MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1993/4384

Title: Generalized Three Dimensional Geometrical Scattering Channel Model for Indoor and Outdoor Propagation Environments
Authors: Alsehaili, Mohammad
Supervisor: Buchanan, Doug (Electrical & Computer Eng) Sebak, Abdel (Electrical & Computer Eng) Noghanian, Sima (Electrical and Computer Eng)
Examining Committee: Alfa, Attahiru (Electrical and Computer Eng) ElMekkawy, Tarek (Mechanical and Manufacturing Eng) Kishk, Ahmed A. (Electrical Engineering, University of Mississippi)
Graduation Date: February 2011
Keywords: Electrical Engineering
Wireless Communications
Radio Channel Model
Issue Date: 19-Jan-2011
Citation: M. Alsehaili, S. Noghanian and D. Buchanan, A. Sebak, Angle of Arrival Statistics for A Three Dimensional Geometrical Scattering Channel Mode, IEEE Antennas and Wireless Propagation Letters, Vol. 9, pp. 946-949, 2010.
M. Alsehaili, S. Noghanian, A. Sebak, and D. Buchanan, Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments, Progress In Electromagnetics Research (PIERS), Vol. 109, pp. 191-209, 2010.
Abstract: The well known geometrical scattering channel modeling technique has been suggested to describe the spatial statistical distribution of the received multipath signals at various types of wireless communication environments and for different wireless system applications. This technique is based on the assumption that the scatterers, i.e. objects that give rise to the multipath signals, are randomly distributed within a specified geometry that may include the base station and/or the mobile station. The geometrical scattering channel models can provide convenient and simple statistical functions for some of the important physical quantities of the received multipath fading signals, such as: angle of arrival, time of arrival, angular spread, delay spread and the spatial correlation function. In this thesis, a new three dimensional geometrical scattering channel model has been developed for outdoor and indoor wireless communication environments. The probability density functions of the angle of arrival of the received multipath signals are provided in compact forms. These functions facilitate independent control of the angular spread in both the azimuth and the elevation angles via the model's parameters. To establish the model verification, the developed model has been compared against the results from a site-specific propagation prediction technique in indoor and outdoor wireless communication environments. The developed three dimensional model has been extended to include the temporal statistical distribution of the received multipath signals for uniform and non-uniform distributions of the scatterer. Several of the probability density functions of the angle of arrival and time of arrival of the received multipath signals are provided. The probability density functions of the angle of arrival have been validated by comparing them against the results from real channel measurements data. In addition, the developed three dimensional geometrical scattering channel model has been extended for multiple input multiple output wireless channel modeling applications. A three dimensional spatial correlation function has been developed in terms of some of the physical channel's parameters, such as: displacements and orientation of the employed antenna elements. The developed correlation function has been used to simulate and investigate the performance of wireless multiple input multiple output systems in different scenarios.
URI: http://hdl.handle.net/1993/4384
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
Alsehaili_Mohammad.pdf1.55 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback