano APU architecture in depth and studied four
problems with different characteristics. For each of these problems I provided mul-
tiple variants and implementations in OpenCL and studied the performance of the
programs in detail using the AMD’s OpenCL profiler.

For the 0-1 knapsack problem, I provide four variants or implementations. The
first algorithm indicates the bottleneck of the memory transfer over the PCI Express
bus and the context switching that occurs when transferring control from the CPU
and the GPU and vice versa. Using the profiler, I computed the number of reads and
writes and the percentage of communication and computation. Using this profiling
information, I was able to perform guided optimizations (examining both software
and hardware counters) to iteratively improve the execution time of my algorithms.

To remove the PCI Express bottleneck, I used loop unrolling in the second variant.
This modification required some amount of synchronization to avoid race conditions

but resulted in significantly improved performance with the execution time being half

86

Chapter 10: Conclusion and Future Work 87

of the sequential algorithm.

The third variant used host memory and scaled across all available compute cores
(only a single compute core was used in the first and second variants). Using the
profiler, I realized the hardware was now less utilized, 27% for the ALU, 22% for the
FetchUnit and the write unit became stalled. This is the result of using more compute
units which resulted in more synchronization being required (between compute units),
but also enables us to scale the algorithm to larger input sizes.

The final change I implemented was the use of local memory in the kernel to
cache data elements within a workgroup and reduce the overall number of accesses to
global memory. This variant doubled the ALUBusy time, decreasing execution time
from 0.06 seconds for for a 4096x4096 matrix to 0.04 seconds. For a larger 8192x8192
matrix, the fourth algorithm was 61 times faster than the sequential algorithm.

I provided three variant implementations of the Gaussian Elimination algorithm.
In the first variant, profiling information showed that only 4% of the total run time
was spent executing the kernel, and the remainder was spent waiting on memory
operations. This can be seen in an ALU /Fetch ratio of only 3.5 and the amount of
time the hardware is busy running calculations is only 3%.

In the second variant, to remove the limitation of memory and play the strengths
of the APU, I used host memory in place of device buffers. The performance im-
provement was only 1% without synchronization and lagged behind the sequential
algorithm by over 10%. The profiler output indicated the significant performance de-
crease was due to the interaction of the OS when context switching between the CPU

and GPU. On the Llano APU, this interaction can not be avoided, but the removal

88 Chapter 10: Conclusion and Future Work

of OS involvement is a planned feature in the future Carrizo APU.

The third and final variant removed the interaction of the OS and used only the
GPU cores. There was a great improvement in terms of execution time for a certain
number of data points, but beyond that, synchronization of threads on the GPU took
effect and brought down performance.

Using the profiler, I found that the Monte Carlo algorithm spends very little
time on memory operations but was limited by the number of registers used to store
vectors, reducing performance. This result in reduced ALUBusy and ALUPacking
percentages because we ran into hardware limitations.

To reduce register usage in the second variant, the data was stored in local mem-
ory. Unfortunately, since local memory is slower than registers, this did not have a
significant benefit to overall performance (and did not reduce register pressure in the
algorithm).

The third variant made use of global memory and vectorization. Although packing
several elements into a single variable decreased execution time, it also decreased the
number of waves that the hardware can schedule simultaneously. This resulted in a
utilization of only 12.5% of the device due to register pressure.

For the Binomial Lattice algrorithm, the first variant indicated that for large
time steps we were able to see significant speedups. Since there was minimal data
transfer between iterations, memory optimization was not a necessity. The profiler
also indicated the the ALUBusy percentage was about 40%, but a large number of
VGPRs were used.

The second variant used loop unrolling to avoid passing control back to the CPU,

Chapter 10: Conclusion and Future Work 89

which was reducing performance in the first variant. To decrease register pressure I
also chose to use local memory. However, after optimizations, our kernel occupancy
was only 50% and the ALUBusy percentage decreased by almost 15% and ALUPack-
ing decreased nearly 50% while local memory had relatively no benefit.

The final variant used vectorization to use the capabilities of the APU’s VLIW
architecture. However, this technique had no tangible benefit to overall performance
as the tree data structure significantly reduces the amount of work at each step,
causing an irregular workload. In vectorization, we combine data elements into a
single variable. In the Binomial Lattice algorithm, this causes irregular memory
accesses because the data themselves are spread out and global coalescing becomes
difficult.

In summary, compared to a traditional GPU the APU is of course much weaker
as it must share die space and thermal design power with a CPU. However, the
APU allows us to handle memory-bound problems due to its on-chip memory. There
are some weaknesses due to hardware limitations, but those are beyond our control
(although many will be rectified with the Carrizo APU).

My conclusion is that it requires a lot of effort in developing efficient algorithms
on these new heterogeneous architectures, even for these simple problems. The pro-
grammer requires a base understanding of the hardware in order to map the available
hardware resources to the algorithm. Profiling is also very important to understand
the performance of the program and provide hints for optimization to the programmer.
Current versions of the APU schedule statically, but future architectures will provide

more hardware scheduling, taking some of that burden away from the programmer.

90 Chapter 10: Conclusion and Future Work

Future work I would like to do includes examining both the Kaveri and Carrizo
APUs (with an emphasis on Carrizo) for difficult problems such as Gaussian Elimi-
nation. Looking back to our results, we saw that much of the time was spent either
waiting for buffers to transfer or waiting for OS interaction. With Carrizo, this time
should be almost entirely eliminated due to not passing any memory (shared address
space) and not having to leave user space to map memory (heterogeneous queueing).
With these advantages, problems that change drastically during runtime (in terms of
input size, connections or otherwise) should be much easier to implement and achieve
a speedup using these next generation APUs. One other point of interest to return to
would be to examine the effect of core and memory speed of the APU to see how they
impact performance. As the APU relies heavily on system memory, it would be inter-
esting to see how using faster memory would help increase performance, particularly

for difficult problems that exhibit irregular workload.

Appendix A

Supporting Data

91

Appendix A: Supporting Data

92

"AIOWOW [BDO] JO 98RSN 9} IIM W) ASng)Ty poaoxdurt
ue pooxdwll sMOUs PIYM (wo3joq) A pue (dog) ¢a swyjriod[e yoesdeuy I0j SI9junod soueuriopad N J9 7'y 2Insi

LELL o 982zl
ASngnTy SSUBIMST SBUPRISAT

L] ooL o L8'0L6EL 87E o 0’9 EE'E8 ELTE BLFE
PlUoYUEgSqT uonEmInNYIEd WRAPIEWO) UIedEs PARSIUMEIM PRIMISWUNWORS An@iunwpBy WHEWR) smspRy buppednty

7 Ksuedn>

1 [s (5] [[9607
uaRd BupPedny omeyuIRINTY ASnEnTy SSURWMSOT SBUMIRISAT SBURLIM

wr 0 00l 0 69'8.85L L0 [959 8€0 €
fouednoppu=Ey BPIpUODAUREST uomezIBAWIRd WIRgRIAWOD edised PAARISHUNRIM PAARESIUNWIRY ASnguunuaRy uHRYED

€A 0} gA WOIJ SUI0S POSBaIIOP 9ARY SIDJUNO0D UOIYRZI[IIN dIRMPIRY 9} JRI[} 99S oM
uorjeUIIEXe Ioso[d uod() *(wo1joq) ¢a pue (doy) ga swyjriod[e ypesdeuy 1-() 10§ s10junod soueuriojrod) J5) 1y 23

@ 0 00l 0 B69'BLBEL 710 [959 880 £1'268501 43 g (] [] [] 9507
Jfouedrodppway piyuoURgS] voneanyled yiegaRidwed yeg PRARISHUNSIM PRITISHUNWIRY AS@uMpRd MHIYIE) SWR4 Buppegnly onewRANTY ASngnTy SKURMMSAT SSUWIRSSAT SBUBLIM

o0l 0 L1899 [[H'82 20 2L0LEL Z9E < Loce 0 0 960
Bed wegaEdwoy peqised (RWN PABSMNWRS AnguunueRd uHRWR) smgyned Bubpednmly omewuaRdMTY ASnamiy SBUBMIMSQT SWUUBRISQ] SESURMIM

[0
7 fouednazgpumy PIYUODIURESAT

93

Supporting Data

Appendix A

"WILIOSR 901197 [RIWOULY SAIRU 9} I0J SIUNO0D douruLIONDd N J¥) Gy 2Indig

L] 0oL L] gZee 0 o EELL 6T'EL €97 5099 LAt el 0 []
(] ooL (] ELTE a o EELL 6CEL fatra 5099 il 60°Ly 0 (1}
[} oL (] Elee 0 o Ll 6TEL £9°7E S09e vl B89°0F o [}
(] 0oL (] 90°cE 0 0 EELL 6TEL £972E £0'99 i e0'ly 0]
o 0oL o gZee 0 0 ik 6TEL €97 5099 L 890 0 []
(] oL (1] ELTE {1} o itELD LTEL 6978 5099 rEl rdid 0 o
o oL (1] L7R 1) 0 o i3] EE'ER] Lo 9% BEOY 1] [}
PUUCYIUBISIT UOUEZNIIEd PERdweD yledised PAPISHUMPWA PAPISIUNYRY ASnEmunyoRd WHRYIED SWSPRY Buppednly omewpmdanTy ASnanly SBUPIIMSOT SSURL4SAT
o e €09] 9 [3 z 0 N [0 9200 AL o9zl L1 geor } 9 09921 L | oo g 1w doiepioo]
Q we 09 ;) 3 z [} N 7L 0 828200 Lo} i 1 oeor) % 09921 9 peesensgp pusdgrpegoo]
[207 €09) o3| Z 0 N [0 81200 L ooz (Lo oeow } 66 [§ | Lowseag A TuRdoRIRpIo0]
] e €09 2] (3 z 0 N vl 0 vBL200 b9zl oL geer } % 09921 v powmsesg A DuRdppegreo]
0 we €9 2] 3 T 0 N L 0 00Z100 i L oesgh| b 1 ger } 3 709921 £ | Wowesenaq o 1ousdopeguooy
0 e €09 [] (3 7 0 N [0 OBEEDD L9l (L geor } 05 09921 7 Lowessg A Dudppegieo
o wl £ wrL L 7 z [VN o 0 216200 {1 o9z L L geor } 23 P099ZL L LI03e3sRAS(| SN[AT
SSUMRIST SSURMM SSUMIRY BSUNTY Swolrep uednaagpuy SPRISDY SEayudle]s Syd9S SdDA 1 awng WPUIlRd @Rl pIOuoHNIIg pouRp
"“TA WILIOS[R O[IR)) 9JUOIN I0J SI9UNO0D dduruLIofed N Jx) F'y 2Indig
[oo | o [eomol | 0] 0] 0 [w0 [swus | o | eeEmOlEL | rove | [[1 3
PIYUOIAURISTT uonezINHed egaga|dwod egisey PRABISHUMRMIAL PRlEISHUAYIRS ASnglunuaed 3HRWPE) azisyaged BuppednTy OHEWYIRINTY ASNAMTY SSURMIMSAT SIUUIRSSAT SISURMIM
o | [£ | ozee | as | 0T8| € | o | N | 6 | 0 |msogzor | {1 L sz}l 1 swzE) ¥ | 966v9 | i
SSUPRISAT SEUPIIM SEUWPRY Ssumy siwoiprep AOuedndgpuisy speis)d sBWIeRs sudds SHdOA SESwIAe0] awi ngdnoigpop SASUOMEGOlD SPUliR) QIPRIYL i3piguonnang
"W }LIOS[® UOTJRUIMI[H URISSTIRE) OATRU 9Y} I0J SI9JUNO0D doueuLIojod N J5) ¢y oInsr
0 00l 0 59]] 13 0 rl owey 05°€ 43] 0 L z L
0 001 0 78]) e 60 0 rl it 05'E LE [] 0 L z L
0 00l 0 %] 0] W 0 rl Ty 05'E [[0 5 z 7
0 001 0 9 0] Va3 0 rl oy 05E 7E] 0 L z ik
0 00l 0 59]] ore 0 l wzy (33 3] 0 i z !
0 00l 0 9 0 0 e 0 rl Eid 05E vTE [0 L z L
0 00l 0 59 0] 3 0 [wey 05E 067] 0 L z ‘

PijuoPuEgSa]

vonezyinyied WedPIdwo) yiedised PIARISHUNSHM PARISHUNWRS SnguunwRd BHPWe) ZswRd Buppedmly onewRANTY ASanly SEUPWMSOT SSUWORSSQT SEURWM SEUWRY Ssuimv

L 87 [ii]8 L L] WN € [FROLO0 L Lozl Loz} 601 alc19 L |TIOTETEASY [USHEUTS SE57sT
ik 87 00F L 0 VN £ o 20100 o1 o9ser &t L el } o 91519 g

L 87 0t L 0 VN £ [¥ESO00 1 esed| 1 Lol) 6L o1519 <

L, 82 7oL L 0 VN £ 0 0POLO0 oL ool b L @} L gl5l9 ¥

L 8 8 L 0 VN £ [085000 B oosed| L Looeeel) o7 91519 £

£ i 00t L 0 N £ o TLOL0D 1 e &t L @l } ¥E a151e) 2

L 8z oL L 0 WN £ (1] HOL0°0 L1 ez} i Loz} 6l aLclo (S TTOTFTEAS [UOHEUIWITS 3515As1

SISUITY SULITEREITY Hfouednngpwsy 154 sbayyaieng SYdOs SYJON azgwapy|edoT] 3w azgdnagppopy angopEgo|D w@pu|eD qipesiy) sapiguonnaag

Supporting Data

Appendiz A

94

“WJLIOSR 90139 [RIWOUTY POZLIOJDIOA 9 I0J SIOJUNO0D douruLIopad N J5) @)y 9IS

0 0oL (i} SZ0LEBL (1} 0 LEE Lo'o L8'6EETE 19’62 L¥FLE L6l 0 o
0 0oL 0 £XEI91Z 0 0 69T Lo 90°2L0EY 16'6¢ 8Fie 1561 0 0
0 0oL 1] srgeise 0 00 20°E oo LE'08E0S 662 6TL2 e 0 L]
(1) 0oL 0 F6'0L682 0 200 6E'E Lo 95¥98s TT0E [1304 [3yks 0 L]
0 0oL 0 SL'ET62E 0 Fl'o ELE 0 18¥2L99 €T0E e [134 0 L]
0 00L 0 05LL 0 0 [E=23 £C°E8 €90 EECL 9¢/z SFPT 0 L]

Piguoduegsa] uoneznAyied WedeRidwo) uedised pAAESHUMEISM PREISHUNYARY ASnGuunuaRd BHRWe) ssydley bubpednTy onewpRdnly Ananly SSUPWMSOT SISUNPR4SaT

0 60rL 195185 | 96'LLIvEL [[£ 0 wN [8 wERIZ [L9t] oL a/95L L | Lowrserq i owRdopegioo]
0 LzizrL LIRS VELLOVEL 8 o £ 0 N L 8 91801'ET L Lol 73 ¥IL95L 9 Lomesenaq pf Touadopegioo]
] 5991 89 | 96'S0088L 82 [£ 0 N [8 TELET [Loz} %9 al9sL S | Liowseasq o DwRdopPegioo]
0 70891 055689 65 FBLEEL 3 o £ 0 VN 45 8 OCOEL'ET. {0 L 8w] 1o 79.95L 7 Losesenaq o 1ousdoweqioo]
[1261 SUI9BL | LPLESL6L E [£ 0 N [8 TSEOEVT [L8R) 9% val9sL £ | Lok uRdopeayeo
{4 LI'sgbL LLSI6L TSSLIBL % G £ 0 N L 8 0L897ST. 01 Loroee) 15 P9L95L T | Lomesenaq pouRdpyEgioo]
] £0'L W07 151LL (3 [z [} N st 0 225100 [L 8ve) 9t [[Lojeiseraq 1 SnjeAsz eI
SEUWRSQT SBURMM SBUPRJ SBUMY swoprep buedmodgpusy speidd shsywiens sydds sudoA d e SPull) gipeRL RpiQuonnIag PRI |
.aﬂpzomﬁd 90113e T [erioury pof[oqun oy} JI0jJ SI2jurod @OQ@EMO%HQQ nday» 9v @Mﬁwﬁm
o o | 0 | sroseoiz | w0 | wz | oeel | 0 osveEles | vE | us | ww | o | o
o | 0oL | 0o | s | o | 0o | e | eem | g0 | oL | o | s | 0o | o |

PiuoduEgST] uonezyanyled WegRidwod edised pRAEISHUNRIA PRIEISHUNYARY ASNguunyaR4 BHRWed encydlRy Bubpednly onewwR4mly ASngnTy SBUBIMSQT SKUIYAR4STT

o | el | e | leweeoz | as | @ [l o | w| e | 8 |amesesls | {1 L ez} L L sweEd | V8086 | 7 powmsersq DwdpPegioo]

o | L e | w | as |]| z | o | N | 6 | o |wewo | O L oez)[0 L ewe)| 26| 9086 | L Lioje3seraq SRRz e |

SUMRISOT SEUPMIM SSUMIRY SEUNTY suounepy uednadppumy SPRISDY SBSYUIRRS SWdDS SHADA SESWRe0) awil sESdnGIOWOM SZGUOMEAOID RPUIIR) QIPRMYL J3puOuOBNIEX paap

Bibliography

L. A. Abbas-Turki and B. Lapeyre. American options pricing on multi-core graphic

cards, 2009.

AMD. AMD Completes ATI Acquisition and Creates Processing Powerhouse, Oc-
tober 2006. http://www.amd.com/us/press-releases/Pages/Press_Release_

113741 . aspx.

AMD. AMD Demonstrates Worlds First X86 Dual-Core Processor. http://www.

amd.com/us/press-releases/Pages/Press_Release_89872.aspx, August 2004.

AMD. BF4 + FROSTBITE + MANTLE, November 2013a. http://www.youtube.

com/watch?v=KApdf4P2Tak#t=14.

AMD. Oxide Games AMD Mantle Presentation and Demo, December 2013b. http:

//www.youtube.com/watch?v=QIWyf8Hyjbg.

AMD. Heterogeneous Computing OpenCL™and the ATI Radeon™ HD 5870
(“Evergreen”) Architecture, March 2010. http://developer.amd.com/gpu_
assets/Heterogeneous_Computing_OpenCL_and_the_ATI_Radeon_HD_5870_

Architecture_201003.pdf.

95

http://www.amd.com/us/press-releases/Pages/Press_Release_113741.aspx
http://www.amd.com/us/press-releases/Pages/Press_Release_113741.aspx
http://www.amd.com/us/press-releases/Pages/Press_Release_89872.aspx
http://www.amd.com/us/press-releases/Pages/Press_Release_89872.aspx
http://www.youtube.com/watch?v=KApdf4P2Iak#t=14
http://www.youtube.com/watch?v=KApdf4P2Iak#t=14
http://www.youtube.com/watch?v=QIWyf8Hyjbg
http://www.youtube.com/watch?v=QIWyf8Hyjbg
http://developer.amd.com/gpu_assets/Heterogeneous_Computing_OpenCL_and_the_ATI_Radeon_HD_5870_Architecture_201003.pdf
http://developer.amd.com/gpu_assets/Heterogeneous_Computing_OpenCL_and_the_ATI_Radeon_HD_5870_Architecture_201003.pdf
http://developer.amd.com/gpu_assets/Heterogeneous_Computing_OpenCL_and_the_ATI_Radeon_HD_5870_Architecture_201003.pdf

96 Bibliography

AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide,
July 2012. http://developer.amd.com/wordpress/media/2012/10/AMD_

Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf.

G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the Spring Joint Computer Conference

(AFIPS), AFIPS ’67 (Spring), pages 483-485, 1967.

[. T. Association. Infiniband roadmap. http://www.infinibandta.org/content/

pages.php?pg=technology_overview, unknown 2013.

A. Boukedjar, M. Lalami, and D. El-Baz. Parallel Branch and Bound on a CPU-GPU
System. In Parallel, Distributed and Network-Based Processing (PDP), 2012 20th

FEuromicro International Conference on, pages 392-398, 2012.

V. Boyer, D. E. Baz, and M. Elkihel. Solving knapsack problems on GPU. Computers

€ Operations Research, 39(1):42 — 47, 2012.

N. Brookwood. AMD Fusion™Family of APUs: Enabling a Superior, Immersive PC
Experience, March 2010. http://www.amd.com/us/documents/48423_fusion_

whitepaper_web.pdf.

S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach. Accelerating Compute-Intensive
Applications with GPUs and FPGAs. In Application Specific Processors, 2008.

SASP 2008. Symposium on, June 2008.

P. Clarke. HSA close to setting hardware specs, March 2013. http://wuw.eetimes.

com/document .asp?doc_1d=1280621.

http://developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://www.infinibandta.org/content/pages.php?pg=technology_overview
http://www.amd.com/us/documents/48423_fusion_whitepaper_web.pdf
http://www.amd.com/us/documents/48423_fusion_whitepaper_web.pdf
http://www.eetimes.com/document.asp?doc_id=1280621
http://www.eetimes.com/document.asp?doc_id=1280621

Bibliography 97

C. Demerjian. A llook at the Llano architecture, June 2011. http://semiaccurate.

com/2011/06/20/a-11ook-at-the-1lano-architecture/.

C. Demerjian. Is AMD’s Trinity much better than it appears?, May
2012. http://semiaccurate.com/2012/05/17/is-amds-trinity-much-better-

than-it-appears/.

J. W. Demmel, J. R. Gilbert, and X. S. Li. An Asynchronous Parallel Supernodal
Algorithm for Sparse Gaussian Elimination. SIAM Journal on Matriz Analysis and

Applications, 20(4):915-952, 1999.

E. Dockner and H. Moritsch. Pricing Constant Maturity Floaters with Embedded

Options Using Monte Carlo Simulation. 1999.

M. Doerksen, S. Solomon, and P. Thulasiraman. Designing APU Oriented Scientific
Computing Applications in OpenCL. In International Symposium on Advances of
High Performance Computing and Networking in Conjunction with HPCC 2011,

Banff, Alberta, Canada, Sept. 2-4, 2011, pages 587-592, September 2011.

M. Doerksen, S. Solomon, P. Thulasiraman, and R. Thulasiram. Financial Option
Pricing on APU. In Contemporary Computing, volume 306, pages 431-441. Springer
Berlin Heidelberg, 2012a. URL http://dx.doi.org/10.1007/978-3-642-32129-

0_43.

M. Doerksen, P. Thulasiraman, and R. Thulasiram. In Optimizing Option Pricing Al-

gorithms and Profiling Power Consumption on VLIW APU Architecture, The 10th

http://semiaccurate.com/2011/06/20/a-llook-at-the-llano-architecture/
http://semiaccurate.com/2011/06/20/a-llook-at-the-llano-architecture/
http://semiaccurate.com/2012/05/17/is-amds-trinity-much-better-than-it-appears/
http://semiaccurate.com/2012/05/17/is-amds-trinity-much-better-than-it-appears/
http://dx.doi.org/10.1007/978-3-642-32129-0_43
http://dx.doi.org/10.1007/978-3-642-32129-0_43

98 Bibliography

International Symposium on Parallel and Distributed Processing with Applications,

Madrid, Spain, July 10-13, 2012, pages 71-78, July 2012b.

J. Fung and S. Mann. OpenVIDIA: Parallel GPU Computer Vision. In Proceedings
of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA

'05, pages 849-852, 2005. URL http://doi.acm.org/10.1145/1101149.1101334.

B. R. Gaster and L. Howes. OpenCL™- Parallel computing for CPUs and GPUs,
July 2010. http://developer.amd.com/wordpress/media/2012/10/0penCL_

Parallel_Computing_for_CPUs_and_GPUs_201003.pdf|

[. Gohberg, T. Kailath, and V. Olshevsky. Fast Gaussian elimination with partial
pivoting for matrices with displacement structure. Mathematics of computation, 64

(212):1557-1576, 1995.

M. Gschwind. Chip Multiprocessing and the Cell Broadband Engine. In Proceedings

of the 3rd conference on Computing frontiers, CF ’06, pages 1-8. ACM, 2006.

J. Hruska. How AMD’s HSA Queuing Technology Simplifies GPU Accelera-
tion, October 2013. http://hothardware.com/News/How-AMDs-HSA-Queuing-

Technology-Simplifies-GPU-Acceleration-/.

Intel. Intel Core2 Extreme Processor QX9775 (12M Cache, 3.20 ghz, 1600
MHz FSB). http://ark.intel.com/products/34692/Intel-Core2-Extreme-

Processor-QX9775-12M-Cache-3_20-GHz-1600-MHz-FSB/, unknown 2008.

Intel. Intel Core i7-4960X Processor Extreme Edition (156M Cache, up to 4.00

http://doi.acm.org/10.1145/1101149.1101334
http://developer.amd.com/wordpress/media/2012/10/OpenCL_Parallel_Computing_for_CPUs_and_GPUs_201003.pdf
http://developer.amd.com/wordpress/media/2012/10/OpenCL_Parallel_Computing_for_CPUs_and_GPUs_201003.pdf
http://hothardware.com/News/How-AMDs-HSA-Queuing-Technology-Simplifies-GPU-Acceleration-/
http://hothardware.com/News/How-AMDs-HSA-Queuing-Technology-Simplifies-GPU-Acceleration-/
http://ark.intel.com/products/34692/Intel-Core2-Extreme-Processor-QX9775-12M-Cache-3_20-GHz-1600-MHz-FSB/
http://ark.intel.com/products/34692/Intel-Core2-Extreme-Processor-QX9775-12M-Cache-3_20-GHz-1600-MHz-FSB/

Bibliography 99

GHz, unknown 2013. http://ark.intel.com/products/77779/Intel-Core-i7-

4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHzl

D. Kanter. AMD Fusion Architecture and Llano, June 2011. http://www.

realworldtech.com/fusion-1lano/.

S. Kean. AMD Mantle API Real World BF4 Benchmark Performance On Catalyst
14.1, February 2014. http://www.legitreviews.com/amd-mantle-api-real-

world-bf4-benchmark-performance-catalyst-141_134959/4.

G. Kyriazis. Heterogeneous System Architecture: A Technical Review, August 2012.

http://developer.amd.com/wordpress/media/2012/10/hsal0.pdf.

A. Lal Shimpi. AMD’s 2010 - 2011 Roadmaps: 1B Transistor Llano APU, Bobcat

and Bulldozer, November 2009a. http://www.anandtech.com/show/2871.

A. Lal Shimpi. The Real Conroe Successor: Clarkdale & All You Need to Know

about Westmere, September 2009b. http://www.anandtech.com/show/2846.

A. Lal Shimpi. The AMD A8-3850 Review: Llano on the Desktop, June 2011a.

http://www.anandtech.com/show/4476/amd-a83850-review/1.

A. Lal Shimpi. AMD Core Counts and Bulldozer: Preparing for an APU World,

November 2009¢c. http://www.anandtech.com/show/2881.

A. Lal Shimpi. Intel’s Core i7 870 & i5 750, Lynnfield: Harder, Better, Faster

Stronger, September 2009d. http://www.anandtech.com/show/2832/1.

A. Lal Shimpi. The Sandy Bridge Preview, August 2010. http://www.anandtech.

com/show/3871/the-sandy-bridge-preview-three-wins-in-a-row/1.

http://ark.intel.com/products/77779/Intel-Core-i7-4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://ark.intel.com/products/77779/Intel-Core-i7-4960X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://www.realworldtech.com/fusion-llano/
http://www.realworldtech.com/fusion-llano/
http://www.legitreviews.com/amd-mantle-api-real-world-bf4-benchmark-performance-catalyst-141_134959/4
http://www.legitreviews.com/amd-mantle-api-real-world-bf4-benchmark-performance-catalyst-141_134959/4
http://developer.amd.com/wordpress/media/2012/10/hsa10.pdf
http://www.anandtech.com/show/2871
http://www.anandtech.com/show/2846
http://www.anandtech.com/show/4476/amd-a83850-review/1
http://www.anandtech.com/show/2881
http://www.anandtech.com/show/2832/1
http://www.anandtech.com/show/3871/the-sandy-bridge-preview-three-wins-in-a-row/1
http://www.anandtech.com/show/3871/the-sandy-bridge-preview-three-wins-in-a-row/1

100 Bibliography

A. Lal Shimpi. Intel and Micron Develop Hybrid Memory Cube, Stacked DRAM is
Coming, September 2011b. http://www.anandtech.com/show/4819/intel-and-

micron-develop-hybrid-memory-cube-stacked-dram-is—-coming.

M. Lalami and D. El-Baz. GPU Implementation of the Branch and Bound Method for
Knapsack Problems. In Parallel and Distributed Processing Symposium Workshops

PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 1769-1777, 2012.

V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. De-
bunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing
on CPU and GPU. In International Symposium of Computer Architecture, pages

451-460, Saint-Malo, France, June 19-23 2010.

A. Lokhmotov. Mobile and embedded computing on Mali™ GPUs, December 2010.

http://www.many-core.group.cam.ac.uk/ukgpucc2/talks/Lokhmotov.pdf.

M. Magee. Intel, AMD battle it out over APUs, April 2013. http://www.tgdaily.

com/hardware-brief/70793-intel-amd-battle-it-out-over-apus.

Nvidia. What is CUDA. https://developer.nvidia.com/what-cuda, unknown

2006.

PCI-SIG. PCI Express®4.0 Frequently Asked Questions, January 2014. http://

www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/.

PCI-SIG. PCI Express®3.0 Frequently Asked Questions, November 2010. http:

//www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ3.

http://www.anandtech.com/show/4819/intel-and-micron-develop-hybrid-memory-cube-stacked-dram-is-coming
http://www.anandtech.com/show/4819/intel-and-micron-develop-hybrid-memory-cube-stacked-dram-is-coming
http://www.many-core.group.cam.ac.uk/ukgpucc2/talks/Lokhmotov.pdf
http://www.tgdaily.com/hardware-brief/70793-intel-amd-battle-it-out-over-apus
http://www.tgdaily.com/hardware-brief/70793-intel-amd-battle-it-out-over-apus
https://developer.nvidia.com/what-cuda
http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/
http://www.pcisig.com/news_room/faqs/FAQ_PCI_Express_4.0/
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ3
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ3

Bibliography 101

D. Sanchez-Roman, V. Moreno, S. Lopez-Buedo, G. Sutter, [. Gonzalez, F. J. Gomez-
Arribas, and J. Aracil. FPGA acceleration using high-level languages of a Monte-

Carlo method for pricing complex options. Journal of Systems Architecture, 59(3):

135 — 143, 2013.

T. Schiesser. AMD unveils revolutionary 'Mantle’ API to optimize GPU perfor-
mance, September 2013. http://www.techspot.com/news/54134-amd-unveils-

revolutionary-mantle-api-to-optimize-gpu-performance.htmll

G. Shvets. Intel 8087 family, unknown unknowna. http://www.cpu-world.com/

CPUs/8087/.

G. Shvets. AMD Athlon 64 X2 3800+ - ADA3800DAA5SCD (ADA3800CDBOX).
http://cdn.cpu-world.com/CPUs/K8/S_AMD-ADA3800DAASCD. jpg, unknown un-

knownb.

M. Smith. NVIDIA’S TEGRA K1 MIGHT NOT MAKE SENSE FOR MOBILE,
BUT WHAT ABOUT PCS?, January 2014. http://www.digitaltrends.com/

computing/tegra-kl-might-make-sense-mobile-pcs/#!zC8Xr.

R. Smith and G. T. S. AMD Radeon HD 7750 & Radeon HD 7770
GHz Edition Review: Evading the Price/Performance Curve, February
2012. http://www.anandtech.com/show/5541/amd-radeon-hd-7750-radeon-

hd-7770-ghz-edition-review/21.

S. Solomon, R. K. Thulasiram, and P. Thulasiraman. Option Pricing on the GPU.

http://www.techspot.com/news/54134-amd-unveils-revolutionary-mantle-api-to-optimize-gpu-performance.html
http://www.techspot.com/news/54134-amd-unveils-revolutionary-mantle-api-to-optimize-gpu-performance.html
http://www.cpu-world.com/CPUs/8087/
http://www.cpu-world.com/CPUs/8087/
http://cdn.cpu-world.com/CPUs/K8/S_AMD-ADA3800DAA5CD.jpg
http://www.digitaltrends.com/computing/tegra-k1-might-make-sense-mobile-pcs/#!zC8Xr
http://www.digitaltrends.com/computing/tegra-k1-might-make-sense-mobile-pcs/#!zC8Xr
http://www.anandtech.com/show/5541/amd-radeon-hd-7750-radeon-hd-7770-ghz-edition-review/21
http://www.anandtech.com/show/5541/amd-radeon-hd-7750-radeon-hd-7770-ghz-edition-review/21

102 Bibliography

In High Performance Computing and Communications (HPCC), 2010 12th IEEE

International Conference on, pages 289-296, 2010.

B. Spiers and D. Wallez. High-performance computing on wall street. Computer, 43

(12):53-59, 2010.

S. Steele. ARM® GPUs Now and in the Future, June 2011. http://www.arm.com/

files/event/8_Steve_Steele_ARM_GPUs_Now_and_in_the_Future.pdf.

A. H. Tse, D. B. Thomas, and W. Luk. Accelerating Quadrature Methods for Option
Valuation. In Field Programmable Custom Computing Machines, 2009. FCCM’09.

17th IEEE Symposium on, pages 29-36, 2009.

W. Verduzco. Nvidia Unveils Kepler-Based Tegra K1 with 192 CUDA Cores
and Optional 64-Bit Denver Processor!, January 2014. http://www.xda-
developers.com/android/nvidia-unveils-kepler-based-tegra-kl-with-

192-cuda-cores—-and-optional-64-bit-denver-processor/.

R. Williams. Intel’s Core i7-980X Extreme Edition - Ready for Sick Scores.
http://techgage.com/article/intels_core_i7-980x_extreme_edition_-

_ready_for_sick_scores/8/, March 2010.

D. Wollmann. AMD’s Fusion A-Series chips official, June 2011. http:
//www.engadget.com/2011/06/13/amds-fusion-a-series-for-mainstream-

laptops-official-10-5-hour/.

J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.-N. Mei, J. Shi, Z. Gao, and

http://www.arm.com/files/event/8_Steve_Steele_ARM_GPUs_Now_and_in_the_Future.pdf
http://www.arm.com/files/event/8_Steve_Steele_ARM_GPUs_Now_and_in_the_Future.pdf
http://www.xda-developers.com/android/nvidia-unveils-kepler-based-tegra-k1-with-192-cuda-cores-and-optional-64-bit-denver-processor/
http://www.xda-developers.com/android/nvidia-unveils-kepler-based-tegra-k1-with-192-cuda-cores-and-optional-64-bit-denver-processor/
http://www.xda-developers.com/android/nvidia-unveils-kepler-based-tegra-k1-with-192-cuda-cores-and-optional-64-bit-denver-processor/
http://techgage.com/article/intels_core_i7-980x_extreme_edition_-_ready_for_sick_scores/8/
http://techgage.com/article/intels_core_i7-980x_extreme_edition_-_ready_for_sick_scores/8/
http://www.engadget.com/2011/06/13/amds-fusion-a-series-for-mainstream-laptops-official-10-5-hour/
http://www.engadget.com/2011/06/13/amds-fusion-a-series-for-mainstream-laptops-official-10-5-hour/
http://www.engadget.com/2011/06/13/amds-fusion-a-series-for-mainstream-laptops-official-10-5-hour/

Bibliography 103

J. Lu. Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz

Frequencies with Current Saturation. Scientific reports, 3, 2013.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Thesis Goal and Contributions

	Parallel Computing and the APU
	Parallel Systems
	Homogeneous Systems
	Heterogeneous Systems
	Homogeneous with a hint of heterogeneous

	APU architecture
	History of the APU
	The Competition
	APU Design Tradeoffs
	AMD's APU Architecture
	The CPU
	The GPU
	The Magic
	Implementation comparison of APUs, Intel vs. AMD

	Future APUs

	GPU Computing: Shaders, CUDA and OpenCL
	OpenCL, the Open Computing Language
	OpenCL Threading Model
	OpenCL Memory Model
	Local Memory
	Why not just one memory?
	Constant Memory
	Global Memory

	OpenCL Data Partitioning
	Maximizing Efficiency

	Optimization Techniques
	Loop Unrolling
	Memory Optimization
	Vectorization

	0-1 Knapsack
	Problem Definition
	Related Works
	Implementation and Results
	Algorithm 1: Naïve
	Algorithm 2: Loop Unrolling
	Algorithm 3: Scaling and Optimization
	Interpreting Performance

	Algorithm 4: Caching

	Summary
	Future Work

	Gaussian Elimination
	Problem Definition
	Related Works
	Results
	Algorithm 1: Naïve
	Algorithm 2: Optimizing Memory Transfer
	Algorithm 3: Non-traditional Approach

	Summary
	Future Work

	Monte Carlo Simulation
	Problem Definition
	Related Works
	Results
	Algorithm 1: Naïve
	Algorithm 2: Loop Unrolling
	Algorithm 3: Vectorization

	Summary
	Future Work

	Binomial Lattice
	Problem Definition
	Related Works
	Results
	Algorithm 1: Naïve
	Algorithm 2: Loop Unrolling
	Algorithm 3: Vectorization

	Summary
	Future Work

	Discussion of Technologies
	Conclusion and Future Work
	Supporting Data
	Bibliography

