MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item:

Title: A density functional study of actinyl containing complexes
Authors: Berard, Joel J.
Supervisor: Schreckenbach, Georg (Chemistry)
Examining Committee: Budzelaar, Peter (Chemistry)Fayek, Mostafa Fayek (Geological Science)
Graduation Date: May 2008
Keywords: actinides
uranyl nitrate
polypyrrolic macrocycles
Issue Date: 7-May-2008
Citation: Berard, J.J., Shamov, G.A., and Schreckenbach, G., J. Phys. Chem. A, 2007. 111(42): p. 10789-10803.
Abstract: Density functional (DFT) methods are first used to study 22 of the most stable solution-phase UN4O12 isomers containing uranyl nitrate, UO2(NO3)2. Based on relative free energy calculations, 4 solution (a6, a5, a8, and a1) and 5 gas-phase isomers (a1, a2, a3, b1, and b2) are identified as the strongest candidates to exist and possibly predominate within their respective environments. DFT is then applied to a new form of binucleating Schiff–base polypyrrolic macrocycles containing actinyl ions [AnO2]n+ (An = U, Np, Pu; n = 1, 2) and 3d transition metals (TM): Mn, Fe, Co, and Zn. Formal bond order evidence is provided for 24 TM to actinyl–endo–oxygen partial bond formations. Special structural cases are discussed. Redox potentials for AnVIO21/AnVO21– couples closely follow the Np > Pu > U trend seen for AnO2(H2O)52+/1+. Predictions of –1.10, 0.25, and 0.01 eV are made for U, Np, and Pu redox potentials.
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
ThesisMar19,2008.pdf2.17 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback