MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1993/9592

Title: Design and development of detector modules for a highly compact and portable preclinical PET system
Authors: ur-Rehman, Fazal
Supervisor: Goertzen, Andrew L. (Physics & Astronomy)
Examining Committee: Sharma, Kumar (Physics & Astronomy) Albakri, Idris (Physics & Astronomy) Paliwal, Jitendra (Biosystems Engineering) Peterson, Todd E. (Institute of Imaging Science, Vanderbilt University, USA)
Graduation Date: February 2013
Keywords: Preclinical PET
Axial-PET
100-mm-long LYSO Crystals
Axial-positioning Resolution
Ground banding Patterns
PSPMTs
DETECT2000
DOI
Issue Date: 2011
2012
Publisher: Elsevier
IEEE
Citation: Fazal ur-Rehman, Bryan, McIntosh and Andrew L. Goertzen. “Observations on dual-ended readout of 100 mm long LYSO crystals" Nuclear Instruments and Methods in Physics Research A 652 (2011) 275-279
Fazal ur-Rehman and Andrew L. Goertzen, “Calibration of dual-ended readout of axially oriented 100 mm long LYSO crystals for use in a compact PET system” IEEE Transactions on Nuclear Science, Volume 59, No. 3, (2012) 561-567.
Abstract: Preclinical PET systems image animal models of chronic human disease that are used to evaluate new therapeutic strategies for the treatment of cancer and other diseases. Once these animals are out of a controlled environment for PET imaging, they typically can not be taken back as they may have been exposed to outside disease. A highly compact PET system is thus required to be developed that can operate within a bio-safety cabinet inside a barrier facility. We investigated using 100-mm-long LYSO scintillator crystals oriented in the axial direction and read out at both ends by position sensitive photomultiplier tubes (PSPMTs) to construct a compact PET. The optimization of light collection for axial encoding of events was carried out using different reflector materials and surface treatments of 3 × 2 × 100 mm3 and 2 × 2 × 100 mm3 polished crystals. The detector response was examined by irradiating the crystals at discrete positions using an electronically collimated 511 keV photon beam. The ratio of two PSPMT signals was used to find the axial-resolution while their sum was used to determine the energy resolution. We then explored the effects of creating systematic band patterns of surface roughing on 1 to 4 long surfaces of the crystals to modulate light-transport with the goal of further improving axial-resolution. These experimental results were used to benchmark DETECT2000 Monte Carlo simulations for our detector geometry. The axial-positioning calibration was carried out by evaluating a uniform flood-irradiation method and comparing with the collimated-irradiation method using 2 × 2 × 100 mm3 crystal detectors. The best axial-positioning resolution of 3.4 mm was achieved in this study for 2 × 2 × 100 mm3 Teflon-wrapped crystals with banding-patterns on only two opposite surfaces, fulfilling the design criteria of our proposed PET. The benchmarked DETECT2000 models can now be used to predict the performance of a complete detector module design. The calibration methods agreed if the trigger threshold energies were adjusted to give similar single event rates in both PSPMTs for uniform flood-irradiation. The implementation of flood-irradiation method in our complete PET scanner will provide a simple axial-positioning calibration.
URI: http://hdl.handle.net/1993/9592
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
ur-rehman_fazal.pdf10.86 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback