MSpace - DSpace at UofM >
University of Manitoba Researchers (Research Publications) >
Research Publications (UofM Student, Faculty and Staff only access) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1993/2861

Title: Adaptive fair subcarrier/rate allocation in multirate OFDMA networks: Radio link level queuing performance analysis
Authors: Niyato, D
Hossain, E
Keywords: adaptive fair subcarrier allocation
adaptive modulation (AM)
orthogonal frequency-division multiple access (OFDMA)
queuing analysis
SYSTEMS
MODULATION
CHANNEL
ACCESS
Issue Date: 30-Nov-2006
Citation: 0018-9545; IEEE TRANS VEH TECHNOL, NOV 2006, vol. 55, no. 6, p.1897 to 1907.
Abstract: This paper presents a semi-analytical methodology for radio link level performance analysis in a multirate "orthogonal frequency-division multiple-access" (OFDMA) network with adaptive fair rate allocation. Multirate transmission is assumed to be achieved through adaptive modulation, and fair rate allocation-is based on the principle of generalized processor sharing to allocate the subcarriers adaptively among the users. The fair rate allocation problem is formulated as an optimization problem with the objective of maximizing system throughput while maintaining fairness (in terms of transmission rate) among the users. The "optimal" fair rate allocation is obtained by using the "Hungarian method." A heuristic-based approach, namely the "iterative approach," that is more implementation friendly is also presented. The throughput performance of the iterative fair rate allocation is observed to be as good as that of optimal fair rate allocation and is better than that of the static subcarrier allocation scheme. Also, the iterative fair allocation provides better fairness compared to that for each of the optimal and the static subcarrier allocation schemes. To this end, a queuing model is formulated to analyze radio link level performance measures such as packet dropping probability and packet transmission delay under the above rate allocation schemes. In this formulation, packet arrivals are modeled by the discrete Markov modulated Poisson process, which is flexible to model different types of traffic arrival patterns. The proposed framework for radio link level performance analysis of multirate OFDMA networks is validated by extensive simulations. Also, examples on the application of the proposed model for connection admission control and quality-of-service provisioning are illustrated.
URI: http://hdl.handle.net/1993/2861
DOI: http://dx.doi.org/10.1109/TVT.2006.878740
Appears in Collection(s):Research Publications (UofM Student, Faculty and Staff only access)

Files in This Item:

File Description SizeFormat
Niyato_Adaptive_fair_subcarrier.pdf875.52 kBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback