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ABSTRACT 

The Wiener-Hopf technique is used to investigate the coupling 

between two collinear parallel-plate and circular waveguides, located 

in free space. Expressions for the reflected, transmitted and the rad-

iated fields respectively in the exciting waveguide, coupled waveguide 

and free space are obtained and are presented graphically for some 

special cases. The exact solutions are then expanded to yield the sol-

ution of the ray theory of diffraction with modified diffraction 

coefficients. Also, for the case of circular waveguides, a spherical 

wave factor is derived, which takes care of diffraction by small cir-

cular apertures in hard screens . It is shown that the results obtained 
i 

by the Wiener-Hopf technique for the coupling between two collinear 

semi-infinite parallel-plate waveguides are more accurate than those 

obtained by Hu's transmission formula. 

Numerical methods are also used. The expressions for the radiated 

fie l ds due to the coupling between two collinear parallel-plate wave-

guides are derived in terms of the reflection and the transmission co-

efficients of the dominant mode and the evanescent currents on the wave-

guides walls. These coefficients and currents are then obtained by an 

application of the moment methods and are used to find the radiation 

fields . The results are shown to be in good agreement with those of 

the Wiener- Hopf technique . 
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CHAPTER I 

INTRODUCTION 

Scattering of electromagnetic and sound waves by parallel plate 

waveguides and cylindrical structures have recently received increasing 

attention due to their importance in radiation as transmitting or receiv-

ing antennas [1}-(3} and their application to sensor booms (4] and other 

microwave problems (5). Optimization of the radiation characteristics 

of an open ended waveguide has also been investigated [6] and was achieved 

by varying the amplitude and phase of the exciting modes. This optimi-

zation may also be achieved by introducing another waveguide and produc-

ing mutual coupling effect. However, in large scale microwave arr ays , 

the mutual coupling among various elements is a significant parameter and 

is generally used to control the radiation characteristics [7)-{lO). 

Previous analytical investigations of these structures are mostly based 

on the ray theory of diffraction [111. This technique is l imited to 

high frequency scattering and to certain geometries or orientations, due 

to difficulties in including all the rays. 

Keller's theory of diffraction has been used extensively by many 

authors to find coupling between two antenna systems. Hamid [121 has 

used the ray theory to find the coupling between horn antennas under 

near field interactions. Dybdal et al {7} have applied the theory to 

obtain mutual coupling between TEM and TE parallel-plate waveguide 
0,1 

apertures. 

There have been several studies on the coupled waveguides, mostly 

concerned with the waveguide apertures in one plane . The first was 



performed by Wheeler [13] who showed that a single-mode solution was ade­

quate when the radiators are in the far field of one another. Later, 

Galejs (14] solved the problem of coupling between two parallel slots in 

a ground plane using a stationary formulation due to Richmond [15]. He 

avoided the solution of integral equations by assuming the tangential 

magnetic field at the coupled waveguide aperture to be the same as that 

on the ground plane in the absence of the coupled aperture. Similar work 

was done by Lyon et a1 [16J for the same problem as Galejs. The most 

recent work in this area has been handled by Mailleux [8] by solving an 

integral equation governing the coupling of two waveguides. For infin­

ite arrays~ the coupling effects are investigated in references [17] -

[24 1. 

To the best of the author's knowledge, no one has attempted to find 

the coupling between collinear waveguides either semi- infinite or finite 

waveguides, when one of the waveguides is an exciting (or transmitting) 

and the other is a coupled (or receiving) one . Kashyap and Hamid [25] 

have solved the problem of scattering of a plane wave by a slit in a 

thick conducting screen. This problem is closely related to the problem 

of coupling between collinear semi- infinite parallel plate waveguides. 

2 

The Wiener- Hopf technique was invented about 1931 to solve an inte­

gral equation of a special type and has been used to solve problems involv­

ing diffraction by geometries having discontinuities in the transverse 

or the longitudinal directions [26]. However, the technique usually in­

volves laborious mathematics based on the complex variables theory. 

Moreover, some problems yield expressions which cannot be solved exactly 

by analytical techniques. As a result there have been some studies to 

overcome these problems . These s t udies are mainly due t o Lee (27 ] , [28] 



who investigated diffraction by two staggered plates. He used the 

Wiener- Hopf technique and then extracted its dominant asymptotic terms 

so that the result admits ray interpretation . He also introduced a mod­

ified diffraction coefficient which takes care of multiple r eflections 

and diffractions along the shadow boundary only . 

The modified diffraction coefficient of Lee is only applied where 

dimensions of the structures are very large compared to t he wavelength. 

In other words , one needs to find a condition for its restriction, 

especially when introducing another waveguide in front of the exciting 

one. 

Another active technique which is widely used in problems related 

3 

to antennas and diffraction in unbounded space is the moment method [23 ) . 

Morita [30).[31] has investigated the scattering and diffraction by an 

ar bitrary cross- sectional semi-infinite conductor, by intr oducing an 

evanescent current near the discontinuities which may be evaluated by 

the moment method. Morita ' s investigations have paved the way to solve 

problems of diffractions in bounded space [32 1. mainly waveguides. Wu 

and Chow (32) have obtained the reflection and transmission coefficients 

due to obstacles in a parallel- pl ate waveguide of infinite length. 

They also have obtained the reflection due to the open end of a semi­

infinite parallel- plate waveguide. 

To the best of the author ' s knowledge. the problem of coupling be­

tween waveguides. e i ther semi-infinite or finite , has not been attacked 

by t he ahove technique. especially for the radiation field. The aim of 

this thesis is to investigate the coupling between collinear parallel­

pl ate and circular waveguides. The two waveguides may be of semi- inf i nite 

or finite length. The Wiener- Hopf technique i s used to formula t e the 



4 

problem. The results are expanded and upon retaining the first term in 

the expansion, the final results are found to be the same as the ray 

theory results when using the modified diffraction coefficient of Lee 

[271.[28] in the case of parallel-plate waveguides. Getting ray theory 

results allowed us to know the condition for the applicability of the 

ray theory of diffraction in conjunction with the modified diffraction 

coefficient of Lee. The Wiener- Hop! solution is also restricted for 

l arge separations between two coupled waveguides. For small separation, 

or in fact any separation. the numerical technique is adopted and expres-

sions are obtained for the radiation fields . 

Chapter 2 represents the formulation and the solution for the prob-

lem of coupling between two collinear semi-infinite para l lel-plate wave-

guides. One of the two waveguides is an exciting one (or transmitting 

antenna). while the other waveguide . which is separated from the exciting 

waveguide by a distance L. is the coupled waveguide (receiving one). 

TE a mode with t odd is used as an excitation. t may also be even , 0,_ 
but this case is not included here , but is the same as t odd. The TE 

case represents the soft boundary case in electromagnetics, where the 

electric field component is parallel to the edges. The formulation for 

-the TM case , is the same as for TE and hence is not included. The Wiener-

Hopf technique is used to formulate the problem and expressions are ob-

tained for the reflected , transmitted and the radiated fields in the 

excited waveguide , coupled waveguide and free space. r espectively. Some 

results are obtained and are discussed at the end of the chapter. 

Chapter 3, treats the coupling between two collinear semi-infinite 

circular waveguides . The TM mode is excited in one of the waveguides, o ,m 

while the other acts as a coupl ed one (or a receiving antenna). The 



5 

case of TM represents the hard boundary case in electrornagnetics, 
o ,m 

where the magnetic field component is parallel to the rims of the wave-

guides. Again, the Wiener-Hopf technique is used in the formulation. 

Results for the reflected, transmitted and radiated fields are obtained 

and are presented at the end of the chapter. 

In order to reduce the solutions to those of the ray theory of 

diffraction , the integral in the final expressions is approximated by 

expanding the transformed Green's function G(a) in a power series and 

retaining the first term only. Consequently, the results after integra-

tion are in terms of a series convergent under certain conditions. This 

is presented in Chapter 4 , where for the · case of circular waveguides, a 

modified diffraction coefficient and a spherical wave factor are obtained. 

It is shown that the spherical wavefactor has to be introduced when 

treating problems of diffraction by a small aperture in hard screens. 

Results using the modified diffraction coefficients are obtained and 

are compared with the exact ones to show its validity. Since the first 

term of t he convergent series yields the ray theory results in conjunc-

tion with a modified diffraction coefficient , the higher order terms of 

this series provide the correction when the separation distance is not 

l arge enough. This is discussed in detail in Chapter 4 . 

Chapter 5 deals with the coupling between waveguides of finite 

l ength. The scattering matrix approach is used in conjunction with the 

Wiener- Hopf results of coup l ing between two semi- infinite waveguides. 

The ray theory results are also given in order to examine its validity . 

Unfortunately, as far as the author knows, no previous analytical 

or experimental results are available at the present time to compare 

t he results obtained in Chapters 2, 3 and 5 . This has encouraged the 
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author to find other means for comparing these results . On this line, 

the investigations are concentrated on the case of parallel-plate wave­

guides, though the case of circular waveguides may be treated in the same 

manner. In Chapter 6, Hu's transmission formula [33] is used to examine 

the power received in the coupled waveguide using Kirchoff's approxima­

tions [341. the ray theory and the Wiener-Hopf technique. Some results 

are obtained and discussed at the end of this chapter . 

Another way to compare the results is the numerical technique, 

since it can be used for any separation distance between the two parallel­

plate waveguides. Formulas are derived for the radiation patterns in 

terms of the reflection and transmission coefficients and the physical 

explanations are given for those formulas. Some results are obtained 

for the semi-infinite and finite cases and are compared with those obtained 

in the previous chapters. Discussion of t~ese results are shown in 

detail in Chapter 7. 

The last chapter is concerned with the general discussion and the 

conclusion of these investigations. Some future research topics are also 

presented in this chapter. 



CHAPTER 2 

COUPLING BErt-lEEN THO COLLINEAR SEMI-INFINITE 

PARALLEL-PLATE HAVEGUIDES 

2.1 Introduction 

As mentioned in the previous chapter, the Wiener-Hopf Technique is 

used to solve the problem of coupling between two waveguides, in other 

words, coupling between two antenna systems, where the exciting waveguide 

is used as a transmitting antenna and the coupled waveguide is used as a 

receiving antenna. In this chapter, the two antenna systems are two 

collinear semi- infinite parallel plate waveguides, as shown in figure 

2- 1. Jones' method of formulation is used, and a modified Wiener-Hopf 

equation of the second type [35 )- (37] is obtained. Expressions for the 

reflected, transmitted and radiated fields are obtained respectively in 

the exciting waveguide, coupled waveguide and in the free space. The 

reflected and the transmitted waves are expressed in terms of the guided 

modes. 

Also it has been shown in this chapter that results of the trans­

mission (coupling between the two waveguides), reflection and radiation 

power can be obtained by a P!iori knowledge of the reflection coeffi­

cient of an exciting single semi-infinite waveguide , together with one 

value of the plus part of the Green's function associated with the ob­

tained Wiener-Hopf equation. The last step is to evaluate numerically, 

an integral of the semi-infinite type [30] using the Gauss-Laguerre quad­

rature formula [38). 

Some results for the reflected, transmitted and the radiated fields 

are obtained and are discussed a t the end of this chapter. 
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2.2 Derivation of the modified Wiener-HopE equation 

Consider two infinitely thin and perfectly conducting parallel plate 

waveguides, having width 28 and separated by a distance L, located in 

free space as shown in figure 2-1. With a time factor -iwt 
e an inc i-

dent field consisting of a TE n morle is assumed to be propagating in 
0," 

the exciting waveguide along the positive z-rlirection in the form: 

i i 
E =" (x z) = y • , t = 1,3,5, ... (2- 1) 

where 

(2-2) 

and k is the free space propagation constant . Realizing that in any 

physical medium, there exists inevitably some loss no matter how slight 

it is, therefore, the idealized loss less medium (the free space in our 

case) should be regarded as a limiting case with vanishingly small loss. 

In the Wiener-Hopf technique. it is convenient to retain a small but non-

zero loss, that is. writing k : k + ik J k »k > O. By such an 
1 2 1 2 

assumption, certain limiting processes can be avoided, as will be seen 

later. Hence for a loss less solution . we let k + 0 in the final sol­, 
ution of the lossy solution. Now, the resulting total electromagnetic 

fields may be found from t i 
~ : ~ + ~ • where is the scattered elec-

tric field and satisfies a two-dimensional wave equation of the form : 

" + -'" + ,Z k')~ = 0 (2-3) 

where V~ is the transverse part of the Laplacian operator. Instead of 

of using the Wiener- Hopf integral method [39] and then the Fourier trans-

form. the author uses Jones' method [40] which 

equation. In the problem under consideration 

by-passes the 

" is a;?". v' t 

integral 

Fourier 

, 



p 
./ 

x 
p 

exciting waveguide---,. ./' ,couPled ~aveguide 
) 

I AI ./ 
Ey10+ d=2a z 

f 
TE,,! ~ 

~ 
IE L ~I 

Fig. 2-1 Geometry of the problem for two collinear semi-infinite parallel-plate 
waveguides separated by L. 

~ 
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transforming of (2-3) with respect to z gives: 

o (2-4) 

where $ and $ are a Fourier transform pair given by 

~ 

$(x,n) 1 f inz = <p(x,z)e dz 
Thi 

-~ 

ex '" o+it ( 2-5) 

and 
~ 

¢I(x~z) 
1 f - inz .-- 4>(x ,a)e da 

Thi 
-~ 

(2-6) 

In equation (2-4), Y is given by 

(2- 7) 

The branch cut of y used in (2- 7) has been chosen so that y has a 

positive real part when - k < 1" < k . , , Note that the scattered field 

attenuates at leas t as rapidly as exp(- k Izl) , as Izi + ~ inside both 

waveguides. Outside the wavegUides the scattered field is a radiated 

field, which is a cylindrical wave at large distances. It behaves 

asymptotically as 

and attenuates at least as rapidly as 

p" ~ 

exp(-k Izl) , 

( 2- 8) 

as There-

fore, the transformed wave equation in (2-4) holds at least in the strip 

< k in the complex a - plane, shown in figure 2- 2. , 
The function ~(x . a) can be decomposed into three parts [ 26] to give 

(2-9) 

where 



0 

~ _ (x,u) 1 J la:z c --- $(x,z)e 
"{2ii - 00 

dz (2- 10a) 

L 

¢I (x,a) 1 J iaz dz : q,(x,z)e 
I {iii 0 

(2- 10b) 

¢I+(x,a) 1 ~$(x ' Z)eia(Z-L) dz : 

i2ifL 

(2-10c) 

The functions ~ (x , a.) and ¢I + (x ,a) are analytic in the lower -
(T < k ) and upper (T > -k ) halves of the complex a - plane , respect-

2 2 

ively. As L > z > and 
i('(z 

has essential singularity as 0, e an 

1,,1 ~ 00 in the lower half of the a - plane, therefore the entire 

4> (0) has an algebraic behavior at infinity only when lal + ~ 
I 

function 

i n the 

upper hal f plane. Hence, 4> (n) may be identified as a " plus" function. 
I 

- 1aL 
Mul tiplying (2-10b) by e • we get 

• -1"L~ (,,) 
I 

o 
1 f "" iaz ' d ' - --- •• z 

"(2ii - L 

(2- 11) 

By a similar argument , e- iaL$ (a) 
I 

function. 

Within the strip III < k , 
2 

as 

4>(x,a) = ¢I_ (x,o:) + 4> (x ,a) + 
I 

may be identified as a "minus" 

t he sol ution of (2- 4) can be expressed 

1"L e $+(x.a)" 

A(cx)e - yx 

- A(a)e yx 

x > a 

x < - a 

2B(,,)cosh(yx) Ixl < a 

(2-12) 

11 
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Now, an application of the boundary conditions on the electric and mag-

netic field s at the plane x '" a gives 

(i) ¢ (3+,0:) = 4> (a- ,a) = 0 - -

(ii) 
iaL iaL 

e w+(a+ ,Ct.) '" e 4>+(a- ,a) = 0 

(iii) ¢1(a+.a) = ¢1(a- .a) = ¢1(a.a) 

(iv) 1Ji(a+,D:) ¢Ii (a- ,a) 
+ __ I_ t ~I iaz

d = e z 
,T'Fif ax 

0 
x=a 

~-1 (ia-Y~)L 

¢liCa-,ct) 
+ __ 1_ ~n 

(-1) 2 e - 1 = I2TI 2a Y£ - ia 

where the prime notation denotes differentiation with respect to x 

Differentiating (2-12) with respect to x, and setting x = a 

we have 

$~ (a+,a) + 4>i(a+, Ct) + e iCtL4> , (a+,a) 
+ 

-A(a) ' ye -ya 

4>~ (a- ,a) + 4>i (a-,a) + 1aL4> ' ( ) e + a-,Ct 2B (n) 'ysinh (ya) 

From (2- 13a), (2-13b), (2-13c) and (2-12), we obtain 

A(a) = ¢l(a.a)!exp(- ya) 

2B(a) = ¢l(a.a)!cosh(ya) 

(2-13a) 

(2-13b) 

(2- 13c) 

(2-13d) 

(2-14a) 

(2- 14b) 

(2-15) 

(2-16) 

Subtracting (2-14a) and (2-14b) and making use of (2- 13d) , (2-15) and 

(2-16), we obtain the following modified Wiener-Hopf equation of the 

seeD.nd type [ 41] which is valid for ITI < k2 

+ ~l(a .a)!G(a) = 

where 

J (a) ~~(a+ . a) - ~~(a-. a) 

id 

2al27T 

£-1 

(-1) 2 

(ia- y ~)L 
1-e 

(2-17) 

(2-18) 



(2-19) 

and G(a) = cosh(ya)/y exp(ya) (2-20) 

The functions J_(a) and J+(a) are exactly proportional to the io-

duced current. due to the scattered fields, on the wall x c a of the 

exciting and the coupled waveguidesJrespectively. These two functions 

are analytic, respectively, in the lower (T < k ) 
2 

and the upper 

(T > -k) halves of the complex a - plane. G(a) is the transformed , 
Green's function associated with the Wiener-Hopf technique, and can be 

factorized into a product G (a)G (a), 
+ -

where and G (a) are 

analytic functions respectively in the upper (T > -k) and the lower 
2 

(T < k) halves of the complex a- plane and are given by ([41]. pp.154): 
2 

__ ~ i.'g. i CX! {1- C+ltt
2k

7T +14] 
G+(a)=G_ (-a) i k+a e"e" a 

where c = 0.57 721 

y = 
n 

i~lna? 00 

e -rl-r 
n 1,3,5, .. 

.2aa ,-
(1+ ~)e n1T 

'Y n 

is Euler ' s constant, and 

2 . 3 Solution of the modified Wiener-Hopf equation 

Equation (2-1 7) can be modified to the form : 

i.~ 

2af2n 

(2-21) 

(2- 22) 

(2-23) 

13 



The right hand side of (2- 23) is then decompos ed by isolating the pole 

in the first term and using decomposition formula for the second term. 

Thus, we have. 

and 

where 

i'rrR. 

2a '(2li 

M(a) • 

I.,' G (a ) ' . - ~1T .... (-1) --.--
a+iYt 2a'f21T 

+ i 1ft 

2a'(iii 

1 OO-idG_(S)M(S)eiSL 

+ 21fi f a-a dB 

-int 

2a{2Ti 

-DO-id 

(2-24) 

-k <-d<T<d<k (2-25) 
2 2 

(2-26) 

The first and the second terms in equations (2- 24) and (2-25) are regular 

respectively in the lower (T < k) and the upper (T > - k) halves of 
2 2 

14 

the complex a-plane. Subs tituting (2- 24) and (2-25) into (2-23), we have, 

+ 1nt 
2. '(2ii 

inl. 

2a 'f2iT 
1.- , 

(- 1)-'--- _1 __ 
a+iy I. 

(2-27) 
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Note that the left hand side of (2-27) contains functions that are regular 

in the lower half of the a -p13ne defined by T < k • while the right­, 
hand side contains functions that are regular in the upper half of the 

a-plane, defined by T > -k . , Since these two half planes overlap . it 

follows from the analytic continuation that (2- 27) is defined in the 

entire a - plane, and both sides are equal to an entire function pea) . 

It can be shown with the help of Meixner's edge condition (42], 

that pea) is bounded, and equals to zero as lal ~~. By Liouville's 

theorem [43], Pea) is identically zero everywhere. From (2-27) it 

follows that: 

+ N(a)G (a) 

for all a- where N(o) is defined by : 

N(a) ~ J (a) -
t - l 

(_1)-z- 1 
a+l.Y 9. 

-1 fm+idG_ (S)M(S)ei SL 

~ -2~-i --=--so--:a:-- dS 
- oo"rid 

- k <-d<t<d<k (2- 28) , , 

(2-29) 

Equation (2- 28) contains two unknown functions N(a) and M<a) 

Thus to find these functions , we need another equation which can be 

obtained in the fo llowing manner. Mult iplying both sides of (2-17) by 

- iaL e G+(a) , we have: 

- i7l't 

2a '(fii 

ti l e-YtL - iaL 
(-1) +" G+(a)-e N(a)G+(a) 

a l.y.e. 

(2-30) 

In the last equation, t he only term that has singularities in both 

halves of the a-p lane is the second term in the right hand side, a nd 
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must be decomposed in the same manner as equation (2-25) , i.e. 

1 OO-idG+(B)N(B)e-iBL 1 O+idG+(B)N(B)e- iBL 

.. 21fi J B- a dB - 21Ti f B-a dB 
- c:o..id -ootid 

- k <-d<l<d<k (2- 31) , , 

Substituting (2-31) into {2- 30), after some rearrangement, we have , 

e-iaL~ (a, a ) 1 O+idG+(B)N(B) e- iBL 

-cG=-_'(C"a+j -- - 2n1 f B a dB = 

-co+id 

(2-32) 

Similar to the ar guments after equation (2- 27), both sides of (2-32) are 

zero, and hence we obtain from the right hand side , 

1 OO-idG+(B)N(B)e- iBL 

= 2n1 f B- a dB 
- oo-id 

- k <- d<T<d<k , (2- 33) , 

This is the other equation for the two unknowns N(a) and M(a) . 

Equations (2- 28) and (2-33) are two coupled integral equations in the 

t wo unknowns N(a) and M(a). These two equations can be decoupled 

[41J by changing 6 to - 6 in (2-28) and a t o - a in (2- 33) . Then 

the sum and difference of the ob t ained two equations, lead to 

- k <- d<T<d<k (2-34.) , , 

.nd 



where 

in2 

2. lj2iT 

Sea) 
= N(a)±M(-a) 

D(a) 

+ G_ (a )D(a) 

~idG+(S)D(S)e-iSL 

= ;!i J Sffi dB 
- =-id 

-k <-d<T<d<k 
2 2 

2-, 
(_1)-' [ 1 

cx+iy 
2 

-y L _ e 2 
4- o.-iy J 

2 

(2-34b) 

(2-35) 

where the upper and lower signs correspond respectively to S(o.) and 

D(a). Equations (2-34a) and (2-34b) are two decoupled integral equations 

and are of the same form. Solving these two equations for Sea) and 

0(0.) , we can obtain J+(a) and J _ (o.) using (2-35). Substitution 

of the results into the modified Wiener- Hopf equation (2-17) 

leads to $ (a, a). Consequently, using (2-15) and (2-16), A(o.) and , 
B(n) can be determined, and hence one can obtain the final solution 

through (2-12) and the inverse Fourier transform of $(a,o.), as will 

be shown later. 

The integral in the right-hand side of (2-34) is of the form 

= ~f idG+(S)E(S) 
I S+a 

-=-id 

(2-36) 

where E(o.) is S(a) or D(a) and G+(a) has been replaced by 

G(a)/G_(a) in equation (2-36) with G(a) given by (2-20) . 

For large L . the major contribution of I is from the integral 

over a small neighborhood around the branch point B = -k [26] . The 

17 
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T 

Figure 2-2 Complex a - plane 

Im!3 

Branch cut 

Figure 2-3 Contour af integral I in the ,B - plane 
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contour can then be deformed into the lower half of the S- plane, as shown 

in figure 2-3 . The functions G_(S) and E(S) are then expanded in 

a Taylor series about the branch point B = - k and retaining the first 

term only one obtains 

shown 

where 

I = a E ( - k) --"c",o",s",hc.J.y"a - y a e 

J 
- iSL 

G ( k) ya e 7cS-kl=-
p 

The integral over the small circle Pz 

t o be zero 

I • 
E(- k) 

a G+(k) [ 

• a 

T (a) 

- k 

and hence (2- 37) can be simplified 

-k-i~ 
- i6L 

cosh 
J 

ya - ya e 
dS e S-kl ya 

- k 

- k- ioo 

J 
- k 

T(a) 

cosh ya 
- ya dS] 

to 

(2- 37) 

can be 

( 2- 38) 

( 2- 39) 

Le t 
iu B = - k - -- • where 
L 

u is a new variable, then (2- 39) becomes , 

T (a) 

zka, , -=- 2 
00 COsh [tL V2~kL u- u ] 

= 2 kL e ikL J 
ka 

o 
e - U du ( 2-40) 

This semi-infinite integral can be calculated numerically, for any 

value of a by the Gauss-Laguerre quadrature formula owing to t he 

exponentially decr easing term exp(- u). Substi t uting (2- 38) into (2- 34) 

one ob tains 



E(a) • 
- i nt 

2a 'J2iT 
(2- 41) 

where in the right hand side, the upper and lower signs correspond to 
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E(a) = Sea) or D(a) , respectively . In (2-41), we have the unknown E(-k), 

which can be obtained by letting a: -k in both sides of this equation • 

i. e. 

where 

-i7ft 

2a>{2ii 

F -a T(-k) 
= 21fi G2(k) 

+ 

From (2-35) and (2-17), 

and D(a) in the form : 

41 (a , ct) 
1 

1 
l±F 

(2-42) 

(2-43) 

can be written as a function of S(o) 

~l(a,a) • !c(a ) [-(S(a) + D(a)} + .iaL{S(_a) - D(-a)}] (2- 44) 

Using (2- 41) in (2- 44), we get: 

~ (a ,a) 
1 

• G (a)[ i~~ 
+ 2a'/2Ti 

a + -4 • G (a) 
n1 -

T(-a) 
G+(k) 

.iaL{S(_k) + D(-k)} (2-45) 

where S(- k) and D(- k) are given by (2- 42) and are rewritten as 

S(- k) • -i7Ti. 

2alli 

and 

1 
l+F 

. (2- 46) 

(2- 47) . 

Substituting (2- 46) and (2-47) into (2-45) and after s.ome rearrangement, 

one has, 



$ (a ,a) = , i1TR, 

2a'f2Ti 

in! 

2a '(2ii 

1.-, 
i.1. (_1)-z-G (iy ) 

2a (2if + I. 

T(a)G+(a) 

G~(k) 

T(- a)G+(-a) 

G~ (k) 
iaL 

e (2- 48) 

where i n (2- 48) , F . is given by (2-43), and T(- k) is obtained by 

calculating the integral in (2- 40) for a = -k. Once $ (a,a) is ob­, 
tained, t he constants A(a) and B(a) can be obtai ned from (2- 15) 

and (2- 16) , which completes the solution of the modified Wiener-Hopf 

equa t ion . The scattered field can t hen be determined by going back to 

(2-12) and taking the inverse Fourier t r ansform which will be shown i n 

the next section. 

2.4 Eval uat i on of the scattered fields 

2 . 4 .1 Radiation field 

I n t he r egion outside the two waveguides, the scattered electric 

field component ES for y , x > a, is given by, 

ooI-i, 

= -1- f A(a)e- Yx 

ffi - ooI-i, 

- iaz 
e da , 

From ( 2-15) and (2- 49 ) we have 

s 
~ (x , z ) 

1 fool-iT 
= - $ ( a a ) 

..r-;;; " f 2Tr - CO'H T 

wi t h $ ( a , a) gi ven by (2- 48). , 

y(a-x) - i cxz 
e e da 

1,1 < k , 

ITI < k , 

(2- 49) 

( 2- 50) 

21 
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In the far zone, i.e. kp» 1, the saddle point method of integration can 

be applied to (2-50). Hence with the knowledge that ¢> (a ,a) 
1 

has no 

singularities in the two-sheeted a-plane except the branch singularities, 

it can be shown easily that 

s s $ (x,z) = $ (p,e) 

i(kP+ 
~e _______ k sine ¢> (a,k cos9)e-1ka sinS 

'fkP 1 

(2- 51) 

where p and e are polar coordinates defined in figure 2- 1, substitut-

ing (2- 48) into (2-51) with a = k CDSS , we obtain 

where 

5 '\rr- i(kP-~) 
$ (p,e) = Ynkp e F(e) (2- 52) 

F(e) 

a F T(k cos9)G+(k cosS) 

- 2ni G!(k)(iYt - k)(l- F') 

- ika sinS 
sinS e 

G+(k cose) 

[k cos9+iy9., 

ikLcos6 
a T(-k cos6)G+(- k cos9)e 

- 2ni G!(k) (iyt-k) (l-F') 1 

(2- 53) 

Power radiated at point pep,S) is characterized by IF(9)1 2• The 

expression for the far field is originally obtained only for x > s , 

o<6<rr but it is easily seen that the formula for F(e) will also 

hold for x < - a • 1T < e < 2n. Total power radiated per unit length of 

the y-axis is given by J
,n 

IF (e) I'de. 
o 

The radiation field consists of three 

terms. The first term is the well known result of the radiation field 

from the open end of the exciting waveguide only (i.e. in the absence of 

the coupled waveguide). The second and third terms are due to interaction 

between the two waveguides . The second term represents the reradiation 

field f r om the open end of the exciting wavep,uide due to the inter-



action between the openings of the two waveguides, while the third term 

represents the radiation from the opening e nd of the coupled waveguide 

due to the previous interaction. These explanations will be more clear 

in Chapter 4. 

2.4 . 2 Ref lected field 

In the region inside the exciting waveguide (z < 0) • the reflected 

electr ic field component may be given by, 

¢I (x, z) 
r 

1 f~iT -iaz 
= -- 2B(a)cosh yxoe da 

i'i1i -,,*i T 

From (2-15) and (2-54), we have 

¢l (x, z) 
r 1 r iT 

= -- $ (a,a) 
l2ri 1 

- <x>+it 

with $ (a,a) given by (2-48). 
1 

cosh yx 
cosh ya 

-iaz 
e da 

ITI < k , 

ITI < k , 

(2-54) 

(2-55) 

The integral (2-55) is evaluated for each term of $ (a,a). 
1 

For the first and the second terms of $ (a,a) 
1 

we close the contour 

of integration in the upper half of the complex a-plane, as shown in 

figure 2-4; The only singularities so enclosed are the poles at a = 

i h = .. / (m')'_k' d 1 3 5 Ev 1 . h Ym • were Ym V 2a an m = , • •••• a uat~ng t ese 

residue contributions for each term, we have, due to first term. 

",ex.c(x z) = 
'r • 

where 

Jln' 
R, =_p 

..... m a 

OC) mn Ymz 
L RR, cos (p) e 

m=I,3.5....m a 

While for the s~cond term. 

(2-56) 

(2-57) 

23 
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00 

E R (,) 
m=l, 3,5, .. t,m 

where. 

T(iy ) 
m 

a F 
2ni I_F 2 

And for the third term in $ (a,a) • (2-55) becomes, 
1 

4>int, (2) (x,z) 
r 

c:ot-iT 

1 .--
fiii 

J 
cosh yx i exL -iaz 

T (-a)G + (- a) ""co"'s'7h'-y""a e e do. 

-oot1'[ 

1 1 
iYR,- k I_F 2 

(2-58) 

(2- 59) 

(2-60) 

The superscripts exc and int refer to the scattered fields due 

to the exciting waveguide alone and to the interactions between the two 

waveguides, respectively. 

the form 

",int, (,) ( ) 
'+'r X,z" 

Assuming that $10t,(2) is a modal series 1n 
r 

(2-61) 

25 

then with equation (2-60), and the orthogonality relation over cos x, one 

obtains 

Hm 
(-1)--'-- 1 
iy -k I_F2 

£ 

e- ya+ia(L- z) da (2-62) 

Cl osing the contour in the upper half of the. complex a- plane, the only 

singularity so enclosed Is the branch point at ex = k. It can be easily 

shown that 



-inim G+(iy.\1.) 

282 G! (k) 

(2-63) 

The above integral cannot be evaluated analytically , but can be reduced 

to the following form which is more suitable for numerical integrations, 

by the Gauss-Laguerre quadrature formula , owing to an exponentially de-

creasing term: 

J 

ik(L-z) 
e 

iYR,-k 

Hence, the reflected electric field is given by, 

~ (x,z) • 
r 

- E [(R~,m+ 
m"l , 3 , 5, .. 

(2-64) 

(2- 65) 

where Ro , 
",m 

R(l) and R(2) are the reflection coefficients and are given 
t,m t.m 

respectively by (2-57), (2-59) and (2-64). 

The reflected field is expressed by three terms. The first 

term ~exc(x.z) is the reflected field due to the open end of the 
r 

exciting waveguide, in the absence of the coupled waveguide, and the 

reflection coefficient is given by (2- 57). The second and the third 

terms are due to the interaction between the two waveguides, with the 

second term ~int'(l)(x.z) b h d f ld ~ eiog t e scattere ie due to the open 
r 

end of the exciting waveguide, when it is illuminated by the scattered 

fie l d from the coupled waveguide. and the reflection coefficient of 

26 
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this component, is given by (2-59), The third term ~int'(2)(x.z) 
r 

is the scattered field from the coupled waveguide (in the absence of the 

exciting \~aveguide). and the reflection coefficient is given by (2-64). 

From (2-60), it is clear that this component is a continuous spectrum of 

inhomogeneous plane waves, and decays to zero at z = _ro (to satisfy 

the Sommerfeld radia t ion condition). Also , for large values of L or 

large values of z, the saddle point method of integration can be used 

to evaluate such an integral. The reflection coefficient R (2) has been 
i,m 

expressed in this form, so that one can determine it at any values of 

z • expecially if one wants to find the aperture field at z = O . It 

can be easily shown by saddle point method of integration that this com-
eik(L-z) 

with ponent behaves as 
~k (L z) 

z , and hence far from the opening, 

the only contributing coefficients are 

2. 4.3 Transmitted field 

R~ and .,m 

In the region inside the exciting waveguide (z> L), the trans-

mitted electric field component may be given by, 

C1Oof.i T 

i 1 J cash ¢ (x,z) + - ~ (a,n) h 
~rz:rr . 1 cos 
V""-00+11: 

yx - iaz 
e 

ya 
dn, 1'1 < k , 

(2-66) 

Closing the contour in the lower half of the complex a - plane, one 

can evaluate the integral separately for each term of ~ (a,a) . For 
1 

the first term of $ (a,a) expressed in (2-48), the only singularities 
1 

so enclosed are the pole at a = -iYi and the branch point at a = -k . 

The contribution due to the pole cancels exactly the incident field 

component i ¢ (x, z) in (2-66), and contributions due to the branch point 
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b b i d i h f ,+,int,(2)(x,z) can e 0 ta ne n t e same manner as OT ~ 
r 

in (2- 60). 

Hence, one may write 

m~ 
[ T

t 
(z)cos(r) 

m=1 , 3, 5, .. ,m a 
(2-67) 

where Tt,m(Z) is given by 

To (z) _,m 

1 
du (2-68) 

Similarly for the second term of ~ (a,cr) • the only enclosed singu­, 
larity is the branch point at a=-k and its contribution may be written 

in the form 

.int,(Il( ) 
'I't x, z :; (,) = E Ti (z)cos(Z-x) 

m=1,3,5, .. , m a 
(2- 69) 

where 

-1Tim 
=~ 

du (2- 70) 

For the third term of $ (a,a), the , enclosed singularities are the poles 

Y -- ./ (~) '-k' at a:; -iyro • with mV 2a • and m:; 1,3,5, . . . Evaluating 

these residue contributions, one obtains 

.int,(,1 ) 
'f't \x , z '" 

ro 

E T(') 
00=1,3,5,< . t,m 

(2-71) 

wher e 
t+m mG+(iYo)G+(iy )T(iy ) y L ----z- I(, m ma)m 

(- 1) y (l- F')(iy k)G ' (k) (2ni e 
m t + 

(2- 72) 



Therefore. transmitted electric field is given by, 

-
where T, (z) _,m 

+ q,int,(d(x.z) 
t 

(2-73) 

are the transmission coefficients 

given respectively by (2-68), (2-70) and (2-72). 

Again Tn (z) and T~l)(z) are expressed in convenient forms for A.,m A.,m 
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numerical integration and may be computed using a Gauss-Laguerre quadra-

ture formula to determine the aperture field. Furthermore, these two 
ikz 

decay as 
e in order to satisfy the radiation condition components at 
ikZ 

infinity . At large distances from the opening, the only contributing 

coefficient to the transmission field is T(Z) which is due to the inter­
I.,m 

action between the two waveguides. The transmission coefficient 

may be related to R (,) 
I.,m by 

y L 

T(') ; 
m 

R(,) e 
(2-74) I., m F I.,m 

or, it can be related to the reflection coefficient of a single waveguide 

R by the relation I., m 

- a(y -I'y,)T(iy ) m _ m 

F 2nG! (k) (iy I.-k) 
F 

l-F2 
R I.,m (2- 75) 

In other words, T(2) and R(l) can be evaluated by knowing the reflec-
R.,m R.,m 

tion coefficient of a single semi-infinite waveguide and G+(k) and 

then evaluating the function at a '" -k and iy . 
m 

Similarly, the 

power radiated from the aperture between the two waveguides can be ex-

pressed in terms of 

given by 

Rn , which for the dominant propagating mode is _,m 



p 
rad 

2.S Results and discussion 

(2-76) 

Some results are obtained for a waveguide size 2a/A = 0.6 and 

TE excitation . 
Ool 

The resulting infinite integrals in the formulation 

of the problem are computed by the Gauss-Laguerre quadrature formula 

with 15 intervals. As there are no previous results available, no com-

paris on is given. However, for comparison, numerical methods are also 

used to solve this problem, which are presented in Chapter 7. The re-

suIts presented in this section are for the radiation pattern IF(9)1 2
, 

and the reflection and the transmission coefficients. 

Figure 2- 5 shows the radiation pattern for kL = ~. 50, 10 and 5. 

Since the radiation patterns are symmetric with respect to the waveguide 
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geometry, only the patterns for 0 ~ e ~ 180 0 are presented. As expected, 

with decreasing kL, the direction of the radiation main lobe level 

moves progressively away from the forward direction. By increasing the 

separation distance kI., the radiated power oscillates with 9 around 

the pattern corresponding to a s ingle semi-infinite parallel plate wave-

guide. However, the amount of radiated power should be an oscillating 

function of kL similar to the reflection and the transmission fields 

discussed below. 

The reflection coefficients for modes 1 and 3 are shown in figure 

2- 6. Since R (,) (z) 
~.m 

decays with z as 
1 

{Z 
, shown in the formulation , 

its corresponding terms are not included in computation, the amplitude 

and phase of the reflection coefficients are oscillating functions of 
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period kL equal n and decay continuously to reach the final values for 

kL ~ ~. a single excited waveguide. Figure 2-7 represents the transmis-

sian coefficient (coupling to second waveguide) for the first dominant 

mode which is again an oscillating function, decaying to zero as kL 

approaches infinity. This transmission coefficient is again computed 

by neglecting the corresponding terms for the scattered fields which 

vanish at large distances from the opening. 

In order to determine the aperture field distribution at the open-

ings of both waveguides. we have to calculate the coefficients that are 

functions of . R(')( ) z ,~.e. n Z 
".m T" (z) 

•• m 
and which are given 

respectively by (2-64), (2-68) and (2-70). Although aperture field dis­

tribution can be obtained without expanding $!nt,(2)(x,z), $~xp(x,z) 

and $int~ (1) (x,z) 
t 

in modal series, they have been expanded here to show 

the behaviour of field distribution with x . The functions .int,(,)( ) 'fir x, z , 

$~xp(x,z) and $!nt,(l)(x,z) are continuous spectrums of inhomogeneous 

plane waves, and may be evaluated using the saddle point method of inte-

gration. However , the mode coefficients that are functions of z are 

computed again using the Gauss-Laguerre quadrature formula, and the 

total reflected and transmitted electric fields at the centre of the 

open end of the exciting waveguide and coupled waveguide are shown in 

figures 2-8 and 2-9, respectively, for modes 1, 3 and 5. These results 

can be used to find the resulting aperture fields. 

The analysis in this chapter was carried out for TE n excitation 
0." 

with ~ odd . The extension to TE n with ~ even and TM n with 
c,N 0tN 

even or odd ~ is trivial and can be carried out with the proper Green's 

functions. In this chapter , the problem of coupling between two semi-

infinite parallel plate waveguides is solved using the Wiener- Hopf 
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technique . The analysis is being limited by the separation distance 

between the two waveguides . To complement the problem for any separa­

tion, numerical methods are adopted as are discus sed in Chapter 7. 

Also, as the problem becomes more complicated for different waveguide 

widths, the results in this chapter are used to obtain the solution 

using the ray theory of diffraction and hence they can be modified to 

get an approximate solution for any waveguide width with any orientation. 

This is investigated in one of the sections of Chapter 4. However the 

results of coupling between two semi-infinite waveguides obtained in 

this chapter are useful to find an approximate solution for the coupling 

between waveguides of finite length . This is investigated in Chapter 5. 



CHAPTER 3 

COUPLING BETHEEN Tim COLLINEAR SEMI -INFINITE 

CIRCULAR WAVEGUID ES 

3.1 Introduction 

Scattering of electromagnetic and sound waves by cylindrical 

structures have recently received increasing attention due to their 

importance in radiation or other microwave problems [1],[2],[4],[6], 

[44 ]-{48]. Coupling between two semi-infinite circular waveguides 

provide useful information for optimizing the radiation characteristics 

of an open ended waveguide [6], since the two waveguides may act as a 

two-antennas system, with the exciting waveguide as the transmitting 

antenna and the coupled waveguide as the receiving antenna. This 

system can be used for near field measurements for a variety of appli-

cations such as sensor booms [4]. 

In this chapter the problem of coupling between two collinear 

semi- infinite circular waveguides is investigated for the symmetrical 

exci tat ion of TM mode . 
o,m 

The Hiener-Hopf technique is used and a 

modified t.fiener-Hopf equation is obtained which is then solved with a 

similar approach to that of Chapter 2. Solutions for the radiated, 

r eflected and transmitted fields ar e obtained i n terms of a semi- infinite 

integral which can be evaluated numerically by the Gauss- Laguerre form-

ula [30], {38] . Solutions obtained here are similar to those of Chapter 

2, and are used in Chapter 4 to get an approximate solution, which can 

be represented in terms of a new diffraction coefficient and a spherical 

wavefactor. 
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From the. exact solution of TM 
o,m 

excitation, some results arc 

obtained and shown in the last section . 

3.2 Formulation of the problem 

Consider tHO collinear infinitely thin and perfectly conducting 

semi-infinite circular waveguides of diameter 2a, separated by a distance 

L and located in free space, as shown in figure 3-1. With a time fac­

-iwt 
e • an incident tor TH mode is assumed to be propagating in 

O,m 

the left (exciting) waveguide along the positive z-axis, with an electric 

hertz vector given by 

i tlJia TI : 
z 

(3-1) 

where 

Wi SomP -Yomz 
J (--)e 

o a 
(3-2) 

with , 
k 2 J" Yom 

: [( OID)2 -
a m:: 1,2,3, ... (3-3) 

In this equation 
'om 

is the roth order zero of J , the zero order 
0 

Bessel function, and k: k + ik 
1 2 

as defined in Chapter 2. Similar 

to the analysis given in Chapter 2, Jones' method of formulation gives 

the following modified Wiener-Hopf equation of the second type (see 

Appendix A). 

. , 
:::.L~J (F; ) 

V2na lorn 

(ia-y )L 
l - e am 
a+iy 

om 

1,1 < k 
2 

(3- 4) 

where a, T and yare defined in Chapter 2. G(a) is the Fourier transform 

Green's function associated with the Wiener-Hopf equation and given by 
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G(a) '" I (ya)K (ya) where I and K are the zero order modified Bessel 
o a 0 0 

functions of the first and second kind,respectively . J , is the Besse l 

41 

function of first order . $ (a.a ) is the Fourier transform of the scatter­, 
ed electric field component E z in the aperture between the rims of 

the two waveguides . The func tions J+(a) and J_(a) are unknowns and are 

exactly proportional to the induced current (due t o only the scattered 

fields) on the walls of the coupled and excited wavegu ides) respectively. 

J+(O) and J_(a ) are ana l ytic respectivel y in the upper (T > -k
2

) and 

lower (T < k ) halves of the complex a- plane . It can be shown that , 
$ (a ,a) satisfies the following equation (see Appendix A) : , 

where 

$ (a,a) , 

s(a)}. 
D (a ) 

v'a i aL{ } • ~ G(a) [e S(- a)-D(-a) 
' WE 

- (S(a)+D(a)}j 

- y L 
I; -

( ) () i om « ) [1 _ e J 
J_ a +J+ - a + -.=2--a- J, 'om a+iy + a - iy , ,,11" . om om 

(3-5) 

(3-6) 

The upper and lower signs belong respectively to Sea) and D(a) . These 

functions satisfy the following integral equation 

- i l; 
_ -"o",m J (I; ) 
a "{2.Tr 1 om 

k+iy 
=;:-",o",m G (" ) a+iy + l.Yom 

om 

A 
21fi f

~id(a+k)G+(a)E(a) 
(a+a) 

e - iBL d/3 , 

where 

-oo-id 

__ {S (a) 
E(a ) 

D(a) 

A • 1 

A • -1 

- k 
2 

<- d < T < d < k (3-7) 
2 

(3-8) 

and G+(et) is the "plus part" of G(a ) , (G(a) .. G+ (a)G_ (a» , and is given 

by ( [41], pp. 238) : 



ka.~ a-X OJ 

e -i2'"'rr 1n( k )+q (a) I I (1 

m=l,2,3, . . 

iaa 

+~) mTI 
iy e 

m 
(3-9) 

where, Y
m

::: ~(~)2_k2 

q(a) is given by: 

S is the roth ordered zero of J (x), 
m 0 

q(a) "~f [1 , 
2 

rrwa 
o 0 

In [1 + a 1 dw 
~k2_W2 

and c is the Euler's constant ~ 0.57721 ..• 

(3-10) 

For large L, the major contribution to the integral in the right 

hand side of equation (3-7) is from the integral over a small neighbor-

hood around the branch point S::: - k. Hence, similar to Chapter 2, it 

can be shown that (see Appendix B) 

R.H.S. of (3-7)" AE(-k) T( , 
G (k) a; 
+ 

(3-11) 

e- u du (3- 12) 

Equation (3-12) cannot be evaluated analytically, but a numerical 

evaluation using the Gauss-Laguarre formula is feasible. Substituting 

equation (3-11) into (3- 7), one obtains expressions for S(a) and D(a), 

which together with equation (3-5) lead to 

$ (a,a) 
I 

v2 iSom 
" 7'- -- J (I; )(k+iy )G+(iy )( 

l.UlE V2Tr 1 om am om 

1/271"i 

where 

2k G'(k) (l- F') (iy -k) . + om 

- 1 
F ::: 271"i 

(k-a) (a+iy ) 
om 

(3- 13) 

(3- 14) 

t,2 
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T{-k) is the value of the semi-infinite integral given by (3-12) with 

ex "" - It It is clear that 0-13) is of the same form as the one given 

in Chapter 2. by equation (2-48). Once ~ (a,a) is obtained, the scattered 
I 

fields in free space or in either of the two waveguides can be determined . 

The field components of the TH mode are 
o , m 

E z and which can be 

determined from the electric hertz vector . In the fo llowing section, 

the component of the scattered magnetic field in diffe r ent regions is 

determined, but the details of the analysis are omitted. 

3.3 Evaluation of the scattered fields 

3.3.1 Radiation field 

In the region outside the two waveguides, the scattered magnetic 

field is given by: 

,,*i. K ( ) 
1 f 1 YP - -iaz 

• - Y K ( ) ~ (a , a)e da .. f2i 0 ya 1 
. ~ ... " - c:ot-iT 

, 1.1 < k , (3-15) 

where 

-iwe: 
.. (a ,a) • -,- ~ (a , a) 

I y I 
(3-16) 

K (x) is the first order modified Bessel function of the second kind. 
I 

In the far zone (i.e. kr » 1), the saddle point method of integration 

can be applied to (3-15), Hence with the knowledge that $ (a,a) has 
I 

no singularities in the two- sheeted a-plane, except the branch singular-

ities of y = ya2_k2 , we obtain 

(3-17) 

the spherical coordinates rand e are shown in figure 3-1. Eq uation 



(3-17) together with equations 

i(kr~) 
2 

(3- 13) and (3-16) give 

s e 
",,(r,S) • -"-=- F(O) 

• kr 

where 

F (S) 
f, k' . 0 

_ om J (~ ) (k+iy )G (iy) 51n 
TI 1 om om + om H(l)(ka sinS) 

o 

(3- 18) 

G+(k cose) 

{ (k- kcos8)(kcos6+iy ) 
om 

F T(kcos8)G+(kcos6) 

- 2;i °2"k7(1C"_"F"")G"""('"k"')7(,;;·Y.,..---_kC')"('"k:-_;:-kc"o::S:OO') 
+ om 

1 T(-kcose)G+(-kcos6)e ikLcos8 

- 2~i 2k(1-F2)G+2(k)(iY - k)(k+kcos6) 
om 

} 

The radiation pattern is given by IF(6)1 2 

(3- 19) 

It is clear that F (e) 

is exactly of the same form as that for paral lel plate waveguides. This 

r adiation field has been expressed by three terms. The first term is 

44 

the well known radiation field from the open end of a single semi-infinite 

circular waveguide for TM excitation, while the second and third 
o,m 

terms are due to interactions between the two waveguides. Equation 

(3-19) can be rewritten in t he f or m 

F(S) • _-iA.,.,(",S )f---- + B (0) 

ta4H~ 1 ) (kasinS) cot ~ H~l) (kasinS) 
( 3- 20) 

where A(S) and B(S) are finite fUnctions with respect to e. It is 

interesting t o note that F(O) = ~ and F(n) = ~. 

In the dir ection of wavegui de walls and with the conditions t hat 

ka sine «1 and Icosel ~ I,F(S) may be expressed by a very simple 

formula given by 

and 

F(S) _ - inA(S) 
- sinS 1n(ka sine) 

- inB (n) 
F (0 ) • -:-;-~"7.'-,---;-;;-c­

sinS In(ka sine) 

S ' 0 ( 3- 21) 

(3- 22 ) 



The strong radiations of the TM modes in the fo r ward and backward 
o,m 

directions are caused by the directive effect of the outer surface of 

the waveguides. This phenomena was observed by Heinstein [21 for a 

single semi-infinite circular waveguide excited by TM mode . 
o , m 

Equation (3-18) gives the magnetic field component 
s 

H~(r,e) , which 

is the dominant component of H. This is related to the dominant compon-

eot of E E
s , e by the free space wave impedance no = 120n ohm (i.e. 

3.3.2 Reflected field 

In the region inside the exciting waveguide (z < 0) • the reflected 

magnetic field is given by: 

where 

a~r (p, z) 

ap 

.... iT, ( ) 
1 f 0 yp - -iaz 

- I ( ) tlI (a.cx)e dex 
AT:f.rr 0 ya 1 
-V""" - OO+1T 

(3-23) 

(3-24) 

The contour of integration for the first and the second terms' 

of $ (a,a) may be closed in the upper half of the complex a-plane. The 
1 

enclosed singularities are the poles at a - iy which are the zeros 
on 

of lo(ya) , when Yon '" 1/(~o/a)2-k2 and n '" 1,2,3, . ... An applica-

tion of the residue theorem gives the following contributions for the 

reflected fie l d. The first term of ¢; l (a ,a) gives 

where 

E, y z exc tP
r 

(p,z);:: l: 
n=1,2,3, .. 

R J ( on )e on 
m, n 0 a-P 

R m,n 
~om ~on J

1 
(~om) (k+iYom)G+(iYom)G+(iYon) 

- ~-;- J
1 
(~on) (k- iyon) (Yon+Yom) Yon 

(3-25) 

(3-26) 
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Mlilc thc second term of iii (a,a) yields 
I 

",in t, ( Ii ( ). 
'l'r p,z 

~ y z 
J ( on )c on 
° ---;;-P 

where 

(3- 27) 

-1 F ~ om ~ on J 1 (~om) _("k,.+_i Y-,o"m,,)_G.::+_(_i Y_ o",m,,)_G.::+:...(_i_Y o",n"-)~T~(~i_Y,,on"--) 
= 2'1T l_F2 --;- -;- J (~ ) 2ky (k-iy ) (k-iy )G2 (k) 

1 on on om on + 

and the third term of $l(a,a) yields 

where OO+iT 
II • J Io(yp) 

I (ya) 
-OO+iT 0 

-il; (k+iy )G+(iy ) 
O":="o",m J (~ ) =--;:,.'o~m~:;.-.,--'o~m;- 1 1 2~ 1 om 2k G+2 (k) (k-iy ) 2TIi l-F2 II 

om 

ia(L-z) d 
e a ITI < k , k+a 

(3-28) 

(3-29) 

(3-30) 

The superscripts exc and int refer to the scattered fields due to 

the exciting waveguide alone and to the interactions between the two 

waveguides, respectively. Equation (3-29) may be assumed in the fol1my-

ing form: 

Wint ,(2)(p , z) '" 
r 

(3-31) 

Equating equations (3-29) and (3- 31) and multiplying both sides by 

';on r 
PJoC---a-p) , an integration over P between 0 and a and using the 

following identity [491 

o 

gives 

where 

III 

a' 
[Jv+(x )J'o , 

1 Vn n n 2 

<»tiT I; T(-a)K (ya)eie«L-Z) 
= f [ fa pJ (iyp)J (~)dpJ ---;-,--,--~0--7"", ___ de< 

o a a a (k+a)G+(o) 

< k , 

(3-32) 

(3- 33) 

(3-34) 
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using the Lo~nel ' s integral: 

o 
f'x 

Equation 

III 

u J ' (u)J (v) - v J'(v)J (u) 
o 0 0 0 

Jo(ux)Jo(vx)dx = --~----~v~''-_-Cu~,,-~--~---

(3-34) redu ces to 
.... iT 

f 
T(-a)K (ya)l (ya) 

o 0 
= ( onJ 1 (~on) G (a)(k+a)(a 2+y2 ) 

-«>+iT + on 

ia(L-z)d e a 

(3-35) 

< k , 
(3-36) 

Closing the contour in the upper half of the complex a- plane , the contour 

of the integration is p - p +p +p as shown in figure 2-3, and the only 
1 , , 

enclosed singularity is the branch point at a = k. The integral over 

the small circle Pz can be shown to be zero and equation (3-36) reduces 

to 
k+ioo 2 

f 
T(--a)lo(ya) ia(L-z) 

III ,. 1f1 ~on J 1 (F,;on) G + (a) (k+a) (a2-f'y2 ) e da 
k on 

(3- 37) 

Since the integral cannot be evaluated analytically , it may be converted 

to a more suitable form for numerical integration by letting ex = k + iU. 
The result 1s a semi-infinite type integral which can be evaluated again 

using the Gauss-Laguerre quadrature formula . Thus equation (3-33) 

becomes 

." -i ~om ~on J 1 (~om) 
a a J (I; ) 

1 on 

oe_ i"k:;-(L_-_Z_) _<"k+-,';:' y,oo",m,,) G"+"(,,i,y;,,om<,--) 1 1 
- kL ( k-iy )2kG+2(k) 21fi I-F 2 

om 

f
OO [ iu 2; a , 2; 

T -k- L]Io[L"1I2ikLu-u ] -u(L-z)/L 
------70--~~o-----7C----- e du 

G G (k+ iU)(2+ iU){(k+ iU)2+y2; J 
+ L kL L on 

Hence the total reflected magnetic field is: 

. -

. -
L [",exc( z) 
ap 'r p • 

+ tP~nt'(l)(p .z) + tP~nt , (2;)(p , z» ) 

00 y z ~ 
L E [ (R +R('»e on +R( ')(z)]J (~) ap =1 2 3 m,n m,n m,n 0 a 

n , , , •• 

(3-38) 

(3- 39) 
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where the coefficients R are given respectively 

by equations 0-26). 

R(2)(z) decays with 
m,n 

m,n 

(3-28) and (3 - 38). It can be shown easily that 

eik(L-z) which represents radiation from an 
k(L-z) 

z as 

origin located at the centre of the open end of the coupled waveguide. 

The reflected field has been expressed by three terms. The first 

term , Wexc(p , z) is the reflection due to the open end of the exciting 
r 

waveguide, in the absence of the coupled waveguide , t"hile the other two, 

are due to the interactions between the 

two waveguides. This is exactly the same as the case of paral l el plate 

waveguides . Far from the open end of the exciting waveguide, the main 
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R m,n 
and R(d 

m,n 
only . Hence contribution for the reflected field is due to 

the total reflection coefficient equals R 
m,n 

+ R (1) 
m, n The third term 

in (3-39) is a continuous spectrum of inhomogeneous plane waves and 

decays to zero as z ~ _00 to satisfy the Sommerfeld radiation condition . 

The contribution of ~int' (2) to the reflected field is significant 
r 

only at points near the open end of the exciting waveguide, and in 

h f d F 1 ,I,int , ( 2) particular t e aperture iel . or arge L or z , ~r can be 

computed analytically using the saddle point method of integration . 

3 . 3 . 3 Transmitted field 

Inside the coupled waveguide , where z > L, transmitted magnetic 

field may b~ expressed as: 

(3- 40) 

where 

i 
: 1/1 (P,z) 

(3- 41) 



The integral again can be evaluated by closing the contour in the 

lower hnlf of the complex a-plane . The first term in $ (a,a) 
1 

has a 

pole at ex -iy and a branch point at ex '" - k. The contribution om 

due to the pole cancels exactly the incident field and the branch point 

contribution can be evaluated similar to ~int ' (2)(P , z). The result may 
r 

be shown to be (see Appendix C): 

where 

~exc ( p,z) = 
t 

w < 
E T (z)J (~) m, n 0 a n:.l,2,3 , .. 

T ( z) 
m, n (k+iy )G+(iy ) f om am 

o 

12 I~~2ikzu u2 J -u 
~o-"z7-______ ~ _____ ~e~ ____________ -.-_______ du 

(2+ iU)G (k+ iu) (-k- iu +i ){ (k+ iu) 2+y2 ] 
kz + z z Yom L on 

Similarly for the second term of $' (a,a) the only enclosed singularity 
1 

is the branch point at a = -k, and hence 

where T(l)(z) 1s given by : 
m,n 

w 

f 
12[~~2ikzu-u 2 ]T(-k- iU)e-u 
->o~z~c-____ -ccc ______ z~ ________ du 

o (2+ iU)G (k+ iU)[(k+ i U)2+y2 ] 
kz + z L on 

It can be shown easily that T (z)andT( l )(z) 
m,n m,n 

ikz 
e 

kz 
This is true as 

terms from the open end of the excitinF. waveguide . 

decay by the factor 

represent radiation 
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For the third term of $ (.:l,a.). the enclosed singularities m:e the 
1 

poles at 0: '" -iy which arc the zeros of on 
I (ya), with y = o on 

i(~on/a)2 k Z • and n - 1,2,3, .... Evaluating these residue contributions, 

one obtains 

00 () son y z 
I: T 2 J (----::--P)e- on 

n=1.2,3 • . .. m,D 0 a 
0-46) 

where 
YonL 

0 0 J (0 ) (k+iy )G+(iy )G+(iy )T(iy ) 
-e ~om ~on I sam :--__ ~0~m7c-7~-<07mC-~C_~0~n~~~0""n 

= 2rr(l F') -a- a J (I; ) y • 2k(k- iy )(k iy )G+' (k) 
Ion on om on 

(3-47) 
Hence the transmitted magnetic field will be given by: 

a -a;; [t/Jexc(p,z) 
t 

+ !p~nt . (d(p.z) 

a 
ap 

0:> - yz S 
E [T (z)+T(l)(z)+T(')e 'on JJ (on) 

m,n m.D m, D 0 ~ 
n=1,2,3,... (3-48) 

where T (z), r(I)(z) and T(2) are the transmission coefficients given 
m,D m.D m,D 

by equations (3-43), (3-45) and (3-47). Again the transmitted field is 

expressed by three terms. The coefficients T (z) and r(t)(z) 
m,n m, n 

are 

expressed in a convenient form for the numerical integration, especially 

for evaluation of the aper ture field at the open end of the coupled wave-

guide . These two terms represent fields scattered by the rim of the 

exciting waveguide . They decay to zero, as mentioned before, to satisfy 

the Sommerfeld radiation condition, and do not contribute to the trans-

mission coefficient at large distances from the open end of the coupled 

waveguide. The only contribution to the transmitted field in the coupled 

waveguide at large distances comes from T(2) which is due to the inter­
m, n 

action between the rims of the two l~:lVegllides. 

Similar to the case of coupling between parallel plate waveguides, 

the coupling coefficient (or transmission coefficient) 
(' ) 

T m, n can be 



related to the reflection coefficient 

YonL 
e 

F 

by 

(3- 49) 

which is exactly the same as equation (2-74). Furthermore , this trans-

mission coefficient could be related to the total reflection coefficient 

by the equation 

where 

T(') : f (a,L) 
m, n 

Rtctal 
m,n 

£(a , L)[1 + A 1~F2 T(iyon)] 

YonL 

£(a,L) = 
A \ - F2 T{iYon) 

l+A 1FF2 T(iy ) - on 

and A is a constant given by 

A 
1 Yon + 
21T 2kG~ (k) (k 

Yom 
iy ) 

om 

R 
m,n 

(3-50) 

(3- 51) 

(3-52) 

Hence the radiation power can be related to the incident power by the 

equation 

P. [1 -, E IR~:~all'{1 + If(a,L)I'l] 
0=1 , 2 , 3 , . . 

(3-53) 

It is clear that as L approaches infinity, £(a,L) tends to zero and 
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Rtatal reduces to R • the reflection coefficient due to the exciting 
m,n m,n 

waveguide alone. The previous arguments hold also for a parallel plate wave-

guide and it may be noted that all previous interesting results can be 

obtained by an evaluation of the integral in equation (3-12) and using the 

known values of G+(k) and R ,the reflection coefficient of mode 
m,n 

n due to thQ open end of the exciting waveguide . 
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3 . 4 Results <lnd discussion 

For a TM excitation and ka '" 2.5 and 5, some numerical re-
0>1 

suIts are obt<1i.ned and nrc shown in figures 3-2 to 3-4. The infinite 

integrals in the field equations are evaluated numerically by the Gauss-

Laguerre quadrature formula. Hm,lever, the integral in the expression 

for G+(a) is found to be more complex and. for its evaluation, a combin­

ation of the Gauss and the Gauss-Laguerre quadrature formulas are used . 

This integral is a function of ka and its contribution is negligible 

for ka« 1. To examine the accuracy of the computation. the computed 

values of G+(a) using the expression given by equation (3-9) are compared 

with those of Heinstein ( 2 1 where G+(Cl) has a different form although 

Green ' s functions are the same. I t is found that for ka« I , the agree-

ment is excellent, but deteriorates as ka increases . For numerical 

results of TM excitation, the discrepancy is less than 5 percent . 
001 

Figure 3- 2 shows the radiation patterns for kL = 50, 10 and 5. The re-

suIts here are given by 
!; 

IF(8)' 11--2!!!J(!; )(k+iy )G+(iy )1' 
1T om om om 

As indicated by equations (3-20) , (3-21) and (3- 23), figure 3-2 

shows a strong radiation field in the forward and backward directions 

along the waveguide walls . This strong radiation is due to the directive 

effect of the outer surface of the waveguide walls for TM "modes of 0." 
excita t ion. Figure 3- 2a is for t he radiation patte r n of the circular 

waveguide with radius ka = 2 . 5. A significant change in the radiation 

pattern occurs only for e > 160°. For ka e 5 . 0, the radiation patterns 

are shown i n figure 3-2b, which shows stronger variation in the radiated 

power for e > 100°. For two cases of ka = 2 . 5 and 5 , the radiation pattern 

f or kL = 50 is the same as for single semi-infinite circular waveguide [2]. 
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Some results for the reflection and transmission coefficients are 

also obtained. 
ik, 

Since 
(, ) 

R ('), T (z) 
m,o m,o 

and T(l)(z) 
m,n 

decay \"ith the 
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e 
b 

factor and do not contribute to the reflected and the transmitted 

fields at large distances, their corresponding terms are not included in 

the computations. Also, their effect will be the same as for parallel-

plate waveguides investigated in Chapter 2. However, they should be coo-

sidered for evaluation of the aperture fields, or field distributions 

near an open end. Figure 3-3 shows the magnitude and phase of the re-

reflection coefficient for the dominant propagation mode with ka = 5. 

As shown, the magnitude is an oscillating function of kL with a period 

of oscillation approaching kL equal ~ as kL increases. In addition, the 

variation in the results decreases with kL and approaches gradually 

the reflection coefficient of an open ended single circular waveguide. 

Closer to the lower limit of ka for the dominant mode to propagate, 

the reflection coeff i cient has negligible variation as a function of kL . 

The results for such cases are not shown . In general, it was found that 

the effect of kL on the reflection coefficient decreases with ka and 

the coupled waveguide has negligible effect on the reflection coefficient . 

Figure 3- 4 shows the coupling (transmission) coefficient of the dominant 

mode for ka = 2.5 and 5. The curves decay continuously with negligible 

oscillation as kL approaches infinity. The radiated pm"er for ka = 2.5 

and 5. 0 are also computed and are shown in figure 3- 5 . 

It should be noted that equations (3-49) to (3-S3) give the reflec-

tion coefficient , the coupling coefficient and the radiated power of the 

geometry in terms of the reflection coefficient of an open ended wave-

guide with G+(a) evaluated at a = k. The final step is the evaluation 

of T(a) from (3-12) for a given a and L. 
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However, the ana lysis in this chapter will be used later to get 

a modified diffraction coefficient for a circular waveguide structure 

and a sphcricnl wavcfllctor \~hich is related to the scattered field 

from the rim of a circular \.,taveguide. This is presented in the next 

chapter. using the results of this chapter. 



CHAPTER 4 

EXTENSION TO RAY THEORY OF DIFFRACTION 

4 . 1 Introduction 

Keller ' s Geometrical theory of diffraction [11], which is an exten­

sion of geometrical optics has been used extensively in diffraction and 

antenna problems. Diffracted rays are produced when incident rays hit 

edges, corners or vertices of boundary surfaces. A field is associated 

with each ray and the total field at a point is the sum of the fields on 

all rays passing through that point . The phase of the field on a ray is 

proportional to the optical length of the ray from some reference point. 

The amplitude varies in accordance with the principle of conservation of 

energy in a narrO\~ tube of rays. The initial value of the field on a 

diffracted ray is determined from the incident field with the aid of an 

appropriate diffraction coefficient which is determined from the solution 

of certain canonical probl ems and they all vanish as the wavelength 

approaches zero. In the latter case~ the remaining field is only the geo­

metrical optics field, since the diffraction term is usually attributed to 

the fact that). is not zero. In a homogeneous medium, the diffracted rays 

are complex straight lines , while in an inhomogeneous medium. they are 

complex- valued solutions of the differential equations for rays [50] . This 

theory has paved the way to get an approximate solution for complicated 

structures [511. [52]. Diffraction by an aperture in soft and hard screens 

has been investigated by Keller ~3] and Karp and Keller [54 ] , respectively. 

Also, Ju1l[ 55 ] has treated the problem of diffraction by a wide aperture in 
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an anisotropic medium. Several examples of edge diffraction theory nre 

given in references [71,[12],[56]-[59]. The edge diffraction coeffic-

ients normally used in Keller's geometrical theory of diffraction are 

based on plane wave assumption for the edge field. As a result of the 

distance limitation on these coefficients, the diffracted field due to 

multiple edge interactions l ead to some deviations from the exact 501-

utians. Hamid [12J has presented amplitude and phase correction fac-

tors in the diffraction coefficient by comparison with the exact 501u-

tion. The divergence phenomena caused by the use of the plane wave 

diffraction coefficients was overcome for H-polarization by Yu and 

Rudduck [60J by the use of appropriate cylindrical wave diffraction 

functions. Their formulations were basically the same as the formula-

tions by Karp and Russek [61] and by Ufimtsev [62],[63] . Recently, 

Mohsen and Hamid [64] has improved the accuracy of the results by in-

clud ing higher order terms in Keller's diffraction coefficient . 

Lee [27], [28], has extended Keller's diffraction ray method to 

pr9blems involving t\~O or more parallel plates by introducing a modified 

diffraction coefficient which automatically takes care of the coupling 

along a shadow boundary. 

As Keller ' s geometrical theory of diffraction cannot be applied to 

compl icated problems that involve interacting and bouncing rays , Dybdal. 

R.B. et al [7] has applied this theory to obtain mutual coupling between 

TEJ>1 and TE parallel-plate waveguide apertures , with special geometries 
'01 

and oritentations in which e > e • as shown in figure 4-1. 
o g 

They form-

ulated the solution of the coupling problem as follows: A unit-amplitude 

wave with its associated model voltage or current is incident in the 

exciting waveguide. An equivalent line source , having an omnidirec tional 



t<-l:-- d --->1" 

a 

/ Excit ing Waveguide 

1 
Coupled Waveguide 

Fig. 4-1 Coupling between TEM and TEO,I parallel-plate 
waveguide apertures (after oybdal et 01 [7]) 
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pattern and a field matching that of the guide in the direction of 00 

is substituted for the exc iting waveguide . A coupled wave with its 

associated model voltage or current is induced in the coupled waveguide. 

The mutual coupling is then defined as the ratio of the model quantity 

in the coupled guide to that of the exciting guide. 

This chapter represents extension of the Hiener-Hopf technique 
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which has been used in the second and third chapters to obtain the coupling 

between parallel- plate and circular waveguides respectively. The Hiener­

Hopf results are reduced to those corresponding to ray theory of diffrac­

tion in conjunction with the modified diffraction coefficient of Lee {27], 

[ 28]. To obtain the solution using ray theory of diffrac t ion , the Green ' s 

function associated with the modified Wiener-Hopf equation is expanded 

in a power series and truncated after the first term . This is shown 

in detail in the following sections . For parallel plate waveguides , the 

steps for obtaining the ray theory results from the \nener-Hopf tech­

nique are given and the limitations of the method are discussed . 

For the case of circular waveguides,a modified diffraction coefficient 

is obtained and a spherical wavefactor is defined and is shown how it 

is related to Keller ' s results [53] for circular apertures . With these 

def i nitions, results for the reflected, transmitted and radiated fields 

are ob t ained and the limitation of the method is derived in the same 

manner as for parallel plate waveguides . 

The l ast section deals with some results obtained using the ray 

theory and the Wiener-Hopf technique with particular a t tention t o the 

case of parallel plate waveguides . A discussion of the results is also 

presented . 
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4.2 Coupling between two coll inear semi-in finite p.:trallcl-pl<:tte w,(lvcgu idcs 

4.2 . 1 Expansion of the transformed Gr een ' s function 

If the transformed Green ' s function G(a) given by equation (2-20), 

i s expanded in a power series , then the f unction TCa) given by equation 

(2-39) can be written as : 

T(o.) 

where 

T (0.) 
n 

with 

" 0=0,1, 2 , . . 

-id 

T (0.) 
n 

= ~ J (-2ya)0 
'" n! ya n ____ 

id 

-16L e 

for n "" 0 

for n '" 0 

(4-1) 

(4-2) 

n- 1 

In the neighborhood of B k J the function (6-k)-'- is regular 

.!!=..!. 
and smooth, and can be replaced by (- 2k) 2 Theref ore , equation (4-2) , 

afte r deforming the contour , becomes (see Appendix D) : 

n 
n-l - i-(n-l) 

( _1)020+1aO-1 (2k)-:Z-e 2 

o 

A change of va r iable via 6 - k iu 
L 

gives 

~~ i~(n-l) . 

- k 

n '" 0,2 , 4 , 6, . .. 

n 0::: 1,3,5 , . .. 

(4- 30) 

(4-3b) 

T (a) • 
(_1)n+lz-------r-(ka)n- 1e 4 el.kL 

n 1 
01 £ (kL)-'­

n 

, n = 0 , 2,4,6, ..• 
n 

(4-4) 

wher e 

~ • - i kL(l- ~) (4- 5) 



and 

" 1(0 
j-

2 

~ 

= f )e-
u 

du 
u+!; 

o 
(4-6) 

The above function is related to the Hhittaker function W (~) by the 
u,v 

relation 

". 1(0 
J-2 

Using the asymptotic expansion of W (~), [65] , 
u , v 

T (a) 
n 

1 
, c S 

S . s 

i..:!!(n-d . 
+ 30+1 (k )0-1 4 l.kLr(n+l) 

(_I)n 12 2 a e e 2 

n I 
n ! c (kL)-'­

n 

(4-7) 

in (4-4) . one obtains 

(4 - 8) 

Retaining the first term in (4-8) , its substitution into (4 - 1) gives 

T(a) = E T (a) 
n 

0=0, 2,4, .. 

i(kL :) 
= _-.,i i2-"2,-,,e~ __ 

~ 

aYkL(k-a) 
E r(n+l) 

2 
0=0,2 , 4 ,_ . 

(4- 9) 

which can be rewritten as 
n i(kL-;;) 

1 2. , T(a) -2Trie 
[1 + iv _ v' + ... . J = (k-a) 

- -l.\) 

a Y2rrkL 3 
(4-10) 

where v - (ka)'/kL 

Equation (4- 10) is an asymptotic expansion of T(n). It is clear that 

for fast convergence of T(a) v must be less than unity, i.e. (ka)2 « 

kL. However , if (ka)2« kL the first term in (4-10) can be retained, 

and equation (4-10) reduces to 
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1(kL-1!.) 

T(a) = T (a) = (2.i) 
o a 

" 4 1 
~'i 2"'.='::k;::L =-- k-a 

Finally J this equation together Hith equation (2-43) gives 

i(kL-1!.) 
" 4 1 

2k 12• kL G! (k) 

(4-11) 

(4-12) 

This function will be shown to be the same as that obtained in the 

next section using the ray theory approach . A substitution of ( 4-11). 

(4-12) into the expressions of the radiated, reflected and transmitted 

fields, obtained by the tJiener-Hopf technique, gives 

i-For the radiation pattern given 

• 
by (2-52) and (2-53) we obtain 

where 

s • IT i (kp-i;) 
~ (p, e ) = ~TIkP" F(e) 

F(e) i.t .. Ta 

• i(kL--) 
4 

+ " 
Y2.kL 

• i{kL--) 
4 

+" 
V2.kL 

1 
k(l-cosS) 

1 
k(1+cos6 ) 

F 

l _y2 

1 

-ikasin6 G+(kcosS) 
e [kCOSS+iY1 

G+(kcos6) 

G! (k)(iy t k) 

G+(-kcos6) ikLcos6 
I-F' G~(k)(iYt-k) " 

(4-13) 

(4-14) 
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i1 - For the reflected field given by (2-65), (2-57) , (2-59) and (2-64) we 

obtain 
$ (x, z) 

r 

where R 
t,m 

given by 

R (1 ) • £,m 

,+., exeC ) '" 'I'r x,z 

= 

is the same as that of (2-57) and 

it' t+m G+(iYt)G+(iy) F - 1T ---r- m m 
(-1) Y

m 
(iYt-k)G~(k) 4a J l _F2 

(4-15) 

R (,) 
t,m 

and R(') 
t,m 

are 

• 1(kL-i;) 
1 " (4-16) 

k- iy 
"2.kL m 



and 

J 

G + (iy t) e ik (L-7.) 

G.l-(k) (iyl. k) 

ttm i (kL-~) 
( _1)-'- "e-:-::=_ 

1-F' i2nkL 

du 
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(4-17) 

iii - For the transmitted field given by (2-73), (2-68), (2-70) and (2-72) 

we obtain 

where 

$t (X,z) = ~~xc(x . z) + $!ot,(l)(x,z) + ~!nt J (2)(x.z) 
() () - Ymz mlf r: [T

t 
(z) + T 1 (z) + Ti, 2 e ]cos(Zx) 

oo=I,3,5,. . ,m t ,m tm a -
Tft (z) is the same as _,m that of (2- 68) and 

given by 

J COSh2[~"2ikzu-u21 e -
u 

o \ !2ikzu-u 2 [ (k+~) 2+y2] [2k+ ill] G2 (k+~) 
II z m z+ z 

du 

and i(kL-~) Y L 
_ _ iR.Tr2(_1)t~m mG+(iYR,)G+(iYm) e 4 em 

4a' y (l-F') (iy.-k) (k-iy )G'(k)V2nkL 
m k m + 

( 4-18) 

and are 

(4 - 19) 

(4-20) 

Previous expressions for the radiated , reflected and transmitted fields 

are obtained in the next sec t ion using ray theory of diffraction with 

the modified diffraction coefficient of Lee [ 27 1. [28J. 

4.2.2 Application of the ray theory of diffraction 

S.W. Lee [27],[ 28 ] has introduced a modified diffraction coefficient 

for problems involving two or more parallel plates, which takes care of 
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coupling along a shadow boundary . To apply it to the present problem 

with an excitation of TE /I mode and £. odd, one utilizes the symmetry 
o~.o:, 

of the geometry Idth respect to z- axis Olod introduces an infinitely 

large magnetic wall at the centre of the waveguides. as shown in figure 

4-2a . The incident field is then a plane wave illuminating the upper 

edge of the exciting waveguide at an angle • where SiO<P£, 
in 

= 2ka . 
The resulting diffracted , reflected and transmitted waves can then be 

found by an application of the above modified diffraction coefficient . 

i-Diffraction patterns: 
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The diffraction patterns consist of the diffraction due to the exciting 

waveguide alone and the multiple diffractions between plates 1 and 2, 

which may be considered separately as follows: 

A - Diffraction due to the open end of the exciting waveguide , figure 

The field $1(p , 6) on the ray diffracted at the edge of upper 

plate is given 

~ (p,9) = 
1 

by n 
i(kp--) 

e 4 
6 ... 11"-6 (4-21) il(e,9 )E i 

'V2nkp 0 y 

where 
i-l 

Ei '" !(- l)-'-
y 2 

at the upper· edge (4-22) 

and 6 is t he direction of the incident plane wave . P and 6 are the 
o 

coordinates of the observation point with respect to the upper edge and 

the factor D(8,S) is the modified diffraction coefficient in the 
o 

form 

il(e,9 ) = 
o 

with 

f (9) = 

So a 
-2icoSZ-C0s"2 

cosS +cos6 
o 

G+(-kCOSS) 

f(9)f(9 ) 
o 

~<191<n 
2 

(4 - 23) 

(4-24) 



The func tion G + (a.) used in [27] and (28], is related to G + of the 

present work by 

Thus, from ec:uation (4-21) 

i(kp- !':) 
e 4 

~ (p,8) 
I 

Replacing k sin~~ by 

it becomes: 

tn 
2a 

(4-25) 

and equations (4-22) to (4-25), we ob tain 

G+(kcos~~)G+(kcose)] 

(4-26) 

by in the above expression 

kSin9G+(kcos8) 

kcose + iyR, 
(4-27) 

Note that for e < I ' the specular reflection at the magnetic wall re-

2ikasin9 quires the multiplication of the results by a factor of (1 + e ], 

which when combined by (G+(kcOSS)]-l gives G+(-kcose). Thus, for the 

range 0 < e < n, one can use a single expression f(9) = G+(-kcos9) , 

which gives the above equation (4-27) for ~ (p,e) valid for 0 < e < n . 
I 

B. Multiple diffraction between two waveguides: 

There are two kinds of multiple diffracted rays as shown in table 

4-1, with the integer n being at least unity. 

TABLE 4-1 

Types of multip l e diffracted rays between edges of plates 1 & 2 

Ioitial Diffraction Number of diffracted rays Final Diffraction 

Type at the edge of at the edge of plate at the edge of 

plate (1) (2) plate 

(A) (1) n + 1 n (1) 

(B) ( 1) n n (2) 
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The first column designntes the type of ray. The second column 

shows which edge is first hit by the incident ray that gives rise to 

multiply diffracted rays . The last column s h ows the edge at which the 

multiply diffracted r ay i s finally diffr<lcted . The other co l umns give 

t he number of times the ray is diffracted at each edge . Now consider 

the fie l ds due to rays of the type (A): 

00 

" - - (2n-1) -
L P.P F f 0"'1 1 1 

(4-28) 

where Fi is the diffraction field at the edge of plate (2) due to the 

initial diffraction of the incident plane wave at the edge of pl ate (1) . 

F is the diffraction field at the edge of plate (1) or (2) with a plane 

wave of unit amplitude incident with ang l e zero at the edge of plate (2) 

or (1). respec tively. Ffl is the diffraction field , at the observation 

point , due to the final diffraction at the edge of plate (1) of an inci-

dent plane wave having a unit ampli tude. Equat ion (4-28) can be written 

in the form 

where Fi 

F 

F.F
f 1 , I 

n"'l 

F 

I_F 2 
(4-29) 

F and Ffl ' with the aid of equation (4- 21), are given by 

i(k L _ 1L) 
4 

e - 1 
D(O,-(rr-~t»Ey 

t2nkL 
= 

t -1 
= - rrt ( - 1) 2 

2a 

i(kL _ 1L) 
4 

e 

rr i(kL _ 1L) 1(kL - 4") 4 
e 0 (0 ,0) e 

= = 
t 2nkL 2k ,12nIT 

1 

G!(k) 
n 

i(kp - 4") i(kp-rr/4) 

(4-30) 

(4- 31) 

G+(kcosS) 
and F = 

e 0(6,0) -1 e s inS 
(4-32) = £, l- cosS G+(k) t2rrkp ,I2rrkp 



It is clear that F given by (4-31) is the same as that given by 

equation (4 - 12). Or , in other \vords, the function T (a) , which is the 
o 

first term of T(a) given by (4-10) gives the result if we use the ray 

theory of diffraction . 

A substitution of (4-30) and (4-32) into (4-29), gives 

$ A(p,B) = 

" 
i (kL_1!) 

4 

[~e_i-2-nk-L- k(l- !oSB) ] 

00 

(4- 33) 

Similarly fields due to rays of type (B) With} = 

of plate (1) 

- -(2n-2)- ikLcos6 r F.F F
f 

e 
distances measured from edge n=l :L 2 

or $ .(p , B) = F . Pf 2, 1. 2 

1 ikLcos6 --e 
l _'F2 

where F. and F are given by (4-30) and (4 - 31) and 
1 

n 
i(kp-i;) 

- i sin6 G+ (-kcos9) 
Ff , 

e 
= 

G+(k) V2nkp 
l+cos9 

Again a substitution of (4- 30) and (4-36) into (4-35), 

i-I . 1T 
id(-l)--;- 1 (kp-i;) 

= e 
1 G+( iYi)·ksin9 

I-F' (iYf k)G!(k) 2aV2nkL 

i(kL-~) 
[ e 1 J 

1I2nkL k(HcosB) 
ikLcos9 

e 

Ff , is 

gives 

(4- 34) 

(4-35) 

(4-36) 

(4-37) 

Thus, the total diffracted field with distances measured from origin at 

X~O and z:O, is given by 

$s(p,B) = [$ (p, B) + $ A(p,B) + $ B(p,B)]e- ikasinB 
1 2 , 2. 

(4- 38) 
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Upon combining (1i - 26). (<'1 - 33) and (4-37) \·,dth (4-38), the diffracted 

field q,s(p,6) can be ShOI"1l to be the same as (<'1 - 13). Or, in other words, 

the results obtained by t he ray theory of diffraction arc the same as 

that obtained by the Hiener-Hopf technique when the first term in the 

asymptotic expansion of T(a) is retained . Hence, To (a) yields the 

ray theory results . 

i1 - Fields inside the exciting waveguide : 

Again the reflected field consists of the diffraction due to the 

exciting waveguide and the multiple diffraction between the two wave-

guides . However , t he diffracted r ays are now converted into modes inside 

the exciting waveguide. The reflection due to the open end of the excit-

ing waveguide is , figure 4-2c : 

cp (x,z) = 
r , I 

~l mn Ymz 
L [2i(- l) 2 ]cos (zax) e 

m=l , 3, 5 , ... 

(Ray to mode conversion factorJ Ei 
y 

D[ - (.-- ) -(. -- )] 
'fm ' 'f£ 

(4-39) 

where the first bracket is to normalize the amplitude of the rays travel-

ling i n t h e -('-$ ) 
m 

direction at x=a, z~O , for an i ncident plane wave 

of unit amplitude a t the above pOint . The second bracket is the ray to 

mode conversion factor given by [271 . 

conversion factor = 
1 • =-:c"c:-::-. 2kacosifl 

m 
(4 - 40 ) 

and Ei is given by equation (4- 22). Equation (4- 30), after some mani­
y 

pulation becomes : 

cp (x , z) .. 
r, I 

00 mlf Ymz 
L RI'I cos (-=---X

2 
) e 

-1 35 .... ,m a m_ , , , • • 
(4-41) 

with 



R = 
~,m 

~+m mG+(iY )G (iy.) 
( 1)-'- m + " 
- Y (Y +y ) 

m m ~ 
(4-42) 

Similarly, the reflection due to rays of type (A) can be show·n to be: 

m- l m~ Yrnz F __ 
E [2i(-1)-' Jc05(-=-"2 ')e [-- F .F

f 
J 

1 3 5 a 1--F" 1 
m::::l • • . " 

(Ray to mode conversion factor] (4-43) 

(4-32), with e 

F
f 

are again given respectively 
1 ei (kp-rr/4) 

replaced by ~m and 
hlTkp 

by (4-31), (4-30) and where F, Fi and 

dropped in (4-32). 

Hence one finds 

00 

$ A(x,z) = E R(A) 
r.2, m=1,3,5, . • R.,ffi 

mrr 
cos(2ax ) 

Y z m 
e (4-44) 

with 

(4- 45). 

The ficld,due to rays of type (B) . is a radiated field and has the same 

form as equation (4-37) with case ~ 1. This field can be converted 

into a modal series to give similar to R~2)(Z) • given by 
" , m 

equation (4-17). Based on this discussion and upon combining (4-41) and 

(4- 44), the total reflected field using the ray theory of diffraction is 

the same as (4- 15) . Or, in other words , T (0), which is the first term 
o 

of the asymptotic expansion of T(a). yields ray theory results. 

iii - Fields inside the coupled waveguide 
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The transmitted fields in the coupled waveguide also consist of the dif-

fracted fields due to the exciting waveguide and multiple diffraction be-

tween the two waveguides . figure 4-2d . Here the diffraction due to the excit-

ing waveguide and rays of type (A) are of the scattering type and give 

transmission coefficients which are functions of z and can be treated 



similar to the rays of type (D) in part i1. The remaining contribution 

comes from rays of type (B) which may be shown to be 

4
t 

B(x ,z ) = , 2, 

m-l -y (Z-L)F.F . -- mn m l.f2 1: [2l.(-1) z ]cos(2")e -_. 
1 3 5 a 1- -F2 m= , , ," 

[Ray to mode conversion factor] (4- 46) 

where again F, F. and Ff2 are given respectively by (4-31) , (4-30) and 
> l(kp-./4) 

(4-36), with 8 replaced by • - 4 and 
e dropped in (4-36). 

m 

Hence one finds 

~ 

4t B(x,2) = E TiB) 
,2. m=l,3,5, . . , m 

with 

hnkp 

-Y 2 m 
e 

y L 
i(kL-") 

T(B) _iR.tr 2 i+m mG+(iYi)G+(iym)e m 4 
e 

(-1) 2 Ym(iYt-k)G+(k) (l-F') t,m 
= 4a' 

1/2.kL (k-iy
m

) 

Again, it is clear that T(B) 
t , m 

is the same as T(2) 
t , m 

given by 

(4-47) 

(4-48) 

(4-20) • 

As a result T (n), given by equation (4-11), yields ray theory results. 
o 

Some results for a IE mode excitation wil l be shown in the last 
0" 

section of this chapter, to verify the validity of the ray theory for 

solving these kinds of problems. 

4.3 Coupling between two collinear circular waveguides 

4.3 . 1 Expansion of the transformed Green ' s f unction 

If the transformed Green's function GGa) given in appendix A by 

equation (A-12), is expanded in a power series, then the f unction r(a), 

given by equation (3-12) can be written as 

-k-ioo 

T(a) • ni f 
- k 

E 
n=o,I,2, •• 

(4-49) 
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In the neighborhood of B = -k, the function B-k is regular and smooth 

and can be replaced by -2k nnd after some manipulations (4 - 49) 

gives 

T(a) 

'Where ~ 

tively . 

-i 
(-)W «) -

L 1 
2 

ka'C~)'w3«) 
2 

+ . . .. ) 

and W 1 (1;) 

The fun~tton 

(4-50) 

are defined by equat i ons (4-5) and (4-6), respec-

W 1 (I;) is 
j-

by equation (4-7)~ Upon 

related to the Uhittaker function 

using the asymptotic expansion of the 

Whittaker functions and retaining only the first term, equation (4- 50) 

reduces to 

T(a) ieikL 

L'(k a) [1 

where, J.l = 2(ka)2jkL 

9 , 
+ IIJ - - ~ 16 + .. • . J (4-51) 
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Equation (4- 51) 1s an asymptotic expansion of T(a) , which is con­

vergent for J.l« 1. In other words , kL must be much greater than 2(ka)2 , 

Thus, retaining only the first term in equation (4-51), it reduces to 

T(a) 1TieikL 
= To(a) = L'(k-a) 

Combining this equation with equation (3-14) , one obtains 

ikL -e 
F = F = 8(kL) G'(k) 

+ 
(4-53) 

This function will be shown later to be the same as that obtained by 

ray theory. A subs titution of (4-52) and (4-53) into the expressions 

of the radiated, reflected and t ransmitted fields, obtained by the Wiener-

Hopf technique, gives 

i- For the radiated field given by (3-18) and (3-19) : 

~ 
i(kr"2) 

": (r, 8) • ",e-;-k-r- F(8) (4-54) 



where 

F (8) 
i; 

= - ~ J (i; )(k+iy )G+(iy ) n I om om om 

G+(kcosO) 

(k kcosO) (kcosS+iy ) 
om 

F 

l_r2 

ikL 
e 

(2kL) 2 (l-cosS) 

G+(kcosS) 

G+2(k)(iY - k)(k-kcosO) om 

_ _ 1_ =,""""e"i.,-kL:--:---;;, O=C7
G
.,-+',-(,..-_k_C,-OS,O")--,.,_-,,, e ikLcosS } 

(2kL)2(1+cos8) G+2(k)(iy -k)(k+kcos8) 
om l _r2 

(4- 55) 

ii - For the reflected field given by (3-39), (3-26), (3-28) and (3-38) : 

R(2)(2) is the same as that given by (3-38) with T(a) inside the 
m, n 

integral being replaced by equation (4-52). Also , R is the same as 
m, n 

(3-26). For the third component of the ref l ected field, the reflection 

coeffici ent R(I) is given by 
m, n 

(k+iYom)G+(iYom)G+(iYon)eikL 

2kL'y (k- iy )(k-iy )'G'(k) on om on+ 
(4-56) 

iii - For the transmitted field given by (3-48) , (3-43) , (3-45) and 

( 3- 47) . 

T (z) and T(I)(Z) are the same as (3-43) and (3-45) with T(a) m,n m,n 

in the integrand of equation (3-45) , being replaced by equation (4-52) . 

However, the main contributing term to the transmitted field is modified 

to 

( 4- 57) 

The above expressions for the radiated, reflected and transmitted fields 

are determined l ater using the ray theory of diffraction, after intr o-

ducing a modified diffrac t ion coefficient , a spherical \"avefactor and a 

ray to mode conver sion f actor. 
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4 . 3.2 Determination of t he modified diffraction coefficient, conver sion 

factor and the sphe r ical Havefactor 

In equation (3-18), the first term corresponds to the radiation 

f r om the open end of the exciting waveguide only . Rewriting this term 

with e ~eplaced by w-e . where e is measured from the positive z-

axis. one has 

i (kr ~) 
...;-e~'''"kr-- ~ J« ) (kHy )G+(iy ) 

" omloffi om om 

(k+kcos8)(iy -keDse) 
om 

(4-58) 

Introducing the Green's function obtained by following the procedure 

of Lee (28]. one has 

G(a) = 2ya I (ya)K (ya) 
o 0 

2ya G(a) 

Hence 

From equations (4- 58) and (4-60). with the r e lations 

keDSe '" -iy , one obtains 
om om 

ksin9 '" om 

"; ,eXC(r,S> 
~ 

= [-2"! J (~ ) J 
a 1 om 

i(kr ~) 
e 

2nkr 

e-
2i . om . e 

( __ 5_'_"_' -=2,--5_'_=-=.2) 

CDSe +cos8 
om 

G+(-kcos8om)G+(-kcos8) 

sinS H(t)(kasin9 > 
o 

(4- 59) 

(4-60) 

~om 
and 

a 

(4-61) 

It i s clear that the first bracket is the incident magnetic field, i 
H~ • 
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at the rim of the exciting waveguide. By analogy with the case of parallel-

pla te waveguides , which has been investigat ed by Lee [2 7], the modified 

diffraction coefficient can be written as 



D<6,6 ) • 0(6,6 )f(O)f(6 ) 
om om om 

where 

and 

f (8) 

6 
om 

21 Si~ 
.6 51"2 

cose +cos8 
om 

n 
2 

< n 

< .!': 
2 

(4-62) 

(4-63) 

(4-64) 

D(9,9 ) is the well known diffraction coefficient for a half plane om 

illuminated by a TM plane wave in the direction of 6 
om 

The angles 

e and eom take values between -~ and n and are measured from the 

positive z- axis. 

The factor 1 

sinS H(l)(ka sinS) 
o 

in equation (4-61) corresponds to 

the spherical waves of the diffracted rays and reduces to unity for the 

cylindrical waves, in the case of parallel plate waveguide. Hence equa-

tion (4-61) can be rewritten as 

H~,exc(rJe) = Hi 
• n $ 

i(kr-Z) 

at the rim of the exciting waveguide 

x ~e,"::;:::-_ x n{6,s ) x spherical wBvefactor 
2lTkr om 

It is quite interesting to note that the spherical wave variation 

n 

(4-65) 

i(kr-Z) 
e 

2trkr 
and the spherical wavefactor are related to the curvature of 

the rim [53 ). If ka sinS» I, i.e . in the entire rear half space, or 
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if the radius of the circular waveguide is large, then by using the asymp­

totic expression for H (d (ka sine) , we can write 
o 

i(kr ~) 
e 

2nkr 

!(kr-ka sin& ~) 
x spherical wavefactor ~ ,eC-__________ 7/~-

2,/"(2nk) I , 



lfuere 

-, 
i (kr-ka sin9-;;) 

• ."Ce ---c-;,--- _--::----'1'--__ 
2(27fk)1i2 [ r(l.-:i. 5i09)]1/2 

a 

(4- 66) 

is measured from the diffracting point to the observation 

point, as shown in figure 4-3. However, equation (4-66), is the same 

equation that has been obtained by Keller [53 J in treating the problem 

of diffraction by a circular aperture . In other words , the spherical 

wavefactor 1 

sine H(l)(ka sinS) 
o 

may be used together with (4- 63), to 

obtain the diffraction field by a circular aperture of small radius in 

hard screens . 

Inside the exciting circular waveguide, the reflected magnetic 

field, due to only its open end, can be put in a form similar to that 

of the parallel- plate waveguide [ 271: 

co ~ yz 
E R J (~)e on 

'1 2 m," 1 a n •• . , 
(4-67) 

where 

R = Hi at the rim of the exciting waveguide x D(6 ,6 ) x 
m, n $ on om 

Ray to mode conversion factor 

with IT- 9 ,k cose on on 
and ksinSon '" 

sion factor is given by 

- 1 
conversion factor = ~~-c~~--c-'""~, 2ka case J (~ ) 

on 1 on 

0.= k cosS 
on 

For the parallel plate waveguide of width 2a , and TE 
o , ~ 

(4 - 68) 

and the conver-

(4- 69) 

exc i tation , 

80 



81 

---I-----f-,~LJi!_8-~- z 

Fig. 4-3 A plane screen with a circular aperture of radius a. 



this factor reduces to 
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'2"k-a=--co-s--'8~;[ 2 7} . 
on 
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In the following section, the above results for the modified diffrac-

tion coefficient, the spherical wBvefactor and the ray to morle conversion 

factor , are used to obtain the radiated , reflected and coupled (transmitted) 

fields of two axially coupled circular waveguides . 

4 . 3.3 Application of the ray theory of diffraction 

i-Diffraction pattern : 

The diffraction pattern consists of the diffracted rays due to the 

exciting waveguide alone and the multiple diffractions between the rims 

of the two cylindrical waveguides . If H~(r,e) is the contribution of 

the diffracted rays due to the exciting waveguide alone, equation (4-58) 

gives the contribution of these diffracted rays . The contribution of 

the multiple diffracted rays comes from the two type of rays explained 

in table 4-1. Type (A), with initial and final diffractions at the rim 

of the exciting waveguide and type (B) with the initial and final diff"rac-

tions at the rim of the exciting (rim 1) and the coupled waveguides (rim 

2),respectively. Similar to the case of parallel plate waveguides, the 

contribution of rays of type (A) and (B) are respectively given by, 

and 

= _1_"F"F 
1_y2 i fB 

ikL case e 

(4- 70) 

(4 - 71) 

where Fi is the diffracted field at rim (2) due to the intial diffrac-

tion of the incident wave at rim (1) a nd F is the diffraction field 

at rim (1) or (2) of an incident wave of unit amplitude and incidence 



angle zero at rims (2) or (l),rcspectively. Also, F
f 

A 
and F

f 
B 

arc 

respectively the diffracted fields, due to the final diffraction at rim 

(1) and (2) for a unit amplitude wave of angle zero at rim (1) or (2) . 

Now, equation (4-63) shows that if the incident field vanishes at an 

edge, the diffracted field also vanishes and following Karp and Keller 

[54], the diffracted field is proportional to the normal derivative of 

the incident field at the edge. Thus it may be shown that: 

and 

£; i(kL ;) 
om e 2C1---

Fi = a J l (~om)·"o2=nk;:CL;-- fl-
o
--
e 

[D(6 , 6om)x spherical wavefactor]} 
8=0 

ikL k+iy G+(iy ) 
e om om 
~ k-iy G (k) 

om + 
, (4-72) 

i(kr ~) 
e - 2 0 - '" - } 

2 k (~k){ ---- [D\6,e )J x spherical wavefactor 
TI r 1 ae om e =0 

om om 

i(kr ~) 
k sinS G+(k cosS) -e 

( 4- 73) 0 , 
21Tkr G (k)H(')(ka sinS) (k-k cos9)2 + 0 

i{kr ;) 
k sinS G+(-k casS) -e 

(4-74) F
f 

0 

2nkr G (k)H(') (ka B sinS) (k+k COSS)2 + 0 

i(kL3.) 
2 2 -2 0' e 15(8,8 )} F 0 

2nkL (i)(ik) ( 
as as om e 0 8 o 0 

om om 

ikL 
-e 

(4-75) 8 (kL) zG! (k) 

It is clear that F given by (4-75) is the same as that given by 

equation (4-53). In other words, the function T (a), which is the 
o 
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first term of T(a) , given by (4-51), gives the results of the ray theory 

of diffraction. A substitution (4-72), (4- 73) and (4-74) into (4-70) 

and (4-71) gives: 
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(4-7 6) 
i(kr ;) 

e 
~ J (~ ) (k+i )G (1 ) ksin9'G (kcos9)eikL(l+cos8) 

om 1 om Yom + Yom + 
I-F' (2kL)'(I+cose)'(iy -k)G'(k)H(l)(ka sine) 

om + 0 

nkr 

(4-7 7) 

The total radiated field is then the sum of H~(r.e) , H~ ·A(r . e) and 

H
3

,.B(r,e). It is clear that this result is exactly the same as that 

given by (4- 55) . In other words, when retaining only the first term of the 

asymptotic expansion of TCa.) , the t:esults yield the results of the ray 

theory of diffraction with the defined modified diffraction coefficient 

in conjunction with the spherical wavefactor . Consequently, since T (a) 
o 

corresponds to the solution of the ray theory of diffraction , the higher 

order terms of T(a) g"lven by (4-51) provide the correction when 

2(ka)2/kL is not small enough. 

ii - Fields inside the exciting waveguide: 

The reflected field consists of the diffraction field at the open 

end of the exciting waveguide and the multiple diffraction between the 

two waveguides. To find this reflected field, the diffracted fields are , 

of course, converted into waveguide modes, inside the exciting waveguide. 

The reflected field due to the exciting waveguide only , is given by equa-

tion (4-67), and that of the multiple diffracted fields is due to rays of 

type (A) only. The rays of type (B) yield the radiation field inside the 

exciting waveguide and,at large distance, they do not cont ribute to the 

reflected fields. Hence, the reflected field due to rays of type (A) may 

be shown to be: 



where F, F. and 
1 

by replacing e 
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00 l; yz~ 

E J ( on )e on [_F_ F F J [Ra to mode ~ -2 if Y 
n=1,2,3, .. 1 I-F A 

F 
fA 

are 

by e on 

conversion factor] (4-78) 

givenJrespectively b:fi (4-75) , (4-72) and (4-73), 
i(kr2") 

and dropping e /2wkr and the spherical 

wavefactor in (4-73) . Thus one finds 
00 

E R (A) S.on Yon z 

11"'1,2,3, .. m,ll 
J (--::-p) e , a (4-79) 

where 

R(A) = 
m,n 

J ( 1; ) (k+iy )G+(iy )G+(iy )e
ikL 

1 om 07~~o~m",~~~o~mCc~~~o~n~"7>_ 
J (~ ) 2kL2y (k-iy )(k- iy )ZG2(k) 

1 ~on on om on + 

It is clear, also, that R(A) 
m,n is the same as 

(4- 80) 

R (,) 
m,n 

given by (4-56). Hence, once again T (a) 
o 

gives the solution of the 

ray theory of diffraction. 

iii - Fields inside the coupled waveguide: 

Far from the open end of the coupled waveguide, the transmitted 

field mainly comes from the rays of type (B). The contributions of these 

rays after conversion into waveguide modes is given by: 

Ht,(B)( ) = 
cf> p ,Z 

m 1; -y (z-L) 
E J (onp)e on [_1_ 

1 a -2 n"'l,2,3", I-F 

F.F
f 

J[Ray to 
1 B 

mode conversion factor1 

where and are given respectively by 

(4-74), by replacing by n- 8 and dropping 
on 

spherical wavefactor in (4-74), Hence one obtains 

Ht,(B)( ) = 
cf> p,z 

~ T(B) J ~on -Yon
z 

" (--::-p) e 
-1 2 3 m,n 1 a n- , I .' . 

where 

(4-75)lr (4-72) 
i(kr-Z) 

e /2nkr 

(4-81) 

and 

and the 

(4- 82) 



86 

,(B) = 
m,n 

YonL ~ 
-i e om 

2 I - F a 

J « ) (k+iy )G+(iy )G+(iy )e
ikL 

1 om ~~~o~m",~7C-"o~m~~~~o~n~~~ 
J (E;: ) 2kL2y (k-iy ) (k- iy ) 2G2 (k) 
Ion on om 00+ 

(4-83) 

Equation (4-83) is identical to 

which \"85 obtained from (3-47) by replacing T(iy
on

) from equation (4-52) . 

4.4 Results and discussion 

The asymptotic expansions for TCa) , for the two cases of paral1el-

plate and circular waveguides, areobtained and are given by (4-10) and 

(4- 51),respectively. It has been shown that the first term in the 8symp-

to~ic expansion of TCa), which is T (a), yields the solution using ray 
o 

theory of diffraction . In other words, higher order terms of T(a) 

provide corrections when (ka)2/kL is not small enough in the case of 

parallel-plate waveguides , and when 2(ka)2/kL is not small enough in 

the case of circular waveguides . Kashyap and Hamid [25] have investigated 

the problem of diffraction by a slit in a thick screen and have obtained 

the same condition (ka)2/kL «1, such that first term of their solution 

leads to ray theory results. 

Besides treating the circular waveguide by ray theory of diffrac-

tion and deriving the condition of its validity, a spherical wavefactor 

has been obtained and was shown to be necessary for treating problems of 

diffraction by a small aperture in a hard screen. 

To study the effect of including higher terms of T(a) on the re-

s uIts, T(o) was investigated in detail for the case of parallel-plate 

waveguides. This is shown in figures 4-4 , 4-5 and 4- 6, f or different 

value.s of a. It is clear from these figures that for (l close but 

not equal to k, theresults deviate from the exac t form of T(a). However, 
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for a ~ -k,the results arc in good agreement, even for smaller values 

of kL. Although (ka)2/kL must be much less than kL for good approxi -

mation for the ray t heory results, 0: must be far from -k,(-k < Ct~ k). 

This can be seen by noticing the effect on the radiation pattern in the 

forward direction , where T(-a) ~ T(-k cose) ~ T(k). On the other hand , the 

resul ts using the Hiener-Hopf technique do not blOt" up at 6=180 0 even ,.;then 

the separation bect·lcen the waveguides is relatively small. Similarresults an:! 

arguments can be mentioned for t he case of circular waveguides . Figures 

4-7 and 4- 8, show the radiation pattern for kL = 5 and kL = 50 J res-

pectively , for TE excitation of two parallel-plate waveguides . 
0 " 

The 

resul ts are obtained using the Hiener- Hopf technique with the integral 

form of T(a) and with the asymptotic form of T(a) , and using the ray 

theory of diffraction . As mentioned previously, the results are in good 

agreement except in the forward direction, especially when kL is rela-

tively small. Again , figures 4- 7 and 4- 8 show the validity of the ray 

theory of diffraction. For circular waveguides with TM excitation , 
0 , 1 

figures 4-9 and 4- 10 show the radiation pattern using the Hiener-Hopf and 

the ray theory of diffraction, for the two cases of KL = 10 and 50,res-

pectively. Once again, results are in good agreement except in the for-

war d direction, especially when kL is relatively small. 

Some results are also obtained for the reflection and t r ansmission 

coefficients for two parallel- pl ate waveguides and are shown in table 4-2. 

I t is clear from this table t hat the reflection and the transmission co-

efficients are in good agreement when kL i s large. 
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kL 
equation 

(2- 40) 

5 .215/-171 

50 .200/- 135 

TABLE 4- 2 

Values of R, T using the different forms of T(a) 

including that corresponding to ray theory solution 

Reflection Coefficient Transmission Coefficient 

using T(a) given by using T(a) given by 

equation equation equation equation equation 

(4- 10) (4- 11) (2-40) (4 - 10) (4-11) 
Ray theory Ray theory 

.218/- 162 .083/ 44 .586/105 .486/116 .801/ 70 

. 203/ - 136 .201/-137 .195/147 . 222/147 .223/143 

'" w 
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CHAPTER 5 

COUPLING BEnVEEN TI-IO COLLINEM WAVEGUIDES 

OF FINITE LENGTH 

5.1 Introduction 

As waveguides may have finite length in practice, their corres­

ponding problems have been investigated by many authors. Jones [35J 

has studied the diffraction by a parallel-plate waveguide of finite 

length, for an incident plane electromagnetic wave polarized parallel 

to the edges of the guide. While for a plane wave polarized per­

pendicular to the edges of the guide, the problem has been treated 

by Williams [35) . IUl1iams [37] has also studied the diffraction of 

a plane harmonic sound wave by a hollow circular cylinder of finite 

length. Jones and Williams have used the Wiener-Hopf technique for solv­

ing these problems. Ufimtsev [66] has obtained the scattered field in 

the far zone due to the diffraction of a general plane wave by a thin, 

ideally conducting cylinder of finite length, using the multiple dif­

fraction of the fringe waves of the induced currents on the conductor. 

Each fringe wave of the current, reaching the opposite end of the con­

ductor is assumed to be reflected as from the end of a semi-infinite 

conductor, giving rise to a new wave. Fialkovskii [67J has solved 

Ufimtsev's problem [66] by successive approximations of the integral 

equations [68],[69] and has obtained results identical to those of 

Ufimtsev [66] based on the boundary-value technique. Kao [70] has invest­

igated the scattering of E and H polarized plane waves incident nor­

mally, on a circular tube of any radius and length . This was achieved by 

transforming the problem into determining an infinite set of Fourier 
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components in various integral forms, which were then solved numerically . 

In all ahove cases, scattering by only a single scatterer were 

investigated. Recently, Hurd [71] has investigated the mutual coupling 

of two tubular collinear antennas of unequal lengths and with arbitrary 

feedpoint locations. The results however are restricted to antennas of 

smal l radii (thin dipoles) . 

From the practical point of view, it is interesting and valuable 

to utilize the results of previous chapters for obtaining the coupling 

between t,.,o waveguides of finite length. This is demonstrated in this 

chapter by two examples. The first is the coupling between two collinear 

parallel- plate waveguides of finite length , while the other is the 

coupling between two collinear circular waveguides of finite length. 

This chapter shows in detail how the results of a finite case can be 

obtained from those of an infinite one. Some graphical results are 

given at the end of this chapter, and, for the case of parallel-plate 

waveguides, they are compared with those of the ray theory of diffrac­

tion . Examination of the results for accuracy of the solution is given 

in Chapter 7. 

5.2 Formulation of the problem 

Consider two collinear perfectly conducting waveguides of finite 

length, separated by a distance L. Both waveguides have the same trans­

verse dimension, hut the first waveguide (exciting waveguide) having 

a length t 1, while the second waveguide (coupled waveguide) has a 

l ength t 2, as shown in figure 5-1. Before going through the analysis, 

we may assume the following conditions: 

1. The exciting waveguide is matched at the far end and the effect of 
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Fig. 5 - 1 Coupling between waveguides af finite lengths separated by 
a distance L . 
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the feed system is neglected. 

2. The coupled waveguide is open ended at both terminals. 

3 . Coupling between the two terminals of the exciting waveguide is 

neglected, Le .• K2.\» 1. 

4. Coupling between the two terminals of the coupled waveguide is 

neglected, i.e.. Klz» 1. 

Due to the assumption (I), no reflections occur at the far end 

of the exciting waveguide. Combining this with assumption (3), the 

exciting waveguide acts as a semi-inf inite one. Due to the assumptions (2) 

and (4) , the fields inside the coupled waveguide are only due to the 

multiple reflections at both ends. 

The generalized scattering- matrix technique [72] is used to solve 

this problem with the above assumptions taken into consideration This 

technique is very closely related to the scattering matrix of 

circuit theory [731, or that of microwave network theory [741 . The only 

difference, however, is that it is extended to include evanescent as 

well as propagating modes in waveguides. 

Let a field be excited in the exciting waveguide and be defined 

by the scalar quantity $i. The two dimensional problem can then be 

described in terms of three apertures 1, 2 and 3, and the solution may 

be expressed in terms of the multiple scattering phenomena at these 

apertures. 

First, consider the incident wave arriving at the aperture 1, as 

represented symbolically by ~ in figure 5-2 . Let the wave generated 

at the aperture 1 and reflected into region A (inside the 

exciting waveguide) be denoted symoblically by Also let the 

wave genera ted, due to ~i and the multiple scattering between 
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apertures 1 and 2, in the region B (free space) be denoted symbolically 

by 
i 

S21 ~ . Simultaneously, let the wave transmitted into the region C 

(inside the coupled waveguide) b~ indicated by s~B $1. The subscript 

1 of SAA 
1 is to be associated with aperture 1; the first A in the 

superscript indicates that the reflected wave is in region A, and 

the second A Signifies that the incident wave is also from region 

A. Similar interpretation can be readily associated with SCB 
2 . 

The subscript of 521 is to be associated with aperture 1 and 2, with 

the first aperture (number 2) indicates interactions due to the incident 

wave from the second aper ture (number 1). 

Now consider the scattering phenomena at aperture 3. the wave 

SCB i and scattered there at CD 2 
cp progresses toward this aperture is 

The result is a transmitted wave SDC 
3 

SCB 
2 

$i and a reflected wave 

SCC 
3 

SCB $i 
2 in regions D (free space) and C ~ respectively , The 

reflected wave travels in the negative z-direction towards aperture 2, 

where it is again scattered at CD, This process of multiple 

scattering continues for an infinite number of times , Now all contri-

butions in region A, C, Band D due to the multiple scattering 

process can be added up to yield : 

(i) Reflected field in the exciting waveguide (region A) , 

$A("1'u2, z) • SAA$i 
1 + S .. 

1 
sCC SCB$i + 
3. 2 

S .. 
1 

SCC 
3 

S~C 
2 

SCC SCB$i 
3 2 

+ sAB 
1 

SCC 
3 

sCC 
2 

SCC 
3 

SCC 
2 

SCC SCB 
3 2 

$i + - , , - (5-1) 

The Series of equation (5-1) is known as the Neumann Series [72] and is 

conve rgent [ 72]. It can be written in a compact form as 

(I - (5-2) 



where I is an identity matrix . 

( ii) Fiel d inside the coupled waveguide (region C) : 

+ . . .. . ... . . + 

• ( I -

(5-3) 

(iii) Fiel d in free space (region B + D) 

i • q,B+D S21$ + S12 
sCC 

3 
SCB<jli + 

2 S12 
SCC 

3 
SCC 

2 
SCC 
3 

SCBq,i + 
2 . ...... 

+ SDC 
3 

SCB<jli 
2 + SDC 

3 
SCC 

2 
sCC SCBq,i + 

3 2 
SDC 

3 
sCC 

2 
sCC 

3 
SCC 

2 
SCC 

3 
SCB$i 

2 

i 
• S21$ + S12 

the scattering matrices 

sCC 
33 

(I -

(I _ SCC 
2 

SCC SCC) - l SCB$i 
2 3 2 

and 

a r e determined in the same manner as those of Lee and ~littra [75 ) 

(5- 4) 

who solved the problem of diffraction by a thick conducting half- plane 

and a dielectric loaded waveguide . For most practical cases , the 

evanescent modes are not taken into account , and consequently all 

pr evious matrices are uni t matrices . Hence equations (5-2), (5- 3) and 

( 5- 4) reduce respectively to (see Appendix E) 

Y z m Reflec t ed fiel d inside t he exciting waveguide = f (ul , u
2
)e 

2 - 2Ym (L + 12 ) 
T Ro e 

[R + - 2Ym t, J (5-5 ) 
1 - R R e o 
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Field inside the coupled waveguide T 
-2y t2 

m 

- y z 
[ e m + R 

o 

y z 
e m 1 

-y (L 
m + 

e 

(5-6) 

~2) ikL cose 
pte) + T Radiation field: Rad(e) e e 

- 2y ~ 2 
1 - R R 

m 
e 

0 

ik~2 cosS -y ~2 
[P (e) e + P(. - e) R 

m 
1 (5-7) e 

0 0 

where : £(u1 ,u
2
): field distribution over the cross-section of a two 

dimensional waveguide with transverse coordinates III 

and 

Ym = propagation constant inside the waveguide. 

R = reflection coefficient due the open-end of a semi­o 

infinite waveguide. 

10) 

R m reflection coefficient of two semi-infinite waveguides 

separated by a distance L . 

T c transmission coefficient of two semi-infinite wave-

guides separated by a distance L. 

P (9) = radiation field of a single exciting semi-infinite 
o 

waveguide, with its open-end at z: O. 

pee) = radiation field of two semi- infinite waveguides 

separated by a distance L , with the ope n- end of 

the exciting waveguide at z: O . 

For the case of parallel-pl ate waveguides with TE • 0,. excitation , 

Po (6) or P(8) is the electric field component Ey ' given in Chapter 2 

for the case of t odd. ~ile for the case of circular waveguides 

with TM excitation , P (0) and P(O) are the magnetic field o,m 0 
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component HIP ' given in Ch.:tpter 3 . The radiated power as a function , 
of e for the whole system is then given by IRad(S) I ,for which some 

results are shown in the next section for both previous cases. 

In the case of two parallel-plate waveguides with TE , 0 , . 

excitation (£ odd), P (0) = P(O) = pcn) - 0, 
o 

giving Rad(O) ~ 0 and 

-y (L + £,) 
T e m -ik(L + £2) 

Rad(n) == -'---=----=--;.~, e 
-2y " m 

1 - R R 
o e 

P Cn) 
o 

C5 - 8) 

which means that, Rad(n) is the radiated field from an open-end of a 

semi-infinite waveguide, P (n), 
o 

multiplied by the constant factor 

dependent on 12 and L. When the separation distance between two col-

linear semi-infinite waveguides tends to zero , the reflection and trans-

mission coefficients, Rand T, go to zero and unity, respectively, and 

the radiated field pee) becomes very small . Hence (5-7) reduces to 

lim Rad(e) 
L+O 

• P ce) . 
o e 

-y (L + £,) 
m . e ik(L + 12)cose (5-9) 

which represents the radiation from an open end (at z :: L + 12) of 

a semi-infinite waveguide excited by a wave 

5 . 3 Results and discussion 

Some results are obtained for two cases of parallel-plate and 

circular waveguides. Figure 5-3 shows the radiation of two parallel-

plate waveguides of finite length with ka:: O.6rr and TE 1 0, 
excitation, 

and for different lengtl-s of the coupled waveguide. It i s clear that the 

main change in the magnitude of the radiated field is in the forward 

direction with small variations in the backward direction. For this 

case, figure 5- 4 shows the radiation pattern for different values of 

kL, with kR..2 fbed. This figure shows the behaviour of the radiated 



IRad(8)1 2 

2.0 

to 

o 20 

TEO,I Mode 
ka = 0 .6 7T 
kL = 50 

kL2 = 00 

------- kL2 = 20 
_ . -. _. - kL2 = 15 

40 60 

.;-' -. 
~, 

.",: ... -= 
80 100 120 

/ r> ... 
1'/ 

:-.:;' 

140 

~ , , , 
\ 
\ , , , , 
" 

!\'\ 
I '\ 
. I ' 

,\ 
1/ .' 

'II 

160 

\ 

, i , . 

1808° 

Figure 5- 3 Radiation pattern of two para llel-plate wavegu ides of fin ite length using Wiener-Hopf 
Results . 

~ 
o 
~ 



IRad(8)12~' ---::--=~--------------------, 
2.0 TEO,I Mode 

ko = 0.6.". 
kL2 = 15 

---- kL = ~ 
-------- kL = 100 
_ ._.-.- kL = 20 

If J' ,. kL:: 5 

1.0 

o 20 40 60 
~ 

80 

~ 

I .\ 

! 
, .... 1 

\.1 

100 120 

~. 

I \ . \ 
J i 
I \ 

I 

-', 
\ 

140 

,-, , , 
, ' 
I I 
, I 

I I 

.~. 

160 

Figure 5-4 Radiation pattern of two colliner parallel-plate waveguides of finite length uSing 
the Wiener - Hopf technique 

180 eo 

~ 
o 
~ 



IRad(8)12[------------.:..---------~ 

2.0 TEO, I Mode I I] 
ka = 0.6 1T t +l 

r 
r 
I 
I 
r 
I 
I 

1.0 
I 

I 

" I 
I 

)0 
I 
\ 
\-
\ , 
• 

0 

kL2 = 15 I I 

Wiener- Hopf TeChnique} kL = 50 
------- Ray Theory of Diffraction 

• ., , Wiener -Hopf TeChn ique } 
. .. kL =5.0 

-. - - .. - Ray theory of DiffractIOn 

~ "f .. ' 

~· V' ~\I ~ I \1 
J 1 

20 40 60 80 10 0 120 

, 
• 
" . I __ ! 

140 160 

Figure 5-5 Radiation pattern of two collinear parallel-plate waveguides of fini te length. 

I 
I 

~ 
18080 

~ 
o 
~ 



IRad(8l 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

kL2 ~ 00 

----- kL2~ 5 
- . _ . _. kL2 ~ 6.8 

- .. _ .. - kL2 = 10 

/«~ 
I.'! \\\ 1/ • ,. 

"J IT. / . \1 
I, . \\ 

1/1 \ 1/ • 
I. I 
I I ' 
I' I 
I I : 
Ii! 
! i i 
I ' . 
ill 
Ii : 
I . 

" !Ii 1/ . 
1/1 / 

'I i i 
I / : 

,..", f· -' 

I 
I 
\ 
l, 

\\ 
, '·11 

\\ 
'II 
'.\\ 
I 

. I· " ~ I .J_,': "u' 
I 1/ \~.\ /" ..... _ . .,- \,\ ;f 

........... __ _' =.'~ ... ,_. .~.J!rO ~_ __ .-'''' :\ ... /v 

o 20 40 60 80 100 120 140 160 1808 0 

Figure 5- 6 Radiatian pattern for a twa caupled circu lar waveguides of radius ka = 5 
with a TMa I excitation and separation distance kL~ 6. , ~ 

o 

'" 



109 

power wi th KL in the forward direction of e .. 1T . 

To ShOl"! the accuracy of the ray theory of diffraction some results 

are obtained for the radiated power in the case of parallel-plate 

1.,1<:!veguides. This is shown in figure 5-5, ,,,here results are compared 

with those of the Wiener-Hopf technique . It is clear that the results 

of the Wiener-Hopf and ray theory deviate especially in the forward and 

backward directions, especially near the walls of the two '\Iaveguides. 

Similar results are also obtained for circular waveguides with 

TM mode excitation and are shown in figure 5-6. Due to the trun-
o. 1 

cation of the coupled waveguide the main lobe is strongly affected , 

Further examination of the results for the case of par~llel-plate 

waveguides will be given in Chapter 7 using numerical methods . 



CHAPTER 6 

HU ' S TRANSHISSION FORMULA AND 

THE WIENER-HOPF TECHNIQUE 

6.1 Introduction 

The Gain of a standard horn can be determined by measuring the 

transmission loss versus separation bet,"een two identical standard horns. 

Friis'transmission formula [76] is only valid when the separation distance 

between the two identical horns is large enough compared to the wavelength. 

Therefore the Gain formula 

G • 4nr 
A 

(6-1) 

may in troduce considerable error when the far-zone gain of electromagnetic 

horns is measured at relatively short distances [77]. 

In 1958, M.K. Bu [33 ] introduced a general power transmission 

formula for a matched lossless two antennas system, using the Lo-rentz 

reciprocity theorem in combination with Maxwell ' s equations . Hu's 

transmission formula may be used as a near zone power transmission formula 

when written as 

2 
P I s f ("2 x El + E2 x HI) 

A 

ds I • n 
r 1 -= (6-2) P
t 4 {R f (E

1 
-* -* x HI) . "1 ds}{R f(E

2 
x H

2
) 

A ds} 
e s 1 e s2 

n
2 

P 
where 

r is the ratio of the received the transmitted powers between P
t 

to 

twO antennas at any separation distance El and HI are the fields 

when antenna I is transmitting, E2, H2 are the fields when antenna 2 

is transmitting, and 
A 

n, 
A 

n are the unit normals to the surfaces. 

The surface s may be either one of the two antenna apertures. Hu's 
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transmission formula given by (6-2) is an exact formula if all the fie l d 

quantities are evaluated Hith both antennas in place and under matched 

conditions. Neglecting the reflections bet\ve.cn the two antenna systems 

and mismatch due to their feeds; and assuming thDt the tangentifll fields 

E
t 

and H
t 

are related to each other by the free space impedance at 

each point , equation (6-2) may be reduced to the more suitable form [33 ] 

used by Chu and Semplak [77] to calculate the ratio bet~"een the Fraun-

hofer and Fresnel gain of a pyramidal electromagnetic horn as a function 

of horn dimensions and separation distance . Jul1 [78]-[811 has invest-

igated the gain of parallel-plate waveguides and errors in the pre-

dieted gain of sectorial and pyramidal horns, t;thile Hamid [12] has 

studied the near field coupling between horn antennas . 

In the folloWing section, the author wishes to compare his results 

with those obtained using Hu ' s transmission formula. Simple formulas 

are obtained using Kirchhoff ' s approximation, modified Kirchhoff's 

approximation , ray theory of diffraction and the Hiener-Hopf technique. 

In the comparison, it should be noted that in equation (6-2), P 
r 

r epresents power received in the aperture of the receiving antenna. 

When the receiving antenna is a semi- infinite waveguide, P must be 
r 

multiplied by the ratio of the waveguide and the free space wave impe-

dances in order to get the power far f r om the aperture . One should note 
P 

that r using the Wiener-Hopf technique equals ITI2, where T is 
P

t 

the transmission coefficient. Hence [T[' will be the value that will 
P 

be compared with r 
obtained 

P
t 

using Hu ' s transmission formula. Some 

r esults and discussion are given in another section . 



6.2 Formulation of the problem using lIu's transmission formula 

Re\17riting equation (6-2) in the. form 

xH)'odsl' 
1 2 

ds}(R fCE2 e s , 
The surface s in (6-2) is chosen to be the aperture of the re-

112 

(6-3) 

ceiving antenna (antenna 2) . Neglecting the reflections between the an-

tennas (i . e. in evaluating El and HI' antenna 2 will be removed and in 

evaluating E2 and H2, antenna 1 will be removed) and considering only 

linearly polarized uniform phase plane aperture antennas [33] , equation 

(6- 3) for parallel plate waveguides case, can be written, after some 

manipulations, in the form: 

(6-4) 

Here it should be noted that El in the numerator is the 

electric field due to antenna 1 in the aperture of antenna 2 in the ab-

sence of antenna 2, while El in the denominator is the electric field 

of antenna 1 in its own aperture. Far from antenna 2, El in the numera-

tor can be assumed fairly constant for the case of IE mode, and (6-4) 
0, I 

may hence be written in the form : 

(6-5) 

In the denominator, the contribution of the first integral is the same as 

the contribution of the second integral and hence (6-5) reduces to 

P 
r 

P, • (6-6) 

Is,! IE21' ds ] ' 

which for TEo 1 mode excitation in the parallel-plate waveguides and , 
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aperture fields of unit amplitudes reduces to 

Pr 16 
="< IE1I' P

t 
n 

(6-7) 

Again El is the electric field due to antenna 1 in the aperture of 

antenna 2 (due to a unit amplitude in the aperture of antenna I), in the 

absence of antenna 2 and is constant over aperture of antenna 2 and equal 

its value at the centre of this aperture . The aperture of the coupled 

waveguide is acting like a transformer and hence P 
r 

may be multiplied 

by the waveguide impedance . 1/1 1 - (n/kd)2 J in order to get the power 

far from the aperture, i.e. 

1.0 (6-8) 
h - (n/kd)' 

The radiated field of the transmitting antenna (the exciting ~~aveguide) 

is evaluated using Kirchhoff ' s approximation, modified Kirchhoff ' s approx-

imation, the ray theory of diffraction and the Wiener-Hopf technique 

(exact solution). Table 6-1 shows the evaluation of (6-8) for different 

formulas of IEI I [79]. Second column states IEII for the different 

methods of formulations listed in the first column, ,·,hile the third 

:6, I-Ell' . column represents " 

In comparison, the Wiener-Hopf technique applied to two collinear 
P 

semi-inf inite paral lel plate waveguides gives pr z ITI2, where T 
t 

represents the transmission coefficient in the coupled waveguide far from 

the open end as derived in Chapter 2. 

6.3 Results and discussion 

Some results have been obtained for the sol utions using Huls trans-

mission formu l a and are compared with tr.e eXRct solution using the Wiener-

Hop f technique. They are shown in figures 6-1 and 6-2 . Figure 6-1 shows 
P

r 
P

t 
for different separation distances K L and for a waveguide width 



Formulas Using 

Kirchhoff's approximation 

Modified 

Kirchhoff's approximation 

Ray theory of diffraction 

Wiener-Hopf technique 

* 8-k/1 - (2!...)2 
kd 

TABLE 6-1 

Evaluation of (6- 8) for the different formulas of IEl l 

* I E I = IE I 
1 Y 

(P/P)JL 
r t k 

2k d 32 (kd) 2 

.(2. kL)~ .5 kL 

kd(l + S/k) 2 

.(2. kL)~ 
8 (kd) (1 + 8/k ) 2 
. 5 kL 

when 8 is replaced by k. they reduce to those corresponding 
to Kirchhoff's approximation 

k d (1 + 8/k)~ 16 2 
~ (1 + 8/k) 

.(. kL)~ .5 kL 

kd kd (1 _ 8/k) kd 8/k ~ "4(1 - 8/k) 16 ~kdl2 8/k 2 
n-[(l + k/S)kL) e . 4 kL (1 + k /8 ) e 

I 

~ 
~ 
~ 
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d/ )" '" 0 . 6 . It is c lear t h3t, except fo r KL < la , the exact solution 

oscillates around that obtained by Uu ' s formula using Hiener-Hopf results 

f or a single waveguide . These oscillations are with a period 'IT . This 

phenomenon is due to the fac t that in equat ion (6-8), El is evaluated 

far from the open end of the exciting waveguide. This is similar t o 

2d' 
the condition on Friis ' transmission formu la {S2l . for L ~--A- Also, 

it is clear that IEII approximated by ray t heory of diffraction or by 

the modified Kirchhoff's method gives better results . Figure 6- 2 shows 

the results for a separation distance KL = 30 and for different ~V'ave guide 

widths . It is c l ear that the exact solution coincides with that of Hu ' s 

formula , using the Wiener-Hopf results of single waveguide , when 

0 .5 < d/A < 0. 65, and deviates for larger values of d/~, for the same 

reason mentioned previous l y . In other words . for reasonably l ar ge 

values of L, Hu's formula gives very good results, since they approach 

zero when d/A goes t o . 5, ~~hile the results of the other app roaches 

blow up a t this value of d/A. Hu ' s formula given by (6-2) cannot be 

solved exactly . Neglec t ing multiple reflect i ons, (6- 2) reduces to (6-4 ) 

which is used in this chapter to get the previous results . Using expres-

sian (6- 4) to ge t initial diffraction , multiple reflections may be used 

to improve the results. 



CHAPTER 7 

NilltERICAL TECHNIQUES FOR COUPLING BET\.fEEN \MVECUIDES 

7. 1 Introduction 

Among the methods used for investigating scattering and radiation prob­

lems is the numerical technique . This technique is widely used for prob­

lems that do not have exact analytical or even approximate solutions. 

Numerical solutions for scattering by perfectly conducting rectangular 

cylinders. both for parallel and perpendicularly polarized incident wave~ 

have been obtained by Mei and Van Bladel [83]. Similarly Andreasen [84] 

has investigated the scattering by parallel metallic cylinders with 

arbitrary cross sections. For metallic cylinders. the problem is reduced 

to the numeriC'.al evaluation of integral equations fOt the surface currents. 

For dielectric cylinders/Richmond [85],[86] has obtained solutions by 

numerical evaluation of the integral equations for the polarization 

currents in the dielectric material . The numerical evaluation of the 

integral equations is usually carried out by using a moment or a point 

matching method [291 to convert the integral equations to a set of simul­

taneous linear equations. The number of matching points depends on the 

length of the contour of the cross section for metallic cylinders and 

on the size of the cr oss sectional area for dielectric cylinders. For 

problems involving discontinuities in the contour of the cross section , 

a higher number of matching points is needed. Abdelmessih and Sinclair 

(87] have used Meixner's edge condition for treatment of the singularities 

of the surface current at the discontinuities. An alternative method 



for treatment of the singularities is the method of coordinate trans­

formation Nhich has been used successfully by Shafai [88]. 

In all cases, the rate of convergence of the solution depends on 

the size of the scatterer and may be improved by utilizing the symmetry 

arguments, increasing the efficiency of numerical evaluation of the mat­

rix elements or by optimizing the basic set used for the expansion. A 

technique for improving the convergence of the moment method has been 

studied by Tet.;r and T5a1 l8g) through the use of a priori knowledge of 

the solution . Their idea was that a known good approximation, such as 
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the physical- optics current, is subtracted from the unknmm total current, 

with the result that the residual difference current, which is no~.;t the 

quantity to be determined, will converge more rapidly. 

So far the moment method has been applied in open space to solve 

scattering problems of obstacles of finite size. The extension of the 

method to diffraction by arbitrary cross sectional semi-infinite conduc­

tors, that has recently been investigated by Morita [30],[311. has 

paved the way for use of the moment method to many new problems. Wu 

and Chow [321 have utilized Morita's investigation and extended the 

direct moment method to the closed space inside a waveguide which has 

infinitely long walls along the propagation direction, taking an advantage 

from the localized nature of the evanescent waves to assure the conver­

gence of the solution. A similar approach was also used by Burnside et 

al [901. Thiele and Newhouse [91 ] and Chow and Seth [921. 

In this chapter the author formulates the problem of two parallel 

pl ate waveguides using the direct moment method and the modified moment 

method [891. The direct moment method is used when the separation dis­

tance between the two waveguides is large (KL» I) , while the modified 
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moment method is used when the separation distance is small. In the 

direct moment method, as the separation distance between the two wave­

guides is large, coupled waveguide can be assumed to be illuminated by 

the field radiated from the open end of the exciting waveguide . This 

field has an exact value and is given by many authors and is included in 

the previous chapters . This illuminating field is scattered by the 

coupled waveguide which may have any length and any wid th. 1. e . the coupled 

waveguide may support other modes and not necessarily the dominant modes 

in the exciting waveguide . The method of coordinate transformation, which 

has been used by Shafa! [88]. is used here and the walls of the coupled 

waveguide is conformally mapped on to two circular cylinders and hence 

overcoming the singularities in the transformed domain . The surface 

current is evaluated from whim the scattered field is determined. Con­

sequently, radiation patterns due to coupling between two waveguides is 

obtained by adding the radiated field from the open end of the exciting 

waveguide to the scattered field from the coupled waveguide . This will 

be shown in detail in t he next section . 

I n the modified moment method, where the separation distance be­

tween the two waveguides is small , the propagating wave in the exciting 

waveguide is considered to be a plane wave bouncing off the walls, in 

the case of parallel plate waveguides. When this bouncing wave meets 

t he discontinuity , a scattered field resul ts. This field is then de­

composed into reflected , transmitted and evanscent waves . The reflected 

and t r ansmitted waves are represented by plane waves in the exciting 

and coupl ed waveguldes,respectively , having reflection and transmission co­

efficients Rand T. respectively . The evanescent waves are represented 

by extr a induced current densities on the conducting walls of two wave-
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guides . As the evanescent waves decay exponentially from the discontin-

uities , the basic functions are required to cover only a finite space , 

1. e . reducing the infinitely long \·/'alls to finite ones . Once the re-

flection and transmission coefficients and the evanescent currents are 

determined, the radiation field can be readily obtained. This will be 

shown in detail in this chapter . 

In the following sections , the case of parallel plate waveguide 

is treated with TE mode incident in the exciting waveguide . Num-0" 
crieal results are given for both methods of formulations and a compari-

son between Wiener-Hopf results and those of numerical methods are dis-

cussed. 

7.2 Direct moment method (DMM) 

The geometry of the problem is again shown in fip,ure 7-1. where KL 

is the length of the coupled lv8veguide. As indicated in the introduction 

when the separation distance between the tt.,ro waveguides is large, the wave-

guide can be assumed to be illuminated by the radiated field from the 

open end of the exciting waveguide in the absence of the coupled wave-

guide . For TE incident wave in the exciting waveguide. the radiation 
0" 

field is given by : 

E 
Y 

= 
KlsinSloG+(KCOsB) 

Keose + iY
t 

(7-1) 

As the coupled waveguide is illuminated normally by the above eleetro-

magnetic wave which 1s polarized parallel to the edges, a solution for 

the total electromagnetic field may be obtained by an application of 

Green ' s identity and the res ult is (29} . 
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where 

Etotal = 
y 

!1 
4 

w 

is given by (7-1) n • (~ /£ )1/' = 120. 
o 0 
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(7 - 2) 

is the intrinsic 

impedance of free space, and I is the induced current on the t"alls of the 
y 

coupled waveguide. The integral path ~ is along two walls of the coupled 

waveguide and rand r' are the coordinates of the field points and 

of the source points on the walls . 

On the walls of the coupled waveguide, the boundary condition 

'" 0 reduces (7-2) to 

Etatal 
y 

E~nc'(ro) :: ~ I (7-3) 

w 

This is an integral equation for the current distribution I 
Y 

and is solved 

by the direct moment method, in which the integral equation is con-

verted to a set of simultaneous linear equations. In the most cornmon 

methodJthe path of integration w is divided into N segments ~w and a 

step or a linear approximation to I 
Y 

is used [29 }. As mentioned in the 

introduction , sharp edges create singularities of the induced currents and 

for accurate results, a transformation is needed to map the cross sectional 

contour of the scatterers onto circles on which induced currents are finite. 

After conformal mapping of the region outside the walls of the coupled wave-

guide to the region outside two circles in the transformed domain, (7-3) 

reduces to 

J (e') de' +!1 J'\(I)(K lr -r"I)J (e')de ' 
Yl 4 0 a Y2 

o 
(7-4) 

where r ' and r" are functions of 8 ' and are given by equation (F-5a) and 

(F-Sb) in Appendix F. J and J are two unknown induced currents on 
YI Y2 

the walls of coupled waveguide in the transform domain . A detailed 

analysis of the transformation and the regularity of the current 
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J is given in Appendix F. For the solution of J. a series of trigon-
y y 

ometric functions with unknown coefficients are assumed [88] and arc 

found by an application of the point matching technique. The reason 

for choosing such a solution was pointed out by Shafsi [881 which is to 

provide an approximate lower limit of the number of terms in the series, 

for the desired degree of accuracy and by comparing the behavior of J 
Y 

with the current distribution on a circular cylinder. For a general 

illumination J J may be assumed in the form 
y 

J (9') • 
y 

1: a 
n 

0=- 00 

in6 1 

e (7-5) 

From equation (7-1) it is clear that the illumination is symmetrical and 

the above form can be reduced to 

J (9') • 
y 

1: a 
n 

n=o 
cos ue' (7-6) 

For TE mode the induced current on the walls of the ,v:aveguide is the 
0,1 

same. Hence. if the coupled ,,,aveguide has the same width as the exciting 

waveguide, then the induced currents on the walls of the coupled wave-

guide are equal. Therefore equation (7-4) reduces to 

neldS' 
n=o (7-7) 

On truncating the series to N terms, one obtains an equation in N un-

knowns . Dividing the circumference of anyone of the circles into N 

segments and using the point matching, (7- 7) can be written in the fo110w-

ing matrix form [29): 

where 

f = It 
m 4 

a 
m 

(7-8) 

m = 0,1,2, ... N-1 (7-9) 



,n 
l. 
m,n 

= f [,,(.J(KI< -< ' I)+,,(.J(KI< -<"I»)eos 
o mom 

o 
na ida ' 

mG 0,1 , 2, . . N-l • nco ,I, Z, . . N-l 

and (7-10) 

Klsine I'G (Kcos S ) 
m + m 

KCose m + iY
i 

(7-11) 

when matching points are on the upper wall , the e l ement i may have 
m,n 

singular points at r "'-;, 
m 

For matching points on the lower wall, 

these singularities will be at r '" i" . 
m 

These singularities can be 

treated analytical l y, but in numerical integration they can be avoided 

by choosing proper integration points . In (7-10), the integrand is an 

even function. Hence 1 can be reduced t o 
m, n 

l. 
m,n -2 r 

o 
ne lda ' 

m=o,l,2, ... N-l 0=0 , 1 , 2 , ••. N-l (7-12) 

Equation (7- 8) is the matr ix form of an N simultaneous linear 

equations in N unknowns and can be solved numerically by known method . 

Once the coefficients are known, induced currents can be determined and 

consequently the scattered field from coupled waveguide can be obtained 

as 

ESC . «) • _!!. fn [11(') (KI<-< ' 1)+,,( I) (KI<-< "I)]J (S ' )dS' 
y 2 0 a y 

o 
(7-13) 
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At a large distance from the scatterer , (7- 13) can be written 1n the fo r m 

n 

~ i(KP-4-)fn '(S .... ') i" ( 0 .... .. ) ESC' (r) "" _ .!l.\ __ e J (8 ' HeiKp cos ' 't' +e Kp cos ''t' ]d8 ' 
Y 2nKp y 

o (7- 14) 



where 

p' = [x'(e') + z'(8 , )]Ih.. 

p" = [x"(S ') + z"(S')]ll2 = p I I 

~ ' == tan- 1 [x'(9')/z'(9')} , 
and ~" = tan- 1 [x"(9')/zll(9)] = -~ ' 

Hence, the total radiation field may be expressed as 

where 

Et otal 
y 

F (e) 

i(Kp- ~) 
e F(e) 

K[Sinsle-iKa!sineIG±(KCOSS) 
Keese + iy.e. 

_ ~ In J (9') [eiKp ' cos(9+$')+eiKP ' cos(9-$')]d8' 
2 y 

o 

7.3 Modified Homent Method (lfl.fl·f) 
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(7-15) 

(7-16) 

(7-17) 

The direct moment method has been used in the previous section to find 

the radiation field when the separation distance between two waveguides 

was large. When KL becomes very large, the requi red computer time 
2 

for achieving a reasonable convergence of the series of the induced 

currents on the scatterer becomes larger. Consequently, an investiga-

tion of the scattering by a semi-infinite waveguide becomes formidable. 

On the other hand, the separation distance in MMM is arbitrary, which 

enables us to obtain the reflection and transmission coefficients and 

the radiation pattern for any arbitrary value of KL 
2 

The procedure 

of the solution is as follows [32]: The propagating wave in the exciting 
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waveguide is considered to be a plane wave bouncing off the walls. When 

this wave meets the discontinuity, scattering occurs. The scattered 

field is then decomposed into reflected, transmitted and the cvanes-

cent waves. The reflected and transmitted waves are represented by plane 

waves "'ith a reflection and transmission coefficients Rand T} res-

pectively, whereas the evanescent waves are represented by an extra io-

duced current density on the conducting walls of the t\"O waveguides. As the 

evanescent waves decay exponentially from the discontinuity, the base 

functions are required to cover only a finite space, i . e. reducing the 

infinitely long walls to finite ones. 

For the case of two semi-infinite \,)"aveguides , let a TE mode 
0,1 

propagate in the exciting waveguide. The field is considered to be a 

plane wave bouncing off the upper and the lower walls, with an angle 

e 
o 

as shown in figure 7-2 . With the time factor e iwt being 

suppressed , the incident plane \-lave can be \vritten in the form: 

1 i(Kxcos8 +Kysin8 ) 
E;=z

2
e 0 0 (7- 18) 

The induced current density on the lower or the upper walls are equal 

for TE mode and are given by 0" 
= 2f1xHil = 

y=o,or 

sine 
Z -::-"0 

n y=d 
e 

iKxcos8 
o (7- 19) 

where n is the unit normal to the wall inside the waveguide, and n is 

the intrinsic impedance of the medium inside the waveguide (n = 120TI, 

if the medium is free space). 

Due to the discontinuity a t x=O, part of the incident field is 

reflected back into the exciting waveguide and another part is diffracted 

a t the edges. These diffracted waves are diffracted again at the opening 
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of the coupled waveguide. which gives rise to transmitting fields. The 

current densities duc to the reflected and transmitted waves can be 

written ill the form : 

-iKxcosO 
Jr "" z R sinep e 0 

z n for x > 0 • y : 0 and y "" d (7 - 20) 

and 

i e iKxcos8 
T 

5 no 0 --e 
n 

for x < -L • Y "" o and y "" d (7- 21) 

A t J e = 'z Je n evanescen current exists on the walls near the discon-
z 

tinuities , i.e . between x",Q and x=x 
a 

and between x:-L and x=~ , 

after which JC may he assumed 
z 

where xa and ~ are the values of x 

zero. From the boundary condition E -0 
z on the walls, the following 

integral equation is satisfied [29}: 

(7-22) 

" 
where rand r l are the coordinates of the field and source points on 

the walls. The integral path w is along all relevant waveguide walls. 

i.e. , on the walls of the exciting waveguide for 

t he wal l s of the coupled waveguide for Jt and Je 

and on 

Equation 0-22) 
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cannot be solved exactly and approximate results may be obtained numeri-

cally by using a point matching technique with base functions in the form 

of unit pulses. Dividing the integral path w (for the integral over 

N segments with a current Je at the centre of each segment,equa­
n 

tion (7-22) will contain N+2 

The N segments are between 

unknowns, e e 
J 2 ' "" I N ' Rand T. 

x=O and x=x and between 
a X""- L and x~~ . 

Another two test points corresponding to Rand T s hould be chosen 

on the walls of the waveguide far from two open ends of the two wave-

guides. In this manner equation (7- 22) combined with (7-19) , (7-20) 

and (7-21) may be written in the follow1ng matrix form: 



[ ~ ][f] 
m,n m [gm] (7-23) 

where 

.!l JC 
4 m for m = 1,2 • . .. , N 

f = R for m = N+l 
m 

(7-24) 

T for m = N+2 

sine 
0 [1+(0.,00,0.) + I+(o.,co,Kd)] g = - -4-m 

(7-25) 

And for the linear operator t, the elements t will be given by: m,o 

(i) For m = 1,2, ... N+2 

~ 
m,o 

and n = 1,2, ... N 

2 l!.(Kx ' ) 
[l-i-:rr(ln 4

n 
+y-1) + H(') (Kd) ]6(Kx') for m=o 

o ° 
(7- 26) 

where y = 0.577215665 

(ii) For m = 1,2, ... N+2 and n = N+l which correspond to R 

sine 
i :: 4 a [1_ (0.,00,0.) + I_(O,oo,Kd)] m, N+l 

(7-27) 

(iii) For m = 1.2 •... N+2 and n = N+2 which correspond to T 

sine 
i m, N+2 = ~ [1+(-oo,-L ,o.) + I+(-oo,-L,Kd)J (7-28) 

In equation,s (7-25). (7-27) and (7-28). I is the integral defined by: 

±iKx'cos9 
I (A B y) :: [Be °H(Z)[«KX' _ Kx )2+y2)1/2 ) d(Kx l ) + . , 0 m 

A 
(7- 29) 

The semi-infinite integrals shown above should be converted into a 

more convenient form. For the source elements can be written 

as 
sine 

g = _ _,---"0 
m 4 

(7-30) 
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changing t he variable of integration and making usc of the followinr, re-

lations [32 J: 
~ 

I 
iKxcos9 2 (n-G ) 

e °U
o
(2) (Kx)dKx "" =-=C'0_ 

7l"sinO 
o ° 

, 

e 
- iKdsin6 

° 

(7-31) 

(7- 32) 

(7- 33) 

(7- 34) 

Similarly, the elements t and t can be expressed in the more m, N+l m, N+2 

convenient: forms : 

1 
m, N+l 

B - iKx casS sinS - iKx cosS IKX iKxCDS6 () 
= _0 e m 0+ 0 e m o [ me °H 2 (IKxI ) dKx 
~ 4 0 

o 
iKxcos6 

e °H(z){(Kx2+Kd 2)1/2}dKx + J] 

° 
+ (Xm 

o 

(7- 35) 

e i(Kx +KL)cos6 
t =~e m 0 

m, N+ 2 21T 

sinS 1(Kx +KL)cos6 IKX +KL 
_ -,0" e m o [ m 

4 
o 

- i Kxcos8 IKx +KL 
e °H~2)<lKXI)dKx+ m 

o 

(7- 36) 

I n deriving (7-35) , the fol l owing re l ation has been uti l ized [32]: 

r - i Kxcos9 29 
e ° H

o
(2) (Kx)dKx "" _",",,0.-

o lTsin60 
(7- 37) 

- J] 



It is now clear Sm ' 1m.N+l and t m,N+2 

expressed by (7- 33), (7-35) aud 0-36),a11 integrals except J can be 

that in all elements 

evaluated numerically by convenient known methods , since the limit 

of i n tegrations in these integrals are of finite extent . The integral 

J is again of a senri.-infin~te type with very low convergence and must 

be converted to a suitable form . This integral was obtained by Morita 

[30] and was modified such that it can be evaluated numerically, i.e. 

J can be written in the form: 

J. J
Kd -iKxcosB / 

-1 e °H~2) [ (Kd2_KX2 )1 2]dKx 
o 

2 +-e • 
-Kdeose 

o 

1 2easeo 
E: '2"C-0"5"6 -( - y+ In Kd 

o 
1 )+ JEK {(Kx'+2Kd'Kx)'/') 

2KdcosB 0 
o 0 

1 Kd.Kx Kx -KxcosBo 
+-y+ 21n 2 + 4Kd Ie dKxJ (7-38) 

where K (z) is the modified Bessel function of the second kind. The o 

first integral in (7-38) can be evaluated numerically due to the 

finite integration r ange, while the second integral can be evaluated 

numerically [30] by the Gauss-Laguerre quadrature formula [93] owing to 

the exponentially decreasing factor exp (-Kxcos8 ). 
o 

Once the base functions i and the incident field elements 
m.n 

are determined, the system of N+2 linear equations given by (7-23) 

can be solved for the unknowns R, T and the evanescent current Je 
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by the known methods. Once all unknowns are determined, radiation field 

can be obtained through the integral equation 

E:otal(r) .. t f[Je(r')+Ji(r')+JrG')+Jt(r ' )]H~2)(Klr-r l l)d(Krl) 
w (7- 39) 

which can be written as: 

t -+ E (r) 
z 

(7- 40) 
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where represent respectively the radiation field, 

contribut~d by the evanescent, inCident, reflected and the transmitted 

currents. These radiation fields can be evaluated in the following \~ays . 

7.3 . 1 Contribution of the induced evanescent curren ts 

Ee(r) • ~ J Je(r ' )H(')(IK~-Kr ' l)d(Kr ' ) 
z 4 0 

(7-41) 

6c 

where 6c is the path of the integral between X~O and x=x and between 
a 

xz- L and x=~ • and Je is evaluated in these regions. Far from the 

waveguides and using the asymptotic expansion of the Hankel function , 

(7-41) can be expressed as 

~ -i(KP-'I)J 
Ee{r) = ~ __ 2_ e 4 Je(Kx)eiKxcos6[1+eiKdsin6]d(Kx) 

z 4 nKp 

~6c 

ifo 
- i(Kp--) N iKx cose 

= ~ 2 e 4 [1+eiKdsin6] E Je{Kx)e n 6(Kx ) 
4 1TKp =1 2 n n n n ) •.. 

(7-42) 

where 
N iKx cosS 

[l+eiKdsine ] E n
4 

Je(Kx)e n 6(Kx) 
n n n 

0-1,2, .. 
(7-43) 

7.3.2 Contribution of the induced incident current 

The contribution of the incident current induced on the wal l s of 

the exciting waveguide may be represented by 

E~(r)'% J Ji(r ') II~')(Klr-r'l)dKr' (7-44) 

OJ 

From (7-19) and (7- 44) one obtains 



sinO 
E! (~) >= ----'4;-,,0 f

o:> iKx ' cose 
[e °H~2)[{(Kx_Kx ' )2 

changing 9 
° 

, 

f
Ol iKx ' cos8 

+ e °H~:d[{(Kx_Kx')2 + , 

to 1T-El' in the above equation yields 

sine ' 
4 

[ JOle-iKx ' COSO ' H~2)[{(KX_KX 1 )2 
, 

+ JOle-KX1COse 'H~2)[ {(Kx_Kxl)2 + (Ky-Kd)2}1/21dKX ' 1 
, 

(7-45) 

(7-46) 

The integra l s in the abov·e equation are similar to that obtained by 

Morita [31] and for a region far from origin, equation (7-46) reduces to 

where 

and 

i - i sinO I 
E (r) = -::¥""::oT z 4 coss-cose' 

p = {x2+y2p/2 

{x2+(y_d)2}1/2 

[H(2) (Kp) + 

° 
case = x/p 

Using the asymptotic expansion of 

where 

{J; -i(Kp Z) i 
= - e F (9) TIKp 

sine 
{l+e iKdsin8] ..!. ---:-::n-:-c-,-0i,'--

4 cose+coss 
° 

(7-47) 

, (7-47) reduces to 

(7-48) 

(7-49) 

It should be noted that this result gives the radiation field from the 

open end of a semi- infinite waveguide when Kirchhoff ' s method ( Huygens ' 

Principle ) is used . In other words this is another approach to obtain 

the radiation pattern of a semi-infinite waveguide using Kirchhoff's 

approximations [2], which sets the field in the aperture (the open end 

of the waveguide) equal to the field of the incident mode in an infinite 

waveguide and the field on the outer walls equal to zero. 
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7.3 . 3 Contribution of the induced reflected current 

The reflected current induced on the walls of the exciting waveguide 

may contribute to the r adiation field by an expression of the form : 

E: (r) • % f Jr (;: ' )H~') (Klr -r' 1 )dKr ' (7-50) 

w 
From (7-20), equation (7-50) reduces to 

sine foo - iKx ' cosS 
R 0 [e °H(2)[{(Kx_Kx , )2 + Ky2}d2 ] dKx ' 

4 0 
o 

f
oo -iKx ' cos6 

+ e °H~2)[{(Kx_KxI) 2 + (Ky_Kd) 2}1/2 )dKx I] 
o 

This equation is of the same form as (7-46) and hence reduces to 

where 

Er (r) _ ...L e 4 pr(e) V1.i 
-i (Kp_ll) 

z nKp 

iR sineo 

4 CaSe - CDSS 
o 

7.3 . 4 Contribution of the induced transmitted current 

The con t ribution of the transmitted current induced on the 

walls of the coupled waveguide may be represented by 

From (7- 21) . 

(7- 51) 

(7-52) 

(7-53) 

(7- 54) 

(7- 55) 

changing the var iable of integration and after some manipulation, (7-55) 

becomes 
~ 

-iKLcose f -iKx I cose / 
e o [ e °H~2) ( {(K.X_KX ' ) 2+Ky2}1 2}dKx ' 

o 



w 

f 
-iKx ' casS 

+ e °H!2) [{(KX-Kx·)2 

o 

where KX ~ -(Kx+KL). 

This equation is of the same form as (7-46) and hence reduces to 

Et(r) iT 
sinS 

[H(')(KP) H(')(KP )] 0 + z =4 
cosS- cosS 

o , o , 
0 

where 
{X' + y2} II 2 

P, = , 

P, = {X 2 + (y-d)'} , " 

and cosS = X/p ~ - x/p = - cosS , 
us ing the asymptoti c expansion of H~2) (Kp), (7-57) becomes 

~ -i(Kp-:!'.) 
Et(r) = . _2_ e 4 F t (6) 

z TIKp 

where 

[1+eiKdsin91 i T 
s i nS - iKL (cos9+cosS ) 

F
t

(6) 0 0 
= -

cDs6+cosEl 
e 

4 
0 

which can be re l ated to Fi(S) by the relatiol1 

- iKL(cos6+cosS ) 
F t (6) = _ Teo Fi (S) 

Combining (7-40). (7-42). (7-48) , ( 7- 52) and (7-58). one obtains 

where 
~ 

- i(KP- '!!:) 
Etotal(r) = _2_ e 4 Fee) 

z TIKp 

. sinS 
:::: [1+eiKds1nS] [..!. 0 

4 cos6+cosS 
o 

(l-T 
-iKL(cosS+cOSS

O
» 

e 

+ iR sinea 
4 cose- coss 

o 
+ 

N 
E 

n=1,2, .. 

iKx cosS 
~4 Je(Kx)e n A(Kx )] 

n n n 

136 

(7-56) 

( 7-57) 

(7- 58) 

(7-59) 

(7-60) 

(7-61) 
.; 
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The above equation represents the radiation pattern due to coupling 

betwc.en tt~O semi-infinite \vaveguides, as a function of the reflection 

and transmission coefficients alld the evanescent currents. In the ab-

sence of the coupled \,Javeguide, 1'''=0 and radiation pattern is given by: 

F(e) 
sinG 

= [ l+eiKdsin6](.!. _---;;-;----"0" 
4 cos9+cos9 

° 
N iKx cose 

sine oR + L _---;.,--'0'-;;,-
4 CDSS-CaSe 

° 

+ E n
4 

JC(Kx)e n ~(Kx)] 
n n n 

0=1 , 2, .. 
(7-62) 

where R represents the reflection coefficient of a semi-infinite wave-

guide . and evanescent currents are along the exciting waveguide walls 

betwcn x",O and x=x . 
a 

N+l unknowns, 

The system of equations, in this case, is for 

J
e 

"', N and R, and thus the elements 

which correspond to T, i.e . , existence of the coupled waveguide should 

he removed from the system of equations represented by (7-23) . 

When the coupled waveguide is not of the semi- infinite type but has 

a fini te length L 
2 

then equation (7-62) can be used . In this case 

R will represent the reflection coefficient in the presence of the 

coupled waveguide and the evanescent currents will be along the exciting 

waveguide walls between x= 0 and X"'x 
a 

and along the whole length of the 

coupled waveguide. Again, the system of equations is for N+l unknowns. 

7.4 Results and discussion 

Some results are obtained using direct moment method (DMM) for the 

r adiation pattern of two collinear parallel plate waveguides of width 

d := 0.6).., and a separation distance KL:= 50 . These results are shown 

in figure 7-3 for different lengths of the coupled waveguide . The solid 
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curve s hows the r.adi ;ltion patte r n for KL'" 0 .0 . the case of <l single 

waveguide , obtained using t he Hiener-I!opf technique , while the broken 

H .ne curves show the patterns by numerical methods , for KL'" 0. 1, 1.0 

and 6.0 . It is clear from this figure that for non zero values of KL2 

the radiated power oscillates around the value corresponding to 

KL2 '" 0 . 0 . D~lM have been used to check the results of MMM and t h e results 

of t he Hiener-Hopf technique . Also , it has the advantage that t he coupled 

waveguide may have any ~"idth and orientation . The disadvantage of DHM 

i s that t he coupled waveguide cannot have large length, i.e. the case 

of two semi- infinite waveguides cannot be treated because of the need 

for a l arge number of matching pOints and consequent l y l arge computation 

t ime. This i s overcome by MMM as shotm in previous sections . As an 

application of ~~, radiation patterns and the ref l ection coefficients 

are obtained and shown in figures 7- 4 and 7- 5 and table 7- 1 . It is 

clear tha t the radiation pattern of a single waveguide is exactly the 

same as the one obtained by the lhener-Hopf technique which is shown by 

t he so l id line in figures 7- 4 and 7- S. Also it i s interesting to note 

that the contribution of t he incident current gives the r esults obtained 

by the Kirchhoff approximation . The contributions of t he reflected 

and evanescent currents are shown separately and then together . The 

evanescent current has the main cont r ibution in the forward direction 

( 0= 180° ) whi le the ref l ected current gives the main contribution in 

the forward and backward directions . Two examples fo r d = O. SIA 

and O. 6A a r e shown in figures 7- 4 and 7- 5 . As the reflection co­

efficient decr eases rapidly by increasing the waveguide width , it wil l 

not contribut e significantly t o the radiated power. This is clear by 

two examples of d = O. SIA and O. 6A where t he r eflect i on coefficients 
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TABLE 7- 1 

Reflection Coefficient of a 

semi - i nf ini t e waveguide with TE mode of exci t ation 
0,. 

Using Wiener- Hopf 

Techni que 
Us i ng 

Magnitude phase in degrees Magnitude 

. 5971 - 164 . 3 .6026 

. 1891 - 130 . 9 .1911 

. 0176 - 80 . 8 .0194 

MMM 

phase in degrees 

-165 . 7 

- 134 . 6 

- 95 . 1 

... 
~ 
N 
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are 0 . 6 I-1M and 0 . 19 /-131> respectively . Also, table 7-1 

shows the reflection coefficient of a single waveguide using the Hicncr-

Hopf technique and MHH for different waveguide widths <l.nd indicates very 

good agreement. By increasing the waveguide width, the reflection ca-

efficients become small and, as a result, the phase errors in the computations 

become large. But , as mentioned before , the contribution of the small 

reflection coefficient to the radiated power is very small and hence 

one expects to get very good results for the radiation pattern even with a 

large waveguide width (O . SA < d < l . SA) . 

Some results have also been obtained for M}~ applied to two collinear 

parallel plate waveguides with the coupled waveguide of finite length . 

Figure 7-6 shows the radiation pattern for d/A = 0 . 6 and KL D 15 .0 
2 

wi t h different values of the separation distance KL. It is clear that 

for KL=O . l, i . e . small separation distance , the radiation pattern is 

the same as the one corresponding to the radiation pattern from the open 

end of a single semi- infinite waveguide . This is true because the main 

radiation comes from the far end of the coupled waveguide . Some results are 

also shown for KL = I and 10. For the previously mentioned case , the 

reflect i on coefficients are shown in table 7- 2. Also. it is clear from 

this table that for KL -0 . 1 , the magnitude of the reflection coefficient 

is the same as that of a single semi-infinite waveguide , while the phase 

is different , since it represents approximate l y the reflection from the far 

end of the coupled waveguide. A comparison of the reflection coefficient 

f or t he finite lengths of the coupl ed waveguide using the Wiener-Hopf 

technique and MMM is shown in table 7-3 , which shows a fairly close agree-

ment . Radiation patterns for the finite lengths of the coupled waveguide 

and using the Wiener-HopE technique, MMM and OMM are shown in figure 7-7. 
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TABLE 7- 2 

Reflection Coefficient by ~MM 

for two collinear parallel- plate waveguides of finite length 

I<L 

10 

1.0 

0.1 

-_. - - -- - - -- - - - -- -

d/)' = 0 . 6 I<L = 15 
2 

Magnitude 

0 . 233 

0 . 325 

0.198 

-

phase in degrees 

- 103 . 6 

148.1 

85 . 1 

~ 
~ 
~ 



KL 

10 

20 

50 

TABLE 7- 3 

Reflection Coefficient 

for two collinear parallel- plate waveguides of finite length 

dfA ~ 0.6 

Using Wiener-Hopf 

Technique 

KL ~ 15 , 

Magnitude phase in degrees 

0.200 -113 

0.168 - 123 

0.199 -133 

Using MMM 

Magnitude phase in degrees 

0. 233 -103.6 

0.151 -113 

0.194 - 142 

~ 
~ 

~ 
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It is clear that the results using Dl'lM and 1'11'11-1 are approxim.:ttely the 

same. The results using the Hiener-lIopf technique are slightly dif-

ferent, especially in the forward uirection, and this is because of the 

fact that some interacting rays are not included in the derivation. 

For the case of t\o1O semi-infinite waveguides, some resu l ts ar e 

obtained using }~~ and the Hiener-Hopf technique and are shown in figure 

7- 8 and tab l e 7- 4. Figure 7-8 shows the radiation patterns for differ-

ent separation distances . For KL = 0 .1 and by M}~t , the radiation pattern 

is like a beam at an angle given 
_ I A 

by 9 "'" -sir. 2d + 'IT . It is c l ear 

also that the results by ~~ are slightly different from those by the 

l~iener-Hopf technique in the forward direction. This may be due to the 

fact that in the MMM , the far testing points , corresponding to the 

reflection and transmission coefficients, are arbitrary and, as a result 

the results of MMM are too sensitive at these two points . This point 

will be clarified later . Table 7-4 shows some results for Rand T 

using MHM and the Wiener-Hopf technique . I t is noticed that values cor-

r esponding to ITI do not agree because of the phenomena mentioned before. 

I n the case of single semi-infinite parallel- plate ,,,aveguide , the sensi-

tivity of the results to location of the far testing point was studied . 

by Wu , S. C. and was shown by unpublished results. The same phenomenon 

can be said about two semi-infinite waveguides and cannot be studied here 

because of another important phenomenon, which is the dependence of R 

and T or the evanescent currents on the number of matching points. This 

has been shown in figures 7-9 and 7- 10. Figure 7-9 shows Rand T versus 

t he number of matching points N2 (corresponding to the evanescent c urrent ) 

on the coupled waveguide for Nl : 20 (Nl : number of matching points 

corresponding to evanescent current on the exciting Haveguide) . Similar 
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result" are also obtained for Rand T versus Nl for N2 ~ 20 and 

arc shown in figur.e 7-10 . Figures 7-9 aTld 7-10 ~how semd.tivity of 

Rand T to the nUlllher of match tog points cOTn~spollding to the evan­

escent currents. For very small separation distances, Rand T do 

not change significantly. which means that the NHM is very reliable 

when the separation distance is small. 

The numerical results obtained here were for waveguides of equal 

width . The method, however. can readily be extended to waveguides of 

different t·ddths . It can also be used for waveguides \o/ith a flare 

angle and coupling between adjacent horn antennas . 
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TABLE 7-4 

Comparison between Wiener- Hopf technique and MMM 

for reflection and transmission coefficients of TE mode 
0,1 

Reflection Coefficient Transmission 

KL 
Wiener-Hopf Tech . NMM Wiener-Hopf Tech . 

0.1 - 0.0015/-103 -
1.0 - 0.116/131 -

10.0 0.236/- 111 0.285/-113 0 . 429/-148 

50 . 0 0.199/-135 0.192/-135 0.195/147 

- -- ---- -- - - --- --~- ~ -

Coefficient 

NMN 

0.999/ .5 

0 . 991/7 . 5 

0 . 501/-159 

0 . 261/140 

- - ---~ 

~ 
~ 
co 



CHAPTER 8 

DISCUSSION Affi) CONCLUSION 

8. 1 Discussion 

The Hiener-Hopf technique was used to investigate the coupling 

between two collinear semi-infinite 'parallel-plate and circular \"ave­

guides. Obtained results for the reflection, transmission and radia­

tion fields in the exciting waveguide, coupled \"aveguide and free space 

were expressed by three terms. The first term was due to the open end 

of the exciting waveguide alone (i.e. in the absence of coupled wave­

guide). The second and third terms were due to the interactions between 

the two opening ends of the waveguides. The third component of the 

reflection coefficients and the first and second components of the trans­

mission coefficients were functions of axial distance z and they rep­

resent radiation of either waveguide inside the other. These functions 

when represented as inhomogeneous \"aves in the direction of the axis 

would decay to zero at the far end, in order to satisfy the Sommerfeld 

radiation condition . Far from the open ends, the main contribution to 

the reflected field \"as due to the first and second terms (equation 2-65 

for the parallel-plate waveguides and equation 3-39 for the circular 

waveguides), while the main contribution for the transmitted field was 

due to third term (equation 2-73 for the parallel-plate waveguides and 

equation 3-48 for the circular waveguides). The amplitude and phase of 

the reflection and transmission coefficients were oscillating functions 

of period kL '" 7r. The reflection coefficient decays continuously with 

kL to reach its final value for kL '" n. a single excited semi-infinite 

waveguide (e.g. see figures 2-6 and 3-3), while the transmission 
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coefficient would decay to zero as kL approaches infinity (e. g. see 

figures 2-7 and 3-Q), 

Equation (4-66) shows that the spherical I ... avefactor 
1 

sine sinS) 

combined with the spherical wave 
i{kr-n/2) 

variation e 2n kr is related to the 

curvature of the rim of the circular \ ... aveguide . It was shown that this 

factor was necessary for treating problems of diffraction by small aper-

tures in hard screens . 

Results using the ray theory of diffraction in conjunction with the 

modified diffraction coefficients, were in good agreement with the rig-

arous solution , especially for very large values of kL . However, the 

ray theory results shm'led that, for any separation distance, the radia-

tian patterns would blolo/ up in the front direction (see e . g . figures 4- 8 

and 4- 9). 

Using the results of the coupling between semi-infinite waveguides 

and scattering matrix technique , the coupling between waveguides of 

finite length was obtained . This system may act as an open type res on­
-Ym1).2 

ator with its frequency determined from the equation R Ro e = I, 

where Ym is a function of k = kl + ik2 where kl and k2 correspond 

respec t ively to the frequency of oscil l ation and l oss factor [ 41}. 

From figure 6- 1, it is clear that, except for kL < 10 , the exact 

solution, hased on the Hiener- Hopf technique, oscillates ar ound that 

obtained by Hu ' s formula using the \oliener-Hopf results of a single wave-

guide. These oscillations have a period of kL = n . This phenomenon is 

because of the fact that in equation (6-8), E • is evaluated f ar from 

the open end of the exciting waveguide . 

of Friis ' transmission formula [82 ] for 

This 1s similar to the condition 

2d' 
L~T 

Res ults obtained by the modified moment method for the radiation 



156 

from an open end of 3 semi-infinite parallel-p1OlcC waveguide are in 

very good agreement ,d th the Hiener-lIopf results . The contribution of 

i J (see equation 7-49) to the radiation field gives results of the Huygen's 

principle, as ShOlvll by figures 7- 4 and 7-5 . The contribution of R to 

the radiation field is Significant '.;hen the waveguide width is slightly 

larger than a.sA (O . S < d/A < 1. 5 for TE 
o • 1 

mode) . 

As the Hiener-Hopf technique cannot be applied when the separation 

distance bet'l~een the ,.;aveguides is small, the modified moment method is 

another way to solve this problem. Some results were shown in figure 7-8 . 

The results of this method for small separation distance were not sensi-

tive to the testing and matching points . 

Analysis of the parallel-plate and circular ,,;oaveguides (syrrunetrical 

modes) for other modes of excitations can also be treated in the same way 

as shown in this thesis. For asymmetrical modes in circular waveguides, 

the problem will be different as the diffracted fields (reflected , 

transmitted and radiated) will be combinations of TE and TM modes. 

8 . 2 Conclusion 

The problem of coupling between two collinear parallel-plate and 

circular waveguides located in free space has been solved. Expressions 

were obtained for the reflected, transmitted and the radiated fields and 

were expressed by three terms. The first term was due to the open end 

of the exciting waveguide, while the other two terms were due to inter-

actions . The rigorous solution was expanded to obtain the ray theory re-

suIts with the help of a modified diffraction coefficient . The modified 

diffraction coefficient for the circular t,;oaveguide was found to be in the 

same form as that of Lee for parallel- plate waveguides, but another factor 

ca l led the spherical wavefactor , has to be introduced . This factor was 



shown to be necessary in treating problems of diffraction by small 

apertures in hard screens . 

Results using the Hicncr-Hopf technique for parallel-plate wave­

guides , w~s found to be more accurate than those obtained using Hu ' s 

transmission formula. 
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The modified moment method was applied to two separated structures 

and very accurate results in good agreement with the other available 

results, were obtained . The radiation fields obtained in terms of the 

evanescent currents, reflection and transmission coefficients gave another 

explanation for the physical meaning of the ray theory of diffraction . 

Finally, the Wiener-Hopf technique together with the modified moment 

method gave a complete analysis of the coupling between parallel- plate 

waveguides . 

8 . 3 Suggestions for future research 

During the formulation of the problem by the Wiener- Hopf tech­

nique, an expansion of the function E(a) and G_(a), in a Taylor 

series, about the branch point B ~ -k was needed (see , e . g. equation 

(2- 36)) . An improved expansion may be obtained by expanding E(a) and 

G_ (a) about another point p chosen such that the second term in the 

Taylor series vanishes [26] on page 200. This requires further investigations 

to examine the possible improvements on results presented in this 

thesiS. 

As the insertion of dielectrics in waveguides reduces the loss 

and may give an optimum radiation for certain dielectric constants, it 

is interesting to investigate the case of coupling between dielectric 

l oaded waveguides . The only problem here is the difficulty in factorizing 
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the new Green ' s function and finding the roots of a characteristic 

equation [26] . [94]. The author suggests using scattering matrix 

technique with the elements of scattering rn.ltrices to be determined by 

the use of the results presented here for the. coupling between .... aveguides. 

It is rather interesting to see the significance of the spherical 

wavefactor and its application to any convex aperture in hard screens . 

This may be an introduction to solving problems of radiation from 

semi- infinite circular waveguides with oblique openin~of elliptical shape. 

In this case , the excitation of either TE o ,m or TM will produce 
O ,m 

diffracted waves of both types of asymmetrical modes i.e. TE and 
m,n 

TM 
m,n 

and 11,,0. Consequently two modified ~.J'iener-Hopf equations will 

appear . For TE o,m 
excitation in circular waveguides , the attenuation 

theoretically decreases indefinitely with increaSing frequency [95] . 

Therefore, it is interesting to solve this problem in the same way as 

presented in Chapter 3. 

The modified moment method is only adopted in this thesis for 

IE 0 
0 , " 

parallel-plate waveguides. In order to apply i t to TM 
o , ~ 

one 

needs first to investigate the diffraction of an H-polarized plane wave by 

a semi-infinite conductor of arbitrary cross-section . Also, one may 

try to apply this method to circular waveguides. Investigation of 

waveguides arrays is also interesting, especially if the waveguides are 

loaded. 
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APPENDIX A 

FOR"ULATION OF EQUATIONS (3-4) AND (3-5) 

The total electromagnetic fields may be found from Wt 
"" lSI + Wi, 

where iJJ is a scalar potential associated with the scattered fields. 

The scattered field components are 

H~ = - .£JI. 
'P 

E 
i ,'W 

= opoz (A-l) P WE 

E 
i (~:2 + k

2
)tjI = 

Z we 

Since the problem in this chapter is for symmetrical modes, it is a 

two dimensional one and the associated wave equat i on for tV must be 

solved subject to the boundary and edge conditions. 

A Fourier Transform ~ of the scattered field W may be assumed 

in the form 

~(p ,a) = __ 1 __ [ W(p,z) 
12"iT-oo 

i Clz 
e dz ex '" a + iT (A-2) 

Let 41(p , a) be the Fourier Transform of E. z 

$(p.a) and ~(p.a) is 

$ (p, a ) L = iw€: 'fI(p ,a) 

Hence the relation between 

(A- 3) 

The function $(p,a) can be decomposed into three parts as shown in 

Chapter 2 , to give 

(A- 4) 

where $_ , $ 1 and $+ a re as defined by equations( 2-10a), (2-10b) 
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and (2-10c) . The t r ansform function 1{1 which satisfies the transfo r med 

wave equation is analytic in the strip ITI < kz and has a solution of 

the fo r m: 

or 

__ lA(a) Ko(yp)/Ko(ya) 

~(p , a) 

B(o) Io(yp)/Io(ya) 

$ (p ,a ) 

y2 Ko (rp) 
_ { i w€ A(a)Ko(ya) 

~ B(a)"(Yp) 
1.1£ Io(ya) 

(A-5) 

p ~ a 

(A-6) 

Now, an application of the boundary condi tions on elec t ric and magnetic 

fields at the s urface p = ex give 

o , (A- 7a) 

t aL laL 
e ~+ (a+. a) = e ~+(a- . ex) : 0 (A- 7b) 

(A-7c) 

and 
(ia - y )L 1 e om - (A-7d) 

lex - y om 

where the prime denotes differen tia t ion with respect to P . and r 
'om 

th 
i s the m order ze ro of J o ' the zero Bessel function. Eq uation (A-6) 

together with equation (A- 7a) to (A- 7c} give 

A(<x) • B(O) (A- B) 

Differen tiat ing (A- 6) with respect t o p and letti ng p = a , then 

after using (A-7d), one obtains equation (3 -~). i.e. 



iw£ lfll (a ,a) 
y 2a G(a) 

-1 E;;om 
=--J,(<; ) 

/2TI a 0111 
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(ia - y )L 
1 _ e am 

a + iy am 

(A-9) 

and is a modified t~iener-Hopf equation of the second kind ~<lhere 

, 
J (a) = ~_(a+ . a) - ~_(a-. a) (A-I0) 

, 
a) - If+(a-. a) (A-H) 

and G(a) = I (ya) K (ya) 
a a 

(A-12) 

Equation (A-9) can be modified to the form: 

-iJ (a)(k-a)G (a) + 

+ i(k- a) G 

(WE/a) 
(k+a) 

-y L am 
e 
a + iy + J+(a)] 

am 

(A- B) 

Decomposing the right hand side of (A-13), by isolating the pole in 

the first term and using a decomposition formula for the second term, 

one has 

1 ';om ---J,«; ) I21T a am 
(k ~ a) G (a) 

a+l.Y -am 

+ (k+iy )G+(iY )] 
am am 

1 ';om 
- --J,(I; ) 

I2i a am 

(k + iy ) am 
a + iy am 

G+(iY ) am 

(A-14) 

-. ,. 



and 

- 1 J 2n-1 

where 

>I(a) 

<»+id 

- <»t-id 

i 

I'Fii 
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E,; - YomL 

- -L ~ J (~ ) O~'---c+---CiYC-] En a 1 om om 

rid -i(k-8~G ~a ) >1(8) .'8L d8 

-=-id 

-y L 
om 

-k2 < -d < T < d < kl (A-IS) 

(A-16) 

The first and second terms in equationS (A- 14) and (A-IS) are regular 

re~pectively in the lower (t < k2) and the upper (T > -k2) halves of 

the complex a-plane. Substituting (A-14) and (A-IS) into (A-13) , one 

obtains 

Since 

i(k+iy ) om 
a + iy om 

and 

[ (k-a)G_(a) - (k+iy )G+(iY )] 
om om 

-i(k-@)G_(8) >1(8) 
8 - a 

= (wE/a) ¢l(a.a) 
(k+a) G+(a) 

G+(iY ) om 

"d 
+ _,_ [' -i(k- 8)G_(S) '1(8) 

21fi B - a 

- =-id 

iaL 
e 

i;: om 
- --J,(y ) 

al2i om 

(A-17) 

E 
z 

satisfy the edge condition . it can be shown that both 

sides of (A-I7) are zero and the equation is valid for all values of a. 

Equating the left-hand side of (A-I7) to zero gives 



-f; k+iy 
-,,!,!--.o!'-Jd( ) G+(iy ) - i(k-a)G_(a) N(a) 
a/!TI a+ 1Yom om om 

-1 .--211 i 

where 

N(a) • J (a) 

fOO+i_~","i "(k"C--,,S1;) -,G",-,:,("SL) -,',,' (",SOL) _e,,-i_S_L_ 
S a 

-eo+id 

• - k2 < - d < T < d < k2 
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(A- IS) 

(A-19) 

" 
1 • 1 i b h id f (A 9) b -'(k~) e- 1aL G+(") u t1P y ng ot s es 0 - y ~ TU ~ one obtains 

- iaL (WE/a)e $l(a,a) 
(k- a) G_ (a) 

-y L 
(k+a)e om 
a+ iy 

om 

(A- 20) 

In this equation the only term that has singularities in both halves of 

the a- plane is the second term in the right-hand side which can be 

decomposed in the same manner as equation (A- IS) , i . e . , 

~id 

-iaL 
- i e N(a)(k + a)G+(a) . 2;i f - i(k+S)9t(S) N(6) 

S - a 

__ 1 f .... id 

211i 

-=+id 

-co-id 

_- "-H"k,--"+S,,,),,,G,,+"'( S"-)-;::N,,-(,,S:L)-,e,,--_i_SL_ d S 
S a 

Substituting (A- 21) into (A- 20) one obtains 

C-
iSL dS 

( A- 21) 
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-iaL (w£/a)c $j(a ,a) 
(k a)G _ (a) 

1 
21fi [

<»tid =-!ci ",(k,,+-,,0:;,) G",+t:("0,-,)_N,,-(,,,S'.!.) _ iSL 

-<»Hd 0 - a e' 
-i(k+ct) 

1 JOO-id -i(k+S) G+(0) N(0) 
Zrri --'-="'7;S--"'':o=-==-

- <»-id 

e- i8L dB (A-ZZ) 

From the edge condition, both sides of (A-22) are zero and the right 

hand side gives 

- i (k-k,)G + (a)>1(o) 
1 . --

21Ti 

J

OO-id 

- oo-id 

• -kz < - d < T < d < kz (A-Z3) 

Equations (A-IS) and (A-23) are two coupled integral equations for the 

two unknowns NCa) and M(a) . These two equations can be decoupled 

by changing S to -8 in (A-IS) and a to - 0 in (A-23). The sum and 

difference of these equations lead to the integral equation (3 - 7) where 

S(a) = NCa) + Me-a) and D(a) = NCo) -Me-a) which are given by 

equation (3-6) . Finally equations (3-6) and (3-4) give ~l(a , a) as 

shown in equation (3- 5). 
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APPENDIX B 

DERIVATION OF THE FUNCTION TCa ) GIVEN fly (3-12) 

Th. integral in the R.H . S. of (3-7) is of the form 

A 
rid (6+k) I (ya) K (ya) E(B) -iBL I 0 

o 0 
dB (B-1) 2ni G _ (S)(Sm) • 

_00- id 

where G+{cx) has been replaced by G(a)/G_(a ) in equation (3-7) with 

G(a) I (ya) K (ya) . 
o 0 

For large L, the major contribution of I is from the integral 

over a small neighborhood around the branch point a = -k [26]. The 

contour can be deformed into the lower half of the S-plane, as shown 

in figure 2-3 . The functions G (6) and E(B) are then expanded in 

a Taylor series about the branch point S = -k and retaining the first 

term only, this leads to 

J (B+k) 

p 

I (ya) K (ya) 
o 0 

(Sm) 

-lSL • 
dB (B-2) 

The integral over the small circle P2 can 

besshown to be zero and hence (B-2) can be simplified to 

where 

J
-k-i~ 

I = _A_ E(-k) (S+k) 
2ni G+(k) (Sm) 

-k 

.-iSL [I (ya)K (ya) 
o 0 

- I ( - ya) K (-ya)] dS 
o 0 

__ A_ E(-k) 
- 2ni G + (k) T(a) (B-3) 



T(a) = 

Letting f3 = -k 
iu 
L 

to equation (3- 12) . 

( {l+k ) r'(ya) 
__ ~~o~_ e -i 13L d8 

~-I<l 

- r (-ya)K (-ya) ) dB 
o 0 
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(B- 4) 

where u is a new variable , then (B-4) reduces 



167 

APPENDIX C 

DERIVATION OF THE EQUATION 0-42) 

\.Jhen closing the con t our of integration in equacion 0-41) . in the 

lower half of the d.-plane, the first term in 4>1 (a,o) has a pole at 

a g - iy and a branch point at a = -k. The contr ibution due to the 
om 

pole cancels exactly the incident field and the branch point conttibu-

tion can be evaluated similar to ",int , (,) ( \ 
't'r p , z . . 

- 1'; om 
2~ 

J 1« )(k+iy ) G+(iy ) 
om om om 

J 
p 

I (yp) G+(a) ,_ o - .LU2 

I (ya) (k-a)(a+iy ) e 
o om 

replacing G+(o) by G(o)/G_ (a) in (C-l) , we obtain 

"~,exeC ) J 't p,z· p 
~I",07( Y:cP;-;)"...,.-K o",("y,--a-,-) -c-----c - ia z 
G (a) (kC~) (a+iy ) e da 
- om 

~ 

Assuming 

!P~xC(P.z) = I T (z) J 
n=1,2 , 3, . , . m,n 0 

da 

and using the orthagonality of the Besse l function in both sides of 

(C- 2) and (C-3), we obtain 

T (z) m,n 

- ii; 
om 

2~ 

J 
-faz 

K eya) e 

(~-a) G (a) (a+iy ) - om 
p 

J
a /;on 

J (.iya) p J (-
o 0 a 

o 

p) dpda 

-i 
= Tfa"2" I; on (k+iy ) G+(iy ) 

om om 

(C- l) 

(C-2) 

(C-3) 



J 
K (ya) I (ya) e-iaz 

G
O 

(cd (k-~) (a+iy ) (a.z+y z ) 
- om on 

p 

do 
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(C-4) 

where P"'Pl+P2+ P ) The integral over P2 can be shown to be 

zero and hence (C-q) reduces to 

T (z) 
m,n 

G+(iy
om

) 

-k- i oo 

J 
-k 

G (a)(k-a)(a+iy )(aZ+y2) 
- om on 

-iaz 
e do (C-5) 

Letting 
iu a = -k - -- where 
z 

u is a new variable of integration , 

then equation (C- S) reduces to (3-43) . 
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APPENDIX D 

DERIVATION OF THE EQUATION (4-3) 

After deforming the contour of the integral in equation (4-2). I"e 

obtain 

1 

J
p 

n - it3L 
T (0) 

(-2ya) e 
dS (D-1) o-

n E n! ya S-H> n 

The integral over the small circle P2 can 

be shown to be zero and hence (0-1) can be simplified to 

T (0) 
n 

- k-ic:o 

I 
e -i8L 

S-H> 
- k 

n-1 
y 

for odd values of n (n = 1 , 3,5, ... ), TCa) is zero and for other 

values of n ~ equation (D-2) becomes 

(_1)n 20+1 n-1 
T (0) 0 ~",--:-=-,--,a,-_ 

n n! e: 
n 

-k-ioo 

I 
-k 

n-1 
y 

- iSL 
e 

dB • n=0,2,4, ... 

(D-2) 

(D- 3) 

In the neighbourhood of S = -k the function (S_k)n-l/2 is regular 

0-1/2 . and smooth, and can be replaced by (-2k) and equat10n (0-3) leads 

to (4-3a). 



170 

APPENDIX E 

DERIVATION OF EQUATIONS (5-5), (5 - 6) AND (5-7 ) 

Since for many practical purposes, the evanescent modes are not 

t aken into account , al l scattering matrices reduce to a unity matrix . 

Hence , from figure 5-2, S~ $1 is approximated by 

Also , 

y z 
e m R 

will repr esent the reflection coefficient R 

° 

- y ~ m 2 
e 

(E- l ) 

of a 

single semi- infinite waveguide, while will represent the ref l ec-

t ion coefficient 
- y ~ 

Rem 2 of the two semi- infinite waveguides separated 

by the distance L. Also , S~B will correspond to the transmission 
- y L 

co~fficient T e m of two semi-infinite waveguides separ ated by the 

dis tance L. Combining these wi th equation (5- 2) we obtain 

Reflected fie l d inside 

T2R 

the exciting 
- 2Ym(LH 2) 

e 

wav eguide =-

y z 
m 

e R + --o"------;;c,,-;c­
- 2Ym1).2 

e 

Y z m 
e f CUI' u2) 

- 2Ym(L+1 2 ) 
e 

1 - R R 

° 

J 

which is the same as (5- 5) . However , with similar arguments , (5-6) 

and (5- 7) may be obtained . 

(E- 2) 
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CONFORlIAL TRANSFOIUlATION AND REGULARITY OF J in DMN 
y 
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In the conformal trans formation of the region outside the scatter-

ers, in the l~ '" Kz + iKx plane to the region outside two circles in the 

t = 0 + i8 plane, the coordinates B = constant and e = constant con-

stitute an orthogonal coordinate system with. a metric coefficient 

h = IdW/dt I (F- l) 

and the coordinate 8 = 0 is the cross-sectional contour of the scatterers 

(96). The trans (ormed geometry, the two circles, in the t-plane has a 

uniform curvature. The behaviour of the metric coefficient h is direct -

Iy related to the curvature of the original geometry in the W- plane. Thus 

the behaviour of the current distribution I 
Y 

being dependent on the 

surface curvature is related to the behaviour of the metric coefficient 

h. Shafai [881 has shown that the behaviour of the singular components 

of the field 1s described by the reciprocal of h. Hence. the induced 

current in the transform domain J = hI 
Y Y 

is regular and independent of 

the curvature of the scattering surface. From the relation 

= h(B) dB, (F-2) 

equation (7-3) leads to (7- 4). The transformation which maps the region 

outside the upper or lower wall to the region outside a circular cylinder 

i s given by [88] 

1 
W = 2 KL2 cos(t) + (F- 3) 
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where the positive and negative signs correspond respectively to the uppe r 

and lower plate . Hence the coordinates z and x of the upper and lower 

walls on the cross-sectional contours are re l ated to e through the relations 

i.e 
-' Kr 

" Kr 

cosO + (KL 

cosS + (KL 

1 
- - KL 2 2 

cose + (KL 

CDSe + (KL 

x;;; Ka for the upper wall (F-.a) 

X"" - Ka for the Im~er , ... all (F-4b) 

+ iKa (F-Sa) 

- iKa (F- Sb) 
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