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ABSTRACT

The Wiener-Hopf technique is used to investigate the coupling
between two collinear parallel-plate and circular waveguides, located
in free space. Expressions for the reflected, transmitted and the rad-
iated fields respectively in the exciting waveguide, coupled waveguide
and free space are obtained and are presented graphically for some
special cases. The exact solutions are then expanded to yield the sol-
ution of the ray theory of diffraction with modified diffraction
coefficients. Also, for the case of circular waveguides, a spherical
wave factor is derived, which takes care of diffraction by small cir-
cular apertures in hafd screens. It is shown that the results obtained
by the Wiener-Hopf technique for the coupling between two collinear
semi-infinite parallel-plate waveguides are more accurate than those
obtained by Hu's transmission formula.

Numerical methods are also used. The expressions for the radiated
fields due to the coupling between two collinear parallel-plate wave-
guides are derived in terms of the reflection and the transmission co-
efficients of the dominant mode and the evanescent currents on the wave-
guides walls. These coefficients and currents are then obtained by an
application of the moment methods and are used to find the radiation
fields. The results are shown to be in good agreement with those of

the Wiener-Hopf technique.
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Unless otherwise stated, the symbols most commonly used in this thesis
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Greek alphabet:

v Complex variable in the Fourier transform domain,
ﬁi Electric hertz vector,
wr(p,z) Total reflected field in the exciting waveguide as a function

of the cylindrical coordinates p and z (circular wave-
guides case) .
wixc(p,z) Reflected field in the exciting waveguide due to only its

open end (circular waveguides case).

wint(l)(p,z), ¢:nt’(z)(p,z) Reflected field in the exciting waveguide
due to the interactions between the open ends of the two
waveguides with final diffraction at the open ends of the
exciting and coupled waveguides, respectively, (circular wave-
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Vf Transverse part of the Laplacian operator,
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¢, ¢ Fourier transform pair, with & 1s the Fourier transform of ¢.
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CHAPTER 1

INTRODUCTION

Scattering of electromagnetic and sound waves by parallel plate
waveguides and cylindrical structures have recently received increasing
attention due to their importance in radiation as transmitting or receiv-
ing antennas [1]-[3] and their application to sensor booms [4] and other
microwave problems [5]. Optimization of the radiation characteristics
of an open ended waveguide has also been investigated [6] and was achieved
by varying the amplitude and phase of the exciting modes. This optimi-
zation may also be achieved by introducing another waveguide and produc-
ing mutual coupling effect. However, in large scale microwave arrays,
the mutual coupling among various elements is a significant parameter and
is generally used to control the radiation characteristics [7]-{10].
Previous analytical investigations of these structures are mostly based
on the ray theory of diffraction [11]. This technique is limited to
high frequency scattering and to certain geometries or orientations, due
to difficulties in including all the rays.

Keller's theory of diffraction has been used extensively by many
authors to find coupling between two antenna systems. Hamid [12] has
used the ray theory to find the coupling between horn antennas under
near field interactions. Dybdal et al [7] have applied the theory to
obtain mutual coupling between TEM and 'JL']EZ“’1 parallel-plate waveguide
apertures.

There have been several studies on the coupled waveguides, mostly

concerned with the waveguide apertures in one plane. The first was



performed by Wheeler [13] who showed that a single-mode solution was ade-
quate when the radiators are in the far field of one another. Later,
Galejs [14] solved the problem of coupling between two parallel slots in
a ground plane using a stationary formulation due to Richmond [15]. He
avoided the solution of integral equations by assuming the tangential
magnetic field at the coupled waveguide aperture to be the same as that
on the ground plane in the absence of the coupled aperture. Similar work
was done by Lyon et al [16] for the same problem as Galejs. The most
recent work in this area has been handled by Mailleux [8] by solving an
integral equation governing the coupling of two waveguides. For infin-
ite arrays, the coupling effects are investigated in references [17] -
[24].

To the best of the author's knowledge, no one has attempted to find
the coupling between collinear waveguides either semi-infinite or finite
waveguides, when one of the waveguides is an exciting (or transmitting)
and the other is a coupled (or receiving) one. Kashyap and Hamid [25]
have solved the problem of scattering of a plane wave by a slit in a
thick conducting screen. This problem is closely related to the problem
of coupling between collinear semi-infinite parallel plate waveguides.

The Wiener-Hopf technique was invented about 1931 to solve an inte-
gral equation of a special type and has been used to solve problems involv-
ing diffraction by geometries having discontinuities in the transverse
or the longitudinal directions [26]. However, the technique usually in-
volves laborious mathematics based on the complex variables theory.
Moreover, some problems yield expressions which cannot be solved exactly
by analytical techniques. As a result there have been some studies to

overcome these problems. These studies are mainly due to Lee [27],[28]



who investigated diffraction by two staggered plates. He used the
Wiener-Hopf technique and then extracted its dominant asymptotic terms
so that the result admits ray interpretation. He also introduced a mod-
ified diffraction coefficient which takes care of multiple reflections
and diffractions along the shadow boundary only.

The modified diffraction coefficient of Lee is only applied where
dimensions of the structures are very large compared to the wavelength.
In other words, one needs to find a condition for its restriction,
especially when introducing another waveguide in front of the exciting
one.

Another active technique which is widely used in problems related
to antennas and diffraction in unbounded space is the moment method [23].
Morita [30],[31] has investigated the scattering and diffraction by an
arbitrary cross-sectional semi-infinite conductor, by introducing an
evanescent current near the discontinuities which may be evaluated by
the moment method. Morita's investigations have paved the way to solve
problems of diffractions in bounded space [32], mainly waveguides. Wu
and Chow [32] have obtained the reflection and transmission coefficients
due to obstacles in a parallel-plate waveguide of infinite length.

They also have obtained the reflection due to the open end of a semi-
infinite parallel-plate waveguide.

To the best of the author's knowledge, the problem of coupling be-
tween waveguides, either semi-infinite or finite, has not been attacked
by the above technique, especially for the radiation field. The aim of
this thesis is to investigate the coupling between collinear parallel-
plate and circular waveguides. The two waveguides may be of semi-infinite

or finite length. The Wiener-Hopf technique is used to formulate the



problem. The results are expanded and upon retaining the first term in
the expansion, the final results are found to be the same as the ray
theory results when using the modified diffraction coefficient of Lee
[27]1,[28] in the case of parallel-plate waveguides. Getting ray theory
results allowed us to know the condition for the applicability of the
ray theory of diffraction in conjunction with the modified diffraction
coefficient of Lee. The Wiener-Hopf solution is also restricted for
large separations between two coupled waveguides. For small separation,
or in fact any separation, the numerical technique is adopted and expres-
sions are obtained for the radiation fields.

Chapter 2 represents the formulation and the solution for the prob-
lem of coupling between two collinear semi-infinite parallel-plate wave-
guides. One of the two waveguides is an exciting one (or transmitting
antenna), while the other waveguide, which is separated from the exciting
waveguide by a distance L, is the coupled waveguide (receiving one).
TE°’£ mode with £ odd is used as an excitation. £ may also be even,
but this case is not included here, but is the same as £ odd. The TE
case represents the soft houndary case in electromagnetics, where the
electric field component is parallel to the edges. The formulation for
‘the TM case, is the same as for TE and hence is not included. The Wiener-
Hopf technique is used to formulate the problem and expressions are ob-
tained for the reflected, transmitted and the radiated fields in the
excited waveguide, coupled waveguide and free space, respectively. Some
results are obtained and are discussed at the end of the chapter.

Chapter 3, treats the coupling between two collinear semi-infinite
circular waveguides. The TM0 » mode is excited in one of the waveguides,

’

while the other acts as a coupled one (or a receiving antenna). The



case of TMo,m represents the hard boundary case in electromagnetics,
where the magnetic field component is parallel to the rims of the wave-
guides. Again, the Wiener-Hopf technique is used in the formulation.
Results for the reflected, transmitted and radiated fields are obtained
and are presented at the end of the chapter.

In order to reduce the solutions to those of the ray theory of
diffraction, the integral in the final expressions is approximated by
expanding the transformed Green's function G(a) in a power series and
retaining the first term only. Consequently, the results after integra-
tion are in terms of a series convergent under certain conditions. This
is presented in Chapter 4, where for the-case of circular waveguides, a
modified diffraction coefficient and a spherical wavefactor are obtained.
It is shown that the spherical wavefactor has to be introduced when
treating problems of diffraction by a small aperture in hard screens.
Results using the modified diffraction coefficients are obtained and
are compared with the exact ones to show its validity. Since the first
term of the convergent series yields the ray theory results in conjunc-
tion with a modified diffraction coefficient, the higher order terms of
this series provide the correction when the separation distance is not
large enough. This is discussed in detail in Chapter 4.

Chapter 5 deals with the coupling between waveguides of finite
length. The scattering matrix approach is used in conjunction with the
Wiener-Hopf results of coupling between two semi-infinite waveguides.
The ray theory results are also given in order to examine its validity.

Unfortunately, as far as the author knows, no previous analytical
or experimental results are available at the present time to compare

the results obtained in Chapters 2, 3 and 5. This has encouraged the



author to find other means for comparing these results. On this line,
the investigations are concentrated on the case of parallel-plate wave-
guides, though the case of circular waveguides may be treated in the same
manner. In Chapter 6, Hu's transmission formula [33] is used to examine
the power received in the coupled waveguide using Kirchoff's approxima-
tions [34], the ray theory and the Wiener-Hopf technique. Some results
are obtained and discussed at the end of this chapter.

Another way to compare the results is the numerical technique,
since it can be used for any separation distance between the two parallel-
plate waveguides. Formulas are derived for the radiation patterns in
terms of the reflection and transmission coefficients and the physical
explanations are given for those formulas. Some results are obtained
for the semi-infinite and finite cases and are compared with those obtained
in the previous chapters. Discussion of these results are shown in
detail in Chapter 7.

The last chapter is concerned with the general discussion and the
conclusion of these investigations. Some future research topics are also

presented in this chapter.



CHAPTER 2

COUPLING BETWEEN TWO COLLINEAR SEMI-INFINITE

PARALLEL-PLATE WAVEGCUIDES

2.1 Introduction

As mentioned in the previous chapter, the Wiener-Hopf Technique is
used to solve the problem of coupling between two waveguides, in other
words, coupling between two antenna systems, where the exciting waveguide
is used as a transmitting antenna and the coupled waveguide is used as a
receiving antenna. In this chapter, the two antenna systems are two
collinear semi-infinite parallel plate waveguides, as shown in figure
2-1. Jones' method of formulation is used, and a modified Wiener-Hopf
equation of the second type [35]-[37] is obtained. Expressions for the
reflected, transmitted and radiated fields are obtained respectively in
the exciting waveguide, coupled waveguide and in the free space. The
reflected and the transmitted waves are expressed in terms of the guided
modes.

Also it has been shown in this chapter that results of the trans-
mission (coupling between the two waveguides), reflection and radiation
power can be obtained by a priori knowledge of the reflection coeffi-
cient of an exciting single semi-infinite waveguide, together with one
value of the plus part of the Green's function associated with the ob-
tained Wiener-Hopf equation. The last step is to evaluate numerically,
an integral of the semi-infinite type [30] using the Gauss-Laguerre quad-
rature formula [38].

Some results for the reflected, transmitted and the radiated fields

are obtained and are discussed at the end of this chapter.



2.2 Derivation of the modified Wiener—-Hopf equation

Consider two infinitely thin and perfectly conducting parallel plate
waveguides, having width 2a and separated by a distance L, located in
free space as shown in figure 2-1. With a time factor e-th, an inci-
dent field consisting of a TEo 9 mode is assumed to be propagating in

the exciting waveguide along the positive z-direction in the form:

- P U . T )
Ey = ¢ (x,2) = cos(Za e 5 | A TR TR TR, (2-1)
where
1
Y, = [GD? - K17 (2-2)

and k dis the free space propagation constant. Realizing that in any
physical medium, there exists inevitably some loss no matter how slight
it is, therefore, the idealized lossless medium (the free space in our
case) should be regarded as a limiting case with vanishingly small loss.
In the Wiener-Hopf technique, it is convenient to retain a small but non-
zero loss, that is, writing k = kl + ik2 - k1 >> k2 > 0. By such an
assumption, certain limiting processes can be avoided, as will be seen
later. Hence for a lossless solution, we let k2 -+ 0 in the final sol-
ution of the lossy solution. Now, the resulting total electromagnetic
fields may be found from ¢t =¢ + ¢i , where ¢‘ is the scattered elec-
tric field and satisfies a two-dimensional wave equation of the form:

32
557 + k)¢ = 0 (23]

(V;‘_: +
where Vi is the transverse part of the Laplacian operator. Instead of
of using the Wiener-Hopf integral method [39] and then the Fourier trans-
form, the author uses Jones' method [40] which by-passes the integral

2
equation. In the problem under consideration Vi is 5%? . Fourier



X
P
exciting wavegmde—\ /—coupled waveguide
2 Vi
J /
g
Ey‘ (Ox2 d=2a o] Z
TE;2 l

¢ .4

ke ik >

Fig. 2-1 Geometry of the problem for two collinear semi-infinite parallel-plate
waveguides separated by L.



10

transforming of (2-3) with respect to z gives:

a? 2va
G5 «“Ye=g > x| < k (2-4)

where ¢ and ® are a Fourier transform pair given by

Blx,0) = —— J $0x,2)e Pdz ) o = OHT (2-5)
V27
and g
Bi(x,2) = — J Slx,0)e Fay, (2-6)
7

In equation (2-4), 7Y is given by

Yy = Va*-k* = -iy k*-a* (2-7)

The branch cut of <y used in (2-7) has been chosen so that Y has a
positive real part when -k2 < ST kz. Note that the scattered field ¢
attenuates at least as rapidly as exp(—k2|z]) as |z| -« inside both
waveguides. Outside the waveguides the scattered field is a radiated
field, which is a cylindrical wave at large distances. It behaves

asymptotically as

§im p—lfzei(k1+ik2)p - p > (2-8)

and attenuates at least as rapidly as exp(—k2|z|) as |z| + », There-
fore, the transformed wave equation in (2-4) holds at least in the strip
|t|] < k in the complex g-plane, shown in figure 2-2.

2

The function &(x,0) can be decomposed into three parts [26] to give

igL

P(x,a) = ¢_(x,0) + @l(x,a) + e ¢+(x,a) (2-9)

where
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0

¢_(x,0) = N dJ(:vc,z)emz dz (2-10a)
Ve _J,
'L

d (x,a) -1 ¢(x,z)e1az dz (2-10b)
3 Yar o

¢+(x,a) -t ¢(x,z)eia(z_L) dz (2-10¢)
o |

The functions ¢_(x,0) and @+(x,a) are analytic in the lower
(T < kz) and upper (T > —kz) halves of the complex c-plane, respect-
ively. As L > z > o, and eiaz has an essential singularity as
|¢] > © in the lower half of the o-plane, therefore the entire function
¢l(a) has an algebraic behavior at infinity only when |a| +  in the
upper half plane. Hence, ¢1(a) may be identified as a "plus" function.
Multiplying (2-10b) by e ¢ , we get

L .
e—iuLQ @) = 1 J ¢e10‘.(2-—1.) .
! Y2m o

0
= .__].'— J ¢'eiaz'dz' (2-11)

Y&

By a similar argument, e_iaL¢1(a) may be identified as a "minus"

function.

Within the strip |T! < kz’ the solution of (2-4) can be expressed

as

~

Ale ™ , x> a
¢(x,a) = ¢&_(x,0) + ¢1(x,a) - eiaL¢+(x,a) = { _A(a)er , X< -a

2B(a)cosh(yx) |x| < a

A

(2-12)
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Now, an application of the boundary conditions on the electric and mag-

netic fields at the plane x = a gives

(1) o (a+,0) = & (a-,0) = o (2-13a)
(11) ei“L¢+(a+,a) % ei“L¢+(a-,a) - g (2-13b)
(iii) @l(a+,a) = @1(3-,a) & @l(a,a) .(2-1BC)
1 L 3 i :
{v)  8)(at,a) = 0} (a-,0) + J giL- e %24z
V2T 0 = x=a
g-1  (Gomy))L
- B __l;.éﬂ. e f ﬂ?f_ = -1 L
0] (a-,0) + =3 (-1) AT (2-13d)

where the prime notation denotes differentiation with respect to x .

Differentiating (2-12) with respect to x , and setting x = a

]

we have

i

8! (a+,0) + 8 (at,0) + e “L¢;(a+,a) = —A(a) ye V2 (2-14a)

o' (a-,0) + ! (a=,0) + eiaLQL(a—,a) 2B(a) +ysinh (ya) (2-14b)

From (2-13a), (2-13b), (2-13c) and (2-12), we obtain
Alw) = @l(a,a)/exp(—Ya) (2-15)

2B(o) = ¢l(a,a)/cosh(ya) (2-16)

Subtracting (2-14a) and (2-14b) and making use of (2-13d), (2-15) and
(2-16), we obtain the following modified Wiener-Hopf equation of the

second type [41] which is valid for [T| < k2 :

.&:.l. (ia-YR')L
T ) F BNy # 8, (a0 felay 5 T ) ¢
- L 3 2ay2m Ry
3 |T| < kz (2“17)
where

J_(a) = &' (at,q) - ¢! (a-,a) (2-18)



s J+(a) = ¢;(a+,a) - ¢l(a—,a) (2-19)

and G(a) = cosh(ya)/y exp(ya) (2-20)

The functions J (@) and J+(a) are exactly proportional to the in-
duced current, due to the scattered fields, on the wall x = a of the
exciting and the coupled waveguides,respectively. These two functions
are analytic, respectively, in the lower (T < kz) and the upper

(t > -kz) halves of the complex a-plane. G(a) is the transformed
Green's function associated with the Wiener-Hopf technique, and can be
factorized into a product G+Gu)G_(a), where G+(a) and G_(a) are
analytic functions respectively in the upper (T > _kz) and the lower

S kz) halves of the complex c-plane and are given by ([41], pp.154):

m .oa mo,.T
_ oy o [_cos ka iy i~—[l-ctlm— +iv]
G, (@) =6_(-a) = (-—km el 2ka

Y27 ,25X izaa
et E 1-“’—’— 1+ 29e ™7 (2-21)
n=1,3,5,.. Yn
where ¢ = 0.57721 ... is Euler's constant, and
_ r A2 _ .2q1/2 x
Y ™ [(23) k<] (2-22)
2.3 Solution of the modified Wiener-Hopf equation
Equation (2-17) can be modified to the form:
-1 G_(a)
I_(@6_(@) + 8 (a,0)/6,(@) = == (-1) 2 —
1 ZaVEE YE
-1 -'YR'L
e’ (@[ (1) 7 S+ 1 ()] (2-23)
2ay2m g

13



14

The right hand side of (2-23) is then decomposed by isolating the pole
in the first term and using decomposition formula for the second term.

Thus, we have,

. 2=y G (@) 9y
)T = e A Oy 6 (o) - 6, i) 1/ (atiy,)
2am YR ZaTE
> =y G, (iy,)
pA oqyT L (2-24)
Zam = YR.
and
otid iBL
. . -1 -Y,L G (B)M(B)e
' @B ()T 2k 5 @] = 51 J — a8
2a\2m 1y B
L Me_emee)ett
oo J e dB , -k <-d<t<d<k (2-25)
—oid
where
=1 -Y,L
-iml —=e 'f
M(@) = —— (-1) —_— = J. (&) (2-26)
ZaYE a-l-lYE' +

The first and the second terms in equations (2-24) and (2-25) are regular

respectively in the lower (T < kz) and the upper (T > -kz) halves of

the complex o-plane. Substituting (2-24) and (2-25) into (2-23), we have,
2=

imf —_—= 1 -
J ()6 (@) - —— (-1) — [G (o) - G, (iy,)] +
- - Zam oy, "= +10

L (eHd c_(em@etF
=T J“* s dg = -¢1(a,a) /G+(0t)

—ootid

u w-id iBL
. _int (-1)&TL G, (ivy) 1 J G_(B)M(B)e

- dB (2-27)
28{2_11‘ otiy 3 2mi B-ol

=i d
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Note that the left hand side of (2-27) contains functions that are regular
in the lower half of the a-plane defined by T < k2 , while the right-
hand side contains functions that are regular in the upper half of the
o-plane, defined by T > -kz° Since these two half planes overlap, it
follows from the analytic continuation that (2-27) is defined in the
entire a-plane, and both sides are equal to an entire function P(a).

It can be shown with the help of Meixner's edge condition [42],
that P(a) is bounded, and equals to zero as Ial + o, By Liouville's
theorem [43], P(a) is identically zero everywhere. From (2-27) it

follows that:

oobid iBL
imd 222 6, (ye) - G_(B)M(B)e
(-1) oy N(@)6_(a) = 5= = dg
23V2ﬁ 2 Lk
, —k <-d<t<d<k (2-28)
2 2

for all o+ where N(a) is defined by:
(o) (@) inmd —'2‘-21-1 1 ( )
N(@) =J () - —— (-1) : 2-29

i 2EVE oLy,

Equation (2-28) contains two unknown functions N(@) and M) .
Thus to find these functions, we need another equation which can be

obtained in the following manner. Multiplying both sides of (2-17) by

iaL

e G+(0t) , we have:

-ialL = 2= =¥ L -
0y (a,0) _ —imd (_I)T‘L e = G, (a)-e iOLLlxl(ct)G_l_(ot)

e
I, ()6, () + G_(o) 2aVam oy,

(2-30)

In the last equation, the only term that has singularities in both

halves of the a-plane is the second term in the right hand side, and



must be decomposed in the same manner as equation (2-25), i.e.
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. =-1ds (yn(p)e BT mHide @IN(eyaF"
e el (W)N(@) = 3 ¥ g - 1 +
- 27i B-a 2mi B-a
—a-id —otid
3 =k <-d<t<d<k (2-31)
2 2

Substituting (2-31) into (2-30), after some rearrangement, we have,

e (a0 J“"‘i“c:,r(B)N(e.)e‘iBL
1

G () T oomi
~eotid

B-o. g =

L %, @neye T
~o-id

M(G)G+(C¢) o

Similar to the arguments after equation (2-27), both sides of (2-32) are

zero, and hence we obtain from the right hand side,

M(a)G+(a) =

L%, en@)e P
2111[ B aB , -k2<-d<1:<d<k2 (2-33)
~oid

This is the other equation for the two unknowns N(a) and M(a) .

Equations (2-28) and (2-33) are two coupled integral equations in the

two unknowns N(a) and M(a) . These two equations can be decoupled

[41] by changing B to -B in (2-28) and o to =-a in (2-33). Then

the sum and difference of the obtained two equations, lead to

id -iBL
2-1 G, (iy,) T %, (®)s(B)e
_jﬂ(_l) 7 _+ &7 + G (0)S(a) = - + dg
23}(% C¢+iY£ - 2mi g+o.
=-co-qd
y -k2<-d<'r<d<k2 (2-34a)

and

dB



co—id -iBL
-1 G, (y,) _ G, (8)D(B)e
I T v @ =5 | a8
2a\2m il l_ahid
, -k <-d<t<d<k (2-34b)
2 2
where

S(a)

= N(o)*M(-a)
D(c) :

: £-1 =Y, L
- o g Lo AN g aiES 1 e 'L ¥
= U_@F,60] === €D g 25,1 (2-35)

2aV2m

where the upper and lower signs correspond respectively to S(o) and

17

D(a). Equations (2-34a) and (2-34b) are two decoupled integral equations

and are of the same form. Solving these two equations for S(a) and
D(ca) , we can obtain J+(a) and J_(a) wusing (2-35). Substitution
of the results into the modified Wiener-Hopf equation (2-17)

leads to @1(a,u). Consequently, using (2-15) and (2-16), A(c) and
B(0) can be determined, and hence one can obtain the final solution
through (2-12) and the inverse Fourier transform of ®¢(a,0), as will
be shown later.

The integral in the right-hand side of (2-34) is of the form

oo—-id
L r G (BE(B) L i
J B+a
—co—jid
ca-id —ya :
& cosh va e E(B) -iBL 11
) Y@ ® s ab (2-36)
-0a-id

where E(a) is S(o) or D(a) and G+(a) has been replaced by
G(a)/G_(0) in equation (2-36) with G(a) given by (2-20).
For large L , the major contribution of I is from the integral

over a small neighborhood around the branch point B = -k [26]. The
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contour can then be deformed into the lower half of the B-plane, as shown
in figure 2-3. The functions G“(B) and E(B) are then expanded in
a Taylor series about the branch point B = -k and retaining the first
term only one obtains
-iRL
E(-k) J cosh ya Y2 e 1

=28 (k) Ya B
P

dB (2-37)

where p=p +p + p . The integral over the small circle p2 can be
1 2 3

shown to be zero and hence (2-37) can be simplified to

—k—dce

I=a E(-k) cosh ya e—ya e_iBL aa
- 76, (k) Ya B+t
+
-k
—k—ieo
_ cosh vya oY2 e-iBL d8]
-Ya B+a
-k
_ E(-k) ' o
a0 ® T () (2-38)
+
where Fius g .
_ cosh“ya -iBL ¥
T (o) 2 J ~NalEio) e dB (2-39)
-k
Let B = -k - %E-, where u is a new variable, then (2-39) becomes,
2 ka : 2
« cosh AL 2ikL u-u“]
Ba) = 2 2 g g (2-40)

e
ket o YZikL u—uz[u+ikL(% - 1))

This semi-infinite integral can be calculated numerically, for any
value of o by the Gauss-Laguerre quadrature formula owing to the
exponentially decreasing term exp(-u). Substituting (2-38) into (2=34)

one obtains
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_ =1 G, (1y,)
E(a) = ink (_1)""'2— + L
Zaﬁ

+_a E(k) T(a)
G_(a)‘(a+i¥2) T 27mi G+(k) G_(a)

(2-41)

where in the right hand side, the upper and lower signs correspond to

E(e) = S(a) or D(a), respectively. In (2-41), we have the unknown E(-k),

which can be obtained by letting o = -k in both sides of this equation ,
i.e.
4 2-1 G, (iy,)
B = 2 17 ¢ e (ig‘ m llF (2-42)
2a\2m + Yo e
where
=.E%%._I£:51 (2-43)
G2 (k)

From (2-35) and (2-17), ¢l(a,a) can be written as a function of S(o)

and D(a) in the form:

il

¢ (a,0) = H@I-{s@) + D@} + '™ {s¢-a) - DC-w)}] (2-44)
Using (2-41) in (2-44), we get:
2-1 G, (iy,)
= i_'IT.Q.- W o T o + ') _ a T(G); o
@ (a,0) G+(a)[23m (1) G, i 6, () (SR D(~k)}]
+ 22 () =D o150k + D(-I)) (2-45)

4mi G+(k)

where 8S(-k) and D(-k) are given by (2-42) and are rewritten as

2-1 G,(@EyY,)
25 = —-iml T -+ L 1 ar
56 =~ TP TGy, o I+ (2-46)
and
2=y G, (iy,)
D(-ke) = IR (gy~Th R 1 (2-47)

2a V21 G+(k)(iY£-k) 1-F

Substituting (2-46) and (2-47) into (2-45) and after some rearrangement,

one has,



L G, (o)
ime it ¥ +
¢ (a,a) = (-1) ¢, Ay, ) ———
2av2ﬂ i % a+iY£
f—-1 1 F i T(a)G+(a)

_ imh (_l)—z—
Zafiﬁ

G, (1yy) Gy, 177201 200

i L T(-0)G, (-a)
L T —g. S ¥ iaL
T D MY @ o T T ® e (2-48)

where in (2-48), F .is given by (2-43), and T(-k) is obtained by
calculating the integral in (2-40) for o = -k. Once @1(a,u) is ob-
tained, the constants A(a) and B(a) can be obtained from (2-15)
and (2-16), which completes the solution of the modified Wiener-Hopf
equation. The scattered field can then be determined by going back to
(2-12) and taking the inverse Fourier transform which will be shown in

the next section.

2.4 FEvaluation of the scattered fields

2.4.1 Radiation field

In the region outside the two waveguides, the scattered electric

field component E; ¢ FOX 'X¥ &, i& given by,

co+iT
E; = ¢s(x,z) =i J é’s(ot)e.---Yx e—iaz da , |T| < k2 (2-49)

2T bt

From (2-15) and (2-49) we have

$° (x,2) = —

wohiT
5|

® (a,0) eY(ax) faz 5 |T] < k,  (2-50)
i T

with ¢1(a,a) given by (2-48).

21
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In the far zone, i.e. kp >> 1, the saddle point method of integration can
be applied to (2-50). Hence with the knowledge that ¢1(a,a) has no
singularities in the two-sheeted c-plane except the branch singularities,

it can be shown easily that

i&m?
s _ .8 g .
¢ (x,2) = ¢ (p,0) = k sin® QI(a,k cosf)e

~ika sinf (2-51)

where p and 0 are polar coordinates defined in figure 2-1, substitut-

ing (2-48) into (2-51) with o = k cosf® , we obtain

L1

i(kp-
s 4/ 2 4
¢ (p,0) —Y—-—ﬂkp e F(8) (2-52)
where
2~ . G, (k cosB)
_ ind . o7 . 7 -ika sinf [ +
F(®) 4a D G+(1Y2)k sangd e [k cosB+iY2
F T(k cosB)G+(k cosf) a T(-k cosB)G+(-k cosB)eikLcose
= = N7 = 2 - Z = w2 1
2mi G_'_(k)(iy2 k) (1-F*) 27i G+(k)(iyz k) (1-F*)
(2-53)

Power radiated at point p(p,6) is characterized by |F(8)|2. The
expression for the far field is originally obtained only for x > a,

o< 0<mW, Lut it is easily seen that the formula for F(0) will also
hold for x< -a , T < 0 < 27 . Total power radiated per unit length of
the y-axis is given by JzTF(B)|2d8. The radiation field consists of three
terms. The first term Es the well known result of the radiation field

from the open end of the exciting waveguide only (i.e. in the absence of
the coupled waveguide). The second and third terms are due to interaction

between the two waveguides. The second term represents the reradiation

field from the open end of the exciting waveguide due to the inter-
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action between the openings of the two waveguides, while the third term
represents the radiation from the opening end of the coupled waveguide
due to the previous interaction. These explanations will be more clear

in Chapter 4,

2.4.2 Reflected field

In the region inside the exciting waveguide (z <(Q) , the reflected

electric field component may be given by,

iaz

2B(a)cosh yx-e do » el = k  (2-54)

o1 T
6 (x,2) = —— j

2 o

From (2-15) and (2-54), we have

co+i T
¢, (x,2) = L J ¢(aa)~——m ek 1] <&, (2-55)

cosh ya
\ =+ T

with él(a,a} given by (2-48).

The integral (2-55) is evaluated for each term of ¢1(a,a).
For the first and the second terms of ¢1(a,a) , we close the contour
of integration in the upper half of the complex o-plane, as shown in
figure 2-4. The only singularities so enclosed are the poles at o =

iYm , where - V(z +)?-k* and m=1,3,5,... . Evaluating these

residue contributions for each term, we have, due to first term,

eXC(y,z) = 5 R, co (-‘E'-T-‘x)erz (2-56)
¢r Hehid = 2,m 59
m=1,3,5,..
where
P” - &a Ym (Ymﬂg)

While for the second term,



i
X
1
1
X
1

A ImO.'

X :
! x\ys i
~ =

)4

| I
k Y, m= [,3,5,
\

777777

%

7

/

+ko

Complex a-— plane

Fig. 2-4 Contour of integration for the first and second terms of @l (a,a)

in equation (2-55)

he



25

0 'sz

gints () oy = 3 £ con e (2-58)
T L,m 2a
MW=L 35D e
where
bm G, (iy )c (iv,)
(1) _ ihr —z— 5', F
And for the third term in ¢1(a,a) , (2-55) becomes,
int, (3) C 1 eim 25 G UYY)
VEE 2a\2n + Y£
cotiT
G cosh ¥x iaL -10Lz o
J T(-a)6, (-@) == il do , 1] < k. (2-60)
—ootiT

The superscripts exc and int refer to the scattered fields due

to the exciting waveguide alone and to the interactions between the two

waveguides, respectively. Assuming that ¢int » (2) is a modal series in
the form
- o
¢1nt, (2) (X,Z) - v R(z)(z) COB (m‘ﬂ' ) (2-61)
T - £,m 2a
m=1,3,5,..

then with equation (2-60), and the orthogonality relation over cos x, one

obtains
By 3 24m otiT
(2)() —imtm S+ 3Ye) iy T 3 =2 T(-a)cosh Ya
4a¥ GI(k) v,k 1-F° 2'rri Y6, (@) (%)
—ooiT
oYatia(l-z) . |t| < kz (2-62)

Closing the contour in the upper half of the complex o-plane, the only

singularity so enclosed is the branch point at a = k. It can be easily

shown that
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¢ (iv.) 24m k+io
R(z)(z) o zimdm + 8 (-1) = 1 2 J cosh’ya T(-q) ia(L—z)dOl
2,m 2a* Gi(k) iy -k 1-F* “27i . G (a)eya a‘+Y;

(2-63)
The above integral cannot be evaluated analytically, but can be reduced
to the following form which is more suitable for numerical integrations,
by the Gauss-Laguerre quadrature formula, owing to an exponentially de-

creasing term:
: £+m
mim S iYp) GikU-2) ( )y

2a” G%(k) iy, -k 1-F* (231)
+ Yy

(2) _
Rﬁ,m(z) a

L-z
=)
e T g (2-64)

® cosh? (AZikLu-u? T (-k—2) -u
J L L
0

= iu ivyz, 2
VZlkLu—uz G+(k+i?) [ (k47 +Ym]
Hence, the reflected electric field is given by,

¢r(x,z) = ¢ixc (x,z) + ¢int’(1)(x,z) + ¢int’(2)(x,z)

®© z
= (1)y.'m (2) T ~
m=1’§,5’.'[(R2’m + Rk,m)e + RR,m(z)ICOSGEEx) (2-65)
where Rg o’ Réli and Rézm are the reflection coefficients and are given
» s 3

respectively by (2-57), (2-59) and (2-64).

The reflected field is expressed by three terms. The first
term ¢i¥c(x,z) is the reflected field due to the open end of the
exciting waveguide, in the absence of the coupled waveguide, and the
reflection coefficient is given by (2-57). The second and the third

terms are due to the interaction between the two waveguides, with the

int,(l)

second term ¢r

(x,2) being the scattered field due to the open
end of the exciting waveguide, when it is illuminated by the scattered

field from the coupled waveguide, and the reflectlon coefficient of
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this component, R(l) , is given by (2-59). The third term ¢int’(2)(x,z)

L,m
is the scattered field from the coupled waveguide (in the absence of the
exciting waveguide), and the reflection coefficient is given by (2-64).
From (2-60), it is clear that this component is a continuous spectrum of
inhomogeneous plane waves, and decays to zero at z = -© (to satisfy

the Sommerfeld radiation condition). Also, for large values of L or
large values of 2z , the saddle point method of integration can be used
to evaluate such an integral. The reflection coefficient Réf; has been
expressed in this form, so that one can determine it at any values of

z , expecially if one wants to find the aperture field at z =0 . It

can be easily shown by saddle point method of integration that this com-

ik (L-2z)
ponent behaves as —— with 2z , and hence far from the opening,
ﬂk(L—z)
the only contributing coefficients are R and R(l) :
2,m 2,m

2.4.,3 Transmitted field

In the region inside the exciting waveguide (z > L), the trans-

mitted electric field component may be given by,

wobiT
i 1 cosh vx —icz
- —_— <
¢, (x,2) = ¢ (x,2) + - J ¢ (a,0) Toh i da, |1 k
VM _copst

(2-66)

Closing the contour in the lower half of the complex g-~plane, one
can evaluate the integral separately for each term of Ql(a,a) . For
the first term of ¢l(a,a) expressed in (2-48), the only singularities
so enclosed are the pole at o = -iYR and the branch point at ¢ = -k.
Tﬁe contribution due to the pole cancels exactly the incident field

component ¢1(x,z) in (2-66), and contributions due to the branch point
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can be obtained in the same manner as for ¢int’(2)(x,z) in (2-60).
Hence, one may write

¢exc(x,z) z (z)cos(——x) (2-67)
t m=1,3,5, 2 m

where Tg,m(z) is given by

E _ —
'rri’,m . l)&;—r_n‘ :Lkz Jcosh [ \lZ]_kzu 2]éa

s2 1JZ:Lkzu—uz G+(kﬁ~20

1
iu, 2 2 0 1 S
[y 24y 2]~k 22 iy ]

du (2-68)

Similarly for the second term of @1(3,&) , the only enclosed singu-

larity is the branch point at oa=-k and its contribution may be written

in the form

¢int’(1)(x,z) = z él)(z)cosc-x) (2-69)
Ill—l 3 5,-.
where
( ) —Tm —;E ikz ¥ G (1yL)
a(?) =57 (D) (2n1) (1-F )G () (i~
> coshz[*421kzu—u 1T (- k—-—)
I du (2-70)

A 2ikzu-uZ [(k+E“D +Ym]G+(k+£—J

For the third term of @l(a,a), the enclosed singularities are the poles

at o = —iym , with b =q’(%§)2-k2 ,and m=1,3,5,.. . Evaluating

these residue contributions, one obtains

4 0 - z
pints 2}y oy = 3 1$) coa @) e " (2-71)
£ n=1,3,5,.. " &
WI:lErE
T(z) 1972 2+m mG+(iY2)G+(iYm)T(iym) " YmL

g = Zas D7 Y@ Gy ez ) T (pei2)
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Therefore, transmitted electric field is given by,

¢, (x,2) = ¢EXC(X.2) + ¢i“t’(1)(x,z) - ¢i“t’(2)(x,Z)

= ; [T (z)+T(1> (Z)+T(2)E-YmZICOS(EX) (2-73)
=i 4k . 2,m L,m L,m 2a

(2

(1) ) "
where Tz,m(z) 2 Tl,m(z) and Tg’m(z) are the transmission coefficients
given respectively by (2-68), (2-70) and (2-72).
Again TQ (z) and Tél)(z) are expressed in convenient forms for
»M >
numerical integration and may be computed using a Gauss-Laguerre quadra-

ture formula to determine the aperture field. Furthermore, these two
Eikz

components decay as in order to satisfy the radiation condition at

Ykz
infinity. At large distances from the opening, the only contributing

coefficient to the transmission field is TCZ) which is due to the inter-

L,m
action between the two waveguides. The transmission coefficient Tézi
may be related to R(l) by
2,m
Y.L
() _e” @)
Tl,m ~F RE,m Ll

or, it can be related to the reflection coefficient of a single waveguide

R - by the relation
Ya -aly by )TGY) o

R
£,m F ch_f_(k) (iyy=k) 1-F2

5 (2-75)

In other words, Téf; and Réi; can be evaluated by knowing the reflec-
tion coefficient of a single semi-infinite waveguide and G+(k) and
then evaluating the function T(y) at o = -k and iym. Similarly, the
power radiated from the aperture between the two waveguides can be ex-

pressed in terms of RR ® which for the dominant propagating mode is
2

given by
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12 - [Rélilz = |T£f%12] (2-76)

2.5 Results and discussion

Some results are obtained for a waveguide size 2a/A = 0.6 and
TE0,1 excitation. The resulting infinite integrals in the formulation
of the problem are computed by the Gauss-Laguerre quadrature formula
with 15 intervals. As there are no previous results available, no com-
parison is given. However, for comparison, numerical methods are also
used to solve this problem, which are presented in Chapter 7. The re-
sults presented in this section are for the radiation pattern |F(8)12,
and the reflection and the transmission coefficients.

Figure 2-5 shows the radiation pattern for kL = =, 50, 10 and 5.
Since the radiation patterns are symmetric with respect to the waveguide
geometry, only the patterns for 0 < 8 < 180° are presented. As expected,
with decreasing kL , the direction of the radiation main lobe level
moves progressively away from the forward direction. By increasing the
separation distance kL, the radiated power oscillates with 6 around
the pattern corresponding to a single semi-infinite parallel plate wave-
guide. However, the amount of radiated power should be an oscillating
function of kL similar to the reflection and the transmission fields
discussed below.

The reflection coefficients for modes 1 and 3 are shown in figure
2-6. Since Réf;(z) decays with =z as ~l-, shown in the formulation,

z

its corresponding terms are not included in computation, the amplitude

and phase of the reflection coefficients are oscillating functions of
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period kL equal m and decay continuously to reach the final values for
kL = =, a single excited waveguide. Figure 2-7 represents the transmis-
sion coefficient (coupling to second waveguide) for the first dominant
mode which is again an oscillating function, decaying to zero as kL
approaches infinity. This transmission coefficient is again computed
by neglecting the corresponding terms for the scattered fields which
vanish at large distances from the opening.

In order to determine the aperture field distribution at the open-
ings of both waveguides, we have to calculate the coefficients that are
(z) and T(Ii(z) which are given

£,m 3
respectively by (2-64), (2-68) and (2-70). Although aperture field dis-

functions of =z , i.e. Réz)(z) 3 T
y T

tribution can be obtained without expanding ¢int’(2)(x,z), ¢ixp(x,z)

and ¢int’(l)(x,z) in modal series, they have been expanded here to show

int,(z)(X

the behaviour of field distribution with =x . The functions ¢r A I

int, (1)

. (%,z) are continuous spectrums of inhomogeneous

¢ixp(x,z) and ¢
plane waves, and may be evaluated using the saddle point method of inte-
gration. However, the mode coefficients that are functions of 2z are
computed again using the Gauss-Laguerre quadrature formula, and the
total reflected and transmitted electric fields at the centre of the
open end of the exciting waveguide and coupled waveguide are shown in
figures 2-8 and 2-9, respectively, for modes 1, 3 and 5. These results
can be used to find the resulting aperture fields.

The analysis in this chapter was carried out for TE excitation

0,%
with £ odd. The extension to TE o with £ even and TMo 2 with
even or odd £ is trivial and can be carried out with the proper Green's
functions. In this chapter, the problem of coupling between two semi-

infinite parallel plate waveguides is solved using the Wiener-Hopf
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technique. The analysis is being limited by the separation distance
between the two waveguides. To complement the problem for any separa-
tion, numerical methods are adopted as are discussed in Chapter 7.

Also, as the problem becomes more complicated for different waveguide
widths, the results in this chapter are used to obtain the solution
using the ray theory of diffraction and hence they can be modified to
get an approximate solution for any waveguide width with any orientation.
This is investigated in one of the sections of Chapter 4. However the
results of coupling between two semi-infinite waveguides obtained in
this chapter are useful to find an approximate solution for the coupling

between waveguides of finite length. This is investigated in Chapter 5.



CHAPTER 3

COUPLING BETWEEN TWO COLLINEAR SEMI-INFINITE

CIRCULAR WAVEGUIDES

3.1 Introduction

Scattering of electromagnetic and sound waves by cylindrical
structures have recently received increasing attention due to their
importance in radiation or other microwave problems [1],[2],[4],[6],
[44]-[48]. Coupling between two semi-infinite circular waveguides
provide useful information for optimizing the radiation characteristics
of an open ended waveguide [6], since the two waveguides may act as a
two—antennas system, with the exciting waveguide as the transmitting
antenna and the coupled waveguide as the receiving antenna. This
system can be used for near field measurements for a variety of appli-
cations such as sensor booms [4].

In this chapter the problem of coupling between two collinear
semi-infinite circular waveguides is investigated for the symmetrical
excitation of TM , mode. The Wiener-Hopf technique is used and a
modified Wiener-Hopf equation is obtained which is then solved with a
similar approach to that of Chapter 2. Solutions for the radiated,
reflected and transmitted fields are obtained in terms of a semi-infinite
integral which can be evaluated numerically by the Gauss-Laguerre form-
ula [30],[38]. Solutions obtained here are similar to those of Chapter
2, and are used in Chapter 4 to get an approximate solution, which can

be represented in terms of a new diffraction coefficient and a spherical

wavefactor.



39

From the. exact solution of TMO & excitation, some results are
3

obtained and shown in the last section.

3.2 Formulation of the problem

Consider two collinear infinitely thin and perfectly conducting
semi-infinite circular waveguidesof diameter 2a, separated by a distance

L and located in free space, as shown in figure 3-1. With a time fac-
-iwt ; ; . §
tor e , an incident TMO i mode is assumed to be propagating in

3

the left (exciting) waveguide along the positive z-axis, with an electric

hertz vector given by

Y (3-1)
where

e g cmy (3-2)
with

Y. = [(%E)z - 2] ; w1908 (3-3)

In this equation gom is the mth order zero of J0 , the zero order
Bessel function, and k = k1 + ikz as defined in Chapter 2. Similar
to the analysis given in Chapter 2, Jones' method of formulation gives
the following modified Wiener-Hopf equation of the second type (see
Appendix A).

l-e(ia~y0m)L

a+iyom

iwed (a,0) -1 3

1 ”
y2a+G (o) ‘\fﬁ

() + e (@) - = J ()

5 |t| < k (3-4)

where o, T and y are defined in Chapter 2. G(o) 1is the Fourier transform

Green's function associatéd with the Wiener-Hopf equation and given by
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G(a) = Io(Ya)Kb(Ya) wvhere Io and Ko are the zero order modified Bessel
functions of the first and second kind,respectively. Jl is the Bessel
function of first order. ¢1(a,a) is the Fourier transform of the scatter-
ed electric field component Ez in the aperture between the rims of

the two waveguides. The functions J+(a) and J_(a) are unknowns and are
exactly proportional to the induced current (due to only the scattered
fields) on the walls of the coupled and excited waveguides,respectively.
J+Oa) and J_(0) are analytic respectively in the upper (T > -kz) and

lower (T < kz) halves of the complex o-plane. It can be shown that

¢l(a,a) satisfies the following equation (see Appendix A):

¢ (a,0) = {E‘E (o) [eX (s (~a)-D(-0)} - {S(a)+D(0)}] (3-5)
where
S(a) Ee E e_YomL
= J (a)zd, (~a)+ —— (E )[ ] (3-6)
D(a) e {zr 2 a+iY + a-iy__

The upper and lower signs belong respectively to S(a) and D(a). These
functions satisfy the following integral equation

—iE k+iY
=3 (S

om a+iY G 1y ) + (k-a)G_ (W)E(@) =
27

co—id
5 (B+HIG, (BIE®) _ o0

ag » - kz <=d < T<d< kz (3-7)

2mi (B+a)
—oo—1 d
where
S(a) ’ A=1
E(a) = (3-8)
D(e) > A==l

and G+Ou) is the "plus part" of G(a) , (G(a) = G+Gu)G_(u)), and is given

by ([41], pp. 238):



ica 2m T
G+ (a) = G (CC) - ‘\,_T[.% H ( 1 ) (ka) J (ka) & T [l“C'i"lIIka ‘l"i'i]
- ! o 0
ka, .ya o=y ) ica
—i=—+i-—In( )+q (@) e
2 k | | o m7r
¢ w=1,2,3,.. & F Iy e R

where, Ym = \‘G—?)z—kz " Em is the mth ordered zero of JO(K),
g(a) is given by:

q(a>=%][[1- : : ———
0

T ) ] 1n [l +
Twa Jo(wa)+¥0(ma) m

1 dw (3-10)

and c¢ is the Euler's constant = 0.57721...

For large L, the major contribution to the integral in the right
hand side of equation (3-7) is from the integral over a small neighbor-
hood around the branch point B = ~k. Hence, similar to Chapter 2, it
can be shown that (see Appendix B)

AE(-k)

R.H.S. of (3-7)= G+(k)

T(Ct) 5 (3"11)

where " 4 i
2 -— 3 —
o ixn [ 8 IoE2iklu—u® 1
T(a) =1.© Z e du
0 u+ikL6E -1)

(3-12)

Equation (3-12) cannot be evaluated analytically, but a numerical
evaluation using the Gauss-Laguarre formula is feasible. Substituting
equation (3-11) into (3-7), one obtains expressions for S(o) and D(a),

which together with equation (3-~5) lead to
G, (o)
1(€om)(k+1Y0m)q+(IYom){ (k—a)(a+iyom)

2 igom
o (a,0) = +——227g
1 1E 2_"

T(@6, () T(-a)6, (-a)e'™

1/2mi
T e AFH Ay, 0 ¢ ke e 1} (3-13)

where

21 T(-K) 5
F=om 2kG2 (k) (3143

42
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T(~-k) is the value of the semi-infinite integral given by (3-12) with

o =~k . It is clear that (3-13) is of the same form as the one given

in Chapter 2, by equation (2-48). Once ¢I(a,a) is obtained, the scattered
fields in free space or in either of the two waveguides can be determined.
The field components of the TMO mode are H

M ¢’

determined from the electric hertz vector. In the following section,

E and E_ which can be
z p

the component of the scattered magnetic field in different regions is

determined, but the details of the analysis are omitted.

3.3 Evaluation of the scattered fields

3.3.1 Radiation field

In the region outside the two waveguides, the scattered magnetic

field HZ is given by:

o1 T
s 1 K (rp) — -igz
H, (p,2) == J Y == (a,a)e do , |t] <k (3-15)
[0} QEF Ko(Ya) 1 2
N Zoopit
where
T (a,0) = € 4 (a,0) (3-16)
1 N 1

Kl(x) is the first order modified Bessel function of the second kind.

In the far zone (i.e. kr >> 1), the saddle point method of integration
can be applied to (3-15). Hence with the knowledge that '$l(a,u) has
no singularities in the two-sheeted o-plane, except the branch singular-

ities of vy = faz-kz , we obtain

ikr

H;(r,e) _ _q/E “:r (“)51“9 T (a,k cosf) (3-17)
W HOI (ka sing) !

the spherical coordinates r and 6 are shown in figure 3-1. Equation
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(3-17) together with equations (3-13) and (3-16) give

i(kr-—%)
s L e _
H¢(r,8) = = F(0) (3-18)
where
& 2 .
k“sinf

F(8) = - —= J () (k+iy )G (iy_)

m 1 -om om’ + " 'om Hil)(ka infd)

{ G+(k cosB) 1 F T(kcosB)G+(kcosG)

(k-kcos@)(kcos@+iyom) 27i Zk(l-Fz)Gi(k)(iyom-k)(k—kcose)

1 T(-kcosB)G+(—kcose)eikLcosﬁ

= = —— R
2wi 2k(1-F )Gi(k)(lYom k) (kt+kcosB)

} (3-19)

The radiation pattern is given by IF(B)|2 . It is clear that F(8)
is exactly of the same form as thatfor parallel plate waveguides. This
radiation field has been expressed by three terms. The first term is
the well known radiation field from the open end of a single semi-infinite
circular waveguide for TMo,m excitation, while the second and third
terms are due to interactions between the two waveguides. Equation
(3-19) can be rewritten in the form

B(B)
Hél)(kasine)

(3-20)

2(B) = —a 20 ra—

tan%ﬂél)(kasinﬁ) cot 5
where A(8) and B(6) are finite functions with respect to 6. It is
interesting to note that F(Q) = « and F(m) = o,

In the direction of waveguide walls and with the conditions that

ka sinf << 1 and Icos@[ = 1,F(0) may be expressed by a very simple

formula given by

___-imA(®) . .
F(8) = Stmo In(ka sinf) °’ 9«0 (3-21)

and
—imB (1)
sinf In(ka sin0)

|

fas]
1]

= |

F(0) = (3-22)



The strong radiations of the TMO modes in the forward and backward

3
directions are caused by the directive effect of the outer surface of

the waveguides. This phenomena was observed by Weinstein [2] for a

single semi-infinite circular waveguide excited by TMb " mode.,
3

Equation (3-18) gives the magnetic field component Hs(r,B), which

b

is the dominant component of H. This is related to the dominant compon-

ent of E, Eg , by the free space wave impedance nU = 120m ohm (i.e.

3.3.2 Reflected field

In the region inside the exciting waveguide (z < o) , the reflected

magnetic field is given by:

_(p,2)
r P 1445 2
where
obiT
L. Io(Yp) = -icz
v _(p,z) = — T ey 2, (@ o , |t] <k (3-24)
. yJ2m o V82 1 2

The contour of integration for the first and the second terms:
of E;(a,a) may be closed in the upper half of the complex o-plane. The
enclosed singularities are the poles at o = iYon which are the zeros
of Io(Ya) , when Yoo ‘l}(Eon/a)z-k2 and n = 1,2,3,... . An applica-
tion of the residue theorem gives the following contributions for the

reflected field. The first term of 51(a,a) gives

exc( ) = = R 3 (gon ) Yonz (3-25)
Y (p22) = n—lEZ 3 m,n" 0" a | e
T emgdegdy e
where

Eom Eon J (Eom) (k+iYom)G+(iYom)G+(iYon)
Rm,n T T 7a a 3 E ) (k-iy )y _+y ) v (3-26)
1 “on on” "'on 'om” 'on

45



While the second term of El(a,a) yields

. @ g Y. 2 .
Pt W2y = 2 R4 5 (2pye O (3-27)
n=1,2,3,.. °
where
OB Eom Son I, Com) (kHiY DG, (Y IG, Ay ITGEY )
Gr o 2 e ey
m,n 2r  1-F a a Jl(Eon) 2kY0n(k 1Y0m)(k 1Yon)qi(k)
(3-28)
and the third term of 51(a,a) yields
ARt () () -iE - (etiy )6 (Y, ) | e P
o 3 2m 1 com” 2k Gi(k)(k—iy ) 2mi 1-F2
om
where ;
oot
1TIo(Yp) T(~u)G+(—a) ia(L-z)
11 = J TG i e do. , |t < k (3-30)

—oo+iT

The superscripts exc and int refer to the scattered fields due to
the exciting waveguide alone and to the interactions between the two

waveguides, respectively. Equation (3-29) may be assumed in the follow-

ing form:
_ o 3
1P;rﬂ:,(:a)(p’z) = n=122 - ..Rif;(z)Jof‘gﬂﬂ) (3-31)

Equating equations (3-29) and (3-31) and multiplying both sides by

Ll
pJo( an) , an integration over p between 0 and a and using the

following identity [49]

a 2
P o B (3-32)
[ 3, 23, gD = 5 11, 178,
o
gives
£ 23 (&_) (kHiy )G, (iy_.)
(2) _,’om 1 “om om’ 4+ 'om” 1 1 X
fo,n () T Yon AT ) KGTG) (fy,) 2md 1-F2 (33
where
b T ) | Eon T(-a)Ko(Ya)eia(L_z)
IIT = J [£7p3 Gyp)J (——p)dp] G, () do
—oopi T

5 bl k. (3-34)
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using the Lommel's integral:

1 u J'(W)J (v) - v J'(v)J_ (u)
J x J_(ux)J_(vx)dx = 22 g .0 (3-35)

vZ - u2
0

Equation (3-34) reduces to

Tk (va) T, (va)

LIL = E’-ch;(Ecm) G+(a)(k+a)(a2+Y2 )y ©
—obiT on

fa(l-2)4, | |t] < k
2

(3-36)
Closing the contour in the upper half of the complex c-plane, the contour
of the integration is p = p!+p2+p3 as shown in figure 2-3, and the only
enclosed singularity is the branch point at & = k. The integral over
the small circle p2 can be shown to be zero and equation (3-36) reduces

to

e N
16

e
G, (a) (kta) (a?+y2 )

III = 7i gon Jl(gon) J (3-37)

k

Since the integral cannot be evaluated analytically, it may be converted
to a more suitable form for numerical integration by letting o = k + %E.
The result is a semi-infinite type integral which can be evaluated again
using the Gauss-Laguerre quadrature formula. Thus equation (3-33)
becomes

E;cnn aon Jl(gom) eik(L-z) (k+iYom)G+(iYom) 1 2 !

— 2 - T_n2
a a J1(Eon) kL (k: 1Y0m)2kG+(k) 2wi 1-F

Réfi(z) .

P g LU77272 ot
T[-k: L]IO[LJZikLu u®] e_u(L_z)/L -
i

0 .kt 22y (2 ABY] (et 28y 242 (3-38)
+ L kL L Yon

Hence the total reflected magnetic field is:

H;(p,z) B - g_plwixc(f)sz) + lil:nt’ (I)(p’z) + wint’ (2)(0,2)]
o W 2 g
s T [(Rm’n+Ri:z)e o +R;fi(z)]JoG—§Ep) (3-39)

90yl 2.3, v
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where the coefficients R » R(l)
m,n m,n

and Rizz(z) are given respectively
by equations (3-26), (3-28) and (3-38). It can be shown easily that
ik (L-2)
LV
k(L~z)

origin located at the centre of the open end of the coupled waveguide.

R;zz(z) decays with 2z as which represents radiation from an
]

The reflected field has been expressed by three terms. The first
term, wixc(p,z) is the reflection due to the open end of the exciting

waveguide, in the absence of the coupled waveguide, while the other two,

wint’ (1)

= (p,2z) and w:ut’(Z)(p,z) are due to the interactions between the

two waveguides. This is exactly the same as the case of parallel plate

waveguides. Far from the open end of the exciting waveguide, the main

contribution for the reflected field is due to Rm - and Ré‘i only. Hence
- ’ 3
1
the total reflection coefficient equals Rm - + Ré i . The third term
3 ]

in (3-39) is a continuous spectrum of inhomogeneous plane waves and

decays to zero as z *> -®  to satisfy the Sommerfeld radiation condition.

ints(Z)

The contribution of wr

to the reflected field is significant

only at points near the open end of the exciting waveguide, and in

ints(z)

can be
o

particular the aperture field. For large L or 1z, U

computed analytically using the saddle point method of integration.

3.3.3 Transmitted field

Inside the coupled waveguide, where 2z > L, transmitted magnetic

field may be expressed as:

H;(p,z) = —'%5 wt(p,z) (3-40)
where °°+iTI o
b =Wy + L [ oo e

\]-2? i Io(Ta) ¢1

T (3-41)



49

The integral again can be evaluated by closing the contour in the

lower half of the complex o-plane. The first term in El(a,a) has a

The contribution

pole at o = -iYom and a branch point at o = -k.

due to the pole cancels exactly the incident field and the branch point
. - Fr int,(Z)
contribution can be evaluated similar to wr (p,2z). The result may

be shown to be (see Appendix C):

® €
Yo pee) = T T (2)3 =) (3-42)
n=1,2:3,446
where
E £ dikz J (E_) -
_ _s: _om °on e 1 om . :
Tm,n(z) ST Ta Ta k2 Jl(Eon) (k+lYom)G+(1Yom)oJ

IZLEJZikzu—uzl -u
2.2 e du (3-43)

iu iu iv . iu 2
(2% 306, G+ 3 (= = HY_D [0k =P 92 ]

Similarly for the second term of E;(a,a) , the only enclosed singularity

is the branch point at o = -k, and hence

% g
int, (1) = (1) on
wt (p,2) = z Tmln(z)JOC—;—ﬂ) (3-44)
i) 2.3 e

(1) .
where Tm,n(z) is given by:

gom gon eikz J1(£om) (k+iYom)G+(iYom) 1 F

(1) .
Taal) Sl == 3, €, iy, )2k G (k) 2ni 1-F2

m -
12 [% 2ikzu-u? ]T (~k- —l—z)e"“
9 du (3-45)

0 iu iu iuva, 2
(2+ 1996, (k+ =) [(kt 79) 4y ]

It can be shown easily that Tm n(z) and Té‘i(z) decay by the factor
3 3

lkz exc int, (1)
kz ° tx (p,z) and wtn **17(p,z) represent radiation

terms from the open end of the exciting waveguide.

This is true as
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For the third term of E-(a,u), the enclosed singularities are the
1

poles at o = —iYon which are the zeros of Io(Ya), with Yo =
ﬁ(g Ja)’-k? , and n = 1,2,3,... . Evaluating these residue contributions,
on
one obtains
» (2) ; Jon \ -y z
W@y 1 1) g (e Vo (3-46)
t m,n "o a
0512535000
where v L
o) e Son Bon T, Eon) (etiy_ )G, (iy, )G, (v, DT(Y, )
e ‘2 . e = 9
m,n 21(1-F*) a a JI(EOH) Vst 2k (k 1Yom)(k lyon)G+(k)
(3-47)
Hence the transmitted magnetic field will be given by:
t 9 exc int, (1) int, (2)
= e m— | L] k]
H¢(p,2) 3 W, (p,2) + Y (p52) + Yy (p,2)]
o -y Z g
- .9 (1) (2)_ ‘on on
T n=1 g 3 [Tm,n(z)+Tm,n(z)+Tm,ne ]Jo(~g—p)
g&gdyeee (3-48)

where T G T(I)(z) and T(z) are the transmission coefficients given
m,n m,n m,n

by equations (3-43), (3~45) and (3-47). Again the transmitted field is
expressed by three terms. The coefficients Tm,n(z) and T;ii(z) are
expressed in a convenient form for the numerical integration, especially
for evaluation of the aperture field at the open end of the coupled wave-
guide. These two terms represent fields scattered by the rim of the
exciting waveguide. They decay to zero, as mentioned before, to satisfy
the Sommerfeld radiation condition, and do not contribute to the trans-
mission coefficient at large distances from the open end of the coupled

waveguide. The only contribution to the transmitted field in the coupled

(2)

waveguide at large distances comes from Tm which is due to the inter-

action between the rims of the two waveguides.

Similar to the case of coupling between parallel plate waveguides,

2
the coupling coefficient (or transmission coefficient) Té i can he
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R(l)

related to the reflection coefficient G by
YonL "
(23 . 2 (1)
Tm,n =i Rm,n (3-49)

which is exactly the same as equation (2-74). Furthermore, this trans-
mission coefficient could be related to the total reflection coefficient

by the equation

T(z) = 2. 1) Rtotal
m,n m,n

- 1 e

= £f(a,L)[1 + A 172 T(lYon)] Rm,n (3-50)

where YonL
e
A Ty 9

Bl 1) it Sl (3-51)

F
TR S ;
1+A 172 T(lYon)
and A 1is a constant given by

1 Yon * Yom

A=—— 3 =
21 2kGZ (k) (k-1y__)

(3-52)

Hence the radiation power can be related to the incident power by the

equation
i total
ota
Praa = Pi[l - z |Rm,n |2{1 + |£(a,1)|*}] (3-53)
=L B

It is clear that as L approaches infinity, f(a,L) tends to zero and

R;ozal reduces to Rm =) the reflection coefficient due to the exciting
] 3

waveguide alone. The previous arguments hold also for a parallel plate wave-
guide and it may be noted that all previous interesting results can be
obtained by an evaluation of the integral in equation (3-12) and using the
known values of G+(k) and RO the reflection coefficient of mode

n due to the open end of the exciting waveguide.
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3.4 Results and discussion

For a TMo. excitation and ka = 2.5 and 5, some numerical re-
sults are obtained and are shown in figures 3-2 to 3-4. The infinite
integrals in the field equations are evaluated numerically by the Gauss-
Laguerre quadrature formula. However, the integral in the expression

for G+(a) is found to be more complex and, for its evaluation, a combin-
ation of the Gauss and the Gauss-Laguerre quadrature formulas are used.
This integral is a function of ka and its contribution is negligible

for ka << 1. To examine the accuracy of the computation, the computed
values of G+(a) using the expression given by equation (3-9) are compared
with those of Weinstein [2] where G+(a) has a different form although
Green's functions are the same. It is found that for ka << 1, the agree-
ment is excellent, but deteriorates as ka increases. For numerical
results of ‘I‘M':“1 excitation, the discrepancy is less than 5 percent.
Figure 3-2 shows the radiation patterns for kL = 50, 10 and 5. The re-
sults here are given by

2
|re@)> / |- —g—‘“JI(sm> &+ gy, 6, Gy, )|?

As indicated by equations (3-20), (3-21) and (3-23), figure 3-2
shows a strong radiation field in the forward and backward directions
along the waveguide walls. This strong radiation is due to the directive
effect of the outer surface of the waveguide walls for TMu 9 modes of

excitation. Figure 3-2a is for the radiation pattern of the circular

waveguide with radius ka = 2.5. A significant change in the radiation
pattern occurs only for 6 > 160°. For ka = 5,0, the radiation patterns
are shown in figure 3-2b, which shows stronger variation in the radiated

power for 6 > 100°. For two cases of ka = 2.5 and 5, the radiation pattern

for kL = 50 is the same as for single semi-infinite circular waveguide [2].
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L and with TMg , mode of excitation and radius ka = 2.5



i

KIF@nz| Lo g;”‘ J,(Eom)(k+i>5m)(3+(i)6m)|2

K

\
] \

o |

0 20 40 60 80 00 120 140 160  1808°

Figure 3-2b Radiation pattern of two semi-infinite circular waveguides separated by
L and with TM, , mode of excitation and radius ka = 5.0

?q



55

Some results for the reflection and transmission coefficients are

also obtained. Since R(z)(z) 5 (z) and T(l)(z) decay with the
ey m, n m,n m,n

e
kz

factor and do not contribute to the reflected and the transmitted
fields at large distances, their corresponding terms are not included in
the computations. Also, their effect will be the same as for parallel-
plate waveguides investigated in Chapter 2. However, they should be con-
sidered for evaluation of the aperture fields, or field distributions
near an open end. Figure 3-3 shows the magnitude and phase of the re-
reflection coefficient for the dominant propagation mode with ka = 5.

As shown, the magnitude is an oscillating function of kL with a period
of oscillation approaching kL equal m as kL increases. In addition, the
variation in the results decreases with kL and approaches gradually

the reflection coefficient of an open ended single circular waveguide.
Closer to the lower limit of ka for the dominant mode to propagate,

the reflection coefficient has negligible variation as a function of kL.
The results for such cases are not shown. In general, it was found that
the effect of kL on the reflection coefficient decreases with ka and

the coupled waveguide has negligible effect on the reflection coefficient.
Figure 3-4 shows the coupling (transmission) coefficient of the dominant
mode for ka = 2.5 and 5. The curves decay continuously with negligible
oscillation as kL approaches infinity. The radiated power for ka = 2.5
and 5.0 are also computed and are shown in figure 3-5.

It should be noted that equations (3-49) to (3-53) give the reflec-
tion coefficient, the coupling coefficient and the radiated power of the
geometry in terms of the reflection coefficient of an open ended wave-
guide with G+(a) evaluated at o = k. The final step is the evaluation

of T(o) from (3-12) for a given o and L .
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However, the analysis in this chapter will be used later to get
a modified diffraction coefficient for a circular waveguide structure
and a spherical wavefactor which is related to the scattered field
from the rim of a circular waveguide. This is presented in the next

chapter, using the results of this chapter.



CHAPTER 4

EXTENSION TO RAY THEORY OF DIFFRACTION

4.1 Introduction

Keller's Geometrical theory of diffraction [11], which is an exten-
sion of geometrical optics has been used extensively in diffraction and
antenna problems. Diffracted rays are produced when incident rays hit
edges, corners or vertices of boundary surfaces. A field is associated
with each ray and the total field at a point is the sum of the fields on
all rays passing through that point. The phase of the field on a ray is
proportional to the optical length of the ray from some reference point.
The amplitude varies in accordance with the principle of conservation of
energy in a narrow tube of rays. The initial value of the field on a
diffracted ray is determined from the incident field with the aid of an
appropriate diffraction coefficient which is determined from the solution
of certain canonical problems and they all vanish as the wavelength
approaches zero. 1In the latter case, the remaining field is only the geo-
metrical optics field, since the diffraction term is usually attributed to
the fact that A is not zero. In a homogeneous medium, the diffracted rays
are complex straight lines, while in an inhomogeneous medium, they are
complex-valued solutions of the differential equations for rays [50]. This
theory has paved the way to get an approximate solution for complicated
structures [51],[52]. Diffraction by an aperture in soft and hard screens
has been investigated by Keller [53] and Karp and Keller [54], respectively.

Also, Jull[55] has treated the problemofdiffraction by a wide aperture in



61

an anisotropic medium. Several examples of edge diffraction theory are
given in references [7],[12],[56]-[59]. The edge diffraction coeffic-
ients normally used in Keller's geometrical theory of diffraction are
based on plane wave assumption for the edge field. As a result of the
distance limitation on theée coefficients, the diffracted field due to
multiple edge interactions lead to some deviations from the exact sol-
utions. Hamid [12] has presented amplitude and phase correction fac-
tors in the diffraction coefficient by comparison with the exact solu-
tion. The divergence phenomena caused by the use of the plane wave
diffraction coefficients was overcome for H-polarization by Yu and
Rudduck [60] by the use of appropriate cylindrical wave diffraction
functions. Their formulations were basically the same as the formula-
tions by Karp and Russek [61] and by Ufimtsev [62],[63]. Recently,
Mohsen and Hamid [64] has improved the accuracy of the results by in-
cluding higher order terms in Keller's diffraction coefficient.

Lee [27],[28], has extended Keller's diffraction ray method to
problems involving two or more parallel plates by introducing a modified
diffraction coefficient which automatically takes care of the coupling
along a shadow boundary.

As Keller's geometrical theory of diffraction cannot be applied to
complicated problems that involve interacting and bouncing rays, Dybdal,
R.B. et al [7] has applied this theory to obtain mutual coupling between
TEM and TEO,I parallel-plate waveguide apertures, with special geometries
and oritentations in which 60 > Bg , as shown in figure 4-1. They form-
ulated the solution of the coupling problem as follows: A unit-amplitude
wave with its associated model voltage or current is incident in the

exciting waveguide. An equivalent line source, having an omnidirectional
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Fig. 4-1

Coupling between TEM and TEqp, parallel-plate

waveguide apertures (after Dybdal et al [ 71])
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pattern and a field matching that of the guide in the direction of Go :
is substituted for the exciting waveguide. A coupled wave with its
associated model voltage of current is induced in the coupled waveguide.
The mutual coupling is then defined as the ratio of the model quantity
in the coupled guide to that of the exciting guide.

This chapter represents extension of the Wiener-Hopf technique
which has been used in the second and third chapters to obtain the coupling
between parallel-plate and circular waveguides respectively. The Wiener-
Hopf results are reduced to thosecorresponding to ray theory of diffrac-
tion in conjunction with the modified diffraction coefficient of Lee [27],
[28]. To obtain the solution using ray theory of diffraction, the Green's
function associated with the modified Wiener—Hopf equation is expanded
in a power series and truncated after the first term. This is shown
in detail in the following sections. For parallel plate waveguides, the
steps for obtaining the ray theory results from the Wiener-Hopf tech-
nique are given and the limitations of the method are discussed.
For the case of circular waveguides,a modified diffraction coefficient
is obtained and a spherical wavefactor is defined and is shown how it
is related to Keller's results [53] for circular apertures. With these
definitions, results for the reflected, transmitted ;nd radiated fields
are obtained and the limitation of the method is derived in the same
manner as for parallel plate waveguides.

The last section deals with some results obtained using the ray
theory and the Wiener-Hopf technique with particular attention to the
case of parallel plate waveguides. A discussion of the results is also

presented.
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4.2 Coupling between two collinear semi-infinite parallel-plate waveguides

4,2.1 Expansion of the transformed Green's function

If the transformed Green's function G(o) given by equation (2-20),
is expanded in a power series, then the function T(a) given by equation

(2-39) can be written as:

T(x) = z T (@) (4-1)
n=0,1,2,..
where
o g co—id (__Zya)n e-—iBL & (4-2)
a\* =g n! ya B+u
—co-qd
0|, 5 for n=0
with € =
B 2 , for m#0
n-1
In the neighborhood of B = k , the function (f-k) 2 is regular

n—1
and smooth, and can be replaced by (~2k) 2 . Therefore, equation (4-2),

after deforming the contour, becomes (see Appendix D):

m
_ n—-; -ix(n-) ) ~k-ie - _
(_1)n2n+1an Lok) ? e ¢ (B+kj271 e 1BL 8
n! € B+o
" “k
Ta(e) = , 0= 0,2,4,6,00. (4-3a)
0 , n=1,3,5... (4-3b)
A change of variable via B = -k - i% gives
by AR i) g
Ty = L2 (k) e € W_(® ,n=0,2,4,6,...
" = =%
nl e (kL) 2 (4-4)
where
£ = ~1kL(1- {) | (4-5)

k
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and

@ i ou

ue
W‘ 1(5) = J S du (4-6)
J‘E 0

The above function is related to the Whittaker function Wu v(g) by the
]

relation

g‘ =
W © = Tl €7 w ®) “-7)

Using the asymptotic expansion of w (E) s [65], in (4-4), one obtains

n-1 4(“ ‘) kL, 1

( l)n-,_123n+1(k ) r( 2 ) o0
T (a) = Lii+
" o1 2 s=1
n! € (kL) 2
n
= (D 2-ER & - & - EH - AL 2} (4-p)
-4 I %

Retaining the first term in (4-8), its substitution into (4-1) gives

oo
T(a) = 3 T ()
n=0,2,4,.. n
kil i
i(kL—7) 4o
_—iZ e 4 - @ty (=1) ) 2(ka) 4
aYkL (k-0) n=o,z,4,.. n! e (kL)
which can be rewritten as
i(kL-}I—
-2mie 1 . 2 2. 3
T(a) = =) [1+ iv - v® - 3"\’ S | (4-10)
2mkL

where Vv - (ka)?/kL

Equation (4-10) is an asymptotic expansion of T(a). It is clear that
for fast convergence of T(g) , v must be less than unity, i.e. (ka)? <<
kL. However, if (ka)? << kL , the first term in (4-10) can be retained,

and equation (4-10) reduces to
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1(kL-7)
1@ = T (@) = ) & — (4-11)
2wkL
Finally, this equation together with equation (2-43) gives
1 (kL~p)
F=F (4-12)

e 1
- 2k {ZmkL Gi(k)
This function will be shown to be the same as that obtained in the
next section using the ray theory approach. A substitution of (4-11),
(4-12) into the expressions of the radiated, reflected and transmitted

fields, obtained by the Wiener-Hopf technique, gives

i - For the radiation pattern given by (2-52) and (2-53) we obtain

T
$°(p,08) = ls ei(k 4)F(G) (4-13)
4 mkp
where
2~ G, (kcos)
_. IRy — . ~ikasin®, "+
() = 4a (=1) 2 G+(172)k51n8 - [kcose+iyﬁ
m
i(kL—3) &
,e 4 1 7 G+(kcosﬁ)
. = 2 E
L k(1l-cos0) 1-F2 G+(k)(iY£ k)
i
i(kL-7)
4 G, (~kcosbH) .
+ & 1 1 + ikLcosB ] (4-14)

= 2 —
m k(1+cosB) 1-F2 G+(k) (1Y£ k)

ii - For the reflected field given by (2-65), (2-57), (2-59) and (2-64) we

obtain
int, int,
¢, (x,2) = ¢§xc(x.2) + ¢rn ) (x,2) + ¢ " (@) (x,2)
o 2
. (1)) 'm", ¢ (2) mm y
< X _ [(Ri,m+R£,m)e + Rg’m(z)]costigx) (4-15)
n"l,3,5’ . n
where R is the same as that of (2-57) and R(l) and R(Z) are
£,m L,m 2,m
glven: by 1 (kL~T
Eim-m G+(1Y£)G+(1Ym) F e 4 ; 8

g1 o —iinz(_l) =

£,m 4as (4-16)

Il —k)G2 — o
Yo GRG0 5 yama Ky
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and m
24m 1i(kL-5)
(z)( ) 5 - em . (iYE) Hell-z) (-1) 2 e 4

2a®  GI(k) (iy,-k)

1-F2? 27kL

-2z
[W cOshz[E-ﬂZikLu—uz] ehu( L )

\2iku-u’ G, (et )[(k+ = My 1I2k+’i‘-]

du (4-17)

0
iii - For the transmitted field given by (2-73), (2-68), (2-70) and (2-72)
we obtain

6, (ks2) = 65%(x,2) + 617 D, 2) + 6106 Py,

. (1) (2) Tm*, mm
) z [Tﬁ,m(z) - Tk,m(z) + ngme ]cos(zax) (4-18)
m"l 3 5,0.
where (z) is the same as that of (2-68) and T(l)(z) and TEZ) are
’
given by i(kL—E)
2+m G, (iy,)e
8 ey = gﬁ?( 1) 7 oikz F - - i
1-F2 2wkl G+(k)(iY2-k)
= a
208 (AT o2y LU
cosh [z y2ikzu-u©] e i ol
— iuya2, 2 iu, .2, . 1iu
ﬂZikzu u”[ (k+ z) +Ym][2k+ z]G+(k+ z)
and i(kL-g) YL
ok2) _ -izwz(_1)3§5 mG, (1y,)6, (v ) e " (4-20)
£,m 4a3

Ym(l—ﬁz)(iYR—k)(k-iYm)Gi(k)VZHkL

Previous expressions for the radiated, reflected and transmitted fields
are obtained in the next section using ray theory of diffraction with

the modified diffraction coefficient of Lee [27], [28].

4.2.2 Application of the ray theory of diffraction

S.W. Lee [27],[28] has introduced a modified diffraction coefficient

for problems involving two or more parallel plates, which takes care of
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coupling along a shadow boundary. To apply it to the present problem

with an excitation of TEO 0 mode and £ odd, one utilizes the symmetry
»

of the geometry with respect to =z-axis and introduces an infinitely
large magnetic wall at the centre of the waveguides, as shown in figure

4~2a. The incident field is then a plane wave illuminating the upper
L

2ka ’
The resulting diffracted, reflected and transmitted waves can then be

edge of the exciting waveguide at an angle ¢£ , where sin¢£ =

found by an application of the above modified diffraction coefficient.
i - Diffraction patterns:
The diffraction patterns consist of the diffraction due to the exciting
waveguide alone and the multiple diffractions between plates 1 and 2,
which may be considered separately as follows:
A - Diffraction due to the open end of the exciting waveguide, figure
4-2b:
The field ¢1(p,8) on the ray diffracted at the edge of upper

plate is given by

i(kp—g)
¢ (p,0) ==——TD(@@,0)E. , 0 =10 (4-21)
1 21kp y
i e 2-1
where Ey = %{-l) e s, at the upper edge (4-22)

and 60 is the direction of the incident plane wave. P and © are the
coordinates of the observation point with respect to the upper edge and

the factor 'E(E,Bo) is the modified diffraction coefficient in the

form 6 _
0 5]
o -2icos—cosy s
D(0,06 ) = = £(0)£(0 ) (4-23)
o o
cosf +cosh
o
with
- kil
G+(-kcose) 3 < |8| <T
£(0) = (4*24)

[E+(kcosﬁ)]-1 lo| <

ISV



The function E;(a) used in [27] and [28], is related to G+ of the

present work by

E;(a) = V2 (otk) e

m
——

4
G, (@)

(4-25)

Thus, from equation (4-21) and eauations (4-22) to (4-25), we obtain

1(ke- )

e i
3 (,0) » Fees

ﬂZﬂkp

Qm

Replacing k sin¢£ by %a

it becomes:

¢1(p:6) =

1 (kp-7)
imTle

ZaVZﬂkp

-1 2ksin¢£sin8

(-1) 2 3]

cos¢2+cosa

G+(kcos¢£)G+(kc059)]

(4-26)
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and k cos¢2 by iYg in the above expression ,

L=y
(-1) 2 G+(iY£)

ksinBG+(kcose)

(4-27)

kcos@ -+ iyg

= _ W
Note that for 6 < 5, the specular reflection at the magnetic wall re-

quires the multiplication of the results by a factor of [1 + e

2

Zikasiﬁgl

which when combined by [w(.‘:.q_(kt:r_ws'ﬁ)]_1 gives 'E+(—kcose). Thus, for the

range 0 < § < 7, one can use a single expression f(8) = G, (~kcos@) §
+

which gives the above equation (4-27) for ¢l(p,6) valid for 0 < 8 < .

B. Multiple diffraction between two waveguides:

There are two kinds of multiple diffracted rays as shown in table

4-1, with the integer n being at least unity.

TABLE 4-1

Types of multiple diffracted rays between edges of plates 1 & 2

Initial Diffraction |[Number of diffracted rays | Final Dif fraction
Type at the edge of at the edge of plate at the edge of
lat
plate (1) 2) plate
(A) (1) n+1 n (1)
(B) (1) n n (2)
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The first column designates the type of ray. The second column
shows which edge is first hit by the incident ray that gives rise to
multiply diffracted rays. The last column shows the edge at which the
multiply diffracted ray is finally diffracted. The other columns give
the number of times the ray is diffracted at each edge. Now consider
the fields due to rays of the type (A):

_ R = =(20-1)=
¢, 5(P:0) = nzl B.¥ Fe. (4~28)

where ii is the diffraction field at the edge of plate (2) due to the
initial diffraction of the incident plane wave at the edge of plate (1).
F is the diffraction field at the edge of plate (1) or (2) with a plane
wave of unit amplitude incident with angle zero at the edge of plate (2)
or (1), respectively. ?fl is the diffraction field, at the observation
point, due to the final diffraction at the edge of plate (1) of an inci-

dent plane wave having a unit amplitude. Equation (4-28) can be written

in the form

=il

] PO o5F, I

¢,,400:8) = fi_?fl (4-29)

n=1

where ii , F and ﬁfl , with the aid of equation (4-21), are given by
i (KL - %)
B, S ﬁ(o,—(ﬂ—%)mi
V2TkL y
: s
1 L= p el
-7 2 [ + g
~Za L G, () (1y,—K) L
/2TkL + Yo
(kL - 3) 1(kL - )
F el T0:0) = = o (4-31)
V2TkL 2k V271kL G+(k)
a L
- Ei(kp ) 4) = = =i ei(kp e sinf G+(kc058)
and F = —— D(6,0) = (4-32)

f1 JZ'.IT_kp m—k'a 1-cos8 G+ (k)
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It is clear that F given by (4-31) is the same as that given by
equation (4-12). Or, in other words, the function TOGJ), which is the
first term of T(a) given by (4-10) gives the result if we use the ray
theory of diffraction.

A substitution of (4-30) and (4-32) into (4-29), gives

21 oy — s
inf(-1) 2 el(kp z) 7 C,.(yy)-ksin®

¢ ,(p,0) = o= = G, (kcos®)
i (kL-7)
1
[ ] (4-33)
‘J’m k(1l-cos8)
Similarly fields due to rays of type (B) with ) ;‘F"F(zn-z)?' eikLcosB
distances measured from edge of plate (1) n=1 i £2
(4-34)
or ¢ .(p,8) =F, F -—f%* G uAicoEy (4-35)
2,58 if2 32
where ‘fi and F are given by (4-30) and (4-31) and ?}2 is
T
i(kp-7) ¥
F o= -ie ¥ sinf G+( keos?) (4-36)
fa VEEEE 14cosB G+(k)
Again a substitution of (4-30) and (4-36) into (4-35), gives
o i(ko-1) G, (iy,)*ksin6
$ B(Q,B) - 2utCl) © e 4 _1 (I -i)Gz(k) G+(—kcose)
23 2a\[27kL 12 \EYgmRIGy
i (kL-7)
[e 1 ikLcos@ (4-37)

] e
Um k(1+cosh)
Thus, the total diffracted field with distances measured from origin at

x=0 and 2z=0, is given by

-ikasinb

9°(p,0) = [6 (p,0) + 9 ,(0,0) + ¢ (p,0)]e (4-38)



73

Upon combining (4-26), (4-33) and (4-37) with (4-38), the diffracted
field ¢5(p,9) can be shown to be the same as (4-13). Or, in other words,
the results obtained by the ray theory of diffraction are the same as
that obtained by the Wiener-Hopf technique when the first term in the
agymptotic expansion of T(a) is retained. Hence, To(u) yields the
ray theory results.

ii - Fields inside the exciting waveguide:

Again the reflected field consists of the diffraction due to the
exciting waveguide and the multiple diffraction between the two wave-
guides. However, the diffracted rays are now converted into modes inside
the exciting waveguide. The reflection due to the open end of the excit-

ing waveguide is,figure 4-2c:

o . _m_-2-1_ or . Tm® =
¢r’1(x,2) = mil - [2i(-1) 2 Jeos(Gx)e D[~ (m=¢_),=(m=¢,)]
[Ray to mode conversion factor] E; (4-39)

where the first bracket is to normalize the amplitude of the rays travel-
ling in the —(v—¢m) direction at x=a, 2z=0, for an incident plane wave
of unit amplitude at the above point. The second bracket is the ray to

mode conversion factor given by [27].

conversion factor = {:[ga(?aka))]_l} = EQE%EEE_ (4-40)
a=kcos? _

m
and E; is given by equation (4-22). Equation (4-30), after some mani-

pulation becomes:

ot mr . 'Ym?
z R, cos(z=x)e
3 m 2a

m=],

with
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_ _gn? Lim mG, (1v )G, (iv,)

R, = (-1) 2 (4-42)
2ym  4ald Y O tYg)

Similarly, the reflection due to rays of type (4) can be shown to be:

. =1 mr \ Tm® F - =
¢r A(:-:,z) = b [2i(-1) 2 ]cos(-—'}sza')e [ FiFf ]
»22 m=1,3,5,.. 1-F? 3
[Ray to mode conversion factor] (4-43)

where F, ‘P_‘i and .i:fl are again given respectively by (4-31), (4-30) and

i(kp-m/4)
(4-32), with © replaced by ¢m and o s dropped in (4-32).
v2mkp
Hence one finds
= z
(A) T m
o] (x,2) = I R cos(7=x) e (4-44)
T,2,4 L85 2,m 2a
with ki
: - i(kL-7)
4072 2m oG, (iy,)G, (iy ) = 4
R(A) _ —itw (1) 2 + 2+ 'm" P e (4-45)

g,m = 4al YoV G 72 BT (e-ty,)

The field,due to rays of type (B), is a radiated field and has the same
form as equation (4-37) with cos6 = 1. This field can be converted
into a modal series to give R(?;(z) similar to Réf;(z) , given by
equation (4-17). Based on this discussion and upon combining (4-41) and
(4-44), the total reflected field using the ray theory of diffraction is
the same as (4-15). Or, in other words, To(a), which is the first term
of the asymptotic expansion of T(a), yields ray theory results,
iii - Fields inside the coupled waveguide
The transmitted fields in the coupled waveguide also consist of the dif-
fracted fields due to the exciting waveguide and multiple diffraction be-
tween the two waveguides, figure 4-2d. Here the diffraction due to the excit-

ing waveguide and rays of type (A) are of the scattering type and give

transmission coefficients which are functions of 2z and can be treated



similar to the rays of type (B) in part ii. The remaining contribution

comes from rays of type (B) which may be shown to be

© m-3 -y _(z-L)F.F
¢, g6z = I [28¢-1) 7 JeosCx)e ™ i £2
bida m=1,3,5,.. 1- F2
[Ray to mode conversion factor] (4-46)
where again F, F, and ff are given respectively by (4-31), (4-30) and
* 4 o1 kp-T/4)
(4-36), with O replaced by T - ¢m and ———————— dropped in (4-36).
f2ﬂkp
Hence one finds
(=] _'Y 2
¢t B(x,Z) = I TéBi cos(%gx) e © (4=-47)
E24 =135, 2
with Y L m
. . i(kL~-7)
_Xiad 2+4m mG, (iy,)G, (iy Je ™ 4
T(B) igm 2R e (4-48)

i ey 1) 2 : =
£,m ba Ym(lyz-k)c+(k)(l-F ) u§§ﬂf (k"iYm)

(8) is the same as Téz) given by (4-20).

Again, it is clear that T
R,,m »m

As a result To(a), given by equation (4-11), yields ray theory results.
Some results for a TEO mode excitation will be shown in the last

section of this chapter, to verify the validity of the ray theory for

solving these kinds of problems.

4.3 Coupling between two collinear circular waveguides

4.3.1 Expansion of the transformed Green's function

If the transformed Green's function G(x) given in appendix A by
equation (A-12), is expanded in a power series, then the function T(y),
given by equation (3-12) can be written as

~k—-qe

co 2n
* (B+k) —Ga) 42 -iBL g
Sty I B n=o,l?2,.. 4% (nt)?2 A8 i S

-k
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In the neighborhood of B = -k, the function f-k is regular and smooth

and can be replaced by -2k , and after some manipulations (4-49)

gives
< 1 T _ wa2pmdya 32 u=1s
(o) =mie™™ { P E) - ka" (W) + 5 ' ()W (@) + .0
2 Z 2
(4-50)
where & and W 1(E) are defined by equations (4-5) and (4-6), respec-

jﬂl‘—
tively. The funct%on W 1(E) is related to the Whittaker function

Wh v('c’,) by equation (4—7)? Upon using the asymptotic expansion of the
?
Whittaker functions and retaining only the first term, equation (4-50)

reduces to
ikL

_ de - .
T(a) = 12 (k-0) [1 + iy T + yaiear ) (4-51)
where, u = 2(ka)?/kL

Equation (4-51) is an asymptotic expansion of T(a), which is con-—
vergent for | << 1. In other words, kL must be much greater than 2(ka)2.
Thus, retaining only the first term in equation (4-51), it reduces to
ikL

e -
mie

T =T, = 2 ay

Combining this equation with equation (3-14), one obtains

_ kL
F=F-= Ezifj—aizzy (4-53)

This function will be shown later to be the same as that obtained by
ray theory. A substitution of (4-52) and (4-53) into the expressions
of the radiated, reflected and transmitted fields, obtained by the Wiener-
Hopf technique, gives
i1 - For the radiated field given by (3-18) and (3-19):
1 (k)

B (r,0) =<

o ——— F(6) (4-54)
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where
k%sind
Hgl)(kasine)

_ gom i
F(0) = - 5 Jl(ﬁom)(k+lYom)G+(1Yom)

t G+(kcosG) ) F eikL G+(kcosB)

(k—kcosﬁ)(kcosﬁ+i¥om) 2 (2kL) “ (1-cos0) Gi(k)(iYom-k)(k-kcosG)

1

1 e1kL G+(—kcosﬂ)

72 (kL)% (T+cosB) G2 (k) (iy__-k) (k+kcosb) =

_ ikLcosB }
1-F

(4-55)

ii - For the reflected field given by (3-39), (3-26), (3-28) and (3-38):
Rézi(z) is the same as that given by (3-38) with T(a) dinside the
’

integral being replaced by equation (4-52). Also, Rm is the same as

3
(3-26). For the third component of the reflected field, the reflection

coefficient R(l)

n, 6 is given by

: ikL
_ i = Eom gon J1(£0m) (k+rYom)G+(1Yom)G+(lYon)e

- ot o 2g2
m,n 2 1-F2 & @ chgon) 2kL2Y0n(k 1Yom)(k 1Yon) G+(k)

(4-56)

iii ~ For the transmitted field given by (3-48), (3-43), (3-45) and
(3-47).
T (z) and T(l)(z) are the same as (3-43) and (3-45) with T(a)
m,n m,n
in the integrand of equation (3-45), being replaced by equation (4-52).
However, the main contributing term to the transmitted field is modified

tD

m,n 2 (1_52 ) a a J ; (Eon) ZRLZYOH (k- iYOIIl) (k_—-j_Yon) 2G+(k)

(4-57)

The above expressions for the radiated, reflected and transmitted fields
are determined later using the ray theory of diffraction, after intro-
ducing a modified diffraction coefficient,a spherical wavefactor and a

ray to mode conversion factor.
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4.3.2 Determination of the modified diffraction coefficient, conversion

factor and the spherical wavefactor

In equation (3-18), the first term corresponds to the radiation
from the open end of the exciting waveguide only. Rewriting this term

with 6 replaced by m-0 , where © is measured from the positive z-

axis, one has

i (kr-E)
Hs,exc( B = :2_____3_ E 3 (€ )k e ) k?sind
[0} Kylis = kr om j ' “om Yom’“+ Y om

Hél)(kasiﬁa)

G (ukcoég)
x (4-58)

(k+kc058)(1yom~kcosﬁ)
Introducing the Green's function obtained by following the procedure

of Lee [28], one has

G(a@) = 2ya I_(ya)K_(ya) = 2ya G(a) (4-59)
Hence
g
= 4
G (o) =e V2a (k+o) G, (o) (4-60)
From equations (4-58) and (4-60), with the relations ksinﬁgm = —EE and
kcoéﬁ&m = -iy_» one obtains
i(kr—-ﬂ) —om )
s,exc, = Eom e . e 2 sin§
H¢ (r,G) - [T JI(EOIII)] 2kt ( )

coé§ +cosb
om

G+(-kcosBDm)G+(—kc058)

sin® H°1 (kasinB)
It is clear that the first bracket is the incident magnetic field, H; 2

at the rim of the exciting waveguide. By analogy with the case of parallel-
plate waveguides, which has been investigated by Lee [27], the modified

diffraction coefficient can be written as
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D(®,8 ) =Dp@® ,Bom)f(ﬁ)f(ﬁom) (4-62)

where

om .g
_ 2i sin—in 51n3

p(®,0 ) = (4-63)
o cosB +cosb
om
and

e T
G, (~kcosB) 3 < 6| < m

£(0) = g - i (4-64)
[G+(kcose)] El <%

D(ﬁ;ﬁsm) is the well known diffraction coefficient for a half plane
illuminated by a TM plane wave in the direction of E;m. The angles

0 and lﬁém take values between -7 and 7w and are measured from the

positive z-axis.

The factor == (1) -
sinf Hol (ka sin8)

the spherical waves of the diffracted rays and reduces to unity for the

in equation (4-61) corresponds to

cylindrical waves, in the case of parallel plate waveguide. Hence equa-

tion (4-61) can be rewritten as

Hz'exc(r,ﬁj = H- at the rim of the exciting waveguide
i(kr—%)
e = = .
B & n(ﬁ,eom) x spherical wavefactor (4-65)

It is quite interesting to note that the spherical wave variation

m
1(kr~§)
e
2mkr

the rim [53]. If ka sin@ >> 1, i.e. in the entire rear half space, or

and the spherical wavefactor are related to the curvature of

if the radius of the circular waveguide is large, then by using the asymp-

totic expression for Hél)(ka sinB) , we can write

i(kr—%) i(kr-ka sid@%ﬁ

E—EHE?_“ x spherical wavefactor = = / . =
2{?“(2ﬂk)1 2 « sinh
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i(kr-ka siﬁﬁ;%)

_e 1
1/2 r
2 (2mk) [r(l-—;l s:me)]l/2
i (kr —’ZT)
N . 1 (4-66)
2 (2mk) 12 E

[r (l---—l sinE)]iI2
1 a

Where r, is measured from the diffracting point to the observation

point, as shown in figure 4-3. However, equation (4-66), is the same
equation that has been obtained by Keller [53] in treating the problem

of diffraction by a circular aperture. In other words, the spherical
1
sinf Hél)(ka sin6)

obtain the diffraction field by a circular aperture of small radius in

wavefactor may be used together with (4-63), to

hard screens.
Inside the exciting circular waveguide, the reflected magnetic
field, due to only its open end, can be put in a form similar to that

of the parallel-plate waveguide [27]:

i ry = glf)l'l YOI‘IZ
H¢(p,z) = I Rm nJ G—;—p)e (4-67)
1L WO et
where
i G . = = -
Rm,n - H¢ at the rim of the exciting waveguide x D(§6n,eom) X
Ray to mode conversion factor (4-68)
— - —_— -_On —
with eon = n—son , k cosson = iy, and ksineon - and the conver
sion factor is given by
-1
conversion factor =
2ka cosﬁon Jl(Eon)
_d =i G(a)
= [d{.‘.( a Ko(Ya)] (4“69)
o= k coseon
For the parallel plate waveguide of width 2a, and TE excitation,

0,%



Fig. 4-3 A plane screen with a circular aperture of radius a.
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1

7ka coss 1271
on

this factor reduces to

In the following section, the above results for the modified diffrac-
tion coefficient, the spherical wavefactor and the ray to mode conversion
factor, are used to obtain the radiated, reflected and coupled (transmitted)

fields of two axially coupled circular waveguides.

4.3.3 Application of the ray theory of diffraction

i - Diffraction pattern:

The diffraction pattern consists of the diffracted rays due to the
exciting waveguide alone and the multiple diffractions between the rims
of the two cylindrical waveguides. If Hé(r,e) is the contribution of
the diffracted rays due to the exciting waveguide alone, equation (4-58)
gives the contribution of these diffracted rays. The contribution of
the multiple diffracted rays comes from the two type of rays explained
in table 4-1. Type (A), with initial and final diffractions at the rim
of the exciting waveguide and type (B) with the initial and final diffrac-
tions at the rim of the exciting (rim 1) and the coupled waveguides (rim

2); respectively. Similar to the case of parallel plate waveguides, the

contribution of rays of type (A) and (B) are respectively given by,

B28(r,0) = ——FF, (4-70)
e 15
and
L ikL cosf -
H3’B(r,6) _ ¥- F.Ff e (4-71)
25 L
where fi is the diffracted field at rim (2) due to the intial diffrac-
tion of the incident wave H; at rim (1) and T 1is the diffraction field

at rim (1) or (2) of an incident wave of unit amplitude and incidence



angle zero at rims (2) or (1),respectively. Also, ?& and ?f are

A B
respectively the diffracted fields, due to the final diffraction at rim
(1) and (2) for a unit amplitude wave of angle zero at rim (1) or (2).
Now, equation (4-63) shows that if the incident field vanishes at an
edge, the diffracted field also vanishes and following Karp and Keller

[54], the diffracted field is proportional to the normal derivative of

the incident field at the edge. Thus it may be shown that:

1 (KL—)
- om e 2 2,0 = =
Fi ain- o Jl(Eom)—Eﬁiif——-fﬂj:[D( ,Bom)x spherical wavefactor]lﬁ
Y B=0
ikL k+iy G, (iy )
+ 3
=& J(E ) S5 —2 . 4 (4-72)
om ; “om’ 2L? k iYom G+(k)
i(kr—%)
ff = E-i_ﬁ?c;m (-Tl%){ -a_— [ﬁ(ﬁ,ﬁom)]}_ x spherical wavefactor
A 08 8 =o
om om
i (kr—2)
e 2 k sind G, (k cosd)
= 21kt (1) : 5 (a3
G+(k)H0 (ka sinB) (k=k cosB)
=
. -ei(kr-g) k sinf G+(—k cosB)
Fe = 7miz ) (4~74)
B G+(k)Hol (ka sind) (k+k cosB)?
sued i (KL—3)
e o &2y & B(6,5_)}
= — — ) e »
2mkL g 95 ik 3‘6 3— om -g - "é' =0
om om
_ kL
IR EAG) (4-75)

It is clear that F given by (4-75) is the same as that given by

equation (4-53). In other words, the function To(a), which is the

83

first term of T(a) , given by (4-51), gives the results of the ray theory

of diffraction. A substitution (4-72), (4-73) and (4-74) into (4-70)

and (4-71) gives:
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kil

i(kr—) , = . ) iKL
HZ’A(r 2 s 2 EomF J!(Eom)(k+iyom)G+(iYom) ksinf G+(kcosﬁ)e
¢ Wk 1-F2 (2kL)2-(1—cose)2-(1Yom-k)ci(k)né‘)(ka sinf)

(4-76)

and m

i(kr—5) , . ikL (1+cosB)
H3’B(r it o 2 gom J](Eom)(k+1yom)G+(iYom) ksin® G+(kc058)e
¢ ? mkr

1-F? (ZkL)z(l+cose)z(iyom—k)Gi(k)Hél)(ka sind)
4-77)

The total radiated field is then the sum of H$(r,6) ~ H;’A(r,e) and

HS’B(r,B). It is clear that this result is exactly the same as that

given by (4-55). In other words, when retaining only the first term of the

asymptotic expansion of T(0), the results yield the results of the ray

theory of diffraction with the defined modified diffraction coefficient

in conjunction with the spherical wavefactor. Consequently, since To@x)

corresponds to the solution of the ray theory of diffraction, the higher

order terms of T(a) given by (4-51) provide the correction when

2(ka)?/kL is not small enough.

ii - Fields inside the exciting waveguide:

The reflected field consists of the diffraction field at the open

end of the exciting waveguide and the multiple diffraction between the

two waveguides. To find this reflected field, the diffracted fields are,

of course, converted into waveguide modes, inside the exciting waveguide.

The reflected field due to the exciting waveguide only, is given by equa-

tion (4-67), and that of the multiple diffracted fields is due to rays of

type (A) only. The rays of type (B) yield the radiation field inside the

éxciting waveguide and,at large distance, they do not contribute to the

reflected fields. Hence, the reflected field due to rays of type (A) may

be shown to be:
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r,A o E—;on Yoo, F ==
H¢' (pyz) = L Jlff;—p)e P—j:; FiFf ]1[Ray to mode
n=1,2.35. 4 1-F A
conversion factor] (4-78)

where F, F, and T are given,respectively by (4-75), (4-72) and (4-73),
. A 1 (-
by replacing 0 by Bon and dropping e £ /2mkr and the spherical
wavefactor in (4-73). Thus one finds
=] E Y. _Z
Bt = 1 R® g e (4-79)
s e DR L S
where 1KLL
R(A) _— ¥ Eom (gon)z Jl(gom) (k+1Yom)G+(lyom)G+(lYon)e
SCANS = 2 HETS 3 Ln2
m,n 2 1-F2 @ a Jl(Eon) 2kL Yon(k 1Yom)(k lYon} G+(k)
(4-80)
It is clear, also, that R(A) is the same as C—QE R(l)), with R(l)
m,n a ‘m,n m,n

given by (4-56). Hence, once again To(a) gives the solution of the
ray theory of diffraction.
iii - Fields inside the coupled waveguide:
Far from the open end of the coupled waveguide, the transmitted
field mainly comes from the rays of type (B). The contributions of these

rays after conversion into waveguide modes is given by:

%0 £ =Y. £z=%) ==
H;’(B)(p,z) _ 5 3 G—QED)E on [ {_ FiFfBI{Ray to
n=1,2,3,.. * 2 1-F>
mode conversion factor] (4-81)

where F, F, and F are given respectively by (4-75), (4-72) and
* fp i (=t

(4-74), by replacing 6 by ﬂ-eon and dropping e /2mkr and the
spherical wavefactor in (4-74). Hence one obtains
VA

t, (B) = (B) Son . Yoit
gt o) = s 4-82
¢ (p Z) ﬂ;l,g,:},.-‘rm’n Jl( a )e ( )

where
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Y 1KL
LB _-ie on” § (Eon)z Jl(Eom) (ktiy_ )G, (iy )G, (iy e

= = — 3 (4-83)
m,n 2 a a Jl(ﬁon) ZkLzyon(k iYom)(k 1Y°n)2G+(k)

- €
Equation (4-83) is identical to c~§9 182y Gien 182

2.1 Pl given by (4-57),

which was obtained from (3-47) by replacing T(iYon) from equation (4-52).

4,4 Results and discussion

The asymptotic expansions for T(a), for the two cases of parallel-
plate and circular waveguides, areobtained and are given by (4-10) and
(4-51) ,respectively. It has been shown that the first term in the asymp-
totic expansion of T(o), which is To(a), yields the solution using ray
theory of diffraction. In other words, higher order terms of T(x)
provide corrections when (ka)2?/KL is not small enough in the case of
parallel-plate waveguides, and when 2(ka)?/kL is not small enough in
the case of circular waveguides. Kashyap and Hamid [25] haveinvestigated
the problem of diffraction by a slit in a thick screen and have obtained
the same condition (ka)?/kL << 1, such that first term of their solution
leads to ray theory results.

Besides treating the circular waveguide by ray theory of diffrac-
tion and deriving the condition of its validity, a spherical wavefactor
has been obtained and was shown to be necessary for treating problems of
diffraction by a small aperture in a hard screen.

To study the effect of including higher terms of T(a) on the re-
sults, T(a) was investigated in detail for the case of parallel-plate
waveguides. This is shown in figures 4-4, 4-5 and 4-6, for different
values of o. It is clear from these figures that for o close but

not equal to k, theresults deviate from the exact form of T(a). However,
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Figure 4-4 Evaluation of T(a) for parallel plate waveguides case
using: |- The semi-infinite integral ,equation (2-40)
2- The asymptotic expansion ,equation(4-10)
3- First ferm in the asymptotic expansion of
T(a) , equation (4-11)
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Figure 4-5 Evaluation of T(a) for parallel plate waveguides case
using: | = The semi-infinite integral ,equation (2-40)
2 - The asymptotic expansion ,equation(4-10)
3 - First term in the asymptotic expansion of
T(a) ,equation (4-II)
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Figure 4 -6 Evaluation of T(a) for parallel plate wavegquides case
using: |- The semi -infinite infegral,equation (2-40)
2 - The asymptotic expansion ,equation(4-10)
3- First term in the asymptotic expansion of
T(a) , equation (4-11)
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for o = -k,the results are in good agreement, even for smaller values
of kL. Although (ka)?/kL must be much less than kL for good approxi-
mation for the ray theory results, o must be far from -k,(-k < o< k).
This can be seen by noticing the effect on the radiation pattern in the
forward direction, where T(-a) = T(-k cosf) = T(k). On the other hand, the
results using the Wiener-Hopf technique do not blow up at 6=180° even when
the separation between the waveguides is relatively small. Similarresults and
arguments can be mentioned for the case of circular waveguides. TFigures
4-7 and 4-8, show the radiation pattern for kL =5 and kL = 50,res-
pectively, for TEO’1 excitation of two parallel-plate waveguides. The
results are obtained using the Wiener-Hopf technique with the integral
form of T(x) and with the asymptotic form of T(a), and using the ray
theory of diffraction. As mentioned previously, the results are in good
agreement except in the forward direction, especially when kL is rela-
tively small. Again, figures 4-7 and 4-8 show the validity of the ray
theory of diffraction. For circular waveguides with TMo,l excitation,
figures 4-9 and 4-10 show the radiation pattern using the Wiener-Hopf and
the ray theory of diffraction, for the two cases of KL = 10 and 50,res-
pectively. Once again, results are in good agreement except in the for-
ward direction, especially when kL is relatively small.

Some results are also obtained for the reflection and transmission
coefficients for two parallel-plate waveguides and are shown in table 4-2.

It is clear from this table that the reflection and the transmission co-

efficients are in good agreement when kL is large.
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TABLE 4-2

Values of R, T using the different forms of T(0)

including that corresponding to ray theory solution

Reflection Coefficient

using T(a) given by

Transmission Coefficient

using T(a) given by

kL
equation equation equation equation equation equation
(2-40) (4-10) (4-11) (2-40) (4-10) (4-11)
Ray theory Ray theory
5 .215/-171 .218/-162 .083/ 44 .586/105 .486/116 .801/ 70
50 .200/-135 .203/-136 .201/-137 .195/147 .222/147 .223/143
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CHAPTER 5

COUPLING BETWEEN TWO COLLINEAR WAVEGUIDES

OF FINITE LENGTH

5.1 Introduction

As waveguides may have finite length in practice, their corres-
ponding problems have been investigated by many authors. Jones [35]
has studied the diffraction by a parallel-plate waveguide of finite
length, for an incident plane electromagnetic wave polarized parallel
to the edges of the guide. While for a plane wave polarized per-
pendicular to the edges of the guide, the problem has been treated
by Williams [35]. Williams [37] has also studied the diffraction of
a plane harmonic sound wave by a hollow circular cylinder of finite
length. Jones and Williams have used the Wiener-Hopf technique for solv-
ing these problems. Ufimtsev [66] has obtained the scattered field in
the far zone due to the diffraction of a general plane wave by a thin,
ideally conducting cylinder of finite length, using the multiple dif-
fraction of the fringe waves of the induced currents on the conductor.
Each fringe wave of the current, reaching the opposite end of the con-
ductor is assumed to be reflected as from the end of a semi-infinite
conductor, giving rise to a new wave. TFialkovskii [67] has solved
Ufimtsev's problem [66] by successive approximations of the integral
equations [68],[69] and has obtained results identical to those of
Ufimtsev [66] based on the boundary-value technique. Kao [70] has invest-
igated the scattering of E and H polarized plane waves incident nor-
mally, on a circular tube of any radius and length. This was achieved by

transforming the problem into determining an infinite set of Fourier
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components in various integral forms, which were then solved numerically.
In all above cases, scattering by only a single scatterer were
investigated. Recently, Hurd [71] has investigated the mutual coupling
of two tubular collinear antennas of unequal lengths and with arbitrary
feedpoint locations. The results however are restricted to antennas of
small radii (thin dipoles).
From the practical point of view, it is interesting and valuable
to utilize the results of previous chapters for obtaining the coupling
between two waveguides of finite length. This is demonstrated in this
chapter by two examples. The first is the coupling between two collinear
parallel-plate waveguides of finite length, while the other is the
coupling between two collinear circular waveguides of finite length.
This chapter shows in detail how the results of a finite case can be
obtained from thpse of an infinite one. Some graphical results are
given at the end of this chapter, and, for the case of parallel-plate
waveguides, they are compared with those of the ray theory of diffrac-
tion. Examination of the results for accuracy of the solution is given

in Chapter 7.

5.2 Formulation of the problem

Consider two collinear perfectly conducting waveguides of finite
length, separated by a distance L. Both waveguides have the same trans-
verse dimension, but the first waveguide (exciting waveguide) having
a length £1, while the second waveguide (coupled waveguide) has a
length £,, as shown in figure 5-1. Before going through the analysis,
we may assume the following conditions:

1. The exciting waveguide is matched at the far end and the effect of



Fig. 5-1 Coupling between waveguides of finite lengths separated by
a distance L.
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the feed system is neglected.

2. The coupled waveguide is open ended at both terminals.

3, Coupling between the two terminals of the exciting waveguide is
neglected, i.e., K&; >>1.

4. Coupling between the two terminals of the coupled waveguide is
neglected, i.e., K >>1.

Due to the assumption (1), no reflections occur at the far end
of the exciting waveguide. Combining this with assumption (3), the
exciting waveguide acts as a semi-infinite one. Due to the assumptions (2)
and (4), the fields inside the coupled waveguide are only due to the
multiple reflections at both ends.

The generalized scattering-matrix technique [72] is used to solve
this problem with the above assumptions taken into consideration . This
technique is very closely related to the scattering matrix of
circuit theory [73], or that of microwave network theory [74]. The only
difference, however, is that it is extended to include evanescent as
well as propagating modes in waveguides.

Let a field be excited in the exciting waveguide and be defined
by the scalar quantity ¢i. The two dimensional problem can then be
described in terms of three apertures 1, 2 and 3, and the solution may
be expressed in terms of the multiple scattering phenomena at these
apertures.

First, consider the incident wave arriving at the aperture 1, as
represented symbolically by (:) in figure 5-2. Let the wave generated
at the aperture 1 and reflected into region A (inside the
exciting waveguide) be denoted symoblically by S?A ¢i. Also let the

wave generated, due to ¢1 and the multiple scattering between
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apertures 1 and 2, in the region B (free space) be denoted symbolically
by 821 ¢i. Simultaneously, let the wave transmitted into the region C

(inside the coupled waveguide) be indicated by SgB ¢*. The subscript
AA

1 of S1 is to be associated with aperture 1; the first A in the

superscript indicates that the reflected wave is in region A, and

the second A signifies that the incident wave is also from region
CB
9

The subscript of 521 is to be associated with aperture 1 and 2, with

A. Similar interpretation can be readily associated with S

the first aperture (number 2) indicates interactions due to the incident

_wave from the second aperture (number 1).

Now consider the scattering phenomena at aperture 3, the wave

SgB ¢i‘PrUSYESSeStoward this aperture and is scattered there at (:) .

The result is a transmitted wave SDC SgB ¢1 and a reflected wave

3
Sgc SgB ¢i in regions D (free space) and C ,respectively. The
reflected wave travels in the negative z-direction towards aperture 2,
where it is again scattered at (:) . This process of multiple
scattering continues for an infinite number of times. Now all contri-
butions in region A, C, B and D due to the multiple scattering

process can be added up to yield:

(i) Reflected field in the exciting waveguide (region A):

- _ GAA L AB _CC _CB.i AB _€CC ..CC ..CC .GCB.1
¢A(gvu2,z) = Sl ¢ + Sl %l 52 ¢ + Sl 53 52 83 82 ¢

AB: O JCC .CC 60 .66 <CB .4
+85 S50 8, S5 8.7 5. 5,0 ¢ + ..., (5-1)

The Series of equation (5-1) is known as the Neumann Series [72] and is

convergent [72]. It can bewritten in a compact form as

AB _CC cc Cc,-1 CB .4

AA i
¢A(ul,u2,z) = S1 ¢ + S1 53 (1 - S2 53 ) S2 ¢ (5-2)
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where 1 is an identity matrix.

(ii) Field inside the coupled waveguide (region C):

. gCByi , CC (CC (CB.i . CC ([CC CC (CC,i
0g(uyaUy,2) = S, 700 + 8,7 5.7 570" + 8,7 55”8, S,¢

CC CB, i CC CC CC .CB.i
A ol e e e 3 S ¢ + 53 2 S3 52 (o)

CcCc .CC .CC .CC .CC _CB, i

+ 83 52 83 52 53 52 O I PR
cc CC -1 CB.i CC cC.-1 CB,i
=(1-5, 5" s, >4 33 (I-5,° 807 8,6
(5-3)
(iii) Field in free space (region B + D)
_ CC CB.1i cc .CC .CC .CB,i
¢B+D = 21¢ + 512 3 82 ¢ + Sl2 S3 82 53 52 G w e
PC .CB. i DC .CC _CC CB DC CC CC .CC .CcC .CB,1
+8, S0 +8.° S 8. S ¢ +8, S, S5 S, S 8,0
~ i §0C gCCy-1 (CB,i
= By + 5y, 8 33 (I-8; 8377 8,°¢
DC cc .CC.,-1 _CB,i

. . AA  _AB B _CC _.CC DC
the scattering matrices Sl 5 Sl 4 512, 521, 52 s S2 5 33 and 53

are determined in the same manner as those of Lee and Mittra [75]

who solved the problem of diffraction by a thick conducting half-plane
and a dielectric loaded waveguide. For most practical cases, the
evanescent modes are not taken into account, and consequently all
previous matrices are unit matrices. Hence equations (5-2), (5-3) and
(5-4) reduce respectively to (see Appendix E)

Y 2
Reflected field inside the exciting waveguide = f(ul,uz)e a

=2y, (L + £3)
T2 R e Tm ?

R + -2Ym L2 ] (5-5)

l1-RR_e
o
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. - T
Field inside the coupled waveguide = f(ul,uz) oy L,
l1-RR e
o
Y z =2Y (L + £2) Y z
[em-I-Roe " e™ 1] (5-6)
. Yl + 82) g cosd
Radiation field: Rad(8) = P(0) + — -2‘Ye 7
P aRR e
8]
ikls cosB i L
[Po(ﬁ) e + P(m - 8) R0 e ] (5-7)

where: f(ul,uz) = field distribution over the cross-section of a two
dimensional waveguide with transverse coordinates Uy

and u,.

Y, = propagation constant inside the waveguide.

R = reflection coefficient due the open-end of a semi-
infinite waveguide.

R = reflection coefficient of two semi-infinite waveguides
separated by a distance L.

T = transmission coefficient of two semi-infinite wave-

guides separated by a distance L.

PO(B) = radiation field of a single exciting semi-infinite
waveguide, with its open-end at z = o.
P(0) = radiation field of two semi-infinite waveguides

separated by a distance L, with the open-end of

the exciting waveguide at 2z = o.
For the case of parallel-plate waveguides with TE°’£ excitation,
PO(S) or P(6) is the electric field component Ey, given in Chapter 2
for the case of £ odd. While for the case of circular waveguides

with TM
o,m

excitation, PO(B) and P(0) are the magnetic field
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component H¢, given in Chapter 3. The radiated power as a function
of 0 for the whole system is then given by |Rad(8)|2 , for which some
results are shown in the next section for both previous cases.

In the case of two parallecl-plate waveguides with TEo,ﬂ
excitation (& odd), PO(O) = P(0) = P(m) = 0, giving Rad(0) = 0 and

-Ym(L + 22)
T e E-ik(L + 23)

Rad(m) = P_(m) (5-8)

which means that, Rad(m) is the radiated field from an open-end of a
semi-infinite waveguide, Po(ﬂ), multiplied by the constant factor
dependent on £; and L. When the separation distance between two col-
linear semi-infinite waveguides tends to zero, the reflection and trans-
mission coefficients, R and T, go to zero and unity, respectively, and

the radiated field P(8) becomes very small. Hence (5-7) reduces to

_Y (L + 2:2)
lim Rad(8) = po(e). e & . eik(L + £2)cosB

L+

(5-9)

which represents the radiation from an open end (at z =L + £3) of
y -Y_ 2z
a semi-infinite waveguide excited by a wave ¢1 = f(ul,uz)e B

5.3 Results and discussion

Some results are obtained for two cases of parallel-plate and
circular waveguides. Figure 5-3 shows the radiation of two parallel-
plate waveguides of finite length with ka = 0.6m and TEo,l excitation,
and for different lengths of the coupled waveguide. It is clear that the
main change in the magnitude of the radiated field is in the forward
direction with small variations in the backward direction. For this
case, figure 5-4 shows the radiation pattern for different values of

kL, with k&, fixed. This figure shows the behaviour of the radiated
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power with KL in the forward direction of 0 = .

To show the accuracy of the ray theory of diffraction some results
are obtained for the radiated power in the case of parallel-plate
waveguides., This is shown in figure 5-5, where results are compared
with those of the Wiener-Hopf technique. It is clear that the results
of the Wiener-Hopf and ray theory deviate especially in the forward and
backward directions, especially near the walls of the two waveguides.

Similar results are also obtained for circular waveguides with
TMU’1 mode excitation and are shown in figure 5-6. Due to the trun-
cation of the coupled waveguide the main lobe is strongly affected.

Further examination of the results for the case of parallel-plate

waveguides will be given in Chapter 7 using numerical methods.



CHAPTER 6

HU'S TRANSMISSION FORMULA AND

THE WIENER-HOPF TECHNIQUE

6.1 Introduction

The Gain of a standard horn can be determined by measuring the
transmission loss versus separation between two identical standard horns.
Friis' transmission formula [76] is only valid when the separation distance
between the two identical horns is large enough compared to the wavelength.
Therefore the Gain formula

P

_ Amr oy

(6-1)

may introduce considerable error when the far-zone gain of electromagnetic
horns is measured at relatively short distances [77].

In 1958, M.K. Hu [33] introduced a general power transmission
formula for a matched lossless two antennas system, using the Lorentz
reciprocity theorem in combination with Maxwell's equations. Hu's
transmission formula may be used as a near zone power transmission formula

when written as

[ (@, xE +E, x) * &
Pr_lls (H, x E, +E, x i) fi ds|
P_MZ f"’ ~% ~ e =% o (6_2)
t {Re - (E1 X Hl) * f ds]{Re szf(EZ X H2) ° 1, ds}
P
where §£. is the ratio of the received to the transmitted powers between
t
two antennas at any separation distance . El and ﬁl are the fields

when antenna 1 is transmitting, E2, H2 are the fields when antenna 2

is transmitting, and ﬁ, n and ﬁ2 are the unit normals to the surfaces.

The surface s may be either one of the two antenna apertures. Hu's
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transmission formula given by (6-2) is an exact formula if all the field
quantities are evaluated with both antennas in place and under matched
conditions. Neglecting the reflections between the two antenna systems
and mismatch due to their feeds; and assuming that the tangential fields
Et and Ht are related to each other by the free space impedance at
each point, equation (6-2) may be reduced to the more suitable form [33]
used by Chu and Semplak [77] to calculate the ratio between the Fraun-
hofer and Fresnel gain of a pyramidal electromagnetic horn as a function
of horn dimensions and separation distance. Jull [78]-[81] has invest—
igated the gain of parallel-plate waveguides and errors in the pre-
dicted gain of sectorial and pyramidal horns, while Hamid [12] has
studied the near field coupling between horn antennas.

In the following section, the author wishes to compare his results
with those obtained using Hu's transmission formula. Simple formulas
are obtained using Kirchhoff's approximation, modified Kirchhoff's
approximation, ray theory of diffraction and the Wiener-Hopf technique.
In the comparison, it should be noted that in equation (6-2), Pr
represents power received in the aperture of the receiving antenna.

When the receiving antenna is a semi-infinite waveguide, Pr must be
multiplied by the ratio of the waveguide and the free space wave impe-

dances in order to get the power far from the aperture. One should note

P
that §£ using the Wiener-Hopf technique equals |T|2, where T is
t
the transmission coefficient. Hence ITI2 will be the value that will
P
be compared with fz obtained using Hu's transmission formula. Some
t

results and discussion are given in another section.
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6.2 Formulation of the problem using Hu's transmission formula

Rewriting equation (6-2) in the form

B 2T B 285 4. el
|52I(H2xE1+E2xH1) fi, ds|

- =k A - =% &
{Re s’:(El x Hp) + ) dsHR, s’;(Ez x Hy) - i, ds}

(6-3)

ml'u
ron

=1
~ %

The surface s in (6~2) is chosen to be the aperture of the re-

ceiving antenna (antenna 2). Neglecting the reflections between the an-

tennas (i.e. in evaluating E1 and Hl, antenna 2 will be removed and in
evaluating i% and ﬁé, antenna 1 will be removed) and considering only
linearly polarized uniform phase plane aperture antennas [33], equation
(6-3) for parallel plate waveguides case, can be written, after some
manipulations, in the form:

EE _ ]szfii . i& ds|? -
{S1I|Ei|2 ds}{szf|§é|2 ds}

-}

t

Here it should be noted that El in the numerator is the

electric field due to antenna 1 in the aperture of antenna 2 in the ab-

sence of antenna 2, while Ei in the denominator is the electric field

of antenna 1 in its own aperture. Far from antenna 2, ‘El in the numera-

tor can be assumed fairly constant for the case of TEO mode, and (6-4)

1
>
may hence be written in the form:

5 2
EE - R |32f E, ds|
l . —
t {slf |El|2 ds}{szf |E2|2 ds}

(6-5)

In the denominator, the contribution of the first integral is the same as

the contribution of the second integral and hence (6-5) reduces to

T 2
P,__== & 1 ]s_zf E, ds|

= E
Pt 1

23 (6-6)
[szf ]Ezl2 ds]?

which for TE/ mode excitation in the parallel-plate waveguides and

»1
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aperture fields of unit amplitudes reduces to
P

16 |=
P_r':T |El|2 (673
g ¥
Again E, is the electric field due to antenna 1 in the aperture of

1

antenna 2 (due to a unit amplitude in the aperture of antenna 1), in the
absence of antenna 2 and is constant over aperture of antenna 2 and equal
its value at the centre of this aperture. The aperture of the coupled

waveguide is acting like a transformer and hence Pr may be multiplied

by the waveguide impedance. 1/v 1 - (m/kd)? , in order to get the power

far from the aperture, i.e.

16 1.0 - |z
2

1 (6-8)
n V1 - (n/kd)?

o

The radiated field of the transmitting antenna (the exciting waveguide)

is evaluated using Kirchhoff's approximation, modified Kirchhoff's approx-
imation, the ray theory of diffraction and the Wiener-Hopf technique
(exact solution). Table 6-1 shows the evaluation of (6-8) for different

formulas of |§ [79]. Second column states IE for the different

| |
methods of formulations listed in the first column, while the third
column represents %% |._"-'..1|z

In comparison, the Wiener-Hopf technique applied to two collinear

semi-infinite parallel plate waveguides gives §£-= |T|a, where T
represents the transmission coefficient in the coupled waveguide far from

the open end as derived in Chapter 2.

6.3 Results and discussion

Some results have been obtained for the solutions using Hu's trans-
mission formula and are compared with the exact solution using the Wiener-

Hopf technique. They are shown in figures 6—1 and 6-2. TFigure 6-1 shows

P

§£ for different separation distances KL and for a waveguide width
C



TABLE 6-1

Evaluation of (6-8) for the different formulas of |El|

*
= : g
Formulas Using |E1| IEyl (/P %
2k d 32 (kd)?
Kirchhoff's approximation S - s Nw
m(2rk L) m
Huoddtied kd(1 + B/k) 2
P L
Kirchhoff's approximation (27T kL) 7r5 kL

when B 1is replaced by k, they reduce to those corresponding
to Kirchhoff's approximation

2
Ray theory of diffraction —kd—é 1+ B/k)% % (:_i) (1 + B/k)
m(m kL) m
kd kd
=l = Bik) 2 (1 - B/k)
y : kd B/k ¥ 4 16 (kd) B/k 2
Wiener-Hopf technique T L+ k/S)kL] 4w A+ /B ©

x s=k/1-(ll}5)2
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d/A = 0.6. It is clear that, except for KL < 10, the exact solution
oscillates around that obtained by Hu's formula using Wiener-Hopf results
for a single waveguide. These oscillations are with a period w. This
phenomenon is due to the fact that in equation (6-8), El is evaluated
far from the open end of the exciting waveguide. This is similar to

the condition on Friis' transmission formula [82], for L 3'2%1 . Also,
it is clear that |§1[ approximated by ray theory of diffraction or by
the modified Kirchhoff's method gives better results. TFigure 6-2 shows
the results for a separation distance KL = 30 and for different waveguide
widths. It is clear that the exact solution coincides with that of Hu's
formula, using the Wiener-Hopf results of single waveguide, when

0.5 < d/XA < 0.65, and deviates for larger values of d/A, for the same
reason mentioned previously. In other words, for reasonably large
values of L, Hu's formula gives very good results, since they approach
zero when d/A goes to .5, while the results of the other approaches
blow up at this value of d/A. Hu's formula given by (6-2) cannot be
solved exactly. Neglecting multiple reflections, (6-2) reduces to (6-4)
which is used in this chapter to get the previous results. Using expres-

sion (6-4) to get initial diffraction, multiple reflections may be used

to improve the results.



CHAPTER 7

NUMERICAL TECHNIQUES FOR COUPLING BETWEEN WAVEGUIDES

7.1 Introduction

Among the methods used for investigating scattering and radiation prob-
lems is the numerical technique. This technique is widely used for prob-
lems that do not have exact analytical or even approximate solutions.
Numerical solutions for scattering by perfectly conducting rectangular
cylinders, both for parallel and perpendicularly polarized incident waves,
have been obtained by Mei and Van Bladel [83]. Similarly Andreasen [84]
has investigated the scattering by parallel metallic cylinders with
arbitrary cross sections. For metallic cylinders, the problem is reduced
to the numerical evaluation of integral equations for the surface currents.
For dielectric cylinders,Richmond [85],[86] has obtained solutions by
numerical evaluation of the integral equations for the polarization
currents in the dielectric material. The numerical evaluation of the
integral equations is usually carried out by using a moment or a point
matching method [29] to convert the integral equations to a set bf simul-
taneous linear equations. The number of matching points depends on the
length of the contour of the cross section for metallic cylinders and
on the size of the cross sectional area for dielectric cylinders. For
problems involving discontinuities in the contour of the cross section,

a higher number of matching points is needed. Abdelmessih and Sinclair
[87] have used Meixner's edge condition for treatment of the singularities

of the surface current at the discontinuities. An alternative method
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for treatment of the singularities is the method of coordinate trans-—
formation which has been used successfully by Shafai [88].

In all cases, the rate of convergence of the solution depends on
the size of the scatterer and may be improved by utilizing the symmetry
arguments, increasing the efficiency of numerical evaluation of the mat-
rix elements or by optimizing the basic set used for the expansion. A
technique for improving the convergence of the moment method has been
studied by Tew and Tsai [89] through the use of a priori knowledge of
the solution., Their idea was that a known good approximation, such as
the physical-optics current, is subtracted from the unknown total current,
with the result that the residual difference current, which is now the
quantity to be determined, will converge more rapidly.

So far the moment method has been applied in open space to solve
scattering problems of obstacles of finite size. The extension of the
method to diffraction by arbitrary cross sectional semi-infinite conduc-
tors, that has recently been investigated by Morita [30],[31], has
paved the way for use of the moment method to many new problems. Wu
and Chow [32] have utilized Morita's investigation and extended the
direct moment method to the closed space inside a waveguide which has
infinitely long walls along the propagation direction, taking an advantage
from the localized nature of the evanescent waves to assure the conver-
gence of the solution. A similar approach was also used by Burnside et
al [90], Thiele and Newhouse [91] and Chow and Seth [92].

In this chapter the author formulates the problem of two parallel
plate waveguides using the direct moment method and the modified moment
method [89]. The direct moment method is used when the separation dis-

tance between the two waveguides is large (KL >> 1), while the modified
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moment method is used when the separation distance is small. 1In the
direct moment method, as the separation distance between the two wave-
guides is large, coupled waveguide can be assumed to be illuminated by
the field radiated from the open end of the exciting waveguide. This
field has an exact value and is given by many authors and is included in
the previous chapters. This illuminating field is scattered by the
coupled waveguide which may have any length and any width, i.e. the coupled
waveguide may support other modes and not necessarily the dominant modes
in the exciting waveguide. The method of coordinate transformation, which
has been used by Shafai [88], is used here and the walls of the coupled
waveguide is conformally mapped on to two circular cylinders and hence
overcoming the singularities in the transformed domain. The surface
current is evaluated from which the scattered field is determined. Con-
sequently, radiation patterns due to coupling between two waveguides is
obtained by adding the radiated field from the open end of the exciting
waveguide to the scattered field from the coupled waveguide. This will

be shown in detail in the next section.

In the modified moment méthod, where the separation distance be-
tween the two waveguides is small, the propagating wave in the exciting
waveguide is considered to be a plane wave bouncing off the walls, in
the case of parallel plate waveguides. When this bouncing wave meets
the discontinuity, a scattered field results. This field is then de-
composed into reflected, transmitted and evanscent waves. The reflected
and transmitted waves are represented by plane waves in the exciting
and coupled waveguides;respectively, having reflection and transmission co-
efficients R and T, respectively. The evanescent waves are represented

by extra induced current densities on the conducting walls of two wave-



121

guides. As the evanescent waves decay exponentially from the discontin-
uities, the basic functions are required to cover only a finite space,
i.e. reducing the infiniteiy long walls to finite ones. Once the re-
flection and transmission coefficients and the evanescent currents are
determined, the radiation field can be readily obtained. This will be
shown in detail in this chapter.

In the following sections, the case of parallel plate waveguide
is treated with TEo,1 mode incident in the exciting waveguide. Num-
erical results are given for both methods of formulations and a compari-

son between Wiener-Hopf results and those of numerical methods are dis-

cussed.

7.2 Direct moment method (DMM)

~The geometry of the problem is again shown in figure 7-1, where KL
is the length of the coupled waveguide. As indicated in the introduction
when the separation distance between the two waveguides is large, the wave-
guide can be assumed to be illuminated by the radiated field from the
open end of the exciting waveguide in the absence of the coupled wave-
guide. For TED incident wave in the exciting waveguide, the radiation

21
field is given by:

i(Kp-Ka|sing |-‘[{ K|sin6| G, (Kcost)
G+(1Y£) Kcos6 + iYR

E = —32T o

y 2a12nKp

(7-1)

As the coupled waveguide is illuminated normally by the above electro-
magnetic wave which is polarized parallel to the edges, a solution for
the total electromagnetic field may be obtained by an application of

Green's identity and the result is [29].
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total _ _inc. 7n () st =1 et e
E, = E A J 'l (K[r-x |)Iy(r ) d(Kr') (7-2)
w

where E;“c' is given by (7—1) , N = (uofeo)lfz = 120m is the intrinsic
impedance of free space, and Iy is the induced current on the walls of the
coupled waveguide. The integral path W is along two walls of the coupled
waveguide and r and r' are the coordinates of the field points and

of the source points on the walls.

On the walls of the coupled waveguide, the boundary condition EtOtal

= 0 reduces (7-2) to

B - ] I BD K[E 2 DI @ aaE) (7-3)
w

This is an integral equation for the current distribution Iy and is solved
by the direct moment method, in which the integral equation is con-
verted to a set of simultaneous linear equations. In the most common
method, the path of integration w is divided into N segments Aw and a
step or a linear approximation to Iy is used [29 ]. As mentioned in the
introduction, sharp edges create singularities of the induced currents and
for accurate results, a transformation is needed to map the cross sectional
contour of the scatterers onto circles on which induced currents are finite.
After conformal mapping of the region outside the walls of the coupled wave-
guide to the region outside two circles in the transformed domain, (7-3)
reduces to

2T

i w_ Y] 1 1 i R | | 1 1
B, = ] J B R[FE ) 3 (01 dot + J R PECRLE

(7-4)

where r' and r" are functions of ©' and are given by equation (F-5a) and
(F-5b) in Appendix F. Jyl and Jyz are two unknown induced currents on
the walls of coupled waveguide in the transform domain. A detailed

analysis of the transformation and the regularity of the current
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Jy is given in Appendix T. For the solution of Jy’ a series of trigon-
ometric functions with unknown coefficients are assumed [88] and are
found by an application of the point matching technique. The reason

for choosing such a solution was pointed out by Shafai [88] which is to
provide an approximate lower limit of the number of terms in the series,
for the desired degree of accuracy and by comparing the behavior of J
with the current distribution on a circular cylinder. For a general

illumination ,JY may be assumed in the form

i e = inf' _
Jy(ﬁ Y = B a e (7-5)

n=-ow
From equation (7-1) it is clear that the illumination is symmetrical and

the above form can be reduced to

[es]
Jy(@') = = a cos ng' (7-6)

n=o

For TE0 mode the induced current on the walls of the waveguide is the
1

same. Hence, if the coupled waveguide has the same width as the exciting

waveguide, then the induced currents on the walls of the coupled wave-

guide are equal. Therefore equation (7-4) reduces to

8

Isc.—v _ T
Ey (ro) =g :

2T
a, uJ [Hél)(KTEEJ;'|)+H§1)(Kr;64E“|)]cos ng'do’
© (7-7)

Il ™

On truncating the series to N terms, one obtains an equation in N wun-
knowns. Dividing the circumference of any one of the circles into N
segments and using the point matching, (7-7) can be written in the follow-
ing matrix form [29]:

Lo, o) [£,] = Lg,] (7-8)
where

£ = % a , m=0,1,2,...N-1 (7-9)
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2
- (l) R (l) d e ' t
%n -J [H, (1<.|1:m r |)+Ho (}\[rm r"|)]cos nB'de
, m= 0y1,2,.. N-1 , n=0,1,2,.. N-1
and (7-10)
T O
B =B g
i(Kr_-Ka|sin8 I—Tj K|sinb |G, (Kcos® )
=-_;EL-E_-G : wl G+(1Y£) Kcos@m + I (7-11)
ZaﬂZNKrm m Yy
_ X
where 6_ = tan ! —
m .

when matching points are on the upper wall, the element Em,n may have
singular points at ?; = ' . For matching points on the lower wall,
these singularities will be at ?ﬁ = T" . These singularities can be
treated analytically, but in numerical integration they can be avoided

by choosing proper integration points. In (7-10), the integrand is an

even function, Hence £m - can be reduced to

m
Vi ™ 2 J [uél)(xl?m-?' |)+H§1)(K[¥m-?"|)]cos nd'do’
0

, ®W=0,1,2,...N-1 , mn=0,1,2,...N-1 (7-12)

Equation (7-8) is the matrix form of an N simultaneous linear
equations in N unknowns and can be solved numerically by known method.
Once the coefficients are known, induced currents can be determined and
consequently the scattered field from coupled waveguide can be obtained

as

m
B @ = -] J (V) [E5 |)+u§1)(K|"E-‘E"|)]Jy(e')de' (7-13)

At a large distance from the scatterer, (7-13) can be written in the form

Esc.(-r-) O | _Z_e

i(Kp—g) m
y 2 {mKp J

Jy(8,)[eiKp'cos(e+¢')+eil{p“cos(0+¢")]de.

(7-14)
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where
pl a [xl (e!) + z!(el)]l,? &
pn == [x”(B‘) 3 zu(er)]l/z = pv’
. S (7-15)
¢' = tan '[x'(08')/z'(6")] :
and ¢" = tan *[x"(0')/2"(0)] = -4'

Hence, the total radiation field may be expressed as

Etotal _ Einc. + Esc.
Yy 5 Yy
[z L(Kp- )
= \.'IT—.KE e F(O) (7-16)
where

K[sine|e_iKal3ine|G*(Kcose)
Kcosb + iy,

F(B) = % G+(i‘r£)

m 1 1 . " 1
B g_ J Jy(e')[eiKp cos (0+¢ )+21Kp cos (6-¢ )]dB' (7-17)

7.3 Modified Moment Method (MMM)

The direct moment method has been used in the previous section to find
the radiation field when the separation distance between two waveguides
was large. When KL2 becomes very large, the required computer time
for achieving a reasonable convergence of the series of the induced
currents on the scatterer becomes larger. Consequently, an investiga-
tion of the scattering by a semi-infinite waveguide becomes formidable.

On the other hand, the separation distance in MMM is arbitrary, which
enables us to obtain the reflection and transmission coefficients and
the radiation pattern for any arbitrary value of KLZ. The procedure

of the solution is as follows [32]: The propagating wave in the exciting
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waveguide is considered to be a plane wave bouncing off the walls. When
this wave meets the discontinuity, scattering occurs. The scattered
field is then decomposed into reflected, transmitted and the evanes-
cent waves, The reflected and transmitted waves are represented by plane
waves with a reflection and transmission coefficients R and T, res-
pectively, whereas the evanescent waves are represented by an extra in-
duced current density on the conducting walls of the two waveguides. As the
evanescent waves decay exponentially from the discontinuity, the base
functions are required to cover only a finite space, i.e. reducing the
infinitely long walls to finite ones.

For the case of two semi-infinite waveguides, let a TE i mode

propagate in the exciting waveguide. The field is considered to be a

plane wave bouncing off the upper and the lower walls, with an angle

eo = gin 1 %E as shown in figure 7-2. With the time factor eiwt being
suppressed, the incident plane wave can be written in the form:

i .1 1(KxcosBD+Kysin80)

Ez =z5e (7-18)

The induced current density on the lower or the upper walls are equal
for TE0 i mode and are given by
3>
sin@ incosBo
- S e (7-19)

3t = ofxt = 2
z
y=o0,o0r y=d

where i is the unit normal to the wall inside the waveguide, ana n is
the intrinsic impedance of the medium inside the waveguide (n = 120,
if the medium is free space).

Due to the discontinuity at x=0 , part of the incident field is
reflected back into the exciting waveguide and another part is diffracted

at the edges., These diffracted waves are diffracted again at the opening
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of the coupled waveguide, which givesrise to transmitting fields. The
current densities due to the reflected and transmitted waves can be

written in the form:

r sin€ —incosBo
¥, - ZR —~;r9e for x>0 ,y=0andy =4d (7-20)
and
E o o B0 1Kxc0580 for x<-L,y=0andy=d (7-21)
JZ—ZT—n—e

An evanescent current J® = % J: exists on the walls near the discon-
tinuities, i.e. between x=0 and X=X and between x=-L and X=X,
where X, and x, are the values of x after which J: may be assumed
zero. From the boundary condition Ez=0 on the walls, the following
integral equation is satisfied [29]:

o= J G+t (?')+Jr(?')+.]t(?')]HSZ)(K]?—?' hagx')  (7-22)

w

where r and r' are the coordinates of the field and source points on

the walls. The integral path w is along all relevant waveguide walls,

i.e., on the walls of the exciting waveguide for Ji, J* and J° and on

the walls of the coupled waveguide for J% ana J° . Equation (7-22)

cannot be solved exactly and approximate results may be obtained numeri-

cally by using a point matching technique with base functions in the form

of unit pulses. Dividing the integral path w (for the integral over

Je) into N segments with a current Jﬁ at the centre of each segment,equa~
e e

tion (7-22) will contain N+2 unknowns, J? o A i g o

2 N ? R and T.

The N segments are between x=0 and X=X, and between x=-L and X=X .
Another two test points corresponding to R and T  should be chosen
on the walls of the waveguide far from two open ends of the two wave-
guides. In this manner equation (7-22) combined with (7-19), (7-20)

and (7-21) may be written in the following matrix form:
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[im’n][fm] = [gm] (7-23)
where
-
n e g %
4 Jm s for m= 1,2,0ee 4 N
fm =< R " for m = N+1 (7-24)
T 5 for m = N+2
L.
sin@0
B, % o ey [I+(0,w,0) + I+(0,m,Kd)] (7-25)

And for the linear operator £, the elements Em s will be given by:
3

(i) For m=1,2,... N~+2 , and n=1,2,... N

(2) ' (2) Y / '
[HO2 (Ime—Kxn|)+Ho2 (((mefon)2+Kd2)1 2)]&(Kxn) , for m#n

'} =
et A(Kx") )
[1-&;(1nqﬁ—zﬁ—— +y-1) + H 2’ (Rd)JA(Rx!) , for m=n
(7-26)

where vy = 0,577215665 ...

(ii) For m = 1,2,... M2 and n = N+l which correspond to R
sinb

— o ca fon) -
R’m,N‘-l‘l i 4 [I_(Os 90) + I_(O) :Kd)] (? 27)

(iii) For m= 1,2,... , M2 and n = N2 which correspond to T
sinf

s e Oy s y
By mren = g [L,69,-1,0) + T, (0,1, Kd)] (7-28)

In equationg (7-25), (7-27) and (7-28), I is the integral defined by:
A tin'cosBo &5 /
I,(A,B,y) = [e HO2 [((Kx'-me)2+y2)1 214 (kx") (7-29)
i A
The semi-infinite integrals shown above should be converted into a

more convenient form. For the source elements g, ¢an be written

as

sine0 i in'coseo )
Bm -2l | e 182D (|1t -kx_| ke
0
o iKx'cosB
+ J e °H§2){[(Kx'-xxm)2+xd211/2}dxx' (7-30)

0
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changing the variable of integration and making use of the following re-

lations [32]:

o0

incosG0 G 2(F~60)
J o HO (Kx)dKx = me— 2 (7-31)
0 [e]

oo

incosBo () : 210 ? -insin@0
J e Ho [ (Kx“+Kd*) JdKx = <ind_ ©
0 = o

-incosSo () /
- J e uoz [ (Kx24+Kd?) ' 2]dkx (7-32)

0
then (7-30) reduces to:

°H§2)(|Kx|)dxx

g =58 - e

6 iKx cosB sinf iKx cos6 Kx  -iKxcosf
o m o o m o[ m
m 2m 4 J

0

Kx  -iKxcosf €3 /

+ J Ra °H°2 { (kx?4Kd?) Y/ 2}dkx - J) (7-33)
1]

where J 1is the integral given by:

g = °H§2)[(xxz+xd2)1/2]dxx (7-34)

co -
-iKxcosf
j g
0

Similarly, the elements £ and Em can be expressed in the more

m, N+1 ,N+2

convenient forms:

Bo -inmcoseo sinBD -inmcoseo me incosGo ()
Rm,N+1 =2 © Lt EOJ e H (kx| )dkrx
me incosBo ) /
i J e Ho2 { (Rx?4+Kd?) 1 2}dkx + J) (7-35)
0
6 i(Kx 4KL)cos@ sinf i(Kx +KL)cos6 Kx +KL
% - m o_ ° . m o m
m,N4+2 ~ 27 A .
e %27 (|kx|)dKx + J moe %H 2 { (Rx*+Ka?) M 2 }dkx -J]
.
(7-36)
In deriving (7-35), the following relation has been utilized [32]:
-iKXCOSeo () 290
ore HO (Kx)dKx = mo— (7-37)
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It is now clear that in all elements 8y > 2m,N+1 and ﬁm,N+2 s

expressed by (7-33), (7-35) and (7-36),all integrals except J can be
evaluated numerically by .convenient known methods, since the limit
of integrations in these integrals are of finite extent. The integral
J is again of a semi-infinite type with very low convergence and must
be converted to a suitable form. This integral was obtained by Morita

[30] and was modified such that it can be evaluated numerically, i.e.

J can be written in the form:

Kd -incosGo () / -choseo
T J © H02 [ (Rd?-kx?)*"?]dKx +'F e
0
2cosf 1 ol . "
[Zcoseo(—Y+ln Kd N Zchosen)+oJ[Ko{(Kx +2Kd*Kx) }
—Kxcosb
g e ® dkx] (7-38)

where Ko(z) is the modified Bessel function of the second kind. The
first integral in (7-38) can be evaluated numerically due to the
finite integration range, while the second integral can be evaluated
numerically [30] by the Gauss-Laguerre quadrature formula [93] owing to
the exponentially decreasing factor exp(-KxcosBo).

Once the base functions Rm,n and the incident field elements &,
are determined, the system of N+2 linear equations given hy (7-23)
can be solved for the unknowns R, T and the evanescent current a® 5
by the known methods. Once all unknowns are determined, radiation field
can be obtained through the integral equation
B E) = 1 J[Je(?')ﬂi G+ EHEEH I ®[FE )

W (7-39)

which can be written as:

BOR @) = E@ + B + EL@ + L@ (7-40)



133

where Ei 5 Ei 5 Ez and E; represent respectively the radiation field,

contributed by the evanescent, incident, reflected and the transmitted

currents., These radiation fields can be evaluated in the following ways.

7.3.1 Contribution of the induced evanescent currents

E; (¥) = % J Je(?')ﬂé’*)(h&-x?' d(Kr") (7-41)
Ac

where Ac is the path of the integral between x=0 and X=X and between
x==L and x=xb , and - i is evaluated in these regions. Far from the
waveguides and using the asymptotic expansion of the Hankel functionm,

(7-41) can be expressed as

T
_ -1 (Kp=-7) X . :
) “% ;{1%5 2 4 JJe(KK)e:LKxcosS[1+e1Kd51nG]d(Kx)
1TAc
-i(Kp-7) 4 ; N iKx cos®
Nl 2 4 iKdsinB e n
= % \ako e [1+e ] =2 Jn(Kxn)e ﬂ(Kxn)
n=1,2,..
2 *i(Kp~}) e
=1f:1ﬂ(p e F(8) (7-42)
where
e iKdsinf N n .e inncosB
F (8) = [1te 1 2 7 J (Kx )e A(Kx ) (7-43)
n=1,2,.. M

7.3.2 Contribution of the induced incident current

The contribution of the incident current induced on the walls of
the exciting waveguide may be represented by
E@ =1 j 7t EE) ®/[EE )k (7-44)
w

From (7-19) and (7-44) one obtains
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3 sinf o iKx'cos8 (2) /
E &) =— 2 i J e "1—102 [{ (kx-Kx')? + Ky2}}/?]drx'
(4]
@ iKx"cosB (2) /
+ J e 01{02 [{ (Kx=-Kx")? + (Ky-Kd)2}'/2]dKx']

0
(7-45)

changing 80 to m-8' in the above equation yields

Héz)[{(Kx—Kx‘)2 + Kyz}l/z]de'

£ o . ' S 1 1
E:(r) _ 5128 [ J . iKx'cosh

0

+ J E_KX‘COSB'Héz)[{(Kx—Kx')z + (kD)2 2Jaka'] (7-46)

0

The integrals in the above equation are similar to that obtained by

Morita [31] and for a region far from origin, equation (7-46) reduces to

{1~ _ 1  sind' (2) (2) -
Ez(r) =% P b [H0 (Kp) + HJ (KOI)] (7-47)
where p = {x2+y2}1/2 ; cos® = x/p
and B = {:l:2+(y—d)2}1f2
Using the asymptotic expansion of Hiz) , (7-47) reduces to
: jl)
o, B SRR
Ez(r) =Vm5 @ F(8) (7-48)
where
. g g 2 sinf
Fl(e) o [l+e1Kd31ne ks [e) (7-49)

) % Cosbrcoso_
It should be noted that this result gives the radiation field from the
open end of a semi-infinite waveguide when Kirchhoff's method ( Huygens'
Principle ) is used. In other words this is another approach to obtain
the radiation pattern of a semi-infinite waveguide using Kirchhoff's
approximations [2], which sets the field in the aperture (the open end
of the waveguide) equal to the field of the incident mode in an infinite

wavegulde and the field on the outer walls equal to zero.
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7.3.3 Contribution of the induced reflected current

The reflected current induced on the walls of the exciting waveguide

may contribute to the radiation field by an expression of the form:

B () =] J Jr(?)ngz)(x[?-? ) dKE" (7-50)

w
From (7-20), equation (7-50) reduces to

.- sineo w ~iKx'cosf
EL() = R g

- . oﬁéz)[{(Kx_Kxf)z 4 Ky2}1/z]de1
1]
® —iKx'cos (2) /
+ J e 0H02 [{ (kx-Kx")? + (Ky-Kd)?}'/?]drx'] (7-51)
0

This equation is of the same form as (7-46) and hence reduces to

-1 (Ko-7)
T = 2 A
E (r) \lﬁKp e F(8) (7-52)
where
: sinf
r o iKdsinf, iR o 3
Ele) = [i4e ] 4 cosf-cosf (=3
7.3.4 Contribution of the induced transmitted current
The contribution of the transmitted current induced on the
walls of the coupled waveguide may be represented by
EE@ =1 J J"(E')ng) (K|E=F" |) diE" (7-54)
w
From (7-21), equation (7-54) reduces to
sing =L iKx'cos6
ES(T) = T 2t e °H(2)[{(Kx—xx')2 - Kyz}llede'
2z & o] .
= g in'cosBO ¢.) /
+ J e H03 [{(Kx=Kx')? +(Ky-Kd)?}!' ?2]dKx"'] (7-55)

-0

changing the variable of integration and after some manipulation, (7-55)

becomes

o sinf ~1iKLcos6 & -ikx'cos6 () /
E (r) = T— ° e 21 J e i’ [{ (RX-Kx') 24Ky 2}/ 2 1dkx"
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® _iKx'cos0 s /
+ J e 01102 [{ (RX-Kx')? + (Ky-Kd)?2}'/?]dkx" (7-56)
0

where KX = —(Kx+KL).

This equation is of the same form as (7-46) and hence reduces to

sin0

Ez(?) w &L i [Héz)(Kp ) + 1-1(2)(K13 )] (7-57)
2 ] 3
cose—coseo
where = {x2 2}1/2
p2 =1X"+y £
o, - (x? + (y_d)2}1/2
and cosh = X/pz ~ -x/p = —cosH
using the asymptotic expansion of Héz)(ﬁp), (7-57) becomes
: )
t = _ 2 "l(K:O"' Z) &
Ez(r) = FI-{E e F(8) (7-58)
where
. . . ind —iKL(cosB+cosB )
t _ iKdsinf, iT ™o
F(8) =~ [Ite ] 4 cos@+coseo (7-59)
which can be related to F (8) by the relation
i -iKL(cosB4cosh ) i
Fr(®) =-Te ° F(8) (7-60)
Combining (7-40), (7-42), (7-48), (7-52) and (7-58), one obtains
il
-i(Kp-7)
total — _ 1) 2 4
Ez (r) = ﬁﬁﬁ'e F(B)
where
F(8) = FS(8) + FL(8) + FX(8) + FE(8)
) [l+einsin9][i. sineo - e—iKL(cosS+cosGo))
4 c0$9+cosﬁo
i 5]
iR 51n60 N n e inncos
4 Gosbcoss_ T F w da(pe Mgl @0
o n=l,2,..
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The above equation represents the radiation pattern due to coupling
between two semi-infinite waveguides, as a function of the reflection
and transmission coefficients and the evanescent currents. In the ab-

sence of the coupled waveguide, T=0 and radiation pattern is given by:

sinf ; sinf
9 iKdsinf, i o iR o
F(0) = [lte ][4 c058+c0880 4 cosewcosﬁo
N i a inhcosa
-+ n=§ ’ Z-Jn(Kxn)e Q(Kxn)] (7-62)

where R represents the reflection coefficient of a semi-infinite wave-

guide, and evanescent currents are along the exciting waveguide walls

betwen x=0 and X=X . The system of equations, in this case, is for
N+1 unkno ¥=, 3° J¢ and R, and thus the elements £
unknowns, 3 08 Sren j m, N2

which correspond to T, i.e., existence of the coupled waveguide should
be removed from the system of equations represented by (7-23).

When the coupled waveguide is not of the semi-infinite type but has
a finite length L2 , then equation (7-62) can be used. In this case
R will represent the reflection coefficient in the presence of the
coupled waveguide and the evanescent currents will be along the exciting
waveguide walls between x=0 and X=X and along the whole length of the

coupled waveguide. Again, the system of equations is for N+1 unknowms.

7.4 Results and discussion

Some results are obtained using direct moment method (DMM) for the
radiation pattern of two collinear parallel plate waveguides of width
d = 0.6\ and a separation distance KL = 50. These results are shown

in figure 7-3 for different lengths of the coupled waveguide. The solid
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6urve shows the radiation pattern for KL = 0.0, the case of a single
waveguide, obtained using the Wiener-Hopf technique, while the broken
line curves show the patterns by numerical methods, for KL = 0.1, 1.0
and 6.0. It is clear from this figure that for non zero values of KL2
the radiated power oscillates around the value corresponding to

KL2 = 0.0. DMM have been used to check the results of MMM and the results
of the Wiener-Hopf technique. Also, it has the advantage that the coupled
waveguide may have any width and orientation. The disadvantage of DMM
is that the coupled waveguide cannot have large length, i.e. the case

of two semi-infinite waveguides cannot be treated because of the need
for a large number of matching points and consequently large computation
time, This is overcome by MMM as shown in previous sections. As an
application of MMM, radiation patterns and the reflection coefficients
are obtained and shown in figures 7-4 and 7-5 and table 7-1. It is
clear that the radiation pattern of a single waveguide is exactly the
same as the one obtained by the Wiener-Hopf technique which is shown by
the solid line in figures 7-4 and 7-5. Also it is interesting to note
that the contribution of the incident current gives the results obtained
by the Kirchhoff approximation. The contributions of the reflected

and evanescent currents are shown separately and then together. The
evanescent current has the main contribution in the forward direction

( 6= 180°) while the reflected current gives the main contribution in
the forward and backward directions. Two examples for d = 0.51A

and 0.6\ are shown in figures 7-4 and 7-5. As the reflection co-
efficient decreases rapidly by increasing the waveguide width, it will
not contribute significantly to the radiated power. This is clear by

two examples of d = 0.51A and 0.6A where the reflection coefficients
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semi-infinite waveguide with TEO

TABLE 7-1

Reflection Coefficient of a

s1

mode of excitation

Waveguide
width

in wavelength

Using Wiener-Hopf

Technique

Using MMM

Magnitude phase in degrees Magnitude phase in degrees
.51 .5971 ~-164.3 .6026 -165.7
.60 .1891 -130.9 1911 -134.6
1.00 .0176 - 80.8 .0194 - 95,1

A\
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are 0.6 /-164 and 0.19 /-131, respectively. Also, table 7-1

shows the reflection coefficient of a single waveguide using the Wiener-

Hopf technique and MMM for different waveguide widths and indicates very

good agreement. By increasing the waveguide width, the reflection co-
efficients become small and, as a result, the phase errors in the computations
become large. But, as mentioned before, the contribution of the small
reflection coefficient to the radiated power is very small and hence

one expects to get very good results for the radiation pattern even with a
large waveguide width (0.5) < d < 1.5)).

Some results have also been obtained for MMM applied to two collinear
parallel plate waveguides with the coupled waveguide of finite length.
Figure 7-6 shows the radiation pattern for d/A = 0.6 and KL2 = 15.0
with different values of the separation distance KL. It is clear that
for KL=0.1 , i.e. small separation distance, the radiation pattern is
the same as the one corresponding to the radiation pattern from the open
end of a single semi-infinite waveguide. This is true because the main
radiation comes from the far end of the coupled waveguide. Some results are
also shown for KL = 1 and 10. For the previously mentioned case, the
reflection coefficients are shown in table 7-2. Also, it is clear from
this table that for KL =0.1 , the magnitude of the reflection coefficient
is the same as that of a single semi-infinite waveguide, while the phase
is different, since it represents approximately the reflection from the far
end of the coupled waveguide. A comparison of the reflection coefficient
for the finite lengths of the coupled waveguide using the Wiener-Hopf
technique and MMM is shown in table 7-3, which shows a fairly close agree-
ment. Radiation patterns for the finite lengths of the coupled waveguide

and using the Wiener-Hopf technique, MMM and DMM are shown in figure 7-7.
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TABLE 7-2

Reflection Coefficient by MMM
for two collinear parallel-plate waveguides of finite length
d/x = 0.6 , KLz = 15

KL Magnitude phase in degrees
10 0.233 -103.6
1.0 0.325 148.1
0.1 0.198 85.1

9v1



for

TABLE 7-3

Reflection Coefficient

two collinear_parallel-plate waveguides
d/A=0.6 , KL =15
2

of finite length

Using Wiener—Hopf

Technique Usdag Bl
KL
Magnitude phase in degrees Magnitude phase in degrees
10 0.200 -113 0.233 -103.6
20 0.168 -123 0.151 -113
50 0.199 -133 0.194 =142

Iyt
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It is clear that the results using DMM and MMM are approximately the
same. The results using the Wienecr-llopf technique are slightly dif-
ferent, especially in the forward direction, and this is because of the
fact that some interacting rays are not included in the derivation,

For the case of two semi-infinite waveguides, some results are
obtained using MMM and the Wiener-Hopf technique and are shown in figure
7-8 and table 7-4. Figure 7-8 shows the radiation patterns for differ-
ent separation distances. For KL = 0.1 and by MMM, the radiation pattern
is like a beam at an angle given by § = -siﬁJ-E% + 7. It is clear
also that the results by MMM are slightly different from those by the
Wiener-Hopf technique in the forward direction. This may be due to the
fact that in the MMM, the far tesﬁing points, corresponding to the
reflection and transmission coefficients, are arbitrary dand, as a result
the results of MMM are too sensitive at these two points. This point
will be clarified later. Table 7-4 shows some results for R and T
using MMM and the Wiener-Hopf technique. It is noticed that values cor-
responding to |T] do not agree because of the phenomena mentioned before.
In the case of single semi-infinite parallel-plate waveguide, the sensi-
tivity of the results to location of the far testing point was studied.
by Wu, S.C. and was shown by unpublished results. The same phenomenon
can be said about two semi-infinite waveguides and cannot be studied here
because of another important phenomenon, which is the dependence of R
and T or the evanescent currents on the number of matching points. This
has been shown in figures 7-9 and 7-10. Figure 7-9 shows R and T versus
the number of matching points N2 (corresponding to the evanescent current)
on the coupled waveguide for Nl = 20 (Nl = number of matching points

corresponding to evanescent current on the exciting wavegulde). Similar
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results are also obtained for R and T versus N1 for N2 = 20 and
are shown in figure 7-10. Tigures 7-9 and 7-10 show sensitivity of
R and T to the numher of matching points corvesponding to the evan-
escent currents. For very small separation distances, R and T do
not change significantly, which means that the MMM is very reliable
when the separation distance is small.

The numerical results obtained here were for waveguides of equal
width. The method, however, can readily be extended to waveguides of
different widths. It can also be used for waveguides with a flare

angle and couplingbetween adjacent horn antennas.
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TABLE 7-4

Comparison between Wiener-Hopf technique and MMM

for reflection and transmission coefficients of TE mode

0,1

0.1
1.0
10.0

50.0

Reflection Coefficient

Transmission Coefficient

Wiener-Hopf Tech. MMM Wiener-Hopf Tech. MMM
- 0.0015/-103 = 0.999/ .5
- 0.116/131 - 0.991/7.5
0.236/-111 0.285/-113 0.429/-148 0.501/-159
0.199/-135 0.192/-135 0.195/147 0.261/140

£ST



CHAPTER 8

DISCUSSION AND CONCLUSTION

8.1 Discussion

The Wiener-Hopf technique was used to investigate the coupling
between two collinear semi-infinite parallel-plate and circular wave-
guides. Obtained results for the reflection, transmission and radia-
tion fields in the exciting waveguide, coupled waveguide and free space
were expressed by three terms. The first term was due to the open end
of the exciting waveguide alone (i.e. in the absence of coupled wave-
guide). The second and third terms were due to the interactions between
the two opening ends of the waveguides. The third component of the
reflection coefficients and the first and second components of the trans-
mission coefficients were functions of axial distance z and they rep-
resent radiation of either waveguide inside the other. These functions
when represented as inhomogeneous waves in the direction of the axis
would decay to zero at the far end, in order to satisfy the Sommerfeld
radiation condition. Far from the open ends, the main contribution to
the reflected field was due to the first and second terms (equation 2-65
for the parallel-plate waveguides and equation 3-39 for the circular
waveguides), while the main contribution for the transmitted field was
due to third term (equation 2-73 for the parallel-plate waveguides and
equation 3-48 for the circular waveguides). The amplitude and phase of
the reflection and transmission coefficients were oscillating functions
of period kL = m . The reflection coefficient decays continuously with
kL to reach its final value for kL = 7, a single excited semi-infinite

waveguide (e.g. see figures 2-6 and 3-3), while the transmission
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coefficient would decay to zero as kL approaches infinity (e.g. see

figures 2-7 and 3-4).
1

Equation (4-66) shows that the spherical wavefactor o)
sind B/ (ka sind)
o1 (kr-/2) °

combined with the spherical wave variation —————— is related to the

21 kr
curvature of the rim of the circular waveguide. Tt was shown that this
factor was necessary for treating problems of diffraction by small aper-
tures in hard screens.

Results using the ray theory of diffraction in conjunction with the
modified diffraction coefficients, were in good agreement with the rig-
orous solution, especially for very large values of kL. However, the
ray theory results showed that, for any separation distance, the radia-
tion patterns would blow up in the front direction (see e.g. figures 4-8
and 4-9).

Using the results of the coupling between semi-infinite waveguides
and scattering matrix technique, the coupling between waveguides of
finite length was obtained. This system may act as an open type reson-
ator with its frequency determined from the equation R Ro e-.-%{mz2 =1,

where Y is a function of k = k, + ik2 where kl and k, correspond

1 2
respectively to the frequency of oscillation and loss factor [41].

From figure 6-1, it is clear that, except for kL < 10, the exact
solution, based on the Wiener-Hopf technique, oscillates around that
obtained by Hu's formula using the Wiener-Hopf results of a single wave-
guide. These oscillations have a period of kL = m. This phenomenon is
because of the fact that in equation (6-8), E , is evaluated far from
the open end of the exciting waveguide. This is similar to the condition
2d?

of Friis' transmission formula [82] for L e

Results obtained by the modified moment method for the radiation
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from an open end of a semi-infinite parallel-plate waveguide are in

very good agreement with the Wiener-Hopf results. The contribution of

Ji (see equation 7-49) to the radiation field gives results of the Huygen's
principle, as shown by figures 7-4 and 7-5. The contribution of R to

the radiation field is significant when the waveguide width is slightly
larger than 0.5\ (0.5 < d/A < 1.5 for TEo,z mode) .

As the Wiener-Hopf technique cannot be applied when the separation
distance between the waveguides is small, the modified moment method is
another way to solve this problem. Some results were shown in figure 7-8.
The results of this method for small separation distance were not sensi-
tive to the testing and matching points.

Analysis of the parallel-plate and circular waveguides (symmetrical
modes) for other modes of excitations can also be treated in the same way
as shown in this thesis. For asymmetrical modes in circular waveguides,

the problem will be different as the diffracted fields (reflected,

transmitted and radiated) will be combinations of TE and TM modes.

8.2 Conclusion

The problem of coupling between two collinear parallel-plate and
circular waveguides located in free space has been solved. Expressions
were obtained for the reflected, transmitted and the radiated fields and
were expressed by three terms. The first term was due to the open end
of the exciting waveguide, while the other two terms were due to inter-
actions. The rigorous solution was expanded to obtain the ray theory re-
sults with the help of a modified diffraction coefficient. The modified
diffraction coefficient for the circular waveguide was found to be inthe
same form as that of Lee for parallel-plate waveguides, but another factor

called the spherical wavefactor, has to be introduced. This factor was
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shown to be necessary in treating problems of diffraction by small
apertures in hard screens.

Results using the Wiener-Hopf technique for parallel-plate wave-
guides, was found to be more accurate than those obtained using Hu's
transmission formula.

The modified moment method was applied to two separated structures
and very accurate results in good agreement with the other available
results, were obtained. The radiation fields obtained in terms of the
evanescent currents, reflection and transmission coefficients gave another
explanation for the physical meaning of the ray theory of diffraction.

Finally, the Wiener-Hopf technique together with the modified moment
method gave a complete analysis of the coupling between parallel-plate

waveguides.

8.3 Suggestions for future research

During the formulation of the problem by the Wiener-Hopf tech-
nique, an expansion of the function E(a) and G_(o), in a Taylor
series, about the branch point B = -k was needed (see, e.g. equation
(2-36)). An improved expansion may be obtained by expanding E(o) and
G_(a) about another point p chosen such that the second term in the
Taylor series vanishes [26] on page 200. This requires further investigations
to examine the possible improvements on results presented in this
thesis.

As the insertion of dielectrics in waveguides reduces the loss
and may give an optimum radiation for certain dielectric constants, it
is interesting to investigate the case of coupling between dielectric

loaded waveguides. The only problem here is the difficulty in factorizing
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the new CGreen's function and finding the roots of a characteristic
equation [26], [94]. The author suggests using scattering matrix
technique with the elements of scattering matrices to be determined by
the use of the results presented here for the coupling between waveguides.

It is rather interesting to see the significance of the spherical
wavefactor and its application to any convex aperture in hard screens.
This may be an introduction to solving problems of radiation from
semi-infinite circular waveguideswith oblique openings of elliptical shape.
In this case, the excitation of either TEo n °F TMO " will produce

diffracted waves of both types of asymmetrical modes i.e. TEm = and
]

™ _ and n # 0. Consequently two modified Wiener-Hopf equations will
£l

appear. For TEo,m excitation in circular waveguides, the attenuation
theoretically decreases indefinitely with increasing frequency [95].
Therefore, it is interesting to solve this problem in the same way as
presented in Chapter 3.

The modified moment method is only adopted in this thesis for
TEQ,Q parallel-plate waveguides. In order to apply it to TMo,k one
needs first to investigate the diffraction of an H-polarized plane wave by
a semi-infinite conductor of arbitrary cross-section. Also, one may
try to apply this method to circular waveguides. Investigation of

waveguides arrays is also interesting, especially if the waveguides are

loaded.
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APPENDIX A

FORMULATION OF EQUATIONS (3-4) AND (3-5)

The total electromagnetic fields may be found from wt = + wi,
where ¥ is a scalar potential associated with the scattered fields.

The scattered field components are

S

9

g .l

9 ap

e o1 2% |

P WE 0paz (A-1)
_x 9 2

B~ ot G tEN

Since the problem in this chapter is for symmetrical modes, it is a
two dimensional one and the associated wave equation for ) must be
solved subject to the boundary and edge conditions.

A Fourier Transform Y of the scattered field { may be assumed

in the form

o+ it (A-2)

Y(p,0) == | ¥(p,2) € dz ,
Vo

Let ®(p,a) be the Fourier Transform of Ez' Hence the relation between

®(p,a) and Y(p,o) is

2
?(p,a) = LT— ¥(p,a) (A-3)

iwe
The function @(p,0) can be decomposed into three parts as shown in

Chapter 2, to give
iaL
¢(p,a) =¢_(p,a) +P1(p,0) + e ¢, (p,0) (A-4)

where ¢ _, ¢ and ¢+ are as defined by equations(2-10a), (2-10b)
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and (2-10c). The transform function ¥ which satisfies the transformed

wave equation is analytic in the strip |t| < k2 and has a solution of

the form:
A(a) Ko (Yp)/Ko(Ya) » P2a
Y(p,a) = (53
B(a) Io(Yp)/Io(Ya) » 0<p<a
2
or Y Ko (yp)
iwe A(a’Ku(Ya) x BZ B
8(p,0) = 6_(p,a) + 01(0,0) + ™0 (p,0) =)

Y \Io (Yp)
tue @1 ¢va) , 0P 228

(A-6)
where Y2 = a? - k?
Now, an application of the boundary conditions on electric and magnetic

fields at the surface p = a give

¢ (at, ) = ¢_(a-, @) =0 , (A-7a)
eiaL ¢+(a+, o) = eiaL ®+(a—, a) =0 , (A-7b)
) (at+, a) = &,(a~-, o) = &1(a,0) (A=7¢)
and <I>:(a+, o) = ¢;(a—, ) i BB g eE e ~ Yot - 3 Y (a-7d)
Jor @ om io - Yoiii iwe

where the prime denotes differentiation with respect to p, and gom
is the mth order zero of Jo’ the zero Bessel function. Equation (A-6)

together with equation (A-7a) to (A-7¢) give

A(@) = B(o) = %’5 o1 (a,) (A-8)

Differentiating (A-6) with respect to p and letting p = a, then

after using (A-7d), one obtains equation (3-4), 1l.e. ,
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(o =y L
iwe ¢, (a,q) o gom I ) l1-e -

2 .
Y°a G(o) o @ om o + 1Yom

J (o) + eiaLJ+(a) -

s It] % ke (A-9)

and is a modified Wiener-Hopf equation of the second kind where

3 (o) =¥ (at, @) - ¥ (a-, Q) (4-10)
(@ =¥ (at, @) - ‘i‘_:_(a—, & (A-11)
and G(a) = Io(Ya) Ko(Ya)

Il

¢, (@) G_(a) (A-12)

Equation (A-9) can be modified to the form:

g
i y (we/a) ®1(a,0) _ _ _“om (k-a)
iJ_(0) (k-a)G_(a) + (o) G () — 1) & % iy G_(a)

iol, -i Eom e_YomL
+ i(k-a) G_(a)e [;%%'—;“ i€ ) Er;fi§;; +J,(0)]
s Tl <k, (A-13)

Decomposing the right hand side of (A-13), by isolating the pole in

the first term and using a decomposition formula for the second term,

one has
- _l____gotn J1(E ) Lk =gy ¢ (o) = _l_h I (E_) 1 [-(k-a)C (o)
/2—‘“_ a k om o + iYom - /2—1_? a X om O.-I-iYom s g
& AL T ),
~ s 1 om ; om .
® (k+lYom)G+(1Yom)] — T%%._;_ Jl(gom) o =k iYom G+(1Yom)

(A-14)
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and
£ _YomL
iolL i om e
i(k-0)G_(a)e [J+(CI) = E"—;— Jg (gom) W} =
ootid id
i -1 (k-B)C=(8) M(B) " 1 -1 (k=8)G-(B) M(B) iBL .o
2mi B -a 27i B-a
—otid ~eo-id
i =ks € wd <7< d < ks (A-15)
where
¥ L
M =t O R o 5 (A-16)
/o a 1“om’ o + i’Yom +

The first and second terms in equations (A-14) and (A-15) are regular
respectively in the lower (T < kz) and the upper (T > -k;) halves of

the complex «-plane. Substituting (A-14) and (A-15) into (A-13), one

obtains

i B i )

o) . .
2w iy L0000 (@) - (ehy )G, (1Y )]

-i J_(a) (k-0)G_(a) +

y2m
oo+ d iE
E -i(k-B)G_(B) M(B)  iBL _ (we/a) & (a,0) _ om
* 2mi B — o e dg = (k+o) G+(a) = Jl(Yom)
—ootid
id
i(k+y ) * iBL
__om 1 -i(k-B)G_(B) M(B) e

—co—id

Since H¢ and Ez satisfy the edge condition, it can be shown that both
sides of (A-17) are zero and the equation is valid for all values of «.

Equating the left-hand side of (A-17) to zero gives
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-E’ om ki YOlTl

ayam o iYom

(€ ) 6 EY ) - i(k-0)G_(a) N(a)

cotid

_ol | B e®) ne@) Pt o
2mi B -oa
—co+id
, ks < - €T <d <k
(A-18)
where
ig Ji(E_ )
N@) = J (o) + —= — o (A-19)
- ay2m Yom

Multiplying both sides of (A-9) by -i(kta) e "' G, () one obtains

. = (.
(wela)e 1% ¢, (a,0) _ Zom (t)e @
—i(kta) J, (o) G, (o) - (k-0) G_(@) e o ke oF v 1y_ G, (@)
+ 1% N(e)  + @) 6, (@) (A-20)

In this equation the only term that has singularities in both halves of
the o-plane is the second term in the right-hand side which can be

decomposed in the same manner as equation (A-15), i.e.,

oo—id
—icL 1 -i(k+B)G+(B) N(B) -iBL
-ie N(a) (k + a)G+(a) % ui B - o e dB
ootid
1 ~i(k +8)C4+(8) N(B) e LFL a8
2mi B -o
—cotid
y =kz <=d< T <d <k (A-21)

Substituting (A-21) into (A-20) one obtains
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o>+id
(we/a)e ™ @) (a,0) 1 -i (k+B)G4(B) N(B) -iBL_ _
T (k=a)G_(a) T 2mi W e = —i(kha)
—ootid
o-id
G, (M(a) - E%E —:L(1<+Bg3 E+éﬂ) N(B) -iBL 4o s
—co-id

From the edge condition, both sides of (A-22) are zero and the right

hand side gives

co-id _
a4 -1 (kt8) G4 (B) N(B) ~iBL .o

-1 (lh) G, ()M(e) = 575 e

—co—id

, ks < =d < T < d < ks (A-23)

Equations (A-18) and (A-23) are two coupled integral equations for the
two unknowns N(&) and M(e¢). These two equations can be decoupled
by changing B to -B in (A-18) and & to =-¢ in (A-23). The sum and
difference of these equations lead to the integral equation (3-7) where
S(o) = N(o) + M(-a) and D(c¢) = N(e¢) -M(-a) which are given by
equation (3-6). Finally equations (3-6) and (3-4) give ©®;(a,0) as

shown in equation (3-5).
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APPENDIX B
DERIVATION OF THE FUNCTION T(a) GIVEN BY (3-12)

The integral in the R.H.S. of (3-7) is of the form
id
X (B+k) I (ya) K (ya) E(B) ;g

oni ' ¢_() (B+o) . 48
—co-3id

(8-1)

where G+(a) has been replaced by G(a)/G_(a) in equation (3-7) with
G(a) = I_(ya) K (ya) .

For large L, the major contribution of I is from the integral
over a small neighborhood around the branch point £ = -k [26]. The
contour can be deformed into the lower half of the g-plane, as shown
in figure 2-3. The functions G _(B) and E(B) are then expanded in
a Taylor series about the branch point B = -k and retaining the first

term only, this leads to

(8+k) I (ya) K (ya) e “FV
A E(=k) J o [¢) dg (B-2)

T 211 6_(-k) (B+a)
P

where p = P; P, + Py - The integral over the small circle p, can

besshown to be zero and hence (B-2) can be simplified to

—k-io
A E(=K) J (Bt+k)
m

_ -iBL
-k
- Io(-Ya) Ko(~va)] dg
_A_ E(<k) 1
= omi ¢, (i) T(a) (B-3)

where
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~k-ie
_ (Bt+k) -iBL ~ 5 =
T(a) = 5 8ia °© [ID(YE)KO(Ya) IO( Ya)Ko( ya)] dB
1 g 20v8) _gar
) 2
Letting B = -k - %E , where u 1is a new variable, then (B-4) reduces

to equation (3-12){
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APPENDIX C
DERIVATION OF THE EQUATION (3-42)

When closing the contour of integration in equation (3-41), in the
lower half of the o-plane, the first term inlal(a,a) has a pole at
o = —iyom and a branch point at o = -k. The contribution due to the
pole cancels exactly the incident field and the branch point contribu-

tion can be evaluated similar to wint’(Z)(p,z).

~1g
exc om
ll‘Jt (p,2) = 21

J1(£om)(k+iYom) G+(1Yom)

J I (vp) G, (a)
I_(a) (o) (otiy_) ©

-igz

do (c-1)

replacing G+(a) by 6G(a)/G_(a) in (C-1), we obtain

I_(yp) K (ya)

exc " -ioz
Ve 02 =] T @GaGm ) © wesy
P
Assuming
5 3
Ve (ps2) = T K8 3. ) (c-3)

n=l,2’3’.|¢ 2
and using the orthagonality of the Bessel function in both sides of
(C-2) and (C-3), we obtain

2 Jl(gom) -ig

=2 _1 om” om :
Tm,n(z) a J3E ) o S (T

~iqz @
Kofya) e

T Eon
(k-a) G_(a) (otiy ) J,Gya) p J 4 P) dpda

JE )
=i 1" om
= Tma? Eon gom Jl(ion) (k+iYom) G+(iYom)



168

KO(Ya) I (ya) e_iaz
= =y do (c-4)
G_ (o) (k-a) Catdy ) @™y )
P
where p = Py +p, + Py The integral over P, can be shown to be

zero and hence (C-4) reduces to

J
T o) =22y ) 6y
on
k=i 5
e e 1% 4y (c-5)
L G_(a)(k—a)(u+iyom)(az+yén)
Letting o = -k - %E where u is a new variable of integration,

then equation (C-5) reduces to (3-43).
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APPENDIX D

DERIVATION OF THE EQUATION (4-3)

After deforming the contour of the integral in equation (4-2), we

obtain

(—2ya)n e-iBL
n! ya Bto

1
Tnﬁl) =‘E; dg (D-1)

P
where p = Py tpy tpg - The integral over the small circle p, can

be shown to be zero and hence (D-1) can be simplified to

it SR e (0-2)

for odd values of n (n = 1,3,5,...), T(e¢) dis zero and for other

values of n , equation (D-2) becomes

—k-ic .
(_l)n 2n+l an-—-l -1 e—18L
n! € ¥ B+

Tn(a) = dg , n=0,2,4,... (D-3)
-k

In the neighbourhood of £ = -k , the function (B—-k)n_l/2

n-1/2

is regular
and smooth, and can be replaced by (-2k) and equation (D-3) leads

to (4-3a).
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APPENDIX E

DERIVATION OF EQUATIONS (5-5), (5-6) AND (5-7)

Since for many practical purposes, the evanescent modes are not

taken into account, all scattering matrices reduce to a unity matrix.

Hence, from figure 5-2, S?A ¢i is approximated by
Y. 2
AA i m
Sl ¢ = f(ul,uz) e R (E-1)
cc -Ym£2
Also, S3 will represent the reflection coefficient RO e of a
single semi-infinite waveguide, while Sgc will represent the reflec-
-Ygl
tion coefficient R e " of the two semi-infinite waveguides separated
CB

by the distance L . Also, S,
._'YL
coefficient T e ™ of two semi-infinite waveguides separated by the

will correspond to the transmission

distance L. Combining these with equation (5-2) we obtain

Reflected field inside the exciting waveguide =

=2y (L+L,)
Ym; TZR0 e E 2 sz
f(ul,uz) e R + “27m£2 f(ul,uz) e
L=RE, & - -2y_(142,)
sz T Ro e =
= f(uj,u,) e [R + =T ] (E-2)
l1-R Ro e

which is the same as (5-5). However, with similar arguments, (5-6)

and (5-7) may be obtained.
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APPENDIX F
CONFORMAL TRANSFORMATION AND REGULARITY OF Jy in DMM

In the conformal trans formation of the region outside the scatter-
ers, in the W = Kz + iKx plane to the region outside two circles in the
t = 0 + iB plane, the coordinates B = constant and 6 = constant con-
stitute an orthogonal coordinate system with a metric coefficient

h = |dw/dt| (F-1)

and the coordinate B=(Q is the cross-sectional contour of the scatterers
[96]. The transformed geometry, the two circles, in the t-plane has a
uniform curvature. The behaviour of the metric coefficient h is direct-
ly related to the curvature of the original geometry in the W-plane. Thus
the behaviour of the current distribution IY being dependent on the
surface curvature is related to the behaviour of the metric coefficient

h. Shafai [88] has shown that the behaviour of the singular components

of the field is described by the reciprocal of h. Hence, the induced
current in the transform domain Jy = hIY is regular and independent of
the curvature of the scattering surface. From the relation

(de2 + dKzz)1/2

d(Kr') = o

dé = h(®) do, (F-2)

equation (7-3) leads to (7-4). The transformation which maps the region
outside the upper or lower wall to the region outside a circular cylinder

is given by [88]

cos(t) + (KL +%KL2) + i Ka (F-3)

M=

W = =KL

2
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where the positive and negative signs correspond respectively to the upper
and lower plate. Hence the coordinates z and x of the upper and lower

walls on the cross-sectional contours are related to 0 through the relations

2= %KL2 cosf + (KL + %— KLZ)’ x= Ka for the upper wall (F-4a)
z= % KL2 cosf + (KL + % KLZ)’ Xx= -Ka for the lower wall (F-4b)
-1 1 1
i.e Kr =+ KL, cosO + (KL + = KL_.) + iKa (F-5a)
2 2 22
g | L (F-5b)
Kr = 3 KL:2 cost® + (KL + 3 KL2) - iKa =
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