MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1993/5233

Title: Frequent pattern mining of uncertain data streams
Authors: Jiang, Fan
Supervisor: Leung, Carson K. (Computer Science)
Examining Committee: Domaratzki, Michael (Computer Science) Wang, Xikui (Statistics)
Graduation Date: May 2012
Keywords: Data mining
Databases
Issue Date: 2011
Publisher: Springer-Verlag
ACM
Citation: Leung, C.K.-S., Jiang, F. (2011) Frequent pattern mining from time-fading streams of uncertain data. In Proc. DaWaK 2011: 252-264. Springer.
Leung, C.K.-S., Jiang, F., Hayduk, Y. (2011) A landmark-model based system for mining frequent patterns from uncertain data streams. In Proc. IDEAS 2011: 249-250. ACM.
Leung, C.K.-S., Jiang, F. (2011) Frequent itemset mining of uncertain data streams using the damped window model. In Proc. ACM SAC 2011: 950-955. ACM.
Abstract: When dealing with uncertain data, users may not be certain about the presence of an item in the database. For example, due to inherent instrumental imprecision or errors, data collected by sensors are usually uncertain. In various real-life applications, uncertain databases are not necessarily static, new data may come continuously and at a rapid rate. These uncertain data can come in batches, which forms a data stream. To discover useful knowledge in the form of frequent patterns from streams of uncertain data, algorithms have been developed to use the sliding window model for processing and mining data streams. However, for some applications, the landmark window model and the time-fading model are more appropriate. In this M.Sc. thesis, I propose tree-based algorithms that use the landmark window model or the time-fading model to mine frequent patterns from streams of uncertain data. Experimental results show the effectiveness of our algorithms.
URI: http://hdl.handle.net/1993/5233
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
Jiang_Fan.pdf875.85 kBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback