MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item:

Title: Image - based Finite Element Analysis of Head Injuries and Helmet Design
Authors: Liang, Zhaoyang
Supervisor: Luo, Yunhua (Mechanical and Manufacturing Engineering)
Examining Committee: Wang, Quan (Mechanical and Manufacturing Engineering) Zhang, Qiang (Biosystems Engineering)
Graduation Date: May 2012
Keywords: Head injury
Finite element analysis
Hounsfield Unit
CT images
inhomogeneous mateiral
Issue Date: 22-Mar-2012
Abstract: Biofidelity of finite element head model (FEHM) includes geometric and material aspects. A FEHM with inhomogeneous material properties was proposed to improve material biofidelity. The proposed FEHM was validated against experimental data and good agreements were observed. The capability of the proposed model in simulating large tissue deformation was also demonstrated. Influences of inhomogeneous material properties on the mechanical responses of head were investigated by comparing with homogeneous material model. The inhomogeneous material properties induce large peak strains in head constituents, which are probably the cause of various brain injuries. Helmets are effective in preventing head injuries. Parametric studies were conducted to investigate how changes in helmet shell stiffness, foam density and pad thickness influence the performance of a helmet in protecting the brain. Results showed that strain energy absorbed by foam component, contact stress on the interfaces and intracranial responses are significantly affected by foam density and pad thickness.
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
Liang_Zhaoyang.pdf2.17 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback