MSpace - DSpace at UofM >
Faculty of Graduate Studies (Electronic Theses and Dissertations) >
FGS - Electronic Theses & Dissertations (Public) >

Please use this identifier to cite or link to this item:

Title: New preprocessing methods for better classification of MR and IR spectra
Authors: Nikouline, Alexandre
Issue Date: 1-Mar-1998
Abstract: We introduce a global feature extraction method specifically designed to preprocess magnetic resonance spectra of biomedical origin. Such preprocessing is essential for the accurate and reliable classification of diseases or disease stages manifest in the spectra. The new method is Genetic Algorithm-guided. It is compared with our enhanced version of the Forward Selection algorithm ("Dynamic Programming"). Both seek and select optimal spectral subregions. These subregions necessarily retain spectral information, thus aiding the eventual identification of the biochemistry of disease presence and progression. Both methods proved to be very useful for large datasets. The danger of overfitting related to the small number of samples in the datasets was demonstrated for both the artificial and real-life data. A bilinear regression model was used to quantitate the consequences of overfitting. Taking this in account, optimal parameters for the GA guided algorithm were recommended.
Appears in Collection(s):FGS - Electronic Theses & Dissertations (Public)

Files in This Item:

File Description SizeFormat
NQ32009.pdf4.15 MBAdobe PDFView/Open
View Statistics

Items in MSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! MSpace Software Copyright © 2002-2010  Duraspace - Feedback