Automated Subset Selection Aigorithms and
the Selection of Authentic Predictor Variables
in the Presence of Noise

by

Shelley Derksen

A thesis
presented to the University of Manitoba
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Interdisciplinary Studies

Computer Science
Statistics and

Psychology

Winnipeg, Manitoba

(c) Shelley Derksen, 1991




B+H

National Libcary

Bibliothéque aationale
of Canada

du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

The author has granted an irevocable non-
exclusive ficence allowing the National Library
of Canada to reproduce, loan, distribute or sel
copies of hisfher thesis by any means and in
any form or format, making this thesis available
to interested persons, ' '

The author retains ownecship of the copyright
in his’her thesis. Neither the thesis nor
substantial extracts from it may be printed or

otherwise reproduced without his/her per-
mission.

‘L'auteur a accordé une licence irrfévocable et
“non exclusive permettant & ta Bibliothéque

nationale du Canada de reproduire, préter,

-distribuer ou vendre des coples de sa thése

de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve fa propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprmés ou autrement reproduits sans son
autorisation.

ISBN 0-315-76677-5

(+f

Canad4



AUTOMATED SUBSET SELECTION ALGORITHMS AND THE SELECTION OF

AUTHENTIC PREDICTOR VARIABLES IN THE PRESENCE OF NOISE

BY

SHELLEY DERKSEN

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1991

Permission has been granted to the LIBRARY OF THE UNIVER-
SiTY OF MANITOBA to lend or sell copies of this thesis. to

fhc NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies oi the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be pnnted or other-

wise reproduced without the author's written permission.



I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis
to other institutions or individuals for the purpose of
scholarly research.

Shelley Derksen

I further authorize the University of Manitoba to reproduce
this thesis by photocopying or by other means, in total or
in part, at the reguest of other institutions or individuals
for the purpose of scholarly research.

Shelley Derksen



ACKNOWLEDGEMENTS

The author would like to thank a number of people whose
assistance in the writing of this thesis proved invaluable.
First and foremost, I would like to thank Dr. Harvey
Keselman for his encouragement and guidance throughout the
process. Next, I would like to thank the committee members,
Dr. Neil Arnason and Dr. John Brewster for their
participation and helpful comments. I would also like to
thank my friends and fellow students Ms. Linda Neden, Mr.
George McClure, Mr. Bill Kiss, and Ms. Ina Vincent for their
help in matters both technical and personal. Finally, I
want to thank my husband, Mr. Kane Gin, without whom none of

this would have been possible.



Abstract

Flack and Chang (1987) studied the effects of sample size and the
number of candidate variables on the frequency that noise variables are
selected by the STEPWISE algorithm. Additionally the bias of the adjusted R?
of the selected variables was examined. They demonstrated that, often, a large
percentage of the selected variables are noise, especially when the number of
candidate variables exceeds the sample size. Also, the adjusted R2 of the
selected variables is highly inflated. However, these findings may not be
relevant to behavioral scientists as the conditions Flack and Chang (1987)
investigated did not typify behavioural science phenomena.

The present study used Monte Carlo simulation techniques to investigate
the frequency with which authentic and noise variables are selected by subset
selection algorithms under conditions characteristic of behavioural science
investigations. In particular, the effects of the correlation between predictor
variables, the number of candidate predictor variables, the size of the sample,
and the level of significance for inclusion and deletion of variables were studied
for the three subset algorithms implemented by SAS: STEPWISE, BACKWARD,
and FORWARD. The results of this study were shown to largely agree with
those of Flack and Chang in that even under favourable parametric conditions a
significant portion of the final subset could be noise. Itwas further found that the
trends of the BACKWARD procedure could differ both in magnitude and
direction from those of the STEPWISE and FORWARD procedures. The
BACKWARD procedure tended to select both more authentic and more noise
variables on average than either the STEPWISE or FORWARD procedures.
Similarly the BACKWARD procedure produced more inflated values of R2 and

Ri2 [an estimate of the population coefficient of multiple determination that is



adjusted by the final subset size]. However, for each of the subset selection
algorithms under optimal conditions, about half of the available authentic
variables were selected on average and the average number of noise variables
selected was less than one. Similarly, B2 and Ry2 accurately estihated the
population multiple coefficient of determination when a conservative
inclusion/deletion level was used and the predictor variables were uncorrelated
and the sample size was large compared to the number of predictor variables.
In addition, the population multiple coefficient of determination was never over-
estimated in the correlated case by adopting an estimate that is adjusted by the
total number of candidate predictor variables rather than the number of

variables in the final model.
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INTRODUCTION

A common goal of behavioural and social scientists is to quantify
relationships between aresponse variable and one or more predictor variables
using muitiple linear regression analysis.  Therefore, it is important to
researchers that the relevant predictor variables of the response variable be
known. When there are many candidate predictors to choose from and prior
knowledge does not dictate their relevance, a researcher may use automated
'best' subset selection algorithms to choose the 'best’ predictor variables from
the larger set. An examination of some textbooks on multiple linear regression
(e.g. Cohen & Cohen, 1983, pp. 123-125; Neter, Wasserman & Kutner, 1983,
pp. 417-443; Pedhazur, 1982, pp. 150-171; Younger, 1985, pp. 488-489)
indicates that the search algorithms most commonly used are the forward,
backward elimination and stepwise algorithms [these algorithms often are
referred to collectively as stepwise methods, see SAS' (1985) STEPWISE
PROCEDURE for example]. By using these algorithms, itis hoped that the most
effective predictors which adequately explain the behaviour of the response
variable may be found. .

Recently, Flack and Chang (1987) compared the all-subsets and
stepwise algorithms for the frequency with which they specified ‘best' models
containing authentic versus noise predictor variables. For the parametric
conditions they investigated, it was found that both algorithms typically selected
a large percentage of noise variables. Additionally, they found that the 25th
percentile of their adjusted estimate of the multiple coefficient of determination
often exceeded the model value. These findings are most interesting but may
have limited generalizablity to behavioural scientists since the conditions Flack
and Chang (1987) investigated did not typify behavioural science phenomena.

Consequently, the goal of this study was to extend the research on the
selection of predictor variables and to compare ‘best’ subset selection
algorithms under parametric conditions more characteristic of behavioural
science investigations. Moreover, subset algorithms, levels of significance for
inclusion and deletion of variables, and an estimate of the population multiple
coefficient of determination not examined by Flack and Chang (1987) were
~ investigated.



Introduction to Multiple Linear Begression

Multiple linear regression theory holds that given a response variable, vy,
and k predictor variables, Xy, X, ..., X, there is a linear relationship between
the response variable and the predictor variables (see Table 1 for schematic).
The general multiple regression model statement expressing the relationship
between the response variable and the predictor variables is given by

Vi=Po+P1 X1 *+BaXiz+, ..., #B Xix+§ M

where y; is the response variable; Xj;, Xiz , ..., Xj¢ are the ith observations on
the k predictor variables, measured without error; By is the y intercept; B4, B2, ...,
Bk are the kregression parameter constants where B; (j =1, ..., k) measures the
change in y per unit change in X; when all other predictor variables are held
constant; and g is the random error term of the ith observation.

Given a set of values for Xi, X3, ..., Xgx and for B4, B>, ..., Bx a researcher
could estimate y (with some error represented by ¢). If a particular predictor
variable, X;, was unrelated to the response variable, thatis if a unit change in X;
produced no corresponding change in y, then its corresponding regression
coefficient, B; , would be zero.

Under the multiple linear regression model it is assumed that the errors
are independent, identically distributed random variables with mean zero and
common variance. Notationally these assumptions are expressed in the
following way:

E(g)=0
Var(g) = 02
Cov(e.g)=0  (i#))

where o2 is the common population variance of the error term. Thus, the
expected value of y;, known as the regression function, is given by

E(yi) =Bo +B1 Xig + B2 Xip + ...+ B X (2)



Table 1
Schematic for a Multiple Linear Begression Model &

Yy (X11 X2 Xz X1k)
Yo (X1 X2 Xz . X2k)
Ys (Xa1 X2 Xz .. X3K)
YN (XNt A XN ANK)
aNote: Xj; , ..., X are the ith observations on the k independent variables, Y; is

the dependent variable.



and the variance of y;is given by
Var(y;| X, Xz, ..., Xg) = Var(g) =02,

For a sample of N observations the model and associated assumptions
may be expressed as in the following matrix equations. The model is given by:

" 1 Xy Mz o Hak B0 | [ & |
£
g:2 _ 1 K?1 H?z K?k y ﬁj N 2
Un | |
| Xn1 ANz - Rk | [ Bk | L sy
or
y= X B+ ¢ (3)

where yis a N X 1 vector of observations on the response variable; X is a
N X k+1 matrix of observations on the k predictor variables; B is a k+1 X 1

vector of regression coefficients; and gisa N X 1 vector of random etrors.
The associated assumptions are

and



[ Var(e,) Cov(g, &) .. Cov(g,. & |
Cov(g,, &) Var(g) Cov(g,, §)
E(eef) = = 02ly
_Cov(g, §) Cov(g, &) .. Var(§)

where Iyis an N X N identity matrix, since Cov(g, g =0 for all i £ j. The
regression function expressed in matrix notation is

E(y) = XB. (4)

When a random sample of size N is taken from the population of

experimental units, one can only estimate the population regression

coefficients. The method of least-squares provides estimates having certain

desirable properties. Ifb denotes the vector of estimated regression coefficients
then the regression equation may be written as

y=Xb +e

where e is the N X 1 vector of residuals. The method of least-squares
minimizes the residual sum of squares,

eTe = (y- Xb)T(y - Xb)
(where Tis the transpose operator) to yield the normal equations,
Xy =(X™X)b.
If XTX is nonsingular, a unique soiution to the normal equations is given by

b = (XT™X)! XTy. (5)



This equation provides the least-squares estimates of the population regression
coefficients. The requirement that XTX be nonsingular implies that no predictor
variable can be a linear function of the others.

According to the Gauss-Markov Theorem, (See Fox, 1984, p. 42) the
least-squares estimates are unbiased and have minimum variance among the
class of all linear unbiased estimators. Thus

E(b)=B. (6)
The variances of the regression coefficients are the diagonal elements of
02 (XTX)™. (7)

The off-diagonal elements are the covariances between the regression
coefficients. Thus, 62 (XTX)tis known as the variance-covariance matrix. Using
the estimated regression coefficients, the estimated regression function is
expressed as

y=Xb | (8)

where yis an N X 1 vector of predicted values.
If the response variable and the predictor variables are standardized to
have zero intercept and unit length by the correlation transformation,

and

where Sy, and S are the corrected sample sums of squares and § and X are
the sample means of y and X; respectively, then XTX is a (k X k) matrix of
~ correlations among the predictor variables known as the correlation matrix, Ryy,
and XTy is a (k X 1) vector of correlations between the response variable and



the predictor variables. When the predictor variables are uncomrelated, Ryy is
an identity matrix and each estimated regression coefficient will be equal to the
simple correlation between the predictor variable with which it is associated and
the response variable (Pedhazur, 1973, p. 234). Whether the predictor
variables are uncorrelated or not, the standardized regression coefficients may
be obtained from the unstandardized coefficients from the relations

where Sy and S; are the standard deviations of y and X; before they had been
transformed. From equation 7, it is clear that the variance covariance matrix of
the standardized coefficients is

o*2 Rxx'1

where ¢*2=02/S,, is the variance of the residuals of the transformed model.

Conducting statistical tests in regression analysis requires the further
assumption that the random error term of the model be normally distributed [with
mean zero and variance ¢2]. The regression model with this added assumption
is known as the normal error model. The addition of the normal error
assumption implies that the response variable, the estimated regression
coefficients, the predicted values and the residuals are also normally
distributed, thus allowing the usual analysis of variance (ANOVA) of the
regression model to proceed (See Table 2). The ANOVA tests the global null
hypothesis that all the regression coefficients are zero, Hp:B1 =2 = =Bk =0.
Under the null hypothesis, F = MSR / MSE is distributed as an F statistic with k
and N -k -1 degrees of freedom.



Table 2
ANOVA for Multiple Regression

Source df Sum of Squares Mean Square F
T417T
Regression  k bT XT™X b - %L-D MSR = % %%g—
Error N-(k+1) (y-Xb)T(y-Xb) MSE = N-S_S(EHT
(y'11Ty)
Total N -1 yly- N

aNOTE:1isa N X1 vector of 1's



Correlation in Multiple Regression

Measures of correlation are important in multiple regression because,
unlike the unstandardized regression coefficients for example, they supply a
unitless measure of the strength of a relationship. In multiple regression several
such measures may be calculated.

The multiple coefficient of determination (R2) can be calculated from
Table 2 as

R =SST ©

R2 may be thought of as the squared correlation coefficient of y with y or as the
proportion of the total variation that is explained by the model. In simple linear
regression, where only one predictor variable is considered, the positive or
negative square root of R? is the simple correlation between the response
variable, y, and the single predictor variable, X. Inthe multiple regression case,
correlation among the different variables is more complex.

The simple linear cotrelation between X; and y can be calculated as
follows

Siy
7 Sij Syy (19)

i =

where Sjy = 2 (xj - %){y; - ), and Sj; and Sy, are as previously defined.
i=1

The simple linear correlation between X; and y measures the strength of the
relationship between X; and y ignoring the effect of all other predictor variables.
Because multiple regression involves more than one predictor variable two
other measures of correlation of a single predictor with the response variable
may be calculated. Cohen and Cohen (1983) describe these as the semi-
partial correlation coefficient (sr;) and partial correlation coefficient (pr;) (pp. 88-
91).



The semi-partial correlation coefficient measures the correlation of y with
X; where the effect of all of the other predictor variables has been partialled out
from X;. The semi-partial coefficient between y and X; is calculated as

__ Rik+1)
S = TR+ k+1)]T2

where R-1is defined to be the inverse of the matrix of simple correlations among
the set of k + 1 variables: Xq, Xa, ..., Xi, ¥, and R-1(p,q) is the element in the pth
row and gth column of that matrix. The squared semi-partial coefficient
represents the proportion of variance in y uniquely associated with X; and may
be more simply calculated as

i = SO ST 2y 2 (11

where SSRy and SSRy; and Ri2 and Ry;? are the sums of squares for
regression and the coefficients of determination for the k - term model and the k
minus variable i - term model, respectively, and TSS is the total sums of
squares. From this formula itis clear that sr;2 is the unique contribution of X; to
the coefficient of determination of the full model.

The partial correlation coefficient is the correlation between that portion
of X; not linearly associated with the remaining k - 1 variables with that portion
of y not linearly associated with the remaining k - 1 variables.  The partial
correlation between y and X; correcting for Xy, ..., Xi1, Xiy1 , ..., X can be
calculated by

_ R1(i,k+1)
Pfi = [RT(k+1 k+1) RI(,D[72

where R1is as defined previously.

10



The squared partial correlation coefficient represents the proportion of y
variance not accounted for by the k - 1 remaining predictor variables that is
accounted for by X;. Like the sr;2, pr;2 may be more simply calculated as

_ SSRy - SSRy;
Pri? ="""ogE_

where SSE; is the sums of squares for error in the k - variable i - term model.

If the predictor variables are uncorrelated, the semi-partial correlation
coefficient is just the simple correlation coefficient. However, when the predictor
variables are correlated, the simple correlation coefficient, the semi-partial and
the partial correlation coefficients each measure a unique kind of correlation
between the response variable and a given predictor variable.

Definition. of Effect Size in Multinle Re :

Cohen (1969), defined " ‘effect size' to mean 'the degree to which the
phenomenon is present in the population,” or 'the degree to which the null
hypothesis is false.' " (p. 9). Since measures of correlation provide a unitless
measure of a relationships strength, they are a natural choice for describing the
effect size in multiple regression.

Cohen and Cohen (1983) give three general guidelines for determining
the value of the population effect size under study:

1. Previous experience or study may indicate the effect size to

expect in the population.

2. Some minimum effect size may be advanced that would have

either practical or theoretical significance.

3. It may be possible to use some conventional definitions of a

small, medium or large effect size for the phenomenon under study. (pp.
59-60)

The size of the phenomenon present in the population is important for it
will determine, for a given sample size and significance level, the probability
. that a false null hypothesis is rejected. Therefore, Cohen and Cohen (1983)
describe a method for using the expected effect size to determine the sample

11



size necessary to reject a false null hypothesis (with some given probability)
(pp. 116-118).

In multiple regression, two different kinds of null hypotheses may be of
interest. Firstly, the overall F statistic given in Table 2 tests the null hypothesis,
Ho : B1 = B2 =+ = Bx = 0. When the overall significance of the model is the
hypothesis of interest Cohen and Cohen (1983) define the effect size as a
function of the expected population coefficient of multiple determination

R2
f2=w. (12)

As described, researchers may posit a value of R2 to determine the expected
effect size. If no value from previous research is available Cohen and Cohen
(1983, p. 161) offer the following conventional values of £2: "small®, 2 = 0.02;
"medium”, £2 = 0.15; and "large", 2 = 0.35. Knowing f2, o, and k, the number of
independent variables, the required sample size is calculated as

n=f£2+k+1 (13)

where L is a tabled value dependent upon kg, the number of degrees of
freedom associated with the source of y variation being tested [generally equal
to k] and the required degree of power (Cohen & Cohen, 1983, p. 117).

The second kind of hypothesis of interest in multiple regression may be
the null hypothesis that any partial correlation or regression coefficient for a
given X; (among k independent variables) is zero. When this is of interest, 2 is
defined as

sriz
P=rpg (14)

As before, researchers may posit values for sr;2 and R2 or use Cohen and
Cohen's (1983, p. 61) conventional values of 2. When the value of o and the

desired power are set, L can be determined from the tables (kg is set to 1 since
the source of variation is a single X;) and the sample size may be calculated
_ from equation 13 as described above.

12



Collinearity

Recall from equation 5 that the least-squares solution to the normal
equations requires that the Ry, matrix be invertible. When linear dependencies
exist among the independent variables, the determinant of the correlation
matrix is zero. The correlation maitrix is then deemed singular, and its inverse
does not exist. Thus, when linear dependencies exist among the predictor
variables, the regression coefficients cannot be estimated by least-squares
techniques.

However, the correlation matrix heed only approach singularity in order
for the regression analysis to be affected.

Harmful collinearity may be introduced in several ways. Gordon (1968)
and Pedhazur (1982, p. 242) point out the common practice of using multiple or
repetitive measures of the same variable in regression analysis. These
variables will be highly correlated, thus introducing collinearity into the
correlation matrix. Such highly correlated independent variables are called
redundant since they each supply essentially the same information to the
model.

Simple pairwise collinearies and more complex near linear
dependencies involving three or more independent variables can be introduced
into the data either because such a relationship exists in the population or
because the relationship was created through sampling error. Gunst and
Mason (1977) use the simple example of a sample of spinal cord injury cases
containing only females under 30 years of age and males over 30 years of age.
Sex and age would then be correlated in the sample even though it is clear that
in the population of spinal cord injuries there are young and old patients of both
sexes. Though the example illustrates only a pairwise collinearity detectable by
examination of pairwise correlations, more complex near linear dependencies
may also exist in the sample. Such dependencies are not necessarily
detectable by examination of pairwise correlations.

The presence of severe collinearity in the corelation matrix is damaging

to least-squares analysis. When the independent variables are highly or

perfectly correlated, the regression plane becomes unstable. Figure 1(a) shows
 the case where two independent variables, X; and Xp, are only slightly
correlated. The regression plane is well supported by a broad scattering of

13



points defining the plane. Since the residuals are small, the estimates of the
regression parameters are precise. In Figure 1(b), however, the correlation
between Xj and X, is perfect and the observations now fall on a straight line in
the X1 Xz plane. Any number of planes will pass through the line because the
numerical solution is undefined. Lastly, consider Figure 1(c) where X; and X
are highly comrelated though imperfectly. The spread in the points on the
regression plane is narrow, ill-defining the plane. In such a case the plane
lacks support, and is thus fitted very poorly. A slight shift in any of the data
points will drastically alter the plane. This is illustrated by the large variability of
the estimated regression coefficients.

Recall that the variances of the regression coefficients are calculated as
the diagonal elements of equation 7. In the two predictor case, when X; and Xy
are transformed by the corelation transformation, the variance-covariance
matrix is

2
1 s
52 1-rd 1-r
)
e 1
1 - r122 1 - I'12

Thus V(by) = V{by) = o2 11 - rfz)] , where rf2 is the squared correlation
between X; and X,. As the absolute value of the corelation between X; and Xp
approaches 1, the term [1/(1 —rfz) ], known as the variance inflation factor (VIF),
will approach infinity. Thus, high correlation among the predictor variables
inflates the variance of the regression coefficients (See Gordon, 1968;
Keselman, 1988; Rockwell, 1975). This in turn leads to imprecise estimation of
the regression coefficients and hence, irreproducible results, since a small
fluctuation in the correlations (due to sampling or random errors) can lead to
large fluctuations in the estimated regression coefficients when coliinearity is
present (Pedhazur,” 1982, p. 235).

14



| east —squares
plane

Figure 1 The effect of collinearity on estimation. (a) Small correlation between
X1 and Xy:regression plane well supported. (b) Perfect correlation between X
and Xy:regression plane not uniquely defined. (c) Strong correlation between
Xqand Xy:regression plane defined but not well supported.

Note: From Linear statistical models and related methods (pp. 139-140) by J.
Fox, 1984, New York: John Wiley. Copyright by John Wiley. Reprinted by

permission.
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Figure 1 (continued).
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In addition to the increase of the variances of the regression coefficients,
collinearity also reduces the magnitude of the regression coefficients. Recall
from equation 5 that the regression coefficients are calculated as

b = (XTX)" XTy.

In the two predictor case where the independent variables and the dependent
variable have been ftransformed by the correlation transformation, the
regression coefficients are calculated as follows:

1 ‘rfz
b= f-rfp 1=, {"w}
I
“r$2 1 B
_1"%2 ‘"”?2_

where riy is the correlation between X; and X; and rqy and ryy are the
correlations between X; and y and X, and y, respectively. Therefore

r -r r
b*‘] - 1y 122 2y and
1-r15

(19)

b*2-r2¥ - P12 My
= 2
1-r5

The values thatry, may take on are constrained by the values of ryy and
ray. Specifically, the mathematically possible upper and lower bounds for ryo
are given by (Cohen & Cohen, 1983, p. 280)

ry ray + (1 —rfy) (1 —r2‘°‘y) .

Table 3 examines what happens to the regression coefficients, and the VIF as
the correlation between X; and X, approaches its maximum (positive) limit.

17



Table 32

Effect of Increasing. Correlation Among

Independent Variables

2 VIF b1 b2

0.00 1.00 0.30 0.40
0.05 1.00 0.28 0.39
0.10 1.01 0.26 0.37
0.15 1.02 0.25 0.36
0.20 1.04 0.23 0.35
0.25 1.07 0.21 0.35
0.30 1.10 0.20 0.34
0.35 1.14 0.18 0.34
0.40 1.19 0.17 0.33
0.45 1.25 0.15 0.33
0.50 1.33 0.13 0.33
0.55 1.43 0.1 0.34
0.60 1.56 0.09 0.34
0.65 1.73 0.07 0.35
0.70 1.96 0.04 0.37
0.75 2.28 0.00 0.40
0.80 2.78 0.06 0.44
0.85 3.60 -0.14 0.52

& Note: The model parameters are riy = 0.3, and ray =
0.4.



Clearly, as collinearity becomes more severe, the estimated regression
coefficients are reduced in magnitude, and the VIF is increased. As a
consequence of this, the variances of regression coefficients would be
increased and, the t statistics testing the hypothesis Ho: B; = 0, would become
less and less significant. Gordon (1968) empirically illustrated this effect of
redundancy and further showed that the problem is éompounded as the
repetitiveness, or the number of correlated variables, is increased.

Some researchers in the behavioural sciences use the regression
coefficients (or standardized beta weights) as a measure of the relative
strengths of their associated predictors. However, itis clear from the above that
high collinearity adversely affects the magnitudes and standard errors of the
regression coefficients and hence their tests of significance and confidence
intervals (Pedhazur, 1982, p. 235). Thus the regression coefficients obtained
when collinearity is present may be unreliable measures of the predictors
influence on the response.! Because of these consequences of collinearity,
considerable effort has gone into the detection of collinearity.

Detection of Collinearity

Recall that when the determinant of the (XTX) matrix is zero, an exact
linear dependency exists in the data matrix. Normally one does not encounter
exact linear dependencies in nonexperimental data, but only near
dependencies of greater or lesser magnitude. The more severe the
dependency the closer the determinant will be to zero. Thus, the determinant of
(XTX) has become a natural indicator of the severity of collinearity. Farrar and
Glauber (1967) and Rockwell (1975) both approached the detection of
collinearity in this manner using a chi- squared test to determine whether the
determinant of the comrelation matrix differs significantly from zero. However,
the validity of these tests has been questioned (see Kumer, 1975). In addition,
no test of the determinant will reveal where the linear dependencies lie, thus the
determinant is only of limited usefulness.

Twhen the regression equation is used for purposes of prediction, collinearity among the
predictor variables is not a prablem . Inthis case, itis the accuracy of the predictions of the model
that isimportant and not the standard etror of the regression coefficients.
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A more fruitful approach to the detection of collinearity is via the
eigenvalues (1;) of the (XTX) matrix. Recall that a singular matrix is one with at
least one linear dependency. Such a matrix will also have one or more zero
eigenvalues (See Chatterjee & Price, 1977, p. 162; Tatsuoka, 1971). In
particular, it has been recommended that one compute

tr(XTX)-1

(see Hoerl, Schuenemeyer & Hoerl, 1986), where tris the trace operator. This
is equivalent to the sum of the reciprocals of the eigenvalues as recommended
by Chatterjee and Price (1977, p. 200). As the eigenvalues of the comrelation
matrix approach zero indicating increasingly severe collinearity, this number
will increase in value. Various values have been advocated as indicating
severe collinearity (See Chatterjee & Price, 1977, p. 200; Hoerl et al, 1986),
however, like |[XTX|, this method can only indicate that collinearity is present.
That is, it cannot pin-point the number and location of the linear dependencies
in the data.

In an effort to find the location of collinearity in the data, some authors
(See Cronbach, 1987; Kendall, 1957; Silvey, 1969) have examinéd the number
of small eigenvalues in the data. This method presents a problem in that it is
not clear how to judge whether an eigenvalue is too small. Belsley, Kuh and
Welsch (1980, pp. 104-105) show that even well-conditioned data matrices may
have arbitrarily small eigenvalues.

Belsley, Kuh, and Welsh (1980, pp. 112-113) have therefore come up
with a comprehensive strategy for diagnosing collinearity. Their eigenvalue -
eigenvector analysis can be used to (1) determine when least-squares analysis
is severely degraded by collinearity, (2) identify the number of dependencies in
the data, and the variables involved in them and, (3) identify which regression
coefficients are affected by the collinearities. Largely for reasons of
computational accuracy, Belsley, Kuh and Welsch (1980) base their analysis on
the singular-value decomposition of the regressor matrix. Fox (1984, pp. 147-
149) employs an equivalent technique based on the eigenvalues and principal
components of Rxx where it is assumed that the response and predictor
variables have been standardized and the eigenvectors of Rxx have been
- normalized. For the sake of simplicity, the analysis of Belsley, Kuh and Welsch
(1980) is presented here based on Fox's (1984) assumptions.
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Assuming that the response and predictor variables have been
standardized by subtracting their mean and dividing each by their standard
deviation, the variance of b; is given by the jth diagonal value of the variance -
covariance matrix:

02 1
V(b; ) = o7 B 1()-

it can be shown that the diagonal elements of the inverse of the comrelation
matrix (Rxx1) are equal to

1 .
VlFi=—1‘—_—‘R—i§ ji=1, ...,k

where VIF; is the variance inflation factor of the jth independent variable and R;?2
is the squared multiple correlation coefficient of the jth independent variable
with the remaining k-1 independent variables. Because the VIF; of a particular
variable will increase rapidly as the squared multiple correlation of Xj with the
remaining variables approaches one (indicating a perfect linear dependency), it
can be used to identify which regression coefficients are affected by the
collinearities. That is, a large VIF; value indicates that b; is adversely affected
by collinearity.

To determine the number of dependencies present in the data, Belsley,
Kuh and Welsch (1980} and Fox (1984) define the condition index, 1;:

n=a/ 2k i=1,2, ...k (16)
j

%]

where A is the largest eigenvalue and A; is the jth eigenvalue of Bxx. The
number of large values of n; (>30) will identify the number of dependencies
present in the data. To indentify which predictor variables are involved in
harmful collinear relations Belsley, Kuh and Welsch (1980) suggest examining
each principal components confribution to the variance inflation factor of each
regression coefficient. The proportional contribution of the mth principal
. component to the variance inflation factor of b; is given by
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(17)

where Ay is the jth coefficient of the mth principal component and Py is known
as the variance decomposition proportion of the jth variable on the mth principal
component. According to Belsley et al (1980) " a high proportion of the variance
of two or more coefficients concentrated in components associated with the
same small ... eigenvalue ... is evidence that the comresponding near
dependency is causing problems.” (Belsley, Kuh & Welsch, 1980, p.106). Thus
a large value of P, (>0.5) associated with a large condition index, nm (>30),
indicates that the data is seriously ill-conditioned due to the dependency
represented by the mth eigenvector, and that the jth predictor is involved in that
dependency.

Responding_ to Collinear Data

Once data has been diagnosed as being severely collinear, itis not clear
how torespond. Many procedures have been suggested. They include:

(1)  achieving a well conditioned matrix of predictor scores (Farrar &
Glauber, 1967).

(2)  biased estimation techniques (Chatterjee & Price, 1977, ch. 8;
Hoerl & Kennard, 1970).

(3)  ‘'best' subset selection algorithms (Hoerl, Schuenemeyer & Hoerl,
1986).

Of importance to this research is 'best’ subset algorithms. 'Best’ subset
selection algorithms can be used to select a set of nonredundant variables from
a larger collinear set (Hoerl, Schuenemeyer & Hoerl, 1986). However, it is not
clear how well 'best' subset selection algorithms perform in the presence of
collinearity.
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'‘Best' Subset Selection Algorithms

The most thorough subset selection technique is called "all possible
regressions” or “ all subsets”. This technique fitsall 8) c =1, ..., p regression
models where p is the total number of predictor variables in the set and ¢ is the
subset size. However if p is large then the 2P - 1 different models produced by
this technique rapidly becomes too cumbersome to manage (Younger, 1985, p.
487). Thus several algorithms have been developed which build a ‘best' subset
of predictor variables in a stepwise manner.

Forward Selection

This method begins with no predictor variables in the model. At each
step one variable is added to the model provided that it meets the criterion to
enter. The 'best' subset is reached when either no more variables meet the
criterion to enter or all the variables have been entered into the model. The
criterion to enter is usually stated as an F statistic, so that variable i is added to
the c-term equation if

RSS.-RSS.4
MSEc.i

Fi=max{ > Fin i=c+l,c42,.-,p (18)

where the candidate variables are ordered such that the first ¢ variables are the
variables already entered in the model, RSS. and RSS,; are the residual sum
of squares of the c-term model and c + variable i-term model, respectively, and
MSE.,; is the mean square etror of the c+variable i-term model (Hocking, 1976).

Itis felt that forward selection may miss groups of variables that perform
poorly individually, but very well as a group (e.g. Mantel, 1970). In response to
this criticism the backward elimination method was developed.

This technique begins with all the candidate predictor variables in the
model. Ateach step the variable with the smallest F-ratio is eliminated if it does
" not meet the pre-specified criterion toremain in the model. The 'best’ subset is
reached when all the remaining variables either have been eliminated or else
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meet the criterion to remain. The criterion to remain is usually stated as an F
statistic. Thatis, variable iis deleted from the c-term model if

—min|BSSci-RSS, P
Fi mm[ MSE. }<Fom i=1,2, ,¢ (19)

where the first ¢ candidate variables are those remaining in the model, and
RSS.i, RSS,. and MSE. are defined in a manner similar to equation 18
(Hocking, 1976)

Stepwise Method

In forward selection, it is possible that a variable selected at an early
stage may become superfluous at a later stage as other variables enter the
model. Similarly, in backward elimination a variable deleted at an early stage
cannot be re-entered into the model should it become a significant predictor
again as other variables are deleted. In response to this a combination of the
two methods was developed by Efroymson (1960). The method is basically
forward selection but at each step the model is examined for the possibility of
deleting a variable as in backward elimination. 1 Both a criterion to enter and a
criterion toremain must be specified in this method (Hocking, 1976). The 'best'
subset is reached when either no new variables meet the criterion for inclusion
or when the variable to be entered was the one deleted at the previous step
(Younger, 1985, p. 489).

These methods have been criticized for many reasons. One of the most
troublesome aspects of these methods is that they may not agree on the 'best'
subset of predictor variables. None of these methods guarantee that the subset
with the lowest residual sum of squares value will be found for each subset size
(Berk, 1978; Hocking, 1976).

lllustrating this, Berk (1978) compared the residual mean squares for the

1A backwerd stepwise algorithin can also be implemented [See BMDP, 1988, p.373; Younger,
1985, pp.489,501-502). :
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backward and forward procedures to all subsets. The three methods were
employed on nine data sets. In three of these the subset selection algorithms
agreed, but in three others there were increases of 20% to 30% in residual
variance for the backward and forward procedures over that of the all subsets
procedure. However, when comparing their performance based on known
populations, the differences among the three procedures was much smaller, 7%
or less in eight of the nine data sets. While only the forward, backward and all
subsets procedures were studied here, Berk (1978) notes that the stepwise
procedure is likely to be an improvement.

A further criticism of the backward and forward procedures is that they
imply an order of importance to the order in which variables are added to or
deleted from the model. These procedures were never claimed to have this
property by their original proponents (Hocking, 1976). All those who comment
on the usefulness of 'best' subset selection algorithms, caution that the user
must use his or her own knowledge of the subject under investigation in
examining the results of these procedures (e.g. Flack & Chang, 1987, Hoerl,
Schuenemeyer & Hoerl, 1986).

Inflation of R2 in 'Best’ Subset Selection

A number of criteria for assessing the "appropriateness” of a subset have
been proposed. Among them is the squared multiple correlation coefficient, R2.

Recall from equation 9 that the squared multiple correlation coefficient is
calculated as

R =357 -

R2, then, is a measure of the proportion of the variance in y that is accounted for
by the model. When no subset selection has taken place, a significance test of
R2is ' ’

R2/k

F=G~Roin -k 1) (20) -

with k and n - k - 1 degrees of freedom, where k is the number of predictor
variables and n is the sample size.
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There is one problem, however, associated with the use of R2 as a
measure of the variance explained by a model. Even when the number of
predictors in the model is fixed, the sample R? is a positively biased estimate of
the population coefficient of determination. That is, even when the predictor
variables are uncorrelated with the response variable in the population,
nonzero correlational values would be present in the sample simply due to
random sampling variation (Cohen & Cohen, 1983, pp. 105-106). Since further
capitalization on chance occurs when a subset selection algorithm is used to
choose k predictors from p candidate variables, the bias in R? and hence the F-
statistic is increased (see Berk, 1978). Thus, under cross-validation, a
significant multiple correlation coefficient from a stepwise analysis may shrink
drastically (Wilkinson, 1979).

A number of researchers have used Monte Carlo methods to determine
the distribution of the sample R? statistic under subset selection. Diehr and
Hoflin (1874) developed approximate percentage points for R2. Their results
are restricted to independence among the k predictor variables. When the
predictor variables are collinear their results are conservatively biased.

Rencher and Pun (1980) extended Diehr and Hoflin's (1974) results to
include the average inflation of R? under subset selection, upper percentage
points of R?, correlated predictor variables, and the situation where p, the total
number of predictor variables, exceeds n, the sample size. Using stepwise
regression, Rencher and Pun (1980) showed large increases in the average
value of R2 under selection, especially when p is greater than n. When the
predictor variables were intercorrelated, the inflation of R2 was somewhat less.

Wilinson (1979) constructed tables of the upper 95th and 9Sth
percentage points of the sample R2 distribution in forward selection using Monte
Carlo simulation and least-squares smoothing techniques. Like the Diehr and
Hoflin (1974) study, the results are applicable to uncorrelated predictor
variables. The tabled results are likely to be conservative when the predictor
variables are correlated.

Since R? is commonly used to evaluate subets chosen by these
algorithms, its inflation may be misleading toresearchers. Therefore, Wilkinson
(1979) recommends that researchers use his tables to evaluate the significance
~ of the final equation selected through the a stepwise procedure.
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An alternative approach is to develop an estimate of the population R2

that is not positively biased. One such estimate is given by the shrunken R2
where

'li2=1-(1-R2)n—'_‘—|;~j—1—. 1)

Cohen and Cohen (1983, pp. 106-107) suggest this estimate is appropriate
when k, the number of predictor variables, is fixed. The degree of shrinkage will

be larger for small values of R2 and for large values of the ratio k/n. R2 may take
on negative values which, by convention, are reported as zero.
Whenever the k predictor variable have been selected by a subset

selection algorithm, Cohen and Cohen (1983, pp. 106-107) indicate that R2 will
still be too large. In such a case, they recommend that p, the total number of

candidate predictor variables, be used in place of k in the calculation of R2.

Controlling. Stepwise Algorithms

Controlling subset selection algorithms involves two conéepts. Firstly,
the sample size, n, affects the power of multiple regression to detect effects in
the data. Secondly, the criterion to enter or remain in the model controls the
number of variables thatremain in the final model.

Like any other statistical test, stepwise algorithms require protection
against incorrect results (i.e., false positives) without lowering the power to
detect correct results. This introduces the concepts of «, the probability of
rejecting a true null hypothesis (a Type | error), and B, the probability of failing to
reject a false null hypothesis (a Type Il error). The probability of correctly
rejecting a false null hypothesis, 1-, is called the power of the test.

Any statistical test of a null hypothesis can be seen as a function of these
four parameters:

The power of the test (1-8). i

The probability of Type | error (). As o increases power increases.
The sample size (n). Asn increases power increases.

The magnitude of the effect under study in the population. The larger
the effect the greater the power.

L
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These four parameters are interrelated. For a given sample size and population
effect size, setting the value of @ determines B and vice-versa. Therefore, the
usual method of controlling both & and B at acceptable levels is to set the value
of & and then calculate the sample size necessary to control B for a given effect

size. This technique can be used in multiple regression.

Stopping. Rules in Subset Selection Algorithms

Setting the criterion to enter or remain in the model is usually done by
setting the significance level of the F to enter in forward selection, the F to delete
in backward elimination and both in the stepwise procedure. Because of the
sequential nature of the computations, the number of variables can be
controlled by making the F to enter sufficiently large so that not all the candidate
variables enter the model or the F to delete sufficiently small so that not all the
candidate variables are deleted from the model. Consequently, schemes for
selecting F to enter and F to delete are known as 'stopping rules’ (Hocking,
1976). '

Bendel and Afifi (1977) used the unconditional mean square error of
prediction (UMSE) to establish optimum levels of significance in forward
selection. They compared the mean values of the normalized prediction error
for values of o = 0.05 to .4 in increments of .05 stratified by the number of
degrees of freedom. Their findings suggest that a significance level between
0.15 and 0.25 yields an F to enter that is large enough to keep nonauthentic
candidate variables out of the model yet small enough so that authentic
candidate variables could be detected. The best overall results occurred with a
= 0.15. Hoerl, Schuenemeyer and Hoerl (1986) confirmed these results using
the stepwise procedure.

Other literature (Lovell, 1983; Wilkinson, 1979) states that when subset
selection occurs the level of significance is inflated. Wilkinson (1979) states
that when k is fixed the wusual test of the null hypothesis,
Ho: Bo = B1 = ... = Bx = 0, given by

s B -k-1) _MSR
="(1-R)k - MSE
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has an F distribution with k and n-k-1 degrees of freedom under the null
hypothesis. When k predictors are chosen from p candidate predictor variables
on the basis of sample data, this statistic is hot distributed as a central F variable
(Pope & Webster, 1972). No exact distributions are known except for the two
cases where k =1 and k = p. In the case where k = 1 and the predictor that
maximizes the sample R? is chosen, the F statistic may be used with the critical
value

a=1-(1-&Ww,. (22)

where & is the probability of making at least one Type | error in the set (family) of
tests or the maximum familywise rate of Type | error.

Lovell (1983) compared the familywise levels of significance for various
nominal values of o when choosing k=2 from p=2, 5, 10, 20, 100, and 500
orthogonal candidate predictor variables. Lovell's (1983) results show that the
claimed nominal level of significance is increasingly inflated as the number of
candidate predictor variables increases. So, for example, searching for the best
two predictor variables out of ten candidate variables at a claimed nominal level
of significance of 5% actually yields a familywise error rate of 22.6%. Therefore,
Lovell suggests conducting the test at a more conservative nominal level of
significance to counteract the effect of searching. Consequently, Lovell (1983)
suggests that when choosing the best k out of p candidate explanatory
variables the familywise level of significance can be calculated (approximately)
as

&=1-(1-apk, (23)

where & and o are the familywise and nominal levels of significance,
respectively.

According to the SAS USER'S GUIDE: STATISTICS (SAS
Institute,1985) the choice of the significance level is dependent upon the goal of
the investigation. Ifit is necessary to guard against any variables that do not
~ contribute to the predictive power of the model in the population entering the
model a small significance level is warranted. |f a model that provides the best
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prediction using sample estimates is required a more moderate significance
level is warranted (SAS Institute, 1985, p. 765).

Collinearity and 'Best’ Subset Selection Algorithms

itis clear that collinearity is damaging to least-squares analysis. lis effect
on the size and stability of regression coefficients is well documented (See
Farrar & Glauber, 1967; Gordon, 1968; Rockwell, 1975).

Until recently, however, little work has focused on the effect of collinearity
under subset selection. Citing the serious distortions that are introduced in
standard analysis by collinear data, Chatterjee and Price (1877, pp. 203, 206)
simply state that they do not recommend the use of stepwise procedures in a
collinear situation. They go on to say that with a small number of collinear
variables it is possible to evaluate all-possible equations to select an equation.
They also quote Mantel (1970) in saying that backward elimination is better
able to handle collinearity than the forward procedure.

Beale (1970) disputes Mantel's (1970) assertion regarding backward
elimination. When variables are linearly dependent, it is a pure matter of
chance which variable gets eliminated by backward elimination.  Once
eliminated, a variable is irretrievably excluded from the model even if the other
variables involved in the dependency are subsequently eliminated (Beale,
1970). Gunst and Mason (1977) corroborate this finding. Because all collinear
variables tend to have small t statistics, backward elimination may delete
collinear predictor variables somewhat randomly, i.e., not on the basis of the
true magnitude of the B;in the population (Gunst & Mason, 1977).

Hoerl, Schuenemeyer and Hoerl (1986) note that subset selection has in
fact been used to overcome the problems of least-squares estimation with
collinear data. Their simulation, however, led them to recommend that subset
selection not be used as a general strategy to combat collinearity.

Lovell (1983) investigated the performance of forward selection under
various model conditions. Using twenty candidate explanatory variables Lovell
(1983) artificially generated dependent variables from nine different models. To
observe whether forward selection would be likely to select those candidate
variables which participated in the generation of the dependent variable
‘ (authentic predictor variables) from a larger set in the presence of collinearity,
two sets of quite closely related time series were included among the twenty
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candidate variables. Fiftysamples of 23 observations were generated for each
model. When the null hypothesis was true and the level of significance set to
5%, forward selection correctly specified "none significant” 64% of the time. In
the non-null case, forward selection chose variables that participated in the
generation of the dependent variable 70% of the time. _ '

Lovell (1983) does not quantify the severity of the collinearity present in
the data, stating only that " the candidate explanatory variables used in the
simulations were highly collinear rather than orthogonal" (Lovell, 1983).
Through fear of inflating the Type | error rate, Lovell (1983) kept the level of
significance at 5%, well below the level of 15% to 25% recommended by
Bendel and Afifi (1977). Lovell (1983) also reminds the reader that a sample
size of 23 may be less than required to choose the authentic variables from 20
highly collinear candidate series.

Flack and Chang (1987) used simulation experiments to assess the
effects of sample size (n =10, 20, 40) and the humber of candidate variables (p
= 10, 20, 40) on the frequency of selecting noise variables in the presence of
authentic variables. Flack and Chang (1987) define a candidate variable, X;, to
be an authentic variable if its corresponding regression coefficient in the full
regression model, B;, is nonzero. X; is defined to be a noise variable otherwise.
Collinearity was introduced among the p candidate variables by the
autocorrelation pattern

py; = pi) forj>i=1,2,...,p-1,

where p;; (i #j) is the correlation coefficient between X; and X;. Three values
of autocorrelation were selected (p= 0, 0.3, 0.5). The simple comrelation

between y and X; was set to 0.5 for Xy and X,. For all other candidate variables
pyx; = 0. Flack and Chang (1987) state that a design such as this will yield a

regression equation with two authentic variables when p = 0 and three
authentic variables when p > 0.

Two variable selection procedures were compared. An all-subsets,
procedure (SAS RSQUARE; SAS Institute Inc. 1985) was used to find a subset

of a prespecified size (k = 2). The second procedure used was a stepwise .

procedure (SAS STEPWISE, SAS Institute Inc. 1985) with the default level of
significance of o =.15.
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The all-subsets procedure performed very well when p was small
compared to n, and when the candidate variables were uncorrelated. The
frequency with which authentic variables were chosen decreased as the
number of candidate variables increased, and increased as the sample size
increased.

As the autocorrelation coefficient increased, the frequency with which
noise variables were selected increased, even though with a non-zero
autocorrelation coefficient the number of authentic candidate variables was
increased from 2 to 3.

When the stepwise procedure was used, k, the subset size was not
prespecified. In general the subset size increased with p, the number of
candidate variables, but always remained less than the sample size, n.

Flack and Chang (1987) only present the case where p =0.30, so itis
not known how the stepwise procedure fared under optimal conditions (p
uncorrelated candidate variables where p << n) . The stepwise procedure
performed best when n = 40, p = 10 and p = 0.30, where 34% of the samples
correctly found three authentic variables, 50% found two authentic variables,
and 16% found one authentic variable. The 25th and 75th percentiles of k, the
subset size, were two and four, respectively. The median value of k was three
variables. The 25th and 75th percentiles of Py, the percentage of variables
selected that are noise, were 0% and 50%, respectively. The median value of
Pn was 33% noise variables. When n = 10, p = 40 and p = .30 stepwise
performed very poorly. None of the samples correctly specified three authentic
variables, 16% specified two authentic, 48% specified one authentic, and 36%
specified noise variables only. k had a 25th percentile of eight variables, with a
median value of nine. The 25th percentile of P, was 88% noise variables, with
a median value of 89%.

Clearly, the ability of both subset selection algorithms to select authentic
variables from noise is affected by the sample size, the number of candidate
variables, especially in relation to n, and the degree of collinearity present.
However, the parametric conditions Flack and Chang (1987) investigated are
not typical of psychological research. In particular, the simple comrelation
between the response variable and the authentic variables was set to 0.5, a
value typically higher than those that characterize psychological relationships
~ (Cohen, 1977). Secondly, Flack and Chang (1987) created intercomrelations
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between candidate variables through serial corelation. This form of collinearity
would have limited generalizability to psychological research.

Therefore the purpose of this research was to extend the research on the
selection of candidate variables using best subset selection algorithms under
parametric conditions characteristic of psychological research.

The investigation varied four factors:

1) the number of candidate variables (p);
2) the degree of intercomrelation between the candidate variables (p;x;);

3) the significance levels (@) for inclusions and/or deletion of candidate
variables; and
4) the sample size (n) to simulate different levels of power.
Three subset selection algorithms were compared. Following Flack and
Chang (1987) the proportion of authentic to noise variables were collected

under FORWARD, BACKWARD, and STEPWISE selection (SAS Institute,

1987).
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METHOD
Design

This simulation models the multiple regression design given in (1) where
the k predictor variables in the model are chosen from P candidate variables by
a subset selection algorithm. Among the P candidate variables, 6 authentic
variables and P - 6 noise variables are defined. An authentic variable is
specified to be a predictor variable whose corresponding population regression
coefficient in the full model is nonzero.  All predictor variables with
corresponding zero full model population regression coefficients are defined as
noise variables. '

Data Generation

It was assumed that Y and X; , ..., Xp are randomly distributed and that
their joint distribution follows a P + 1 multivariate normal distribution with mean
0 and covariance (correlation) structure defined below. The N observations for
each of P candidate explanatory variables were generated by the algorithm
employed by Galarneau-Gibbons (1981), McDonald and Galarneau (1975),
and Wichern and Churchill (1978)

Xii = (1" 62)1,2 Z;]' + 5Zi(p+1) i= 1, ...,N; ] = 1, ...,P, (24)

where Z; and Zp,4) are independent identically distributed standard normal
pseudo-random variables and § is prespecified. The resulting candidate
explanatory variables have a pairwise correlation of 82. Of the P candidate
explanatory variables k = 6 were defined to be authentic predictor variables.
These variables were generated using a value of & which reflects a collinearity
condition. The remaining P - 6 "noise" candidate variables were uncorrelated
among themselves and with the authentic predictor variables.
Pseudorandom unit normal deviates were generated by the procedure

due to Marsaglia, MacLaren and Bray (1964).
_ The number of candidate predictor variables were P = 12, 18, and 24.

This represented the case where 50% (50%), 33.3% (66.7%) and 25% (75%) of
the available predictor variables were authentic (noise), respectively.
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Three different sets of correlation were considered corresponding to
Pxixj = 0.00, 0.40, and 0.80. The range of these correlations typify the size of
intercorrelations found in psychological test batteries (See Cronbach, 1987;
Sax, 1989; Thorndike & Hagen, 1977). A value of 6 = “\/pxixi corresponding to

each value of Pxix; Was used to generate three sets of explanatory variables

having the specified correlation structure.
Observations on the dependent variable were generated by

Vi =PBo+P1 Xit +B2Xiz +PaXiz +PaXia + BsXis +Pe Xig v€1 i=1,....N, (29)

where the e; are independent identically distributed standard normal
pseudorandom numbers and the X; are the predictor variables previously
generated. The first six candidate predictor variables participated in the
generation of the dependent variable and were therefore authentic predictor
variables. The remaining P - 6 candidate predictor variables did not participate
in the generation of the dependent variable and were thus "noise” variables.

The explanatory variables and the response variable were then
standardized so that XTX and XTy were in correlation form; hence (o will be
equal to zero due to the standardization process (Galarneau-Gibbons,1981;
McDonald & Galarneau, 1975; Wichern & Churchill, 1978).

it was decided that the squared population coefficent of determination
(pyx;2) of the full model should be chosen to reflect a medium effect size in the

noncollinear case (i.e. Pxixj = 0.0). Using equation 12, the conventionally
medium squared coefficient of determination value was calculated to be
0.130435.

Recall from equation 11 that the squared semipartial correlation
coefficient, sr;2, of a predictor variable, X;, is the proportion of the total variance
in y accounted for by X; when the other predictor variables are already in the
model. lfthere are k authentic predictor variables in the model then

'SSR, - SSRy;
SZ= s

where SSRy, and SSRy.; are the sums of squares for regression for the k-term
" model and the k minus variable i - term model, respectively and TSS is the total
sums of squares. lfthe k predictor variables in the model are uncorrelated, R? is
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equal to the sum of their k squared semipartial correlation coefficients.
Assuming that these coefficients are equal their value is given by

sri2=F—:(—.

When the k variables in the model are uncorrelated, the semipartial correlation
coefficient is equal to the simple correlation coefficient of the predictor variable
with the response variable. Thus the value of the simple correlation between a
authentic predictor variable and the response variable reflecting a medium
effect size in the honcollinear case may be calculated as

KAAYY

(R2)1l2
where the calculated value of py,2 representing a medium effect size (py;? =
.130435) is substituted for R2 and k, the number of authentic predictor variables,
is equal to six.

The regression coefficients are calculated from the relationship

B = (R Tryy (26)

where Ryxx is a predictor variable correlation matrix and ryy is a vector of
correlations between the response variable and the authentic variables. Table
4 shows the values of Rxx, Iy, B. Pyx;2. and N used in this simulation. [tmay be
noted that when the reponse and predictor variables have been transformed by
the correlation transformation, the squared coefficient of determination may be
calculated as

Pyx;? = BTryy

which, according to Equation 26, is dependent on Bxx. In fact, Table 4 shows

that the squared population coefficient of determination is reduced from a value
representing a medium effect size when py;, = 0.0 to a value representing a

conventionally small effect size when Pxixj = 0.8 according to the criterion of
* Cohen and Cohen (1983, p. 161). '



Table 4

Data Generation Parameters

Rxx rxy B Pyx;2 N
1000000 .. 0] 147442] | 147442] 130435 30
0100000 .. 0 147442] | 147442 60
0010000 .. 0 147442 | 147442 90
0001000 ..0 147442| | 147442
0000100 ..0 147442 | 147442
0000010 ..0 147442] | 147442

00000 O 0 0

000000 1 lo | Lo

"4 4 4 4 440 .0 | .147442] | o049147] 043478 30
41 4 4.4 40 .0 147442] | 049147 60
4 41 4440 .0 147442] | 049147 90
4 441 4 .40 .0 147442| | 049147

4 4 441 40 .0 147442] | 049147

44 .4 4410 .0 147442] | 049147

000000 0 0

000000 1 Lo 1 Lo
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Table 4
Data Generation Parameters

RXX Ixy B pyxi2 N
1 8.8 . 8.8 80 ..0 147442 .029488 .026087 30
81 8.8 . 8 .80 ..0 147442 .029488 60
8 81 8.8 .80 .0 147442 .029488 90
8 881 8 80 ...0 147442 .029488

8 8 8 81 80 ..0 147442 .029488

8 8 8.8 81 0 .0 147442 029488

0 0 0 0 O O .0 .0
000000 0 ] 0 A




For each combination of the above parameters, the ideal sample size, N,
was defined as the sample size that would yield 80% power to detect the
squared semipartial comrelation coefficient. This is in accordance with Cohen
and Cohen (1983, pp. 116-119) who proposed that a behavioural science
researcher should adopt a power value of .80. To determine the sample size
necessary to test the null hypothesis that any semipartial comrelation or
regression coefficient for a given X; is zero equations (18) and (19) were
employed. Toinvestigate the effect of sample size in the detection of authentic
variables, samples sizes that were 50% and 150% of the ideal sample size
were also generated (See Table 4).

Three subset selection procedures were compared. The SAS
STEPWISE procedure allows for the three different stepwise techniques:
FORWARD,BACKWARD, and STEPWISE. Within a subset selection algorithm,
it is possible to vary the level of significance for inclusion and/or deletion in the
model. Therefore, level of significance values of 0.15 0.05 and
ap =1 - (1 - &M (where & = 0.15 represents the familywise level of
significance) formed a within algorithm condition.

The 0.15 value was chosen as it reflected the recommendations of
Bendel and Afifi (1977) and corresponded to the value used by Flack and
Chang (1987). The ap value was chosen toreflect a concern for the issue of
multiplicity of testing. Lovell (1983) and Wilkinson (1979) documented how the
maximum familywise Type | error rate (MFWER) was inflated when k predictor
variables were chosen from P candidate predictor variables. For P = 12, 18,
and 24 candidate predictor variables, the MFWER equals .858, .346, and .980,
respectively, when a = 0.15. The value of o, therefore was chosen to limit the
MFWERto 0.15. For P =12, 18, and 24, the protected inclusion and deletion
values (ap) were 0.0134519, 0.0089882, and 0.0067481, respectively.

Finally, since many statistical software packages use 0.05 as a default
leve! of significance [See for example BMDP (Dixon et al, 1988 p. 381), SPSSX
(1985, p. 57), and MINITAB (Ryan et al, 1981)], this value was also investigated.
One should note however, that, for @ = 0.05, the MFWERs are .460, .603 and
.708 for P =12, 18, and 24, respectively.

The nominal significance levels (@) used in the simulation compared to

the MFWER (&) for choosing k = 6 from P = 12, 18, and 24 candidate variables

are given in Table 5.
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A complete crossing of all the levels of the three data conditions (pxx;. P,
and N) and the single within algorithm condition () yields a total of 81 sets of
conditions.

250 replications of each of the 27 possible combinations of the three data
conditions were generated according to the algorithms given in equations 22
and 23 and stored on disk using FORTRAN. The data was then reread from
disk by SAS and processed by each of the three subset selection algorithms in
combination with each level of the within algorithm condition. Results from each
of these algorithms were rerouted to disk so that SAS could reread this
information and strip the values of R2, k and number of authentic candidate
variables in the final subset for further processing (see Appendix A for

FORTRANand SAS programs).

40



8

Table 5
Level of Significance Conditions
Maximum

Number of Nominal Familywise
Candidate Type | Error Rate  Type | Error Rate
Variables (P) (@) MFWER (&)
12 .05 .460
18 .05 .603
24 .05 .708
12 15 .858
18 15 .946
24 15 .980
12 .0134519 15
18 .0089882 15

24 .0067481 15




Statistics

Each combination of the three data conditions and one within algorithm
condition were tested on each of the three subset selection algorithms: (1)
STEPWISE, (2) BACKWARD, and (3) FORWARD.

In any stepwise subset selection algorithm, the number of variables
selected is usually not prespecified. Therefore k, the final subset size, was a
random variable determined by the 'stopping rule’ used by the subset selection
algorithm. In general, a variable is entered into the equation when a test of its
partial correlation is significant at some prespecified level of significance and
deleted when itis not significant. The procedure is terminated when either no
more significant variables are left to be entered into the model, no more
insignificant variables are left to be deleted from the model or, in the case of the
STEPWISE algorithm, the only significant variable to be entered into the model
is the one deleted from the model in the last step. The final subset chosen
when the procedure terminates is deemed the ‘best’ subset based upon the
stopping rule used.

Upon termination of the procedure four characteristics of the final subset
were noted:

1} Kk, the subset size,

2) R2?, the multiple coefficient of determination,

3) Cp, the nhumber of noise variables in the final subset, and
4) Cy, the number of authentic variables in the final subset.

From these variables, three additional variables were calculated:

1) Re2=1-(1-R?) N‘”r‘t]";;_jT , the shrunken value of R2 (See Cohen &

Cohen, 1983, p. 106),

2) Rp'i’ =1-(1-R? N_,F_F%_T_T , the shrunken value of R2 appropriate
when subset selection has taken place (See Cohen & Cohen, 1983,
pp. 106-107), and

3) Pn= % the proportion of the final subset that is noise.
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Values for each of the seven dependent variables above were calculated
and summarized over the 250 replications by their mean and standard
deviation.

When it occurred that no variables remained in the final subset, R2, Ri?
and R2 were set to a missing value rather than zero, since Ri2 and Ry2 may
legitimately take on the value zero when their calculation leads to a negative
number. This was deemed the best response. In such a case, C4 and Cy were
set to zero and hence k =C, + Cy=0 and Py = Cy/ k leads to a missing value.
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RESULTS
Selection of Authentic Predictor Variables in the Presence of Noise

In the generation of each sample of a single response variable and P
candidate predictor variables, the first six (X;, X2 , ..., Xe) predictor variables
were defined to be authentic predictor variables. That is, these predictor
variables participated in the generation of the response variable by having
nonzero regression coefficients. The remaining P - 6 predictor variables, which
did not participate in the generation of the response variable, were defined to
be noise. Ofinterest, then, was the effect that (1) the three study factors (degree
of collinearity, number of candidate variables, and sample size), (2) the subset
selection algorithms (STEPWISE, FORWARD, and BACKWARD) and (3) the «
inclusion/deletion levels (p, .05 and .15) had on the selection of authentic
predictor variables in the presence of noise. Thus, a comparison of the effect
that the three study factors within each inclusion/deletion level of significance
had on (1) the mean number of authentic variables (Ca), (2) the mean number
of noise variables (Cp) and (3) the mean percentage of the final subset that is
noise (Pn), may be found in Tables 6, 7, and 8 for the STEPWISE, FORWARD
and BACKWARD procedures, respectively (see Appendix B for associated
standard etrors).

An examination of the results obtained within the subset selection
algorithms shows that when @ = ap the mean value of C, was consistently less
than one for all three algorithms. Thatis, often no authentic variables remained
in the final subset at this level of significance. As the level was increased to
0.15, the mean value of Ca was increased to a value generally greater than
one. However, even at this level, when Pxixj = 0.8 the mean value of Cx
remained generally less than one in the STEPWISE and FORWARD algorithms
(See Tables 6 and 7). The mean values of Cy were similarly affected by a
change in the inclusion/deletion levels.



Table 6

Mean Frequency of Authentic and Noise Variables and %Noise Contained
in the Final Subset in the STEPWISE Procedure @

I/D Level of Significance ()

p 0.05 0.15
Variable

Pxix; P N Ca Cn Pn Ca Cn Pn Ca Cn Pn
0.0 12 30 0228 0084 257 0680 0368 322 1.516 1.100 419
60 0.476 0.09% 158 1.076 0.316 20.0 2.192 0.928 27.9

90 0.728 0.0e8 8.1 1.580 0.300 129 2708 0.848 22.1

18 30 0200 0.112 349 0.684 0652 477 1604 2120 55.2

60 0360 0.100 223 1.076 0.69% 372 2000 2.028 48.8

90 0.492 0.080 148 1.560 0.656 295 2.712 1.980 405

24 30 0124 0112 473 0672 1.132 59.0 1.548 3.588 68.9

60 0.288 0.128 28.7 1.172 0.984 440 2.104 3.012 56.2

90 0460 0.132 212 1.580 0.964 358 2760 2.952 50.5

0.4 12 30 0180 0108 359 0.460 0.288 34.7 1.032 0.948 451
60 0.308 0.072 17.2 0.580 0.292 281 1.136 0.940 429

90 0444 0088 128 0.744 0312 23.0 1.292 0.968 37.4

18 30 0.108 0.108 468 0476 0704 56.3 1.036 2200 ©66.1

60 025 0.128 30.5 0600 0.756 521 1.208 2.100 ©1.1

90 0.3% 0.104 162 0824 0624 355 1308 1.904 543

24 30 0140 0.088 368 0.456 1.104 69.4 1.216 3.708 745

60 0204 0.136 38.1 0.584 0.900 58.5 1.204 2.860 67.7

90 0.332 0.132 247 0.708 0.896 50.1 1.316 2.804 649

0.8 12 30 0.108 0.068 36.8 0.324 0.324 48.0 0.788 1.000 56.0
60 0.204 0.100 30.6 0.440 0.328 39.4 0.800 0.99 51.5

90 0.308 0.076 185 0.592 0.240 247 1.052 0852 423

18 30 0.116 0.084 40.8 0.300 0.744 70.5 0.776 2.080 73.5

60 0.168 0.132 40.0 0.400 0.604 57.2 0.884 1.884 67.2

90 0.236 0.108 29.7 0.580 0.604 46.4 0976 1.836 62.3

24 30 0.108 0.092 433 0.404 1.052 69.6 0956 3.532 79.1

60 0.128 0.108 472 0.456 0.900 63.3 0.944 2916 76.0

90 0.256 0.148 33.9 0.560 0.968 59.3 1.024 3.012 743

aNote: Pxixj = Degree of collinearity, P = Number of candidate variables, N =

Sample size; ap = 1-(1-&)1P where &=0.15; C, is the frequency of
authentic variables, Cyis the frequency of noise variables, and Pyis the
percentage of noise variables in the final subset;
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Table 7
Mean Frequency of Authentic and Noise Variables and %Noise Contained

in the Final Subset in the BACKWARD Procedure &

I/D Level of Significance (o)
Op 0.05 0.15
: Variable
Pxixi P N Ca Cn PN Ca Cn Pn Ca Cn Pn

60 12 30 0312 0.140 305 0952 0588 352 1.856 1.368 41.9
60 0.508 0.108 165 1.192 0.356 195 2360 1.048 28.4
90 0.808 0.092 9.2 1648 0332 135 2808 0972 239

18 30 0.256 0.208 421 1.164 1.412 51.8 2324 3.628 585
60 0.448 0.184 264 1.216 0.89% 40.0 2248 2500 51.4
90 0608 0.120 145 1.744 0780 300 2884 2264 419

24 30 0192 0316 516 1.504 3676 655 2816 7.804 727
60 0324 0176 31.3 1.332 1.552 495 2432 3944 595
90 0512 0.168 226 1.792 1.160 37.0 3.000 3.472 515

0.4 12 30 0.19 0112 36.7 0632 0.488 381 1.460 1388 454
60 0.344 0104 20.0 0668 0.332 296 1.364 1.088 43.0
90 0.452 0.112 13.9 0.824 0.348 236 1.492 1.068 375

18 30 0.156 0240 57.7 0.812 1.348 609 1904 3516 645
60 0276 0.168 33.3 0.744 0972 524 1.472 2632 621
90 0.384 0.124 18,4 0.880 0.760 378 1.492 2212 559

24 30 0204 025 488 1.228 3.264 703 2828 8.104 743
60 0204 0.168 41.7 0716 1.288 ©61.1 1.584 3.856 69.9
90 0.344 0.144 257 0.800 1.136 53.0 1612 3.320 644

0.8 12 30 0224 0116 339 0616 0540 454 1516 1328 43.9
60 0276 0.104 276 0652 0.364 326 1.384 1.092 418
90 0376 0.088 184 0776 0.276 234 1.456 0972 359

18 30 0.204 0204 414 0.852 1.404 618 1.920 3.580 64.2
60 0244 0.148 36.3 0.760 0.768 481 1532 2.392 589
90 0292 0.128 299 0.748 0.644 432 1.456 2.148 56.6

24 30 0264 0416 489 1.480 3.964 68.0 2.856 8.076 735
60 0.128 0.156 53.0 0.784 1.392 60.8 1.588 3.824 70.0
90 0.316 0.176 33.0 0.752 1.216 571 1.404 3456 70.0

aNote: See Table 6 note.



Mean Frequency of Authentic and Noise Variables and %Noise Contained

Table 8

in the Final Subset in the FORWARD Procedure

I/D Level of Significance ()

Op 0.05 0.15
Variable

Pxix; P N Ca CnN Pn Ca CnN Pn Ca Cn Pn
0.0 12 30 0228 0.084 257 0684 0368 322 1536 1.104 416
60 0.476 0.0% 158 1.076 0.316 20.0 2.204 0936 279

90 0.728 0.068 8.1 1.580 0304 13.0 2716 0.848 221

18 30 0.200 0.112 349 0.692 0.652 475 1640 2.180 552

60 0360 0.100 22.3 1.072 0.728 379 2.024 2064 489

90 0.492 0.080 148 1.560 0660 296 2728 2.020 407

24 30 0124 0112 47.3 0672 1.140 591 1584 3648 688

60 0.288 0.128 287 1.184 0988 438 2.152 3.056 56.0

90 0.460 0.132 21.3 1580 0976 359 2.788 3.016 50.7

0.4 12 30 0.180 0.108 359 0.460 0.288 347 1.052 0960 449
60 0.308 0.072 17.2 0.580 0.292 291 1.140 0948 430

90 0.444 0.088 128 0.744 0312 230 1292 0968 37.4

18 30 0.108 0108 468 0.480 0.708 56.2 1.068 2228 657

60 0.256 0.128 305 0604 0756 52.0 1.248 2128 608

a0 0.396 0.104 16.2 0.824 0628 355 1.344 1912 539

24 30 0140 0088 37.9 0460 1112 696 1.268 3804 743

60 0.204 0.136 38.1 0588 0892 583 1240 2.852 673

80 0.332 0.132 247 0.708 0.89%6 501 1.332 2816 647

08 12 30 0108 0.068 36.8 0.328 0.324 479 0808 1.016 559
60 0.204 0100 306 0.440 0.328 394 093800 1.000 bi16

90 0.308 0.076 185 0.592 0.240 247 1.060 0.852 423

18 30 0.116 0.084 408 0.300 0.744 705 0.784 2108 736

60 0.168 0.132 40.0 0.400 0604 572 0884 1928 676

90 0.236 0108 29.7 0.580 0608 465 0992 1840 622

24 30 0108 0092 433 0.404 1.080 700 1.016 36588 78.9

60 0.128 0108 472 0.456 0900 ©63.3 0972 2948 758

a0 025 0.148 339 0560 0972 594 1036 3036 742

aNote: See Table 6 note.
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Within each method, the maximum mean value of C, is to be found when
a=0.15 Pxixj = 0.0 and N = 90. For these conditions and for each value of P
(12, 18 and 24) the mean value of C4 equals 2.708, 2.712 and 2.760 for the
STEPWISE procedure, 2.808, 2.884, and 3.000 for the BACKWARD procedure,
and 2.716, 2.728, and 2.788 for the FORWARD procedure. Hence, none of the
subset selection procedures consistently contained all six of the authentic
variables in their final subset. In fact, the coresponding mean values of Cn
indicated that the final model may contain a large proportion of noise variables,
especially when P =24. For P =12, 18 and 24, the mean value of Cy equals
0.848, 1.980, and 2.952 for the STEPWISE procedure, 0.972, 2.264, and 3.472
for the BACKWARD procedure, and 0.848, 2.020 and 3.016 for the FORWARD
procedure. The results for Pyshow this to be true.

In addition, note that while results for the STEPWISE and FORWARD
procedures were generally very consistent, the mean values of both Cp and Cy
were increased in the BACKWARD procedure for each level of significance
(See Table 8). This indicates that the BACKWARD procedure likely eliminates
fewer variables (both authentic and noise) to obtain the final subset. The same
is not always true of Py. The mean values of Py in the BACKWARD procedure
generally exceeded those of the STEPWISE and FORWARD procedures when
Pix; = 0.0 and 0.4. However, when Pxix; = 0.8, the BACKWARD mean Pyresults
were generally less than those of the other algorithms. Thus, the BACKWARD
procedure may obtain a final subset with both more authentic variables and a
lower proportion of noise than either the STEPWISE or FORWARD procedures
when collinearity is high. Still, when Pxixj = 0.8, P =24 and N = 30 the mean
percentage of noise variables in the BACKWARD procedure was 73.5%
(compared to 79.1% and 78.9% in the STEPWISE and FORWARD procedures,
respectively).

From the above findings, it is clear that trends due to the degree of
collinearity, the number of candidate variables and sample size do exist in the
analysis of Ca, Cn, and Pn. Therefore, tests for trend, employing orthogonal
polynomials, were used to examine the effect of each of the three data
conditions (Pxix;» P and N) on each of the three dependent variables (Ca, Cn,
and Pyp) within each combination of method (STEPWISE, BACKWARD, and
* FORWARD) and the within algorithm condition, @ (o, 0.05 and 0.15). Two
contrasts representing the linear and quadratic effects of each of the factors



were computed. Additionally, each of the possible two-way and three-way
interaction contrasts were calculated for a total of 26 one degree of freedom
contrasts.

The sums of squares for each confrast were generated using the
Contrast statement in the SAS procedure, GLM. To evaluate the importance of
each contrast, an r2 value, calculated as the contrast sum of squares divided by
the model or explained sum of squares, was defined. Tables 9, 11, and 13
contain an enumeration of the r2 values associated with each of the trend
components for each of the dependent measures.

Cohen (1969) gives conventional "small", "medium” and "large" values
for squared correlation coefficients in behavioural science. Using these values
as a reference, r2 values of less than 0.01 were defined as negligible, values
from 0.01 to less than 0.09 were defined as "small", values from 0.09 to less
than 0.25 were defined as "medium” and values greater than or equal to 0.25
were defined as "large”. Classification of the r2 values in this way, provides a
description of the strength of the relationship between the factor, as represented
by the contrast, and the dependent variable. Only trend components
accounting for at least one small effect size for any combination of algorithm
and inclusion/deletion level were enumerated.

To determine the direction of any linear relationship between the factors
and the dependent variables, multiple linear regression procedures were used.
That is, each trend component represented a predictor variable in the
regression equation. Each of the dependent variables were regressed on the
fullrank data matrix thus produced. The sign of the regression coefficient
corresponding to the linear trend component vector indicates the direction of the
linear relationship. The sign of the linear relationships have been included in
the tables of r2 values so that the strength and direction of the linear
relationships are immediately apparent.

Trend Analysis gf_gxixi. P and N within Method and inclusion/Deletion Level

Main Effects

Collinearity. Table 9 contains the r2 values associated with the trend
analysis of Ca. The results show that increasing collinearity (Pxix;) had a large

negative linear effect on the number of authentic variables in the final subset.
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Within each combination of algorithm and inclusion/deletion level, the linear
contrast in Pxix; resulted in a large r2 value. A small to moderate quadratic

component was shown to exist in the BACKWARD procedure where the
quadratic contrast in py;. resulted in a small r2 value when a = ap and a
medium r2 value when a =0.05 and 0.15. As well, a small quadratic effect was
shown to exist when o =0.05 and 0.15 within the other algorithms. The first part
of Table 10 shows the effect of collinearity on Ca. The strong negative effect of
increasing  collinearity is plain, particularly as pyx; was increased from the
uncorrelated case (pyx; = 0) to the correlated cases (py;x; = 0.4 and 0.8).

In comparison, the frend analysis for Cn given in Table 11 showed that
the degree of collinearity did not significantly affect the number of noise
variables in the final subset. A small quadratic effect was evident only in the
STEPWISE and FORWARDprocedures and only when o = ap. The remainder
of the contrasts in Pxix; resulted in r2 values below 0.01. The lack of a trend due
to increasing collinearity is evident in the first part of Table 12.

On the other hand, a trend due to the degree of collinearity is again
evident in the analysis of Py (See Table 13). Within the STEPWISE and
FORWARD procedures, a moderate to large positive linear relationship was
shown to exist for each value of . To a lesser extent, the same relationship
was shown to exist within the BACKWARD procedure. As well, a small
quadratic effect due to Pxix; Was shown to exist when « = 0.05 and 0.15 in the
BACKWARD procedure.

The positive effect of increasing collinearity on the mean proportion of
hoise variables in the final subset is shown in the first part of Table 14. It
appears thatincreasing the value of Pxix; from 0.0 to 0.4 had the greatest effect
on Py in the BACKWARD procedure. The mean percentage noise was
increased from 38.1% to 48.0% when o = 0.05 and from 47.8% to 57.7% when
o = 0.15 when collinearity was increased from 0.0 to 0.4. A further increase in
collinearity did not measurably change the mean value of Py at these levels of
a. In the STEPWISE and FORWARD procedures each increase in Pxix;
produced a corresponding increase in Py at each level of a.

Number of Candidate Variables. An analysis of the effect of increasing the

number of candidate variables (P) on Cx indicated the presence of a moderate

_ positive linear trend within the BACKWARD procedure when a = 0.05 and 0.15
(See Tables 9 and 10). The mean value of Co was increased from 0.884 and

1.744 when P =12 to 1.154 and 2.236 when P =24 for @ =0.05 and
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Table 9
Proportion of Model Sum of Squares Accounted for by Contrast 2
Dependent Variable: Ca
METHOD: STEPWISE BACKWARD FORWARD
I/D LEVEL (a): Up 05 15 Op 05 15  0Op .05 15
CONTRAST
Pxix; (L} -t - - - -L - -L -L -L
Pxix; (0) 5 5 5 M I 5 5
P (L) -5 + + =l +1 +1 -5 + +
N (L) +L +L +N +L + +5 +L +L +1
N (Q) ) S S
Prixi (L) x P{L) g g 5
P(L) x ML) 5 5 5 M®w n M 5 § 5
Px;x; L0) x N(L) 5 5 5 5 5 5
P{L) x N{L) S S S i S
P(L) x N{Q) S 5

aNote: I/D = Inclusion/Deletion;
+{- signs indicate the direction of the relationship;
ap = 1-(1-&)1P where &=0.15;
r2 < 0.01 = Negligible effect (left blank except for possible sign of
relationship),

0.01 <r2 <0.09 = Small effect(S),
0.09 <12 < 0.25 = Medium effect (M),

0.25 <r2 = Large effect (L);

Pxixj = Degree of collinearity, P =Number of candidate predictor variables,

N =

sample size;

(L) = Linear trend, (Q) = Quadratic frend;



Table 10

Method

STEPWISE BACKWARD FORWARD
I/D Level (o)

@ 05 15 o .05 15 @ .05 .15

0.0 0.373 1.120 2127 0.441 1.394 2525 0.373 1.122 2152
0.4 0263 0604 1.194 0.284 0.812 1.690 0.263 0.605 1.220

18 30 0.141 0.487 1.139 0.205 0.943 2.049 0.141 0.491 1.164

24 30 0.124 0511 1.240 0.220 1.404 2833 0.124 0512 1.289

aNote: See Table 6 note.
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Table 11
Proportion of Model Sum of Squares Accounted for by Contrast 2
Dependent Variable: Cy
METHOD: STEPWISE BACKWARD FORWARD
I/D LEVEL (o): @ 05 15 o 05 15 op 05 .15
CONTRAST
Pxix; (L) + - - + - - + - -
Pxix; (0) 5 5
P (L) L +L 4L +L 4L 4L 4L 4L +L
P {Q) S
N (L) +5 -5 -§ -L -M -H +§ -5 -§
N (Q) 5 5 S5 § 5
Prix; (L) x P(0) 5 S
Pxix (0) x PLL) S
Prix; (0 x P(Q) 5
Prix; (L) x N{L) 5 5
P{L} x N(L) M S M (I 5
P{L) x N{Q) S S S
P{Q} x N(L) 5 5 § §
P(Q) x H{Q) 5 5 5
Prias (LI xP(L)XH(L) 5
Pxiz {LIxP(OIxN(Q) 5 S
Prixi LQIxPLLIXN(Q) 1 5 il

aNote: See Table 9 note.



Table 12
Eftect of Collinearity, Number of Candidate Variables and
Sample Size on the Mean Values of Cp&

Method

STEPWISE BACKWARD FORWARD
/D Level (o)

@ 05 15 o 05 15 @, .05 .15

0.0 0.101 0674 2.062 0.168 1.195 3.000 0.101 0.681 2.097
0.4 0.107 0.653 2.048 0.159 1.104 3.020 0.107 0.654 2.068

18 30 0.101 0.700 2.133 0.217 1.388 3.574 0.101 0.701 2172

24 30 0.097 1.096 3.609 0.329 3.635 7.995 0.097 1.111 3.680

30 0.137 0.943 2.923 0.163 1.171 3.416 0.137 0.948 2956
aNote: See Table 6 note.
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Table 13
Proportion of Model Sum of Squares Accounted for by Confrast 2
Dependent Variable: Py

METHOD: STEPWISE BACKWARD FORWARD
11D LEVEL (a): Op 05 15 op 05 15 op .05 .15
CONTRAST
Pxix; (L) #M #M +L 45 +5  +5  #l1 +1 +L
Pxix; (Q) 5 S
P (L) #M 4L L +L 4L +L #M +L 4L
P (Q) 5§ S S 5 5 5
N (L) -t - -n -t - - -L -n -n
Pux (L) x N(L) S S S S
Pxx; (L) x H(Q) 5 5 5
Pxx; L0) x N(L) 5
Paix (OIxP(LIXN(O) 5 5
Prix (QIxP{QIxN({L) g g g

aNote: See Table 9 note.



Table 14
Effect of Collinearity, Number of Candidate Variables and
Sample Size on the Mean Values of Py?

Method

STEPWISE BACKWARD FORWARD
I/D Level (@)

o 05 15 @ .05 15 @ .05 .15

30 38.1 552 627 432 565 603 381 553 8626
60 28.3 447 555 301 445 0540 283 447 555
90 189 353 499 197 356 487 189 354 499

aNote: See Table 6 note.




0.15, respectively.. This is contrary to what one would expect, since the number
of authentic variables remains constant as P increases. This trend was
reversed but remained moderate in size when o = p. (This is because the
value of o representing a familywise level of significance of 0.15 is reduced as
Pincreases.) The effect of P on C4 within the other algorithms was negligible to
small.

In contrast, a strong positive linear relationship between Cpn and P was
evident for every combination of subset selection algorithm and «
inclusionfdeletion level. (See Tables 11 and 12) Clearly, as the number of
candidate predictor variables was increased, the number of noise variables in
the final subset was also increased. For example, when o = 0.15, the mean
value of Cp was increased from 1.147 when P =12 t0 5.095 when P = 24 in the
BACKWARD procedure and corespondingly from 0.953 when P =12 to 3.154
when P =24 in the STEPWISE procedure. Unlike the case of C,, this is exactly
as one would expect since the ratio of noise to authentic variables was
increased from 2 to 4 for P =12 and 24, respectively.

A similar moderate to large positive relationship was shown to exist
between P and Py for all algorithm-o level conditions (See Table 13).
Furthermore, a small quadratic relationship between Pyand P was also evident
when o = 0.05 and 0.15 within each of the algorithms. The increase in the
percentage of the final subset that was noise was in the range of 10% to 20% as
P was increased from 12 to 18 and from 5% to 10% as P was further increased
to 24 (See Table 14).

Sample Size. Withrespect to the effect of sample size on the number of
authentic variables in the final subset, Table 9 shows that sample size had a
medium to large positive effect on Cp in the STEPWISE and FORWARD
procedures for all alevels. On the other hand, the relationship between N and
Ca was not stable over increasing « in the BACKWARD procedure. Here, the
linear effect of N was large and positive when o = ap, but was reduced to a
negligible effect and a small effect, respectively, when o = 0.05 and 0.15. As
well, a small quadratic effect due to N was evident in the BACKWARD
procedure for each value of a. Nonetheless, in all three subset selection
procedures the relationship between N and C, was shown to be positive.

The positive linear effect of N on C, is evident in Table 10 within the
' STEPWISE and FORWARD procedures. ltis clear that increasing the sample
size enables these two subset selection procedures to detect more authentic
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predictor variables. However, though the linear effect of N was shown to be
moderate to large in size, the actual increase in C, was shown to be small. For
example even when o = 0.15, the mean value of Co was only increased from
1.164 when N =30 to 1.683 when N = 30 in the STEPWISE procedure. In fact,
in all cases, the mean value of C, remained well below the actual number of
authentic variables present. This may be partially due toa Pxixi X N interaction.

In contrast to the analysis of C,, sample size was shown to have a small
linear effect on Cy in the STEPWISE and FORWARD procedures, and a
moderate to large linear effecton Cyin the BACKWARD procedure (See Table
11). For the former procedures, a small linear effect due to N was evident for all
levels of o, but the sign of the relationship was changed from positive when
o = Optonegative when a = 0.05 and 0.15. In the BACKWARD procedure, a
large to medium linear effect due to N was evident for each level of @ and the
sign remained negative. This effect is evident in Table 12 where the mean
value of Cywas decreased from 4.310 when N = 30 to 2.209 when N =90 at o
=0.15. Furthermore, a small quadratic effectin N was also present for each -
level for this procedure. A similar though less dramatic effect was evident within
the STEPWISE and FORWARDprocedures. Thus, itis clear that an increase in
sample size aids the reduction of the number of noise present in the final
subset.

As expected, a similar effect was shown to exist for sample size when the
dependent variable was the percentage of noise in the final subset. A moderate
to strong negative linear effect was evident for all algorithm-« level conditions
(See Tables 13 and 14). However, unlike in the analysis of C4 and Cy, the
strength and direction of the effect was fairly consistent within all subset
selection methods. Generally, each increase in N was able to reduce the
percentage of noise variables by about 5% to 10%.

Two-way Interactions

In the analysis of two-way interactions, none of the variables displayed
any evidence of a consistent Pxix; X P interaction (See Tables 9, 11 and 13)

However, a small to moderate interaction effect between Pxix; and N on C, was
evident in Table 9. A small Pxix; linear X N linear effect was shown to exist in
" the STEPWISE and FORWARD procedures and a medium Pxix; finear X N

linear effectwas shown to exist in the BACKWARD procedure for each level of
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a. Aswell, a small py;x; quadratic X N linear effect was shown to be present
when a =0.05 and 0.15 within each of the algorithms.

Table 10 shows that for the STEPWISE and FORWARD procedures,
sample size maintained its positive effect on C, within each value of Pxix;-

Increasing N seems to be most effective when Pxizj = 0.0. Here, for example
when o =0.15 and Pxix; = 0.0, the mean value of C, was increased from 1.556
when N = 30 to 2.727 when N = 90 in the STEPWISE procedure. Comparing
these results with the coresponding values when Pxix; = 0.4 [1.095 (N = 30) to
1.305 (N = 90)] and Pxix; = 0.8 [0.840 (N = 30) to 1.017 (N = 90)] indicates that
the effectiveness of increased sample size in detecting authentic variables was
reduced by collinearity. This is not surprising, since the sample sizes

investigated in this study were chosen in order to detect a medium effect size

and, when the value of Px;x; Was increased from 0.0 to 0.8, the effect size

present in the data was correspondingly reduced to a small effect size.

For the BACKWARD procedure, the interaction between collinearity and
sample size was complex (See Table 10). When Pxix; = 0.0, increasing N

positively affected C. This remained true as the value of Pu;x; increased and «
=0p. However, when a = 0.05 and 0.15, as Pxix; Was increased the effect of N

became negative. It must be recalled that the BACKWARD procedure is unlike
either the STEPWISE and FORWARD procedures in that it begins with all of the
candidate predictor variables in the model. It may be that this, combined with
the reduced effect size (due to increased collinearity) renders increasing the
sample size completely ineffective.

A second two-way interaction was present in the analysis of C4. Within
the BACKWARD procedure, a small to moderate interaction effect on Cju
between P and N was evident in Table 9. An examination of Table 10 indicated
thatwhen P =12 N seems to have a positive effect on C, and as P increases
the effect of N seems to become more quadratic and negative in nature when «
= 0.05 and 0.15. It may be that like increasing collinearity, increasing the
number of candidate variables along with a liberal o value interferes with the
effectiveness of increasing N in positively influencing the number of authentic
variables in the final subset.

Similarly, a P X N interaction effectwas also evident in the analysis of Cy

within the BACKWARD procedure (See Table 11). Here, a medium P linear X
" N linear interaction effect was shown to be present for each value of a.
Additionally, a number of small effect values were associated with the other
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interaction contrasts which comprise the P X N interaction component. Table 12
showed that as P was increased, the number of noise variables in the final
subset was also increased. However, the negative effect of N also seems to
have been increased such that when P = 24, increasing N from 30 to 60
reduced the mean number of noise variables by about half . While the
decrease in the number of noise variables due to increased sample size was
reduced when P = 12, the actual mean value of Cn was also much less at this
value of P. For example, when a =0.15 and P = 12, the mean value of Cy was
reduced from 1.361 when N = 30 to 1.004 when N =90, and from 7.995 when N
= 30 to 3.416 when N =90 and P =24.

Three-way Interactions

The analysis of Cy showed some small to medium r2 values among the
three-way contrasts for each of the subset selection methods at o = op (See
Table 11). However, these interaction effects were not stable over increasing «
and were reduced to a negligible size when o = 0.05 and 0.15. A similar
occurrence of three-way interactions is evident in the analysis of Py (See Table
13).
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Estimates of the Population Coefficient of Multiple Determination

Tables 15, 16 and 17 illustrate the effect of collinearity among the
authentic predictor variables, number of candidate variables and sample size
within each combination of algorithm and inclusion/deletion level on the mean
values of R2, B2, and Ry2?, respectively (see Appendix B for standard errors).

A comparison of the population pyq? value with the mean values of R2
and Ry2 showed that these two estimates tend to be inflated (See Tables 15 and
16). However, when o = 0.15/p, Pxixj = 0 and the sample size is 90, both of
these estimates did very well. Under these conditions, pyx2 = .130, and R2 took
on the values .130, .131, and .135 for the STEPWISE and FORWARD
procedures and the values .135, .144, and .143 for the BACKWARD procedure
for P =12, 18 and 24, respectively. Similarly, Ry2 took on the values .117, .118
and .122 for the STEPWISE and FORWARD procedures and the values .121,
129, and .129 for the BACKWARD procedure for P = 12, 18 and 24,
respectively. As would be expected, the results for R2 were slightly higher than
those for R¢2. On the other hand, Table 17 showed Ry2 to be an extremely
conservative estimate of py;2. Only when py,2 reached .043 and .026 did the
mean value of By2 occasionally exceed pyy;2.

A comparison of the mean values of R2, Ri2 and Rp2 for each subset
selection algorithm indicated that the results for the STEPWISE and FORWARD
procedures were very similar (See Tables 15, 16 and 17). However, the values
for the FORWARD procedure were occasionally slightly larger than those of the
STEPWISE procedure when o was large (0.05 or 0.15). On the other hand, the
results from the BACKWARD procedure were generally greater than those of
the STEPWISE and FORWARD procedures for each of the three dependent
variables. As a result, the BACKWARD procedure tended to produce slightly
more inflated values of R2 and Ry2 and slightly less conservative values of Rg2.
However, the differences tended to be ameliorated ‘by increases in sample
size. )

As expected, within any of the algorithms, an increase in the
inclusion/deletion level generally increased the mean value of R2, Ry2 and Rg2.

Consequently, the least inflated values of R2 and Ry2 were to be found when «

was small and the least conservative values of Ry2 were to be found when o
* was large. (See Tables 15, 16 and 17)
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Table15
Effect of Collinearity .(QxixiLMmbﬁL of Candidate Variables (P),
and Sample Size (N).on R2 '
Method
STEPWISE BACKWARD FORWARD
I/D Level (@)

Pxix; P N py? 15/ 05 15 15/ .06 .15 15/ .05 .15
00 12 30 130 .280 .290 .346 .317 .328 .375 .280 .290 .347
60 .130 170 176 .215 .178 .184 223 170 .176 .215
90 .130 .130 .150 .181 .135 .153 .185 .130 .150 .181
18 30 130 .315 .317 .430 .352 .408 526 .315 .318 .433
60 .130 .192 .207 .268 212 .222 .287 .192 .208 .269
90 130 .131 .158 .216 .144 166 225 .131 .158 .217
24 30 130 .300 .361 .531 .373 6550 .719 .300 .362 .5B30
60 .130 .173 222 .323 .188 250 .354 173 222 .324
80 .130 .135 .175 255 .143 .189 271 .135 .175 .257
0.4 12 30 .043 286 259 .286 295 .287 .324 286 250 .288
60 043 .151 .143 156 .158 .146 .166 .151 .143 .156
90 .043 .108 .100 .120 .111 .104 127 108 .100 .120
18 30 .043 .300 .300 .387 .370 .380 .484 .300 .300 .389
60 .043 .168 177 226 .176 195 248 .168 .177 .228
80 .043 123 121 159 124 127 .169 .123 .121 .159
24 30 .043 .317 .338 518 .383 526 .725 .317 .339 .519
60 .043 174 172 .254 183 197 291 174 172 254
90 .043 124 .130 .187 126 .139 .202 .124 .130 .187
08 12 30 .026 .298 242 273 .327 .288 .318 298 242 274
60 026 .163 .146 .144 163 .155 .161 .163 .146 .144
Q0 .026 .103 .100 106 .107 .101 115 .103 .100 .106
18 30 026 .2889 .288 .363 .371 .391 480 .289 .288 .364
60 .026. .164 .149 .189 .169 .172 .224 .164 .148 190
90 .026 .109 .108 .135 112 .111 .151 .108 .110 .135
24 30 .026 .326 .340 .483 442 569 717 .326 .343 .485
60 026 .168 .172 .237 .182 .202 .283 .168 .172 .23%9
90 026 .123 180 127 144 198 .123 .130 .180

130
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Table 16
Effect of Collinearity .(ng_ixi).:_Nu_m.b_@'_ of Candidate Variables (P),

and Sample Size (N) on Ry2
Method
STEPWISE BACKWARD FORWARD
I/D Level ()

Py P N pw? 15/p 05 15 15/ 05 15 .15/ .05 .15

0.0 12 30 .130 .251 .250 .280 .283 .278 .298 251 .250 .280
60 130 .152 .151 173 .188 157 177 152 151 173
90 130 .117 128 147 121 131 148 117 129 147

18 30 .130 .287 276 .35 .318 .347 .418 .287 276 357
60 130 174 179 217 192 190 228 .174 .180 .217
90 .130 .118 135 173 .129 141 179 118 135 .174

24 30 130 .274 315 .448 .340 .468 588 .274 .315 .446
60 130 .157 180 .260 .170 211 278 .157 191 .261
90 130 122 150 .206 1289 161 214 122 .151 .206

0.4 12 30 .043 258 .224 229 265 .243 248 258 224 231
60 .043 .136 .124 124 141 125 130 .136 .124 124
90 .043 .098 .087 .087 .100 .089 .100 .088 .087 .097

18 30 .043 272 .260 .317 .334 322 .378 272 .260 .317
60 .043 .152 162 .182 .158 .166 .194 .152 .152 .182
%0 .043 111 104 127 112 108 .133 .111 105 .128

24 30 .043 291 .294 434 .346 449 584 291 295 .432
60 .043 .158 .147 201 .165 166 .222 .158 .147 .201
90 .043 113 112 .148 114 118 157 113 112 .148

08 12 30 .026 .269 .207 .218 .289 .241 241 268 207 .219
60 .026 .146 .125 .114 145 131 123 .146 1256 .114
90 .026 .093 .086 .084 .095 .086 .089 .093 .086 .084

18 30 .026 .263 .248 295 .334 .330 .372 263 .248 .2%%6
60 .026. .147 .127 .149 150 .144 169 .147 127 .149
90 .026 .088 .093 .106 .100 .083 .115 .098 .083 .106

24 30 .026 .300 .297 .403 .401 .485 .584 .300 .289 .403
60 .026 .153 .146 .186 .164 .166 214 .153 .146 .187
90 .026 111 112 142 115 121 152 111 112 142




Table 17
Effect of Collinearity (py;x;). Number of Candidate Variables (P),
and Sample Size (N).on By?
Method
STEPWISE BACKWARD FORWARD
I/D Level (@)

Pixsi P N pya? 15/p 05 15 .15p 05 .15 .16/p 05 .15
00 12 30 .130 .008 .033 .061 .031 .053 .084 .008 .033 .062
60 .130 .023 .032 .059 .028 .037 .065 .023 .032 .060

g0 130 .023 .044 .067 .027 .046 .071 .023 .044 .067

18 30 .130 .000 .008 .037 .002 .032 .095 .000 .008 .038

60 .130 .011 .024 .047 .020 .029 .055 .011 .024 .049

90 .130 .009 .020 .051 .012 .024 .057 .009 .020 .052

24 30 .130 .000 .001 .018 019 .046 .125 .000 .00t .018

60 .130 .000 .006 .027 .000 .011 .043 .000 .006 .027

90 .130 .003 .010 .039 .003 .014 .047 .003 .010 .039

0.4 12 30 .043 .020 .017 .031 .01 .033 .046 .020 .017 .032
60 .043 .009 .011 .018 .010 .012 .023 .008 .011 .019

90 .043 .008 .010 .021 .010 .012 .025 .008 .010 .021

18 30 .043 .000 .006 .024 .000 .026 .058 .000 .006 .023

60 .043 .001 .008 .024 .001 .012 .032 .001 .008 .024

90 .043 .004 .007 .018 .005 .009 .022 .004 .007 .019

24 30 .043 .000 .000 .012 011 .034 .108 .000 .000 .013

60 .043 .000 .001 .008 .000 .002 .015 .000 .001 .00%

90 .043 .001 .003 .010 .001 .004 .014 .001 .003 .010

08 12 30 .026 .013 .011 025 .028 .027 .043 .013 .011 .026
60 .026 .017 .014 .018 .015 .017 .023 .017 .014 .018

90 .026 .006 .010 .014 .007 .009 .018 .006 .010 .014

18 30 .026 .000 .000 .013 .024 .036 .066 .000 .000 .013

60 .026. .001 .003 .009 .002 .005 .019 .001 .003 .009

90 .026 .001 .002 .007 .002 .002 .011 .001 .002 .007

24 30 .026 .000 .001 .010 .040 .067 .141 .000 .001 .006

60 .026 .000 .001 .007 .000 .003 .015 .000 .001 .007

90 .026 .000 .001 .007 .000 .002 .010 .000 .001 .007
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Examination of Tables 15, 16, and 17 showed that trends due to
collinearity, sample size and number of candidate variables were present in the
data. As aresult, trend analyses were performed.

Trend Analysis of py;x;. P and N within Algorithm and Inclusion/Deletion Level

Tables 18, 19 and 20 contain the proportion of the model sums of
squares accounted for by each contrast (r2) within each combination of method
and « for the dependent variables R2, Ry2, and Ry2, respectively. In general, the
r2 values indicated that the same pattern of trends were affecting both R2 and
R2, whereas a different pattern of trends was affecting Ry2. Figures 2 (a), 2 (b),
3 (a), and 3 (b) show the effect of increasing collinearity, number of candidate
variables and sample size on the mean values of R and Rp?, for the
STEPWISE and BACKWARD procedures, respectively, ata = 0.15.

Main Effects

Collinearity . With regard to the effects of correlation among predictor
variables, there was some evidence to show that collinearity negatively affects
R?2, and Re2. A small negative linear effect due to collinearity was evident for
each algorithm when « = 0.05 and 0.15 (See Tables 18 and 19). Specifically,
for a given combination of P and N, the mean values of R2 and Ry? are reduced
as the degree of collinearity is increased (See Figures 2 (a) and 3 (a)).
However, it is important to note that the strength of the trend does not reflect the
degree to which the population value of py;2 is reduced as collinearity is
increased.

Further, the evidence for this negative effect was even stronger with
regard to Ry2 (See Table 20). Inthe STEPWISE and FORWARDprocedures the
negative linear effect of Pxix; Was increased from a small value when
a = 0.15/p to a large value when o =0.05 and 0.15. On the other hand, in the
BACKWARD procedure the effectwas of moderate value for o = 0.05 and 0.15.
Additionally, all three procedures displayed a small quadratic effect due to Pxix;

when o = 0.05 and 0.15. This effect was of moderate value when & = 0.15/p in

the BACKWARD procedure. Figure 2 (b) shows that the mean value of Ry? is

~ reduced within the STEPWISE algorithm as the degree of collinearity is
increased and is most obvious as the value of Pxix; is increased from 0 to .4.
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Table 18
Proportion of Model Sum of Squares Accounted for by Contrast 2
Dependent Variable: R2

METHOD: STEPWISE BACKWARD FORWARD
/D LEVEL (a): 15p 05 15 15p .05 15 15/p .05 .15
CONTRAST
Prix; GLJ - -5 -5 - -5 -5 - -5 -5
P (L) + +5 +M +5 +M +H + +5 +M
N (L) -+ - -+ - -L - -L -L -L
N (Q) S S S N S 5 5 S 5
P{LY x ML) S S S S S 5 S
PEL) x N{OQ) S 5

aNote: See Table 9 note.
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Table 19 |
Proportion of Model Sum of Squares Accounted for by Contrast?
Dependent Variable: Ry2

METHOD: STEPWISE BACKWARD FORWARD
/D LEVEL (a): 45/ 05 15 15p .05 .15 .15p .05 .15
CONTRAST

P (L) - -5 -5 - -5 5§ - -5 -5
P (L) ¥ +5 4N +5  #H +N  +5  +5 4l
N (L) -4 -L -L -L -L -L -L -L -L
N (0) s § S5 M S § § § §
PCL) x N(L) s § § 5 § 5 5
P(L) x N(Q) 5 5

aNote: See Table 9 note.



Table 20
Proportion of Model Sum of Squares Accounted for by Contrasta

Dependent Variable: B2
METHOD: STEPWISE BACKWARD FORWARD
I/D LEVEL (a): 15pp .05 15 15p 05 .15 .15/ .05 .15
CONTRAST
Pxix; (LI -5 <L -L - - - -5 -L -L
Prixj L0) 5 § N 5 5 5 5
P (L) -L -L -t -0 -5 +5 -L -L =N
P (0) 5 5 5 5 5 5
N (L) + +5 o+ - -L L+ +5 o+
N (Q) 5 M i
Pryy (LI x P(L) 5 S S 5 5 5 5
Pxix; L0) x P(L) S 5 5 5
Prix; (L) x N(L) 5 5 S M 5 5 5 5 5
Prx (L) x N(Q) S
Pxx; (00 x N(L) 5 5 S S § S
Pxx; (Q) x N(Q) 5 5
P(L) x H(L) S 5 5 iy S
P(L) x N(Q) 5 5 5
P{Q) x N{L) S S 5 S
P(Q) x N(Q) ) 5 5 5
P (LIxPLIXNCLY 5 5
Pxj; (L IxPLLIXN(Q) S
Py (LIxP(Q)xN(Q) 5 5 5
P (QIxPLLIxNCLY 5 5 5 5
Prix; (QIxP(LIxN(Q) 5 ) 5

aNote: See Table 9 note.
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Eigure 2. The effect of sample size (N), number of candidate variables (P) and
collinearity (Pxix;) ON the mean value of three measures of the population

squared coefficient of determination, pyx2, within the STEPWISE procedure. (a)
The sample squared coefficient of determination adjusted by k, R¢2. (b) The
sample squared coefficient of determination adjusted by P, Rg2.

Note: The inclusion/deletion level of significance was setto 0.15.
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Number of Candidate Variables. A small positive linear effect was
present for the number of candidate variables (P) and R2 and R2 (See Tables
18 and 19). Within the STEPWISE and FORWARD procedures, the effect size
rose from a negligible value for @ = 0.15/p to a small value for & = 0.05 and a
medium value for @ = 0.15. The effect of P was slightly increased in the the
BACKWARD procedure. '

On the other hand, the linear effect of P on Ry2 was strongly negative
(See Table 20). In the STEPWISE and FORWARD procedures the linear
contrast in P accounted for a large proportion of the model sums of squares for
o =0.15/p and a =0.05 and a medium proportion for @ = 0.15. The strength of
this effect was reduced somewhat in the BACKWARD procedure and
furthermore, when « = 0.15, the sign of the effect was changed from negative to
positive. Also, a small quadratic effectwas present when & =0.15/p and 0.05 in
each of the algorithms.

For any value of Pxixj and N, an increase in the number of candidate
variables results in a higher mean value of Ry? as surmised by Cohen and
Cohen (1983, p. 107) (See Figures 2 (a) and 3 (a)). On the other hand, the
negative effect of increasing P on Rp? within the STEPWISE procedure is most
clear when py;, = 0 (See Figure 2 (b)). However, as collinearity is increased,
the effect of P becomes less evident.

Sample Size. For all combinations of algorithm and o, sample size (N)
had a large effect on R2 and Ry2 (See Tables 18 and 19). Both the linear and
quadratic contrasts accounted for a large and a small proportion of the model
sums of squares, respectively. Since the sign of the linear contrast remained
negative for each combination of algorithm and «, it is clear that increasing
sample size reduces the inflation of these two estimates. However, the
presence of a small quadratic component suggests that the effect of increasing
sample size is not constant.

The analysis of trends for Ry2 showed that sample size was not a
significant factor in the STEPWISE and FORWARD procedures (See Table 20).
That is, @ non-neglible linear effect due to N was present only when a = 0.05.
However, in the BACKWARD procedure the effect of sample size on Rp? was

like that of R2 and Ry2. Specifically, a medium to large negative linear effect

was evident in the BACKWARD procedure for all levels of a. As well, a small to
" medium quadratic effectwas shown to be present for each level of a.
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While the values of R2 and Rg? remain above the population value of
Pyxi2, there is a negative linear effect of increasing sample size (See Figures 2
(a) and 3 (a)). Also evident is that the effect of increasing sample size is not
constant. The decrease in value of R (and R?) when the sample size is
increased from 60 to 30 is not as great as the decrease when the sample size is
increased from 30 to 80. This suggests that a point of diminishing returns may
be reached in increasing the sample size. Figure 2 (b) shows that sample size
has no consistent effect on Rp2 in the STEPWISE procedure. However, the
negative quadratic effect of sample size on Ry2 in the BACKWARD procedure is
evident in Figure 3 (b).

Two-Way Interactions

There was no evidence of a collinearity by number of candidate variables
interaction (Pxix; X P) for the dependent variables R? and Ry2 (see Tables 18

and 19); however, such an effectwas present for R,2. (See Table 20) A small
Pxix; linear X P linear effect was present in the STEPWISE and FORWARD
procedures (o = 0.05 and o = 0.15) and for all levels of o in the BACKWARD
procedure. Furthermore, a small Pxix; quadratic X P linear effect was present
for = 0.05 and o = 0.15 in the STEPWISE and FORWARD procedures. Figure
3 (b) illustrates this relationship in the BACKWARD procedure fora = 0.15. The
differences due to increasing P are more evident when Pxixj = 0 than when Pxix;
= .4 and .8, suggesting that collinearity among the authentic predictor variables
reduces the effect of P on Ry2.

The effect of sample size also differed for the three levels of collinearity
with respect to Ry2. Table 20 shows that a small to moderate Pxix; finear X N
linear effect was present for each algorithm-« level condition. Furthermore,
several other small effects were present among the remaining pyx; X N
contrasts. This relationship may be deduced from Figure 3 (b) in that when
Pxixj = 0.0 the quadratic curve due to increasing N is most pronounced;
however, as Px;x; is increased, the response to N becomes increasingly linear.
Again, there was no evidence of a Pxixi X N interaction for R2 and Ry? (See

Tables 18 and 19).
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Figure 3. The effect of sample size (N), number of candidate variables (P) and
collinearity (pxixi) on the mean value of three measures of the population

squared coefficient of determination, pyy2, within the BACKWARD procedure.
(a) The sample squared coefficient of determination adjusted by k, R¢2. (b) The
sample squared coefficient of determination adjusted by P, Ry2.

Note: The inclusion/deletion level of significance was setto 0.15.
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Also evident were the P X N interaction effects for R2 and R2? (See
Tables 18 and 19). In the STEPWISE and FORWARD procedures, a small P
linear X N linear effect was present when a = 0.05 and 0.15, while in the
BACKWARD procedure, a small effect was present for each level of a. Also, a
small P linear X N quadratic effect was present for @ = 0.05 and 0.15 in the
BACKWARD procedure. This interaction is illustrated in Figure 3 (a) for the
BACKWARD procedure. Note that increasing P has the greatest inflationary
effect on R? and Ry 2 when N=30; as N increases the effect of P, though still
evident, is decreased.

This interaction effect was also shown to exist for Ry2 within the
BACKWARD procedure (See Table 20). Here, a minimum small P linear X N
linear effectand a P linear X N quadratic effect were consistently present for
each level of a. Aswell, both a small P quadratic X N linear effectand a small P
quadratic X N quadratic effect were present wheh « = 0.15/p and 0.05. Within
the STEPWISE and FORWARD procedures a few small P X N interaction effects
were present, but hone were consistent over increasing «. Figure 3 (b) shows
that when N = 30, the mean value of Ry2 increases with increasing P. However,
when N = 60 and 90, the relationship is reversed and the mean value of Rp2 is
decreased with increasing P. According to Cohen and Cohen (1983, p. 106),
Ro2 should decrease as the ratio of P/N increases. Thus, for a given N, Rp?
should decrease as P increases. Why this is not the case when N = 30 is not
clear.

Three-Way Interactions

The three-way interaction effects were negligible with regard to R2 and
Ri? (See Tables 18 and 19). However, a number of small three-way interaction
effects were present for R,2 (See Table 20). However, these values were
evident only when @ = 0.15/p and 0.05; when « = 0.15, no non-negligible

values remained.
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The results of this study show that collinearity, number of candidate
variables and sample size affect the outcome of 'best’ subset selection
algorithms. In both the analysis of the selection of authentic variables in the
presense of noise and in the comparison of estimates of py 2, these effects
were shown to be fairly consistent in magnitude and direction across the
STEPWISE and FORWARD algorithms and level of significance for inclusion
and deletion of variables. However, these effects often differed within the
BACKWARD algorithm as compared to the others.

Comparing the analysis of C4, Cyand Py across algorithms it was shown
that the pattern and strength of trends within the STEPWISE and FORWARD
procedures were the same. Within the BACKWARD procedure, the pattern of
trends was similar to the other procedures in the analysis of Cy and Py Any
differences that existed here lay in the magnitude of the individual trends.
However, with respect to C,, the effect of sample size was greatly changed by
both the level of collinearity and the number of candidate variables in the
BACKWARD procedure. '

Overall, the mean values of C4, Cy, and Py obtained by the STEPWISE
and FORWARD procedures were extremely close (See Table 21). However,
the average final subset obtained by the BACKWARD procedure contained both
more authentic and noise variables than that of the STEPWISE and FORWARD
procedures and, the proportion of noise variables was generally greater except
when a =0.15 and Px;x; Was nonzero.

Within an algorithm, increasing the level of o always increased the mean
value of Ca, Cyand Pyn. Unfortunately, the rate at which Ca was increased was
less than the rate at which Cn was increased so that there were always a
greater percentage of noise variables in the final subset when o = 0.15
compared to when & =0.15/p.
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Table 21

Effect of Method and Inclusion/Deletion Level
_on the Mean Values of Cy4, Cn, and Py

Method

STEPWISE BACKWARD FORWARD
I/D Level (@)

A5/p .05 15  15/p .05 15  15p .05 A5

Vars

Ca 0.272 0725 1.415 0.328 1.010 1.965 0.272 0.726 1.437
CnN 0.103 0656 2.041 0.166 1.158 3.002 0.103 0.660 2.067
PN 26.3 444 560 287 451 543 263 444 558




With respect {o the mean number of authentic variables in the final
subset, it was shown that increased collinearity negatively affected Ca.
Conversely, increased sample size was shown to have a positive effect,
especially when collinearity was nedligible. In the STEPWISE and FORWARD
procedures, the effect of N remained positive even when collinearity was
present, but in the BACKWARD procedure increased collinearity altered the
effectiveness of sample size when a = 0.05 and 0.15. Interestingly, the mean
value of C, was shown to be relatively unaffected by the number of candidate
predictor variables in the STEPWISE and FORWARD procedures. However,
within the BACKWARD procedure it was shown that increasing P may positively
affect Co. However it is important to note that in the BACKWARD procedure,
the number of candidate variables was shown to affect the ability of increased
sample size to increase the mean value of C, when o = 0.05 and 0.15. This
would suggest that a liberal inclusion/deletion level combined with collinearity
or many candidate predictor variables may render the BACKWARD procedures
performance unreliable.

Analysis of Cy, showed that the mean number of noise variables in the
final subset was strongly positively affected by the number of candidate
predictor variables within all algorithms. Additionally, sample size was shown
to have a small negative effect in the STEPWISE and FORWARD procedures
and a moderate to large negative effect in the BACKWARD procedure. Also
within the BACKWARD procedure, a P X N interaction effect was shown to be
present. This suggests that while increasing P increases the mean value of Cy,
the negative effect of increasing N is also increased somewhat thus allowing
some measure of control over the number of noise variables present in the final
subset.

In the STEPWISE and FORWARD procedures Py was affected about
equally by Pxix;- P and N. Increases in collinearity and number of candidate
variables positively. affected Py while increased sample size negatively affected
Pn. Inthe BACKWARD procedure the direction of each of these effects was the
same but the strength of the collinearity effect was reduced to small
Interactions were not a factor here. |
_ Recall that Flack and Chang (1987) examined the behaviour of the

STEPWISE algorithm and an all-possible subsets algorithm for three sample
size conditions (N=10, 20, 40), three number of candidate variable conditions
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(P=10, 20, 40) and for three values of a serial correlation coefficient (p=.0, .3,
.5). The default level of significance for the SAS STEPWISE procedure (a =
.15) was used and only the results for p = 0.3 were presented for the
STEPWISE procedure. The effect of these parameters on three dependent
variables was studied: 1) the frequency distribution of the number of authentic
variables selected from a set containing both authentic and noise candidate
variables, 2) the proportion of the selected variables that were noise, and 3)
adjusted R2 statistic [See Darlington, 1990, p. 121 for the definition of the
adjusted R? used by SAS(1985)].

Flack and Chang (1987) showed that sample size had a strong positive
effect on the number of authentic variables selected. When N = 40 the
percentage of 'best subsets with three authentic variables (the number of
authentic variables in their study) ranged in value from 28% to 34% and the
percentage with two authentic variables ranged from 46% to 56%. Conversely,
when N =10, 0% to 4% of the samples found three authentic and two authentic
variables were found in only 16% to 24% of the 'best’ subset models.
Additionally, increasing the number of candidate variables was found to have a
negative effect on the number of authentic variables selected. The mean
number of authentic variables found found by Flack and Chang (1987) [based
upon their percentage frequency table] is compared to the STEPWISE results
from the presen study, when a = 0.15 and Pxixj = 0.0, 0.4 and 0.8 in Table 22.
(Recall that the number of authentic predictor variables was six compared to
three in the Flack and Chang (1987) study.) Considering that the value of py,,?
was considerably less in the present study, especially when py; was nonzero,

the results show that the increase in the N to P ratio was effective in increasing
the number of authentic variables selected. However, at all times the average



Table 22
A Comparison of Flack and Chang's Results to Those
of the Present Study®

Flack and Chang (1987) Present Study
pxin
00 04 0.8
P N N/P  Cyu P N NP Ca Ca Ca
10 10 1.00 1.02 12 30 250 1516 1.032 0.788
20 2.00 1.66 60 500 2192 1.136 0.900
40 400 248 30 7.50 2708 1.292 1.052
20 10 0.50 0.96 18 30 1.67 1604 1.036 0.776
20 1.00 1.48 60 3.33 2000 1.208 0.884
40 2.00 2.10 30 5.00 2712 1.308 0.976
40 10 0.25 0.80 24 30 1.25 1.548 1.216 0.956
20 0.50 1.82 60 250 2104 1.204 0.844
40 1.00 2.02 30 3.75 2760 1.316 1.024

a Note: These results are for the STEPWISE procedure ata =0.15.
The model parameters of the Flack and Chang study are pyx
Pyxz =5, Pyxj =0 (i =3, ..., P), Pxyx;y =0.3i, and pyy2 = .3725.
The model parameters of the present study are pyxy = pyx2 = ... =
Pyxs = . 147442, pyyy =0 (j =6, ..., P), py;% = .130435 when Pxix;
= 0.0, pyx;? = .043478 when pg;y, = 0.4, and py,;? = .026087
when Pxix; = 0.8.
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Similar to the results of the present study, the median value of Py was
shown by Flack and Chang (1387) to be positively effected by P and negatively
effected by N. The median value of Pyreached a minimum value of 33% when
N =20 and 40 and P =10 and a maximum value of 83% when N =10 and 20

and P =40. The results of the current study show the minimum mean value of
Pntobe 22.1% (pxix]. =0.0, P =12, and N = 80) and the maximum value to be

79.1% (Pxix; = 0.8, P =24 and N = 30) [STEPWISE algorithm and a =0.15]. The
slightly lower values found in the present study are likely due to the inclusion of
the noncollinear case and more favourable N to P ratios. When excluding the
noncollinear case, the minimum value of Py is then equal to 37.4% (pxixi = 0.4,
P =12, and N = 90), a value comparable to Flack and Chang's (1987) value.
The results of the present study show that, within each of the subset selection
procedures and for every value of o, the mean number of authentic variables
reaching the final subset (C,) was low compared to the actual number of
authentic variables available. Moreover, the average number of noise variables
reaching the final subset (Cpn) and hence, the mean proportion of the final
subset that was noise (Pn) could be quite high. However, under optimal
conditions (i.e. when o =0.15, pyx; =0.0, P=12 ,and N = 90) nearly half of the
authentic variables reached the final subset on average, the mean value of Cy
was less than one and the mean percentage of noise variables ranged from
22% 10 23%.

In the comparison of estimates of py,,2 of this study, the factors affecting
R2 and Ry 2 were shown to be generally consistent over 'best’ subset selection
algorithms and level of . The most important factor was sample size, followed
by number of candidate variables and then degree of collinearity. Specifically,
both R2 and Ri2 were shown to be negatively influenced by increasing sample
size and increasing collinearity while increasing the number of candidate
variables had a positive influence. Furthermore, there was some evidence for a
P x N interaction, suggesting that the rate of inflation due to the number of
candidate variables may be negatively influenced by sample size.

The factors affecting Rg2 were not as consistent over the three subset
selection procedures. In the STEPWISE and FORWARD procedures, the
degree of collinearity and the number of candidate variables mainly influenced
‘ Rp2; the amount of influence depended upon on the level of a. In particular, the
proportion of explained variation accounted for by collinearity increased with &
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while the proportion of explained variation accounted for by the number of
candidate variables decreased with increasing «. Both of these factors were
negatively related to Rg2. However, in the BACKWARD procedure, sample size
was the major factor affecting Rp2 followed by degree of collinearity and number
of candidate variables. Specifically, increasing sample size was negatively
related to R2. Also, there was evidence for two-way interaction effects among
degree of collinearity, sample size and number of candidate variables. In
particular there was strong evidence of a P X N interaction. Generally, when N
= 30, increasing the number of candidate variables had a positive effect on Rg2.
However, when N = 60 and N = 90, increasing the number of candidate
variables had a negative effecton R2.1

Cohen and Cohen (1983, p. 107) proposed Ry2 as an alternative
measure of py,2 when subset selection methods are used. However, the
results of this study showed that R,2 over-compensated for inflation yielding a
fairly conservative estimate. The only exception to this finding occurred when
Pyxi2 Was small, @ was large and N and P were minimized. Here Rp?
approached the population value. Consequently, while neither Ry2 nor Ry? can
universally be recommended as unbiased estimates of py,;2 when a 'best
subset selection algorithm is used, under favourable conditions, Ri2 may not be
as inflated an estimate as once thought and Ry? can provide an estimate that
will not exceed the population value and on occasion not be very conservative.

In Flack and Chang's (1987) examination of R? inflation, they found the
adjusted R? statistic to be highly inflated; thus concluding that methods that
provide less biased estimates of py,;2 are required. However, part of the stated
purpose of Flack and Chang's (1987) study was to show how poorly variable
selection procedures perform under harsh parametric conditions. To that end,
the sample size (N) to humber of candidate variables (P) ratio of the Flack and
Chang (1987) study was allowed to range from 0.25 (10/40) to 4.0 (40/10)
indicating that the number of candidate predictor variables often exceeded the
sample size. Within the present study, the N to P ratios ranged from 1.25
(30/24) to 7.5 (90/12), indicating that the sample size always exceeded the
number of candidate predictor variables. Hence, the results of the present study
showed that when the squared population coefficient of multiple determination
~ reached at least a medium conventional value and the collinearity was low,

1itis not clear whythis should be so.
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using an extremely conservative level of significance along with a large sample
size produced favourable mean values of B2 and Ry2. Itis important to note,
however, that increasing N had a limited capacity to reduce inflation, as a point
of diminishing returns was reached. However, R2 and Ry2 were generally
inflated measures of py,;2 and Rp? was generally a conservative measure. For
all three algorithms, the minimum inflation in R2 and Ry? occurred when « was
set at the smallest investigated value (@ = 0.15/p) while Rg2 attained its
maximum value when o was set at the largest investigated value (x = 0.15).
The mean values of R2, R and Ry? indicated that for the 'best’ subset
algorithms the BACKWARD procedure revealed generally more inflated values
of R? and Ry? and generally less conservative values of R,2. However, when
sample size was large, the differences were minimal.

To conclude, this author must join Flack and Chang (1987) in cautioning
the user about ascribing importance to variables based upon their appearance
in 'best’ subset models and on an over reliance in using the popular sample
estimates of the coefficients of multiple determination as unbiased estimates of
effect size. Indeed, even under favourable conditions, noise variables enter the
final subset model, especially when collinearity is present, and R2 and Rg?2 may
substantially overestimate py,;2. Certainly when N is small compared to P the
number of noise variables selected will very likely outhumber the number of
authentic variables and R? and R? will be inflated. Furthermore, the Rp?
estimate can also be extremely inaccurate. In any case, the wise investigator
would not use models nor estimates of pyx2 obtained strictly by ‘best’ subset
selection algorithms as a basis for deriving conclusions unless they are
confirmed by theoretical considerations and subsequent validation.
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Appendix A
FORTRANand SAS computer programs

The following FORTRAN program generates the 250 replications of the
27 combinations of the three data conditions (pxixi, P and N).

INTEGERISEED1, ISEED2
INTEGERK

INTEGERKP1
INTEGERDEBUG
INTEGERNSIM

REAL*8 RXX

REAL*8 RXY

INTEGERN

INTEGERP

REAL*8 B

REAL*8 RXXSR1, RXXSR2
INTEGERI, J, L

REAL*8 Z1,Z2

REAL*8 X(100,24)

REAL*8 Y(100)

REAL*8 XM(24)

REAL*8 X2(24)

REAL*8 YM

REAL*8 Y2
INTEGERCOND

C
C VARIABLE DICTIONARY
C
C

ISEEDA1, ISEED2 -- SEEDS TO THE PSEUDO-RANDOM NUMBER

GENERATOR
C K -- NUMBER OF AUTHENTIC PREDICTORVARIABLES
C KP1 -- EQUAL TOK+1

" C DEBUG - LOGICALFLAGTOPRINTOUT DEBUGGING INFORMATION
C NSIM - NUMBER OF SIMULATION TRIALS



OO O0O0O0O0000000000000O0

1

2

C
C
C
1
3

RXX -- CORRELATIONBETWEEN AUTHENTIC PREDICTORVARS.

RXY - CORRELATIONBETWEEN AUTHENTIC PREDICTORS AND
THE DEPENDENT VARIABLE.

N - SAMPLE SIZE

P — NUMBER OF CANDIDATE PREDICTORVARIABLES.

B - REGRESSION COEFFICIENTS OF AUTHENTIC PREDICTOR

VARIABLES IN THE REGRESSION EQUATION.
RXXSR1 - EQUALS THE SQUARE ROOTOF RXX
RXXSR2 — EQUALS THE SQUARE ROOTOF (1-RXX)
L - LOOPCOUNTERS
71,Z2 - PSEUDO-RANDOM STANDARD NORMAL DEVIATES
X(90,24) -- THE X MATRIX
Y(90) - THE DEPENDENT VARIABLE VECTOR
XM(24) - THE MEAN OF EACH OF THE P X VARIABLES
X2(24) - THE SUM OF SQUARES FORTHE P X VARIABLES
YM — THE MEAN OF THE DEPENDENT VARIABLE
Y2 ~THE SUM OF SQUARES OF THE DEPENDENT VARIABLE
COND - COUNTS THE NUMBER OF SETS OF CONDITIONS

READ(15.1) ISEED1, ISEED2, NSIM, DEBUG, K

FORMAT(2I11, 315)

WRITE(6,2)ISEED1, ISEED2, NSIM, K

FORMAT(1 ///'SEED 1,111,/ SEED 2,111/,
* NUMBER OF SIMULATIONS: *I5,/,'K="14)

CALL RSTART(ISEED1,ISEED2)

COND=0

REWIND14

REWIND16

REWIND17

REWIND18

READ IN SIMULATION DATA CONDITIONS
00 READ(5,3) RXX

FORMAT(F5.3)
IF (RXX.EQ.1D0) GO TO 999



COND=COND+1
RXXSR1=DSQRT(RXX)
RXXSR2=DSQRT(1-RXX)
KP1=K+1
READ(5,4) N, B, P, RXY
4  FORMAT(I5,F15.10,15F10.6)
WRITE(6,5)RXX, RXY, B, N, P
5 FORMAT(/,SIMULATION CONDITIONS: " //,
* 5X 'CORRELATION', T20,'CORRELATION', T40,' REGRESSION', T55,
*'SAMPLE', T65/NUMBER OF'/,T5,'XVARS',T20,’X AND Y',T40,
* COEFFICIENT', T55,'SIZE", 65, PREDICTORS' /1, T5,F5.3,T20,F 10.6,
* T40,F10.6,T55,15,T65,15)
DO 20 I=1,NSIM

O

C INITIALIZESTATISTICAL VARIABLES TO ZERO

O

YM=0D0
Y2=0D0
DO 25 L=1,P
XM(L)=0D0
X2(L)=0D0
5 CONTINUE

N

GENERATETHE N * P X MATRIX

OO0

DO 30 J=1,N
Z1=RNOR(0)
DO 40 L=1,K
Z2=RNOR(0)
X(J,L)=RXXSR2*Z2 + RXXSR1*Z1
XM(L)=XM(L)+X(J,L)
X2(L)=X2(L)+(X(J,L)*X(J,L))
IF (DEBUG.EQ.1)WRITE(6,41) Z1,Z2,J,L X(J,L), XM(L), X2(L)
41 FORMAT('0','Z1',8X,'Z2,8X,'J 4X, 'L’ 4X,'X' 14X,
. "KM, 13X,'X2" 12F 10.7,215,4F 15.10)
40 CONTINUE



DO 50 L=KP1,P
Z2=RNOR(0)
X(J,L)=Z2
XM(L)=XM(L) + X(J,L)
X2(L)=X2(L) + X(J,LyX(J,L)
IF(DEBUG.EQ.1)WRITE(6,51)Z2,J,L X(J,L), XM(L), X2(L)

51  FORMAT(0','Z2',8X,'J  4X 'L' 4X,'X', 14X,
. "XM',13X,°X2' 1 F10.7,215,3F 15.10)
50 CONTINUE
30 CONTINUE
C
C  GENERATETHE VECTOROF Y OBSERVATIONS
C
DO 90 J=1,N
Y(J)=0D0
DO 95 L=1K
Y(J)=Y(J)+B*X(J,L)
IF (DEBUG.EQ.1) WRITE(6,94) J, L, Y(J), X(J.L) .

94 FORMAT(0", ' J="15,L="15,'Y="F16.10,' X="F16.10)
95 CONTINUE

Z2=RNOR(0)

Y(J)=Y(J)+Z2

YM=YM+Y(J)

Y2=Y2+(Y(I)*Y(J))

IF (DEBUG.EQ.1) WRITE(6,42) Z2, Y(J), YM, Y2
42 FORMAT('0",'Z2 18X,'Y', 19X,'YM',18X,'Y2" / 4F 20.8)
90 CONTINUE
C

C CALC. THE SAMPLE MEAN AND SUM OF SQUARES OF EACH OF THE
C X VARIABLES AND STANDARDIZE EACH X OBSERVATION.
c |
DO 60 L=1,P

XM(L)=XM(L)/N

X2(L)=(X2(L)-DF LOAT(Ny*XM(L)*XM(L))

IF (DEBUG.GE.1)WRITE(8,61)L, XM(L), X2(L)
61 FORMAT('0"/L=",15'MEAN="F15.10,' SS='F15.10)



DO 70 J=1,N
X(J,L)=(X(J,L)-XM(L)Y(DSQRT(X2(L)))

70 CONTINUE
60 CONTINUE
C

C CALC. THE SAMPLE MEAN AND SUM OF SQUARES OF Y
C
YM=YM/N
Y2=(Y2 - DFLOAT(N)*YM*YM)
IF (DEBUG.GE.1)WRITE(6,52) YM, Y2
52 FORMAT('0",'Y MEAN: F15.10,'Y SS:',F15.10)
C
C STANDARDIZE Y TO HAVE THE CORRELATION TRANSFORMATION
c
DO 80 J=1,N
Y(J)= (Y(J)-YM){DSQRT(Y2))
IF (COND.EQ.1)
. WRITE(14,71) COND, |, RXX,RXY,P,N,Y(J),(X(J,L),L=1,P)
IF (COND.EQ.2)
> WRITE(16,71) COND,1,RXX,RXY,P,N,Y(J),(X(J,L),L=1,P)
IF (COND.EQ.3)
. WRITE(17,71) COND, |, RXX,RXY,P,N, Y(J),(X(J,L),L=1,P)
71 FORMAT(215,2F 10.6,215,F 20.16,/,5(5F 20.16,/))
80 CONTINUE
20  CONTINUE
IF (DEBUG.GE.1) CALL MATMLT(X, Y, P, N, DEBUG)
GO TO 100
999 CONTINUE
CALL RSTOP(ISEED1, ISEED2)
WRITE(6,101)ISEED1, ISEED2
REWIND15 ~
WRITE(15,1) ISEED1,ISEED2,NSIM,DEBUG K
101 FORMAT('1' 'FINAL SEEDS:/,’ SEED 1,111,/ SEED 2:,I11)
STOP
END



C SUBROUTINE MATMLT CALCULATES THE TWOMATRICES:
C A=X'X AND G=X'Y

C

30

20

40
10

50

70
60

80

SUBROUTINE MATMLT(X, Y, P, N, DEBUG)
REAL*8 X(1000,24)
REAL*8 Y(1000)
INTEGERP
INTEGERN
INTEGERDEBUG
REAL*8 A(24,24)
REAL*8 G(24)
INTEGERJ, L, M
DO 10 J=1,P
DO 20 L=1,J
A(J,L)=0D0
DO 30 M=1,N
ALY =AW, L+ X(M,L*X(M,J)
CONTINUE
IF (J.NE.L) A(LJ)=A(J.L)
CONTINUE
G(J)=0D0
DO 40 M=1,N
G(J)=G(J)+Y(M*X(M,J)
CONTINUE
CONTINUE
WRITE(6,50)
FORMAT("1",T40,’XTX", T100,’XTY")
DO 60 J=1,P
WRITE(6,70) (A(J,L),L=1,P), G(J)
FORMAT('0',6F16.10," ;" F16.10)
CONTINUE ‘
WRITE(6,80)
IF (DEBUG.NE.1)GO TO 100
FORMAT("", T40,’X MAT' T100,'Y")
DO 90 J=1,N
WRITE(6,70) (X(J,L),L=1,P), Y(J)



90 CONTINUE

100 CONTINUE
RETURN
END

The following program is a SAS program which applies a 'best' subset
selection algorithm (STEPWISE, BACKWARD or FORWARD) to the simulation
data using the specified inclusion/deletion level (ALPHA = .15/p, .05, or .15).

//RESULTS DD DSN=DERKSN.RESULTS,DISP=MOD
{HSYSINDD *
DATA ONE; /* READ IN SIMULATION DATA ™/
INFILETD;
ARRAY X{12} X1-X12;
INPUT COND | RXXRXY P N Y #2 X1-X5 #3 X6-X10 #4 X11-X12;
DATATWO,
J=1;
SET ONE NOBS=MAX POINT=J,
ALPHA=.05; * INCLUSION/DELETION LEVEL */

FORCE=0; * NUMBER OF PREDICTORS FORCED INTO MODEL*/
METHOD=1; * 1=STEPWISE, 2=FORWARD,AND 3=BACKWARD */
REPS=MAX/N;
KEEP RXX RXY P N ALPHA FORCE METHOD REPS;
OUTPUT;
STOP;
PROC PRINTTOUNIT=17, /* REROUTEOQUTPUT TOFILE™
PROC STEPWISE DATA=ONE; / PERFORMSUBSET SELECTION */
BY I;
MODEL Y=X1-X12/ SLE=.05 SLS=.05 STEPWISE;
PROC PRINTTO; .

* REREAD SUBSET SELECTION OUTPUT, COLLECTING DEPENDENT
VARIABLES;

" DATA COLLECT:
INFILE FT17F001 MISSOVER:



INPUT LABEL $ 2-6 LABEL3 $65-67 @;
LABEL3=SUBSTR(LEFT{LABEL3),1,2);
LABEL=SUBSTR(LABEL,1,4),
LABEL2=SUBSTR(LABEL,1,1);
ARRAY X{12} X1-X12;
IF(_N_=1) THEN DO,

DO I=1TO12;

X{}=0;

END;

K=0;

R2=;

PN=_;
END:;
RETAINR2 K X1-X12 SIM;
{F LABEL3='l=" THEN DO;

INPUT @68 SIM,
END;
IF LABEL='"STEP' THEN DO;
DO I=1TO12;
X{h=0;
END;
K=0;
R2=;
PN=.;
INPUT R2 52-61;
END;
IF LABEL='REGR' THEN DO;
INPUT K 22-23;
END;
IF LABEL2="X' THEN DO;
INPUT | 3-4;
X{l}=1;
END;

IF LABEL='"NO O' AND SIM NE . THEN DO,
KEEP R2 K X1-X12 SIM PN NAUTH NNOISE CL;
NAUTH=X1+X2+X3+X4+X5+X6;



NNOISE=K-NAUTH;
PN=NNOISE/K;
CL=1;
OUTPUT;
K=0;
R2=;
PN=_;
DO =1 TO12;
X{l}=0;
END;
END;
IF LABEL="NO V' AND SIM NE . THEN DO;
CL=0;
NAUTH=X1+X2+X3+X4+X5+X6;
NNOISE=0;
OUTPUT,;
K=0;
R2=.;
PN=_;
DOI1=1TO12;
X{l}=0;
END;
END;
DATA COMBINE: /* CALC. RT2 AND RA2 FROMR2™/
IF_N_=1 THEN SET TWO;
SET COLLECT,
RT2=1-(1-R2)*((N-1)/(N-P-1));
IF (RT2LT 0) AND (RT2NE .) THEN RT2=0;
RA2=1-(1-R2)*((N-1)/{(N-K-1));
IF (RA2 LT 0) AND (RA2 NE .) THEN RA2=0;

* CALCULATE MEAN AND STD. DEV. OF DEPENDENT VARS ;
PROC SUMMARY DATA=COMBINE ;

CLASS CL;
VAR R2K X1-X12 PN RT2 RAZ2;



ID RXX RXY P N ALPHA FORCE REPS METHOD;
OUTPUT OUT=FOUR
MEAN(R2 K PN RT2 RA2 )=MR2 MK MPN MRT2 MRA2
STD(R2 K RT2 RA2 PN)=SR2 SK SRT2 SRA2 SPN
SUM(X1-X12)=C1-C12 N(PN)=NR2;
PROC PRINT;
TITLE'RESULTS FROMSUMMARY';
DATA RESULTS.RESA12;
TITLE'SUMMARY OF RESULTS';
SET RESULTS.RESA12 FOUR;
PROC PRINT:;

* FREQUENCEY TABLE OF NO. OF AUTHENTIC VARIABLES BY NO. OF
NOISE VARIABLES;

PROC FREQDATA=COMBINE;

TABLES NAUTH*NNOISE/ OUT=FREQ1;
DATA FREQ1;

IF_N_=1 THEN SET TWO;

SET FREQT;
DATA RESULTS.FREQA1Z;

SET RESULTS.FREQA12 FREQ1;



Appendix B



Appendix B



The Standard Etror of the Mean Value of Cyby

Method and I/D Level 2
Method
STEPWISE BACKWARD FORWARD
I/D Level (@)

Pxix; P N Gp .05 A5 Op .05 A5 Qp .05 15
0.0 12 30 .018 .040 062 025 .053 .073 .018 .040 .062
60 020 .034 .05 .021 .039 .058 .020 .034 .057

90 .016 .036 .054 .019 .037 .058 .016 .036 .054

18 30 022 052 .091 .035 .099 .135 .022 .052 .095

60 .021 054 .085 .031 .064 .091 .021 .056 .087

90 018 049 .082 .024 .05 .091 .018 .048 .085

24 30 021 075 133 079 221 222 .021 .075 .138
60 024 063 .114 031 .093 .132 .024 .064 .114

90 .024 061 102 .027 .070 .118 .024 .062 .105

0.4 12 30 .020 .033 .059 021 .053 .075 .020 .033 .060
60 .016 .032 .052 .020 .034 .05 .016 .032 .052

90 .020 .037 .061 .026 .039 .064 .020 .037 .061

18 30 022 055 .098 .038 .096 .125 .022 .056 .100

60 .023 053 .083 .026 .067 .103 .023 .053 .089

90 .021 051 .084 024 .061 .090 .021 .052 .084

24 30 019 069 .132 .055 206 .202 .019 .069 .138

60 .023 .054 107 .027 .078 .124 .023 .053 .106

90 023 060 .102 024 074 115 .023 .060 .103

08 12 30 017 036 .062 .024 .050 .074 .017 .036 .064
60 021 036 .060 .021 .040 .064 .021 .036 .060

90 017 .031 .052 .018 .032 .057 .017 .031 .052

18 30 .018 .058 .092 .045 .106 .137 .018 .058 .093

60 .025 .049 .085 .026 .058 .106 .025 .049 .089

90 .020 .049 .085 .022 .051 .091 .020 .050 .085

24 30 020 .078 .138 .095 .235 .232 .020 .081 .138

60 020 .065 .109 .028 .092 .136 .020 .065 .111

90 024 062 .100 .028 .075 .113 .024 .062 .101

aNote: See Table 6 note.



The Standard Error of the Mean Value of C by

Method and I/D Level 2
Method
STEPWISE BACKWARD | FORWARD
I/D Level ()

Psxy P N o 05 15 @ 05 15 @ .05 .15

0.0 12 30 .029 .050 .074 .041 .064 .085 .029 .050 .074
60 .042 057 .074 .046 .062 .076 .042 .057 .075

90 .049 068 .078 .054 070 .079 .049 .068 .078

18 30 .028 051 .069 .038 .073 .080 .028 .052 .071

60 .040 060 .071 .047 .065 .072 .040 .060 .072

90 .046 070 .078 .053 .073 .079 .046 .070 .078

24 30 .022 046 .074 .031 .087 .092 .022 .046 .076

60 .032 .062 .071 .037 .065 .076 .032 .062 .071

90 .040 065 .077 .045 .070 .079 .040 .065 .077

0.4 12 30 025 037 .054 .028 .050 .066 .025 .037 .055
60 .030 .036 .050 .032 .042 .059 .030 .036 .050

90 .032 .035 .048 .033 .041 .058 .032 .035 .049

18 30 .020 .039 .061 .026 .066 .083 .020 .040 .062

60 028 .038 .054 .028 .045 .063 .028 .039 .056

90 .032 .03% 051 .032 .044 .058 .032 .039 .053

24 30 022 .038 .067 .038 .086 .088 .022 .039 .070

60 .026 .039 .057 .027 .047 .070 .026 .040 .058

90 .030 .036 .052 .031 .043 .053 .030 .036 .053

0.8 12 30 .020 033 .054 .035 .050 .068 .020 .033 .056
60 .027 037 .053 .034 .047 .059 .027 .037 .053

90 .029 .040 .053 .036 .048 .058 .029 .040 .054

18 30 .020 .035 .055 .035 .067 .081 .020 .035 .056

60 ~ .024 .035 .055 .033 .051 .070 .024 .035 .055

90 .027 038 .050 .032 .046 .061 .027 .038 .051

24 30 .020 .038 .065 .045 .088 .096 .020 .038 .068

60 .023 039 .059 .023 .052 .068 .023 .039 .061

90 028 .040 055 .033 .048 .058 .028 .040 .056

aNote: See Table 6 note.



Standard Errors of the Mean?

METHOD = STEPWISE

Inclusion/Deletion Level =qp

pxixi N Freq PN R2 sz Rp2
0.0 12 30 68 5.078 0.010 0.008 0.0044
0.0 12 60 111 3.206 0.007 0.006 0.0045
0.0 12 90 145 2.040 0.005 0.004 0.0036
0.0 18 30 65 5.705 0.012 0.012 0.0002
0.0 18 60 88 4.250 0.009 0.008 0.0043
0.0 18 S0 108 3.247 0.006 0.006 0.0029
0.0 24 30 55 6.669 0.012 0.012 0.0000
0.0 24 60 8% 4.659 0.007 0.006  0.0000
0.0 24 S0 116 3.573 0.006 0.005 0.0016
0.4 12 30 64 5.741 0.012 0.012 0.0091
0.4 12 60 89 3.827 0.005 0.005 0.0038
0.4 12 90 121 2.785 0.003 0.003 0.0020
0.4 18 30 47 7.036 0.013 0.013 0.0000
0.4 18 60 87 4721 0.006 0.006 0.0006
0.4 18 90 108 3.150 0.005 0.005 0.0019
0.4 24 30 53 6.481 0.011 0.011  0.0000
0.4 24 60 74 5.352 0.007 0.007 0.0001
0.4 24 90 102 3.939 0.005 0.004 0.0008
0.8 12 30 38 7.468 0.014 0.014 0.0075
0.8 12 60 66 5.405 0.008 0.008 0.0054
0.8 12 90 92 3.919 0.004 0.004 0.0020
0.8 18 30 49 7.094 0.010 0.010 0.0000
0.8 18 60 65 5.822 0.007 0.006 0.0005
0.8 18 90 79 4976 0.004 0.004 0.0011
0.8 24 30 45 7.213 0.014 0.013 0.0000
0.8 24 60 54 6.664 0.007 0.007 0.0000
0.8 24 S0 88 4.716 0.005 0.005 0.0000

_ aNote: See Table 6 note.



Standard Errors of the Mean2

METHOD = STEPWISE

Inclusion/Deletion Level =.05

pxixi Freq PN R2 sz Rp2
0.0 12 30 157 3.128 0.011 0.010 0.0067
0.0 12 60 194 2.196 0.006 0.006 0.0047
0.0 12 30 217 1.583 0.005 0.004 0.0041
0.0 18 30 183 3.094 0.011 0.011  0.0032
0.0 18 60 206 2.491 0.008 0.007 0.0046
0.0 18 30 230 2.194 0.005 0.005 0.0031
0.0 24 30 204 2.665 0.011 0.011  0.0007
0.0 24 60 221 2.405 0.007 0.007 0.0020
0.0 24 S0 238 2.127 0.005 0.005 0.0021
0.4 12 30 136 3.625 0.010 0.010 0.0056
0.4 12 60 163 3.054 0.005 0.005 0.0028
0.4 12 S0 199 2.497 0.004 0.003 0.0022
0.4 18 30 171 3.184 0.011 0.010 0.0040
0.4 18 60 192 2.798 0.006 0.006 . 0.0020
0.4 18 90 214 2.570 0.004 0.004 0.0017
0.4 24 30 193 2.600 0.012 0.011  0.0000
0.4 24 60 206 2.667 0.006 0.006 0.0010
0.4 24 30 216 2.559 0.004 0.004 0.0012
0.8 12 30 121 4.095 0.010 0.010 0.0038
0.8 12 60 135 3.678 0.006 0.006 0.0036
0.8 12 80 155 3.021 0.004 0.004 0.0021
0.8 18 30 158 3.201 0.011 0.010  0.0001
0.8 18 60 166 3.366 0.006 0.005 0.0013
0.8 18- 90 184 3.046 0.004 0.003 0.0007
0.8 24 30 179 2.809 0.012 0.012 0.0013
0.8 24 60 183 3.012 0.007 0.006 0.0004
0.8 24 90 203 2.817 0.004 0.004 0.0004

. aNote: See Table 6 note.



Standard Errors of the Mean2

METHOD = STEPWISE
Inclusion/Deletion Level = .15

Px;x; N Freq Pn R2 Rg? Rp?
0.0 12 30 229 2.203 0.010 0.008 0.0075
0.0 12 60 247 1.692 0.007 0.006 0.0054
0.0 12 S0 248 1.391 0.005 0.004 0.0045
0.0 18 30 246 1.800 0.011 0.011 0.0064
0.0 18 60 249 1.648 0.008 0.007 0.0055
0.0 18 90 250 1.368 0.005 0.005 0.0044
0.0 24 30 248 1.466 0.013 0.012 0.0046
0.0 24 60 246 1.449 0.007 0.007 0.0042
0.0 24 90 249 1.276 0.005 0.005 0.0041
0.4 12 30 217 2.388 0.010 0.008 0.0053
0.4 12 60 236 2.140 0.005 0.005 0.0030
0.4 12 90 242 2.071 0.004 0.004 0.0027
0.4 18 30 239 1.969 0.012 0.011 0.0053
0.4 18 60 245 1.732 0.007 0.006 0.0035
0.4 18 S0 245 1.821 0.005 0.004 0.0027
0.4 24 30 246 1.398 0.012 0.012 0.0043
0.4 24 60 247 1.613 0.007 0.006 0.0022
0.4 24 90 248 1.552 0.005 0.004 0.0020
0.8 12 30 205 2.680 0.010 0.008 0.0049
0.8 12 60 227 2.583 0.006 0.005 0.0031
0.8 12 90 225 2.395 0.004 0.003 0.0021
0.8 18 30 232 1.882 0.011 0.010 0.0037
0.8 18 60 239 2.096 0.006 0.005 0.0023
0.8 18 - 80 240 1.967 0.004 0.004 0.0014
0.8 24 30 245 1.418 0.013 0.012 0.0036
0.8 24 60 247 1.592 0.007 0.006 0.0020
0.8 24 90 248 1.463 0.005 0.004 0.0016

_ aNote: See Table 6 note.



Standard Errors of the Mean?2

METHOD = FORWARD

Inclusion/Deletion Level =0y,

pxixi P N Freq PN R2 Rk2 Rp2
0.0 12 30 68 5.078 0.010 0.008 0.0044
0.0 12 60 111 3.206 0.007 0.006 0.0045
0.0 12 90 145 2.040 0.005 0.004 0.0036
0.0 18 30 65 5.705 0.012 0.012 0.0002
0.0 18 60 88 4.250 0.009 0.008 0.0043
0.0 18 S0 108 3.247 0.006 0.006 0.0029
0.0 24 30 55 6.669 0.012 0.012 0.0000
0.0 24 60 89 4.659 0.007 0.006 0.0000
0.0 24 30 116 3.573 0.006 0.005 0.0016
0.4 12 30 64 5.741 0.012 0.012 0.00%1
0.4 12 60 89 3.827 0.005 0.005 0.0038
0.4 12 90 121 2.785 0.003 0.003  0.0020
0.4 18 30 47 7.036 0.013 0.013 0.0000
0.4 18 60 87 4721 0.006 0.006 0.00086
0.4 18 90 108 3.150 0.005 0.005 0.0018
0.4 24 30 53 6.481 0.011 0.011  0.0000
0.4 24 60 74 5.362 0.007 0.007 0.0001
0.4 24 90 102 3.939 0.005 0.004 0.0008
0.8 12 30 38 7.468 0.014 0.014 0.0075
0.8 12 60 66 5.405 0.008 0.008 0.0054
0.8 12 90 92 3.918 0.004 0.004 0.0020
0.8 18 30 49 7.094 0.010 0.010  0.0000
0.8 18 60 65 5.822 0.007 0.006 0.0005
0.8 18. S0 79 4,976 0.004 0.004 0.0011
0.8 24 30 45 7.213 0.014 0.013 0.0000
0.8 24 60 54 6.664 0.007 0.007 0.0000
0.8 24 90 88 4.716 0.005 0.005 0.0000

~ 2Note: See Table 6 note.



Standard Errors of the Mean?2

METHOD = FORWARD

Inclusion/Deletion Level = .05

pxixi P N Freq PN R2 Rk2 Rp2
0.0 12 30 157 3.128 0.011 0.010 0.0067
0.0 12 60 194 2.1%6 0.006 0.006 0.0047
0.0 12 90 217 1.582 0.005 0.004 0.0041
0.0 18 30 183 3.085 0.011 0.011  0.0032
0.0 18 60 206 2.480 0.008 0.007 0.0046
0.0 18 S0 230 2.191 0.005 0.005 0.0031
0.0 24 30 204 2.662 0.011 0.011  0.0007
0.0 24 60 221 2.396 0.008 0.007 0.0020
0.0 24 90 238 2.133 0.005 0.005 0.0021
0.4 12 30 136 3.525 0.010 0.010 0.0056
0.4 12 60 163 3.054 0.005 0.005 0.0028
0.4 12 90 199 2.497 0.004 0.003 0.0022
0.4 18 30 171 3.184 0.011 0.010 0.0040
0.4 18 60 192 2.800 0.006 0.006 0.0020
0.4 18 90 214 2.572 0.004 0.004 0.0018
0.4 24 30 193 2.586 0.012 0.011  0.0000
0.4 24 60 206 2.668 0.006 0.006 0.0010
0.4 24 S0 216 2.559 0.004 0.004 0.0012
0.8 12 30 121 4.097 0.010 0.010 0.0038
0.8 12 60 135 3.678 0.006 0.006 0.0036
0.8 12 90 155 3.021 0.004 0.004 0.0021
0.8 18 30 158 3.201 0.011 0.010 0.0001
0.8 18 60 166 3.366 0.006 0.005 0.0013
0.8 18. 90 184 3.048 0.004 0.003 0.0007
0.8 24 30 179 2.790 0.013 0.012 0.0013
0.8 24 60 183 3.012 0.007 0.006 0.0004
0.8 24 90 203 2.818 0.004 0.004 0.0004

~ 2Note: See Table & note.



Standard Errors of the Meana

METHOD = FORWARD

Inclusion/Deletion Level = .15

pxixi P N Freq PN R2 sz sz
0.0 12 30 229 2.193 0.010 0.008 0.0076
0.0 12 60 247 1.689 0.007 0.006 0.0055
0.0 12 90 248 1.386 0.005 0.004 0.0045
0.0 18 30 246 1.804 0.012 0.011  0.0065
0.0 18 60 249 1.635 0.008 0.007 0.0056
0.0 18 90 250 1.368 0.005 0.005 0.0044
0.0 24 30 249 1.469 0.013 0.012 0.0045
0.0 24 60 246 1.425 0.007 0.006 0.0041
0.0 24 90 2439 1.272 0.005 0.005 0.0041
0.4 12 30 217 2.376 0.010 0.009 0.0054
0.4 12 60 236 2.137 0.005 0.005 0.0031
0.4 12 90 242 2.071 0.004 0.004 0.0027
0.4 18 30 239 1.964 0.012 0.011  0.0052
0.4 18 60 245 1.720 0.007 0.006 0.0036
0.4 18 90 245 1.811 0.005 0.004 0.0027
0.4 24 30 246 1.389 0.012 0.012 0.0044
0.4 24 60 247 1.604 0.007 0.006 0.0022
0.4 24 S0 248 1.550 0.005 0.004 0.0020
0.8 12 30 205 2.673 0.010 0.008 0.0051
0.8 12 60 227 2.574 0.006 0.005 0.0031
0.8 12 90 225 2.394 0.004 0.003 0.0021
0.8 18 30 232 1.872 0.011 0.010 0.0037
0.8 18 60 239 2.079 0.006 0.005 0.0024
0.8 18- 90 240 1.965 0.004 0.004 0.0014
0.8 24 30 245 1.405 0.013 0.012 0.0024
0.8 24 60 247 1.590 0.007 0.006 0.0020
0.8 24 90 249 1.463 0.005 0.004 0.0016

. aNote: See Table 6 note.



Standard Errors of the Mean?

METHOD = BACKWARD

Inclusion/Deletion Level =oyp

pxixi N Freq PN R2 sz Rp2
0.0 12 30 76 4738 0.013 0.012 0.0100
0.0 12 60 111 3.201 0.007 0.006 0.0052
0.0 12 30 151 2.030 0.005 0.004 0.0038
0.0 18 30 74 5.361 0.014 0.013 0.0010
0.0 18 60 99 3.932 0.010 0.008 0.0063
0.0 18 390 117 2.855 0.006 0.006 0.0030
0.0 24 30 64 5.730 0.021 0.020 0.0152
0.0 24 60 92 4.583 0.008 0.007 0.0000
0.0 24 90 120 3.448 0.006e 0.005 0.0016
0.4 12 30 64 5.717 0.012 0.012 0.0091
0.4 12 60 395 3.705 0.005 0.005 0.0037
0.4 12 90 122 2.852 0.004 0.004 0.0026
0.4 18 30 57 5.411 0.017 0.016  0.0000
0.4 18 60 g1 4.458 0.006 0.006  0.0007
0.4 18 30 107 3.379 0.005 0.005 0.0019
0.4 24 30 57 5.828 0.021 0.019 0.0105
0.4 24 60 74 5.320 0.008 0.007 0.0001
0.4 24 90 103 3.901 0.004 0.004 0.0008
0.8 12 30 52 5.752 0.014 0.013 0.0098
0.8 12 60 75 4.886 0.007 0.007 0.0048
0.8 12 90 99 3.680 0.004 0.004 0.0022
0.8 18 30 54 6.159 0.020 0.018 0.0125
0.8 18 60 74 5.263 0.007 0.006 0.0019
0.8 18- 90 88 4.604 0.004 0.004 0.0012
0.8 24 30 58 5.799 0.027 0.025 0.0185
0.8 24 60 56 6.301  0.008 0.008 0.0000
0.8 24 90 96 4.387 0.005 0.005 0.0000

~ aNote: See Table 6 note.



Standard Ermrors of the Mean?2

METHOD = BACKWARD

Inclusion/Deletion Level = .05

pxixi P N Freq PN R2 Rk2 Rp2
0.0 12 30 175 2.712 0.011 0.010 0.0083
0.0 12 60 198 2.078 0.007 0.006  0.0051
0.0 12 90 219 1.555 0.005 0.004 0.0041
0.0 18 30 203 2.435 0.013 0.012 0.0069
0.0 18 60 212 2.333 0.008 0.007 0.0049
0.0 18 90 237 2.080 0.005 0.005 0.0033
0.0 24 30 218 1.926 0.016 0.015 0.0100
0.0 24 60 232 2.263 0.008 0.007 0.0026
0.0 24 S0 239 1.976 0.006 0.005 0.0025
0.4 12 30 151 3.208 0.011 0.010  0.0080
0.4 12 60 172 2.912 0.005 0.005 0.0031
0.4 12 S0 203 2.431 0.004 0.003 0.0023
0.4 18 30 186 2.599 0.013 0.012 0.0066
0.4 18 60 199 2.566 0.007 0.006 0.0026
0.4 18 30 217 2.573 0.005 0.004 0.0019
0.4 24 30 207 2.013 0.017 0.015 0.00%4
0.4 24 60 212 2.404 0.007 0.006 0.0011
0.4 24 90 223 2.432 0.005 0.004 0.0012
0.8 12 30 148 3.254 0.011 0.010 0.0067
0.8 12 60 150 3.136 0.006 0.005 0.0036
0.8 12 a0 172 2.635 0.004 0.003 0.0021
0.8 18 30 180 2.551 0.014 0.012 0.0078
0.8 18 60 186 2.855 0.006 0.005 0.0017
0.8 18. 90 198 2.885 0.004 0.003 0.0007
0.8 24 30 21 1.937 0.017 0.015 0.0127
0.8 24 60 207 2.563 0.007 0.006 0.0012
0.8 24 30 212 2.601 0.005 0.004 0.0007

~ 2Note: See Table 6 note.



Standard Errors of the Mean2

METHOD = BACKWARD

Inclusion/Deletion Level =.15

pXiE‘L P N Freq PN R2 sz sz
0.0 12 30 233 1.906 0.011 0.010 0.0088
0.0 12 60 248 1.541 0.006 0.006 0.0056
0.0 12 30 249 1.413 0.005 0.004 0.0046
0.0 18 30 248 1.330 0.012 0.011  0.0105
0.0 18 60 250 1.432 0.007 0.007 0.0059
0.0 18 90 250 1.324 0.005 0.005 0.0045
0.0 24 30 248 0.895 0.011 0.012 0.0140
0.0 24 60 248 1.204 0.007 0.007 0.0053
0.0 24 30 248 1.197 0.005 0.005 0.0043
0.4 12 30 232 2.018 0.010 0.008 0.0065
0.4 12 60 240 2.035 0.005 0.005 0.0032
0.4 12 S0 242 1.979 0.004 0.004 0.0028
0.4 18 30 247 1.473 0.012 0.011  0.0080
0.4 18 60 247 1.565 0.007 0.006 0.0041
0.4 18 90 244 1.634 0.005 0.004 0.0029
0.4 24 30 249 0.667 0.010 0.011 0.0131
0.4 24 60 248 1.345 0.007 0.006 0.0032
0.4 24 30 249 1.438 0.005 0.004 0.0024
0.8 12 30 227 2.003 0.010 0.009 0.0068
0.8 12 60 236 2.155 0.005 0.005 0.0033
0.8 12 90 235 1.947 0.004 0.003 0.0024
0.8 18 30 246 1.452 0.012 0.011  0.0093
0.8 18 60 242 1.796 0.007 0.005 0.0034
0.8 18. S0 244 1.708 0.004 0.004 0.0018
0.8 24 30 249 0.819 0.012 0.013 0.0158
0.8 24 60 249 1.324 0.007 0.006 0.0035
0.8 24 90 249 1.310 0.005 0.004 0.0019

~ aNote: See Table 6 note.



