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Abstract

Wireless Sensor Networks (WSNs) are networks of small devices, called motes,

designed to monitor resources and report to a server. Motes are battery-powered

and have very little memory to store data. To conserve power, the motes usually

form clusters to coordinate their activities. In heterogeneous WSNs, the motes have

different resources available to them. For example, some motes might have more

powerful radios, or larger power supplies. By exploiting heterogeneity within a WSN

can allow the network to stay active for longer periods of time.

In WSNs, the communications between motes draw the most power. By choos-

ing better clusterheads in the clusters to control and route messages, all motes in

the network will have longer lifespans. By leveraging heterogeneity to select better

clusterheads, I have developed Heterogeneous Clustering Control Protocol (HCCP).

HCCP is designed to be highly robust to change and to fully utilize the resources

that are currently available.
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Chapter 1

Introduction

A Wireless Sensor Network (WSN) is a network of many small, battery-powered

devices, called motes, that create ad-hoc networks via wireless radios. Motes are

inexpensive devices outfitted with various sensors and are configured to monitor some

phenomena and report back to a server – called a sink. Estrin et al. [4] elegantly

described WSNs as,

“...sensors only interact with other sensors in a restricted vicinity, but
nevertheless collectively achieve a desired global objective.”

This captures the essence of a WSN concisely, describing the multi-hop environment

and how a WSN consists of many small objects that are working towards a larger

goal.

Motes are simple devices that have very few components. Motes consist of a

battery for power, sensors for detecting some phenomena, memory for storing the

data collected, a radio for communication and a processor for controlling all the other

components. Optionally motes can have ways to regenerate power, such as a solar

1
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Sensor
Processor

Storage

Battery

Transceiver

Figure 1.1: High-level description of a mote. Adapted from [1].

panel, and some motes have the ability to move. The layout of a mote can be seen

graphically in Figure 1.1.

Applications for WSNs range from animal habitat monitoring [5, 6] to building

and bridge structural monitoring [7], to monitoring live volcanoes during eruptions [8].

Typically, when deployed, a WSN self-configures, creating routes from sensor motes

to the sink automatically. Most routes in WSNs are not direct to the sink, therefore

motes must use several peer motes as a multi-hop network to send messages to the

sink. Routing protocols in WSNs must automatically create these multi-hop routes

to form a functioning network. To create these routes, routing algorithms designed

for WSNs, such as the Collection Tree Protocol [9] are used.

There are many scenarios where a WSN could be used to make a task simpler, or

even save lives. For instance, Werner-Allen et al. [8] have used a WSN to monitor a

seismic and infrasonic (low-frequency acoustic) volcanic eruption. The team wanted

to have as many motes as possible, and as long a network lifespan to collect as much

data as possible. Every project has a limited budget, and high-powered radios are

expensive and use lots of energy. Since high-powered radios were ruled out, Werner-

Allen et al. chose to use a multi-hop WSN. A WSN allowed the team to deploy
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many sensors with low-power radios that could communicate their findings back to

the computer they used as a sink. Some sensors were lost during the eruption, which

could have meant a loss of life or a loss of data if the sensors required people to

continually check them. Since a WSN was used, the data was transferred off the

mote before it was lost to the eruption and provided some very interesting data!

Figure 1.2: A hierarchical cluster topology [2].

WSNs can also be used in less ex-

citing work, such as bridge or vehi-

cle monitoring [7]. If it is difficult

or inconvenient for a person to check

strain levels on bridges, a WSN can

be deployed to monitor the bridge.

Some of these bridges can be diffi-

cult to get power to, as they might

be far into a forest or in a remote lo-

cation. A battery-powered WSN does

not require external power to be run to

the area, and can continually monitor

strain levels without human intervention, saving companies or governments time and

money while making the structure safer.

To simplify routing and to conserve energy, a WSN groups motes into clusters.

These clusters elect a clusterhead which works as a gateway and routes all network

traffic in and out of the cluster. Motes that are cluster members only communicate

with the clusterhead. Clusterheads then route the messages though other cluster-
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heads, to the sink. An example of this can be seen in Figure 1.2. This simplifies

the network topology as each cluster can be viewed as one large mote. Messages to

the sink are then routed through clusterheads only, which lowers the number of hops

taken from the originating cluster to the sink. Using clusterheads reduces the energy

draw from all motes that are in the cluster since they only need to send messages

to the clusterhead. The clusterhead accepts messages from the motes in the cluster,

creates one large message out of all the messages, and sends this large message to the

sink. Handling messages in this way allows motes that are cluster members to sleep

or be idle while the clusterhead attempts to send the message across the network,

thus saving power.

A heterogeneous WSN has motes that are not all identical. There may be several

different types of motes from different companies or motes from the same company

with different characteristics. Motes may be running different operating systems,

be programmed with different software or have additional hardware. Homogeneous

networks can also be viewed as heterogeneous networks; heterogeneity occurs as motes

change over time, such as a mote’s battery depletion or a mote malfunctioning. These

differences, large and small, can be exploited to extend the network lifespan or increase

message throughput.

In a WSN, typically a mote is assigned to provide detailed information about

the phenomenon it is monitoring. If a few motes are equipped with more expensive

hardware, the network should adapt to allow these motes to live longer. This can be

done by not allowing the more expensive mote to be a clusterhead, and by providing

a clusterhead in range of the expensive mote. As this specialization increases, so
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does the heterogeneity of the network. Clusterheads should be selected to allow

the specialized motes to have longer lifespans. Or, if a mote has a larger available

message queue it should be elected to be a clusterhead since it will be less likely to

lose messages if a large number of messages are sent to it, making the mote a good

message routing mote.

A ‘long-lived WSN’ is a network that is designed to stay active for extended

periods of time. Long-lived WSNs use techniques such as duty cycling and make as

few transmissions as possible to achieve longer network lifespan. It is difficult to have

a long-lived network mostly due to the battery-powered nature of motes. Long-lived

networks often trade off some functionality, such as the frequency of sampling with

their sensors and the frequency of reporting, to increase mote lifespan.

A clusterhead is a mote that controls transmissions from other motes in the im-

mediate neighbourhood. Clusterhead motes draw more power due to the increased

number of transmissions they perform as they must stay active to receive messages

from the cluster. The key to long-lived networks is selecting motes that are well-suited

to be clusterheads. Therefore, in a heterogeneous long-lived WSN, motes that have

more or larger batteries and have plenty of residual energy should be elected to be

clusterheads. If the clusterhead has little power left or has a malfunctioning radio,

the probability of losing messages increases. Using heterogeneity to avoid choosing

a mote that is better designed to be a clusterhead will aid in designing a long-lived

network.

Suitable clusterheads are important when building a long-lived WSN. The cluster-

head draws a large amount of power, therefore the performance of clusterhead motes
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will degrade over time. If a clusterhead mote detects that it is performing poorly

(e.g., cannot keep up handling the incoming messages from their motes), it should

opt-out or demote itself to pass the task on to a more capable mote. Passing the clus-

terhead task to a more capable mote will prevent the poorly-performing mote from

losing transmissions and causing retransmissions, which creates unnecessary overhead

in the surrounding motes.

To increase message throughput, extend lifespans of individual motes and allow

WSNs to function longer, I have developed Heterogeneous Clustering and Control

Protocol (HCCP). HCCP uses a taxonomy to describe heterogeneity and selects can-

didate clusterheads based on the capabilities of motes.



Chapter 2

Related Work

Many researchers have contributed to the WSN field, all focusing on different

areas. There are a few different aspects of WSNs that are considered in this thesis.

To reflect this, the related work is grouped by different areas of WSN research.

Areas of WSN research include radio transceiver technology which has been de-

veloped for decades, but has only recently been developed as a low-power technology.

WSN research also includes MAC layer protocols, which are used by radios to share

a radio channel between multiple devices. To move messages towards the sink, WSN

nodes can either create clusters (Clustering Protocols), or communicate without clus-

ters (Non-clustering Protocols). There are benefits to using clusters in WSNs, and

other benefits to not using clusters. Finally, heterogeneity in WSNs can be used to

improve the performance of a WSN.

7
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2.1 Wireless Sensor Networks

Wireless technologies are by no means a new invention. In 1892 Nikola Tesla

proposed that radio waves could be used for communication without any wires con-

necting the two points [10]. Since then, wireless radios have evolved from large, power

hungry devices such as radio backpacks used in World War II, to the ubiquitous cell

phone of today. Wireless radios have gotten smaller, more power efficient and much

more affordable.

The story of the computer has much in common with the evolution of the wireless

radio. Starting with computers that were large and extremely expensive, computers

are now standard equipment for everyday use. The cost of computers has gone way

down, as has the size of computers. Both wireless radios and computer are core

components of WSN nodes.

The paper that is often credited in being the first paper on designing WSNs

is Pottie and Kaiser’s [11] Wireless Integrated Network Sensors. Pottie and Kaiser

proposed the acronym WINS for the field, and were the first to connect the ideas of

pervasive low power computing with sensor networks and proposed an architecture

to help solve these problems. At its core WSNs are just microcontrollers, sensors and

wireless radios; Pottie and Kaiser saw the potential of these objects, and showed the

world that the combination is more than the sum of its parts. The authors moved

beyond looking at the components, and considered what could be possible with the

concept, and how it would need to be achieved. Pottie and Kaiser saw that the density

of the distributed network is the strength of WSNs. Key points of the paper were

that using the shortest transmission range is important to increase node lifespan, and
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Device C

Device BDevice A

Figure 2.1: Device A and device B can both communicate with device C, but A and B are out of

range of each other.

that networks must be self-organizing to work efficiently.

2.2 MAC Layer Protocols

Carrier sense multiple access (CSMA) [12, 13] is a general protocol that is general

to networking devices that have a shared channel. Designed by Kleinrock and Tobagi

in 1975 for transmitting data over radio, CSMA requires devices to listen on the

channel to ensure no other devices are transmitting before beginning a transmission.

The ‘carrier sense’ part of the name comes from the device that is ready to send

checking (or sensing) to see if there is already a transmission in progress. Since the

protocol is designed to have many devices sharing the same channel, it is a ‘multiple

access’ protocol. CSMA has a problem called ‘the hidden node problem’. This arises

when two devices that are out of radio range of each other are communicating with

the same device that is in between the two. This problem can be seen in Figure 2.1,

where device A and B are both trying to communicate with device C. Device A

and B do channel checks and do not hear any noise on the channel, so they begin

transmitting. Device C gets both transmissions at the same time, causing a collision
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in the messages, and neither of the messages are received.

De
vi

ce
 A

Device B

RTS

CTS

Data

ACK

Figure 2.2: A CSMA handshake between two devices.

CSMA has been adapted to WSNs by Woo and Culler [14], adding some enhance-

ments to make transmissions more reliable. Woo and Culler added the idea of a

two-way handshake to transmit messages across the network. The device sends a

‘ready to send’ (RTS) message to the intended recipient (which is heard by all sur-

rounding devices due to the shared medium). If the intended recipient is not currently

busy, it sends back a ‘clear to send’ (CTS) message. CSMA handshaking is illustrated

in Figure 2.2. Woo and Culler also show that in WSNs that are largely collision-free,

the ACK step of the handshake can be dropped for energy savings. CSMA remains

a major part of most WSN communication due to its simplicity and effectiveness in

detecting collisions.

! Follow%schedule " ! Follow%schedule "

TDMA%Schedule
Announcement

padding

Sensor%1

Sensor%2

Sensor%3

Sensor%4

….
TDMA%Schedule
Announcement

padding

Sensor%1

Sensor%2

Sensor%3

Sensor%4

….
TDMA%Schedule
Announcement

Figure 2.3: A sample of a TDMA schedule

Time division multiple access (TDMA) [15] is another method for allowing mul-
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tiple devices to share a radio channel. Since the channel is shared, only one device

can successfully transmit at a time. If more than one device is transmitting at the

same time, the messages will collide, and neither message will be received correctly.

To avoid having two devices transmitting at the same time, a coordinator device an-

nounces a schedule that defines when and how long the devices in the immediate area

are allowed to transmit. A visual representation of TDMA can be seen in Figure 2.3.

2.3 Non-clustering Protocols

Sparse Topology and Energy Management (STEM), designed by Schurgers et

al. [16] is a simple MAC protocol that uses peer to peer messaging without a clus-

terhead to send messages across a network. Since having the radio on drains the

battery quickly, all motes cycle between listening and sleeping to conserve energy.

The motes do not synchronize the schedule for sleeping and listening times, so motes

poll neighbouring motes to send messages across the network. Polling wastes trans-

missions, since a mote will continue to send messages to a mote that is asleep until the

mote wakes up and responds to the polling. No synchronization means that energy

is wasted sending messages that are not received by anything.

Created by Intanagonwiwat et al. [17, 4], Directed Diffusion uses peer-to-peer

communication to transmit messages across the network. Directed Diffusion does not

use clusterheads or coordinator devices to collect or route information. Since there are

no clusterheads, all the devices in the network are tasked with tracking where the sink

is in the network, and then transmit messages to devices in the direction that the sink

is. Intanagonwiwat et al. use a type of beaconing as a simple routing protocol. The
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sink announces its position periodically to its neighbouring nodes. The neighbouring

nodes then announce to their neighbours that they are one hop away from the sink.

This pattern continues until the entire network knows how many hops away from

the sink they are. Directed Diffusion provides effective routing information with low

overhead. Intanagonwiwat et al. considered sending some extra information with the

beacons, such as which sinks are interested in what information being sensed, but did

not consider sending extra information about the motes along with the beacon.

Gossiping is a simple way of increasing the chances that a message will be received

at the sink. Hedetniemi et al. [18] discussed the simplicity and simple gains achieved

by using gossiping in their survey paper on gossiping. Gossiping, in general, is sending

the same message along multiple routes to the sink. In a network with packet loss,

sending multiple copies of the same message will increase the odds the message will

be received at the sink. This also has the side-effect of possibly having the same

message received at the sink multiple times. Another negative side-effect is that

more transmissions, and therefore more power is needed to send one message to the

sink. Though an effective way of sending messages, the cost involved in sending the

messages must be considered before using a gossiping technique.

To quickly disseminate data, flooding [1] can be employed to broadcast a message

across an entire WSN. Flooding can be considered the extreme case of gossiping,

where a message is announced to all surrounding devices, which in turn announce the

same message. This is a good method for sharing routing information quickly, but is

expensive. All the devices in the network must be on, and will receive and transmit

the message. Flooding also tends to cause many collisions in the network, as all the
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devices will repeat the message shortly after receiving the message.

S-MAC [19] is a reliable way of moving data across a WSN without using clus-

terheads. Ye etȧl outline the important features of a successful MAC layer protocol:

energy efficiency, fairness (all motes have an equal chance of messages reaching the

sink), low message latency and high throughput. Due to the constrained nature of

WSNs, it is difficult or impossible to have all of these features, though networks can

be tuned to enhance the desired features the network should have. An example of

this is that a network could have better throughput, but lowered energy efficiency.

S-MAC does sleep cycling to improve the lifespan of the network, with periodic lis-

tening states to check if any devices are trying to send to it. To avoid polling, S-MAC

uses synchronization techniques to wake all the devices at approximately the same

time, so no devices will be polling a device that is sleeping.

Power Efficient Gathering in Sensor Information Systems (PEGASIS), designed

by Lindsey and Raghavendra [20], uses global knowledge of the network to create

paths to the sink. PEGASIS saves energy by using greedy algorithms to create a

near-optimal path to the sink. Motes hop messages to neighbours that are closer

to the sink. When a mote receives a message, it performs message fusion on the

message, then sends the fused messages to a neighbour that is closer to the sink.

Motes using PEGASIS accept many messages and send one message per round due

to this data fusion and hopping setup. Reducing the number of messages sent reduces

the amount of energy used while the network runs. PEGASIS’ use of global knowledge

is unrealistic in most network deployments (e.g. WSN nodes launched from a plane,

thrown into a bush) and therefore limited in its real-world applications.
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2.4 Clustering Protocols and Communication

The standard approach for clustering, designed by Heinzelman et al. [21], is Low-

Energy Adaptive Clustering Hierarchy (LEACH). LEACH is a commonly used al-

gorithm for clustering and low energy communication. Most other clustering algo-

rithms are in some way extensions of LEACH. Being the earliest clustering protocol

for WSNs, LEACH uses somewhat simplistic methods for electing clusterheads. This

simplicity is actually the key strength of LEACH, since the clusterhead election makes

no assumptions about the network. Heinzelman et al. did not consider heterogeneity

or mote capabilities for LEACH.

Some protocols focus on sensing and reporting anomalies. Anomalies sensed could

be fires, earthquakes, security alerts, etc. Threshold sensitive Energy Efficient sensor

Network (TEEN) [2], developed by Manjeshar and Agrawal, focuses on only reporting

anomalies that are worth reporting, not wasting transmissions on data that is not of

interest. Since staying on and transmitting messages uses the most energy in WSNs,

TEEN only sends messages if the sensor readings are important enough to send.

TEEN uses a threshold to define whether or not a sensor reading is valuable and

worth sending to the sink or not. TEEN is a reactive-style WSN, it is not designed

to regularly send information to the sink, only if an anomaly that is being monitored

occurs will a message be sent to the sink. This is useful for monitoring for fires or

intruders and the like, but not useful for monitoring a resource over time.

Soro and Heinzelman [22] reported that, when only using residual energy in a

mote for electing a clusterhead, the lifespan of the network is negatively affected

when compared to using more than one factor. This demonstrated that the benefits of
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using hybrid criteria when choosing a clusterhead outweigh the overhead it generates.

While Soro and Heinzelman showed that comparing more than one factor between

motes in an election generates excessive overhead, they did not consider summarizing

multiple factors into one hybrid criteria.

SPIN, designed by Kulik et al. [23] uses an advertisement phase where a mote

informs surrounding motes about the message that it has. The surrounding motes

then can request the message from the mote that sent the advertisement. There is

metadata in the advertisement that has some details about the message that can

be requested. This advertisement phase is interesting in that any metadata could

be in the advertisement message, such as information about the mote, or messages

to surrounding motes. Kulik et al. only considered sending information about the

message that is ready to be sent.

Building on the foundation of LEACH, Younis and Fahmy [24] created Hybrid

Energy-Efficient Distributed clustering (HEED) to address the issue of selecting better

clusterheads. HEED uses a hierarchy much like LEACH, but uses more intelligence to

choose the next clusterhead. HEED uses residual power and a secondary parameter

to create a single value describing how well suited the mote is to being a clusterhead.

HEED has addressed selecting better clusterheads based on certain parameters, but

only in homogeneous networks.

Dong and Liu [25] created a model that chooses clusterheads based not only on a

mote’s capacity to be a clusterhead, but on data it has collected while the network

has been alive. If a mote had previously been chosen as a clusterhead, but did not

do well, that mote goes to a blacklist and will only be chosen again if there are no
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known candidates to be a clusterhead. This use of historical data allows the network

to improve its clusterheads over time, creating a network of clusterheads that are

known to work well. Though Dong and Liu used knowledge of motes in the network

to improve network lifespan, they did not consider heterogeneous networks where

motes may have special features, such as solar panels, that could restore a mote with

dead batteries to a useful state.

2.5 Heterogeneous Wireless Sensor Networks

Ou et al. [26] extended the lifespan of a heterogeneous WSN by making the net-

work power-aware. Motes with larger power supplies were assigned the task of a

clusterhead, since a clusterhead requires more energy. These clusterheads were dis-

tributed around the network to create a spanning tree. The power supply variance

was the only heterogeneous aspect of the experiment and clusterheads were selected

manually when the network was deployed, not dynamically by election.

Recognizing the lack of election protocols for heterogeneous WSN, Smaragdakis

et al. [27] created an election protocol for heterogeneous WSNs. Extending LEACH,

the protocol included remaining power levels as a weight in clusterhead elections and

concluded that this weight increased network lifespan. The protocol did not consider

any other heterogeneity than the residual power supply.

Brzozowski et al. [28] explored how messages should be stored in heterogeneous

networks, with residual energy levels being the main focus of the heterogeneity in the

network. Brzozowski et al. used a novel Media Access Control (MAC) protocol that

controlled where the messages were stored and how they were routed around dying
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motes.Though Brzozowski et al. looked at routing around dead motes, they did

not consider using heterogenous motes to extend the network lifespan even further.

Methods such as always choosing where data should be routed, or which motes should

be clusterheads before devices start to have critically low energy levels.

Hu et al. [29] used two different types of motes to create a long-lived WSN. The

motes were assigned different tasks in the network, some for data collection and some

for routing. The authors did not consider self-configuring the network to utilize the

heterogeneity or the possibility of extending the idea to more than two classes of

motes.

By creating motes with differing hardware configurations, Mhatre and Rosen-

berg [30] showed that exploiting heterogeneity in WSNs can reduce network costs.

Some of the deployed motes were inexpensive, while others were quite expensive. The

expensive motes were configured to use the less expensive motes for energy-intensive

tasks, allowing the more expensive motes to live longer. The focus was on the cost

savings of a heterogeneous WSN, creating only a rudimentary election protocol largely

based on LEACH.

Yarvis et al. [31] described three different types of heterogeneity in heterogeneous

WSNs, and suggested methods for best leveraging the individual types of heterogene-

ity. The three types of heterogeneity identified were:

1. Computational Heterogeneity. Motes have different amounts of processing

power available to them. Motes with more processing power should do tasks

such as data fusion, or compressing messages.

2. Link Heterogeneity. Some motes will have more powerful radios, providing
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greater transmission range. Longer range allows messages to have fewer hops

in the network, which decreases the latency time between the message being

created and the message arriving at its destination.

3. Energy Heterogeneity. Motes have varying amounts of energy available for

their use. Some motes might be powered externally, often called ‘line’ or ‘wall’

power, while other motes might have very limited amounts of nonrenewable

battery power. Motes with more battery power should take on power-intensive

tasks, such as being clusterhead or performing data fusion.

Yarvis et al. focused their efforts on ways of creating optimal placement of motes

with the knowledge of the heterogeneous motes in the network, and worked with S-

MAC [19] as a base MAC protocol. They did not consider cluster-based WSNs as a

way of further increasing the lifespan of the network.



Chapter 3

HCCP: Heterogeneous Clustering

and Control Protocol

HCCP is a method for describing and advertising the internal resources of wireless

sensor motes, and using the strengths of the motes to increase message throughput or

extend the lifespan of the network. Once motes are aware of their internal resources,

they should choose clusterheads based on the resources available. For example, motes

that are assigned the clusterhead role use more energy. Therefore, motes that have

extra batteries should be chosen as a clusterhead before motes without extra batteries.

A mote should not only be aware of its resources, but it should also be aware of the

requirements of the network. This is a consideration because the topology of WSNs

are prone to change due to the battery-powered nature of its components (e.g., a mote

with a dead battery will change the topology of the WSN). Also, motes may move

in the network (by some external force such as a person moving the mote), further

changing the topology of the network. To handle this unpredictability, the motes

19
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Figure 3.1: HCCP uses existing MAC protocols and can be used by any application, acting as

middleware.

need to be aware of the motes nearby, but not waste excessive energy discovering

them.

HCCP acts as middleware between the MAC layer and the application layer of

the mote, as shown in Figure 3.1. The application layer queues messages that are

ready to send, HCCP takes the messages and sends them to the sink when possible.

HCCP uses existing MAC layer protocols such as CSMA and TDMA, so HCCP itself

is not a MAC protocol.
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3.1 Theory of Operation

HCCP has roots in LEACH, following the design of clusterhead elections, but

extends the design of LEACH in multiple ways. While LEACH has relatively simple

clusterhead elections, where nodes elect themselves based on a probability, HCCP

has a more elaborate election process. HCCP’s election process weighs the ‘goodness’

of the node to be a clusterhead, and automatically limits the number of other nodes

that will be clusterheads. HCCP has also adopted the way a LEACH network cycles

between clusterhead elections and node runtime.

The LEACH run cycle is quite simple in it’s operation, and provided inspiration

for the HCCP run cycle. The LEACH network cycle is as follows:

1. Clusterhead election — Motes choose whether not not to advertise them-

selves as clusterheads. The decision to be clusterhead is based on a how long it

has been since it was a clusterhead and some added randomness.

2. Choose cluster — Motes that are not clusterheads send messages to the clus-

terhead they will follow this round.

3. Announce Schedule — Clusterhead sends a TDMA schedule via broadcast.

4. Cluster Runtime — The motes in the cluster follow the TDMA schedule,

taking turns sending messages to the clusterhead.

5. Repeat — Go back to clusterhead election. There can be a sleep time here to

extend the network life.
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Figure 3.2: LEACH election run cycle.

THE LEACH network cycle can be seen graphically on Figure 3.2. The cycle is

repeated until all the motes in the network cease to function. LEACH was focused

on simplicity, which makes LEACH quite robust as it runs. Since every mote takes

becomes a clusterhead occasionally, there is no single point of failure – the network

will continue to function even if a number of motes cease to function. LEACH makes a

solid foundation to build upon, using the lessons learned from its success and building

on its weaknesses.

HCCP takes the strengths LEACH, using the simplicity of the election and run

cycles, adding the ability to leverage the heterogeneity that is inherent in all WSNs.

The HCCP network cycle is as follows and is illustrated in Figure 3.3.
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1. Clusterhead Election

(a) Announce Candidacy — Announce the mote’s intentions to be cluster-

head. Using a Goodness assessment, announce first if the mote has a good

assessment.

(b) Announce Clusterhead - Successful candidates announce they are clus-

terheads.

2. Choose Cluster — Same as LEACH.

3. Announce Schedule — Same as LEACH.

4. Cluster Runtime — Same as LEACH.

5. Roundtable Discussion — Any queries or announcements can be made at

this time. Clusterheads can opt-out, forcing a clusterhead election.

6. Repeat — Go back to Cluster Runtime for multiple iterations. Every nth

iteration (where n is selected before network deployment and well-known to the

network) go back to Clusterhead election.

HCCP uses all of the strengths of LEACH in the run cycle, further modifying

the concept with some extra modifications that make the network more intelligent

in terms of which motes are elected clusterhead. The major additions are two-stage

elections, multiple iterations of the TDMA schedule and Roundtable Discussion (in-

cluding Clusterhead opt-outs).
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Figure 3.3: A visualization of the HCCP election and run cycle.

Two-stage election

Motes choose to be a clusterhead candidate before they can elect themselves clus-

terheads. A mote determines that it would be a good clusterhead by inspecting its

available resources, and choosing how long to wait before they announce themselves

as a clusterhead. Motes that announce candidacy first get to be clusterheads that
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round. Motes that determine they would not be very good clusterheads wait a longer

time due to the Goodness Delay. If a candidacy announcement from a better poten-

tial clusterhead that is relatively close in proximity is overheard before a candidate

broadcasts, the lesser candidate will not send an announcement, and demote itself to

a regular cluster member.

Multiple iterations of schedule

All messages in clusterhead elections can be considered overhead, as these mes-

sages are not relaying any information to any destination. Further, any time a mote

is on without sending or receiving messages can also be considered overhead.

To minimize time spent in clusterhead elections, they should only be run occa-

sionally. LEACH runs a clusterhead election after every TDMA schedule runtime,

which is good for distributing the burden of being a clusterhead, but creates lots of

overhead messages.

The solution to this is relatively simple; a clusterhead election should only happen

occasionally. Further, a TDMA schedule does not need to be re-transmitted before

every TDMA runtime. A TDMA schedule only needs to be transmitted after a

clusterhead election, which should only happen after n runs of the TDMA schedule.

The number of times the network TDMA schedule executes (n) should be determined

before network deployment. This is so it is well-known, consistent number across the

entire network ensuring that the network does not get out of synchronization. A

lower value of n should be chosen if the network is to be adaptive and flexible, while

a larger value of n should be chosen if the network should have as little overhead as
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possible.

Roundtable Discussion

After each run of the TDMA schedule, all the motes in the network turn on their

radios to listen for broadcasted announcements or queries. This is the time where

clusterheads can opt-out, synchronization messages can be exchanged and routing

tables can be shared. The Roundtable Discussion time can also be used to extend

HCCP in various ways, providing a time to implement neighbour discovery and adjust

radio power accordingly, or whatever the network administrator chooses.

Clusterhead opt-out

Since the TDMA schedule published by the clusterhead will be followed multiple

times, the clusterhead’s performance may degrade, eventually causing the entire clus-

ter to perform poorly. LEACH averts this problem by running a clusterhead election

after every TDMA schedule runtime. Since HCCP runs multiple iterations of the

TDMA schedule, the clusterhead needs a way to retire if it begins to degrade.

A clusterhead can announce its retirement during the Roundtable Discussion.

When a clusterhead retires, it forces a small clusterhead election, with only the motes

in the one affected cluster acting in the clusterhead election. The network does

a LEACH-style clusterhead election. The first mote that announces that it is a

clusterhead becomes the new clusterhead for the cluster. The Goodness Delay is

used to decide how long a mote will wait before it sends a clusterhead announcement,

using the same method as candidacy announcements. This way, the best possible

clusterhead mote should become the replacement clusterhead.
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The cluster then continues to run using the existing TDMA schedule for the

remaining iterations before the next full clusterhead election.
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3.2 Implementation Details

The following is a discussion of how HCCP works at an implementation level.

Since HCCP is designed to be run on different hardware, with different capabilities,

it is best to describe the network setup in terms of communication. Specifics about

mote design, real-time operating systems and communication stacks are abstracted.

3.2.1 Clusterhead Election

HCCP takes a different approach than LEACH to electing clusterheads. Motes

can’t just be cluster members, even though being a clustermote every round is the

most energy-efficient thing to do. A problem inadvertently created by HCCP’s at-

tempt to allow more motes be clustermembers, is that if a mote is by a sink, it would

never choose to be a clusterhead. In the Clusterhead Candidacy phase, the sink will

always broadcast first, never allowing motes in range of the sink to be clusterheads,

since they would always concede to the sink. Since no motes around the sink would

ever be clusterheads, motes out of range of the sink cannot hop messages to the sink.

This would create an invisible wall around the sink, where motes past the wall will

never have messages reach the sink. If a mote does not complete any messages, it

is suffering starvation, a term taken from task scheduling in operating systems when

processes will never run due to higher priority processes continually running. The ef-

fects of starvation can be seen in Figures 3.4 and 3.5. Figure 3.4 shows a comparison

of distance from the sink to how many messages have been received at the sink, and

it is clear that no messages beyond 100 arbitrary distance units from the sink would

ever have messages received at the sink. Figure 3.5 shows a map of where the motes
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are that have completed messages, and which motes are suffering from starvation (the

sink is the green triangle in the middle of the network). A few messages from motes

beyond the invisible wall can be received at the base station if collisions in clusterhead

candidacy messages, allowing motes within the invisible wall to become clusterheads.

Motes that did not get that message could then elect to be a clusterhead, allowing

messages in from beyond the wall. Starvation does not happen in LEACH since the

clusterhead elections happen independent of each other, as shown in Figure 3.6 which

is created from the same network with the same configuration settings using LEACH

as an election protocol. Therefore, a solution is needed to avoid creating the invisible

wall that the Clusterhead Candidacy phase has created.
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Figure 3.4: An invisible wall created due to HCCP clusterhead candidacy messages.

There are two different approaches to eliminate the problem of the ‘invisible wall’

in HCCP.

1. The sink can sleep for a cycle. Since the sink would not send a clusterhead
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Figure 3.5: HCCP messages received at the base station. There is no way messages outside the

radio range of the sink can send messages to the sink.

candidacy message, the surrounding motes would then be able to become clus-

terheads. This would allow messages to flow into the motes in range of the sink

from motes out of range of the sink.

2. Motes can choose to be clusterheads even if there is a better clusterhead in

range. Since the sink will always be a better clusterhead than a mote, a mote

should be able to ignore all other candidacy messages and become a clusterhead.

Both of these have drawbacks. If the sink turns off for a cycle, the latency time

for messages will go up, since no messages will be received at the sink for this time.

If clusterheads are allowed to randomly choose to be clusterheads, there will be more

collisions due to the increased number of messages being sent during clusterhead
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Figure 3.6: LEACH messages reached at the base station, note there is no ‘wall’ blocking messages.

messaging times (clusterhead elections and the like).

To discover which of these methods is better to use, a simulation of both LEACH

and HCCP was created and the results were compared, and are compared later in

section 4.1.5.

3.2.2 HCCP Goodness Delay

To ensure that motes that are better at being clusterheads are chosen to be clus-

terheads, the timing that is inherent in an election/run WSN such as LEACH is

leveraged. If a mote has the right qualifications for being a good clusterhead, it

announces its candidacy first. If another mote that was going to announce its clus-

terhead candidacy hears the a different mote’s candidacy message first, it will not be

a clusterhead that round.

The Goodness Delay is created by delaying a percentage of the available time.
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Motes that are well suited for being a clusterhead will create a small delay (therefore

announcing itself as a potential clusterhead earlier), and motes that are not well

suited for being a clusterhead will have longer delays.

Since the heterogeneous assessment can focus on different heterogeneous factors,

the way of determining how long to delay must be robust to the possible focuses. To

reflect this, a percentage of time to delay is put into a weighted average of all the

factors that will contribute to the delay timing. The code looks like the following:

private double getGoodnessDelay ()

{

double delay = 0;

// add up to n% of available time based on battery

delay = (availableTime * BATTERY_POWER_WEIGHT *

(1 - battery.getPercentLeft () ) );

// n% of available time based on mission

// delay gets longer if this node wants to be a clustermote

delay = delay + (availableTime * SENSOR_MISSION_WEIGHT *

sensorMission );

// n% on messagequeue size

delay = delay + (availableTime * MESSAGE_QUEUE_WEIGHT *

( messageQueue.size ()/( double)maxQueueSize ) );

// n% of random

delay = delay + (availableTime * RANDOM_WEIGHT *

(goodnessRM.nextDouble ()));

// n% of duty cycling based on last round as CH.

// more delay if I was just a clusterhead.

delay = delay + (availableTime * DUTY_CYCLE_WEIGHT *

( 1- Math.min(1, lastRoundAsClusterhead * chanceOfBeingCH )));

return delay;

}
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Continuous Nature of HCCP Goodness Delay

Since HCCP uses a Goodness Delay to advertise the heterogeneity of the network,

it can be considered a continuous statistic. This is as opposed to the two/three/n-tier

network that describes a network as a binary relationship between motes: a mote is a

routing mote or not. HCCP takes what is known about the mote, and translates that

information into a continuous distribution via the Goodness Delay algorithm. The

Goodness Delay calculates a percentage of ‘Goodness as clusterhead’, and maps that

Goodness to an amount of time to delay before becoming a clusterhead. Therefore,

HCCP considers every mote to be a heterogeneous mote, even in a homogeneous

network. Even in a homogeneous network, not all motes will be the same. Some

motes will have batteries that are drained more than others, and some will have no

space in their message queue to become a clusterhead. This approach considers such

factors.

Drawbacks to Goodness Delay

When a network is first deployed, all motes will have full batteries, empty message

queues and will generate approximately the same Goodness Delay. This would cause

the Clusterhead Candidacy and Clusterhead Election time to effectively only be in

the first 10th or so of the time allotted to the stage.

Conversely, if motes are added to the network after it has run for a while, the

HCCP Goodness Delay will use much more of the stage time to announce clusterheads,

since the new motes will have new batteries and empty message queues and therefore

have short Goodness Delays, while the old motes will have longer Goodness Delays.
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Figure 3.7: M3 never becomes a clusterhead since M1 and M2 announce their Clusterhead Can-

didacy first. Since M3 is never a clusterhead, M4 never has a chance to send its messages through

the network.

Due to this, HCCP is very robust to changes after the network has been run for any

amount of time.

Suboptimal Clusterheads

Suboptimal clusterheads are crucial to the success of a network. Starvation can

occur in any place in the network if a mote is surrounded by other motes that are also

poor clusterheads, as shown in Figure 3.7. Surrounding motes are never clusterheads

since the surrounding nodes are in radio range of a good clusterhead. The good

clusterhead will advertise itself as a clusterhead, which stops all surrounding motes

from becoming clusterheads. Since all the surrounding motes are always clustermotes,

messages never leave the mote suffering from starvation. Since this starvation can
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take place anywhere in the network, it could be called in-network starvation.

To avoid in-network starvation, all motes should occasionally become clusterheads,

even if the mote is not well-suited to becoming a clusterhead. Since the mote is not

well-suited to being a clusterhead, this is called becoming a suboptimal clusterhead.

Suboptimal clusterheads prevent in-network starvation by becoming a clusterhead to

a mote that is suffering in-network starvation; collecting its messages and hopping

the messages through the network.

Due to the timed nature of HCCP elections, suboptimal clusterheads will an-

nounce their candidacy later than good clusterheads. Since the announcement is

later, only motes that are suffering starvation or have no better options (better being

defined as a clusterhead that announces earlier or has a lower beacon rank for rout-

ing) will choose to follow the suboptimal clusterhead. This means that cluster sizes

for suboptimal clusterheads should be smaller than a normal cluster size. If HCCP

did not use a timed election, then the cluster for the suboptimal clusterhead’s cluster

may get too large, sending too many messages and overrun the clusterhead’s message

queue (too many messages received from the cluster), therefore wasting more energy

than needed to be a clusterhead.

Suboptimal First-order Clusterheads

Since the sink can be considered to be a clusterhead, and is a clusterhead for each

round, the motes in radio range of the sink (called first-order clusterheads) should

be given a different rate of choosing to be a suboptimal clusterhead. A first-order

clusterhead is a clusterhead that has a beacon rank of 1, that is, is within radio range
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of the sink.

Since all messages need to be hopped through the motes that are next to the sink,

they need to spend more time as clusterheads. This is so the first-order clusterheads

can receive messages from the rest of the network and relay them to the sink.

Sink Sleep

Another solution to getting messages to the first-order motes, is to turn the sink

off for a round. Turning the sink off will allow the first-order motes to become

clusterheads. Allowing the first-order motes to be clusterheads will allow the messages

from the network to flow into the first-order motes. Once the messages have flowed

into the first-order motes, the messages can easily be hopped to the sink.

3.2.3 Roundtable Discussion Functions

As networks were simulated, it was obvious that beacon routing is not efficient at

sharing the beacon with nodes at the edges of the network. This is due to the fact

that the beacon is shared once per round by the clusterhead. In an optimal case, if

motes have range 100 arbitrary distance units (where range is defined as a radius), a

mote 300 units away would require 3 rounds at minimum to receive a beacon. This is

illustrated in Figure 3.8 The latency is due to the hopping nature of wireless sensor

networks. As a beacon is sent out, only the first nodes in range receive a beacon.

After that, the beacon must be sent out from those nodes, and so on.

To reduce this latency, HCCP uses the Roundtable Discussion to disseminate this

important information. The roundtable time can be used by motes to query for



Chapter 3: HCCP: Heterogeneous Clustering and Control Protocol 37

Sink A B C

Figure 3.8: A mote range 300 away would take at best 3 rounds to receive a beacon given a range

of 100.

beacons, share beacons and for clusterheads to opt out of the clusterhead role.

A solution to beacon routing is to flood the network with routing information at

every roundtable. The problem with this would be the number of collisions it would

create. For instance, in a dense network, if every node were to broadcast its beacon

after receiving an update to its beacon, nearly all messages would turn to gibberish.

To prevent this, a balance of density to number of nodes beaconing must be found, or

sufficient time must be given to the motes for each to beacon without having excessive

collisions, making all collided messages overhead.

There are benefits and drawbacks to either method of sharing routing information.

Sharing the beacon you received immediately will cause collisions, but using CSMA

can mitigate many of these problems. Checking to see if the line is clear, doing a

CSMA backoff if the line is busy is a simple and effective (though time consuming)

way of dealing with most of the collisions. Collisions will still occur, but the worst

case is that some motes might have a beacon rank that is too high. The mote in

the center does not receive a beacon from the closer motes, since the two messages

collided. Two cases can occur from here, either the center mote receives a beacon

from a mote further away from the sink, or re-requests a beacon from the surrounding

motes and receives the proper rank.

Overall, the Roundtable Discussion can be a simple exchange of CSMA messages,
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or can be made to do specialized tasks as needed by the network. The simulations and

testbed deployments will share routing information using simple CSMA messages.

Options for Tuning the Roundtable Discussion

The Roundtable Discussion time is very expensive on the network, as all the motes

are on during this time. If a long time is chosen for the Roundtable Discussion,

the network life will be negatively effected. If a long-lived network is desired, then

the Roundtable Discussion should be left out all together, as long-lived networks

are purpose built for lifespan and do not need the energy draw of the Roundtable

Discussion.

If no extremely important information needs to be sent during the roundtable

time, only a subset of the motes need to be online to flood the message across the

network. This too, will increase the lifespan of the network.

3.2.4 Clusterhead Choice Timeout

Consider the situation illustrated in Figure 3.9 where a clustermote B has a lower

beacon rank than a nearby ‘very good’ clusterhead. The mote should choose the good

clusterhead as its clusterhead over the other potential clusterheads that may have a

better beacon rank, but are significantly poorer clusterheads.

The question that must be answered is ‘what is significantly poorer?’. A way to

solve this problem is to use the ‘Goodness Delay’ timing that is already inherent in

HCCP. Once a clustermote has heard a clusterhead announcement, there is a timeout

clock that starts. If another clusterhead makes an announcement before the timeout
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Router mote
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Router Mote
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Figure 3.9: Mote C would should choose mote D as a clusterhead even though mote B is closer to

the sink.

expires, and that new clusterhead has a lower (better) beacon rank, the mote should

join that new cluster. Once the timeout has expired the quality clusterheads that are

announcing are considered significantly poorer than a known clusterhead. This is due

to the ‘Goodness Delay’ that HCCP uses to discover heterogeneity in the network.

So, despite a mote having a lower beacon, it might not be the best clusterhead, and

the clusterhead that is good should be used.
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Experimental Setup and Results

Simulations and a testbed deployment were created to show the benefits of using

HCCP over LEACH and were used to compare the two protocols. To compare the

performance of HCCP and LEACH, simulations were created for both of them using

custom simulation software. The simulation software is freely available on Github

at (http://github.com/robguderian/hccp). The simulation provides a high-level

view of a WSN, focusing on how the network can function together and give insight

into the network, allowing many different factors to be logged that would otherwise

be impossible to track.

For the testbed deployment, both HCCP and LEACH code were created for four

different types of WSN motes that have the ability to communicate with each other.

A small deployment was then run to help show that the simulations are accurate and

that HCCP can work in a real-world environment.

40

http://github.com/robguderian/hccp
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4.1 Simulation of HCCP and LEACH

A custom simulator was developed to simulate the running of HCCP. Other net-

work simulation suites are available, such as OmNet++ [32] with its related suites

such as Castalia [33] are widely used, and provide tools for analysis. These tools were

tested, and were deemed unfit for the desired simulation setups. Tracking the number

of messages sent, from where, route taken and number of times a given message has

been received at the sink are possible, but difficult to collect. OmNet++ messages

can only be in one mote’s message queue at a time since it can only have one ‘owner’.

Since a message can only have one owner, it is very difficult to track how many times

a given message has been received at the sink. Also, the MAC layer protocol is not

simple to change while running a simulation. LEACH uses both CSMA and TDMA

MAC protocols, so to properly simulate LEACH either switching the MAC protocol

must occur, or the finer details of the protocols must be abstracted and be viewed

simply as access to a radio.

WSN code can be written in such a way that the physical layer can be largely

ignored. The physical layer controls the radio, modulating the frequency to commu-

nicate with surrounding motes. This includes what frequency or protocol (such as

802.15.4 or ANT radios) the motes use. The simulator abstracts the physical layer,

as it is not the focus of the simulation or research. It is assumed that the radios work,

have a given range and draw power when on.

When building the simulator, the problem of simulating a WSN was viewed as a

queuing theory problem more than a networking problem. In doing this, many of the

network problems are abstracted away, such as radio channels or how collisions can
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be recovered from. HCCP currently only uses one radio channel, so only one channel

was created. Messages that have collided are assumed lost, and unrecoverable.

With these assumptions and abstractions, a simple to understand simulation could

be made to collect important statistics about the inner workings of the network.

Simulator Capabilities

The custom simulator is able to create networks of any size with a two dimensional

rectangular space in which to place the motes. Attention was given to the use of

random number generators and randomly created events. Random seeds are kept, and

random events can happen at the same times in networks that are being compared.

Each mote is given its own random number generator with its own seed to generate

random events. Separate random number generators are used to draw random num-

bers for all tasks, ensuring the simulated motes generate the same random numbers

for both the LEACH and HCCP simulations.

The package used to generate random numbers, and to maintain the event queue

was SSJ [34]. SSJ is a well-respected Java simulation package. The pseudorandom

number generator and the event queue were built for simulating queuing theory events,

and therefore were easily applied to simulating events in wireless sensor networks.

SSJ provides excellent facilities for collecting statistics on the motes. SSJ can

collect continuous data, such as calculating what percentage of the time a given mote

was on or off; or, collect discrete events, such as number of messages received, sent

and lost.
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Design of Motes in the Simulation

The custom simulator simulates motes that are an abstraction of motes in real

life. Motes have been abstracted to have the following features:

1. A battery: The battery drains faster when the mote is on, and slowly when

the mote is sleeping. Motes can draw more power if they are power intensive

motes, or less power if they are power efficient motes. The batteries can start

with more or less energy, which simulates having a larger or smaller battery.

Since batteries in reality do not always have the same amount of battery power,

the simulator applies jitter to the amount of power given to the motes. This

amount is configurable, and generally assumed to be quite small.

2. A message queue: The queues contain messages created by this mote, and

messages that have hopped into this mote. The queue has finite space. If the

queue is full, the message that should be added to the queue is lost.

3. Sensor readings: Sensor readings happen at a specified frequency. Sensor

readings get turned into messages which are added to the message queue. If the

message queue is full, the message with the reading is lost.

4. A simple MAC layer: The MAC layer is designed to be simple and abstract.

CSMA uses backoffs of the channel is currently being used. CSMA waits a

random amount of time before attempting to send the message again. Each

mote needs its own random number generator to generate a random backoff

time.
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5. A radio: All devices have radios that have a given range. If a neighbouring

mote is within range of a device, the two motes can communicate. All radio links

are assumed to be one-way links, as some radios could have more transmission

power than other radios. The units of the range are arbitrary distance units,

and could be interpreted as centimetres, metres or even miles.

6. A position: Motes are given a position on the two dimensional plane. Any

mote can be set to be mobile in the network, and can move at any time. This

movement will change which surrounding motes the moving mote can commu-

nicate with.

This is consistent with the high-level description Akyildiz et al. [1] gave to describe

a mote, and with Figure 1.1.

Motes can be of various different types: basestations, routing nodes, or sensor

nodes. Basestations are the sinks, once a message is received at the basestation it is

marked as completed. Routing nodes are motes that have no sensors, and are therefore

ideal for routing messages. Sensor nodes are motes that make sensor readings, and the

sensor readings are turned into messages. The type of sensors and number of sensors

have been abstracted away. Basestations are assumed to have wall power, sensor and

routing nodes are generally assumed to have battery power, but the simulator has

the capabilities of giving them wall power.

Heterogeneity is given to the motes by initializing the motes with different prop-

erties, such as:

• more or less battery power
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• more or less power drawn when on or off

• more or less available space for a message queue

• longer or shorter radio transmission range

• the ability to move or not and how fast the movement is

• frequency of sensing and creating messages

The number of sensors or type of sensors can be abstracted to being a frequency

of sensing events. If a mote has many sensors, it can be abstracted to have more

sensing events. A routing mote is the other extreme, in that a routing mote has no

sensing events and therefore no frequency of sensing events.

All motes in the custom simulation use common code for the MAC layer, as this is

a requirement for heterogeneous WSN. Motes in heterogeneous WSNs have differing

hardware, energy levels and capabilities, but share a common mode of communication.

Motes in the Simulations A set of motes were reused for consistency across all

the simulations. This provides standardization of the motes across the simulations

while providing heterogeneity across the simulations. The power draw of all the motes

were kept the same across all the types of motes for all simulations. The motes varied

in queue size and battery size.

• Router - A special type of mote that does not have any sensors. It is given a

large queue and a large battery making it ideal for routing messages.

• Normal - An average mote. Most of the motes in the network are set to this

kind of mote. It has an average battery, and an average queue.



Chapter 4: Experimental Setup and Results 46

• Expensive - The expensive mote simulates a mote that has expensive sensors

that are power hungry devices. This mote has a larger message queue than the

normal mote, but a smaller battery.

• Very Expensive - The very expensive mote simulates a mote that has more

power hungry sensors than the Expensive mote, a smaller battery, and a smaller

message queue.

• Super Expensive - The Super Expensive mote simulates a mote that has the

most expensive sensors that put a very large load on the battery. It therefore

has the smallest battery, and the smallest message queue.

4.1.1 Modifications to LEACH for Simulation

LEACH does not specify which routing algorithms should be used when us-

ing LEACH. For comparison reasons, two routing algorithms were used in creating

LEACH: beacon routing and preset routing, where every node knows its beacon rank

from the beginning of the simulation.

In the beacon routing implementation, the mote published its beacon rank when

it announced it was a clusterhead, during the clusterhead announcement phase. This

is not very efficient, but is a realistic way of disseminating the routing information to

the network.

Since HCCP has facilities to efficiently disseminate routing information, a preset

routing simulation was created. The preset routing simulation sets each of the motes

appropriate beacon rank before the simulation starts. This permits the network to
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work as if the network has been alive for long enough that the routing information

has been disseminated thoughout the network.

4.1.2 Modifications to HCCP for Simulation

HCCP has facilities for routing, but does not specify which routing algorithm

should be used. Because a routing algorithm is needed for the network to work once

it is deployed, the simulation has been implemented with beacon routing with HCCP,

as HCCP will then be evenly comparable to LEACH. The beacon information is

disseminated during the roundtable discussion, as prescribed by HCCP.

Since LEACH has been provided preset routing, the HCCP simulation has also

been given preset routing, so it can be fairly compared to LEACH. Simulations with

the preset routing tables were done, as were simulations without preset routing tables

to show the differences in data dissemination between the networks.

4.1.3 Observations and Results

The worst-case baseline runtime for a mote in the simulation setup is 40,776s (the

mote is always on), and the best-case runtime is 256,200s (the mote is only on during

the mandatory times). Clearly the best-case is impossible to reach, as all motes would

be sleeping for the entire cluster runtime (TDMA schedule runtime), never sending

any data messages. Since the motes are asleep for the entire cluster runtime, it will

also will never send hop messages, which means the mote will never have its messages

reach the sink and is therefore useless. If a mote is always a clusterhead, it will

be on for the entire simulation making the worst-case runtime a possibility in the
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simulation. Duty-cycling ensures that a mote will never only run as a clusterhead.

All permutations of the possible Goodness Delay factor configurations were run to

provide insight to which HCCP parameters that build the Goodness Delay (described

in section 3.2.2). The permutations were run as the following: 100% Battery power;

99% Battery power, 1% Message queue; 99% Battery power, 1% Random; and so on.

Each parameter contributes a percentage of the time that the mote waits before it

announces its Clusterhead Candidacy or Clusterhead Announcement. Since there are

5 factors, each are considered separately. The LEACH-style clusterhead percentage is

controlled separately from the 5 HCCP factors and are also viewed separately. Motes

will elect to be a Clusterhead Candidate using the same equation as LEACH uses for

electing clusterheads.

The x-axis of the following graphs show the percentage that the listed HCCP

factor contributes to the Goodness Delay. The remainder of the Goodness Delay is a

permutation of the remaining HCCP factors. For instance: if the contribution to the

Goodness Delay of Battery Power is 50%, the other 50% will be made of up all the

possible permutations of Random, Duty Cycle, Message Queue and Sensor Mission.

The charts all have the same x and y axis to make comparisons clearer.

HCCP, much like LEACH, can be set up to vary the percentage of clusterheads per

round in the network. Since motes that are clusterheads use more power per round

than motes that are not clusterheads, choosing a higher percentage of clusterheads

per round causes the network to have a shorter lifespan. This effect can be seen in

Figure 4.1, as the percentage of clusterheads increases the lifespan of individual motes

drops. There is a peak at 3% clusterheads for average lifespan since motes that choose
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Figure 4.1: Visualization showing the relationship between Percentage of Clusterheads per round

and simulation results.

clusters turn off for the remainder of the HCCP phase. These small energy savings

add up to make the average lifespan of the network longer. Heinzelman et al.[21]

also saw the same phenomenon happen while testing LEACH, finding that the motes

dissipate the least energy in their test case at about 5% clusterheads per round. Since

HCCP uses many of the design elements of LEACH it is not surprising that the two

have similar optimal percentages of clusterheads per round.

The message throughput increases with the percentage of motes that are clus-

terheads each round. This makes sense, as the non-clusterhead motes would have a

good selection of clusterheads to choose from, and could choose a clusterhead that is

nearby to decrease the chances of a message collision. However, as the percentage of

clusterheads increases, the lifespan of the network decreases. This causes a tradeoff
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for a network administrator to choose from, as some networks might require longer

lifespans, while other networks may value message throughput.

Effect of Goodness Delay on HCCP
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Figure 4.2: The Goodness Delay focuses the clusterhead task on motes that are suited for the task.

The Goodness Delay in HCCP is intended to make motes that are well-suited

for the task clusterheads more often. Figure 4.2 shows that the Goodness Delay is

effective in doing this. As the motes get more expensive, hypothetically with more

power-hungry sensors, the mote gets chosen to be a clusterhead less frequently. This

means that the mote will draw less power, since it is not being a clusterhead as

frequently.

Note that in Figure 4.2 the percentages are quite low, as the the Y axis is the

percentage of time the mote was a clusterhead over the entire time it was alive, which

includes long sleep periods between cycles of the protocol.
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4.1.4 Discovering how Heterogeneous Factors Effect the Net-

work

Simulations were run with all the possible permutations of the factors available

in the simulation. The results show which heterogeneous factors are valuable for

improving the WSN. The factors that could be used in clusterhead elections in HCCP

are: residual battery power, available message queue size, sensor mission, when the

last time this node was a clusterhead was, and a random variable. Breaking the

problem down to the separate factors, the value of the factors can be compared.

All the permutations of the HCCP factors for Goodness Delay were run on the

same network with the same random seeds. This set up the network with the same

starting and running parameters so that events would happen at the same times in the

various networks, allowing the networks be comparable with the given parameters.

Effect of Available Queue Size on HCCP Goodness Delay

Focusing on available queue size for a method of describing how good a mote

would do as a clusterhead is an obvious choice, as clusterheads will be collecting

messages from the surrounding motes and need the ability to store all the messages.

If the message queue is full on a mote, it could not store the new incoming messages,

therefore losing all incoming messages. If incoming messages are lost it not only is

negative to the network in terms of information loss, but also wastes the energy of

the poorly chosen clusterhead and all the motes that register with that cluster.

The effects of focusing on Message Queue size can be seen in Figure 4.3. As the

focus on message queue increases, the average lifespan of the network drops. This is
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Figure 4.3: The relationship between HCCP Goodness Delay using Available Queue size and

simulation results.

not surprising as the focus on battery power and duty-cycling reduces, making the

network solely focus on choosing clusterheads that have large available message queue

size regardless of available power. Because of this, Message Queue size is likely a good

secondary factor that would control less of the Goodness Delay, balancing a factor

such as Battery Power.

As the network gets busier, the chances of any mote having a full message queue is

greater. When message queues start filling up, the importance of focusing on message

queue size as a HCCP Goodness Delay factor increases. Because HCCP can focus on

which motes can be effective clusterheads, better clusterheads will be elected. The

results of this can be seen in Figures 4.4 and 4.5, which have the same x and y axes

to show the difference between the two results. HCCP can handle a network that

is overloaded with messages quite well, because motes with more available space to
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Figure 4.4: HCCP handles being overloaded with messages well, as motes with larger available

message queues will opt to be clusterheads.
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Figure 4.5: LEACH does not handle being overloaded, as it does not consider message queue size

when electing clusterheads. Note the y axis is the same as Figure 4.4.
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hold incoming messages from the clustermotes will be more likely to be clusterheads.

The standard deviation of the simulation is approximately ±20% for both HCCP

and LEACH for each frequency level. This shows that HCCP focusing on Message

Queue has a significant gain over LEACH in terms of message throughput for Super

Expensive motes even at the most overloaded network run. It is also interesting to

note that the signal-to-noise ratio for LEACH is approximately 100%, even at the

least overloaded simulation run.
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Figure 4.6: HCCP loses fewer messages due to full message queues than LEACH.

HCCP focusing on Message Queue will have the effect that fewer messages will be

lost due to having no available space in the message queue. Fewer messages will be lost

as motes that have more available message queue space will opt to be clusterheads,

which will then free up space in the surrounding motes to use. Figure 4.6 shows that

HCCP does have fewer lost messages, significantly more for Super Expensive motes.

This shows that HCCP has gains over LEACH in how many messages are lost due to
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full message queues.

Effect of Available Battery Power on HCCP Goodness Delay

Choosing motes with more available battery power creates network with long

average lifespans, as seen in Figure 4.7. Comparing Figure 4.7 to Figures 4.1 4.3 4.10

and 4.11 it is clear that focusing the HCCP Goodness Delay on available battery

power is second only to Sensor Mission without the drawback of having to know any

information about the network before deployment.
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Figure 4.7: The relationship between HCCP Goodness Delay using Available Battery Power size

and simulation results.

An interesting result of focusing on Battery Power is that fewer messages are

lost due to motes dying. This makes sense, since as the battery in the mote nears

depletion, the mote will not elect to be a clusterhead. Because the mote is not a

clusterhead, the mote is not accepting messages from surrounding motes, rather it is
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getting rid of all the messages in its message queue. Then, once the mote finally dies,

its message queue will be as empty as possible and minimal messages are lost.

This effect can be see in in Figure 4.8. The election protocol in LEACH is naive,

electing clusterheads at random, causing motes that are nearing death to become

clusterheads. Notice that there is a high variability in how many messages are lost in

dying motes in LEACH. In fact, the simulation results showed that there were motes

that died with their message queues completely full. HCCP, on the other hand, has

very low variability due to the network avoiding using dying motes as clusterheads.

The end result of using Battery Power as an HCCP factor, is that fewer messages

are lost, therefore more messages successfully reach the sink. This can be seen in

Figure 4.9.

Effect of Duty Cycling on HCCP Goodness Delay

The HCCP Duty Cycle factor causes motes to live longer, but deliver fewer mes-

sages. This is the common WSN throughput versus lifespan tradeoff. As motes

focus on duty-cycling, they become clusterhead less frequently, which causes message

throughput to drop. This relationship can be seen in Figure 4.10, as the focus on

Duty Cycling increases, the message throughput drops while the average mote lifes-

pan increases. This trend is followed until 85% focus on Duty Cycling, at which time

the same effect as clusterhead percentage in LEACH occurs, too few motes are an-

nouncing themselves as clusterheads, causing the rest of the motes to be powered up

longer waiting for clusterhead candidacy and clusterhead announcement messages.

Since these motes are on longer waiting for announcement messages, the lifespan
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Figure 4.8: HCCP focused on Battery Power loses less messages since dying motes will not elect

to be clusterheads.
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Figure 4.9: HCCP focused on Battery Power has better throughput than LEACH since fewer

messages are lost in dying motes.
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Figure 4.10: Visualization showing the relationship between HCCP Goodness Delay using Duty

Cycling and simulation results.

drops. Though there are obvious gains for life span to focusing on Duty Cycling,

Duty Cycling is a better secondary HCCP Goodness factor with a minority of the

control of the Goodness Delay time.

The problem with Duty Cycle as the main HCCP Goodness factor is that it is not

providing enough value to make up for the overhead that HCCP puts on the network.

At no time did HCCP using Duty Cycling beat LEACH in simulation. LEACH has

duty cycling built in to the design. HCCP uses that same duty cycling when choosing

if the node should be a clusterhead, then describes how good the clusterhead is by

announcing the clusterhead sooner or later. HCCP Duty cycling doesn’t add this

value to the network, it only delays motes longer from announcing their Clusterhead

Candidacy if the mote has been a clusterhead recently. Using Duty Cycling in an

HCCP Goodness Delay is therefore useless and should not be used because it costs
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more to run this redundant idea than the benefit it provides to the network.

Effect of Random Delay on HCCP Goodness Delay

Randomness is the backbone of LEACH, in that each node creates a random

number to decide whether or not it should be a clusterhead. This factor in HCCP’s

heterogeneous election is just a random number that will decide how long the mote

will delay before transmitting its candidacy message or clusterhead announcement.

Using only the Random HCCP Goodness factor, HCCP degrades to a slightly mutated

form of LEACH, as LEACH draws a random number that decides how long the mote

will delay before announcing itself as a clusterhead. HCCP takes this idea, making

the moderate change that motes will delay the random amount of time until it either

hears a better mote (better being defined as a mote that transmits its clusterhead

candidacy earlier), or gets to transmit its candidacy message.

Using Random as the sole HCCP Goodness factor does not work well, as seen in

Figure 4.11 Randomness has very little effect on the network throughput or average

node life. But Random works well paired with other factors as a tie-breaker, mak-

ing one mote announce it’s clusterhead status before a neighbouring node of similar

configuration. Using Randomness as a tie breaker works especially well early on in

the network’s life, as many of the motes will have empty or nearly-empty messages

queues and full battery power. If two motes have the same Goodness Delay they will

transmit their candidacy or clusterhead announcement at the same time, potentially

creating collisions in the network.
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Figure 4.11: The relationship between HCCP Goodness Delay using Random Wait Times and

simulation results.

Effect of Sensor Mission on HCCP Goodness Delay

Sensor mission is a percentage of how important the sensors are for a given mote.

For instance, a router mote with no sensors would have a sensor mission of 0%, since

it has no sensors. A mote with very expensive sensors should almost never be a

clusterhead, preserving its battery power to collect more information. This value can

be manually set, or automatically created by counting the number of sensors that are

being read and creating a Sensor Mission percentage from that information.

Sensor mission creates a positive trend in both average node life and message

throughput, as seen in Figure 4.12. This is because routers were given a sensor

mission of 0 and sensor motes were given high Sensor Mission. Providing motes with

a Sensor Mission value is the best case as motes will then ‘know’ how good they are

at the clusterhead task, making better router motes and motes with larger message



Chapter 4: Experimental Setup and Results 61

120000$

120500$

121000$

121500$

122000$

122500$

123000$

123500$

124000$

40%$

50%$

60%$

70%$

80%$

90%$

100%$

0%
$

5%
$

10
%
$

15
%
$

20
%
$

25
%
$

30
%
$

35
%
$

40
%
$

40
%
$

45
%
$

45
%
$

50
%
$

50
%
$

55
%
$

55
%
$

60
%
$

65
%
$

70
%
$

75
%
$

80
%
$

85
%
$

90
%
$

95
%
$

Av
er
ag
e'
no

de
'li
fe
'(S
ec
on

ds
)'

Pe
rc
en

ta
ge
'o
f'M

es
sa
ge
s'R

ec
ei
ve
d'
at
'S
in
k'

Percentage'Contribu;on'to'HCCP'Goodness'Delay'

Sensor'Mission'vs'Average'Life'and'Percentage'of'
Messages'Completed'

Completed$Messages$ Average$Lifespan$

Figure 4.12: The relationship between HCCP Goodness Delay using Sensor Mission and simulation

results.

queues clusterhead motes more often. The problem with providing motes with Sensor

Mission values is that it is manual labour, and must be configured before the network

is deployed. Also, Sensor Mission would be the most successful with a heterogeneous

network; if all motes are the same and have the same Sensor Mission, the clusterhead

elections would degrade to an HCCP network that is 100% focused on Random since

all motes would be generating the same Goodness Delay values.

Paired Factors in Heterogeneous Elections

More than one factor can be paired together in the heterogeneous election to

generate the Goodness Delay. When networks first start, all message queues will be

empty and all batteries will be at 100%, this will cause collisions during the HCCP

Candidate Announcements, since all motes that elect to be a clusterhead that round
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will attempt to transmit their candidacy at about the same time (which will be close

to immediately) if the HCCP Goodness Delay is 100% generated from a single factor.

Adding a small percentage of the Random factor will vary the generated transmission

times, preventing the problem of equal Goodness Delays.

When adding Randomness to the Goodness Delay calculation will first generate

a goodness based on a primary factor (such as Available Message Queue Size or

Available Battery Power) which makes up the majority of the time, say 90%. The

Randomness will make a 10% variance of the remaining time. The variance in the

delay time will effectively be a tie-breaker for the transmission times for the motes,

avoiding many collisions while sending the announcements. The drawbacks to adding

the Random factor to the Goodness Delay is that it adds no value to the Goodness

Delay, as discussed in Section 4.1.4. Though, a small amount of Random Delay in

the network is beneficial to the network due to the collisions it avoids.

4.1.5 Tuning HCCP for Power Efficiency

HCCP adds more time where all the motes are fully powered on than LEACH,

because of the Roundtable Discussion and Clusterhead Candidacy stages. These extra

steps cause an energy drain on the network, but add lots of value to the network in

terms of message throughput and data dissemination. As mentioned in Section 3.2.3,

HCCP can be tweaked to be more power efficient while still utilizing the gains from

the Goodness Delay.

The easiest gain is to eliminate the Roundtable Discussion. This will improve

network life, but decrease the ability to quickly disseminate information. For static
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Figure 4.13: Tuning the efficiency of HCCP by minimizing Roundtable discussion allows HCCP

to have networks lifespans approximately equal to LEACH.
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Figure 4.14: In a tuned network, HCCP still has a much higher message throughput.
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networks that require a long lifespan, this is a good option.

The other option is to eliminate the Two-Stage Election, by eliminating the Clus-

terhead Candidacy stage. To compensate for not having the Clusterhead Candidacy

stage, the Clusterhead Election stage can be used to implement the Goodness Delay

features. To do this: in the Clusterhead Election, if a different mote announces itself

as a clusterhead first, concede being a clusterhead and become a clustermote. This

is the same idea as used in Clusterhead Candidacy, but done at the same time as a

Clusterhead Election. The network will then choose slightly less optimal clusterheads,

but overall creates a gain in which motes elect to be clusterheads. See Section 4.1.5

for more details about not using a Clusterhead Candidacy phase.

A well-tuned HCCP network will have a slightly shorter lifespan than a comparable

LEACH network, but will have a much higher message throughput than the LEACH

network due to the quality of clusterheads that are chosen. If lifespan is more desirable

than message throughput, the Sleep period between election cycles could be extended

to add lifespan to the network, which would make HCCP have a longer lifespan for

the same message throughput as LEACH.

A simulation was created with the HCCP and LEACH phases set to the same

length. The results can be seen in Figures 4.13 and 4.14. LEACH has a longer lifespan,

but dismal message throughput, while HCCP has excellent message throughput. The

lifespan of the router mote is noticeably lower in HCCP due to HCCP leveraging

the router motes to be clusterheads more frequently, which in turn is increasing the

message throughput. Consequently, the router motes have shorter lifespans as the

network relies on the routers to become clusterheads more frequently.
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Eliminating the Clusterhead Candidacy Phase

The Clusterhead Candidacy phase is a phase in HCCP that can be considered

overhead, and is an obvious target to eliminate when looking to achieve longer lifes-

pans. The Clusterhead Candidacy phase offers very little in the way of overhead,

however, since all motes that are not considering being a clusterhead are sleeping

during this phase. The clusterhead motes will then have time to share information

about which motes should be clusterheads for that round. If the Clusterhead Candi-

dacy phase is dropped, the functionality must be moved to the Clusterhead Election

phase.

The new Clusterhead Election phase would then work as follows:

1. Choose to be a clusterhead or not

2. Listen for clusterhead elections. If clusterhead, use Goodness Delay to discover

how long to wait until it is time to Announce itself as clusterhead.

• If a mote that has elected to be a clusterhead hears a clusterhead an-

nouncement before it sends one, choose to not be a clusterhead, and follow

the mote that sent the clusterhead election.

The rest of the protocol runs as previously prescribed. The problem with over-

loading the Clusterhead Announcement is that when a collision occurs, it will cause

much more damage to the entire cycle of the protocol. If a collision occurs during

the Clusterhead Candidacy phase, one or both of the motes that are announcing

their candidacy will opt to not be clusterheads, meaning that there will not be many

collisions during the Clusterhead Announcement phase. When a collision happens in
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Figure 4.15: HCCP using Clusterhead Candidacy vs Not using Clusterhead Candidacy. The

message throughput is comparable between the two networks.
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Figure 4.16: HCCP using Clusterhead Candidacy vs Not using Clusterhead Candidacy. The

results are quite even in terms of mote lifespan.
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the overloaded Clusterhead Announcement none of the motes in the neighbourhood

will be able to follow either of the motes that made the announcements, since the

messages will be garbled. This means that the motes will continue listening for clus-

terhead announcement messages, which means that these motes will at best be using

the third best clusterhead mote in the neighbourhood (the next best mote after the

two motes that had a collision).

Two simulations were created with all parameters the same, with the exception

that one of the simulations used a modified version of HCCP that dropped the Clus-

terhead Candidacy phase. The results, as seen in Figures 4.16 and 4.15, show that

whether the Clusterhead Candidacy phase is independent, or merged into the Clus-

terhead Election phase the results are approximately the same. This means that

though merging the Clusterhead Candidacy and Clusterhead Announcement phases

saves energy since motes are not on as long each cycle, clustermotes are using poorer

clusterheads each round. Based on the simulation results, there is very little differ-

ence between running HCCP in either of these configurations, so either could be used

in a physical deployment.

Sink Sleep vs Suboptimal Clusterheads

The HCCP Clusterhead Candidacy stage causes an issue called HCCP Blocking

(previously discussed in Section 3.2.2) where messages will not flow into motes that

are in range of the sink. There are two methods of allowing messages to get into the

motes that are in radio range of the sink:

• allow the sink to sleep some percentage of the time, or
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• have suboptimal clusterheads which will elect to be clusterhead despite the fact

there is a better clusterhead in the neighbourhood.

There are drawbacks to both of these options. If the sink is asleep, no messages are

being received at the sink, which could effect how many messages reach the sink. If

suboptimal clusterheads are used, more motes are electing to be clusterheads, more

motes are clusterheads, which puts a larger drain on more motes.

Simulations were run to see which method is better for solving the HCCP Blocking

problem. Simulations were run with 20 repetitions each, using the same starting seeds.

Figure 4.17 shows that there were no real differences with the percentage of messages

received at the sink. This means that even if the sink sleeps every few rounds, there is

no effect to the throughput of the network. This makes sense, as messages must flow

into the motes adjacent to the sink before they can be hopped into the sink. Whether

the sink sleeps, or motes elect to be suboptimal clusterheads, the path taken will

be approximately the same. Note that router motes in the simulation did not make

messages, and are therefore left off the chart.

There is also a concern that if the suboptimal clusterhead option is chosen, then

the lifespan of the network might be lessened, since more motes will be clusterheads at

the same time. Figure 4.18 shows us that the there is no significant hit to the network

life. While difficult to see in the chart, there is no statistical difference between the

two options for the ‘Super Expensive’ motes (196734 ± 611 for Sink Sleep Super

Expensive motes, 196782 ± 624 for Suboptimal Super Expensive motes).

There were also no significant differences between the two methods in terms of

number of collisions in the network. This is also interesting since suboptimal cluster-
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heads means that there will be more traffic in more areas, clusterheads will be closer

to one another.
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Figure 4.17: The percentage of messages created that were received at the sink is approximately

the same whether the sink periodically sleeps or not.

Clusterhead Opt-out

As discussed in Section 3.1, if a network is set up to do multiple iterations of

the TDMA schedule, clusterheads should be able to opt out during the Roundtable

Discussion. After running some test simulations to show that this could be a successful

idea, contradictions in the concept were found which showed how the idea is flawed.

To successfully have a long-lived network, the Roundtable Discussion should be as

short as possible, or left out altogether as the whole network must be on for the stage

to be fully utilized. Since Clusterhead Opt-out requires Roundtable Discussion, its

not a good fit for long-lived networks. In general, it would be better to have one longer
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Figure 4.18: Average mote lifespan is unaffected by whether the sink periodically sleeps or not.

TDMA run schedule than a repeated TDMA schedule. A longer TDMA schedule run

allows the network to send as many messages as possible, and even allows motes to

turn off when they are out of messages, and turn back on and send more (provided it

is still the mote’s TDMA timeslice and the mote has more messages ready to send).

Conversely, repeated TDMA schedules keep the same clusterhead, putting a large

load onto one clusterhead and losing a large amount of network adaptivity. Another

drawback is throughput. Since one mote remains a clusterhead for an extended period

of time, it can’t send the messages it’s collecting to motes closer to the sink. This

causes the messages are hopped much slower, causing message queues to fill.

There are instances where Clusterhead Opt-out could still be useful, such as net-

works that require quite long lifespans, where motes may go temporarily offline or

die at a frequent rate. The one election with many TDMA schedules would allow the
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motes to send in their readings if and when they can. If one large TMDA schedule

is run and missed, motes will not be able to send in their readings since they may be

dead by the time the next large TDMA schedule is published. This is, unfortunately,

quite difficult to show in simulation, but presented as a possible niche case where

Clusterhead Opt-out could still be useful.

Automated Ad Hoc Backbone with HCCP

There has been research into two-tier networks and networks with a backbone

set of motes that are set in the network for routing messages. LEACH does not

take advantage of the benefits offered by these motes, as it does not consider the

heterogeneity in the network. Heinzelman et al. [21] mention that a two-tier network

could be created where the routing motes collect from the neighbourhood motes, then

run a LEACH schedule across the routing motes where only the routing motes handle

routing the messages to the sink. The problem that exists with this model is that

if the backbone gets broken, there is no way for the network to recover, as shown in

Figure 4.19 (note that the sink is not visible in the figure). No motes past the break

in the backbone will be be able to send messages to the sink.

HCCP uses LEACH as a starting point, but eliminates this problem by distribut-

ing the clusterhead task to all motes in the network. HCCP will ensure that motes

which are better at the clusterhead task will choose to be a clusterhead more of-

ten than motes which are not as good at the clusterhead task. This is due to the

Goodness Delay that is part of the clusterhead election. Motes with larger message

queues, or more battery power, or that have been given a low Sensor Mission value
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Figure 4.19: Snapshot of a part of a WSN: routing mote R1 can not communicate with routing

mote R2 because the routing backbone is broken.

will choose to be clusterhead motes more often. Due to this, motes that are not good

clusterheads will not choose to be clusterheads, and motes that are good clusterheads

will choose to be clusterheads. This will create an ad hoc backbone across the motes

which are inclined to be clusterheads. But, if the backbone is broken by a mote dying

or going offline, the messages from beyond the break can still move past the break.

This is because all motes can assume the clusterhead role. If there is no router mote

in an area (due to the router mote going offline, or poor network distribution), other

motes in the network will take on the clusterhead role. This will cause the motes that
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are non-router motes to die sooner, but keep the messages from the network flowing

through areas with no router motes.

The HCCP Goodness Delay creates more robust networks that can handle change

within the network with minimal negative effects to the network. Messages will still

be routed well due to the Roundtable Discussion sharing routing information, and

messages can move over breaks in backbones since all motes can be assigned the

clusterhead task.
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4.2 Testbed Setup, Deployment and Results

To show the gains of leveraging heterogeneity in WSNs, a testbed deployment was

created and run. Test runs using both HCCP and LEACH as the network clustering

protocol were created, run and compared.

4.2.1 Building HCCP with 802.15.4

The goal of HCCP is to intelligently cluster motes in Wireless Sensor Networks,

not to create a new wireless standard. HCCP works as a middleware layer between

the mote’s application and the wireless radio that is using some wireless protocol,

such as Bluetooth, ANT radios, or even WIFI (802.11). The network protocol used

in the testbed deployment was 802.15.4.

Building on top of 802.15.4 requires that the protocol’s requirements are met. A

basic packet in 802.15.4 is constructed using several segments that have information

in well-defined places, as seen in Table 4.1. The physical layer header preamble is

handled by the hardware and is outside the scope of this work. It is assumed that

the preamble is functioning properly, and no changes need to be made to it for the

support of HCCP.

The bytes following the physical layer preamble are the Media Access Control

(MAC) layer header bytes. The bytes in the header are well-defined by the 802.15.4

protocol, with each byte given a special meaning in the header. The first two bytes

are the Frame Control Field (FCF), which can be seen in Table 4.1, that tell the

packet parser what to expect in the rest of the packet. The FCF details values which

affect how long the packet header will be such as whether the security is enabled, and
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which type of MAC addresses the packet header contains.

The next byte is the packet sequence number, which is a value that gets incre-

mented for every packet the sending mote sends. It is used to recreate data that is

split across multiple packets that are being sent to the receiving mote. In the testbed

deployment, data is assumed to be contained within one packet. The sequence num-

ber of the packets is therefore irrelevant, but can not be left out without violating

the guidelines described by the 802.15.4 standard.

Octets:
variable 2 1 4-20 0-14 n 2

Preamable Frame Sequence Addressing Security Data Checksum
Sequence Control Number Fields Header Payload

Table 4.1: Breakdown of data packets in 802.15.4. Adapted from [3].

Frame
Control

Sequence
Number

Destination
Address

Source
Address

Auxiliary
Security
Header

HCCP
Packet
Type

HCCP Packet
Payload

Checksum

Table 4.2: Customized 802.15.4 packets for use in HCCP with more detail.

Following the sequence number is the addressing field, which can be 4-20 bytes.

The range is due to the way that 802.15.4 addresses can be specified. 802.15.4 has 20

byte addresses that are designed to be globally unique identifiers, but can also use 4

byte addresses to create lightweight packets. When using the 4 byte addresses there

is a good chance that two motes in the network could have the same address. This

causes the tradeoff of reliability and understandably of data versus the per packet cost

to send a message in the network. There is both a source and destination address

specified in the addressing field.

An optional security field follows the sequence number. This field could be used

to encrypt the data in the packet, but it not used in the testbed deployment. HCCP
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can be used with encryption using this field with little or no modifications to the

HCCP protocol.

Finally, the data payload for an 804.15.4 packet is where all the HCCP logic is

added. HCCP divides up the data section of the packet into more well-known fields,

much like the creators of 802.15.4 have done. HCCP divides the data section in to 8

bits for packet type, and the remainder is the packet data. The custom HCCP packet

format is shown in Table 4.2. The The HCCP values for the HCCP Packet Type field

are as follows:

1. Clusterhead Candidacy Announcement - 0x0 - The sender of this message

is going to be a clusterhead candidate.

2. Clusterhead Announcements - 0x1 - The sender of this message is a clus-

terhead. Following the HCCP header is the mote’s ID.

3. Join Cluster - 0x2 - The sender of this message wants to join the cluster of

the recipient. The mote that has the address in the addressing field is the mote

it will follow. The clusterhead that is the recipient will use the ‘from’ address

as the ID of its new clustermote.

4. TDMA Schedule - 0x3 - A broadcast message to all surrounding motes with

the TDMA schedule the clustermotes will be following. A sample TDMA sched-

ule can be seen in Table 4.3.

5. Data Packet - 0x4 - Messages sent from clustermotes to their clusterhead. n

data bytes will follow the type field.
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Packet Runtime for First ID Second ID ... nth ID

Type each Mote (s or ms) & Delay & Delay & Delay

0x3 20 12:20 18:40 ... 88:70

Table 4.3: Sample TDMA schedule as sent by the clusterhead to its clustermotes.

6. Roundtable Discussion Packet - There are a few well-defined packets that

can be sent during a Roundtable Discussion. To save in the packets, they can

share the type field with the other well-defined packets, or can be assigned type

values of their own.

(a) Clusterhead Opt-out - 0x5 - Clusterhead can quit if there are multiple

iterations of the HCCP schedule.

(b) Roundtable Clusterhead Announcement - 0x6 - a replacement clus-

terhead if an existing clusterhead opts out.

7. Other - 0x8 - If any packets are defined for a customization of HCCP, this

value can be used. An instance where other packets could be used is during the

Roundtable Discussion, if the motes need to share some other information. In

the testbed deployment, routing information is shared using the other packet

type during the Roundtable Discussion time. The contents following the HCCP

header are at the discretion of the network administrator.

After the HCCP packet type field is the HCCP packet data field which contains

the packet payload. After that the 802.15.4 checksum follows to make the packet

802.15.4 compliant.
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4.2.2 Description of Testbed Motes

To create a heterogeneous WSN, motes from multiple vendors were selected for the

experimental WSNs. The motes selected have different radios, run different operating

systems and have differing capabilities. Below is a description of the motes used for

the experiments, the capabilities of the motes, the modifications that could be possible

to increase heterogeneity and the modifications made to them.

Sun Microsystems SunSPOT

Sun Microsystems Labs [35] saw the need for easily programmable motes with solid

form-factor and simple tools to use. SunSPOT stands for ‘Sun Microsystems Small

Programmable Object Technology’, which is designed to be simple to both program

and deploy. Sun had already created a version of Java to run on mobile phones called

Java 2 Micro Edition (J2ME) [36]. Sun used this code base for a starting point for

the SunSPOT programming interface.

The SunSPOTs are sold in boxes with 2 motes called “free-range” motes seen in

Figure 4.20, and one base station mote, as seen in Figure 4.21. The free range motes

are complete with a rechargeable battery that charges from USB, a CC2420 radio, a

number of sensors and LEDs for the programmer to use. The free range SunSPOTs

are divided into 2 boards, as seen in Figure 4.22. The top board is the board visible on

the top of the SunSPOT, which is the sensor board that holds all the sensors, buttons

and LEDS. The second board is the main board that hosts the microcontroller and

the radio. The base station SunSPOTs share the same main board as the free range

SunSPOTs, but do not have a rechargeable battery or a sensor board. The common
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main board is convenient, as the radio code can be shared between the both the

free-range motes, and the base station.

Figure 4.20: The Sun Microsystems SunSPOT.

Figure 4.21: A SunSPOT free-range mote and SunSPOT base station.
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Figure 4.22: A SunSPOT taken apart to view the components in the casing.

Possible Modifications to the SunSPOTs. The rechargeable battery the SunSPOTs

ship with is small and does not hold enough energy to power the SunSPOT for a long

period of time. A simple modification is to remove the back of the SunSPOT, replac-

ing the battery with any other power source providing up to 4.9 volts as stated in the

SunSPOT developer’s manual [37]. This could be done with 3 AA batteries, which

would provide much more available energy.

Uses for the SunSPOT in a Heterogeneous WSN. The base station the

SunSPOTs ship with makes a very convenient base station for a WSN. The radio

code developed for the free range SunSPOTs can be used on the base station while

it is connected to a computer. The base station is designed to run with Java code

developed using the SunSPOT suite developed for the SunSPOT, and the base station

can be easily accessed via a Java program. The program running the base station can
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then log the data to a database, or post it to a website to make the data collected by

the WSN available world-wide immediately.

The base station could also be used to make an entire computer a mote. That is

to say, the base station could be connected to a computer but not act as a sink. This

would allow the mote to have nearly unlimited power and memory resources, making

it an ideal routing mote.

Figure 4.23: Seeeduino Stalker with XBee port exposed.

Seeeduino Stalker and Arduino Technology

Seeed Studios [38] is a developer and retailer of microcontrollers online, special-

izing in Arduino-compatible microcontrollers. One of the products they provide is

a mote called the Seeeduino Stalker. The Stalker is a microcontroller based on the

Arduino design [39], using a compatible processor and standard Arduino pin layouts.

As seen in Figure 4.23 the Stalker has an onboard battery, and logging capabilities,
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using MicroSD cards to log to. The Stalker does not ship with a built-in radio, but

makes an XBee compatible slot available. To allow the Stalker to communicate with

the other motes, we chose the XBee Series 1 modules - which communicate using the

802.15.4 standard [3].

The Stalker does not have any native sensing abilities, but can be configured to

use either Arduino-compatible shields (which attach to the female pin headers on

the board to provide some service). This makes the Stalker ideal for creating highly

customized motes. The Stalker could be configured to have no sensors to make a

low-power routing mote with the ability to log large amounts of data on its MicroSD

card. Or, can be configured to use a variety of sensors and be a specialized sensor

mote.

A problem does arise with the Stalker’s battery power. The Stalker is sold with a

port to use a ‘button battery’, as seen in Figure 4.23. More power is very desirable,

so the Seeeduino Stalker motes will need to be fitted with a larger battery supply

before it could be used as a useful mote. The Stalker is sold with a port to plug in

an external power supply, so this is not a large problem.

A major problem with the Stalker is the CPU it uses. The CPU has very limited

program space. The code developed frequently overran the size of the program space,

causing the mote to crash. Due to this, a minimal installation of Contiki OS has been

created to allow the Stalker to work in the network with limited capabilities. The

Stalker can only participate in the network as a clustermote, not as a Clusterhead.

Another Arduino mote was made for the network. The Arduino Duemilanove

is a more powerful Arduino with more memory and fewer built-on features. The
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Duemilanove required an extension called a shield to allow the board to use a radio,

as seen in Figures 4.24 and 4.25. By adding a radio extension, the Arduino gains

the ability to send data over an 802.15.4 network, but does not replicate the logging

ability the Stalker has.

Figure 4.24: An Arduino Duemilanove turned into a mote using the XBee Shield and an XBee

radio.

Possible modifications to the Stalker. There is no battery packaged with the

Arduino Duemilanove, so adding a battery is necessary for the mote to work in the

network. The Duemilanove is a custom setup, and could be considered to be a

heterogeneous mote by design.

The Stalker ships with a button-cell battery that would not provide the stalker

with a very long lifespan. A larger battery would be necessary to make the Stalker a

useful mote.



Chapter 4: Experimental Setup and Results 84

Figure 4.25: The parts used to make the Arduino mote.

Uses for the Stalker and Arduino in a Heterogeneous WSN. The Stalker

could be used for a routing mote, utilizing it’s large storage capabilities provided by

the MicroSD card. The Stalker could also be used as a customized sensing node,

using an Arduino-compatible shield, or by using the Stalker’s general purpose pins to

connect to a sensor.

Software used. Since the Stalker does not have a radio built onto the board, a

third-party radio must be used. The Stalker provides an XBee-compatible port to

host a radio. This XBee-compatible port uses the serial port on the Stalker board

to contact the radio. This works well with XBee radios, as they natively work in

‘transparent mode’, which means that the serial transmissions are sent over-the-air

to other XBee radios in a way that the software using the radio need not know that

a radio is being used.
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Since this project requires developing custom packets, a different mode must be

used when using the XBee radios to send and receive custom packets. The XBee

Series 2, which is used in the experiment, has a mode called ‘API mode’, that allows

a developer to create and read packets manually. A library named Arduino-Xbee [40]

was used to create and parse 802.15.4 packets properly. The library was modified to

be more flexible and configureable to be more useful in the experiments.

tMote Sky

The origins of the tMote Sky are from University of California, Berkeley. The

basic design is named Telos [41], and has been marketed by several companies. The

Telos mote was marketed by MoteIV, renaming it the tMote Sky. MoteIV has been

rebranded and renamed Sentilla. Sentill is still marketing the motes, as the Sentilla

Mica. The motes have also been marketed as Crossbow, renamed to JCreate, all

of which have a similar design as seen in Figure 4.26. Each of these rebranded

Telos motes have slightly different processors with slightly differing memory sizes and

sensors. The Telos variants are therefore heterogeneous due to all of the different

variants that are available.

Possible modifications to the tMote Sky. The Telos mote has a large built-

on power supply, and should not need a larger power supply. The Telos does not

have a large onboard memory, adding an external memory would make it a good

router/clusterhead mote.
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Figure 4.26: The tmote Sky, which is a Telos variant.

Uses for the tMote Sky in a Heterogeneous WSN. There are a number

of onboard sensors making this a good mote for sensing tasks. Though, the large

battery also makes the tMote a good candidate for clusterhead, making the tMote a

very versatile mote.

4.2.3 Heterogeneous Setup of the Motes

Table 4.4 summarizes the motes, comparing the processors, radios, memory and

battery power. From the table it is easy to see the stark differences between the motes.

The SunSPOT has a huge amount of memory and much more powerful processor than

the other motes, but its battery is tiny. The tMote has a full operating system that is

very easy to work with, and a large battery, but not a lot of flash memory. Though,

the amount of flash memory is large in comparison with the Stalker and the Arduino

which have almost no memory and very small extended memory.
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Clearly, the SunSPOT is the most powerful mote in every respect except battery

power. The tMote will take the clusterhead head task the most frequently due to it’s

good extended memory size and battery power. The Stalker and Arduino will not

likely be clusterheads due to the limited extended memory which equates to limited

queue sizes available on the devices.

While creating the testbed deployment, developing the software for LEACH and

HCCP on the Stalker was an issue, due to the very limited program space. Due

to this, a minimalistic, chopped down version of Contiki OS had to be made. The

software uses the message queue code and interrupt callback code from Contiki, while

removing all other functions of the OS. Contiki functions that were removed were any

threads and context switching, drivers for sensors and portability code so this version

of Contiki can only run on Arduino microcontrollers. This code was ported to the

Arduino with the ATmega 328 chip first, then an even more stripped-down version

had to be made for the Stalker with the less powerful ATmega 168p chip. The Stalker

version of the software turns the message queue into a ring buffer, and has limited

roundtable abilities which only allow the Stalker to accept routing information, and

do nothing else during the Roundtable time.

Clearly, any of the modifications previously discussed could add more heterogene-

ity to this already highly heterogeneous network if so desired.

4.2.4 Testbed deployment

To test the real-world feasibility of HCCP, a controlled physical deployment was

run. SunSPOTs were used exclusively in the controlled deployment, as they were
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Extended OS /
Processor Radio Memory Memory Software

SunSPOT 400 MHz 32-bit ARM920T CC2420 1 MB 8 MB SunSPOT Framework
tMote 8 MHz 16-bit TI MSP430 CC2420 10 kB 48 kB Contiki OS
Stalker 20 MHz 8-bit Atmel ATmega 168P XBee Socket 1 kB 16 kB Minimal Contiki OS
Arduino 16 MHz 8-bit Atmel ATmega 328 XBee Socket 2 kB 32 kB Minimal Contiki OS

Table 4.4: Comparison of Motes in Testbed Deployment.

readily available in large quantities. A problem that plagued both testbed deploy-

ments was that the SunSPOTs used were about five years old, and the rechargeable

batteries that are built-in were starting to show signs of age. In the deployment, some

of the motes had the low battery warning light illuminated immediately despite being

fully charged. Due to the poor batteries, some of the motes started dying after only

4 hours of running the experiment. Due to the wear on the rechargeable batteries, all

the motes had a different amount of charge to use, which made the network hetero-

geneous in terms of battery power. Adding different types of motes would make the

network more heterogenous, but the results would be very difficult to interpret due

to the amount of heterogeneity.

LEACH was set up as prescribed by Heinzelman et al. [21] adding beacon routing

information to the Clusterhead Election announcement.

House Monitoring Deployment

To show HCCP working in a real-world scenario, motes were distributed around

a house. Setting out motes around a house can simulate house monitoring for tem-

perature, humidity or even security. Motes could also be used in a house for home

automation such as turning on lights in the room as a person enters, or having moving

what’s on television from one room to the next as a person moves through a house.
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Figure 4.27: Motes distributed around a house.

The motes were deployed at various heights across a house as seen in Figure 4.27,

with some motes placed outside in waterproof containers. The networks had 44 motes

and 1 sink distributed over (110) square meters (about 1200 square feet) on various

different levels and were made to communicate through various different materials.

The motes relayed their messages back to a sink that was placed centrally in the

house, this provided many routes back to the sink from any given mote. The motes

were setup to create five new messages per minute, with all messages to be routed

towards the sink. Radio range was reduced to 4 meters line-of-sight to keep the
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Figure 4.28: Cumulative number of messages received from the deployment done in a house.

network maintainable and to ensure the network was a multi-hop network. Motes on

the edges of the deployment were setup to be at least three hops away. The same

network layout was used with both HCCP and LEACH deployments.

HCCP proved to be very effective at moving messages to the sink faster, as seen

in Figure 4.28. At 600 minutes (10 hours) the motes closest to the sink became

inoperable, stopping the progress of the network. Since the network was setup as

quite sparsely, a few motes dying early near the sink would have a large effect on

the network. The performance of LEACH also degrades after the 600 minute mark,

having received 62% of its messages before the 10 hour mark.
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Before the 10 hour mark, HCCP achieved approximately double the message

throughput that LEACH did. Also, HCCP had a much more consistent curve, cre-

ating a more linear chart. LEACH has a step-function, probably due to the 5%

clusterhead rate as prescribed by Heinzelman et al. in their description of LEACH.

Since the network cycle was setup to take one minute, messages can only flow into

the motes next to the sink every 20 minutes, when the motes next to the sink choose

to become clusterheads.

HCCP, on the other hand, was focused on Message Queue (95%) and Battery

Power (5%). As the queues of the motes filled, they would be less likely to be clus-

terheads, allowing messages to to flow out of them. Then, as motes further away

from the sink get full of messages, they are less likely to become clusterheads. As

the motes further away choose to be clusterheads less frequently, the motes close to

the sink will more likely be clusterheads, which allows the messages flow towards the

sink. As the motes close to the sink fill with messages from the motes further from

the also sink fill with messages, they will not be clusterheads as frequently, which

allows the messages to be sent to the sink.

Grid Deployment

A second deployment was done with 30 motes and a sink. The motes were set up

in a 5 by 6 grid, with 1.5 meter spacings between them. This made the grid spread

out over a 7.5 meter by 9 meter area. The radio range was set to a 6 meter range,

which will degrade over the lifespan of the network. The sink was set up at the side

of the network, as seen in Figure 4.29.
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Figure 4.29: The grid deployment setup.

During both the LEACH and HCCP deployments, some of the motes immediately

had the battery low warning light illuminated, despite the fact all batteries were fully

charged before the deployment. Rechargeable batteries lose their ability to hold a

charge as they age; since these are older motes it is only natural that some of the

batteries would be quite degraded. The motes that were nearly dead at time of

deployment were left in the network for the test.

One problem about battery-powered devices is that as the battery drains, the

device becomes unreliable. This unreliability stems from transistors not switching

properly due to not being able to draw enough current, or not having enough voltage

to cause the transistor to change state. Since the SunSPOT batteries were old, the

motes were only reliable for about 10 hours. After 10 hours the motes could not

maintain the network schedule, as the timer would not work properly. Interestingly,
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during the HCCP deployment, 3 motes lasted over 60 hours but didn’t send any

messages during that time, meaning that the motes were in deep sleep for that entire

time. Not waking from sleep can happen when the wakeup timer never fires, leaving

the mote asleep indefinitely.
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Figure 4.30: Results from LEACH and HCCP Grid Deployments

The results from the grid deployment is shown in Figure 4.30. At the start of

the deployments, HCCP started with a better message throughput, as expected from

the results of the simulations. The throughput of HCCP then drops to a slower rate,

allowing LEACH to catch up, and overtake it. HCCP then levels off, as motes begin

to fail as the 300 minute (5 hour) point approaches. Motes close to the sink were

failing due to going to sleep, causing the messages to not have a route to the sink.

The LEACH curve is more consistent than the HCCP curve, having steady steps.

The steps are quite interesting, as the LEACH network cycle was setup to take a

minute, so the steps should be in shorter cycles than 10 minutes.
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If the motes had be provisioned with larger batteries, HCCP should maintain the

slope it was forming before the 100 minute mark. The HCCP deployment had the

unfortunate luck of having the motes closest to the sink die first due to poor batteries,

dying early of reasons unrelated to the protocol.

For network lifespan, the last message received in the LEACH network was at 646

minutes (10.75 hours). Since the motes closest to the sink in the HCCP deployment

had problems waking from sleep, the last message was received at 3489 minutes (58.15

hours). This huge network lifespan is due to a mote rebooting after being in deep

sleep for a long time, rejoining the network and sending it’s messages to the sink.

LEACH likely had motes do the same thing, but the motes weren’t as close to the

sink and therefore did not create these odd data points.

Overall, HCCP has worked as a proof-of-concept in a real-world deployment. Since

older motes were used, the results are difficult to interpret. Despite these difficulties,

HCCP worked well, showing its real-world plausibility.
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Conclusion and Future Work

In both simulation and testbed deployments, HCCP has increased message through-

put while having very little negative effects on network lifespan. HCCP provides a

robust and tuneable network that provides many options to elect motes that have

certain properties as clusterheads more frequently. Depending on the configuration,

HCCP appears to be able to provide network lifespans as long as LEACH while hav-

ing almost double the message throughput, as shown in both simulations and physical

deployments.

While HCCP is more complex than LEACH, it has a more robust design, and

provides infrastructure for disseminating information across the network. HCCP relies

on the network to have schedules in tight synchronization, which is a requirement

in all WSN protocols, the novelty that HCCP adds is to use this highly coupled

time to describe how good a mote would be at being a clusterhead. The Goodness

Delay utilizes time that would otherwise not be used to optimize which motes will be

clusterheads.

95
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HCCP is designed to be an easily tuneable protocol, giving the network designer

tools to make the best network possible. An example of tuning the network is changing

the length of the Roundtable Discussion time. This time is allotted to share any

network-specific information that doesn’t fit anywhere else into the network. HCCP

provides some suggestions as to what to share during this time, but is intended to be

customized for every individual network, or even left out if desired.

Heterogeneity in a WSN can be a powerful thing, and HCCP uses this hetero-

geneity to elect better clusterheads. The definition of ‘better’ is up to the network

designer to choose. HCCP allows the election to focus on motes that have qualities

that a network designer feels are important to the network. This thesis provides in-

sight into what heterogeneous factors have to offer to the network, how the affect the

election, message throughput and network/mote lifespans.

Overall, heterogeneity, whether the differences are small or large, can be used

to generate better functioning WSNs. Choosing motes that are better for the task

of clusterhead will prevent lost messages with no cost to the lifespan of the network.

The gains of using heterogeneity that is already inherent in every WSN is free, having

few negative effects. Having the heterogeneity of a network self-assessed will ensure

that as a network degrades over time that the best possible motes at that time will

be doing tasks that they are well-suited for, providing gains to the network from the

time it is deployed to the time the last mote ceases to function.

Looking forward, HCCP could be simplified for further energy savings. For in-

stance, the Clusterhead Candidacy phase could likely be merged with the Clusterhead

Announcement phase, as there is little difference to the network lifespan or message
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throughput when the phases are merged. Since removing the Clusterhead Candidacy

would make HCCP simpler and would not have any negative affects on the network,

it would probably be a good idea. Further research could done on how HCCP could

surpass LEACH in terms of network lifespan.

A better routing protocol should be incorporated into the design of HCCP. More

research could be done to see which routing algorithms would be the best with HCCP.

The routing algorithm should also take advantage of the heterogeneity of the network,

routing messages through stronger motes. HCCP was designed with this in mind,

and is easily changed to use any routing algorithm. Further, if a mobile sink is a

consideration, then using a routing algorithm that works efficiently with networks

that have a mobile sink, such as MobiRoute [42], is also possible.

Querying motes in the network from the sink was not a focus of HCCP. If a

network administrator wants to request data from a mote, there is no set method of

sending the messages to any mote in the network but the sink. To add querying to

HCCP, a different routing method would need to be used, as only the sink’s position

is advertised while using beacon routing. A routing protocol that has a table of all

the mote’s last known positions would need to be used. Once routing is set up, the

querying framework would need to be added. This feature could be added into the

Roundtable Discussion time, or into a new phase that is dedicated to mote querying.

HCCP was not designed with any inherent security measures. If messages are

solely to be routed to the sink, simple RSA encryption [43] could be used to encrypt

the messages that are being sent to the sink. Other security issues such as an errant

mote that is dying continually becoming a clusterhead could be solved by blacklisting
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motes that are continuously clusterheads.

To create a WSN with fewer collisions in the network, it is possible to use Fre-

quency Division Multiple access (FDMA) [44] to use different radio channels for dif-

ferent clusters. Clusterheads could announce the channel along with the TDMA

schedule. Using multiple radio channels during the TDMA clustermote reporting run

time would remove many of the collisions that happen during the TDMA run time.

Radio power could also be adjusted to suit the size of the network. Adjusting the

radio power to the lowest transmission power saves mote energy, and prevents motes

from flooding the network with unecessary messages from motes. Also, smaller trans-

mission ranges make clusters smaller. Changing the radio power effectively changes

the cluster size, since few motes will be in range. Lin et al. [45], Zheng et al. [46],

Xiao and Yu [47] and others have developed efficient methods of adjusting the radio

power to enable motes to talk to a limited number of neighbouring motes. Messages

to communicate radio power could be added to the HCCP’s Roundtable Discussion,

or piggybacked on announcement messages, such as clusterhead announcements.

5.1 Future Goals of WSNs

Smart Dust [48, 49], is one of the potential futures for WSNs. As circuits, pro-

cessors and motes get smaller and smaller there may come a point where motes are

no larger than the size of dust. These motes would have near negligible unit cost

and be deployed in the thousands. Smart Dust would communicate wirelessly, mon-

itoring some phenomena and glean energy from the environment to stay powered.

Smart Dust would need to be deployed with a dense network that would need to be
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a multi-hop network, as each device would have minimal battery power and minimal

transmission power. Any protocols designed would have to be scalable to accommo-

date large networks of Smart Dust. HCCP has been designed to scale, but smart

dust might be a larger scale than HCCP was designed for, though HCCP provides

interesting ways to use the differences in the dust well.

As devices get smaller and more feature-rich, the eventual outcome might be that

all devices are networked and can communicate with each other. When all devices can

communicate with each other, they would create ‘an internet of things’, a term used

frequently by Adam Dunkels [50], who is the creator of Contiki OS [51, 52] and a key

member of the WSN community. Dunkels et al. [53] believe that devices will communi-

cate with each other using a lightweight version of IPv6 called 6LoWPAN IPv6 [54]. A

subset of the larger IPv6 protocol [55] is an obvious choice, as it can provide unique ad-

dresses for 3.4×1038 devices, which would provide 48 000 000 000 000 000 000 000 000 000

addresses for every one of the 7 billion humans on Earth. This means that every single

device in the Internet of Things could have it’s own address, and be able to commu-

nicate with any other device in the internet of things. This would make the entire

Internet a massive scale WSN of sorts, with many heterogeneous devices all connected

using the common language of IPv6. HCCP uses IPv6 addressing, allowing networks

running HCCP to possibly be part of the internet of things.
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