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Abstact

Flack and Chang (1987) studied the effects of sample size and the

number of candidate variables on the frequency that noise variables are

selected by the STEPWISE algorithm. Additionally the bias of the adjusted Rz

of the selected variables was examined. They demonsfated that, often, a large

percentage of the selected variables are noise, especially when the number of

candidate variables exceeds the sample size. Also, the adjusted FÊ of the

selected variables is highly inflated. However, these findings may not be

relevant to behavioral scientists as the conditions Flack and Chang (1987)

investigated did not typify behavioural science phenomena.

The present study used Monte Carlo simulation techniques to investigate

the frequency with which authentic and noise variables are selected by subset

selection algorithms under conditions characteristic of behavioural science

investigations. ln particular, the effects of the conelation between pedictor

variables, the number of candidate predictor variables, the size of the sample,

and the level of significance for inclusion and deletion of variables were studied

forthethree subset algorithms implemented by SAS: STEPWISE, BACKWARD,

and FORWABD. The results of this study were shown to largely aEee with

those of Flack and Chang in that even under favourable parametic conditions a

significant portion of the final subset could be noise. ltwas further found that the

tends of the BACKWARD procedure could ditfer both in magnitude and

direction from those of the STEPWISE and FORWARD procedures. The

BACKWARD gocedure tended to select both more authentic and more noise

variables on average than either the STEPWISE or FORWARD pocedures.

Similarly the BACKWARD procedure poduced more inflated values of FÊ and

R¡2 [an estimate of the population coefficient of multiple determination that is



ad¡usted by the final subset size]. However, for each of the subset selection

algorithms under optimal conditions, about half of the available authentic

variables were selected on average and the average number of noise variables

selected was less than one. Similarly, FP and R¡2 accurately estimated the

population multiple coefficient of determination when a conservative

inclusion/deletion level was used and the predictor variables were unconelated

and the sample size was large compared to the number of predictor variables.

ln addition, the population multiple coefficient of determination was never over-

estimated in the conelated case by adopting an estimate that is adjusted by the

total number of candidate predictor variables rather than the number of

variables in the final model.
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INTRODUCTION

A common goal of behavioural and social scientists is to quantify

relationships between a response variable and one o{" more predictor variables

using multiple linear regnession analysis. Therefore, it is imporlant to
researchers that the relevant predictor variables of the response variable be

known. When there are many candidate predictors to choose from and pior

knowledge does not dictate their relevance, a researcher may use automated

'best' subset selection algorithms to choose the 'best' predictor variables from

the larger set. An examination of some textbooks on multiple linear reEession

(e.9. Cohen & Cohen, 1983, pp. 123-125; Neter, Wasserman & Kutner, 1983,

pp 417-443, Pedhazur, 1982, pp 15G171; Younger, 1985, pp. 488-489)

indicates that the search algorithms most commonly used are the forward,

backward elimination and stepwise algorithms [these algorithms often are

refened to collectively as stepwise methods, see SAS' (1985) STEPWISE

PROCEDURE for examplel. By using these algorithms, it is hoped that the most

effective predictors which adequately explain the behaviour of the response

variable may be found.

Recently, Flack and Chang (1987) compared the all-subsets and

stepwise algorithms for the frequency with which they specified 'best' models

containing authentic versus noise predictor variables. For the parametric

conditions they investigated, it was found that both algorithms typically selected

a large percentage of noise variables. Additionally, they found that the 25th

percentile of their adjusted estimate of the multiple coefficient of determination

often exceeded the model value. These findings are most interesting but may

have limited generalizablity to behavioural scientists since the conditions Flack

and Chang (1987) investigated did not typify behavioural science phenomena.

Consequently, the goal of this study was to extend the research on the

selection of predictor variables and to compare 'best' subset selection

algorithms under .parametic conditions mo{'e characteristic of behavioural

science investigations. Moreover, subset algorithms, levels of signíficance for

inclusion and deletion of variables, and an estimate of the population multiple

coefficient of determination not examined by Flack and Chang (1987) were

investigated.



lntroduction to Multipfe_ Linear Begessjon

Multiple linear regnession theory holds that given a response variable, y,

and kpredictor variables, Xr, Xz ,..., X¡, there is a linear relationship between

the response variable and the predictor variables (see Table 1 fo¿' schematic).

The general multiple reEession model statement expressing the relationship

between the response variable and the predictor variables is given by

Vi = 0o * 0r X¡ t * þz Xi z + , ... , *Fr Xi r + e

where y¡ is the response variable; Xu, X¡z , ..., Xru are the ith observations on

the k predictor variables, measured without error; ps is the y intercept; Fr, Þz , ... ,

Þrarethekregression parameter constantswhere Fi (i =1,..., k) measures the

change in y per unit change in X¡ when all other pedictor variables are held

constant; and q is the random enor term of the ith observation.

Given a set of values for X1 ,Xz , ..., Xr and f* 0t, Þz , ..., Êr. a researcher

could estimate y (with some error represented by e). lf a particular predictor

variable, X¡ , wâs unrelated to the response variable, that is if a unit change in X¡

produced no corresponding change in y, then its conesponding reEession

coefficient, 0¡ , would be zero.

Under the multiple linear regression model it is assumed that the enors

are independent, identically distributed random variables with mean zero and

common variance. Notationally these assumptions are expressed in the

following way.

E(q) = o

Var(q) = s2

Cov(q,g)=0 (i+i)

where o2 is the common population variance of the eror term. Thus, the

expected value of y¡, known as the reEession function, is given by

E(yi) = Êo * Êr Xr * Fz X¡2 + ... + Fr Xir

(1)

(2)



Table 1

Schematic for a Multiple Linear Bcgressisn Model a

Y1 (Xll Xtz Xl¡ Xlt)
Y2 (Xal Xzz Xz¡ Xzx)

Y¡ (X¡r X¡z X¡¡ X¡r)

Y¡ (Xrur Xruz X¡.¡¡ Xrur)

aNote: Xl , ..., XL are the ith observations on the k independent variables, Y¡ is

the dependent variable.
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and the variance of y¡is given by

Var(y¡l Xr, Xz , ..., Xx) = Var(q) = o2.

For a sample of N observations the model and

may be expressed as in the following matix equations.

:iated

model

assumptions

is given by:

assoct

The n

Ip,
lB

1 Ht Hte Hrr

I Xzr Xez Her

1 X¡¡ t H¡lz H¡t¡t

or

y: x f + € (3)

where y is a N X 1 vector of observations on the response variable; X is a
N X k+1 matrix of observations on the k predictor variables; p is a k+1 X 1

vector of regn'ession coefficients; and e is a N X 1 vector of random effo{'s.

The associated assumptions are

t1

e2

.

Er

Po

Êr

.

Ft

I ur I

I o' l:
Lu* l

=Q

Io
lo
I

I

I

Io

d

E(e) =



I Varlq ) cov(q , E) Cov(e, , qrf
I covl%,q) var(Q) cov(Q, Çu)

E(st") =l

I

I

I Cov1q.{,q) Cov(s*, Q) Var(h)

= o2lN .

where l¡ is an N X N identity mafix, since Cov(Ç, E) = 0 for all i * j. The

regression function expressed in matrix notation is

E(Y) = XF. (4)

When a random sample of size N is taken from the population of

experimental units, one can only estimate the population reyession

coefficients. The method of least-squares povides estimates having certain

desirable properties. lf b denotes the vector of estimated reEession coefficients

then the reEession equation may be written as

V=Xb+e

where e is the N X 1 vector of residuals. The method of least-squares

minimizes the residual sum of squares,

ere=(V-XU¡t1t-Xb)

(where r is the ûanspose operator) to yield the normal equations,

Xry = (XrX) b.

lf XrX is nonsingu lu, aunique solution to the normal equations is given by

b = (xrx)-r xrY. (s)
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This equation provides the least-squares estimates of the population regnession

coefficients. The requirement that XrX be nonsingular implies that no predictor'

variable can be a linear function of the others.

According to the Gauss-Markov Theorem, (See Fox, 1984, p. 42) the

least-squares estimates are unbiased and have minimum variance among the

class of all linear unbiased estimators. Thus

E(b) = Þ.

The variances of the regnession coefficients are the diagonal elements of

6z 1¡r¡¡-t

The off-diagonal elements are the covariances between the regression

coefficients. Thus, oe 1¡r¡¡-l is known as the variance-covariance matrix. Using

the estimated reEession coefficients, the estimated reEession function is
expressed as

i=Xb

where i is an N X 1 vector of predicted values.

lf the response variable and the pedictor variables are standardized to

have zero intercept and unit lengrth by the correlation fansformation,

(6)

(7)

(8)

.,. - (Yi -Y)
tl - /E-

'v uilil

and

....- (Xt¡-X¡)
^.,, 

_ 
../Sii

where S* and S¡¡ are the conected sample sums of squares and ! and \ are

the sample means of y and X¡ respectively, then XrX is a (k X k) mafix of

correlations among the predictor variables known as the correlation mafix, R*r,

and Xry is a (k X 1) vector of conelations between the response variable and
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the predictor variables. When the predictor variables are unconelated, B* is

an identity matrix and each estimated reEession coefficient will be equal to the

simple conelation between the predictor variable with wh¡ch it is associated and

the response variable (Pedhazur, 1973, p. 234). Whether the predictor

variables are unccrrelated or not, the standardized reEession coefficients may

be obtained from the unstandardized coefficients from the relations

b*o=0

where Sr and S¡ are the standard deviations of y and X¡ before they had been

transformed. From equation 7, it is clear that the variance covariance matrix of

the standardized coefficients is

o*2 Bxx_1

where o*2 = 02 / So, is the variance of the residuals of the üansformed model.

Conducting statistical tests in reEession analysis requires the further

assumption that the random error term of the model be normally distributed [with
mean zero and variance o2l. The reEession model with this added assumption

is known as the normal error model. The addition of the normal error

assumption implies that the response variable, the estimated regnession

coefficients, the predicted values and the residuals are also normally

distributed, thus allowing the usual analysis of variance (ANOVA) of the

regression model to proceed (See Table 2). The ANOVA tests the global null

hypothesis that all the regression coefficients are zero, Ho.Êl = Þ2 = ... = 9r = 0.

Under the null hypothesis, F = MSR / MSE is disfibuted as an F statistic with k

and N-k-l degrees of freedom.

b-,=b,+



Table 2

ANOVA for Multiole Reoression

Source df Sum of Squares Mean Square F

ReEession k br xrx o - 
(vrU rv) 

MSR = + H3Ê

Error N - (k+1) (y - XU¡r1, - Xb) MSE = M:ät

ïotat N-1 ,tr-{J{flÐ
aNOTE: 1 is a N X 1 vector of 1's



Conelation in Multiple Regnession

Measures of correlation are important in multiple reEession because,

unlike the unstandardized regression coefficients for example, they supply a

unitless measure of the sûength of a relationship. ln multiple regtression several

such measures may be calculated.

The multiple coefficient of determination (FP) can be calculated from

Table 2 as

nr=s

B2 may be thought of as the squared conelation coefficient of y with y or as the

proportion of the total variation that is explained by the model. ln simple linear

regression, where only one predictor variable is considered, the positive or

negative square root of R2 is the simple conelation between the response

variable, y, and the single predictor variable, X. ln the multiple regnession case,

conelation among the different variables is more complex.

The simple linear conelation between X¡ and y can be calculated as

follows

rii =

(e)

e.
"ty/qr;

where S¡, (xti - -x¡){y¡ - y}, and S¡¡ and S* are as previously defined.

The simple linear conelation between X¡ and y measures the stength of the

relationship between X¡ and y ignoring the effect of all other predictor variables.

Because multiple regtression involves more than one predictor variable two

other measures of -correlation of a single predictor with the response variable

may be calculated. Cohen and Cohen (1983) describe these as the semi-

partial conelation coefficient (w¡)and partial conelation coefficient (pri) (pp. 88-

s1).

(10)

=I
i=1
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The semi-partial conelation coefficient measures the conelation of y with

X¡ where the effect of all of the other p,redictor variables has been partialled out

from X¡. The semi-partial coefficient between y and Xi is calculated as

o,=¡çf;$ffi

where R1 is defined to be the inverse of the mafix of simple correlations among

the set of k + 1 variables: X1, X2, ..., X¡, y, and R-1(p,q) is the element in the pth

row and qth column of that mafix. The squared semi-partial coefficient

represents the proportion of variance in y uniquely associated with X¡ and may

be more simply calculated as

sr.¡2 = 9I&=ïB- - Rr2 - Rr- i2 (11)

where SSR¡ and SSR¡-¡ and R¡2 and R¡-¡2 are the sums of squares for

reEession and the coefficients of determination for the k - term model and the k

minus variable i - term model, respectively, and TSS is the total sums of

squares. From this formula it is clear that sr¡2 is the unique contibution of X¡ to

the coetficient of determination of the full model.

The partial conelation coefficient is the correlation between that portion

of X¡ not linearly associated with the remaining k - 1 variables with that portion

of y not linearly associated with the remaining k - 1 variables. The partial

correlation between y and X¡ correcting for X1 ,...,Xi-r, Xi*t ,..., X¡ can be

calculated by

p-t1i,k+1
Pf i = [Rt(k+1,k+1) R1(i,i)]1,2

where R1 is as defined previously.
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The squared partial conelation coetficient represents the proportion of y

variance not accounted for by the k - 1 remaining predictol' variables that is

accounted for by Xi. Like the sr¡2, pri2 may be more simply calculated as

ar.2 _SSRk - SSRk-i
t4 t SSE k_i

where SSE k-i is the sums of squares for enor in the k - variable i - term model.

lf the pedictor variables are uncoffelated, the semi-partial conelation

coefficient is just the simple correlation coefficient. However, when the predictor

variables are correlated, the simple conelation coefficient, the semi-partial and

the partial correlation coefficients each measure a unique kind of correlation

between the response variable and a given predictor variable.

D ef inition olEff ect Size tn_ Mutlple_ Be$essjon

Cohen (1969), defined "'effect size' to mean 'the deEee to which the

phenomenon is present in the population,' or 'the deEee to which the null

hypothesis is false.' " (p. 9). Since measures of correlation provide a unitless

measure of a relationships sfength, they are a natural choice for describing the

effect size in multiple reEession.

Cohen and Cohen (1983) give three general guidelines for determining

the value of the population effect size under study:

1. Previous experience or study may indicate the effect size to

expect in the population.

2. Some minimum effect size may be advanced that would have

either practical or theoretical significance.

3. lt may be possible to use some conventional definitions of a

small, medium or large effect size for the phenomenon under study. (pp.

se-60)

The size of the phenomenon present in the population is important for it

will determine, for a given sample size and significance level, the probability

that a false null hypothesis is rejected. Therefore, Cohen and Cohen (1983)

describe a method for using the expected effect size to determine the sample
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size necessary to reiect a false null hypothesis (with some given probability)

(pp 1 16-1 18).

ln multiple reEession, two different kinds of null hypotheses may be of

interest. Firstly, the overall F statistic given in Table 2 tests the null hypothesis,

Ho : 9r = Fz =... = Fr = 0. When the overall significance of the model is the

hypothesis of interest Cohen and Cohen (1983) define the effect size as a

function of the expected population coefficient of multiple determination

As described, researchers may posit a value of Rz to determine the expected

effect size. lf no value from previous research is available Cohen and Cohen

(1983, p. 161) offerthe following conventional values of P: "small", P = 0.02;
"medium", P =0.15; and "large", P = 0.35. Knowing P, s, and k, the number of

independent variables, the required sample size is calculated as

wI"=l _-W

n=þ+k+1

(12)

(13)

(14)

where L is a tabled value dependent upon ke, the number of degrees of

freedom associated with the source of y variation being tested [generally equal

to kl and the required deEee of power (Cohen & Cohen, 1983, p. 1 17).

The second kind of hypothesis of interest in multiple reEession may be

the null hypothesis that any partial conelation or reEession coefficient for a
given X¡ (among k independent variables) is zero. When this is of interest, P is
defined as

á sfi2
1'= 1 -rq2 '

As before, researchers may posit values for v¡2 and R2 or use Cohen and

Cohen's (19S3, p.61) conventional values of P. When the value of a and the

desired power are set, L can be determined from the tables (ks is set to 1 since

the source of variation is a single X¡) and the sample size may be calculated

from equation 13 as described above.
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Collinearity

Recall from equation 5 that the least-squares solution to the normal

equations requires that the R* matix be invertible. When.linear deperidencies

exist among the independent variables, the determinant of the correlation

matrix is zero. The conelation matix is then deemed singular, and its inverse

does not exist. Thus, when linear dependencies exist among the pedictor

variables, the regression coefficients cannot be estimated by least-squares

techniques.

However, the conelation mafix need only approach singularity in order

for the reEession analysis to be affected.

Harmful collinearity may be intoduced in several ways. Gordon (1968)

and Pedhazur (1982, p. 242) point outthe common practice of using multiple or

repetitive measures of the same variable in reEession analysis. These

variables will be highly conelated, thus intoducing collinearity into the

conelation matrix. Such highly correlated independent variables are called

redundant since they each supply essentially the same information to the

model.

Simple pairwise collinearities and more complex near linear

dependencies involving three or more independent variables can be introduced

into the data either because such a relationship exists in the population or

because the relationship was created through sampling effor. Gunst and

Mason (1977) use the simple example of a sample of spinal cord injury cases

containing only females under 30 years of age and males over 30 years of age.

Sex and age would then be correlated in the sample even though it is clear that

in the population of spinal cord injuries there are young and old patients of both

sexes. Though the example illustates only a pairwise collinearity detectable by

examination of pairwise correlations, more complex near linear dependencies

may also exist in. the sample. Such dependencies are not necessarily

detectable by examination of pairwise conelations.

The presence of severe collinearity in the correlation maüix is damaging

to least-squares analysis. When the independent variables are highly or

perfectly conelated, the regnession plane becomes unstable. Figure 1(a) shows

the case where two independent variables, X1 and X2, are only slightly

conelated. The reEession plane is well supported by a broad scattering of



14

points defining the plane. Since the residuals are small, the estimates of the

reEession parameters are precise. ln Figure 1(b), however, the conelation

between X1 and X2 is perfect and the observations now fall on a staight line in

the X1 X2 plane. Any number of planes will pass through the line because the

numerical solution is undefined. Lastly, consider Figure 1(c) where Xl and Xz

are highly correlated though imprfectly. The spead in the points on the

reEession plane is narrow, ill-defining the plane. ln such a case the plane

lacks suppont, and is thus fitted very poorly. A slight shift in any of the data

points will dastically alter the plane. This is illustated by the large variability of

the estimated reEession coefficients.

Recall that the variances of the regression coefficients are calculated as

the diagonal elements of equation 7. ln the two predictor case, when Xl and Xu

are transformed by the correlation tansformation, the variance-covariance

matrix is

I

1 -r?z

-r?,
1 -r?,

--2 ltt2 
I

t-?, 
I,l

1-?r)

Thus V(b1) = V(bz) = o'2 [1/(1 - rlrll , where {, it the squared conelation

between X1 and Xe. As the absolute value of the correlation between X1 and X2

approaches l,theterm[1 l(1 -rlr)],known asthevariance inflation factor(VlF),

will approach infinity. Thus, high conelation among the predictor variables

inflates the variance of the regn'ession coefficients (See Gordon, 1968;

Keselman, 1988; Rockwell, 1975). This in turn leads toimprecise estimation of

the reEession coefficients and hence, ineproducible results, since a small

fluctuation in the correlations (due to sampling or random erors) can lead to

large fluctuations in the estimated reEession coefficients when collinearity is

present (Pedhazur,. 1982, p. 235).
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Least -squares
plane

Eigural The effect of collinearity on estimation. (a) Small corelation between

X1 and X2:regession plane well supported. (b) Perfect correlation between X1

and X2.reg'ess¡on plane not un¡quely defined. (c) Stong coffelation between

X1 and X2:regessi.on plane defined but notwell supported.

Note: From Linear statistical models and related methods (pp. 139140) by J.

Fox, 1984, New York: John Wiley. Copyright by John Wiley. Reprinted by

perm¡ssion.
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Least -squares
plane

Fioure 1 (continued).
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ln addition to the increase of the variances of the regnession coefficients,

collinearity also reduces the magnitude of the regnession coefficients. Recall

from equation 5 that the regnession coefficients are calculated as

b = (XrX)-1 XrY.

ln the two predictor case where the independent variables and the dependent

variable have been transformed by the correlation tansfonmation, the

reEession coefficients are calculated as follows:

+
b"=

I -4=
1 -4, r-f'
-t, I

r-f, 1-f=

[ ''o I
Lrzul

where r12 is the conelation between X1 and X2 and r1y and r2y ârê the

correlations between X1 and y and Xz and y, respectively. Therefpre

6-,='-lÏf and

(1 s)

,-r=''#f
The values that r12 may take on are constained by the values of r1y and

r2y. Specifically, the mathematically possible upper and lower bounds for r12

are given by (Cohen & Cohen, 1983, p. 280)

1y fzyl (1 - r$l tt -r:"1 .

Table 3 examines what happens to the reEession coefficients, and the VIF as

the conelation between X1 and X2 approaches its maximum (positive) limit.
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Table 3 a

Effect of lncreasino Correlation Amonq

lndeoendent Variables

bzbrf 'tz VIF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1.00

1.00

1.01

1.O2

1.04

1.07

1.10

1.14

1 .19

1.25

1.33

1.43

1 .56

1.73

1.96

2.29

2.78

3.60

0.30

0.28

o.26

0.25

0.23

0.21

0.20

0.18

0.17

0.15

0.13

0.11

0.09

0.07

0.04

0.00

0.06

-0.14

0.40

0.39

0.37

0.36

0.35

0.35

0.34

0.34

0.33

0.33

0.33

0.34

0.34

0.3s

0.37

0.40

o.44

0.52

a Note: The model parameters

0.4.

âIê r1y = 0.3, âñd [2y =
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Clearly, as collinearity becomes more severe, the estimated reEession

coefficients are reduced in magnitude, and the VIF is increased. As a
consequence of this, the variances of regression coefficients would be

increased and, the t statistics testing the hypothesis Ho: F¡ = 0, would become

less and less significant. Gordon (1968) empirically illustated this effect of

redundancy and further showed that the pnoblem is compounded as the

repetitiveness, or the number of conelated variables, is increased.

Some researchers in the behavioural sciences use the reEession

coefficients (or standardized beta weights) as a measure of the relative

stengrths of their associated predictors. However, it is clear from the above that

high collinearity adversely affects the magnitudes and standard enors of the

reEession coefficients and hence their tests of significance and confidence

intervals (Pedhazur, 1982, p. 235). Thus the regression coefficients obtained

when collinearity is present may be unreliable measures of the predictors

influence on the response.l Because of these consequences of collinearity,

considerable effort has gone into the detection of collinearity.

Detection olCollinearity

Becall that when the determinant of the (XrX) matix is zero, an exact

linear dependency exists in the data matrix. Normally one does not encounter

exact linear dependencies in nonexperimental data, but only near

dependencies of Eeater or lesser magnitude. The more severe the

dependency the closer the determinant will be to zero. Thus, the determinant of

(XrX) has become a natural indicator of the severity of collinearity. Fanar and

Glauber (1967) and Rockwell (1975) both approached the detection of

collinearity in this manner using a chi- squared test to determine whether the

determinant of the correlation matrix differs significantly from zero. However,

the validity of these tests has been questioned (see Kumar, 1975). ln addition,

no test of the determinant will reveal where the linear dependencies lie, thus the

determinant is only of limited usefulness.

lWhen the regression equation is used for purposes of prediction, collinearity arnong the

predictorwriablesisnotaproblem. lnthiscase,itistheaccuracy of the predictions of the model

t hal is im p ortant an d n of the stan dard enor of t h e re gressi on c o effici ents.



20

A more fruitful approach to the detection of collinearity is via the

eigenvalues (Ài) of the (XrX) matix. Recall that a singular matix is one with at

least one linear dependency. Such a matrix will also have one or more zero

eigenvalues (See Chatterjee & Price, 1977, p. 162; Tatsuoka, 1971). ln

particular, it has been recommended that one compute

f(XrX¡-t

(see Hoerl, Schuenemeyer & Hoerl, 1986), where tis the tace operator. This

is equivalent to the sum of the reciprocals of the eigenvalues as recommended

by Chatterjee and Price (1977, p.2OO). As the eigenvalues of the conelation

mafix approach zero indicating inøeasingly severe collinearity, this number

will increase in value. Various values have been advocated as indicating

severe collinearity (See Chatterjee & Price, 1977, p.200; Hoerl et al, 1986),

however, like lXrXl, this method can only indicate that collinearity is gesent.

That is, it cannot pin-point the number and location of the linear dependencies

in the data.

ln an effort to find the location of collinearity in the data, some authors

(See Cronbach, 1987; Kendall, 1957; Silvey, 1969) have examinêd the number

of small eigenvalues in the data. This method pesents a poblem in that it is

not clear how to iudge whether an eigenvalue is too small. Belsley, Kuh and

Welsch (1980, pp. 104-105) show that even well-conditioned data matrices may

have arbitrarily small eigenvalues.

Belsley, Kuh, and Welsh (19S0, pp. 112-113) have therefore come up

with a comprehensive srategy for diagnosing collinearity. Their eigenvalue -

eigenvector analysis can be used to(1) determine when least-squares analysis

is severely deEaded by collinearity, (2) identify the number of dependencies in

the data, and the variables involved in them and, (3) identify which regression

coefficients are affected by the collinearities. Largely for reasons of

computational accuracy, Belsley, Kuh and Welsch (1980) base their analysis on

the singular-value decomposition of the regnessor matix. Fox (1984, pp. 147-

149) employs an equivalent technique based on the eigenvalues and pnincipal

components of Rro< where it is assumed that the response and pedictor

variables have been standardized and the eigenvectors of R¡ça have been

normalized. For the sake of simplicity, the analysis of Belsley, Kuh and Welsch

(1980) is presented here based on Fox's (1984) assumptions.
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Assuming that the response and pnedictor

standardized by subfacting their mean and dividing

deviation, the variance of b¡ is given by the jth diagonal

covariance matix:

variables have been

each by their standard

value of the variance -

62
V(b¡ ) = n-1 R¡o<-1(i,i).

It can be shown that the diagonal elements of the inverse of the correlation

maüix (Rxx-1)are equal to

1

VIF = I=FF j = 1, ..., k

where VIF¡ is the variance inflation factor of the ith independent variable and R¡2

is the squared multiple conelation coefficient of the ith independent variable

with the remaining k-1 independent variables. Because the VIF¡ of a particular

variable will increase rapidly as the squared multiple correlation of X¡ with the

remaining variables approaches one (indicating a perfect linear dependency), it

can be used to identify which reEession coefficients are affected by the

collinearities. That is, a large VIF¡ value indicates that b¡ is adversely affected

by collinearity.

To determine the number of dependencies present in the data, Belsley,

Kuh and Welsch (19S0) and Fox (1984) define the condition index, q¡:

j =1, 2, ... ,k (16)l-t,,
V^r

ïìi =

where Àr- is the largest eigenvalue and À¡ is the ith eigenvalue of R¡o<. The

number of large values of q¡ (>30) will identify the number of dependencies

present in the data. To indentify which predictor variables are involved in

harmful collinear relations Belsley, Kuh and Welsch (1980) suggest examining

each principal components contibution to the variance inflation factor of each

reEession coefficient. The proportional contibution of the mth principal

Çomponent to the variance inflation factor of b¡ is given by
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rËl\l* ID.rJm- t17l
V lF¡

where A¡- is the ith coetficient of the mth principal component and P¡- is known

as the variance decomposition proportion of the ith variable on the mth principal

component. According to Belsley et al (1980) " a high poportion of the variance

of two od' more coefficients concentated in components associated with the

same small eigenvalue is evidence that the corresponding near

dependency is causing poblems." (Belsley, Kuh & Welsch, 1980, p.106). Thus

a large value of P¡- (t0.5) associated with a large condition index, l,o (t30),

indicates that the data is seriously ill-conditioned due to the dependency

represented by the mth eigenvector, and that the jth predictor is involved in that

dependency.

Bespondnq- to Collinear Data

Once data has been diagnosed as being severely collinear, it is not clear

how to respond. Many procedures have been suggested. They include:

achieving a well conditioned matix of predictor scores (Fanar &

Glauber, 1967).

biased estimation techniques (Chatteriee & Price, 1977, ch. 8;

Hoerl & Kennard, 1970).

'best' subset selection algorithms (Hoerl, Schuenemeyer & Hoerl,

1 e86).

Of importance to this research is 'best' subset algorithms. 'Best' subset

selection algorithms can be used to select a set of nonredundant variables from

alarger collinear set (Hoerl, Schuenemeyer & Hoerl, 1986). However, it is not

clear how well 'best' subset selection algøithms perform in the Fesence of

collinearity.

(1)

(2',1

(s)
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'Best' Subset Selection Algorithms

The most thorough subset selection technique is called "all possible

regnessions" or " all subsets". This technique fitsall (!¡ c = 1, ..., p regession

models where p is the total number of predictor variables in the set and c is the

subset size. However if p is large then the 2p - 1 different models pnoduced by

this technique rapidly becomes too cumbersome to manage (Younger, 1985, p.

487). Thus several algorithms have been developed which build a'best' subset

of predictor variables in a stepwise manner.

Forward Selection

This method begins with no predictor variables in the model. At each

step one variable is added to the model provided that it meets the criterion to

enter. The 'best' subset is reached when either no more variables meet the

criterion to enter or all the variables have been entered into the model. The

criterion to enter is usually stated as an F statistic, so that variable i is added to

the c-term equation if

Fi = rnaxltt#tr-] ¡ Fi,, i = c+1,c+2,, p (18)

where the candidate variables are ordered such that the first c variables are the

variables already entered in the model, RSS. and RSS"a¡ ârê the residual sum

of squares of the c-term model and c + variable i-term model, respectively, and

MSE"*¡ is the mean square error of the c+variable i-term model (Hocking, 1976).

It is felt that forward selection may miss goups of variables that prform
poorly individually, but very well as a group (e.9. Mantel, 1970). In response to

this criticism the backward elimination method was developed.

Backward Elimination Procedure

This technique begins with all the candidate predictor variables in the

model. At each step the variable with the smallest F+atio is eliminated if it does

not meet the pre-specified criterion to remain in the model. The 'best' subset is

reached when all the remaining variables either have been eliminated or else
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meet the criterion to remain. The criterion to remain is usually stated as an F
statistic. That is, variable i is deleted from the c-term model if

Fi=mini"**Tt] . Fo, i=1,2, ,c (1e)

where the first c candidate variables are those remaining in the model, and

RSSç-¡, RSS. and MSE. are defined in a manner similar to equation 18

(Hocking, 1976)

Steowise Method

ln forward selection, it is possible that a variable selected at an early

stage may become superfluous at a later stage as other variables enter the

model. Similarly, in backward elimination a variable deleted at an early stage

cannot be re-entered into the model should it become a significant predictor

again as other variables are deleted. ln response to this a combination of the

two methods was developed by Efroymson (1960). The method is basically

forward selection but at each step the model is examined for the possibility of

deleting a variable as in backward elimination. r Both a criterion to enter and a

criterion toremain mustbe specified in this method (Hocking, 1976). The'best'

subset is reached when either no new variables meet the criterion for inclusion

or when the variable to be entered was the one deleted at the pnevious step

(Younger, 1985, p 489).

Problems Associated with Subset Selection Algorithms

These methods have been criticized for many reasons. One of the most

toublesome aspects of these methods is that they may not agee on the 'best'

subset of predictor variables. None of these methods guarantee that the subset

with the lowest residual sum of squares value will be found for each subset size

(Berk, 1978; Hocking, 1976).

lllustrating this, Berk (1978) compared the residual mean squares for the

1A backvnrd stepr+ise a.lgorithm can ajso be implemented ISee BMDP, .l988, p.3I3; Younger,

1 985, pp. 48g, 5ll 1-5t21.
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backward and forward procedures to all subsets. The three methods were

employed on nine data sets. ln three of these the subset selection algorithms

agneed, but in three others there were increases of 20% to 30% in residual

variance for the backward and forward procedures over that of the all subsets

pnocedure. However, when comparing their performance based on known

populations, the differences among the three procedures was much smaller, 7olo

or less in eight of the nine data sets. While only the forward, backward and all

subsets procedures were studied here, Berk (1978) notes that the stepwise

procedure is likely to be an improvement.

A further criticism of the backward and forward procedures is that they

imply an order of importance to the order in which variables are added to or

deleted from the model. These procedures were never claimed to have this

property by their original poponents (Hocking, 1976). All those who comment

on the usefulness of 'best' subset selection algorithms, caution that the user

must use his or her own knowledge of the subject under investigation in

examining the results of these procedures (e.9. Flack & Chang, 1987; Hoerl,

Schuenemeyer & Hoerl, 1986).

lnflation of ff-in 'Best' Subset Selection

A number of criteria for assessing the "appopriateness" of a subset have

been proposed. Among them is the squared multiple correlation coefficient, FÊ.

Recall from equation 9 that the squared multiple conelation coefficient is

calculated as

n'=ffi

Rz, then, is a measure of the pnoportion of the variance in y that is accounted fon

by the model. When no subset selection has taken place, a significance test of

FP is

FP/K
(20)L 

--'-(1 - Rz)/(n - k - 1)

with k and n - k - 1 degnees of freedom, where k is the number of predictor

variables and n is the sample size.
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There is one p,roblem, however, associated with the use of FP as a
measure of the variance explained by a model. Even when the number of

predictors in the model is fixed, the sample FÊ is a positively biased estimate of

the population coefficient of determination. That is, even when the predictor

variables are uncryrelated with the response variable in the population,

nonzero conelational values would be present in the sample simply due to
random sampling variation (Cohen &Cohen, 1983, pp. 105-106). Since further

capitalization on chance occurs when a subset seleclion algorithm is used to

choose k predictors from p candidate variables, the bias in Fìr and hence the F-

statistic is increased (see Berk, 1978). Thus, under cross-validation, a
significant multiple correlation coefficient from a stepwise analysis may shrink

chastically (Wilkinson, 1979).

A number of researchers have used Monte Carlo methods to determine

the distr¡bution of the sample FP statistic under subset selection. Diehr and

Hoflin (1974) developed approximate percentage points for FP. Their results

are restricted to independence among the k predictor variables. When the

predictor variables are collinear their results are conservatively biased.

Rencher and Pun (1980) extended Diehr and Hoflin's (1974) results to

include the average inflation of FP under subset selection, upper percentage

points of Rz, correlated predictor variables, and the situation where p, the total

number of predictor variables, exceeds n, the sample size. Using stepwise

reEession, Rencher and Pun (1980) showed large increases in the average

value of Rz under selection, especially when p is gneater than n. When the

predictor variables were interconelated, the inflation of R2 was somewhat less.

Wilkinson (1979) constructed tables of the upper 95th and 99th

percentage points of the sample Rz disüibution in fonward selection using Monte

Carlo simulation and least-squares smoothing techniques. Like the Diehr and

Hoflin (1974) study, the results are applicable to uncorrelated predictor

variables. The tabled results are likely to be conservative when the predictor

variables are coretated.

Since R2 is commonly used to evaluate subets chosen by these

algorithms, its inflation may be misleading to researchers. Therefore, Wilkinson

(1979) recommends thatresearchers use his tables toevaluate the significance

of the final equation selected through the a stepwise pnocedure.
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An alternative approach is to develop an estimate

that is not positively biased. One such estimate is given

where

of the population

by the shrunken

FP

R3

ñr=1-(1 -Fp)"+ (21)

Cohen and Cohen (1983, pp. 106-107) suggest this estimate is appropiate

when k, the number of predictor variables, is fixed. The degnee of shrinkage will

be larger for small values of FP and for large values of the ratio Un. fu may take

on negative values which, by convention, are reported as zero.

Whenever the k predictor variable have been selected by a subset

selection algorithm, Cohen and Cohen (1983, pp. 106-107) indicate that ñ'*itl
still be too large. ln such a case, they recommend that p, the total number of

candidate ryedictor variables, be used in place of k in the calculation of ñ2.

Controllino Steowise Aloorithms

Controlling subset selection algorithms involves two concepts. Firstly,

the sample size, n, affects the power of multiple reEession to detect effects in

the data. Secondly, the criterion to enter or remain in the model contols the

number of variables that remain in the final model.

Like any other statistical test, stepwise algorithms require potection

against incorrect results (i.e., false positives) without lowering the power to
detect conect results. This inûoduces the concepts of o, the probability of

rejecting a tue null hypothesis (a Type leror), and p, the probability of failing to

reject a false null hypothesis (a Type ll error). The pobability of correctly

rejecting a false null hypothesis, 1-p, is called the power of the test.

Any statistical test of a null hypothesis can be seen as a function of these

four parameters:

1. The power of the test (1-P).

2. The pobability of Type I enor (a). As a increases power increases.

3. The sample size (n). As n increases power increases.

4. The magnitude of the effect under study in the population. The larger

the effect the Eeater the Power.
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These four parameters are intenelated. For a given sample size and population

effect size, setting the value of o determines B and vice-versa. Therefore, the

usual method of confolling both a and B at acceptable levels is to set the value

of c and then calculate the sample size necessary to contol p for a given effect

size. This technique can be used in multiple reEession.

Sloppxlg Rules hsubset Selection Algorithms

Setting the criterion to enter or remain in the model is usually done by

setting the significance level of the F to enter in forward selection, the F to delete

in backward elimination and both in the stepwise pnocedure. Because of the

sequential nature of the computations, the number of variables can be

contolled by making the F to enter sufficiently large so that not all the candidate

variables enter the model or the F to delete sufficiently small so that not all the

candidate variables are deleted from the model. Consequently, schemes for

selecting F to enter and F to delete are known as 'stopping rules' (Hocking,

1 s76).

Bendel and Afifi (1977) used the unconditional mean square error of

prediction (UMSE) to establish optimum levels of significance in forward

selection. They compared the mean values of the normalized prediction ero{'

for values of o = 0.05 to .4 in increments of .05 statified by the number of

deEees of freedom. Their findings suggest that a significance level between

0.15 and 0.25 yields an F to enter that is large enough to keep nonauthentic

candidate variables out of the model yet small enough so that authentic

candidate variables could be detected. The best overall results occuned with a

= 0.15. Hoerl, Schuenemeyer and Hoerl (1986) confirmed these results using

the stepwise procedure.

Other literature (Lovell, 1983; Wilkinson, 1979) states that when subset

selection occurs the level of significance is inflated. Wilkinson (1979) states

that when k is fixed the usual test of the null hypothesis,

Ho: Êo = F1 = ... = F¡. = 0, given bY

R2(n-k-1) MSRr=1J - RTk = rvlsE
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has an F distibution with k and n-k-1 degnees of freedom under the null

hypothesis. When k pedictors are chosen from p candidate predictor variables

on the basis of sample data, this statistic is not distibuted as a cenfal F variable

(Pope & Webster, 1972). No exact distibutions are known except for the two

caseswhere k=1and k =p. lnthecasewhere k=1and the predictor that

maximizes the sample R2 is chosen, the F statistic may be used with the critical

value

0=1-(1 -fr¡ttP, (22)

where õ is the probability of making at least one Type I error in the set (family) of

tests or the maximum familywise rate of Type I error.

Lovell (19S3) compared the familywise levels of significance for various

nominal values of o when choosing k=2 from p=2, 5, 10, 20, 100, and 500

orlhogonal candidate predictor variables. Lovell's (1983) results show that the

claimed nominal level of significance is increasingly inflated as the number of

candidate predictor variables increases. So, for example, searching for the best

two predictor variables out of ten candidate variables at a claimed nominal level

of significance of 5% actually yields a familyrvise eror rate of 22.60./0. Therefore,

Lovell suggests conducting the test at a more conservative nominal level of

significance to counteract the effect of searching. Consequently, Lovell (1983)

suggests that when choosing the best k out of p candidate explanatory

variables the familywise level of significance can be calculated (approximately)

AS

õ=1-(1 -o)ork, (23)

where ö and CI are the familywise and nominal levels of significance,

respectively.

According to the SAS USER'S GUIDE: STATISTICS (SAS

lnstitute,1985) the choice of the significance level is dependent upon the goal of

the investigation. lf it ¡s necessary to guard against any variables that do not

conûibute to the predictive power of the model in the population entering the

model a small significance level is waranted. lf a model that pnovides the best
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prediction using sample estimates is required a more moderate significance

level is wananted (SAS lnstitute, 1985, p. 765).

Collinearity and'Best' Subset Selection Aþorithms

It is clear that collinearity is damaging to least-squares analysis. lts effect

on the size and stability of regression coefficients is well documented (See

Farrar & Glauber, 1967; Gordon, 1968; Rockwell, 1975).

Until recently, however, little work has focused on the effect of collinearity

under subset selection. Citing the serious distol'tions that are intoduced in

standard analysis by collinear data, Chatteriee and Price (1977, pp. 203, 206)

simply state that they do not recommend the use of stepwise procedures in a

collinear situation. They go on to say that with a small number of collinear

variables it is possible to evaluate all-possible equations to select an equation.

They also quote Mantel (1970) in saying that backward elimination is better

able to handle collinearity than the forward procedure.

Beale (1970) disputes Mantel's (1970) assertion regarding backward

elimination. When variables are linearly dependent, it is a pure matter of

chance which variable gets eliminated by backward elimination. Once

eliminated, a variable is inetievably excluded from the model even if the other

variables involved in the dependency are subsequently eliminated (Beale,

1970). Gunstand Mason (19771 corroborate this finding. Because all collinear

variables tend to have small t statistics, backward elimination may delete

collinear predictor variables somewhat randomly, i.e., not on the basis of the

tue magnitude of the F¡in the population (Gunst & Mason, 1977)-

Hoerl, Schuenemeyer and Hoerl (1986) note thatsubset selection has in

fact been used to overcome the poblems of least-squares estimation with

collinear data. Their simulation, however, led them to recommend that subset

selection not be used as a general stategy to combat collinearity.

Lovell (1983) investigated the prformance of forward selection under

various model conditions. Using twenty candidate explanatory variables Lovell

(1983) artificially generated dependent variables from nine different models. To

observe whether forward selection would be likely to select those candidate

variables which participated in the generation of the dependent variable

(authentic predictor variables) from a larger set in the presence of collinearity,

two sets of quite closely related time series were included àmong the twenty
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candidate variables. Fifty samples of 23 observations were generated for each

model. When the null hypothesis was true and the level of significance set to

5%, forward selection conectly specified "none significant" 64o/ô of the time. ln
the non-null case, forward selection chose variables that participated in the

generation of the dependent variable 7!o/o o'f the time.

Lovell (1983) does not quantify the severity of the collinearity present in

the data, stating only that " the candidate explanatory variables used in the

simulations were highly collinear rather than orthogonal" (Lovell, 1983).

Through fear of inflating the Type I enor rate, Lovell (1983) kept the level of

significance at 5%, well below the level of 15% to 25% recommended by

Bendel and Afifi (1977). Lovell (1983) also reminds the reader that a sample

size of 23 may be less than required to choose the authentic variables from 20

highly collinear candidate series.

Flack and Chang (1987) used simulation experiments to assess the

effectsof sample size (n = 10, 20, 4O) and the number of candidate variables (p

= 10, 20, 40) on the frequency of selecting noise variables in the presence of

authentic variables. Flack and Chang (1987) define a candidate variable, X¡, to

be an authentic variable if its corresponding reEession coefficient in the full

reEession model, p¡, is nonzero. X¡ is defined to be a noise variable otherwise.

Collinearity was intoduced among the p candidate variables by the

autoconelation pattern

Pi¡ = P(i-i)

where pi ¡ (i + i) is the conelation coefficient between X¡ and X¡. Three values

of autocorrelation were selected (p= 0, 0.3, 0.5). The simple conelation

between y and X¡ wâs set to 0.5 for X1 and X2. For all other candidate variables

py,i = 0. Flack and Chang (1987) state that a design such as this will yield a

regnession equation with two authentic variables when p = Q and three

authentic variables-when p > 0.

Two variable selection procedures were compared. An all-subsets,

procedure (SAS RSGUARE; SAS lnstitute lnc. 1985) was used to find a subset

of a prespecified size (k = 2). The second procedure used was a stepwise

procedure (sAS STEPWISE, SAS lnstitute lnc. 1985) with the default level of

significance of c=.15.
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The all-subsets pocedure performed very well when p was small

compared to n, and when the candidate variables were uncoffelated. The

frequency with which authentic variables were chosen decreased as the

number of candidate variables increased, and increased as the sample size

increased.

As the autocorrelation coefficient increased, the frequency with which

noise variables were selected increased, even though with a non-zero

autoconelation coefficient the number of authentic candidate variables \,yas

increased from 2 to 3.

When the stepwise procedure was used, k, the subset size was not

prespecified. ln general the subset size increased with p, the number of

candidate variables, but always remained less than the sample size, n.

Flack and Chang (1987) only present the case wherê P = 0.30, so it is

not known how the stepwise procedure fared under optimal conditions (p

unconelated candidate variables where p .. n) . The stepwise pocedure
performed best when n = 40, p = 10 and p = 0.30, where 34o/o af the samples

conectly found three authentic variables, 50o/o found two authentic variables,

and 16% found one authentic variable. The 25th and 75th percentiles of k, the

subset size, were two and four, respectively. The median value of k was three

variables. The 25th and 75th percentiles of Pn, the percentage of væiables

selected that are noise, were 0% and 50o/o, respectively. The median value of

Pnwas 33% noise variables. When ñ = 10, p = 4O and P =.30 stepwise

performed very poorly. None of the samples conectly specified three authentic

variables, 16% specified two authentic, 48% specified one authentic, and 36%

specified noise variables only. k had a 25th percentile of eight variables, w¡th a

median value of nine. The 25th percentile of Pn was 88% noise variables, with

a median value of 89%.

Clearly, the ability of both subset selection algorithms to select authentic

variables from noise is affected by the sample size, the number of candidate

variables, especially in relation to n, and the degree of collinearity present.

However, the parametic conditions Flack and Chang (1987) investigated are

not typical of psychological research. ln particular, the simple conelation

between the response variable and the authentic variables was set to 0.5, a

value typically higher than those that characterize psychological relationships

(Cohen, 1977). Secondly, Flack and Chang (1987) created intercorelations
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between candidate variables through serial correlation. This form of collinearity

would have limited generalizability to psychological research.

Therefore the purpose of this research was to extend the research on the

selection of candidate variables using best subset selection algorithms under

parameüic conditions characteristic of psychological research.

The investigation varied four factors:

1) the number of candidate variables (p);

2) the deEee of interconelation between the candidate variables (p*,*,);

3) the significance levels (c)for inclusions and/or deletion of candidate

variables; and

4) the sample size (n) to simulate different levels of power.

Three subset selection algorithms were compared. Following Flack and

Chang (1987) the proportion of authentic to noise variables were collected

under FOBWARD, BACKWARD, and STEPWISE selection (SAS lnstitute,

1 s87).
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METHOD

Design

This simulation models the multiple regression design given in (1) where

the k pedictor variables in the model are chosen from P candidate variables by

a subset selection algorithm. Among the P candidate variables, 6 authentic

variables and P - 6 noise variables are defined. An authentic variable is

specified to be a predictor variable whose conesponding population regnession

coefficient in the full model is nonzero. All predictol' variables with

corresponding zero full model population reEession coefficients are defined as

noise variables.

Data Generation

Itwas assumed that Y and Xr ,..., Xpare randomly disfibuted and that

their ioint disfibution follows a P + 1 multivariate normal distibution with mean

O and covariance (correlation) structure defined below. The N observations for

each of P candidate explanatory variables were generated by the algorithm

employed by Galarneau-Gibbons (1981), McDonald and Galarneau (1975),

and Wichern and Churchill (1978)

Xii = (1- ô3¡ttz Zi¡ + I4p*\ (24)

where 4i and 4p*\ are independent identically disributed standard normal

pseudo-random variables and ô is prespecified. The resulting candidate

explanatory variables have a pairwise correlation of å2. Of the P candidate

explanatory variables k = 6 were defined to be authentic pedictor variables.

These variables were generated using a value of ô which reflects a collinearity

condition. The remaining P - 6 "noise" candidate variables were unccÈrelated

among themselves and with the authentic predictor variables.

Pseuderandom unit normal deviates were generated by the pocedure

due to Marsaglia, Maclaren and Bray (1964).

The number of candidate predictor variables were P = 12, 18, and 24.

This repesented the case where 50% (50%), 33.3% (66.70Á) and 25% (75olo) of

the available predictor variables were authentic (noise), respectively.
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Three different sets of conelation were considered cøresponding to
px¡x¡ = 0.00, 0.40, and 0.80. The range of these corelations typify the size of

intercorrelations found in psychological test batteries (See Cronbach, 1987;

Sax, 1989; Thorndike & Hagen, 1977). A value of I = 
^/*;conesponding 

to

each value of px¡xi was used to generate three sets of explanatory variables

having the specified conelation stucture.

Observations on the dependent variable were generated by

vi =Fo * ÊrX¡ *þzXiz * Þ¡X¡s * ÞqXi¡ * ÞsXis + p6X¡6 + e1 i= 1,...,N, (25)

where the ei are independent identically disfibuted standard normal

pseudorandom numbers and the X¡¡ are the predictor variables previously

generated. The first six candidate predictor variables participated in the

generation of the dependent variable and were therefore authentic predictor

variables. The remaining P - 6 candidate predictor variables did not participate

in the generation of the dependent variable and were thus "noise" variables.

The explanatory variables and the response variable were then

standardized so that XrX and Xry were in corelation form, hence Bs will be

equal to zero due to the standardization Focess (Galarneau-Gibbons,1981;

McDonald & Galarneau, 1975; Wichern &Churchill, 1978).

It was decided that the squared population coefficent of determination

(p,,,¡2) of the full model should be chosen to reflect a medium effect size in the

noncollinear case (i.e. Px¡x¡ = 0.0). Using equation 12, the conventionally

medium squared coefficient of determination value was calculated to be

0.130435.

Recall from equation 11 that the squared semipartial conelation

coefficient, sri2, of a predictor variablê, Xi, is the Foportion of the total variance

in y accounted for by Xi when the other predictor variables are already in the

model. lf there are k authentic predictor variables in the model then

" 
SSBI - SSRI-¡ùri__ TSS ,

where SSR¡, and SSR¡-i are the sums of squares for reEession for the k-term

model and the k minus variable i - term model, respectively and TSS is the total

sums of squares. lf the k predictor variables in the model are uncc¡frelated, FP is
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equal to the sum of their k squared semipartial conelation coefficients.

Assuming that these coefficients are equal their value is given by

*,, =Ë.

When the k variables in the model are uncctrelated, the semipartial correlation

coefficient is equal to the simple correlation coefficient of the pedictor variable

with the response variable. Thus the value of the simple correlation between a

authentic predictor variable and the response variable reflecting a medium

effect size in the noncollinear case may be calculated as

"' 
= (Ér )"'

where the calculated value of Py,i2 representing a medium effect size (p*,2 =

.130435) is substituted for R2 and k, the number of authentic predictor variables,

is equal to six.

The regnession coefficients are calculated from the relationship

p = qR¡64)-lrxy (26)

where R¡¡ is a predictor variable conelation maf¡x and rxt is a vector of

correlations between the response variable and the authentic variables. Table

4 shows the values of Rxx, r*y, Þ, Pwi2, and N used in this simulation. lt may be

noted that when the reponse and predictor variables have been tansformed by

the correlation transformation, the squared coefficient of determination may be

calculated as

Pv*¡2 = FTÍ*Y

which, according to Equation 26, is dependent on R¡ç,1. ln fact, Table 4 shows

that the squared population coefficient of determination is reduced from a value

representing a medium effect size when Px¡x¡ = 0.0 to a value representing a

conventionallysmalleffectsizewhenPx¡x¡=0.Saccordingtothecriterionof
Cohen and Cohen (1983, P.161).
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Table 4

Data Generation Parameters

Rxx rxv p Pwi2 N

1000000 0

0100000 0

0010000 0

0001000 0

0000100 0

0000010 0

000000

I

I

I

Lo o o 0 o 0

1.4.4.4.4.40 0

.41.4.4.4.40 0

.4.41.4.4.40 0

.4.4.41.4.40 0

.4.4.4.4 1.40 0

.4.4.4.4.41 0 0

000000

.147442

.147442

.147442

.147442

.147442

.147442

.0

IoJ

.147M2

.1474r',2

.147442

.1474É;2

.147442

.147442

.0

ol

.130435 s0

60

90

.043478 30

60

90

4/f21

Mzl
Mzl
442]|

442]|

442:'

.147

.147

.147

.147

.147

.147

.0

.049147

.049147

.049147

-049147

.049147

.049147

.0

I

i

I

Lo o o o o o .0 .0



38

Table 4

Data Generation Parameters

R¡x fxv P-12 N

1.8.8.8.8.80 0

.81.8.8.8.80 0

.8.81.8.8.80 0

.8.8.81.8.80 0

.8.8.8.81.80 0

.8.8.8.8.81 0 0

000000

000000

.029488

.029488

.029488

.029488

.0294tì8

.029488

.0

.026087 30

60

90

.0

.14

.14

.14

.14

.14

.14

.0

7442

7442

7442

7442

7442

7M2
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For each combination of the above parameters, the ideal sample size, N,

was defined as the sample size that would yield 80% power to detect the

squared semipartial correlation coefficient. This is in accordance with Cohen

and Cohen (1983, pp. 116-119) who proposed that a behavioural science

researcher should adopt a power value of .80. To determine the sample size

necessary to test the null hypothesis that any semipartial correlation or

reEession coefficient for a given X¡ is zero equations (18) and (19) were

employed. To investigate the effect of sample size in the detection of authentic

variables, samples sizes that were 50% and 150% of the ideal sample size

were also generated (See Table 4).

Three subset selection procedures were compared. The SAS

STEPWISE pocedure allows for the three different stepwise techniques.

FORWARD,BACKWARD, and STEPWISE. Within a subset selection algorithm,

it is possible to vary the level of significance for inclusion and/or deletion in the

model. Therefore, level of significance values of 0.15, 0.05 and

op = 1 - (1 - ö¡ttp (where ö = 0.15 repesents the familyrvise level of

significance) formed a within algorithm condition.

The 0.15 value was chosen as it reflected the recommendations of

Bendel and Afifi (1977) and corresponded to the value used by Flack and

Chang (19S7). The ao value was chosen to reflect a concern for the issue of

multiplicity of testing. Lovell (1983) and Wilkinson (1979) documented how the

maximum familywise Type I enor rate (MFWER)was inflated when k predictor

variables were chosen from P candidate predictor variables. For P = 12, 18,

and 24 candidate predictor variables, the MFWER equals .858, .946, and .980,

respectively, when o = 0.15. The value of aotherefore was chosen to limit the

MFWEBto 0.15. For P =12, 18, and 24, the protected inclusion and deletion

values (ap)were 0.0134519, 0.0089882, and 0.0067481, respectively.

Finally, since many statistical software packages use 0.05 as a default

level of significance [See fø example BMDP (Dixon et al, 1988 p. 381), SPSSX

(1985, p 57), and MINITAB(Ryan etal, 1981)1, this value was also investigated.

One should note however, that, for o = 0.05, the MFWERs are .460, .603 and

.708 for P = 12, 18, and 24, respectively.

The nominal significance levels (a) used in the simulation compared to

the MFWER(ö) for choosing k = 6 from P = 12, 18, and 24 candidate variables

are given in Table 5.
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Acomplete øossing of all thelevels of the three data conditions (P*i*,, P,

and N) and the single within algorithm condition (a) yields a total of 81 sets of

conditions.

2S0 replications of each of the 27 possible combinations of the three data

conditions were generated according to the algorithms given in equations 22

and 23 and stored on disk using FORTRAN. The data was then reread from

disk by SAS and pnocessed by each of the three subset selection algorithms in

combination with each level of the within algorithm condition. Results from each

of these algorithms were rerouted to disk so that SAS could reread this

information and stip the values of FP, k and number of authentic candidate

variables in the final subset for further processing (see Appendix A for

FORTRANand SAS Pogams).
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Table 5

Level ofSignificance Conditions

Number of

Candidate

Variables (P)

Nominal

Type lEnor Rate
(o)

Maximum

Familyrtiise

Type lEnor Rate

MFWER (ö)

.460

.603

.708

.858

.946

.980

12

18

24

12

18

24

12

18

24

.05

.05

.05

.15

.15

.15

.0134519

.0089882

.0067481

.15

.15

.15
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Statistics

Each combination of the three data conditions and one within algorithm

condition were tested on each of the three subset selection algorithms: (1)

STEPWISE, (2) BACKWARD, and (3) FORWARD.

ln any stepwise subset selection algorithm, the number of variables

selected is usually not prespecified. Therefore k, the final subset size, was a
random variable determined by the 'stopping rule' used by the subset selection

algorithm. ln general, a variable is entered into the equation when a test of its
partial correlation is significant at some prespecified level of significance and

deleted when it is not significant. The procedure is terminated when either no

more significant variables are left to be entered into the model, no more

insignificant variables are left to be deleted from the model or, in the case of the

STEPWISE algorithm, the only significant variable to be entered into the model

is the one deleted from the model in the last step. The final subset chosen

when the procedure terminates is deemed the 'best' subset based upon the

stopping rule used.

Upon termination of the procedure four characteristics of the final subset

were noted:

1) k, the subset size,

2) R2, the multiple coefficient of determination,

3) C¡, the number of noise variables in the final subset, and

4) Ca, the number of authentic variables in the final subset.

From these variables, three additional variables were calculated:

1)

2)

3)

Rk2='-i'-n,l#,theshrunkenvalueofFP(SeeCohen&
Cohen, 1983, p.106),

hà = 1 - (1 - nr) m}f]., , the shrunken value of FP appropiate

when subset selection has taken place (See Cohen & Cohen, 1983,

pp.106-107), and

p* = ?,the proportion of the final subset that is noise.
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Values for each of the seven dependent variables above were calculated

and summarized over the 250 replications by their mean and standard

deviation.

When it occured that no variables remained in the final subset, FP, R¡2

and Sz were set to a missing value rather than zero, since Br.2 and h, ray
legitimately take on the value zero when their calculation leads to a negative

number. This was deemed the best response. ln such a case, C¡ and C¡¡ were

setto zero and hence k = C¡ + CN= 0 and P¡¡= Cru/k leads to a missing value.
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BESULTS

Selection of Authentic Predictor Variables in the Presence of Noise

ln the genration of each sample of a single response variable and P

candidate predictor variables, the first six (X1 , X2 , ... , )16) pnedictor variables

were defined to be authentic predictor variables. That is, these predictor

variables participated in the generation of the response variable by having

nonzero reEession coetficients. The remaining P - 6 predictor variables, which

did not participate in the generation of the response variable, were defined to

be noise. Of interest, then, was the effect that (1) the three study factors (degree

of collinearity, number of candidate variables, and sample size), (2) the subset

selection algorithms (STEPWISE, FORWARD,and BACKWABD) and (3) the a

inclusion/deletion levels (c0,.05 and .15) had on the selection of authentic

predictor variables in the Fesence of noise. Thus, a comparison of the effect

that the three study factors within each inclusionldeletion level of significance

had on (1) the mean number of authentic variables (Ce), (2) the mean number

of noise variables (Cr,¡) and (3) the mean percentage of the final subset that is

noise (P¡r), may be found in Tables 6, 7, and I for the STEPWISE, FORWARD

and BACKWARD procedures, respectively (see Appendix B for associated

standard errors).

An examination of the results obtained within the subset selection

algorithms shows that when o = ep the mean value of C¡ was consistently less

than one for all three algorithms. That is, often no authentic variables remained

in the final subset at this level of significance. As the level was increased to

0.1S, the mean value of C¡ was increased to a value generally Eeater than

one. However, even at this level, when Px¡x¡ = 0.8 the mean value of Ca

remained generally less than one in the STEPWISE and FORWARDalgorithms

(See Tables 6 and 7). The mean values of C¡ were similarly affected by a

change in the inclusion/deletion levels.
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Table 6

Mean Ere-quenqLof Authentic and Noise Variables and %Noise Contained

rn-the Final Subset [the-STEPWISE Procedureû

l/D Level of Significance (a)

0.05

Variable

ap 0.1 5

0.0 12

18

0.228 0.084
0.476 0.096
o.728 0.068

0.200 0.1 12
0.360 0.100
0.492 0.080

25.7 0.680
15.8 1.076
8.1 1.580

34.9 0.684
22.3 1.076
14.8 1.560

47.3 0.672
28.7 1.172
21.2 1.580

0.368 32.2
0.316 20.0
0.300 12.9

0.652 47.7
0.696 37.2
0.656 29.5

1 .132 59.0
0.984 44.O
0.964 35.8

30
60
90

30
60
90

1.516 1.100 41.9
2.192 0.928 27.9
2.708 0.848 22.1

1.604 2.120 55.2
2.000 2.028 48.8
2.712 1.980 40.5

1.548 3.588 68.9
2.104 3.012 56.2
2.760 2.952 50.5

24 30 0.124 0.112
60 0.288 0.128
90 0.460 0.132

0.4 12 30 0.180 0.108
60 0.308 0.072
90 0.444 0.088

0.108 0.108
0.256 0.128
0.396 0.104

0.140 0.088
0.204 0.136
0 332 0.132

18 30
60
90

24 30
60
90

35.9 0.460
17.2 0.580
12.8 0.744

46.8 0.476
30.5 0.600
16.2 0.824

36.8 0.456
38.1 0.584
24.7 0.708

0.288 34.7
0.292 29j
0.312 23.0

o.704 56.3
0.756 52j
0.624 35.5

1 .104 69.4
0.900 58.5
0.896 50.1

1.032 0.948 45.1
1 .136 0.940 42.9
1.292 0.968 37.4

1.036 2.200 66.1
1 .208 2.100 61 .1
1.308 1.904 54.3

1.216 3.708 74.5
1.204 2.860 67.7
1 .316 2.804 õ4.9

0.8 12

18

24

30
60
90

30
60
90

30
60
90

0.108 0.068
0.204 0.100
0.308 0.076

0.116 0.084
0.168 0.132
0.236 0.108

0.108 0.092
0.128 0.108
0.256 0.148

36.8 0.324
30.6 0.440
18.5 0.592

40.8 0.300
40.0 0.400
29.7 0.580

43.3 0.404
47.2 0.456
3s.9 0.560

0.324 48.0
0.328 39.4
o.z$ 24.7

o.7M 70.5
0.604 57.2
0.604 Æ.4
1.052 69.6
0.900 63.3
0.968 59.3

0.788 1.000 56.0
0.900 0.996 51.s
1.052 0.852 42.3

0.776 2.080 73.5
0.884 1.884 67.2
0.976 1.836 62.3

0.956 3.532 79.1
0.944 2.916 76.0
1.O24 3.012 74.3

aNote: px¡x¡ = Degnee of collinearity, P = Number of candidate variables, N =

Sample size; co = 1-(1-ö)1tp where ö=0.15; Cn is the frequency of
authentic variables, C¡¡ is the frequency of noise variables, and P¡ is the
percentage of noise variables in the final subset;
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Table 7

Mean Eresuencv of Authenlic and Noise Variables and o/oNoise Contained

nthe-Final Subset in the BACKWARD Procedure a

l/D Level of Significance (c)

0.05

Variable

0.1 5

P*¡*¡ P N C¡ C¡'¡ P¡ Ce Cr',I P¡¡ C¡ Cru Pru

CIp

0.0 12

18

24

0.312 0.140
0.508 0.108
0.808 0.092

0.256 0.208
0.448 0.184
0.608 0.120

0.192 0.316
0.324 0.176
0.512 0.168

0.952 0.588
1 .192 0.356
1.64tI 0.332

.164 1.412

.216 0.896

.744 0.780

35.2 1.856
19.5 2.360
13.5 2.808

51.8 2.324
40.0 2.248
30.0 2.884

1.368 41.9
1.048 28.4
o.972 23.9

3.628 58.5
2.500 51.4
2.264 41.9

30
60
90

30
60
90

30
60
90

30.5
16.5

9.2

42.1
26.4
14.5

51.6 1.504 3.676
31.3 1.332 1.552
22.6 1.792 1.160

65.5 2.816 7.804 72.7
49.5 2.432 3.944 59.s
37.0 3.000 3.472 51.5

0.4 12 30
60
90

18 30
60
90

24 30
60
90

0.196 0.1 12
0.344 0.104
0.452 0.1 12

0.156 0.240
0.276 0.168
0.384 0.124

0.204 0.256
0.204 0.168
0.344 0.144

36.7 0.632 0.488
20.0 0.668 0.332
13.9 0.824 0.348

57.7 0.812 1.348
33.3 0.7M 0.972
18.4 0.880 0.760

48.8 1.228 3.264
41.7 0.716 1.288
25.7 0.800 1 .136

38.1 1.460 1.388 45.4
29.6 1.364 1.088 43.0
23.6 1.492 1.068 37.5

60.9 1.904 3.516 64.5
52.4 1.472 2.632 62.1
37.8 1.492 2.212 5s.9

70.3 2.828 8.104 74.3
61.1 1.584 3.856 69.9
53.0 1.612 3.320 64.4

0.8 12 30
60
90

18 30
60
90

0.224 0.116
0.276 0.104
0.376 0.088

0.204 0.204
o.24 0.148
0.292 0.128

24 30 0.264 0.416
60 0.128 0.1 56
90 0.316 0.176

33.9 0.616 0.540
27.6 0.652 0.364
18.4 0.776 0.276

41.4 0.852 1.N4
36.3 0.760 0.768
29.9 0.7Æ 0.644

48.9 1.4tì0 3.964
53.0 0.784 1.392
33.0 0.752 1.216

45.4 1.s16 1.328 43.9
32.6 1.384 1.092 41.8
23.4 1.456 0.972 35.9

61.8 1.920 3.580 64.2
48.1 1.532 2.392 58.9
43.2 1.456 2.1Æ 56.6

68.0 2.856 8.076 73.5
60.8 1.588 3.824 70.0
57.1 1.Æ4 3.456 70.0

aNote: See Table 6 note.
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Table I
Mean Freouencv of Authentic and Noise Variables and o/oNoise Contained

llthe-Final Subset inthe FORWARDProcedure a

l/D Level of Significance (a)

0.05

Variable

0.15

P'i'¡ P N Cr C¡¡ P¡r Cr C¡l P¡,1 C¡r Pr.rCr

0.0 12

18

24

0.228 0.084
0.476 0.096
0.728 0.068

0.200 0.112
0.360 0.100
0.492 0.080

0.124 0.1 12
0.288 0.128
0.460 0.132

0.684 0.368
1 .076 0.316
1.580 0.304

0.692 0.652
1.072 0.728
1.560 0.660

0.672 1.140
1 .184 0.988
1.580 0.976

30
60
90

30
60
90

30
60
90

25.7
15.8

8.1

34.9
22.3
14.8

47.3
28.7
21.3

32.2 1 .536 1 .104 41 .6
20.0 2.204 0.936 27.9
13.0 2.716 0.848 22.1

47.5 1 .640 2.180 55.2
37.9 2.024 2.064 48.9
29.6 2.728 2.020 Æ.7

59.1 1.584 3.648 68.8
43.8 2.152 3.056 56.0
35.9 2.788 3.016 50.7

o.4 12

18

24

0.180 0.108
0.308 0.o72
0.444 0.088

0.108 0.108
0.256 0.128
0.396 0.104

0.140 0.088
0.204 0.136
0.332 0.132

30
60
90

30
60
90

30
60
90

35.9 0.460 0.288
17.2 0.580 0.292
12.8 0.7M 0.312

46.8 0.480 0.708
30.5 0.604 0.756
16.2 0.824 0.628

37.9 0.460 1.112
38.1 0.588 0.892
24.7 0.708 0.896

34.7 1.052 0.960 4.9
29.1 1.140 0.948 43.0
23.0 1.292 0.968 37.4

56.2 1.068 2.228 65.7
52.0 1.2Æ 2j28 60.8
35.5 1 .344 1 .912 53.9

69.6 1.268 3.804 74.3
58.3 1.2N 2.852 67.3
50.1 1.332 2.816 64.7

0.8 12

18

0.108 0.068
0.204 0.100
0.308 0.076

0.1 16 0.084
0.168 0.132
0.236 0.108

24 30 0.108 0.092
60 0.128 0.108
90 0.256 0.148

36.8 0.328 0.324
30.6 0.440 0.328
18.5 0.592 0.2N
40.8 0.300 0.744
40.0 0.400 0.604
29.7 0.580 0.608

43.3 0.404 1.080
47.2 0.4s6 0.900
33.9 0.560 0.972

47.9 0.808 1.016 55.9
39.4 0.900 1.000 51.6
24.7 1.060 0.8s2 42.3

70.5 0.784 2.108 73.6
57.2 0.884 1.928 67.6
46.5 0.992 1.840 62.2

70.0 1.016 3.588 78.9
63.3 0.972 2.9Æ 75.8
59.4 1.036 3.036 74.2

30
60
90

30
60
90

aNote: See Table 6 note.
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Within each method, the maximum mean value of C¡ is to be found when

c= 0.15,p*,"¡ = 0.0 and N = 90. Forthese conditions and for each value of P

(12, 18 and 24) the mean value of C¡ equals 2.708,2.712 and 2.760 for the

STEPWISE pocedure, 2.808, 2.884, and 3.000 for the BACKWABD procedure,

and 2.716,2.728, and 2.788 for the FORWARD pocedure. Hence, none of the

subset selection procedures consistently contained all six of the authentic

variables in their final subset. ln fact, the coresponding mean values of C¡¡

indicated that the final model may contain a large proportion of noise variables,

especially when P = 24. For P = 12, 18 and 24, the mean value of C¡ equals

0.848, 1.980, and 2.952 forthe STEPWISE procedure, O.972,2.264, and 3.472

for the BACKWARD procedure, and 0.848, 2.O2O and 3.016 for the FORWARD

procedure. The results for P¡ show this to be tue.
ln addition, note that while results for the STEPWISE and FORWARD

procedures were generally very consistent, the mean values of both C¡ and C¡
were increased in the BACKWARD procedure for each level of significance

(See Table 8). This indicates that the BACKWARD procedure likely eliminates

fewer variables (both authentic and noise) to obtain the final subset. The same

is not always fue of P¡. The mean values of Pr,r in the BACKWARD pocedure

generally exceeded those of the STEPWISE and FORWARDprocedures when

px¡x¡ = 0.0 and 0.4. However, when Px¡x¡ = 0.8, the BACKWARD mean P¡ results

were generally less than those of the other algorithms. Thus, the BACKWARD

procedure may obtain a final subset with both more authentic variables and a

lower proportion of noise than either the STËPWISE or FORWARDprocedures
when collinearity is high. Still, when Px¡x¡ = 0.8, P = 24 and N = 30 the mean

percentage of noise variables in the BACKWABD procedure was 73.5o/o

(compared to79.1olo âñd 78.9o/o in the STEPWISE and FORWARDpocedures,

respectively).

From the above findings, it is clear that ùends due to the degree of

collinearity, the number of candidate variables and sample size do exist in the

analysis of C¡, C¡¡, and P¡. Therefore, tests for fend, employing orthogonal

polynomials, were used to examine the etfect of each of the three data

conditions (p*¡,¡, P and N) on each of the three dependent variables (Ce, C¡¡,

and P¡) within each combination of method (STEPWISE, tsACKWARD, and

FORWARD) and the within algorithm condition, a (CIp, 0.05 and 0.15). Two

contasts representing the linear and quaúatic effects of each of the factors
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were computed. Additionally, each of the possible tweway and threeway

interaction conüasts were calculated for a total of 26 one degee of freedom

confasts.
The sums of squares for each contast were generated using the

Contast statement in the SAS pocedure, GLM. To evaluate the importance of

each contast, an r2 value, calculated as the contasl sum of squares divided by

the model or explained sum of squares, was defined. Tables 9, 11, and 13

contain an enumeration of the 12 values associated with each of the tend

components for each of the dependent measures.

COhen (1969) giVes conventiOnal "small", "medium" and "large" Values

for squared correlation coefficients in behavioural science. Using these values

as a reference, 12 values of less than 0.01 were defined as negligible, values

from 0.01 to less than 0.09 were defined as "small", values from 0.09 to less

than 0.25 were defined as "medium" and values greater than or equal to 0.25

were defined as "large". Classification of the r2 values in this way, provides a

desøiption of the stength of the relationship between the factor, as represented

by the confast, and the dependent variable. Only tend components

accounting for at least one small effect size for any combination of algorithm

and inclusion/deletion level were enumerated.

To determine the direction of any linear relationship between the factors

and the dependent variables, multiple linear regnession procedures were used.

That is, each tend component repnesented a predictor variable in the

regression equation. Each of the dependent variables were regressed on the

full+ank data matrix thus produced. The sign of the reEession coefficient

coresponding to the linear tend component vector indicates the direction of the

linear relationship. The sign of the linear relationships have been included in

the tables of 12 values so that the srengrth and direction of the linear

relationships are immediately apparent.

Trend Analysis elÊ*i*i -P¡n-d-ÀLwithin Method and lnclusionlDeletion Level

Main Effects

Collinearity. Table 9 contains the 12 values associated with the tend

analysis of Cn. The results show that increasing collinearity (P*¡*¡) had a large

negative linear effect on the number of authentic variables in the final subset.
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Within each combination of algorithm and inclusionldeletion level, the linear

contast in pxixi resulted in a large r2 value. A small to moderate qua&atic

component was shown to exist in the BACKWARD pocedure where the
quadatic contast in pri*i resulted in a small 12 value when G = op and a

medium 12 value when a = 0.05 and 0.15. As well, a small quaüatic effect was

shown to exist when c = 0.05 and 0.15 within the other algorithms. The first part

of Table 10 shows the effect of collinearity on C¡. The stong negative effect of

increasing collinearity is plain, particularly as Prixi was increased from the

unconelated case (Pr¡*¡ = 0) to the correlated cases (P=¡"¡ = 0.4 and 0.8).

ln comparison, the ùend analysis for C¡ given in Table 11 showed that

the deEee of collinearity did not significantly affect the number of noise

variables in the final subset. A small quaùatic effect was evident only in the

STEPWISË and FORWABDpnocedures and only when o = ep. The remainder

of the conüasts ih pxixi resulted in 12 values below 0.01. The lack of a tend due

to increasing collinearity is evident in the first part of Table 12.

On the other hand, a tend due to the degee of collinearity is again

evident in the analysis of P¡.¡ (See Table 13). Within the STEPWISE and

FORWARD procedures, a moderate to large positive linear relationship was

shown to exist for each value of a. To a lesser extent, the same relationship

was shown to exist within the BACKWARD pocedure. As well, a small

quaùatic effectdue topx¡x¡ Wâs shown toexistwhen 0 =0.05 and 0.15 in the

BACKWARD procedure.

The positive effect of inøeasing collinearity on the mean poportion of

noise variables in the final subset is shown in the first part of Table 14. lt

appears that increasing the value of pxixi from 0.0 to 0.4 had the geatest effec{

on P¡ in the BACKWARD procedure. The mean percentage noise was

increased from 38.1olo to 48.0% when a = 0.05 and from 47.8o/o lo 57.7% when

o =0.15 when collinearity was increased from 0.0 to 0.4. A further increase in

collinearity did not measurably change the mean value of P¡¡ at these levels of

o. ln the STEPWISE and FORWARD procedures each increase in P*¡"¡

produced a ccrresponding increase in P¡ at each level of a.

Number of Candidate Variables . An analysis of the effect of inøeasing the

number of candidate variables (P) on C¡ indicated the presence of a moderate

positive linear tend within the BACKWARD procedure when o = 0.05 and 0.15

(See Tables 9 and 10). The mean value of C¡ was increased from 0.884 and

1.744 when P -- 12 to 1.154 and 2.236 when P =24 for c = 0.05 and
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Table 9

Proportion of Model Sum of Squares Accounted for by Contast a

Deændenf Variable: Çe

METHOD. STEPWISE BACKWARD FORWARD

l/D LEVEL (a). ep .0s .18 op .0b .1b op .0s .1s

CONTRAST

p*¡"¡ ( L ) -L -L -L -L -L -L -L -L -L
p*i"¡ (A) s s s n n s s

P (L) -5 + + -11 +[1 +f1 -S + +

H ( L ) +l +l- +f] +l- + +5 +[- +l +fl

I'I(Q) S S S

P,i*;(L) x P(L) S

p*¡*¡(L)xH(L) s s s t1 t1 t1 s s s

p,,*,(Q) x I'l(L) s s s s s s

P(L) x H(L) s

P(L) x N(0)
SSNS

5S
aNote: l/D = lnclusion/Deletion;

+/- signs indicate the direction of the relationship;

0p = 1-(1-õ¡ttP where õ=0.15;

ç2 < 0.01 = Negligible effect (left blank except for possible sign of

relationship),

0.01 s r2 <0.09 = Small effect (S),

0.09 < 12 < 0.25 = Medium effect (M),

0.25 5 12 = Large effect (L);

px¡x¡ = Degee of collinearity, P = Number of candidate predictø variables,

N = sârnPle size;

(L) = Linear tend, (Q) = Quaúatic tend;
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Table 10
Effectof Collinearity- Number of Candidate Variables an-d

Sample- Size on the Mean Values olÇ64

Method

STEPWISE FORWARD

ap .os .t s ap .0s .15

Px¡xi

0.0 0.373 1 .120 2.127
0.4 0.263 0.604 1 .194
0 8 0.181 0.451 0.922

BACKWARD

l/D Level (o)

o.41 1.394 2.525 0.373 1.122 2.152
0.284 0.812 1.690 0.263 0.605 1.220
0.258 0.824 1.679 0.181 0.451 0.939

P
12
18
24

0.332 0.720 1.402
0.259 0.722 1.389
0.227 0.732 1.452

0.388 0.884 1.7M
0.319 0.991 1 .91 5
0:276 1r.154 2:236

0.332 0.720 1.412
0.259 0.724 1.412
0:227 01735 1:488

0.146 0.498 1 .1 95
0.266 0.711 1.418
0:406 .0:979 

'11699

0.184 0.682 1.587
0.375 1.111 2.126
0.560 1.573 2.744

0.143 0.467 1.129
0.256 0.591 1.209
0.391 0.759 1.323

0.111 0.344 0.869
0.167 0.432 0.918
0:267 0.577 l:029

Êx¡xi

0.0

0.4

0.8

P
12

18

N
30
60
90

N
30
60
90

30
60
90

30
60
90

0.146 0.495
0.266 0.709
0140_6 0:970

0.184 0.679
0.375 1 .108
0.560 1.573

0.143 0.464
0.256 0.588
0.391 0.759

0.111 0.342
0.167 0.432
0.267 0.577

1.164 0.223
1.397 0.306
j:683 0145,5

1.556 0.253
2.099 0.427
2.727 0.643

1.095 0.185
1 .183 0.275
1.305 0.393

0.840 0.231
0.909 0.216
1 .017 0.328

1.027 2.164
0.896 1.774
:1 ,.197 J 1e56

1.207 2.332
1.2ß 2.347
1.728 2.897

0.891 2.064
0.709 1.473
0.835 1.532

0.983 2.097
0.732 1.501
0.759 1.439

N
30 0.172 0.488 1.112 0.244 0.733 1.611 0.172 0.491 1.132
60 0.329 0.699 1.409 0.376 0.837 1.703 0.329 0.699 1.415
90 0.493 0.972 1.6S4 0.545 1.083 1.919 0.493 0.972 1.689

30 0.141 0.487 1 .139 0.205 0.943 2.049 0.141 0.491 1 .164
60 0.261 0.692 1.364 0.323 0.907 1.751 0.261 0.692 1.385
e0 0.375 0.988 1.665 0.428 1.124 1.9M 0.375 0.988 1.688

24 30 0j24 0.511 1.240 0.220 1.N4 2.833 0.124 0.512 1.289
60 0.207 0.737 1.417 0.219 0.944 1.868 0.207 0.743 1.455
90 0.349 0.949 1 .700 0.391 1 .1 1 5 2.005 0.349 0.949 1 .719

aNote: See Table 6 note.
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Table 11

Proportion of Model Sum of Squares Accounted for by Confast a

Dependent Variable: Ç¡

METHOD: STEPWISE BACKWARD FORWARD

l/D LEVEL (o): op .05 .15 Gp .05 .15 op .05 .15

CONTBAST

P ( L ) +l +l +l +l_ +l_ +l +l_ +l_ +l
P (Q) 5

+$ -S -S -L -|-1 -n +$ -S -S
SSSS

N (L)
H (Q)

p*¡,¡(L) x P(Q) s

P*i*i(Q) x P(L)
p*r*r(Q) x P(Q)

5

J

p*¡,i(L) x l'l(L) s

P{L}xH(L} n S n n n n S

P{L)xN(Q) s s s

P(Qlxl'l(L) s 5 s s

P(0)xH(0) s s S

P*¡*¡(LlxP(L)xN(L)
p*¡*¡(L)xP(Q)xN(Q) S S

l'1p,¡*¡(QixP(LlxH(8) N

aNote: See Table 9 note.
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Table 12
Effectof Collinearity- Number of Candidate Variables and

Samole Size on the Mean Values of C¡,F

Method

STEPWISE BACKWARD

l/D Level (a)
FORWARD

.05 .05 .15.15.05.15

P
12

Êx¡r¡

0.0 0.101 0.674 2.062 0.168 1 .195 3.000 0.101 0.681 2.097

0.4 0.107 0.653 2.0Æ 0,159 1.104 3.020 0.107 0.654 2.068

0,8 0:'102 0:640 2:o1_2 0:171 1:174 219_8_5 0ì1-92 0:645 2:0-3_5

P
12 0.084 0.308 0.953 0.108 0.403 1.147 0.084 0.308 0.9s9

18 0.106 0.671 2.015 0.169 0,998 2.764 0.106 0.676 2.045

_24 0:120 01989 3'J54 0:220 2.072 5:09-5 0:120 0:995 3:196

N
30 0.095 0.708 2.253 0.223 1.854 4.310 0.09s 0.713 2.293

60 0.1 1 1 0.642 1 .963 0.1 46 0.880 2.486 0.1 1 1 0.645 1 .984

90 01104 9,619 1:906 0:128 0:739 2._2O9 0:J04 0:62^2 1ì923

N
30 0.087 0.327 1.016 0.123 0.539 1.361 0.087 0.327 1.027

60 0.089 0.312 0.955 0.105 0.351 1.076 0.089 0.312 0.961

90 0.077 0.284 0.889 0.097 0.319 1.004 0.077 0.284 0.889

30 0.101 0.700 2.133 0.217 1.388 3.574 0.101 0.701 2.172

60 0.120 0.685 2.004 0.167 0.879 2.508 0.120 0.696 2.O4
90 0.097 0.628 1.907 0.124 0.728 2.208 0.097 0.632 1.924

30 0.097 1.096 3.609 0.329 3.635 7.995 0.097 1.111 3.680

60 0.124 0.928 2.929 0.167 1.411 3.874 0.124 0.927 2.952

90 0.137 0.943 2.923 0.163 1.171 3.416 0.137 0.948 2.956

18

24

aNote: See Table 6 note.
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Table 13

Proportion of Model Sum of Squares Accounted for by Contast a

Dependent Variable: P¡

METHOD: STEPWISE BACKWARD FORWARD

l/D LEVEL (c): op .05 .1S ep .0s .1S op .05 .1b

CONTRAST

P*¡*¡ ( L ) +fl +f1 +l +g +g +g +[l +fl +[-

p*¡*¡ (A) s S

P (L) +|.1 +L +[- +[- +l +l- +fl +[- +l-

P(Q) S S S S 5 S

N (L) -L -r1 -r1 -L -L -11 -L -n -N
p*,*,{L} x l'l(L} s s S S

p*¡*,(L) x l'l(Q) s S S

p*,",(Q) x H(L) S

p*¡*¡(Q)xP(Llxl1(Q) s s
p,.,,¡tq)-P(A)-H(L}s s s

aNote: See Table 9 note.
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Table 14

Effect of Collinearity- Number of Candidate Variables and

Sa¡ûBle- Size onthe Mean Values ofPNa

Method

STEPWISE BACKWARD

l/D Level (a)
FOBWARD

0p .05 .15 ep .05 .15 0p .15.05

Px¡r¡

0.0 21.4

0.4 25.9

o,g 33,9

P
12 19.1

18 27.8

24 3-3_:1

N
30 38.1

60 28.3

90 18.9

35.2 45.8 24.2

45.9 57.4 29.6

5-4:-0- 65:2 34:0

27.9 40.3 20.3

46.7 58.6 30.6

55 7 68:0 3-6:7

55.2 62.7 43.2

44.7 55.5 30.1

35.3 49.9 19.7

38.1 47.8

48.0 57.7

50:0 57:6

27.8 37.8

46.6 57.1

57:6 6-7_:-3

s6.5 60.3

44.5 54.0

35.6 48.7

21.4 35.3 45.8

25.9 45.9 57.1

93,9 54:1 65j1

19.1 27.6 40.2

27.8 46.8 58.5

33_:'1 55:7 67I

38.1 55.3 62.6

28.3 44.7 55.5

18.9 35.4 49.9

aNote: See Table 6 note.
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0.15, respectively. This is contary towhat one would expect, since the number

of authentic væiables remains cons{ant as P increases. This tend was

reversed but remained moderate in size when e = ep. (This is because the

value of arepresenting a familywise level of significance of 0.15 is reduced as

P increases.) The effect of P on Ca within the other algorithms was negligible to
small.

ln contast, a sûong positive linear relationship between C¡r and P was

evident for every combination of subset selection algorithm and CI

inclusion/deletion level. (See Tables 11 and 12) Clearly, as the number of

candidate predictor variables was increased, the number of noise variables in

the final subset was also increased. For example, when CI = 0.15, the mean

value of C¡.¡ was increased from 1.147 when P = 12 to 5.095 when P = 24 in the

BACKWARD procedure and correspondingly from 0.953 when P = 12 to 3.154

when P =24 in the STEPWISE procedure. Unlike the case of C¡, this is exactly

as one would expect since the ratio of noise to authentic variables was

increased from 2 to 4 for P = 12 and 24, respectively.

A similar moderate to large positive relationship was shown to exist

between P and P¡ for all algorithm-c level conditions (See Table 13).

Furthermore, a small qua&atic relationship between PN and P was also evident

when a = 0.05 and 0.15 within each of the algorithms. The increase in the

percentage of the final subset that was noise was in the range of 10% to 20% as

P was increased from 12 to 18 and from 5o/o to 10oÁ as P was further increased

to 24 (See Table 14).

Sample Size. With respect to the effect of sample size on the number of

authentic variables in the final subset, Table 9 shows that sample size had a
medium to large positive effect on C¡ in the STEPWISE and FORWARD

procedures for all a levels. On the other hand, the relationship between N and

C¡ was not stable over increasing a in the BACKWABD procedure. Here, the

linear effect of N was large and positive when o = op, but was reduced to a
negligible effectan-d a small etfect,respectively, when CI = 0.05 and 0.15. As

well, a small quaüatic effect due to N was evident in the BACKWARD

pocedure for each value of s. Nonetheless, in all three subset selection

procedures the relationship between N and C¡ was shown to be positive.

The positive linear effect of N on C¡ is evident in Table 10 within the

STEPWISE and FORWABDprocedures. ltis clear that increasing the sample

size enables these two subset selection pnocedures to detect more authentic
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predictor variables. However, though the linear effect of N was shown to be

moderate to large in size, the actual increase in C¡ was shown to be small. For

example even when e =0.15, the mean value of C¡ was only increased from

1.164when N=30to 1.683 when N =90 in the STEPWISE pocedure. lnfact,
in all cases, the mean value of C¡ remained well below the actual number of
authentic variables present. This may be partially due to a p,¡*¡ X N interaction.

ln contast to the analysis of C¡, sample size was shown to have a small

linear effect on C¡¡ in the STEPWISE and FORWARD procedures, and a
moderate to large linear effect on C¡¡ in the BACKWARD procedure (See Table

1 1). For the former procedures, a small linear effecl due to N was evident for all

levels of q, but the sign of the relationship was changed from positive when

o = eptonegative when a = 0.05 and 0.15. lnthe BACKWARD procedure, a

large to medium linear effect due to N was evident for each level of o and the

sign remained negative. This effect is evident in Table 12 where the mean

value of C¡.¡ was decreased from 4.310 when N = 30 to 2.209 when N = 90 at e

=0.15. Furthermore, asmall quaúatic effectin N was also present for each a-

level forthis pnocedure. A similar though less üamatic effectwas evident within

the STEPWISE and FORWARDprocedures. Thus, it is clear that an increase in

sample size aids the reduction of the number of noise present in the final

subset.

As expected, a similar effect was shown to exist for sample size when the

dependent variable was the percentage of noise in the final subset. A moderate

to stong negative linear effectwas evident for all algorithm-a level conditions

(See Tables 13 and 14). However, unlike in the analysis of C¡ and C¡, the

sfengrth and direction of the etfect was fairly consistent within all subset

selection methods. Generally, each increase in N was able to reduce the

percentage of noise variables by about 5% to 10o/o.

Two-way lnteractions

ln the analysis of tweway interactions, none of the variables displayed

any evidence of a consistent pr¡,¡ X P interaction (See Tables 9, 11 and 13)

However, a small to moderate interaction effect between Px¡x¡ âIìd N on C4 was

evident in Table 9. A small p,¡*¡ linear X N linear effect was shown to exisl in

the STEPWISE and FORWARD procedures and a medium P*¡,¡ linear X N

linear effect was shown to exist in the BACKWARD pocedure for each level of
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a. As well, a small p'ixi quadatic X N linear effect was shown to be present

when o = 0.05 and 0.15 within each of the algorithms.

Table 10 shows that for the STEPWISE and FORWARD pocedures,

sample size maintained its positive effect on C¡ within each value of p,,",.

lncreasing N seems to be most effective when Pr¡r¡ = 0.0. Here, for example

when o = 0.15 and px¡*¡ = 0.0, the mean value of C¡ was increased from 1.556

when N = 30 to 2.727 when N = 90 in the STEPWISE procedure. Comparing
these results with the corresponding values when Px¡x¡ = 0.4 [1.095 (N = 30) to

1.305 (N =90)l and p*,*, = 0.8 [0.840 (N = 30) to 1.017 (N = 90)] indicates that

the effectiveness of increased sample size in detec'ting authentic variables was

reduced by collinearity. This is not surprising, since the sample sizes

investigated in this study were chosen in order to detec't a medium effect size .

and, when the value of px¡x¡ wâs increased from 0.0 to 0.8, the effect size

present in the data was conespondingly reduced to a small effect size.

For the BACKWARD procedure, the interaction between collinearity and

sample size was complex (See Table 10). When Px¡x¡ = 0.0, inøeasing N

positively affected C¡. This remained tue as the value of p*i,i increased and a

=CIp. However, when a =0.05 and 0.15, as p*,", was increased the effectof N

became negative. lt must be recalled that the BACKWARD procedure is unlike

either the STEPWISE and FORWABDprocedures in that it begins with all of the

candidate predictor variables in the model. lt may be that this, combined with

the reduced effect size (due to increased collinearity) renders inøeasing the

sample size completely ineffective.

A second two-way interaction was present in the analysis of C¡. Within

the BACKWARD pocedure, a small to moderate interaction effect on C¡
between P and N was evident in Table 9. An examination of Table 10 indicated

that when P = 12 N seems to have a positive eflect on C¡ and as P increases

the effect of N seems to become more quaùatic and negative in nature when a

= 0.05 and 0.15. lt may be that like increasing collinearity, increasing the

number of candidale variables along with a liberal a value interferes with the

effectiveness of inøeasing N in positively influencing the number of authentic

variables in the final subset.

Similarly, a P X N interaction effectwas also evident in the analysis of C¡
within the BACKWARD procedure (See Table 11). Here, a medium P linear X

N linear interaction effect was shown to be present for each value of c.

Additionally, a number of small effecl values were associated with the other
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interaction contasts which comprise the P X N interaction component. Table 12

showed that as P was increased, the number of noise variables in the final

subset was also increased. However, the negative effect of N also seems to

have been increased such that when P = 24, increasing N from 30 to 60

reduced the mean number of noise variables by about half While the

decrease in the number of noise variables due to increased sample size was

reduced when P = 12, the actual mean value of Cr.¡was also much less atthis
value of P. Forexample, when o =0.15 and P = 12, the mean value of C¡¡was

reduced from 1.361 when N = 30 to 1.004 when N = 90, and from 7.995 when N

= 30 to 3.416 when N = 90 and P = 24.

Three-way lnteractions

The analysis of C¡ showed some small to medium r2 values among the

three-way contasts for each of the subset selection methods at o = op (See

Table 11). However, these interaction effectswere not stable over increasing c
and were reduced to a negligible size when a = 0.05 and 0.15. A similar

occurence of three-way interactions is evident in the analysis of P¡ (See Table

13).
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Estimates of the Population Coefficient of Multiple Determination

Tables 1 5, 16 and 17 illustate the effect of collinearity among the

authentic predictor variables, number of candidate variables and sample size

within each combination of algorithm and inclusion/deletion level on the mean

values of R2, R¡2, and Ç2, respectively (see Appendix B for standard errors).

A comparison of the population pyu2 value with the mean values of BP

and R¡2 showed that these two estimates tend to be inflated (See Tables 15 and

16). However, when Q = 0.15/p, p,,,, = 0 and the sample size is 90, both of

these estimates did verywell. Under these conditions, py*¡2=.130, and R3 took

on the values .130, .131, and .135 for the STEPWISE and FORWARD

procedures and the values .135, .144, and.143 for the BACKWARD procedure

f or P = 12, 18 and 24, respectively. Similarly, R¡2 took on the values .1 1 7, .1 1 I
and .122lor the STEPWISE and FORWARD procedures and the values .121,

.129, and 129 for the BACKWARD procedure for p = 12, 18 and 24,

respectively. As would be expected, the results for Rz were slightly higher than

those for R*2. On the other hand, Table 17 showed &2 to be an extemely
conservative estimate of p*¡2. Only when py*i2 reached .043 and .026 did the

mean value of Roz occasionally exceed py*i2.

A comparison of the mean values of Rz, Rrr2 and Sz for each subset

selection algorithm indicated thattheresults for the STEPWISE and FORWARD

procedures were very similar (See Tables 15, 16 and 17). However, the values

for the FORWARDprocedure were occasionally slightly larger than those of the

STEPWISE procedure when cwas large (0.05 or 0.15). On the other hand, the

results from the BACKWARD procedure were generally Eeater than those of

the STEPWISE and FORW,ARD procedures for each of the three dependent

variables. As a result, the BACKWARD procedure tended to produce slightly

more inflated values of FP and Rr2 and slightly less conservative values of qz.
However, the differences tended to be ameliorated by inøeases in sample

size.

As expected, within any of the algorithms, an increase in the

inclusion/deletion level generally inøeased the mean value of RP, R¡2 and Sz.
Consequently, the least inflated values of FP and R¡2 were to be found when c
was small and the least conservative values of qz were to be found when c
was large. (See Tables 15, 16 and 17)
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Table 15

Effect of Collinearity (e"¡*iLJlumÞer of Candidate Variables (P)-,

and Sample Size (Slsagz

Method

STEPWISE BACKWAHD

l/D Level (c)

P,¡*¡ P N Py*i2 .151p .05 .15 .15/p .05 .15 .15/p .05 .15

0.0 12 30 .130.280.290.346.317.328.375.280.290.347
60 .130.170.176 .215.178.184.223.170 .176.215
90 .130.130.150.181 .135.153.185.130.150.181

18 30 .130.315.317.430.352.408.526.315.318.433
60 .130 .192 .207 .268 .212 .222 .287 .192 .208 .269
90 .130.131 .158.216 .|M.166 .225.131 .158 .217

24 30 .130.300.361 .531 .373.550.719.300.362.530
60 .1s0.173 .222.323.188.250.354.173 .222.324
90 .130.135 .175.255.143.189.271 .135.175.257

0.4 12 30 .043 .286 .259 .286 .295 .287 .324 .286 .259 .288
60 .043 .151 .143 .156 .158 .1ß .166 .151 .143 .156
90 .043 .1 09 .100 .1 20 .1 1 1 .104 .127 .1 09 .100 .1 20

18 30 .043.300.300.387.370.380 .484.Sb0.300.389
60 .043.168 .177.226.176.195.248.168.177.228
90 .043 j23 .121 .159 .124 .127 .169 .123 .121 .159

24 30 .043.317.338.518.383.526.725.317.339.519
60 .043.174.172.254.183.197 .291 .174.172.254
90 .043j24.130 .187 j26.139 .202.124.130 .187

0.8 12 30 .026 .298 .242 .273 .327 .288 .318 .298 .242 .274
60 .026.163.145 .144.163.155.161 .163.146 .144
90 .026.103.100.106.107.101 .115.103.100.106

18 30 .026.289.288.363.371 .391 .480.289.288.364
60 .026..164 .149 .189 .169 .172 .224.164 .149 .190
90 .026.109.109.135 .112.111 .151 .109.110.135

24 30 .026 .326 .340 .483 .M2 .569 .717 .326 .343 .485
60 .026.168 .172.237.182 .202.283.168 -172.239
90 .026.123.130.180 .127 .1M.198 .123.130.180

FORWARD
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Table 16

Effect of Collinearity (e*i*¡).,Xumber of Candidate Variables (P),

and Sample Size (tr$-oafisa

STEPWISE BACKWARD

l/D Level (a)

P*¡*¡ P N Pyr¡2 .1 5/p .05 .1 5 .1 5/p .05 .1 5 .1 5/p .05 .1 5

0.0 12 30 .130.2s1 .250.280.283.278.298.251 .250.280
60 .130 .1 52 .1 51 .173 .158 .1 57 .177 .1 52 .1 51 .173
90 .130 .117 .129 .147 .121 .131 .149 .117 .129 .147

18 s0 .1s0.287.276.356.318 .347.418.287.276.357
60 .130.174.179.217 j92.190 .228.174.180 .217
90 .130 .118 .135 .173 .129 .141 .179 .118 .13s .174

24 30 .130 .274 .31 5 .448 .340 .468 .588 .274 .31 5 .446
60 .130 .1 57 .190 .260 .170 .211 .278 .1 57 .191 .261
90 .1 30 .122 .1 50 .206 .1 29 .1 61 .214 .122 .1 51 .206

0.4 12 30 .04s .258 .224 .229 .265 .243 .249 .258 .224 .231
60 .043.136.124.124.141 .125.130.136.124.124
90 .043 .098 .087 .097 . 1 00 . 089 . 1 00 .098 .087 .097

18 30 .043 .272.260 .317.334 -322.378 .272.260 .317
60 .043 .152 .152 j82 .1 59 .166 .1 94 .152 .1 52 .1 82
90 .043 .1 1 1 .1 04 .127 .112 .1 08 .1 33 .1 1 1 .1 05 .128

24 30 .043 .291 .294 .434 .346 .449 .584 .291 .295 .432
60 .043 .1 58 .147 .201 .165 .166 .222 .1 58 .147 .201
90 .043 .113 .112 .148 .114 .118 .157 .113 .112 .148

0 8 12 30 .026 .269 .207 .218 .289 .241 .241 .269 .207 .219
60 .026.146.125.114.145.131 .123.1Æ.125.114
90 .026 .093 .086 .084 .095 .086 .089 .093 .086 .084

18 30 .026 .263 .248 .295 .334 .330 .372 .263 .248 .296
60 .026..147 .127.149.150 .1M.169 .147 .127.149
90 .026 .098 .093 .106 .100 .093 .1 1 5 .098 .093 .106

24 30 .026 .300 .297 .403 .401 .485 .584 .300 .299 .403
60 .026 .153 .146 .186 .164 .166 .214 .153 .146 .187
90 .026 .111 .112 .142 .115 .121 .152 .111 .112 j42

FORWARD
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Table 17

Eff ect of Collinear¡ty (O"i*/ -NumÞer of Candidate Variables (P),

and SamBle- S¡ze (I{)-on&z

Method

STEPW I SE BACKWARD

l/D Level (a)

P*r'i P N pw¡2 .15/p os== .l s .t slp .os .t s .1ft -9q --l!-F .os+ .oo' .033 .062
60 .130 .023 .032 .059 .028 .037 .065 .023 .032 .060
90 .130 .023 .O44 .067 .O27 .046 .071 .Ozs .0M .067

18 30 .130 .000 .008 .o37 .002 .032 .095 .000 .008 .038
60 .130 .011 .O24.O47.020 .O29.055.011 .O24.049
90 .130 .009 .020.051 ,012 .O24.057.009 .020 .0s2

24 s0 .130 .000 .001 .018.019 .045 .125.000 .001 .018
60 .130 .000 .006 .o27 .000 .011 .043 .000 .006 .027
90 .130 .003 .010 .039 .003 .014 .047 .003 .010 .039

0.4 12 30 .043.020 .017.031 .019.033.046.020 .017.032
60 .043 .009 .01 1 .018 .010 .012 .O23 .009 .01 1 .019
90 .043 .008 .010 .021 .010 .012 .025 .008 .010 .021

18 30 .043 .000 .006 .o24 .000 .026 .058 .000 .006 .023
60 .043 .001 .008 .024 .001 .012 .032 .001 .008 .o24
90 .043 .004 .007.018.005 .009 .o22.004 .007 .019

24 30 .043 .000 .000 .o12 .01 1 .034 .108 .000 .000 .013
60 .043 .000 .001 .008 .000 .002 .015 .000 .001 .009
90 .043 .001 .003 .010 .001 .004 .014 .001 .003 .010

0.8 12 30 .026.013 .011 .025.028 .027.043.013 .011 .026
60 .026 .017 .014 .018 .015 .017 .023 .O17 .014 .018
90 .026 .006 .010 .014 .007 .009 .018 .006 .010 .014

18 30 .026 .000 .000 .013 .024 .036 .066 .000 .000 .013
60 .026. .001 .003 .009 .002 .005 .019 .001 .003 -009
90 .026 .001 .002 .007 .002 .002 .011 .001 .002 .007

24 30 .026.000 .001 .010.040 .067.141 .000 .001 .006
60 .026 .000 .001 .007 .000 .003 .015 .000 .001 -007

_ _ gg_- 026_,!qq __q91__g9z__999_ryi9]--!ql

FORWARD
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Examination of Tables 15, 16, and 17 showed that trends due to

collinearity, sample size and number of candidate variables were present in the

data. As a result, trend analyses were performed.

Trend Analysþ çlexixj"Pand trLwithin Algorithm and lnclusion/Deletion Level

Tables 18, 19 and 20 contain the proportion of the model sums of

squares accounted for by each contrast (r2) within each combination of method

and c for the dependent variables FÊ, Rr2, and S2, respectively. ln general, the

12 values indicated that the same pattern of fends were affecting both R2 and

R¡2, whereas a ditferent pattern of trends was affecting &2. Figures 2 (a),2 (b),

3 (a), and 3 (b) show the effect of increasing collinearity, number of candidate

variables and sample size on the mean values of RÉ and fu2, for the

STEPWISE and BACKWARD procedures, respectively, ate = 0.15.

Main Effects

Collinearity . With regard to the etfects of correlation among predictor

variables, there was some evidence to show that collinearity negatively affects

R2, and Br2. A small negative linear effect due to collinearity was evident for

each algorithm when o =0.05 and 0.15 (See Tables 18 and 19). Specifically,

for a given combination of P and N, the mean values of R2 and Rt2 are reduced

as the degree of collinearity is increased (See Figures 2 (a) and 3 (a)).

However, it is important to note that the strength of the tend does not reflect the

degree to which the population value of pyo2 is reduced as collinearity is

increased.

Further, the evidence for this negative effect was even stronger with

regard ro &2 (See Table 20). ln the STEPWISE and FORWARDprocedures the

negative linear effect of P*¡r¡ was increased from a small value when

c = 0.15/p toalarge value when a=0.05 and 0.15. Onthe other hand, in the

BACKWARD procedure the effectwas of moderate value for c = 0.05 and 0.15.

Additionally, all three procedures displayed a small quackatic effect due to p*,*,

when o =0.05 and 0.15. This effectwas of moderate value when o = 0.15/p in

the BACKWARD procedure. Figure 2 (b) shows that the mean value of qz
reduced within the STEPWISE algorithm as the deEee of collinearity

increased and is most obvious aS the value of pxixi is increased from 0 to .4.

IS

is
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Table 18

Prap-art¡otr of Model Sum of-S-quares Accounted for by Contast a

Dependent Variable: ff-

METHOD: STEPWISE BACKWARD FORWARD

l/D LEVEL (a): .1s1p 1Q! 1s .15/p qs .15 .15/p .05 .1s )

CONTRAST

P (L) + +S +ft +$ +fl +[t + +5 +[l

H (Li -L -L -L -L -L -L -L -L -L
t't(0) s 5 s 11 5 s s s s

P(LlxH{L} s S S S 5 S s

P(L)xNiQ) s S

aNote: See Table 9 note.
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Table 19 .

Proportion of Model Sum glSguares Accounted for Þ¡lConüasta

DÊpcnden! Variable : l¡2

METHOD: STEPW I SE BACKWARD FORWARD

llD LEVEL (a): .15/p .05 .15 .15/p .05 .15 .15/p .05 .15

CONTRAST

P*;*¡ ( L )

P (L) +$ +$ +f1 +$ +f1 +['l +$ +$ +[l

N (L)
H (0)

-L
5

-L -L
SS

-L
tl

-L .L
SS

-L -L -L
5SS

P(L) x H(L)
P(L) x I'l{Q)

aNote: See Table 9 note.

e
LJ

c
*J

S

J
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Table 20

ProBgfrtoll- olModel Sum olSquares Accounted for by_Contrasta

Dependent Variable: $2

METHOD:

I/D LEVEL (a):

STEPWISE

.15/p .05 .15

BACKWARD

.15/p .05 .15

FORWARD

.15/p .05 .15

CONTBAST

P*¡*¡ ( L ) c
-J -L

J

-L
.]

-n
e
J

-n
S

-L
u
J

-L
J

-S
P*i*r ( Q )

P (L)
P (Q)

-L
c
J

- t.l

L'
J

-5
S

-L
ñJ

-L
5

-L -t1
f\3

-n+$

t't (L)
H (0)

+$+ _L -L
11 tl

-N
c
J

+$

P,.¡*¡ {L} x P(L)

P*;*r (Q) x P(L)

L'
J

S

J

c
J

J

J

J

S

P*¡*¡ (L) x l'l(L)

P*¡*¡ (L) x H(Q)

P*¡*¡ (A) x H(L)

n

c
LJ

faJ

p*;*¡ (A) x N(Q)

P(L) x H(L)
P(L) x N{Q)

P{Q) x N{L)
P(Q) x H{Q}

c
.l

J

c
È,

S

c
rJ

lÌJ

e
.J

c
J

Þ"¡*¡(LlxP(L)xl1(L) S S

p*¡*¡{L}xP(L)xN(Q) S

p*¡"¡{L)xP(Q)xl'l(Q) s S S

p*¡*¡(8)xP(L)xH(L) S S S S

p.,.ifUt-Pflt-¡lC s ¡ _
aNote: See Table 9 note.



69

Algorithm= STEPWISE

CI :0.15
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SAMPLE SIZE

Px¡x¡ = 0.0 Px¡x¡ = 0.4 Px¡x¡ :0.8
DEGREEOF COLLINEARMY

Ergure âThe effect of sample size (N), number of candidate variables (P) and

collinearity (p,¡,¡) on the mean value of three measures of the population

squared coetficient of determinat¡on, pyx2,within tne StepWlSE procedure. (a)

The sample squared coeffic¡ent of determination adjusted by k, Rr2. (b) The

sample squared coefficient of determination adjusted by P, qr.
Note: The inclusion/deletion level of significance was set to 0.15.
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Algorithm: STEPWISE
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Number of Candidate Variables. A small positive linear effect was

present for the number of candidate variables (P) and R2 and Rk2 (See Tables

18 and 19). Within the STEPWISE and FORWABDprocedures, the effectsize
rose from a negligible value for o = 0.15/p to a small value for c = 0.05 and a
medium value for a = 0.15. The etfect of P was slightly increased in the the

BACKWARD procedure.

On the other hand, the linear effect of P on 42 was sYongly negative

(See Table 20). ln the STEPWISE and FOBWARD procedures the linear

conrast in P accounted for a large proportion of the model sums of squares for

o = 0.15/p and a = 0.05 and a medium proportion for a = 0.15. The stengrth of

this effect was reduced somewhat in the BACKWARD procedure and

furthermore, when o = 0.15, the sign of the effect was changed from negative to

positive. Also, asmall quadratic effectwaspresentwhen CI=0.15/pand 0.05 in

each of the algorithms.
For any value of pxixi and N, an increase in the number of candidate

variables results in a higher mean value of Rk2 as surmised by Cohen and

Cohen (1983, p. 107) (See Figures 2 (a) and 3 (a)). On the other hand, the

negative effect of increasing P on Ro2 within the STEPWISE procedure is most

clear when px¡x¡ = 0 (See Figure 2 (b)) However, as collinearity is increased,

the effect of P becomes less evident.

Sampþ_ Size. For all combinations of algorithm and c, sample size (N)

had a large effect on R2 and R*2 (See Tables 18 and 19). Both the linear and

quadratic contrasts accounted for a large and a small proportion of the model

sums of squares, respectively. Since the sign of the linear contast remained

negative for each combination of algorithm and q, it is clear that inøeasing

sample size reduces the inflation of these two estimates. However, the

presence of a small quadatic component suggests that the effect of increasing

sample size is not constant.

The analysis of fends for fo2 showed that sample size was not a
significant factorin.the STEPWISE and FORWABDprocedures (See Table 20).

That is, a non-neglible linear effect due to N was present only when a = 0.05.

However, in the BACKWARD procedure the effect of sample size on fu2 was

like that of R2 and Rr2. Specifically, a medium to large negative linear effect

was evident in the BACKWARD procedure for all levels of a. As well, a small to

medium quadatic effectwas shown to be present for each level of s.
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While the values of Rz and Rk2 remain above the population value of

ey*i2,there is a negative linear effect of increasing sample size (See Figures 2

(a) and 3 (a)) Also evident is that the effect of increasing sample size is not

constant. The decrease in value of R*z (and R2) when the sample size is

increased from 60 to 90 is not as Eeat as the decrease when the sample size is

increased from 30 to 60. This suggests that a point of diminishing returns may

be reached in increasing the sample size. Figure 2 (b) shows that sample size

has no consistent effect on lìo2 in the STEPWISE procedure. However, the

negative quadratic effect of sample size on Ro2 in the BACKWARD procedure is

evident in Figure 3 (b)

Two-Wav-lnteractions

There was no evidence of a collinearity by number of candidate variables

interaction (p*¡*, X P) for the dependent variables R2 and R¡2 (see Tables 18

and 19); however, such an effectwas present for Sz. (See Table 20) A small
p*¡*¡ linear X P linear effect was present in the STEPWISE and FORWARD

procedures (q = 0.05 and s = 0.15) and for all levels of s in the BACKWARD

procedure. Furthermore, a small p*¡x¡ guâdatic X P linear effect was present

for c = 0.05 and CI = 0.15 in the STEPWISE and FORWARD procedures. Figure

3 (b) illustrates this relationship in the BACKWARD procedure for a = 0.15. The

differences due to increasing P are more evident when P"¡*¡ = 0 than when p*,*,

= .4 and .8, suggesting that collinearity among the authentic predictor variables

reduces the effect of P on P'oz.

The effect of sample size also differed for the three levels of collinearity

with respect to Roz. Table 20 shows that a small to moderate P*¡*, linear X N

linear effect was present for each algorithm-a level condition. Furthermore,

several other small effects were present among the remaining P*¡'¡ X N

contrasts. This relationship may be deduced from Figure 3 (b) in that when
px¡x¡ = 0.0 the quadatic curve due to increasing N is most pronounced;

however, as pxi*i is increased, the response to N becomes increasingly linear.

Again, there was no evidence of a p,,*, X N interaction for FP and R¡2 (See

Tables 18 and 19).
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Eigure 3^ The effect of sample size (N), number of candidate variables (P) and

collinearity (p*¡,¡) on the mean value of three measures of the population

squared coetficient of determination, pyx2, within the BACKWARD pocedure.

(a) The sample squared coefficient of determination adjusted by k, Rr2. (b) The

sample squared coefficient of determination adiusted by P,&t.
Note: The inclusion/deletion level of significance was set to 0.15.
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Also evident were the P X N interaction effects for Rz and R¡2 (See

Tables 18 and 19). ln the STEPWISE and FORWABDprocedures, a small P
linear X N linear effect was present when a = 0.05 and 0.15, while in the

BACKWARD pocedure, a small effect was p'esent for each level of q. Also, a
small P linear X N quadatic effectwas present for a = 0.05 and 0.15 in the

BACKWARD pocedure. This interaction is illustated in Figure 3 (a) for the

BACKWARD procedure. Note that inøeasing P has the Eeatest inflationary

effect on R2 and Rk2 when N=30; as N incteases the etfect of P, though st¡ll

evident, is decreased.

This interaction effect was also shown to exist for q2 within the

BACKWARD pnocedure (See Table 20). Here, a minimum small P linear X N

linear effect and a P linear X N quadratic effect were consistently present for
each level of c. As well, both a small P quadatic X N linear effect and a small P

quadratic X N quadratic effectwere present when o =0.15/p and 0.05. Within

the STEPWISE and FORWARDprocedures a few small P X N interaction effects
were present, but none were consistent over increasing c. Figure 3 (b) shows

that when N = 30, the mean value of Bo2 increases with increasing P. However,

when N = 60 and 90, the relationship is reversed and the mean value of 4r ¡t
decreased with increasing P. According to Cohen and Cohen (1983, p. 106),

Ro2 should decrease as the ratio of P/N increases. Thus, for a given N, Rp2

should decrease as P increases. Why this is not the case when N = 30 is not

clear.

Three-Way- I nteractions

The three-way interaction effects were negligible with regard to B2 and

R¡2(See Tables 18 and 19). However, anumber of small three-way interaction

effects were present for foz (See Table 20). However, these values were

evident only when a = 0.15/p and 0.05; wheh e = 0.15, no non-negligible

values remained.
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Discussion and Conclusions

The results of this study show that collinearity, number of candidate

variables and sample size atfect the outcome of 'best' subset selection

algorithms. ln both the analysis of the selection of authentic variables in the
presense of noise and in the comparison of estimates of pvriz,these effects

were shown to be fairly consistent in magnitude and direction across the

STEPWISE and FORWARD algorithms and level of significance for inclusion

and deletion of variables. However, these effects often differed within the

BACKWARD algorithm as compared to the others.

Comparing the analysis of C¡, C.¡1and P¡ âcross algorithms it was shown

that the pattern and strengrth of tends within the STEPWISE and FOBWARD

procedures were the same. Within the BACKWARD pocedure, the pattern of

trends was similar to the other procedures in the analysis of Cr.r and P¡. Any

differences that existed here lay in the magnitude of the individual trends.

However, with respect to C4, the effect of sample size was greatly changed by

both the level of collinearity and the number of candidate variables in the

BACKWARD gocedure.

Overall, the mean values of C¡, C¡, ârìd P¡r obtained by the STEPWISE

and FORWARDprocedures were effiemely close (See Table 21). However,

the average final subset obtained by the BACKWARD procedure contained both

more authentic and noise variables than that of the STEPWISE and FORWARD

procedures and, the proportion of noise variables was generally gneater except
when 0 = 0.15 and pxix¡ wâs nonzero.

Within an algorithm, increasing the level of o always increased the mean

value of C¡, C¡ and P¡,,¡. Unfortunately, the rate at which C¡ was increased was

less than the rate at wh¡ch C¡ was increased so that there were always a
greater percentage of noise variables in the final subset when CI = 0.15

compared to when o = 0.15/p.
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Table 21

Effectof Method and lnclusion/Deletion Level

on the Mean Values of Ca-Q¡. and P¡

Method

STEPWISE BACKWARD

l/D Level (c)
FORWARD

Vars

c¡ 0.272

C¡ 0.103

Pr,-l 26.3

0.725 1.415

0.656 2.041

44.4 56.0

0.328 1 .010

0.166 1 .1 58

28.7 45.1

1.965 0.272

3.002 0.103

54 3 26.3

0.726 1.437

0.660 2.067

44.4 55.9
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With respect to the mean number of authentic variables in the final

subset, it was shown that increased collinearity negatively affected Ca.

Conversely, increased sample size was shown to have a positive effect,

especially when collinearity was negligible. ln the STEPWISE and FOBWARD

procedures, the effect of N remained positive even when collinearity was

present, but in the BACKWARD procedure increased collinearity altered the

effectiveness of sample size when o = 0,05 and 0.15. lnterestingly, the mean

value of C¡ was shown to be relatively unaffected by the number of candidate

predictor variables in the STEPWISE and FORWARD procedures. However,

within the BACKWARD procedure it was shown that increasing P may positively

affect C¡. However it is important to note that in the BACKWARD procedure,

the number of candidate variables was shown to affect the ability of increased

sample size to increase the mean value of Cr when a = 0.05 and 0.15. This

would suggest that a liberal inclusionideletion level combined with collinearity

or many candidate predictor variables may render the BACKWABD procedures

perf ormance unreliable.

Analysis of C¡r, showed that the mean number of noise variables in the

final subset was strongly positively affected by the number of candidate

predictor variables within all algorithms. Additionally, sample size was shown

to have a small negative effect in the STEPWISE and FORWARD procedures

and a moderate to large negative effect in the BACKWARD procedure. Also

within the BACKWARD procedure, a P X N interaction effect was shown to be

present. This suggests that while increasing P increases the mean value of C¡',¡,

the negative effect of increasing N is also increased somewhat thus allowing

some measure of control over the number of noise variables present in the final

subset.

ln the STEPWISE and FORWARD procedures P¡ wâs affected about

equally by p*i*i, P and N. lncreases in collinearity and number of candidate

variables positively. affected P¡l while increased sample size negatively affected

Pru. ln the BACKWARD procedure the direction of each of these effects was the

same but the stength of the collinearity effect was reduced to small.

lnteractions were not a factor here.

Recall that Flack and Chang (1987) examined the behaviour of the

STEPWISE algorithm and an all-possible subsets algorithm for three sample

size conditions (N=10, 20, 40), three number of candidate variable conditions
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(P=10,20,40) and forthree values of a serial conelation coefficient (p=.0,.3,

.5). The default level of significance for the SAS STEPWISE procedurê (CI =

.15) was used and only the results for p = 0.3 were presented for the

STEPWISE pocedure. The effect of these parameters on three dependent

variables was studied: 1)the frequency disfibution of the number of authentic

variables selected from a set containing both authentic and noise candidate

variables, 2) the proportion of the selected variables that were noise, and 3)

adjusted FP statistic [See Darlingrton, 1990, p. 121 for the definition of the

adjusted RP used by SAS(198s)1.

Flack and Chang (19S7) showed that sample size had a stong positive

effect on the number of authentic variables selected. When N = 40 the

percentage of 'best' subsets with three authentic variables (the number of

authentic variables in their study) ranged in value from 28% lo 34o/o and the

percentage with two authentic variables ranged from 467o to 56%. Conversely,

when N = 10, 0% to 4To of the samples found three authentic and two authentic

variables were found in only 16o/o lo 24ö/o of the 'best' subset models.

Additionally, inøeasing the number of candidate variables was found to have a

negative effect on the number of authentic variables selected. The mean

number of authentic variables found found by Flack and Chang (1987) [based

upon their percentage frequency tablel is compared to the STEPWISE results

from the presen study, when o = 0.15 and px¡x¡ = 0.0,0.4 and 0.8 in Table 22.

(Recall that the number of authentic predictor variables was six compared to
three in theFlackand Chang (1987) study.) Considering thatthe value of Pwi2

was considerably less in the present study, especially when Px¡x¡ wâs nonze'ro,

the results show that the increase in the N to P ratio was effective in increasing

the number of authentic variables selected. However, at all times the average

number of authentic variables remained at less than half of the available

authentic variables .



BO

Table 22

A Comoarison of Flack and Chano's Results to Those

of the Present Studv,

Flack and Chanq (1987) Present Study

0.0

Pt¡t¡

o.4 0.8

N/P Cr (-¡ C¡ t-¡

1210

18

10 1.00 1.o2

20 2.00 1.66

40 4.00 2.48

10 0.50 0.96

20 1.00 1.4tì

40 2.00 2.10

10 0.25 0.80

20 0.50 1.82

& 1.00 2.o2

30 2.50 1.516 1.032 0.788

60 5.00 2.192 1 .136 0.900

90 7.50 2.708 1.292 1.052

30 1.67 1.604 1.036 0.776

60 3.33 2.000 1.208 0.884

90 5.00 2.712 1.308 0,976

30 1.25 1.548 1.216 0.956

60 2.s0 2.104 1.204 0.944

90 3.75 2.760 1 .316 1 .O24

24

a Note: These results are fo'r the STEPWISE pocedure at o = 0.15.

The model parameters of the Flack and Chang study ffe P,o,r =

Pya =.5, Pr"i = 0 (i = 3, ..', P), P*¡'¡*¡ = 0'3i, and p*,2 = '3725'

The model parameters of the present study trê Pyrr = Py*z = ... =
Py"o = -147442, Pro.i = 0 (i = 6, "', P), Py*¡2 = '130435 when pxixi

= 0.0, pwr2 =.043478 when px¡x¡ = 0.4, and Py*¡2 =.026087
when px¡r¡ = 0.8.
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Similar to the results of the present study, the median value of P¡ was

shown by Flack and Chang (1987) tobe positively effected by P and negatively

effectedby N. The median value of P¡reached a minimum value of 33% when

N =20 and 40 and P=10 and a maximum value of 89% when N = 10 and 20

and P = 40. The results of the cunent study show the minimum mean value of

P¡tobe 22.1o/o (P,¡*¡ =0.0, P= 12, and N =90) and the maximum value tobe
79.1o/o (P*¡"¡ = 0.8, P =24 and N = 30) ISTEPWISE algorithm and a = 0.15]. The

slightly lower values found in the present study are likely due to the inclusion of

the noncollinear case and more favourable N to P ratios. When excluding the
noncollinear case, the minimum value of P¡ is then equal lo 37.4o/o (p*¡*¡ = 0.4,

P=12, and N =90),a value comparable to Flack and Chang's (1987) value.

The results of the present study show that, within each of the subset selection
procedures and for every value of a, the mean number of authentic variables

reaching the final subset (Ca) was low compared to the actual number of

authentic variables available. Moreover, the average number of noise variables

reaching the final subset (C¡t) and hence, the mean proportion of the final

subset that was noise (P¡.¡) could be quite high. However, .under optimal
conditions (i.e.when CI=0.15, Pxixi =0.0, P=12,and N =90) nearly half of the

authentic variables reached the final subset on average, the mean value of C¡.¡

was less than one and the mean percentage of noise variables ranged from

22o/o to 23o/o.

ln the comparison of estimates of py*¡2 of this study, the factors affecting

R2 and Rr2 were shown to be generally consistent over 'best' subset selection

algorithms and level of c. The most important factor was sample size, followed

by number of candidate variables and then deEee of collinearity. Specifically,

both Rz and Rk2 were shown to be negatively influenced by inøeasing sample

size and increasing collinearity while increasing the number of candidate

variables had a positive influence. Furthermore, there was some evidence for a

P x N interaction, suggesting that the rate of inflation due to the number of

candidate variables may be negatively influenced by sample size.

The factors affecting foz were not as consistent over the three subset

selection procedures. ln the STEPWISE and FORWARD procedures, the

deEee of collinearity and the number of candidate variables mainly influenced

Roz;the amount of influence depended upon on the level of s. ln particular, the

proportion of explained variation accounted for by collinearity increased with c
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while the proportion of explained variation accounted for by the number of

candidate variables decreased with inøeasing a. Both of these factøs were

negatively related to qz However, in the BACKWARD procedure, sample size

was the major factor affecting h2 followed by degnee of collinearity and number

of candidate variables. Specifically, inøeasing sample size was negatively

related to qz. Also, there was evidence for two-way interaction effects among

deEee of collinearity, sample size and number of candidate variables. ln

particular there was strong evidence of a P X N interaction. Generally, when N

= 30, increasing the number of candidate variables had a positive effect on lì2.
However, when N = 60 and N = 90, increasing the number of candidate

variables had a negative effect on lìo2.1

Cohen and Cohen (1983, p. 107) proposed lìo' at an alternative

measure of py"i2 when subset selection methods are used. However, the

results of this study showed that Ro2 over-compensated for inflation yielding a

fairly conservative estimate. The only exception to this finding occuned when

p5,,,i2 was small, a was large and N and P were minimized. Here Ro'

approached the population value. Consequently, while neither Rr2 nor Rp2 can

universally be recommended as unbiased estimates of Pyo2 when a 'best'

subset selection algorithm is used, under favourable conditions, R¡2 may not be

as inflated an estimate as once thought and Roz can provide an estimate that

will not exceed the population value and on occasion not be very conservative.

ln Flack and Chang's (1987) examination of FP inflation, they found the

adlusted R2 statistic to be highly inflated; thus concluding that methods that

provide less biased estimates of p*i2 are required. However, part of the stated

purpose of Flack and Chang's (1987) study was to show how poorly variable

selection procedures perform under harsh parametic conditions. To that end,

the sample size (N) to number of candidate variables (P) ratio of the Flack and

Chang (19S7) study was allowed to range from 0.25 (10/40) to 4.0 (40/10)

indicating that the number of candidate predictor variables often exceeded the

sample size. Within the present study, the N to P ratios ranged from 1.25

(30/24) to 7.5 (90/12), indicating that the sample size always exceeded the

number of candidate predictor variables. Hence, the results of the present study

showed that when the squared population coefficient of multiple determination

reached at least a medium conventional value and the collinearity was low,

llt is not clearrvhythis should be so.
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using an exfemely conservative level of significance along with a large sample

size produced favourable mean values of Rz and R*2. lt is important to note,

however, that increasing N had a limited capacity to reduce inflation, as a point

of diminishing returns was reached. However, FP and R¡2 were generally

inflated measures of py*i2 and Roz was generally a conservative measure. For

all three algorithms, the minimum inflation in FP and H*z occurred when a was

set at the smallest investigated value (o = 0.15/p) while &2 attained its

maximum value when CI was set at the largest investigated value (o = 0.15).

The mean values of Rz, Rr2 and fu2 indicated that for the 'best' subset

algorithms the BACKWARD procedure revealed generally more inflated values

of Rz and Rr2 and generally less conservative values of Ro2. However, when

sample size was large, the differences were minimal.

Toconclude, thisauthor mustjoin Flack and Chang (1987) in cautioning

the user about asøibing importance to variables based upon their appearance

in 'best' subset models and on an over reliance in using the popular sample

estimates of the coefficients of multiple determination as unbiased estimates of

effect size. lndeed, even under favourable conditions, noise variables enter the

final subset model, especially when collinearity is present, and FP and R¡2 may

substantially overestimate py*i2. Certainly when N is small compared to P the

number of noise variables selected will very likely outnumber the number of

authentic variables and R2 and R*z ¡,¡¡¡¡ be inflated. Furthermore, the Ro2

estimate can also be extremely inaccurate. ln any case, the wise investigator

would not use models nor estimates of py*i2 obtained strictly by 'best' subset

selection algorithms as a basis for deriving conclusions unless they are

confirmed by theoretical considerations and subsequent validation.
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Appendix A

FORTBANand SAS computer programs

The following FORTRAN proEam generates the 250 replications of the

27 combinations of thethree data conditions (p*,*,, Pand N).

INTEGER ISEED1, ISEED2

INTEGERK

INTEGERKPl

INTEGER DEBUG

INTEGER NSIM

REAL-8 BXX

REAL*8 RXY

INTEGER N

INTEGER P

REAL"8 B

REAL*8 RXXSRI, RXXSR2

INTEGER I, J, L

BEAL*8 71,22
BEAL*8 X(100,24)

REAL"8 Y(1oo)

REAL*8 XM(24)

REAL-8 X2(24)

REAL"8 YM

BEAL*8 Y2

INTEGER COND

C

C VARIABLE DICTIONARY

C

C ISEEDI, ISEED2 SEEDS TO THE PSEUDO-RANDOM NUMBER

GENERATOR

C K _ NUMBER OFAUTHENTIC PREDICTORVARIABLES

C KP1 -EOUALTOK+1
C DEBUG _ LOGICAL FLAG TO PRINT OUT DEBUGGING INFOBMATION

C NSIM _ NUMBEB OF SIMULATION TRIALS



C BXX _ CORRELATION BETWEEN AUTHENTIC PREDICTOH VARS.

C RXY -- CORRELATION BETWEEN AUTHENTIC PREDICTORS AND

C THE DEPENDENT VARIABLE.

C N _SAMPLESIZE

C P - NUMBER OF CANDIDATE PREDICTORVARIABLES.

C B - BEGBESSION COEFFICIENTS OFAUTHENTIC PREDICTOR

C VABIABLES IN THE REGRESSION EOUATION.

C RXXSRI - EQUALS THE SGUARE ROOTOF RXX

c RXXSR2 - EGUALS THE SOUARE BOOTOF (1-RXX)

C I, J, L _ LOOP COUNTEBS

C 21,22 _ PSEUDO-RANDOM STANDABD NORMAL DEVIATES

c x(s0,24) - THE X MATRTX

c Y(so) - THE DEPENDENT VARTABLE VECTOB

c xM(24) - THE MEAN OF EACH OF THE P X VARIABLES

c x2(24) - THE SUM OF SOUARES FORTHE P X VARIABLES

C YM _THE MEAN OFTHE DEPENDENT VARIABLE

C Y2 _THE SUM OFSQUARES OFTHEDEPENDENT VABIABLE

C COND -- COUNTS THE NUMBER OF SETS OF CONDITIONS

C

READ(15,1) lSEEDI, lSEED2, NSIM, DEBUG, K

1 FORMAT(2111,315)

wRtTE(6,2) tsEEDl, lSEED2, NSIM, K

2 FORMAT('1',///,'SEED 1:',111,/,'SEED 2:,111,1,
*' NUMBER OF SIMULATIONS: ',15,/,'K=',14)

CALL RSTART(r SEED1, I SEED2)

COND=0

REWINDl4
REWINDl6

REWINDlT

REWINDl 8

C

C READ IN SIMULATION DATA CONDITIONS

c
1oo READ(5,3) RXX

3 FOBMAT(Fs.3)

tF (BXX.EO.1Do) GOTO ess



COND=COND+1

RXXSRl =DSQBT(RXX)

RXXSR2=DSGBT(1-RXX)

KP1 =K+1

READ(5,4) N, B, P, BXY

4 FORMAT(15,F1s.10,15,F10.6)

wRtTE(6,s) RXX, RXY, B, N, P

5 FORMAT(///,'SIMULATIONCONDITIONS:',//,

" 5X,'CO R B E LATI O N"T2O,'CO R R E LATI O N"T4O,' R E G R E S S I O N"T55,
*,SAMPLE"T65,'NUMBER OF',/,T5,'XVARS"T2O,'X AND Y"T4O,

"'coEFFlcl ENT"T55,'SlZE"T65,'PRED I CTORS"//,T5,F5.3,T20,F1 0.6,
* T40,F1 0.6,T55, I 5,T65, I 5)

DO 20 l=1,NS|M

c
C INITIALIZE STATISTICAL VARIABLES TO ZERO

c
YM=0D0

Y2=0D0

DO 25 L=1,P

XMlt¡=s¡s
X21t¡=gPg

25 CONTINUE

C

C GENERATETHE N " PX MATRIX

c
DO 30 J=1,N

21=BNOB(0)

DO 40 L=1,K

Z2=RNOR(0)

X(J, L¡=R¡XSR2*22 + RXXS R 1 "21

XM1 t¡=¡1Y'¡( L) *X(J' L)

X2( L)=X2( L)+(X( J, L)-X( J, L))

lF (D E BU G. EG. 1 )W R ITE(6,41)21, 22, J, L, X( J, L), XM( L),X2( L)

41 FORMAT('0"'21"8X,',22"8X,'J"4X,',L"4X,'X,,14X,
* rxM.,1 3X,',X2"12F10.7,215,4F 15.10)

N CONTINUE



DO 50 L=KP1,P

Z2=RNOR(0)

x(J'L)=22
XMIL¡=¡¡Y1(L) * X(J,L)

X2(L)=f,211) * X(J,L)*X(J'L)

r F (D E BU G. EQ. 1 )W R ITE( 6,51)22, J,L, X( J, L), XM( L), X2( L)

51 FORM AT('O,',Lz" 8X,'J"4X,'L"4X,'X"14X,
* '!xM"13X,'X2"/,F10.7 ,215,3F1 5.10)

50 CONTINUE

30 CONTINUE

c
C GENERATETHE VECTOR OF Y OBSEBVATIONS

C

DO 90 J=1,N

Y(J)=s¡s
DO 95 L=1,K

Y(J)=Y(J)+B"X(J'L)

lF (DEBUG.EQ.1) WRITE(6,94)J, L, Y(J), X(J,L)

94 FORMAT('O','J=',15,'L= ',15,'Y= ',F16.10,' X=',F16.10)

95 CONTINUE

Z2=RNOR(0)

Y(J)=Y(J)+22

YM=YM+Y(J)
y2=t!+(y(J).y(J))

lF (DEBUG.EA.1) WRITE(6,42)22, Y(J), YM, Y2

42 FORMAT(',O"'22"18X,'Y., 1 9X,'YM" 18X,'Y2.,1,4F20.8)

90 CONTINUE

c
C CALC. THE SAMPLE MEAN AND SUM OFSAUARES OFEACH OFTHE

C X VABIABLES AND STANDARDIZE EACH X OBSERVATION.

C

DO 60 L=1,P

XM(L)=f,fY11¡¡¡¡

X2( L)=(X2( L)-DF LOAT( N)"XM( L)-XM( L))

lF (DEBUG. GE. 1 )WRITE(6,61 )1, XM(L), X2(L)

61 FORMAT('0','L=',1S,'MEAN=',F1 5.10,' SS=',F1 5.10)



DO 70 J=1,N

x( J, L)=(x( J, L)-xM( L))/(D sO RT(x2( L)))

70 CONTINUE

60 CONTINUE

C

C CALC. THE SAMPLE MEAN AND SUM OF SOUARES OF Y

C

YM=YM/N

Y 2=(Y 2 - DF LOAT( N)"Y M-Y M)

lF (DEBUG. GE. 1 )WRITE(6,s2) YM, Y2

52 FORMAT('O','YMEAN:',F15.10,'Y SS:',F15.10)

C

C STANDARDIZE Y TO HAVE THE CORRELATIONTRANSFORMATION

C

DO 80 J=1,N

Y(J)= ( Y( J)-YM)/(D SCRT( Y2))

rF (coND.EO.1)
* wRtTE(14,71) COND,l, HXX,RXY, P,N, Y(J),(X(J,L), L=1 , P)

lF (coND.EO.2)
* wRtTE(16,71)COND,I,RXX,RXY,P,N,Y(J),(X(J,L),1=1,P)

rF (coND.EA.3)
* wRITE(I7,71) COND,l, RXX, RXY,P, N,Y(J),(X(J,L),1=1 ,P)

71 FORMAT(21s,2F10.6,21s,F20.16,/,5(5F20.16,i))

80 CONTINUE

20 CONTINUE

rF (DEBUG.GE.1) CALL MATMLT(X, Y, P, N, DEBUG)

GO TO 100

999 CONTINUE

CALL RSTOP(ISEED1, ISEED2)

wRITE(6,1 0.1 )lSEED1, ISEEDz

REWINDl s

wRtTE(1 5,1 ) ISEEDI,ISEEDz,NSlM,DEBUG,K

101 FORMAT('1r,'FINAL SEEDS:',/,' SEED 1:',111,1,' SEED 2:',111)

STOP

END

C



L-

U

C

SUBROUTINE MATMLT CALCULATES THE TWO MATRICES:

A=X'X AND G=X'Y

SUBROUTINE MATMLT(X, Y, P, N, DEBUG)

REAL*8 X(1000,24)

REAL*8 Y(1ooo)

INTEGER P

INTEGER N

INTEGERDEBUG

REAL*8 A(24,24)

REAL*8 G(24)

INTEGERJ, L, M

DO 10 J=1,P

DO 20 L=1,J

,A(J,L)=ODO

DO 30 M=1,N

A(J, L¡=41¡, L)*X( M' L)*X( M, J)

CONTINUE

lF (J. NE. L) A(L,J¡=R1¡, ¡¡

CONTI NUE

G(J)=g¡g
DO 40 M=1,N

G( J)=G( J) +Y(M)"X( M' J)

CONTINUE

CONTINUE

wRITE(6,s0)

FO R MAT(' 1 

"T40,'XTX"T1 

oo,'XÏY')

DO 60 J=1,P

wRITE(6,70) (A(J, L), L=1, P), G(J)

FOBMAT('O',6F1 6.1 0,' :',F16.1 0)

CONTINUE

wRITE(6,80)

lF (DEBUG.NE.1)GO TO 1oo

FORMAT(' 
"T40,'X 

MAT"T1 oo,',Y')

DO 90 J=1,N

WRITE(6,70) (X(J, L), L=1, P), Y(J)

40

10

50

70

60



90 CONTINUE

1OO CONTINUE

RETURN

END

The following proEam is a SAS proEam which applies a 'best' subset

selection algorithm (STEPWISE, BACKWARD or FORWARD) to the simulation

data using the specified inclusion/deletion level (ALPHA =.15/p, .05, or .15).

//RESULTS DD DSN=DERKSN. RESULTS,DI SP=MOD

#SYSIN DD *

DATA ONE; /" READ lN SIMULATION DATA "/

INFILE TD;

ARBAY X{12} X1-X12;

INPUT COND IRXX BXY P N Y S2 X1-X5 S3 X6-X1O #4 X11-X12;

DATA TWO;

J=1;

SET ONE NOBS=MAX POINT=J;

ALPHA=.OS; f INCLUSION/DELETION LEVEL "/

FORCE=o', f NUMBER OF PREDICTORS FORCED INTO MODELY

METHOD=1 ; /" 1=STEPWISE, 2=FORWARD,AND 3=BACKWARD ./

REPS=MAXIN;

KEEP RXX RXY P N ALPHA FORCE METHOD REPS;

OUTPUT;

STOP;

PROC PRINTTOUNIT=17; /- REROUTEOUTPUTTO FILE "/

PROC STEPWISE DATA=ONE; f PERFORMSUBSET SELECTION "/

BY I;

MODEL Y=X1-X12/ SLE=.05 SLS=.05 STEPWISE;

PROC PRINTTO;

" REREAD SUBSET SELECTION OUTPUT, COLLECTING DEPENDENT

VARIABLES;

DATA COLLECT;

INFILE FT1 7FOO1 MISSOVER;



|NPUT LABEL $ 2-6 LABEL3 $ 65-67 @;

LABEL3=S UBSTR( LEFT( LABEL3), 1, 2) ;

LABEL=S UBSTR( LABEL, 1,4) ;

LABEL2=SUBSTR( LABE L, 1, 1 ) ;

ARRAY X{12} X1-X12;

lF (_N-=1¡ THEN DO;

DO l=1 TO 12;

X{l}=s'
END;

K=0;

R2=.',

PN=.,

END;

RETAIN R2 K X1-X12 SIM;

lF LABEL3='|=' THEN DO;

TNPUT @68 SIM;

END;

lF LABEL='STEP' THEN DO;

DO l=1 TO 12;

X{l}=s

END;

K=0;

R2=.,

PN=.,

INPUT R2 52-61;

END;

lF LABEL= 'BEGR'THEN DO;

INPUT K22-23,,

END,

lF LABEL2='X' THEN DO;

INPUT I3-A;

X{l}=1'

END;

lF LABEL='NO O'AND SIM NE ' THEN DO;

KEEP R2 K X1-X12 SIM PN NAUTH NNOISE CL;

NAUTH=X1 +X2+X3+X4+X5+X6 ;



NNOISE=K-NAUTH;

PN=NNOISE/K;

CL=1;

OUTPUT;

K=0;

R2=. i

PN=.,

DO l=1 TO 12;

X{l}=s

END;

END;

lF LABEL='NO V'AND SIM NE . THEN DO;

CL=0;

NAUTH=X1 +X2+X3+X4+X5+X6 ;

NNOISE=0;

OUTPUT;

K=0;

R2=.,

PN=.,

DO l=1 TO 12;

X{l}=s

END;

END;

DATA COMBINE; r CALC. RT2 AND RA2 FROM R2 -/

lF -N-=1 THEN SET TWO;

SËT COLLECT;

RT2=1 -(1 -R2)"((N-1 )1( N-P-1 )) ;

lF (RT2 LT 0) AND (RT2 NE ') THEN RT2=0;

RA2=1-(1 -R2)-((N-1 )/(N-K-1 ));

lF (BA2 LT 0) AND (RA2 NE .) THEN RA2=0;

" CALCULATE MEAN AND STD. DEV. OFDEPENDENT VARS ;

PROC SUMMARY DATA=COMBINE ;

CLASS CL;

VAR R2 K X1-X12 PN RT2 RA2;



ID RXX RXY P N ALPHA FORCE REPS METHOD;

OUTPUT OUT=FOUR

MEAN(R2 K PN RT2 RAZ ¡=¡v1p2 MK MPN MRT2 MRA2

STD(Rz K RTzRAZ PN)=SRz SK SRT2 SRA2 SPN

suM(x1-X12¡=ç1-61 2 N(PN¡=¡q2

PBOC PRINT;

TITLE'RESULTS FROM SUMMARY';

DATA RESULTS.RESAI2;

TITLE'SUMMABY OF RESULTS';

SET BESULTS.RESAI 2 FOUR;

PROC PRINT;

- FREQUENCEY TABLE OF NO. OF AUTHENTIC VARIABLES BY NO. OF

NOISE VARIABLES;

PROC FREA DATA=COMBI NE ;

TABLES NAUTH*NNOISEi OUT=FREQ1 ;

DATA FREQI ;

lF-N-=1 THEN SET TWO;

SET FREGI;

DATA RESULTS.FREQAI2;

SET RESULTS.FREGAI2 FREQl ;
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The Standard Enor of the Mean Value otÇruþy
Method and l/D Level a

Method

STEPWISE BACKWARD

l/D Level (a)
FORWARD

120.0

18

24

30 .018.040 .062.025.053.073.018.040.062
60 .020 .034 .056 .O21 .039 .058 .020 .034 .057

90 .016 .036 .054 .019 .037 .059 .016 .036 .0s4

30 .o22.052.091 .035.099.135 .O22.052.095
60 .o21 .054 .085 .031 .064 .0s1 .021 .056 .087

90 .018 .049 .082 .O24 .056 .091 .018 .049 .085

30 .o21 .075.133.079.221 .222.021 .075.138
60 .o24 .063 .114 .031 .093 .132 .O24 .064 .114

90 .o24.061 .102 .027.070.118 .O24.062.105
120.4

18

24

30 .o20 .033 .059 .021 .053 .075 .020 .033 .060

60 .016 .032 .052 .020 .034 .056 .016 .032 .052

90 .020 .037 .061 .026 .039 .064 .O20 .037 .061

30 .o22.055.098.038.096.125 .O22.056.100
60 .o23 .053 .089 .026 .067 .103 .023 .0s3 .089

90 .o21 .051 .084 .O24 .061 .090 .O21 .052 .084

30 .019.069 j32.055.206 .202.019.069.138
60 .o23.0s4 .107 .027.078 .124.023.053.106
90 .023 .060 .102 .024 .O74 .115 .023 .060 .103

120.8

18

30 .017 .036 .062 .O24 .0s0 .074 .017 .0s6 .064

60 .o21 .036 .060 .021 .040 .064 .O21 .036 .060

90 .017.031 .052.018 .O32.057.017.031 .052

30 .018 .058 .092 .045 .106 .137 .018 .058 .093

60 . 
.025 .049 .085 .026 .059 .106 .025 .049 .089

90 .020 .049 .085 .O22 .0s1 .091 .020 .0s0 .08s

30 .020.078.138.095.235 .232.020.081 .138

60 .020 .065 .109 .028 .092 .136 .020 .065 .111

90 .o24 .062 .100 .028 .075 .1 13 .O24 .062 .101

24

aNote. See Table 6 note.



The Standard Enor of the Mean Value ole¿-by
Method and l/D Level a

Method

STEPWIS E BACKWARD

llD Level (o)
FORWARD

0.0 12

18

24

30 .029 .050 .o74 .041 .064 .085 .O29 .050 .O74

60 .o42 .057 .O74 .Oß .062 .076 .042 .057 .075

90 .049 .068 .078 .054 .070 .079 .049 .068 .078

30 .028 .051 .069 .038 .073 .080 .028 .052 .071

60 .040 .060 .071 .047 .065 .O72 .040 .060 .072

90 .046 .070 .078 .053 .073 .079 .046 .070 .O78

30 .o22 .046 .074 .031 .087 .092 .022 .046 .076

60 .032 .062 .071 .037 .065 .076 .032 .062 .071

90 .040 .065 .o77 .04s .070 .079 .040 .065 .o77

120.4

18

24

30 .02s .037 .054 .028 .050 .066 .025 .037 .0s5

60 .030 .036 .050 .032 .o42 .059 .030 .036 .050

90 .032 .035 .049 .033 .041 .058 .032 .035 .049

s0 .020 .039 .061 .026 .066 .083 .020 .040 .062

60 .028 .038 .054 .028 .045 .063 .028 .039 .056

90 .032 .039 .051 .032 .OM .058 .032 .039 .053

30 .o22 .038 .067 .038 .086 .088 .022 .039 .070

60 .026 .039 .057 .027 .O47 .070 .026 .040 .0s9

90 .030 .036 .0s2 .031 .043 .059 .030 .036 .053

0.8 12 30 .020 .033 .054 .035 .050 .068 .020 .033 .056

60 .027 .037 .053 .034 .O47 .059 .O27 .037 .053

90 .o29 .040 .053 .036 .04tì .058 .029 .040 .054

18 30 .020 .035 .055 .035 .067 .081 .020 .035 .056

60 .o24 .035 .055 .033 .051 .070 .O24 .035 .055

90 .027 .038 .050 .032 .046 .061 .O27 .038 .051

24 30 .020 .038 .065 .045 .088 .096 .020 .038 .068

60 .023 .039 .059 .023 .052 .068 .023 .039 .061

_ 90 .028 .040 .055 .03

aNote. See Table 6 note.



Standard Enors of the Meana

METHOD = STEPWISE

lnclusionlDeletion Level = ap

P*¡*; P N Freq P¡-¡ Fe Rr2 Pb2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

68 5.078 0.010 0.009 0.0044

111 3.206 0.007 0.006 0.0045

145 z.ON 0.005 0.004 0.0036

65 5.705 0.012 0.012 0.0002

88 4.250 0.009 0.008 0.0043

108 3.247 0.006 0.006 0.0029

55 6.669 0.012 0.012 0.0000

89 4.659 0.007 0.006 0,0000

1 16 3.573 0.006 0.005 0.0016

64 5.741 0.012 0.012 0.0091

89 3.827 0.005 0.005 0.0038

121 2.785 0.003 0.003 0.0020

47 7.036 0.013 0.013 0.0000

87 4.721 0.006 0.006 0.0006

108 3.1 50 0.005 0.00s 0.0019

53 6.481 0.011 0.011 0.0000

74 5.352 0.007 0.007 0.0001

102 3.939 0.005 0.004 0.0008

38 7.468 0.014 0.014 0.0075

66 5.405 0.008 0.008 0.0054

92 3.919 0.004 0.004 0.0020

49 7 .O94 0.010 0.010 0,0000

65 5.822 0.007 0.006 0.0005

79 4.976 0.004 0.004 0.0011

45 7.213 0.014 0.013 0.0000

54 6.664 0.007 0.007 0.0000

88 4.716 0.005 0.005 0.0000

aNote: See Table 6 note.



Standard Enors of the Meana

METHOD = STEPWISE

lnclusion/Deletion Level = .05

P*;'¡ P N Freq P¡ FP Rr2 ll2
0.0 12

0.0 12

0.0 12

0.0

0.0

0.0

0.0

0.4

o.4

o4

24

24

18

18

18

18

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

1 57 3.128 0.01 1 0.010

194 2.196 0.006 0.006

217 1.583 0.005 0.004

183 3.094 0.01 1 0.01 1

206 2.491 0.008 0.007

230 2.194 0.005 0.005

204 2.665 0.011 0.011

221 2.405 0.007 0.007

238 2.127 0.005 0.005

136 3.525 0.010 0.010

163 3.054 0.005 0.005

199 2.497 0.004 0.003

171 3.184 0.01 1 0.010

192 2.798 0.006 0.006

214 2.570 0.004 0.004

193 2.600 0.012 0.01 1

206 2.667 0.006 0.006

216 2.559 0.004 0.004

121 4.095 0.010 0.010

135 3.678 0.006 0.006

155 3.021 0.004 0.004

158 3.201 0.01 1 0.010

166 3.366 0.006 0.005

184 3.046 0.004 0.003

179 2.809 0.012 0.012

183 3.012 0.007 0.006

203 2.817 0.004 0.004

0.0067

0.0047

0.0041

0.0032

0.0046

0.0031

0.0007

0.0020

0.0021

0.0056

0.0028

o.oo22

0.0040

0.0020

0.0017

0.0000

0.0010

0.0012

0.0038

0.0036

0.0021

0.0001

0.0013

0.0007

0.0013

0.0004

0.0004

0.0 18

0.0 24

0.4 12

o.4 12

0.4 12

o.4 18

0.4 24

o.4 24

0.8 12

0.8 12

0.8 12

0.8 18

0.8 18

0.8 18

0.8 24

0.8 24

0.8 24

aNote: See Table 6 note.



Standard Enors of the Mean a

METHOD = STEPWISE

lnclusionlDeletion Level = .1 5

P*¡"¡ P N Freq P¡r R2 Rr2 B2
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.4

0.4

0.4

0.4

o.4

o.4

o.4

o.4

o.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

229

247

248

2Æ

249

250

249

246

249

217

236

242

239

24s
245

246

247

248

205

227

225

232

239

2Æ

245

247

249

2.203 0.010 0.009

1.692 0.007 0.006

1.391 0.005 0.004

1.800 0.011 0.011

1.648 0.008 0.007

1.368 0.005 0.005

1 .466 0.013 0.012

1.449 0.007 0.007

1.276 0.005 0.005

2.388 0.010 0.009

2.140 0.005 0.005

2.071 0.004 0.004

1 .969 0.012 0.01 1

1.732 0.007 0.006

1.821 0.005 0.004

1 .398 0.012 0.012

1.613 0.007 0.006

1.5s2 0.005 0.004

2.680 0.010 0.009

2.583 0.006 0.005

2.395 0.004 0.003

1.882 0.01 1 0.010

2.096 0.006 0.005

1.967 0.004 0.004

1 .418 0.013 0.012

1.592 0.007 0.006

1.463 0.00s 0.004

0.0075

0.0054

0.0045

0.0064

0.0055

0.0044

0.0046

o.oo42

0.0041

0.0053

0.0030

o.oo27

0.0053

0.0035

o.oo27

0.0043

0.0022

0.0020

0.0049

0.0031

0.0021

0.0037

0.0023

0.0014

0.0036

0.0020

0.0016

aNote: See Table 6 note.



Standard Enors of the Meana

METHOD = FORWARD

lnclusion/Deletion Level =ao

P*¡*¡ P N Freq P¡ FÊ Rr2 &2
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.4

0.4

0.4

0.4

0.4

0.4

0.4

o.4

0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

68 5.078 0.010 0.009

111 3.206 0.007 0.006

145 2.040 0.005 0.004

65 5.705 0.012 0.012

88 4.250 0.009 0.008

108 3.247 0.006 0.006

5s 6.669 0.012 0.012

89 4.659 0.007 0.006

1 16 3.573 0.006 0.005

64 5,741 0.012 0.012

89 3.827 0.005 0.005

121 2.785 0.003 0.003

47 7.036 0.013 0.013

87 4.721 0.006 0.006

108 3.1 50 0.005 0.005

53 6.481 0.011 0.011

74 5.352 0.007 0.007

102 3.939 0.005 0.004

38 7.468 0.014 0.014

66 5.405 0.008 0.008

92 3.919 0.004 0.004

49 7.094 0.010 0.010

65 5.822 0.007 0.006

79 4.976 0.004 0.004

45 7.213 0.014 0.013

54 6.664 0.007 0.007

88 4.716 0.005 0.005

o.oo44

0.0045

0.0036

0.0002

0.0043

0.0029

0.0000

0.0000

0.0016

0.0091

0.0038

0.0020

0.0000

0.0006

0.0019

0.0000

0.0001

0.0008

0.0075

0.0054

0.0020

0.0000

0.0005

0.0011

0.0000

0.0000

0.0000

aNote: See Table 6 note.



Standard Enors of the Meana

METHOD = FORWARD

lnclusion/Deletion Level = .05

P*i"j

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.4

0.4

0.4

o.4

o.4

o.4

0.4

o.4

0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

Freq Pr.¡ FÊ Rr2 fu2

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

1 57 3.128 0.01 1 0.010

194 2.196 0.006 0.006

217 1.582 0.005 0.004

183 3.085 0.01 1 0.011

206 2.480 0.008 0.007

230 2.191 0.005 0.005

2t4 2.662 0.011 0.011

221 2.396 0.008 0.007

238 2.133 0.00s 0.005

136 3.525 0.010 0.01 0

163 3.054 0.005 0.00s

199 2.497 0.004 0.003

171 3.184 0.01 1 0.010

192 2.800 0.006 0.006

214 2.572 0.004 0.004

193 2.586 0.012 0.01 1

206 2.668 0.006 0.006

216 2.559 0.004 0.004

121 4.097 0.010 0.010

135 3.678 0.006 0.006

155 3.021 0.004 0.004

158 3.201 0.011 0.010

166 3.366 0.006 0.005

184 3.048 0.004 0.003

179 2.790 0.013 0.012

183 3.012 0.007 0.006

203 2.818 0.004 0.004

0.0067

0.0047

0.0041

0,0032

0.0046

0.0031

0.0007

0.0020

0.0021

0.0056

0.0028

o.oo22

0.0040

0.0020

0.0018

0.0000

0.0010

0.0012

0.0038

0.0036

0.0021

0.0001

0.0013

0.0007

0.0013

0.0004

0.0004

aNote: See Table 6 note.



Standard Enors of the Meana

METHOD = FORWARD

lnclusion/Deletion Level = .15

P"¡ti

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.4

0.4

0.4

o.4

0.4

0.4

0.4

0.4

0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

Freq Pr,u FP Rr2 ft2
12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

229 2.193 0.010 0.009

247 1.689 0.007 0.006

248 1.386 0.005 0.004

2ß 1.804 0.012 0.011

249 1.635 0.008 0.007

250 1.368 0.005 0.00s

249 1 .469 0.013 0.012

2Æ 1.425 0.007 0.006

249 1.272 0.005 0.005

217 2.376 0.010 0.009

236 2.137 0.00s 0.00s

242 2.071 0.004 0.004

239 1 .964 0.012 0.01 1

245 1.720 0.007 0.006

245 1.811 0.005 0.004

246 1 .389 0.012 0.012

247 1.604 0.007 0.006

2Æ 1.550 0.005 0.004

205 2.673 0.010 0.009

227 2.574 0.006 0.005

225 2.394 0.004 0.003

2s2 1 .872 0.01 1 0.010

239 2.079 0.006 0.005

2N 1.965 0.004 0.004

245 1 .405 0.013 0.012

247 1.590 0.007 0.006

249 1.463 0.005 0.004

0.0076

0.0055

0.0045

0.0065

0.0056

0.0044

0.0045

0.0041

0.0041

0.0054

0.0031

o.oo27

0.0052

0.0036

o.oo27

0.0044

0.0022

0.0020

0.0051

0.0031

0.0021

0.0037

0.0024

0.0014

o.oo24

0.0020

0.0016

aNote. See Table 6 note.



Standard Enors of the Meana

METHOD = BACKWARD

lnclusion/Deletion Level = ap

P";'; P N Freq PN W Rtz hr
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.4

0.4

0.4

0.4

o.4

o.4

o.4

0.4

o.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

76 4.738 0.013 0.012 0.0100

111 3.201 0.007 0.006 0.0052

151 2.030 0.005 0.004 0.0038

74 5.361 0.014 0.013 0.0010

99 3.932 0.010 0.009 0.0063

117 2.855 0.006 0.006 0.0030

64 5.730 0.021 0.020 0.0152

92 4.593 0.008 0.007 0.0000

120 3.M9 0.006 0.005 0.0016

64 5.717 0.012 0.012 0.0091

95 3.705 0.005 0.005 0.0037

122 2.852 0.004 0.004 0.0026

57 5.41 1 0.017 0.016 0.0000

91 4.458 0.006 0.006 0.0007

107 3.379 0.005 0.005 0.0019

57 5.828 0.021 0.019 0.0105

74 5.320 0.008 0.007 0.0001

103 3.901 0.004 0.004 0.0008

52 5.752 0.014 0.013 0.0098

75 4.886 0.007 0.007 0.0048

99 3.680 0.004 0.004 0.oo22

54 6.1 59 0.020 0.018 0.0125

74 5.263 0.007 0.006 0.0019

88 4.604 0.004 0.004 0.0012

58 5.799 0.027 0.02s 0.0185

56 6.301 0.008 0.008 0.0000

96 4.387 0.005 0.005 0.0000

aNote: See Table 6 note.



Standard Enors of the Meana

METHOD = BACKWABD

lnclusion/Deletion Level = .05

P';'; P N Freq Pr'¡ FP Bx2 fu2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.4

o.4

o.4

o.4

o.4

0.4

o.4

0.4

0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

175 2.712 0.011 0.010

198 2.078 0.007 0.006

219 1.555 0.005 0.004

203 2.435 0.013 0.012

212 2.333 0.008 0.007

237 2.090 0.005 0.005

218 1 .926 0.016 0.01 5

232 2.263 0.008 0.007

239 1.976 0.006 0.005

1 51 3.209 0.01 1 0.010

172 2.912 0.005 0.005

2O3 2.431 0.004 0.003

186 2.599 0.013 0.012

199 2.566 0.007 0.006

217 2.573 0.005 0.004

207 2.013 0.017 0.01 5

212 2.N4 0.007 0.006

223 2.432 0.005 0.004

148 3.254 0.011 0.010

1 50 3.136 0.006 0.005

172 2.635 0.004 0.003

180 2.5s1 0.014 0.012

186 2.855 0.006 0.005

198 2.885 0.004 0.003

211 1 .937 0.017 0.01 5

207 2.563 0.007 0.006

212 2.601 0.005 0.004

0.0083

0.0051

0.0041

0.0069

0.0049

0.0033

0.0100

0.0026

0.0025

0.0080

0.0031

0.0023

0.0066

0.0026

0.0019

0.0094

0.0011

0.0012

0.0067

0.0036

0.0021

0.0078

0.0017

0.0007

o.o127

0.0012

0.0007

aNote. See Table 6 note.



Standard Enors of the Meana

METHOD = BACKWABD

lnclusion/Deletion Level = .15

P'¡'¡ P N Freq P¡,l FP Rr2 tL2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.4

0.4

o.4

0.4

0.4

0.4

0.4

o.4

0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18

24

24

24

12

12

12

18

18

18.

24

24

24

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

30

60

90

2s3 1 .906 0.011 0.010

2Æ 1.541 0.006 0.006

249 1 .413 0.005 0.004

2Æ 1.330 0.012 0.011

250 1.432 0.007 0.007

250 1.324 0.005 0.005

248 0.895 0.011 0.012

248 1.204 0.007 0.007

2Æ 1 .197 0.005 0.005

232 2.018 0.010 0.009

240 2.035 0.005 0.005

242 1.979 0.004 0.Q04

247 1.473 0.012 0.01 1

247 1.565 0.007 0.006

2M 1.634 0.005 0.004

249 0.667 0.010 0.01 1

249 1.34s 0.007 0.006

249 1.438 0.005 0.004

227 2.003 0.010 0.009

236 2.155 0.005 0.005

235 1.947 0.004 0.003

2Æ 1.452 0.012 0.01 1

242 1.796 0.007 0.005

244 1.708 0.004 0.004

249 0.819 0.012 0.013

249 1.324 0.007 0.006

249 1.310 0.005 0.004

0.0088

0.0056

0.0045

0.0105

0.0059

0.0045

0.0140

0.0053

0.0043

0.0065

0.0032

0.0028

0.0080

0.0041

0.0029

0.0131

0.0032

0.0024

0.0069

0.0033

0.0024

0.0093

0.0034

0.0018

0.0158

0.0035

0.0019

aNote: See Table 6 note.


