MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item:

Title: Acoustical analysis of respiratory sounds for detection of obstructive sleep apnea
Authors: Montazeripouragha, Amanallah
Supervisor: Moussavi, Zahra (Electrical and Computer Engineering)
Examining Committee: Sherif, Sherif (Electrical and Computer Engineering) Paliwal, Jitendra (Biosystems Engineering)
Graduation Date: May 2012
Keywords: Biomedical
Sleep Apnea
Issue Date: 16-Mar-2012
Abstract: Obstructive Sleep Apnea (OSA) is a common respiratory disorder during sleep. Apnea is cessation of airflow to the lungs, which lasts for at least 10 seconds accompanied by more than 4% drop of the blood's Oxygen saturation. Polysomnography during the entire night is the Gold Standard diagnostic method of OSA. It's high cost and inconvenience for patients persuaded researchers to seek alternative OSA detection methods. This thesis proposes a technique for assessment of OSA during wakefulness. We recorded tracheal breath sounds of 17 non-apneic individuals and 35 people with various degrees of OSA severity in supine and upright positions during nose and mouth breathing at medium flow rate. We calculated the power spectrum, Kurtosis, and Katz fractal dimensions of the recorded signals. Then, we reduced the number of characteristic features to two. We classified the participant into severe OSA and non-OSA groups as well as non-OSA or mild vs. moderate and severe OSA groups. The results showed more than 91 and 83% accuracy; for the two types of classification. Once veri ed on a larger population, the proposed method may be used as a simple and non-invasive screening tool for assessment of OSA during wakefulness.
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)
Manitoba Heritage Theses

Files in This Item:

File Description SizeFormat
Montazeripouragha_Amanallah.pdf469.85 kBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback