MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item:

Title: Wavelets and the use of curvature to approximate surfaces
Authors: Li, Chang
Issue Date: 1-Jun-1997
Abstract: By using the wavelets and curvature, I tried to get a high quality compact representation of a surface. I get better results than simple Haar wavelets with curvature subdivision and Local Haar wavelets on the mathematical range data surface. To estimate the curvature of a curve represented by discrete data, a three point algorithm is developed. A normal approximation algorithm and an algorithm to estimate the Gaussian curvature are also developed for surface. The latter algorithm has a stable and fast convergence. To present background knowledge, I describe the multiresolution analysis with matrix and filter bank representation, the endpoint-interpolating B-spline wavelets, and basics of differential geometry. Several selection strategies for wavelets such as threshold and $\rm L\sp2$ measurement are presented and tested. A simple location mapping algorithm for Haar wavelets is also studied. Finally I discuss the conclusions and future work.
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
mq23384.pdf3.65 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback