Computational Intelligence in

Rate-Based Control for Data Networking

by
C. Hart Poskar

A Thesis
Submitted to the Faculty of Graduate Studies

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Canada, 2002

© Copyright by C. Hart Poskar, 2002

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-79882-8

| hd

Canadi

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
EELEE

COPYRIGHT PERMISSION PAGE

COMPUTATIONAL INTELLIGENCE IN RATE-BASED CONTROL
FOR DATA NETWORKING

BY

C. HART POSKAR

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of
Doctor of Philosophy

C. HART POSKAR © 2002

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and
to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

Abstract

The work presented in this thesis developed a negative acknowledgment based
transport layer protocol called the versatile transport protocol (VTP). In addition to this a
fuzzy neural network based fuzzy controller for the VTP was evaluated. The controller
was developed by extending the Brain Construction Kit neural network simulation
software to support fuzzy neural networks. The VTP controller was then used together
with a client/server bulk transfer software called Phat (developed at the University of
Manitoba), which acted as the emulation environment for VTP,

To implement a generic multi-layered feed-forward fuzzy neural network, the
generalized delta rule for back-propagation was extended to include both logic-based as
well as arithmetic neural descriptions. To implement training of the network it was also
necessary to develop a fuzzy back-propagation algorithm to guarantee the correctness of
the connection strength parameters for logic-based neurons. In doing this a different view
of the learning rate was required, one that incorporates both a network independent as well
as a network sensitive part.

This thesis represents one of the first attempts to use a fuzzy neural network to control
or broker bandwidth within a rate-based transport protocol running over IP. As opposed to
models based on simulation, a fuzzy neural controller was demonstrated on top of the Phat
protocol which was used to emulate a rate-based transport layer protocol.

In addition to contributions made to fuzzy neural network control theory, this work
illustrates the viability of fuzzy control as applied to telecommunication applications such
as bandwidth brokering within the confines of an IP network. In addition, the study
illustrates the role that fuzzy control can play in improving end-to-end performance by
adaptation to host and/or network bottlenecks.

i

Acknowledgements

This thesis, as with all research, is not the sole work of a single author, but
the results from collaboration and interaction with many people. I would
like to take this opportunity to thank all of the people who have contributed
towards this thesis.

I would like to begin by acknowledging the work that led up to this thesis,
the development of the FSTP protocol and the Phat client server, by
thanking my advisor Bob McLeod, the Internet Innovation Center, and
specifically Shawn Silverman.

I would also like to thank the members of my thesis committee, Dr. Witold
Pedrycz, Dr. Peter Graham, Dr. Bruce Cockburn, Dr. David Blight and Dr.
Ekram Hossain, for taking the time to be on my committee, and for having
read my thesis. In particular I would like to thank Drs. Graham and
Cockburn for their feedback and recommendations for improving the
research, and Dr. Pedrycz for his early impetus into fuzzy neural hardware.

In addition I would like to thank all of my collaborators and friends who
have been there for me these many years. In particular I would like to
express special thanks to:

Peter Czezowski, for your help and insights, and knowing when to
call it a night and see a movie,

Fred Corbett, who was instrumental in making my code work, and
for putting up with me even at my worst,

Yair Shachar-Hill, for reading virtually every version of my
candidacy and most of my thesis, all those re-writes - I learned a
lot,

Howard Jesierski, just one more game of cards - one day,
Eileen, Mithal and Mina Patel, and all those mashed potatos, and
Myrna, because we all need a little support.

Finally, none of this could have happened without the long term support
from my family. Their encouragement these many years made it possible
for me to finish what I started. Thank you.

iii

This thesis is dedicated to
David Nathan Shachar-Hill

v

Table of Contents

List of Figureso Vil
Listof Tableso o X
Chapter 1: Introduction 1
1.1 Network Protocol Stackscooiiiiii ... 1

1.1.1 The OSI Reference Modelcivuvoon... 2
LI2TCPAP 3

1.2 The Transport Layerc.ooiiimiine i, 3

1.2.1 User Datagram Protocol (UDP)oouiuninn. .. 5

1.2.2 Transmission Control Protocol (TCP)vuuuinn. ... 5
L3Problems with TCPoooiiiii i, 9

1.4 Versatile Transport Protocolccoiiuieennnn. .. 11

1.5 Computational Intelligencec.... 12
LONoOVelty 14
Chapter 2: The Versatile Transport Protocol 15
21 0VEIVIEW oo 15

22 Rate-Based Controlt 18

2.2.1 Global Control Mechanismccovviiuiinnnno. ... 18

2.2.2 Local Control Mechanismcooouuuenennennneo ... 19

23 Phat Applicationt 20

23T OVEIVIEW . o e vttt 22
232Modificationsiii i 23

Chapter 3: Fuzzy Neural Networks (FNNSs) 25
31 Fuzzy Neuronst 25

3.1.1 Aggregative OR and AND logicneurons 26

3.1.2 Referential logic-based neurons 27

3.2Fuzzy Neural Learningooiuuuiiinnnnnnnnnnnn. .. 29

3.2.1 Learning and Triangular Norms 30
3220RNEUION v vttie ettt et 31
323ANDNEUION . . ot v it ettt et 32

3.3 Fuzzy Back-propagation 33

3.3.1 The Generalized DeltaRule 34

3.3.2 The Extended Generalized Delta Rule (EGRD) 35
333Proof of EGRD 37

3.3.4 Specific Hidden Layer EGRDcccoviuno. .. 38

3.4 The Brain Construction Kit BCK), 38

AT OVEIVIEW .« . ottt e e e e e e 39

A2 EXIENSIONS « .t ettt e e e e 39

Chapter 4: The Experimentsoouuiiniinninnnon... 41

A1 Setup .o 41
4.1.1PhatEmulation it 41
A12Networko 42

4.2 Fuzzy Neural Controller iuinneiinennn... 42
421 Parameterso vt i 43
422RuleBase 44
423 Network Mapping 45

4.3 Simulations 46
4.3.1 General Operationuiiieniiiin i 46
43.2Learning 47
4.3.3 Multiple VTP Connectionsouuuuuunnnnnnnn... 47

A4 DISCUSSION ...\ttt ettt e e 47
4.4.1 Server Side Global Controller, .. 48
4.4.2 Alternative Parameters i, 48

Chapter 5: TheResults e .. 50

5.1 The Fuzzy Controllercouiiiii e, 50

5.2 Fuzzy Learning Re-Visited 0 .. 51

5.3 Initial Simulations 53
5.3.1 Testing Controlled Transfercc0ouuunn.... 54

54 Tuning the Controllert e, 55
5.4.1 Results of Tuning the Controller.....................ccvuu.... 55
SAZDISCUSSION . .ot vv it 58

5.5 A Simple Global Controller 58
5.5.1 Testing the Global Controllercouuneeeeo. ... 59

Chapter 6: Conclusionoo it 60

6.LOVEIVIEW ...ttt 60

6. 2ResUItS 61

6.3Future Work 62
631 VTP L 62
6.3.2 Computational Intelligencecccovuiiiii ... 62

Chapter 7: References ...t . 63
Appendix A: The main Phat classes with modifications to emulate VTP with Fuzzy Neural

Control: ... 67

A.1FSTPControllerjava oo, 68

A2PhatClientjava i 76

A3FSTPClientjavaooouiiiiiii . 92

Appendix B: Extension Classes to the BCK for Implementing Fuzzy Neural Networks: 110
B.1 BCKFUzZzyNeuronjavauuueee e, 111

Vi

B.2 BCKFuzzyORNeuronjavaouuuniineinnennennnennn... 115

B.3 BCKFuzzyANDNeUron.javaoovvvunie i 118
BABCKENNJaVA . .ottt e e e 121
B.5 BCKENNBPIOPJaVa . . oottt ettt e e e e e i 127
B.6 BCKSYNapse.javavuutineie e it 131
Appendix C: Hardware Implementation of a Fuzzy Neuron 134
C.IRFN-General Designottt 134
C.1.1 The Reconfigurable Fuzzy Processor 134
Cl2TheLearning Unit0, 139
Cl3TheMemory Unit..........coiiiniin .. 140
C2TheNetwork Design, 141
C21TheLogicUnit ... 141
C.2.2 The Interconnection Network, 142
C23Thelnterfaceouuuuiiiniiiinnnn., 144
C.3 Hardware Implementationoiiiiiinnnnn. ... 145
C.3.1 Referential Computation Unitcvuu.... 145
C.3.2 Aggregative Neuron Designt .. 147
C.3.3 Implementing the Learning Unit 148

vii

List of Figures

Figure 1.1: Example of a network protocol stack transaction. 2
Figure 1.2: A side by side comparison of TCP/IP to the OSI seven-layer network reference

model. ... 4
Figure 1.3: UDP header format. it 5
Figure 1.4: TCP header format.ttt 6
Figure 1.5: TCP Three Way Handshake. ccciurunnnn. 7
Figure 1.6: The affect of distance on the maximum theoretical data rate using TCP. .. 10
Figure 1.7: Relationships of the three categories of CI techniques. 12
Figure 1.8: Structure of a neuron - the ANN processing element. 13
Figure 2.1: The flow of data through the VTP architecture. 16
Figure 2.2: Generic Presentation/Session Header.c.couuuoi. ... 17
Figure 2.3: VTP datapacketheader. 19
Figure 2.4: A sample VTP session for reliable bulk transport. 21
Figure 2.5: Bulk data transfer with modified phat. 22
Figure 3.1: OR aggregation - Topology of a disjunctive type fuzzy neuron with referential

operations on the Inputs.coouiiiiiniiii ... 27
Figure 3.2: A traditional neuron view of a fuzzy OR neuron. 35
Figure 4.1: The Fuzzy Controller. 0 iuuiiii .. 43
Figure 4.2: The fuzzy Sets for (A) packet loss, (B) change in packet loss, and (C) the control

(Phat adjustment). 44
Figure 4.3: A mapping of the first rule into a fuzzy AND neuron. 46
Figure 4.4: A mapping of rules into a multi-layer network. 46
Figure 5.1: Revised Fuzzy Set for Control Qutput. 51
Figure 5.2: FNN control surfaces; (a) before tuning and (b) after tuning. 56

Figure 5.3: Graph of throughput for varying file sizes with constant error rate (5%). . .57

Figure 5.4: Graph of throughput for transferring the same file (20 Mbyte) with varying error
TS, o e 57

Figure C.1: Schematic representation of the main parts of a fuzzy neuron; the reconfig-
urable fuzzy processor (RFP), learning unit (LU) and memory unit (MU). 134

Figure C.2: The reconfigurable fuzzy processor - general architecture. 135
Figure C.3: Multiplexing basic functions of referential computation - equality or matching,

difference, dominance, and inclusion.ooiuiinn. .. 136
Figure C.4: Generalized aggregative unit. Configurable as conjunctive or disjunctive. 137
Figure C.5: Construction of the ordinal sum.ccvvuuoo. ... 138
Figure C.6: Ordinal sum of disjunctive (OR) neuron.oooo.... 138
Figure C.7: The components of the learning unit for (i) a neuron in the output layer, and (ii)

aneuroninahiddenlayer., 139
Figure C.8: A feed-forward neural network.o ... 142
Figure C.9: The network signals for (a) initialization, and (b) regular processing. ... 143
Figure C.10: Schematic of the network interface.c.c....o... 144
Figure C.11: Complete REN design flow.c.c0ouuiuiiiiio .. 145
Figure C.12: The Referential Computation Unitccoouuro..... 146
Figure C.13: The aggregative computation unit.c.ccovvroo. .. 147

viii

Figure C.14: Multi-valued representation for the chain derivative during parametric learn-
ing for (i) a disjunctive neuron., and (ii) a conjunctive neuron. 149
Figure C.15: The learning unit (LU). i, 150

ix

List of Tables

Table 1: Fuzzy Rule Set for Packet oSSt 45
Table 2: Fuzzy Rule Set for Packet Loss 51
Table 3: Evaluation of UDP buffer loss for block delays of 50 down to 1 millisecond. . 54
Table 4: Results of using a global bandwidth broker to re-allocate bandwidth from a low
bandwidth connection (#3) to high bandwidth connections (#1 and #2). 59
Table 5: Evaluation of the implication operator and MATCH function. 145
Table 6: The INCorDOM function. i, 146

I. Introduction

Data networking today is founded on packet switched networks. Packet switched data
networks work by routing packets of encapsulated data based on the current state of each
switching node (called routers) and the destination (or optional routing) information
contained in the data packet header. Initial network protocols for packet switching
compensated for unreliable networks by including large amounts of overhead and
redundancy both in the encapsulated data packet and at each routing point. As the
underlying data networks became more reliable, it was recognized that the additional
overhead was no longer needed. Step-by-step reliability was pushed back to the end points
of a data connection (the hosts). The final result is a network protocol that provides an
unreliable service, the Internet Protocol (IP) [1], which has become the dominant network
protocol in data networks.

Reliability in IP data networks is provided by the transport layer Transmission Control
Protocol (TCP) [2] or by the application (using the User Datagram Protocol, UDP [3], at
the transport layer). In essence, reliability encompasses two main issues: first the detection
of data loss due to missing or corrupt data, and second the ability to recover from data
loss.

TCP provides for reliability through window-based management of each data flow (or
connection) together with positive acknowledgements of all data received. TCP recognizes
that there are two general causes for data loss: the network and the communicating hosts.
To combat this two windows are maintained, one representing network congestion (the
usual reason for data loss on the network) and one for the host I/O buffers (for flow
control).

Together TCP and IP are the major protocols in a suite of protocols that bears their
name TCP/IP. The next section will introduce the idea of network protocol stacks which
feature a layered approach to network protocol development, together with the OSI
reference model and TCP/IP.

1.1 Network Protocol Stacks

The network protocol stack! is the foundation of modern communication networks.
The basic idea of the stack is to group together functions to perform a common set of tasks
into a module or layer. Each layer in the stack has a well defined function and standardized
interface, allowing for the encapsulation of layers. This method of design has several
advantages, including the ability to replace the implementation of a layer without needing
to redesign or re-implement the entire communication process.

The operation of a network stack is illustrated in Figure 1.1, which shows a three-layer
protocol stack consisting of an application layer, a transport layer, and a network access
layer (the physical layer is implied). As we go down the stack (the application layer is the

1. This may also be referred to as the network stack, or just the stack.

Sender Receiver

. L. Applicati . e
Application = & S T Do = = = 4 Application
Layer \ .
¢ Transport T

Transport Layer Transport

Headers '
X and '
' Footers

Network Access = == | Network Access

\(_ Physical Media)j

Figure 1.1 : Example of a network protocol stack transaction. The actual
data flows from the sender to receiver application following the solid black
lines. The dashed lines illustrate the effective flow of information from the

perspective of each layer.

top or highest numbered layer, and the Network Access layer the bottom, layer 1 by
default) each layer can pass data and parameters regarding the sending of the data. The
parameters that are passed between layers are specified by the public layer interface. Each
layer then builds a packet which encapsulates the data (as the payload) and optionally adds
a header and/or footer containing the actual or calculated parameters passed to it. This
packet is then passed down to the next layer which encapsulates the entire packet as its
payloadl. Parameters may also be passed down to be used in the next layer’s header or
footer, or to be passed down to a still lower layer. When data is passed back up the network
stack at the receiver, each layer strips off the header/footer added by the corresponding
layer at the sender, and passes the payload up to the next layer, until the original data is
delivered to the receiving application.

Although the actual path of the communication is up and down the protocol stacks, the
horizontal (dashed) arrows illustrate the apparent communication among corresponding
layers in each stack. The information added as header or footer by a specific network
protocol layer at the sender is only used by the corresponding layer at the receiver.

For additional information on network protocol architectures or the specific OSI and
TCP/IP architectures discussed in the following sections, please see [4] or [5].

1.1.1 The OSI Reference Model

The International Standards Organization (ISO) set out to design a standard network
protocol architecture and named it Open Systems Interconnection or OSI. OSI is a seven-
layer model which never fully achieved its goal as a practical networking standard, but
nevertheless has proven to be an excellent reference model for classifying protocols, and
comparing network architectures.

1. Thus the entire higher layer packet becomes payload - including any header, data, or footer.

The seven layers of OSI are:

* Application - interface to users and distributed information (servers).

* Presentation - interface for different data representations.

* Session - establish, manage, and terminate connections between applications.
* Transport - provides transfer of data between end points.

* Network - provides control for transmission over networks.

* Data Link - provides transfer of data (frames) over the physical medium.

* Physical - provides transmission of unstructured bits over a physical medium.

1.1.2 TCP/IP

While OSI was being designed, an actual suite of protocols was being tested and put
into operation on the ARPANET, an experimental packet-switched network and a fore-
runner of the Internet. These experimental protocols eventually came to define a network
architecture called TCP/IP, named for its two main protocols which define the transport
and network layers. The TCP/IP architecture uses five layers (the layers being defined
after, and based on, the resulting implementation). The five layers of TCP/IP are:

* Application - interface for user applications.

* Transport - provides transfer of data between end points.

* Network - provides control for transmission between different networks.

* Network Access - interface for a network to the physical layer.

* Physical - provides transmission of unstructured bits over a physical medium.

In fact the TCP/IP architecture really comprises only the topmost three layers, and never
dealt with anything below the Network layer. However the Physical layers are certainly
implied and required while the Network Access layer is convenient (although some
descriptions leave this out and use a four-layer model). Despite this, TCP/IP
implementations have historically been tightly integrated with Ethernet. More recently, IP
over other technologies, particularly ATM and SONET, have been progressing steadily.

Figure 1.2 shows roughly how TCP/IP fits against the OSI reference model. All
functionality above the transport layer (with the exception of connection-oriented service)
is passed up to the application layer. In addition, IP performs some of the functions of the
data link layer. However, the ongoing work to provide IP natively over physical layers
requires a network access layer to act as an interface.

The next section expands on the transport layer, or layer 4, and the layer 4 protocols
that comprise the TCP/IP suite.

1.2 The Transport Layer

The job of the transport layer is to take data from a sending application, and to deliver
it to the receiving application (see Figure 1.1). Note that the sending and receiving
applications may be running on the same or different hosts.

OSI TCP/1P

7 Application

6 Presentation Application

5 Session

4 Transport Transport

3 Network Network (IP)
2 Data Link Network Access
1 Physical Physical

Figure 1.2 : A side by side comparison of TCP/IP to the OSI seven-layer
network reference model. In particular the transport layer in TCP/IP may
subsume some of the functionality of the OSI Session layer. The remaining
functionality of the Presentation and/or Session layers are left to the
Application Layer. Similarly, the Network layer provides some of the
functionality attributed to the Data Link layer as well as the Network layer.

The simplest transport protocol would provide an interface between applications and
the protocol in the layer below, the network (IP) layer in TCP/IP, and would provide a
means to identify the source and target application. It would also pass on additional
parameters provided by the application, such as the destination host address. At the
receiving side the transport protocol would accept data from the network layer, extract the
payload and pass it to the application identified in the header (i.e. the target application),
along with parameters about the sender of the information (the IP address of the sending
host passed as a parameter from the network layer) and the sending application
identification.

At the transport layer, the means of identifying an application is called a port number,
which is an address that is used to distinguish between different applications that are using
the same transport protocol (on the same host) at the same time.

TCP/IP defines two standard transport layer protocols, TCP and UDP. We will look at
each of these, starting with UDP.

1.2.1 User Datagram Protocol (UDP)

UDP is a connectionless transport protocol which provides unreliable transport of data
between applications as defined in RFC! 768 [3]. By unreliable, we mean that there is no
mechanism to either guarantee that a transmitted packet is received, or to determine that
the destination is unreachable (and hence stop transmitting). It is the job of the application
to monitor the situation and take any action, such as requesting feedback from the
application with which it is communicating.

As a simple transport protocol, UDP adds very little information to the data payload
passed by the application. The format of the UDP header is illustrated in Figure 1.3. Note
that beyond the source and destination port numbers, an additional 32 bits of overhead are
added for two fields. The first specifies the amount of data encapsulated in the frame (the
UDP Length), and the second provides a checksum to verify the correctness of the data
before passing it (or not) to the application.

< 32 bits >
T B IS PRI SR R R S
Source Port Destination Port
UDP Length | Checksum

Figure 1.3 : UDP header format. The UDP header contains four 16-bit
fields, the source and destination ports (application address), the length of
the data (in bytes), and a checksum of the data.

Historically, UDP was intended as a simple way to transport data over reliable
networks (i.e. local area networks, or LANs), or where it was more economical to
implement minimal reliability in the application, rather than use the greater overhead of a
reliable TCP connection (e.g. when transmitting small network messages) [4].
Applications using UDP include DNS [6], RIP [7], DHCP [8], TFTP [9], and NFS [10].

More recently a number of applications for delivering higher bandwidth content over
wide area networks (WANSs) have used UDP to better deliver real time data where the
reliability overhead of TCP may actually be detrimental to achieving acceptable
performance.

1.2.2 Transmission Control Protocol (TCP)

TCP is a connection-oriented protocol that provides for the reliable transfer of data
between applications as defined in [2]. “Connection-oriented” means that a logical or
virtual connection, rather than a physical one, is established.

An application’s port number (16 bits) together with a network (IP) address (32 bits)
define a unique 48-bit TSAP (TCP Service Access Port). A TCP connection is a logical

1. REC - Request For Comments

full duplex connection formed between a unique pair of TSAPs.

The basic function of TCP is to provide a reliable connection over an unreliable
service. Operations required for reliable transport include!:

* establishing and ending connections.

» re-ordering of packets that arrive out of order.

» flow control (to minimize packet loss).

* error detection, and

* the retransmission of lost or damaged packets.

To provide such a service, TCP uses additional header information to establish and
monitor the connection (see Figure 1.4). After the port numbers come the sequence and
acknowledgement numbers, used to keep track of each byte transmitted and received. This
is followed by the header length field (as the header may include optional fields), flag bits
to indicate the current status of the connection or to pass on control information regarding
the current frame (such as the use of the Urgent Pointer). Then comes the window size, a
number that represents how much data can be sent before waiting for an acknowledgement
- used for TCP’s flow and congestion control.

< 32 bits >

Source Port Destination Port

Sequence Number

Acknowledgement Number
Header Length Flags Window Size

Checksum Urgent Pointer

Figure 1.4 : TCP header format. The TCP header contains nine fields plus
allows for additional options and padding (to even the word size). These
fields are used to provide the reliable connaction oriented service
(Sequence, Acknowledgement, window size, flags) and the optional fields
require a standard header length field.

To address the strengths and limitations of TCP, its key features - connection-oriented
service, reliability, flow control and congestion control - are discussed further in the
remainder of this section.

L. Initially security was also included as part of a reliable transport, but was later dropped.

Connection-Oriented Service

TCP connection management requires that there be at least one host which will accept
connection requests, and one that can initiate connection requests'. The process of
establishing a connection is called the “Three-Way Handshake”, and is illustrated in
Figure 1.5. This uses the sequence (Seq) and acknowledgement (Ack) fields to initialize
the flow control, and the two flags SYN and ACK to request and acknowledge,
respectively, the establishment of the connection. This handshake is three-way because it
actually sets up two simplex connections (one for each direction) with the intermediate
acknowledge and request combined into a single transmission.

When data is sent in either direction, the sequence number indicates the last byte sent.
The starting byte is typically chosen by an incrementing algorithm, rather than always
starting at zero. This was thought to have added a secure element to an established
connection, but this has been shown to offer a false sense of security [11][12][13].

As illustrated in Figure 1.5, TCP requires that the acknowledgement that comes back
be actually for the next byte in the sequence that can be sent, i.e. one byte more than the
byte sent. If no data is sent the acknowledgement does not need to be updated, except
when initiating and terminating a connection.

Connection Request (A to B): SYN=1, ACK=0, Seq=X, Ack=0>

Con:ection Response/Request (B to A): SYN=1, ACK=1, Seq=Y, Ack=Xx+1

Connection Response (A to B): SYN=0, ACK=1, Seq=x+1, Ack>=Y+1

Figure 1.5 : TCP Three Way Handshake

When the connection is no longer needed (all of the data has been transferred), the
connection is torn down in a similar fashion. In this case the FIN flag is used in
conjunction with the ACK flag to signal and acknowledge the closing of the connection.

Timers are used when establishing, maintaining and terminating a connection. If one
of these connection timers expires without receiving a proper response, then the
connection is terminated.

1. These may actually be the same host.

Once a connection has been established, the two main features of TCP connection
management are flow control and congestion control. These mechanisms are used to
maintain reliability and to provide for retransmission when required.

Reliability

The sequence, acknowledgement, window size, and checksum fields together with a
variety of timers are used to implement reliability in TCP. The checksum is used to
determine if the packet has been corrupted during transmission, while the sequence and
acknowledgement numbers handle out-of-order and duplicate packets as well as allowing
for the retransmission of missing packets. The use of the window size is presented in more
detail in the following sections on flow and congestion control.

TCP uses positive acknowledgements as the main feature of reliability. Every byte of
data transmitted in one direction is identified via a consecutive sequence number. On the
receiving side, TCP acknowledges data as the data is delivered to the application. If a
sender does not get an acknowledgement after a set amount of time, it retransmits the data.
This requires the use of additional timers for each packet sent. There are four main reasons
for the sender to fail to receive an acknowledgement:

* the transmitted packet is dropped at a routing node or by the receiver,

* the transmitted packet is received but is corrupted,

* the acknowledgement packet is dropped at a routing node or by the sender, and
* the acknowledgement packet is received but is corrupted.

TCP does not acknowledge packets that arrive out-of-order, which may lead to a fifth
cause for packets to be retransmitted: if the sender’s timer for those correctly received
packets expires before receiving an acknowledgement.

Flow Control

Flow control deals with the reliable end-to-end transmission of packets. Specifically,
flow control is responsible for making sure the sender is not flooding the receiver with too
much information. If this occurs, then the receiver’s incoming buffer will overflow and
packets will be lost.

TCP uses a sliding window algorithm together with positive acknowledgment for flow
control. The size of the window specifies how much data may be sent before waiting for
an acknowledgment from the receiver. The window size (specified in each packet header)
is dynamic and may change over the period of a connection.

The flow control mechanism ensures that no packet or sequence of packets exceeds the
receiver’s buffer capacity. This is done by transmitting the lesser of the receiver’s window
size and the size of the sender’s transmission buffer. The sequence and acknowledgement
numbers form the current view of the window, where the acknowledgement number
indicates the start of the window, and the sequence number indicates the current position
of data that has been sent. As each packet is sent a timer is started. If the timer expires
without receiving an acknowledgment, the unacknowledged data is re-transmitted (as
described in the previous section).

Congestion Control

While flow control deals with data at the end points of transmission, congestion
control deals with data in the intermediate network. Congestion occurs when a router is
unable to process packets as quickly as it receives them. Congestion can cause packets to
be delayed or discarded.

TCP uses a second window, called the congestion window, to track congestion. The
real flow rate is determined by the minimum of this window size and the flow window.

Congestion is detected at the transmitter either through feedback from the intermediate
routers or the lack of feedback (acknowledgements) from the receiver. Since the flow
window size ensures that the receiver is not being flooded, lost packets (data or
acknowledgements) can be attributed to congestion.

The congestion window starts at some small size. Each time the transmission is
successfully acknowledged, the congestion buffer is doubled (i.e. the window increases in
size exponentially). There is a threshold (initially 64 Kbytes) on the size of the congestion
buffer. Once the congestion window size reaches the threshold, the congestion buffer size
will only increase linearly. When congestion is detected, the affected data is retransmitted
and the congestion window size is set to it’s minimum value while the linear growth
threshold is reduced by half.

This TCP congestion control mechanism is called slow start because the window size
always starts at a minimum size after each congestion detection, and cuts the threshold at
which exponential growth becomes linear growth.

1.3 Problems with TCP

TCP provides a reliable connection-oriented service over an unreliable network.
However the method used to do this has several drawbacks, in particular given the
increased network reliability and bandwidth provided by today’s Internet.

Over relatively short distances or low-bandwidth networks, TCP works well because
the delay time waiting for an acknowledgement is small compared to either the buffer
processing time (short distances) or data transmission time (low-bandwidth).

However where these two factors are increasing, the use of a window-based rate
control acts to impose an artificial maximum data rate based on round trip delay time, and
not the actual capacity of the hosts and the network.

This latency is due to two metrics of dlstance First, physical distance is ultimately
constrained by the maximum propagation rate!; no amount of infrastructure upgrades or
bandwidth management can improve upon this. Second the number of intermediary nodes
(also called hops) that the data must traverse adds a variable amount of processing latency.
Networks that suffer from this tyspe of usage are characterized by having a bandwidth
delay product of greater than 10° bits [14][15]. These networks are referred to in the
literature as high bandwidth*delay product networks.

1. <= 300,000 Km/s - the speed of light.

Data Rate

Distance

Figure 1.6 : The affect of distance on the maximum theoretical data rate
using TCP. The data rate (in a simplified form) is inversely proportional to
the physical distance that the data must propogate. The actual scale of the
data rate is dependent on the TCP window size which specifies the actual
ammount of data that can be transmitted before requiring an
acknowledgement.

The affect of propagation latency due to physical distance and the maximum data rate
is shown in Figure 1.6. This illustrates the inverse proportional relationship between data
rate and distance from the simplified! data rate as expressed in:

Data Rate = (Maximum Unacknowledged Data) / 2*(Round Trip Time)

Where the maximum unacknowledged data is dependent on the TCP windows and round
trip time is a function of distance and propagation speed.

This limitation in TCP has been known since the earliest implementations [16], and
has inspired many potential solutions. These solutions include modifying TCP, and
replacing TCP with specialized protocols for high bandwidth*delay product networks
[17][18][19]. The most common and successful approach is to use intermediate
applications to reduce the required bandwidth (e.g. via data compression [21]), buffer or
cache the data at physically closer points [22] and, most recently, to split single TCP flows
into multiple smaller parallel flows [20].

A readily available alternative to TCP already exists, the user datagram protocol,
which provides a connectionless and unreliable service. Many applications currently use
UDP, but mostly in its traditional role [4], where the underlying network is reliable, for
real time applications, and for the transfer of very small amounts of data.

1. By simplified it is meant that this does not include transmission, processing or buffering
latencies.

10

Although any application could use UDP instead of TCP, using UDP requires the
application developer to implement any or all of the reliability or connection features
already present in TCP. This would seem to violate the intention, not to mention the
obvious advantages, of designing network protocols in a layered or stack architecture [4].

Several fixes for the limitation imposed by window-based flow and congestion control
have also been proposed including modifying the window algorithms
[32][33][341[39][40], adding extensions to TCP [26][29][30][41][44][45] and/or
optimizing TCP or TCP parameters for the underlying network [36][38]1[42][43], as well
as replacing TCP altogether [23]. In general, improvements to the window algorithm can
increase throughput, but don’t affect the primary limitation (the window size). Other
extensions have been met with criticism [27][28].

The following section will introduce another proposed solution, the Versatile
Transport Protocol, which replaces window-based control with an active rate based control
using computational intelligence to determine when and how much to throttle back or
forward the flow of data based on individual flow characteristics.

1.4 Versatile Transport Protocol

A new transport layer protocol, the Versatile Transport Protocol (or VTP), is
developed as a part of this thesis. This new protocol recognizes the increasing reliability of
even wide area data networks together with the increasing availability of high bandwidth
access, and has a goal to maximize the utilization of available bandwidth. In addition, as
the name implies, VTP strives to be versatile while providing a range of service classes,
including the reliable transport of data, through different combinations of specific service
features.

To accomplish these goals VTP makes use of negative acknowled,g,rments1 together
with a global bandwidth broker for managing data flows. Eliminating positive
acknowledgements yields a second benefit - reduced processing overhead. While waiting
for positive acknowledgements, each transmitted packet is associated with a
corresponding timer. The use of negative acknowledgements can greatly reduce the
number of required timers. By designing a simpler transport protocol, and one that can be
more easily optimized for both software and hardware implementations, it is hoped that
VTP can alleviate the second drawback to TCP, namely, the processing bottleneck in the
network stack. In the case of short distance networks (LANS/MANS) it is this processing
and, in particular, the clearing of buffers that often limits the overall data rate.

VTP is described in greater detail in Chapter 2 which focusses on rate-based control.
The next section introduces the area of computational intelligence, which will be used in
implementing the rate-based control mechanisms described in this thesis.

1. A negative acknowledgement is sent to indicate that data was not properly received, rather than a
positive one that indicates it has been properly received.

11

1.5 Computational Intelligence

The area of Computational Intelligence (CI) has gained much acceptance in recent
years, and yielded many techniques and algorithms. These techniques and algorithms can
be characterized into three categories: Genetic Algorithms (also called evolutionary
computing), Fuzzy Systems (granular computing), and Artificial Neural Networks
(ANNSs). In fact these have been described as “... the three dominant information
technologies ...” forming a “Triumvirate of Information Technologies” [48]. Figure 1.7
illustrates how these categories of CI can compliment rather than compete with one
another.

Evolving Va
Architecture/Nodes GENETIC ALGORITHMS
Tuning (Optimization Technique)

Rules/Labels

Embedding
Knowledge

_ FUZZY SYSTEMS
Facilitate V(K’nowl‘edge Processing)
Learning

 NEURAL NETWORKS |
 (Data Processing)

Figure 1.7 : Relationships of the three categories of CI techniques.1 ‘

Artificial Neural Networks or ANNs are based on a model of human neural processes
and use large numbers of simple computational elements (called neurons - see Figure 1.8)
in a highly interconnected fashion [59]. Each interconnection is represented by a
parameter or weight that can be altered to increase or decrease the degree to which an
input influences the output of each neuron. The change in the weights is accomplished
through learning. Learning typically occurs either through the repeated exposure to
training sets of input and output data, or during the processing of real data. ANNs are
typically classified by their structure and the learning algorithm - the mechanism for
implementing learning.

The structure of a neuron, illustrated in Figure 1.8, consists of two basic processes:
aggregation of inputs and a non-linear transformation that produces an output. The first
process combines together all of the inputs weighted by their respective interconnection
strengths (w;). This aggregated value is then mapped into a continuous bounded domain,
typically [0,1] or [-1,1], through a transformation function(s).

The power of a highly-connected network of these simple structures is in their
distributed processing which is used to develop or learn related data patterns stored in the
weight space. However there are a few drawbacks to traditional ANN’s. First, while the
computational elements are typically simple in an analog sense, they can be quite complex
to implement using traditional digital hardware and often require large amounts of
computing resources in software. A second disadvantage is that there is no known
relationship that can be used to map an arbitrary problem into a specific neural
structure.This makes the design of traditional ANNs arbitrary and often complex, and
heavily relies on the representation of the input data.

1. This figure is reprinted from [49] with permission.

12

Aglgregation Non-Linear
of Inputs Function

input,

input,

Output

v

input,

Figure 1.8 : Structure of a neuron - the ANN processing element. Each
input is multiplied by a weighting factor. The sum of the weighted inputs is
taken, and passed through a non-linear mapping to provide a bounded
output value. One neuron’s output can be an input to another neuron, or
even to itself.

Fuzzy systems (FS) are based on fuzzy logic [52] which is a combination of traditional
two-valued logic and set theory [53][54][55]. In traditional logic and set theory, a variable
can either belong to a set or not belong to a set, i.e. it can have two values. Fuzzy logic
employs multi-valued variables that describe the degree of belonging to a set which is
expressed in a membership function. This degree of belonging can take any value between
the two extremes of belonging and not belonging. Fuzzy systems are then easily specified
linguistically, where each membership function is given a label, and each fuzzy variable
can be combined with these labels in simple if-then rule sets using fuzzy logic operators
which are analogous to the familiar logic operators. For example, a simple thermostat
controller might have a fuzzy input variable representing temperature (called Temp), and a
fuzzy output variable representing the control reaction (Control). These fuzzy variables
might have a membership function labelled “Hot” (for Temp) and “Large” (for
Control). One rule in the control system might then be:

if Temp is Hot then Control is Large

Fuzzy systems derive their strength from this simple linguistic specification, which
gives them the ability to quickly and easily map domain knowledge into a structural
representation. A further strength is their ease of implementation in digital hardware using
simple low precision logical and arithmetic operations.

Genetic algorithms or GAs are used primarily for optimization [60]. One key strength
is a feature called mutation, which has the potential to find new, possibly better, minima
when traditional learning algorithms become stuck within a specific local minimum. In
other words, GAs performs a broad analysis of the given data space, which for example
can be used to determine the starting point for a more traditional minimization algorithm,
an ANN learning algorithm, or the parameters of membership functions with respect to
the universe of discourse of a specific fuzzy system [48].

13

The transport bandwidth controller combines the knowledge processing of fuzzy
systems with the learning facilities of ANNs, to combine their strengths in the form of
Fuzzy Neural Networks (FNNs). The structure of the network will be based on the
linguistic labels and rule sets, with learning performed by a fuzzy version of the back-
propagations algorithm as proposed in [51] developed in [56] and [57] and completed in
this thesis.

Genetic algorithms for parametric optimization will not be incorporated as the initial
control design is to be kept as general as possible, and therefore does not need any initial
optimization. GAs could be utilized to determine a more optimal starting point, but that is
not the focus of this work. For further information on genetic algorithms see [61], on
ANNSs see [59], and on fuzzy systems see [53].

This will require the specification of a general rule set, the key to which is the
identification of pertinent variables, and training data (pairs of input variables, and target
outputs).

1.6 Novelty

The primary novelty in this thesis is the specification of a new transport layer protocol,
VTP, and the derivation of an extended generalized delta rule for back-propagation which
encompasses logic-based as well as arithmetic neurons.

The bandwidth limitations of TCP were well known since the introduction of the
protocol, as has been the potential benefits of using negative rather than positive
acknowledgement. VTP encompasses many of the ideas that have been proposed for
replacing/improving TCP.

There are several unique features in VTP, including the use of computational
intelligence, via fuzzy neural networks, to try to classify and respond according to
changing network conditions. A specific derivation of the fuzzy back-propagation
algorithm is presented for general referential neurons using hardware-friendly triangular
norms, together with a scalable digital hardware realization (incorporating in-situ
learning).

Regardless of the control scheme used, VTP offers additional unique features
including a built in level of acceptable packet loss towards the goal of maximizing
bandwidth utilization, a separate control plane, and versatile connection and reliability
settings.

Part of the versatility of VTP comes from the encapsulation of session and
presentation layers, moving some aspects of reliability and connection management out of
the core transport, and reducing the processing overhead at the transport layer. In addition,
the session and presentation layers form the basis of re-admitting security as an aspect of
reliable transportl, through native support for authentication and encryption.

1. This may be a redundant feature with the spread of IP-Sec [46] and IPv6 [47].

14

I1. The Versatile Transport Protocol

In this section the proposed rate-based transport protocol, Versatile Transport Protocol
or VTP, will be briefly discussed, highlighting the salient features and their relationship to
the control system. This is followed by a more detailed description of the control system
itself, which is comprised of local connection management and a global bandwidth broker.
The local controller manages each data flow or connection, while the global controller
oversees all of the flows.

An application, called Phat, has been modified and used to emulate the rate-based
control of VTP. Phat is a bulk transfer application using the FSTP protocol developed in
[63]. The author’s role in developing FSTP and the Phat application, based on UDP and
using negative acknowledgement provided the initial inspiration for developing a general
transport layer protocol using rate-based control to maximize bandwidth utilization.

Being an application, Phat runs over UDP, which allows Phat to implement its own
rate-based control structure. After outlining the VTP protocol, the Phat application will be
described together with the relevant extensions needed to support multiple connections
with independent control.

2.1 Overview

The Versatile Transport Protocol, is a transport layer (layer 4) protocol whose main
goal is to maximize the use of available bandwidth for a general data network. As the
name implies, VTP strives to provide a flexible range of services to support different
classes of applications. Included in these services is a reliable transport service through the
use of negative rather than the positive acknowledgements that are used in TCP.

Essentially, negative acknowledgements are retransmission requests, which can be
thought of as an acknowledgement of missing data. An important note here is that VTP
does not actually propose to reduce the volume of network traffic, although it does try to
limit retransmission through active requests rather than passively as with TCP.

As illustrated in Figure 2.1, VTP has two levels of control. A global control unit
manages all connections, as well as interactions from the network, applications and the
operating system. The second type of control is at the level of individual connections, with
each connection having a separate local controller that is responsible only for that
connection and which interacts with the global controller (when and if necessary).

Figure 2.1 also illustrates another important addition of VTP: it incorporates an
extensible framework for the presentation (OSI layer 6) and session (OSI layer 5) layers.
TCP/IP was never designed to fit into the OSI framework, nor was it intended to provide
additional service above the transport layer. The result is that many useful and
standardized features, such as authentication, data compression, and encryption have had
to be added on to all TCP-based applications that desire these functions, much like
reliability needs to be added to applications using UDP.

15

Application
Control lDataT

Encryption

™ Compression Presentation Layer
Error Detection / Correction

v 4

R Hand shaking .
Authentication Session Layer

v 4

h 4

Global
Controller

Transport Layer

Connection

Connection

;)
@

!

Figure 2.1 : The flow of data through the VTP architecture is shown by the
heavy arrows, and control by the lighter ones. The global controller
receives connection requests, allocates a new connection setting up the
presentation and session layers as requested, and passes control to each
connection’s local controller. An application can request one or more
presentation or session layer functions, or bypass them altogether and go
directly through the VTP transport layer.

Any session and presentation headers need only be used during initial connection
setup. After setup the header information is associated with each flow within the local flow
controllers at each endpoint.

In addition VTP follows the design goal of supporting a range of services. In particular
different connection schemes could be used to provide a desired level of service, while
simplifying the actual transport mechanism and data packet headers.

16

The presentation layer is the perfect place to standardize many functions which are
typically left entirely to the user, and in additional overlapping and often conflicting
applications. If requested by the application, the data can first be transformed by the
presentation layer by adding any or all of the requested features. These features might
include encryption, compression, and error detection/correction algorithms. New
categories of transformations and specific instances of each presentation type can also be
easily added as new standards are introduced.

The session layer is thus being used to manage specific forms of connection-oriented
service above and beyond basic VTP service. This can include TCP-like handshaking and
secure authentication among others. The session layer is designed in a similar fashion to
the presentation layer, specifying connection classes followed by the specific connection
algorithm.

Two bits will be used in the transport header to indicate if either the presentation and/
or the session layer has been requested for this flow. Error detection for the data is
automatically handled by the presentation layer, and is not included in the VTP checksum.
This will speed up general processing at the transport level, which can improve the
performance of layer 4 switching1 even if error detection is enabled.

Furthermore, in separating this functionality from the core transport two of the aspects
of reliability - establishing and ending connections and error detection - have been made
available.

The VTP presentation and session layer headers follow the same simple structure
(shown in Figure 2.2); a category field followed by the header length and checksum and
then one or more specific sub-header fields, one for each category requested. The category
field is a collection of bits concatenated together to represent a small number of categories
(32 bits). The sub-header field(s) contains an integer representation (16 bits) of the desired
algorithm/protocol for the specified categories.

< 32 bits >

Category
Length Checksum

Figure 2.2 : Generic Presentation/Session Header

The next section provides a more in-depth look at rate-based control and the
hierarchical control structure of VTP.

1. Used for a variety of purposes such as classifying/priorizing traffic, implementing firewalls and
network address/port translation, as well as load balancing.

17

2.2 Rate-Based Control

The remaining aspects of reliability - flow control, re-transmission and re-ordering of
packets - are provided through rate-based control. This control incorporates negative
acknowledgments, packet (rather than byte) numbering, and buffer management. In
addition, the level of control interaction can be varied to provide tight or loose control of
each flow. By varying these parameters VTP can provide data transport ranging from a
TCP-like service to a UDP-like service.

A separate control plane will provide connection setup and negotiate the initial service
for each data flow as well as provide any active feedback throughout the span of the
connection. The control information can be sent in separate control packets, or in a
concatenated header with a data packet. The type of header/packet is specified using two
flag bits: one for data and one for control (see Figure 2.3).

Rate-based control in VTP is accomplished in a hierarchical manner. A global
controller oversees the allocation of available bandwidth, while local controllers initialize
and monitor each flow, overseeing the desired level of reliability, signalling to change the
bandwidth utilization characteristics as necessary.

Two parameters are used to characterize bandwidth: burst size and delay. The burst
size specifies how many packets to send in a single burst (one right after the other); the
delay then specifies how long to wait between bursts. Together with the packet size, this
specifies the bandwidth of a connection, as well as the pattern of the traffic.

Once a connection is established, the incoming data flow is monitored and the rate
parameters can be altered based on packet loss statistics, or updated bandwidth allocation
from the global controller.

Recall that data loss can be characterized as either loss of data in the network (due to
congestion, network outage, etc.) or loss of data at a host (due to buffer overflow). In
performing rate-based control it is desirable to diagnose the cause of packet loss into
categories that may cause the rate of the flow to be changed. For example network
congestion is different from re-routing around a network problem. At the host, buffer
overflow is different from corrupted data. Finally there is real packet loss vs. packet delay.
Since the control is active, packet loss is calculated periodically. A packet may thus arrive
after a re-transmission request has already been generated. This is typically detected when
duplicate packets are received.

2.2.1 Global Control Mechanism

~ The global controller directly monitors the interface with the application, sets up local
connections as required, and monitors and responds to requests from local connections for
changes in parameters.

At the level of the local connection VTP is a greedy protocoll, it is up to the global
controller to allocate bandwidth and ensure that bandwidth exists for new connections or

1. With VTP a single connection will try to use all of the available bandwidth, choking off any
additional connections - i.e. there is no inherent flow control with negative acknowledgements.

18

data flows (possibly including those made with non-VTP transport protocols). As such the
global controller must be able to dynamically re-allocate bandwidth as new connections
are started or finished.

When demand for bandwidth exceeds that which is available, the global controller can
use parameters from the user, application or operating system to priorize bandwidth
allocation among the connections.

< 32 bits >
I R B B S R R R
Source Port Destination Port

Flags Header Length Data Length

Checksum Future Use

Packet Index

Figure 2.3 : VTP data packet header - The data header consists of two fields
to identify the source and destination addresses, flags to indicate the type of
header, and whether or not the data is being passed to the session or
presentation layers. A header length field allows for optional concatenation
of control fields. A data length field indicates how much of the fixed size
packet is data. A header checksum for error detection, and finally a packet
index to uniquely identify a packet within a flow (this may be made
optional in the future).

2.2.2 Local Control Mechanism

In VTP each local control unit is responsible for only a single connection. Such a
control unit directly controls the VTP I/O buffer for that application, monitors the state of
the connection, requests re-transmission as required, and also initiates and tears down any
connections. Finally the local controller is responsible for interacting with the global
controller, which determines the overall bandwidth allocation among individual
connections.

Like other transport protocols using negative acknowledgement, to provide fully
reliable service, VTP actively manages the I/O buffer to ensure lossless flow control.
When a connection request is made, the buffer size is negotiated (similar to the window
size in TCP) with a maximum buffer size of 2432 packets (matching the index field in the
VTP header). Packet size is also negotiable (with a side goal of minimizing the fracturing
of packets). Once set, the packet size remains constant for the life of the connection, with
padding added if necessary. A length field is specified in the header to indicate the size of
the data in the packet.

For bulk data transfer, where the data size can exceed the buffer size, the transfer is
broken up into segments that are equal to or less than the buffer size. The local controller

19

assigned to manage the entire data transfer maintains a single control connection with the
remote host, and initializes each segment as a separate data connection. At the end of each
segment, a segment complete control packet is sent (wWhich may be concatenated into the
request for the next data segment). This maintains flow control for bulk transfers. A timer
at the sender will time out if no re-transmission or “segment complete” packet is received
and will also free up the allocated buffer. Thus, the onus is entirely on the receiver (the
data segment requester) to initiate all packet transmissions, a departure from TCP. Also
unlike UDP, the transmissions will stop after any given segment if no further segments are
requested.

In this manner a fully reliable connection-oriented service can be implemented, which
would approximate the service of TCP with Big Windows [26], except that the equivalent
maximum window size would be greater than 2742 bytes (2432 packets, with > 2710
bytes/packet), rather than 2730 bytes as with Big Windows.

The actual transmission rate will be guided by additional parameters that specify the
number of packets to burst followed by a delay before the next burst. Together these two
parameters control the rate and the shape of the data transmission.

Figure 2.4 illustrates a sample VTP session for just such a reliable bulk data transfer
using explicit control and data packets. In this transaction, Host 1 initiates the connection
to request that a data file be transferred from Host 2. In the initial control packet the data
rate is specified by the burst size and delay, and the file segment size is set to match the
available buffer (assigned by the global controller). Host 2 responds that the connection as
specified is accepted, and Host 1 transmits the actual data request as its only data. When
the data is passed to VTP, Host 2 begins to transmit the data in the agreed manner.
Periodically, Host 1 evaluates the received packets and determines if the rate should be
adjusted (and if so sends a control packet with the adjustment). At the end of each received
segment Host 1 acknowledges the entire segment, and requests the next segment. This
continues until the final segment is received, and the connection is closed.

If any packets are missing in a segment, Host 1 generates the necessary re-
transmission request(s) before acknowledging the segment and waits for the missing data
to be sent.

It is also possible that the rate must be adjusted at host 2, to accommodate other VTP
sessions. In a reliable mode, any changes to the agreed-upon parameters will be
transmitted from sender to receiver, even though a throttle back initiated by Host 2 should
not affect Host 1 directly, and Host 1 can actively monitor this change via the incoming
data rate.

2.3 Phat Application

This section presents a general look at the Phat application [62], focusing on the
mechanisms useful for emulating VTP. Following this, the modifications to Phat made to
support multiple connections, the fuzzy neural controller, and other elements required for
emulating VTP are highlighted.

20

Host 1

Send Session Request

Session granted
Send Data Request

Receive Data

Receive Data

Receive Data

L]
Evaluate Parameters
Send New Parameters

Send Done Segment /
Request Next Segment

Send Done Segment /
Close Session

P —
—
— —

—

— —
— —
—
— w—
—
—

Host 2

Receive Session Request
Generate Local Control
- Accept connection as offered

Wait for application to respond

Begin First Segment
Burst block of ‘n’ packets
Delay ‘m’ msec

Burst block of ‘n’ packets
Delay ‘m’ msec
Burst block of ‘n’ packets
Delay ‘m’ msec

Receive New Parameters
- Update ‘n’ and ‘m’

Send last block <= ‘n’ packets
- first segment

Begin Second Segment

Last Block of Last Segment

Figure 2.4 : A sample VTP session for reliable bulk transport. Dashed lines
represent control packets, and solid lines represent data packets. Host 1
initiates a VTP session with Host 2, which accepts the parameters. Host 1
then transmits data to the application on Host 2 (requesting a file to be
transmitted). As soon as the application on Host 2 responds, the first
segment of the data is immediately transmitted in burst blocks of ‘n’
packets each with an ‘m’ msec delay between blocks. This is continued
until the segment is complete, at which time Host 1 can request the next
segment, or until all segments are received and the VTP session is closed.

21

The three main Phat client classes (modified for emulation) are presented in Appendix
A. These classes are used to implement the global control (FSTPControl.java), the local
control (PhatClient.java), and the data/packet handling (FSTPClient.java).

2.3.1 Overview

Phat! is the name of a client server application that uses phat packets (embedded in
UDP packets) to provide a reliable bulk transport with negative acknowledgements [62].
Phat uses separate connections for data and control, similar to FTP [66], however the data
flow is over UDP, while the control flow uses TCP.

The rate is specified using two parameters, a block size and a delay. As illustrated in
Figure 2.5, the block size specifies how many packets to transmit over the network at one
time (also known as the burst rate). This is followed by a delay, presumably for the
receiving network to clear its input buffer. By manipulating these two parameters it is
possible to set the bandwidth usage characteristics on a flow-by-flow basis. Originally
Phat transferred bulk data as a single complete file. Figure 2.5 illustrates a modified
version of Phat which breaks up the data into multiple independent segments. This will be
explained in more detail in the next section.

Bulk Transfer:

One Segment

Delay H Delay PRIP
I

Block Size

Phat
Packet

Figure 2.5 : Bulk data transfer with modified phat - Data is partitioned into
segments. Each segment is composed of burst blocks of phat packets. The
phat packet is the basic unit of transfer. The segment size specifies how
often the connection parameters are evaluated.

The traffic characteristics of a flow can be modified at any time by the receiver,
however Phat opts for a periodic examination of the received packets to determine if the
rate should be adjusted. This is done by combining the perceived packet loss with a
predefined acceptable level of packet loss, as illustrated in equation (1):

adjustment = (perceived packet loss)_1 - (acceptable packet loss) 1)

Phat specifies the acceptable packet loss as a percentage of received packets called
alpha. The perceived packet loss is then the ratio of packets expected to packets

1. a.k.a. Cool.

22

received. Note that this is a perceived (and not an actual) loss as it does not account for
out-of-order or delayed packets.

The calculated adjustment is a multiplier term for the delay parameter: if less than 1
the delay is decreased (increasing the rate of transmission): if greater than 1 the delay is
increased (decreasing the rate of transmission). The adjustment has a fixed upper bound
(equal to two) to help reduce short term over-correction, and a lower bound of alpha
when no packets are lost.

2.3.2 Modifications

The basic Phat client/server was first modified by [63] to split a bulk transfer over
multiple connections to one or more servers. To do this, each file transfer is broken up into
fixed-sized segments. A segment is defined to be a certain number of phat packets. Each
segment is transferred as an independent data flow, handled in the same manner as
described in section . Each connection has a single control flow which manages the
download of many data segments. Each data segment is assigned to a connection in a
round robin style as the previous segment is completed. Overseeing each connection is a
single multi-connection handler.

This provides us with a hierarchical control environment for VTP: a local control for
each connection (which may include multiple segments), and a global control over the
entire data transfer.By treating each connection, which are assigned multiple data
segments, as an independent VTP connection, it is possible to emulate the basic operation
of one or more VTP sessions using Phat.

The remaining part of this section details the additional changes made to the Phat
client and server to emulate and experiment with the VTP controllers.

Client

All of the active control comes on the client side. The client initializes buffers, signals
the server, monitors the data transfer, requests retransmission and requests changes in
fransmission characteristics.

There are three basic parameters for controlling the flow of data: the block size, the
delay between blocks, and the segment size. It is also possible to change the packet size,
although for reliability (packet-oriented not byte-oriented) this must remain constant
within each segment.

Since the control decisions are made at the client, the client requires a new control
method that could incorporate the FNN architecture described in Chapter 3. In addition,
the client needs to be modified to generate input and output for training the controller.

The nature of the emulation environment limits the information that can be used in
making a control decision. The most reliable information available is the perceived packet
loss. In addition, it is possible to determine some timing information which could be used
to estimate the inter-packet arrival delay and bandwidth usage.

As the controller is experimented with, these parameters will need to be calculated,
and a history maintained. Their precise usage is detailed in Chapter 4.

23

For testing the hierarchical control, the global controller of the client was modified to
keep track of the number segments allocated to each connection, and after a pre-defined
number of segments, to re-evaluate the bandwidth allocation, based on performance and a
priority value.

Server

Modifications to the server were minimal, and were made with the goal of being able
to emulate specific network conditions. This was done by adding a statistical packet
dropper, which can be set to drop a pre-set percentage of packets according to a variety of
statistical distributions.

Emulating different types of sessions, and network conditions, was handled by using
separate servers with predefined characteristics.

24

II1. Fuzzy Neural Networks (FNNs)

To introduce the fuzzy neural controller implemented for the VTP, an overview of the
building blocks of fuzzy neural networks is presented including the fuzzy neurons
themselves. This encompasses two main topics: the structure of the fuzzy neurons, and
fuzzy neural learning.

The fuzzy neural structure is presented through a mathematical description of the
aggregation process that makes up the two basic fuzzy neurons, the AND and the OR
neurons. This is followed with the addition of referential parameters to further extend the
basic neurons. At the end of this section it will be shown that all fuzzy neurons can be
considered referential.

With the foundation of fuzzy neurons in place, generic neural learning is examined
together with the relationship between learning and the triangular norms (the fuzzy sums
and products) and related fuzzy operators. Specific learning rules are then derived using
specific triangular norms.

The structure of the fuzzy neural networks that are of interest are multi-layer feed-
forward networks [54]. Accordingly a back-propagation algorithm is developed for logic-
based neurons which requires modifying the generalized delta rule [59] to form an
extended generalized delta rule. This extended rule is then shown to hold for both classic
(arithmetic) and fuzzy (logic-based) neurons.

During experimentation, further modifications were made and a specific Fuzzy Back-
Propagation algorithm was developed. This does not change the need for, or the usage of,
the extended generalized delta rule. The algorithm is presented in Chapter 5, together with
the rest of the experimental results.

Finally, the Brain Construction Kit (BCK) [65], an open source Artificial Neural
Network package, will be introduced. This software is used as the basis for the FNN. This
section concludes with a description of the extensions to the BCK to support the two
classes of fuzzy neurons (conjunctive/disjunctive), and an FNN with Fuzzy Back-
propagation.

3.1 Fuzzy Neurons

Fuzzy neurons are logic-based processing units which use logical sum and product
(OR and AND respectively) to perform an aggregation of weighted inputs. The OR and
AND operations are realized through the standard fuzzy set connectives - triangular norms
[54], with the s-norm for OR and t-norm for AND.

25

Triangular norms are defined as a mapping of:
[0,1]x [0, 1] — [0, 1]

with the properties that these functions are:
* non-decreasing (in each argument)
* commutative
e associative, and
* bounded.

Where s-norms have the boundary conditions:

x50 = x xsl =1
and t-norms have the boundary conditions:

xt0 =0 xtl = x

Unlike classic neurons, fuzzy neurons do not require an additional activation (or
squashing) function as the triangular norms by definition produce a bounded output.

The next sections describe the basic aggregative logic neuron and then the compound
referential logic neuron. This is followed by the extension of these two neuron types to
include referential operations.

3.1.1 Aggregative OR and AND logic neurons

An n-input OR neuron realizes a mapping [0,1]" — [0,1]. This mapping is
accomplished by first combining the inputs ANDwise with their corresponding
connections (weights) while the aggregation is carried out ORwise - i.e. a sum of products.
This is denoted by

¥y =OR (x; w) @
with its coordinate-wise description given by:
y = (x; AND w;) OR (x AND w,) OR . .. OR (x, AND w,) ?3)

where w= [wy, w,, ..., w,] € [0,1]" denotes the vector of connections (weights) of the
neuron.

Substituting triangular norms for the logical sum and product, the function of the OR
neuron can be reduced to the following aggregation:

[x;tw;] @
1

<
I
Il Th =

i

The AND neuron performs the complementary operation, a product of sums, with the
OR and AND operators interchanged. First the inputs are linked ORwise with the
corresponding connections then the final aggregation is carried out ANDwise:

y= AND (x; W) = (x; OR w;) AND (x, OR w,) AND ... AND (x, OR w,))

26

Employing the notation of the triangular norms, the above expression becomes:

n

y = T [xiSW,'] (6)
i=1

The role of the weights in a fuzzy neuron is to differentiate between particular levels of
impact that the individual inputs might have on the result of aggregation. Owing to the
boundary conditions of the triangular norms, one may note that higher values of the
connections in the OR neuron cause a stronger influence on the output of the neuron than
the corresponding inputs. The complementary weighting (ranking) effect takes place in the
case of the AND neuron: the values of w; close to 0 make the influence of x; almost
negligible. The specific numerical form of this relationship depends upon the triangular
norms being used in the neuron’s implementation.

The OR-type neurons perform a disjunctive form of aggregation, which is described as
an “optimistic” character of the final aggregation. Similarly, the AND neuron performs a
conjunctive form of aggregation and is characterized as being “pessimistic”. What this
means, is that given the same set of inputs, the output of the OR neuron will never be less
than that of the AND neuron. Another way of thinking of this is the old saying “is the glass
half empty or half full?”.

3.1.2 Referential logic-based neurons

A second category of neurons can be built by extending the basic aggregative neurons.
These neurons are useful in realizing reference computations and are thus called
referential neurons.

The main idea behind this structure is that the input signals are not directly aggregated,
as with the AND/OR neuron, but are first compared to a given reference point. The results

Referential Neuron

A
1 OR

Xy — —>©/ Aggregative
Neuron

Figure 3.1 : OR aggregation - Topology of a disjunctive type fuzzy neuron
with referential operations on the inputs. By separating the referential
operation like this, it is possible to think of all fuzzy neurons as referential.
Aggregative neurons are thus referential neurons with REF(x; Ip) = X.

27

of this comparison (involving such operations as matching, inclusion, difference, and
dominance) are summarized by the aggregative part of the neuron. In general, one may
describe the reference neuron as:

y = OR (REF(x; 1p,),w) 7

(a disjunctive form of aggregation), or
y = AND (REF(x; ry),w) @®)

(a conjunctive form of aggregation) where the term REF(x; rp) represents a reference
operation carried out with respect to the provided point of reference (rp). In fact, these
neurons can be treated as an initial level of reference operations REF(x; r,) followed by
either an AND or an OR neuron as illustrated in Figure 3.1.

The functional behavior of the neuron is described according to the reference
operation (the reference formulas shown below pertain to the disjunctive form of
aggregation),

(i) The MATCHING neuron: indicates the degree to which x is similar to the given
reference point r = [r,, e I,]

y = MATCH(x; r, w) ©

The coordinatewise notation of the neuron reads as:

n

y= 8§ Wx=r)mw] (10)
i=1

where r € [0,1]" is a reference point defined in the unit hypercube. To emphasize the
referential character of the processing carried out by the neuron, one may rewrite (9) as:

y=0R(x=r; w) (11)
The matching operator is defined as follows:

1 - 5 T
asb = §[(az(pb) A (b@a) + (apb) A (boa)] (12)
where ‘A’ denotes minimum and a@b = (a— b) = sup(c € [0, 1]llatc £b) , usually
referred to as a multi-valued implication or residuation operator. Examples of these fuzzy
implication operators are shown in equations (27) and (28).

(ii) The DIFFERENCE neuron: summarizes the degree to which x is different from the
given reference point g. The neuron’s output is interpreted as a global level of difference
observed between the input x and the reference,

y = DIFFER (x; w, g) (13)

or,

y [w;t(x;| = g))] 14

1

]
HTn =

28

As before, the referential character of processing is emphasized by rewriting (13), so that:
y=OR (x|=g W) s5)

where the difference operator is defined as the complement of the matching operator,
algb=1-(a=b) (16)

(iii) The INCLUSION neuron: summarizes the degree to which x is included in a reference
point £, (i.e. the degree to which x implies f),

y=INCL(x;f,w)=0OR(x — f,w) a7

Or,

[wt(x; — f)] (18)
1

Y

[
T =

i

(iv) The DOMINANCE neuron: expresses the dual relationship to that carried out by the
inclusion neuron, where h is a reference point. In other words, the dominance relationship
generates the degree to which x dominates h.

y=DOM (x; h, w)=OR (h — x, w) (19)

or,

[w;1(h; — x;)] (20)
1

y =
i

Il Ch =

In general, any fuzzy neuron can be described as a referential neuron. In the case of the
purely aggregative neuron it can be said that it actually implements the function
F(Xijs rj) = X To this end the equation for the OR neuron (4) generalizes to:

n
y =],=5':1 [F(xkj, rj) t Wj] (21)

and similarly the equation for the AND neuron (6) generalizes to:

[l

y =,

L [F(xkj, r;) s wj] (22)

3.2 Fuzzy Neural Learning

Learning with fuzzy neurons is typically described in the literature ([54]167][681[69]
[70][71]) by first defining the network, and then deriving a specific learning rule to match
the network being implemented.

This section will derive the basic fuzzy learning rules for modifying the connection
strengths (for referential parametric learning please see [57] for a complete derivation).
This will be extended to a back-propagation algorithm for logic-based neurons which

29

requires an extension to the generalized delta rule to accommodate these logic-based
neurons. In this manner, a generic environment will be developed for multi-layered feed-
forward FNNS.

As a starting point the basic learning rule using gradient descent is stated. Given a
connection from neuron j to neuron k with strength w (the weight), we have:

new old oF

where o is the learning rate and E is the error function, which is given by the sum of
squared errors! between a desired output (the target) and the actual output (0):

1 n
E = 3 Z (target; —-ok) (24)

This yields an error gradient of:

oE 0 |1 2
57"; = W{i 2 (target, — 0y) j (25)

By applying the chain rule with respect to the actual output we get:

-ai- = —(target, — 0,) aok
oW L oWy

(26)

To continue developing the learning rule, it is first necessary to specify both the type of
aggregation (AND, OR) as well as the specific triangular norms being used.

3.2.1 Learning and Triangular Norms

Not all triangular norms may necessarily be good choices for performing learning. Of
particular concern are the norms whose respective partial derivatives are zero over a
certain range of the unit interval, and thereby impeding learning as detailed in [51]. An
evident example is the minimum operation where regardless of the definition of the
derivative at x=a, its value is zero for all x greater than a,

1 x<a
ga;min(x, a) = 0 x>a
undefined X =a

1. It should be noted that a second order error function was chosen to more closely follow the stan-
dard backpropagation in this derivation. However the approach used to determine and extend the
generalized delta rule for FNNs is equally applicable to a first order error function which has
been shown to be applicable to Fuzzy learning [53].

30

To overcome this limitation, the Boolean (two-valued) predicates are relaxed as
proposed in [51] by fuzzifying the derivative. This solution uses the inclusion relation to
provides a smooth (multi-valued) transition between the boundary points. This relation is
performed using an implication operator such as the Lukasiewicz (27) or Godel (28)
implication:

l-a+b ifa>b
Lukasiewicz: a —> b = 1) 27
otherwise
b ifa>b
Godel: a—b = 1) (28)
otherwise

where: a, b € [0, 1] . This helps to clear the way for hardware implementations [56][57]
which tend to favor triangular norms such as minimum, maximum, and the Lukasiewicz
connectives:
-Lukasiewicz and operation:
atb=max [0, a+b-1] 29)

-Lukasiewicz or operation:
a s b=min [1, a+b] 30)
where a,be [0,1].

Although a software implementation can make use of more flexible triangular norms,
it is desirable for the target application to select hardware-friendly operations. However, it
should be noted that this choice can be changed with minimal effort in the BCK software.

The remainder of this chapter will derive specific formulae based on the Lukasiewicz
triangular norms and the implication operation.

3.2.2 OR Neuron

It is important to note that the presence (or absence) of the referential function does
not impact the learning of connection strengths [57]. Therefore, for notational
convenience, the derivation for the OR neuron will continue to use the definition of the
disjunctive neuron from (4) rather than the more general definition in (21).

The derivation of the error gradient (26) now becomes:

o8]
&

|

Q)|

n
0
= —(target, — 0) - S [x-k 4 W‘k] 3D
Wik ¢ L PR

Now to carry out the detailed computation on the final multiplicand by first isolating
the aggregation of the component that includes the weight that is being differentiated:

31

n
S Lr t wyl = S [x, 2wyl s Lx e 2wyl
i=1 i#j

(32)

]

ming 1, S Lo £ wy]|+ [xj 2wl
i#j

Substituting for the specific triangular norms (29) and (30), and applying the chain rule
again, this time defining a %8s the aggregation of the j’th input with the weight connecting
neuron j to neuron k:

n
d d . 9,
I S X twyl| = E;(m’”(l’Ajk"‘ajk))a—wj." , Where Ay = S [x;p t wyl
and ajk = xjk t wjk (33)
0 CAj>ay
—a—(min(l,A‘ +a;)) = / L (34)
da; Jk Tk 1 <
Jk ,Ajk_ajk
daj _ {0 » Wik < Xjk 5)
aij 1 , ijZJaC

Substituting the inclusion reference, the derivative becomes:

n

d

T S xatwa| = mven@g, Ay - ovenow 3 (36)
J

=1

At this point it is worth noting that multiplication is in fact a t-type triangular norm,
and is often replaced by a generic AND operator [51]. This has many advantages in
generalization and implementation in hardware, however the multiplication will be left
here for use in developing the extended generalized delta rule. Once formulated the
product of those terms can, if desired, be replaced with a logical product.

3.2.3 AND Neuron
Beginning again from (26), the error gradient for the AND neuron using (6) is:

n
E__ ~(target ~ 0}) 5 9| T Ly s wy] @7
W ji Wikl i =1

(o8}

32

A detailed computation on the final multiplicand is achieved by first isolating the
aggregation of the component that includes the weight for that is differentiated:

n
i =1 i#j
(38)

max3 0, T[xikswik] +[xjkswjk]—1
i#]J

As with the OR neuron, we similarly define b ;i as the aggregation of the j’th input with
the weight connecting neuron j to neuron k, and apply the chain rule as follows:

n
0 9b
T T x,sw, a———(max(O By+by 1))8_wj.— , where B = T 1, 5wy
Mo ik i#]
_ (39
and bjk = xjk Ky ij
0 , B <b.,
ab s (max(0, By + by~ 1)) = { e (“0)
L By 2by,
ob 0 P> X
é_f_k = { Y 7 (41)
Wjk 1 Wi S X
Substituting the inclusion reference, the derivative becomes:
n
d
e T Xig S Wi | = INCL(By, bjp) - INC’L(xJk, %) (42)
Mi=1

For a complete derivation of learning rules for the FNN presented here (including
parametric learning of references), hardware implementation, and network
implementation please see Appendix C.

3.3 Fuzzy Back-propagation

Fuzzy neurons, more so than non-fuzzy neurons, form hierarchical multi- -layered feed-
forward networks, reflecting domain knowledge in the network structure. These rules can
be implemented as simple sums of products or products of sums reflecting if-then rules, or
far more complex structures involving many individual references at different levels of the
rule.

33

A back-propagation algorithm has been proposed [51][56] which is suitable for feed-
forward networks with hidden layers. However, the question remains: can the standard
back-propagation algorithm [59] which is based on the generalized delta rule be applied to
a logic-based aggregative network?

The next section introduces the foundation of the back-propagation algorithm - the
generalized delta rule. As it happens, a broader generalization of this rule is required to
allow for non-arithmetic summation and product operators. This new extended
generalized delta rule will then be derived, and shown to apply to both cases of arithmetic
and logic-based neurons. This will be followed by the derivation of the specific rules for
the aggregative neurons using specific triangular norms as discussed in section 3.1.
Finally, the set of referential learning rules will be presented.

3.3.1 The Generalized Delta Rule

The Generalized Delta Rule [59] uses the gradient descent of an error function to
update the weight value and learn the training pattern. For a training pattern, p, the change
to a weight in the connection from neuron i to neuron j is given as:

Aw;; = 08,0, (43)

If the neuron is in the output layer, the error function can be determined directly by
comparing the desired output (the target t) to the actual output (o). Using the sum of
squared error function (24), 6 pk for an output neuron k and training pattern p is:

6pk = (tpk—opk)-f’(netpk) (44)
where net is the net input to the activation function (f).

For a neuron in the hidden layer, the basic derivation is the same, except that the error
function is not directly known. Instead it is an accumulation of the partial errors from the
previous layer, relative to the connection strength between each pair of neurons. This will
be presented in more detail for the extended derivation, but for now the result for a hidden
neuron j and training pattern p is:

8, = ;(Spk-wkj)-f’(netpj) 45)

As it stands there are three problems with using the generalized delta rule with fuzzy
neurons. First, a feature of the fuzzy neurons is that they do not require an activation
function (f). Second, the last part of the rule (0py) is actually the derivative of the net input
to the activation function (netpj), which does not necessarily produce this result for a more
general aggregation of inputs. Finally, there is the delta itself, which needs to be further
extended to include a part of the derivative of nety;.

To solve these problems, an extended generalized delta rule must be developed. The
next section derives this rule following the same process as the derivation of the
generalized delta rule.

34

3.3.2 The Extended Generalized Delta Rule (EGRD)

In deriving the delta rule for the output layer it is key to recall that non-fuzzy neurons
specify an activation function which typically applies bounds and possibly a non-linear
transfer to the aggregated input. This is not necessary in fuzzy neurons, as the aggregation
step, be it conjunctive or disjunctive, automatically performs a normalizing function. In
fact, this is a highlight of the fuzzy neuron architecture [51].

To facilitate the extension of the generalized delta rule to include logic-based neurons,
the model used for the fuzzy neuron needs to be re-thought. Figure 3.2 illustrates the fuzzy
neuron in correspondence with the more traditional neuron architecture. This consists of:
weighted synapses (possibly with a referential transform of the input), followed by initial
aggregation, followed by an activation function.

Neuron k

Figure 3.2 : A traditional neuron view of a fuzzy OR neuron. The synapses
(arrows pointing into the neuron) can cause a referential transform as well
as a weighting of each input. These modified inputs are aggregated using a
triangular norm and passed to an activation function to produce the
neuron’s output.

Since the aggregating triangular norm requires no further transformation of the input, a
linear activation function is used in the above neuron model. Continuing with the
derivation of the generalized delta rule it is recognized that the output is simply the net
input to the activation function (denoted net) which is also the result of the aggregation.

To begin the chain rule is applied to the error gradient, as is done with the generalized
delta rule:

aEp aEp aopk anetpk

awjk aopk anetpk awjk

(46)

Then add one additional chain, by recognizing that the net input to the activation function
is a function of the weighted inputs. a ik is defined to be the aggregation of the output from

35

neuron j (possibly the output of a referential operation) to the weight connecting neuron j
to neuron k. Unlike the specific definitions, this aggregation can be either a product or
sum, logical or arithmetic - defined solely by the choice of neuron. This produces:

aEp _ aEp .aopk .anetpk.aapjk o
Owj, 00, Onety, da,; Owy
oE oE onet_, da,.
__P = —‘D. ' . Pk. p_]k - . 48
Owj 9o Tnetp) 0y Owy Op = f(nety) (48)

The first two terms of the RHS corresponds to the previous generalized delta.
Extending this to include the third term, the derivative of the net input with respect to the
specific weighted input from the j’th element becomes:

J0E oa,, oE onet
P _§° . _pik & v = P . p . Pk
= 0 pk 0 pk = f(net) (49)
awjk awjk aopk pk aapjk
and the extended generalized delta rule becomes:
oa,
— e pjk
Apwji = 08 g (50)

oE
Given the above rule, it is now necessary to determine the first term, 5~L, for both
output and hidden neurons. Opk

For an output neuron, k, the error function is directly known (24), and the derivative is:
_P - _(tk..ok) (51)

which yields for an output neuron:

onet
e , k
8 pk = _(tk—ok)f(netpk)"aa—pjf

(52)

For a hidden neuron, j, there is no target value, but instead a hidden neuron requires the
sum of partial errors derived from neurons in the next layer (k):

oE oE onet_, oa,.
ap: ap > pk_apjk (53)
Opj x Onelpy 0ap; Opj
oE oa,,.
DL P oY
pi k pj
which yields a hidden neuron error gradient of:
oa, .. onet .
8 = Z(Sepk'_'p-k]} “f(net) - =— (55)
p 00, PP dayy

36

3.3.3 Proof of EGRD

To prove that (50) is an extended generalized delta rule, it must be shown that the
EGRD does in fact reduce to either specific case of the classic (arithmetic) neuron or the
fuzzy (logic) neuron.

First, to show that the extended GDR reduces to the GDR for classic neurons, equation
(50) must be shown to reduce to (43) when implementing arithmetic product and
summation. Starting with the last term in (50):

Apwj; = ad’p kawp.j: pje = 95" Wik (56)
J
which now simplifies to:
Now focussing on the error gradient:
oE onet
8pk = ==L fi(net,;) —2P" (58)
aopk pk aapjk
and
dnet
Pk = net,, = Y a (59)
= , ¢ = &
aapjk p - j
so (58) becomes:
e BEP '
8pk = §o_k'f(netpk) 1=3, (60)
p

The extended generalized delta rule now reduces to the generalized delta rule, as (57)
becomes:

Aw. =ad

Wi ‘0, (61)

pk ¥

Next, to show that the extended GDR reduces to the learning rule for fuzzy neurons,
equation (50) must be shown to reduce to the results from section 3.2 for general
triangular (t and s) norms. This is relatively straight-forward as the main difference
between the extended generalized delta rule and the rule, formalized earlier, for the fuzzy
neural learning, is the derivative for the activation function. By choosing the linear
activation function to model the fuzzy neuron as a classic neuron, the derivative of the
activation function is 1.

oE dnet
8k = 5 Er 1 o2 62)
Opk pjk
da.. 0E_ Onet., Oa..
Aw; = aaepké_l’_f" =a P = Pk.a pik 63)
Wik Opk 94pjk Wik

37

Recognizing that net,, = 0, for a fuzzy neuron, this is what was calculated in (26) and
(33) for the OR neuron, and (39) for the AND neuron. This is why the product was not
replaced by a generic AND operation in (36) and (42).

3.3.4 Specific Hidden Layer EGRD:

For a neuron in a hidden layer, there remains one term of the hidden layer extended
delta that needs to be computed. This is the second term of the sum of back-propagated
errors, which weights the relative inclusion of each error from neurons in the forward
layer:

oa_
a_pff (64)
Opj
In fact, this is the only term that depends on a referential input as for the general case
for an OR neuron:

Substituting a ki into (64) and applying the specific t-norm gives:
dap; 9
50_1"1;].1 = a_0.p_j[max(0, F(opj, rj) + Wi~ D] (66)

At this point it is necessary to specify a specific reference function. However, it is
evident already that this will yield a result similar to (35) consisting of: an inclusion
reference between the three parameters of the weight, the reference value and the output of
the hidden neuron.

For the case of no reference function, (66) becomes:

da,,; 9
29 = % Imax(0,0.,+w, — 1)]
= L0+ Wy
aopj do,,; Pj J
= { 0 » Wij < Op; (67)
bowyzo,

i

INCL(wkj, opj)

3.4 The Brain Construction Kit (BCK)

The Brain Construction Kit is a Java package containing a group of classes designed to
facilitate an object-oriented and reusable resource for developing and implementing neural
networks [65]. Currently the BCK supports five types of networks: Hopfield, Kohonen,
Multi-Layer Perceptrons (MLP) using either Back-propagation or Quickprop, and Radial
Basis Function.

This section provides a brief overview of the BCK, focussing on the MLP with back-
propagation and how to extend this architecture to support FNNss.

38

3.4.1 Overview

The BCK is made up of two parts: BCK.ANN and BCK.GUTI:

* BCK.ANN is the core package, providing the classes from which neural networks
can be created and manipulated.

* BCK.GUI s a graphical user interface package that provides a flexible interface to
most of the features of the BCK.ANN package.

For the purposes of incorporating this as an internal control unit to the VTP, only the
BCK.ANN package was used.

One interesting feature of the BCK.ANN package is that it does not model the
connections between neurons in the neural network object, instead it maintains a separate
synapse object for this purpose. This is important for implementing the fuzzy neurons and
is discussed further in section 3.4.2.

The main classes of the BCK.ANN package are the BCKNeuron class and the
BCKNeuralNetwork class. As the names imply, these two classes represent a neuron and a
neural network, respectively, providing the basic methods or templates for methods. To
create a new neural structure one simply extends these classes to implement specific
processing functions for the neurons, as well as network building (for specific
architectures) and training functions for the neural network.

If additional functionality is needed by a specific type of neuron or type of network, it
may be necessary to add additional templates to the neuron and neural network base
classes.

3.4.2 Extensions

Extending the BCK.ANN package to implement an FNN was fairly straightforward,
with the exception being the modifications required to the synapse class.

To begin with, the neuron class was extended to represent a general fuzzy neuron
(BCKFuzzyNeuron). This class provides the basic triangular norms and reference
functions, as well as a data structure to indicate the type of neuron and to support
referential operations. This class is further extended by two classes, implementing the
AND and OR type of fuzzy neurons. For compatibility with the MLP these classes provide
a linear activation function. The last job of the neuron classes is to provide the necessary
functionality for determining individual terms in the extended generalized delta rule.

The neural network class was extended to support construction of a fully-connected
MLP style network (BCKFNN). Unwanted connections can then be removed by simply
setting the weight parameters appropriately. Since the fuzzy neural structure realizes a
mapping to [0,1] the neuron output is always excitatory. One method to add an inhibitory
feature is to use complementary inputs. This can be described as two parallel structures,
one excitatory and one inhibitory. These two structures are finally aggregated together to
determine which feature dominates the neuron.

This led to a problem concerning how to implement the complementary aggregation -
using a hierarchy of nodes, having neurons producing multiple outputs, or by modifying

39

the synapse class to model a parametric vector affecting the input.

The last method was chosen yielding a synapse with one input and one or more
outputs. In addition, referring back to Figure 3.2, it may be possible to move all referential
operations and parameter(s) to the synapse. This may be beneficial to other neural models
which desire more complicated synaptic modelling, and more consistent for learning
applied to referential parameters. Extending the synapse in this way is left for future work.

Finally, the FNN class was also extended to implement fuzzy back-propagation. This
class includes the main training method, as well as specialized methods for interacting
with the fuzzy neuron classes to build the extended generalized delta value for each
neuron, and to store this for use by earlier layers.

The following classes are included in Appendix B:

* BCKFuzzyNeuron.java

¢ BCKFuzzyORNeuron.java

* BCKFuzzyANDNeuron.java

* BCKFNN.java

* BCKFNNBprop.java

* BCKSynapse.java

The first five are the new classes added to support fuzzy neural networks. The last
class is the synapse class which underwent major revision, and is used to implement the

actual learning rule of the fuzzy back-propagation algorithm (which will be presented in
Chapter 5).

To make the fuzzy neural extensions more compatible with the rest of the BCK code, it
may be preferable to extend the synapse class into a fuzzy synapse, or bounded synapse
class. However, corresponding place holder methods will still be required in all of the
parent classes. This is also left to future work.

40

IV. The Experiments

To develop an experimental assessment of the VTP fuzzy neural controller, it was first
necessary to precisely determine how to relate the emulation environment (the Phat client/
server) to VTP. The first section in this chapter discusses the similarities and differences
between the Phat application and VTP, and the underlying network used for evaluation.
Section 4.2 provides a closer look at the fuzzy neural controller developed specifically for
operating within the Phat environment. The basic fuzzy parameters (dealing with packet
loss) are presented, and a fuzzy rule base is specified. Finally the actual fuzzy neural
network is derived from the rule base. In Section 4.3 the actual experiments are described,
focussing on the objective at each stage. This is followed by a discussion section which
introduces additional topics that naturally arise from the use of VTP,

4.1 Setup

To emulate VTP, the Phat application has been set up to run on multiple servers with a
single client. To make use of the Phat application, it is necessary to modify the overall
control rules to operate specifically within the parameters of Phat. A discussion of these
issues follows.

4.1.1 Phat Emulation

The general applicability of Phat as an emulation environment for VTP was discussed
in Chapter 2. However, in developing the specific controller and experimentation, it is first
necessary to look at how Phat can be used to emulate the operation of VTP.

Primarily Phat simply manages packet loss. It has no other goal to obtain or function to
follow. VTP on the other hand strives to maximize bandwidth utilization within the
confines imposed by the global controller, remote host, and network conditions.

Phat follows the simple rule that if packet loss is below an acceptable threshold then
the data rate can be increased (slowly); if the packet loss moves above the threshold then
the data rate must be throttled back. In this sense it can be thought of as performing part of
the goal of VTP, maximizing the bandwidth with respect to the network conditions.
However, with Phat there is no control over the underlying UDP buffers, and the current
implementation has difficulty servicing high data rates. Consequently, packet loss can be
quite high when using higher data rates, resulting in a severe choking of bandwidth. This
cannot be helped in this emulation, but in trying to minimize the effect of buffer loss, the
upper bandwidth of each connection is artificially limited (to 10msec - see Section 5 .3).

To emulate a lower bandwidth available from the server then requested by the client,
an initial bandwidth is chosen below the threshold bandwidth. Requests to than increase
the bandwidth can be thought of as the server receiving additional bandwidth from the
global controller, or as a recovery from an initial drop due to network conditions.

41

4.1.2 Network

The Phat emulation was run over a 10 Mbps Ethernet LAN. The LAN was semi-
isolated during testing (on its own switch port) and, consequently, the background traffic
was kept low.

The hosts are four workstations running Windows NT, three of which have the Phat
server running on them and one the client. The experiments initially focussed on one client
making a single connection to one server, for the purpose of testing the basic local control
for reliable transport and then for fuzzy neural learning.

The remaining workstations were later used to create multiple single connections, to
emulate multiple connection control via the global controller. This allows for simple
experimentation with priority and re-allocation of bandwidth. In this situation, each server
has its own settings, which overrules the standard local connection, forcing an explicit
setting of parameters rather and ignoring the traditional Phat adjustment response. It is
then upto the global controller (on the client) to determine if bandwidth should be re-
allocated among the concurrent connections.

Network problems are emulated through manipulation of the servers. By delaying or
dropping packets rather then sending them as expected, a variety of network conditions/
problems can be emulated.

Network conditions (such as a specific cause and characteristic of congestion) are not
being defined beyond the scope of these experiments, nor specify an all encompassing rule
set for the controllers. The goal here is to illustrate and evaluate the use of an adaptive (via
supervised learning) rule-based system for controlling VTP, in the case of spontaneous
network problems.

4.2 Fuzzy Neural Controller

The fuzzy neural controller is statically implemented within the local control thread.
When an initial connection to a server is made, the neural network is initialized (using
random weights), as are the fuzzy membership functions. The client thread can then call
one of two methods, fuzzyControl () or fuzzyTrain (). The first method returns
a crisp representation of the fuzzy controller output, which is mapped into the delay
adjustment parameter. The second is used to tune the weight parameters that affect how
strongly each rule affects its corresponding output.

The fuzzy controller is illustrated in Figure 4.1, with three distinct components [54].
The first component is used to fuzzify the inputs to the controller so that they are in a form
that can be used by the fuzzy neural network. These fuzzy parameters are then fed into the
ENN (the second component) which processes the input using a linguistic-based rules -
which defines the network connectivity - and produces the control reaction as a fuzzy set.
Finally, the last component resolves a crisp control value that can be used by the actual
mechanism under control (the Phat server). This last process is called de-fuzzification.

The remainder of this section goes into the specific details of deriving the fuzzy
controller, and concludes with a mapping of the standard fuzzy domain representation into
a fuzzy neural network.

42

I I
l [
! & |
input | o Fuzzy 'R | output
p———!—} § — Neural H 5)
I i Network 5 |
I Q |
| I
| I
b e e e e e e e e e e e -4

Fuzzy Controller

Figure 4.1 : The Fuzzy Controller. The design of the fuzzy controller is
split into three parts: a pre-processor used to convert (fuzzify) crisp values
to fuzzy numbers, which are then fed into the fuzzy neural network which
produces a fuzzy output of the desired control. This control is then fed into
a post-processor which converts (de-fuzzifies) the fuzzy number back to a
crisp control output.

4.2.1 Parameters

It is possible to describe a fuzzy controller as a set of rules responding to the error and
change in error of one or more parameters [54]. The most fundamental error parameter
available in Phat is the apparent packet loss (referred to simply as packet loss throughout
the remainder of this work). The default Phat control uses the packet loss by itself to
determine a parameter called the “adjustment” to adjust the delay parameter on the server.
Similarly, the fuzzy controller will use packet loss and change in packet loss as the input
parameters.

The packet loss and change in packet loss will be fuzzified in a traditional manner
using trapezoidal/triangular membership functions. Since packet loss is specified as a
percentage, its universe of discourse is bounded by 0 to 100% packet loss. Consequently
the change in packet loss has a range of [-1,1].

The fuzzy sets for packet loss are illustrated in Figure 4.2, with the humerical mapping
relative to the acceptable packet loss (alpha). The packet loss is characterized by five
labels (one per membership function), VS for very small, S for small, M for medium, L for
large, and VL for very large. In this case, a small loss corresponds to an acceptable loss,
and a large loss as unacceptable, with medium indicating room for improvement. The very
small and very large membership functions provide boundary conditions.

Similarly, the change in packet loss is defined as a fuzzy set with five membership
functions centered about zero. As with the packet loss, the numerical definition of each
membership function is based on alpha. The change in packet loss is thus characterized
by the labels zero change, and then positive large (PL) positive small (PS) negative large
(NL) negative small (NS).

43

(A) VS S M L VL]

0% 1-alpha 100%
B) NL NS Zero PS PL
|
-1 0 1
© Inc NC DecVS DecS DecL
alpha 2

Figure 4.2 : The fuzzy Sets for (A) packet loss, (B) change in packet loss,
and (C) the control (Phat adjustment).

The final parameter required is the output, or control quantity. To use the available
control mechanism, the output is mapped into a fuzzy set representing the adjustment
parameter. This fuzzy set is defined with five membership functions labelled Inc
(increase), NC (no change), DecVS (decrease very small), DecS (decrease small) and
DecL (decrease large). Once again the actual numerical mapping of the membership
functions are related to alpha, which now acts as a lower bound for the adjustment. The
upper bound of two (as shown in Figure 4.2) is also taken from the Phat control.

With the fuzzy sets defining the input and output to the FNN, it is now possible to
derive the actual rule set for the controller.

4.2.2 Rule Base

In a fuzzy system the rule base defines the overall control policy in an inherently
linguistic (rather than numeric) manner. Unlike traditional expert systems that try to
develop exact and precise conditions, the fuzzy rule base forms a generalization of the
desired control in a very simple and concise manner.

Let us recall that any fuzzy controller aims at mapping control rules of the form
IF input; is A; AND input, is By THEN control is ¢

44

where A;, B, and Cy come from a set of generic linguistic terms assumed by the
corresponding input and control variables. In this sense, the controller represents

qualitative domain knowledge by setting up conceptual links between the linguistic terms.

The rule base is then a concise representation of the IF-THEN control rules focusing
on the linguistic terms. The rules are specified in the form of a matrix with each axis
representing the labels, and the intersection of each label the rule.

The rule base for the VTP FNN is given in Table 1. It uses a two-dimensional matrix
with each row representing one label describing packet loss (i.e. a membership function),
and each column a label describing change in packet loss. The control policy (or rule) for
each combination of fuzzy input membership functions, is given at the intersection of
those membership functions.

Change in Packet Loss
NL NS Zero PS PL
VS Inc Inc Inc NC NC
2 S NC NC NC NC Dec VS
E M NC NC Dec VS | Dec VS | Dec S
& | L |Decvs | Decvs| DecS | DecL | DecL
VL | DecS DecL Dec L Dec L DecL

Table 1: Fuzzy Rule Set for Packet Loss

In this rule base each possible combination has a corresponding control action.
However, certain combinations of the input may never occur, or depending on the exact
quantification of the sets, combinations may not be possible. For example, the rule
corresponding to a very small packet loss and a positive large change in packet loss may
simply not be possible. The process of training the network to tune the weights should
allow for the effective pruning of both obvious and possibly less obvious rules.

4.2.3 Network Mapping

One of the main advantages of fuzzy neural networks is that they do not need to learn
their representation, instead it is provided through the domain knowledge of the rule base.
Learning is then used to tune rather than learn the rules.

For the rule base in Table 1, the first rule is stated as:

IF Packet Loss is Very Small AND Change in Packet Loss is Negative Large
THEN control is Increment

This control rule can be directly mapped onto the structure of the fuzzy neural network, as
illustrated in Figure 4.3. Observe that in the case of implementing the single rule, only a
single neuron is required. If a second rule is added that produces the same output, such as:

IF Packet Loss is Very Small AND Change in Packet Loss is Negative Small
THEN control is Increment

45

Packet Loss is VS
AND

Control is Inc

Change in Packet Loss is NL

Figure 4.3 : A mapping of the first rule into a fuzzy AND neuron.

Packet Loss is VS

OR
Change in Packet Loss is NL Control is Inc
AND

Change in Packet Loss is NL

Figure 4.4 : A mapping of rules into a multi-layer network.

Then the control structure begins to form a layered network in a sum-of-products form
(Figure 4.4). In this form each rule is combined in a single hidden layer consisting of AND
neurons (the condition layer), and the output layer (control layer) is formed by OR neurons
which summarize the control action.

In this manner the structure of the control NN can be determined directly from the
rule base (i.e. the linguistic description). The control structure has two input variables with
five possible conditions for each (for a ten-neuron input layer). This results in a condition
layer (without simplification) of twenty-five two-input AND neurons. This layer then feeds
into the control layer using one OR neuron per control action for a total of five output
neurons.

4.3 Simulations

Once the basic controller was in place, a series of simulations were designed to try to
emulate specific features of VTP. Together these simulations were meant to provide a
better understanding of the control process required by VTP and, specifically, to evaluate
the applicability of the FNN as described in the previous section.

4.3.1 General Operation

Once all modifications to the emulation environment are completed, it is first
necessary to verify the correct operation of the components. The first series of simulations
were thus designed to validate the use of negative acknowledgements, illustrate how this
can be used to maximize assigned bandwidth usage, and provide a baseline for further
simulations.

46

To accomplish this, the modified Phat was first tested with its original control. This
was followed by initial simulations to evaluate the FNN. Before proceeding any revisions
to the FNN, or emulation environment, were implemented as required. The final
introductory simulations include modest training of the network, with the goal of verifying
the correctness of the supervised learning scheme, as well as the back-propagation
algorithm and chosen parameters.

All of these simulations were performed using a single client and a single server. The
network was monitored using an independent machine to ensure there was no actual
congestion, thus any packet loss during the simulations could be traced to the host.

Together these simulations provided the basis for the VTP control, allowing the
investigation of specific features to continue.

4.3.2 Learning

The next set of simulations were designed to investigate the potential of training to
tune the weight parameters in the controller. These simulations again consisted of a single
connection between the client and server, but now with the server modified to emulate
some degree of congestion.

Tuning of the connection strengths in the controller was performed initially after each
segment had been transferred. During the transfer of a segment, the actual input/output
pairs were retained. After each control output had been applied to the network, a training
parameter was developed by monitoring its affect over the next group of packets, as well
as the cumulative effect over the entire segment.

4.3.3 Multiple VTP Connections

At this stage the testing was ready to simulate the ability of the global controller to
oversee each local controller, and observe the reaction of individual connections to these
changes.

The global controller monitors and allocates bandwidth to each of the local controllers.
By using multiple connections, implemented as a single connection to each of multiple
servers, it is possible to simulate the effect of the global controller when there is more than
one VTP connection. By providing different settings at each of the servers we can simulate
the bandwidth allocation to different types of applications. This could also be the result of
applications assigned different priorities".

The use of multiple connections can also be used to simulate concurrent flows
experiencing different network conditions. Again this is provided through different server
settings on each host.

4.4 Discussion

This section presents a short discussion on the application of VTP on the server side

1. Priorities can be provided via a user interface in the application, parameters of the application or
even from the operating system.

47

(which was not part of the emulation environment), and a brief look at some additional
characteristics which could be applied to the general control.

4.4.1 Server Side Global Controller

The global controller, unlike the local controllers, can develop a sense of the overall
network situation. For example, by monitoring connection requests, and usage statistics
from the local connections, the global controller can try to manipulate individual flows to
try to maintain some degree of service, providing graceful degradation rather than abrupt
system failure.

One example of such a catastrophic failure is the result of a malicious attack on a
server, such as a denial of service attack (DoS). A DoS attack attempts to make an
exceedingly large number of fake connections, using up network resources until a server
can no longer service valid connections [11]. At the very least this results in a loss of
service to valid connection attempts; at worst it can take down a server (and possibly the
network).

The VTP controller rules can be modified to try to provide a graceful degradation of
service under extreme load by re-allocating bandwidth and reducing the level of service
available to new connections.

Furthermore the global controller can try to classify the current condition and
determine if it is in fact due to a DoS attack. As this classification becomes more positive,
active measures can be taken to classify/drop hostile connections.

4.4.2 Alternative Parameters

The fuzzy controller developed in this thesis is based on one parameter of error, the
packet loss. It may, however, be useful to investigate other parameters that can be
calculated from packet arrival. In addition, there are many network metrics which if they
could be obtained reliably, would be very useful.

Delay Characteristics

Inter-packet delay (within a block) can be used to give the controller an idea of the
active jitter rate in the network. It may not be useful to try to match the data flow
parameters to this rate, but there may be some useful information, possibly over longer
durations such as during a bulk transfer.

As mentioned throughout the thesis, the packet loss parameter is actually perceived
packet loss. Another characteristic related to delay is the arrival of out-of-order packets,
specifically, but not limited to, those that have been characterized as packet loss and which
resulted in a re-transmission request.

Burst Characteristics

Instead of focussing on the individual packet, the data block that is burst can also be
evaluated. An error parameter could be based on what percentage of a block arrives, and if
they arrive out-of-order. Also, an inter-block delay can be evaluated.

48

Network Metrics

Possibly the most useful information would be actual information regarding the
current and changing state of the physical end-to-end network. Much work is being done
to develop both passive and active techniques for determining these characteristics [73].
Probably the most useful to VTP would be the Bandwidth-Delay-Product (BDP).

The simplified BDP is calculated by multiplying the round trip time (RTT), which can
be approximated! using the ping protocol, by the maximum bandwidth of the least
capable hop in the route from source to destination. Unfortunately, there is currently no
method for quickly and easily obtaining the maximum bandwidth of the least capable hop.

Nevertheless, as new measurement techniques are developed, it may be worthwhile to
investigate their usage in VTP.

1. Ping uses ICMP echo request messages which are not necessarily treated the same as TCP/IP
packets at intervening nodes (routers), or subject to data processing delays.

49

V. The Results

Preliminary results have been quite promising for using FNNs to provide for local
connection control in the emulation environment.

In the initial simulations the emulation environment was found to be generally
suitable, within certain guidelines. Specific problems encountered with the fuzzy
controller in general and the fuzzy neural network specifically were identified and
corrected.

The first two sections of this chapter deal specifically with these issues beginning with
a discussion of the fuzzy rule base and a redesign of the fuzzy controller. This is followed
by an investigation of a problem discovered with the learning algorithm, and the
development of a fuzzy back-propagation algorithm. Finally, a brief section summarizes
the general findings on using Phat to emulate VTP, with the modified FNN acting as a
local (per flow) controller.

The last two sections then discuss the results obtained from tuning the controller under
varying conditions, and the simulation of the effect of the global controller.

5.1 The Fuzzy Controller

Preliminary results after switching Phat to use the fuzzy controller, were quite good.
Starting with smaller file transfers (< 1 MB), the controller provided a reliable transport as
the bandwidth allocation to the connection was increased. However, over the lifetime of
the connection there was a general trend towards a reduced data rate, despite the fact that
the controller increased the data rate more often than decreasing it.

When larger files were used (> 20 MB) the delay quickly grew. The main difference
between the control of the smaller and the larger file being that the number of times the
delay is re-evaluated also grew. The problem was that the control value being generated
was quite small for most increases, compared to the magnitude of the less frequent
decreases.

By examining the specific numerical results, the problem became apparent. The fuzzy
set control had been designed based on the original control structure. In particular, the
universe of discourse and the membership functions had been made relative to alpha.
While this made sense for small corrective responses, it did not allow for a response to a
periodic large decrease.

The first change made was to extend the set boundary to accommodate a fast recovery
from any aperiodic large decrease. As the control action is multiplicative, the lower bound
was reduced to 0.5 for symmetrical control. Also, rather than defining a control action to
mimic the Phat control, the membership functions were reformulated in a more traditional
fuzzy sense. The new fuzzy set is illustrated in Figure 5.1, still using five membership
functions. These functions have been re-labelled as PL (positive large), PS (positive
small), ONE (no change), NS (Negative Small), and NL (negative large). This is a more

50

traditional approach centered about the zero change membership function (in this case
representing a control value of 1). The figure is shown with a non-linear universe of
discourse to better illustrate the relation of the membership functions relative to their
control.

(&) PL PS ONE NS NL

|
0.5 1 2

Figure 5.1 : Revised Fuzzy Set for Control Output.

After a few simulations with the revised control, it was determined that this would
suffice. The new rule base for the VTP FNN is presented in Table 2.

Change in Packet Loss
NL NS Zero PS PL
VS PL PL PL PS PS
2 S PS PS PS PS ONE
E M PS PS ONE NS NS
o
& L ONE ONE NS NL NL
VL NS NL NL NL NL

Table 2: Fuzzy Rule Set for Packet Loss

5.2 Fuzzy Learning Re-Visited

With the modified fuzzy controller in place, the initial indications was that this
controller could better achieve the goals of VTP, maximizing bandwidth usage. The next
step was to test the back-propagation algorithm for tuning the fuzzy rule base. At this
point a problem with the general learning algorithm quickly became apparent.

The problem lies in the very essence of the learning rule (23) that was used:

Yaew = Wold +Aw

The actual observed problem was quite small given that a representation is not being
learned, merely tuning the relative parametric representation already derived. However in
theory the problem is a fundamental error to the approach used, given that for logic-based
neurons the weight is defined to be an element of [0,1]. Unfortunately no bounds were in
place at the learning rule to insure that this condition was maintained.

51

In re-examination the basic back-propagation algorithm using the extended
generalized delta rule the cause of this problem was found to be two-fold. The first
problem deals with the arithmetic addition in the learning rule itself. Being an unbounded
operation, the weights have the potential to exceed their required bounds. The most
obvious solution was to replace this with some kind of triangular norms (an s-norm for
incrementing and a t-norm for decrementing).

This lead to the second problem, that of using a bounded function to update the weight
requires a re-examination of the actual change in weight to be used. Otherwise, an
unbounded change in weight function has the potential to overwhelm any weight value,
thus changing the nature of the parametric tuning to one of extreme oscillation.

Of course this type of problem is not new to neural networks and is the reason for the
error derivative being proportional to the change in error. Thus a learning rate parameter is
often used as a method to limit, and in some networks reduce over time, the effect of the
weight changes on the network. Typically in fuzzy neural systems this problem is dealt
with by using a very small learning rate, on the order of <10~ [55].

Within the extended generalized delta rule it is the summation of back-propagated
errors which is unbounded. The upper bound of the summation is limited only by
knowledge of the network structure, i.e. the number of neurons that are fed in the next
layer. Since the maximum magnitude of each back-propagated error from the output layer
is 1, then for any neuron in the hidden layer the sum term is at most M, where the neuron
feeds into M output neurons. As a generalization it can then be said that for any neuron in
a hidden layer, the maximum sum term is a product of the number of neurons in the later
layers.

With this knowledge the maximum sum/error term for any neuron in the network can
be specified as being the maximum sum term of layer 2, or the product of the dimension of
layers 3 through N, where N is the output layer.

Because all of the other terms are elements of [0,1] or [-1,1], this product is also the
maximum change in weight: Aw,,... This term can be used to guarantee that the
magnitude of the weight change maps into [0,1] for any connection strength in a feed-
forward network. With this in place the new learning rule was developed.

Having mapped the magnitude of the change in weight to [0,1], triangular norms can
be applied to aggregate the old weight with the weight change.

The learning rule now becomes:

Wold S Awnorm ,Aw=0
w = 68)

wolthw » Aw<0

norm
where the normalized change in weight is:

Aw
AwM ax

Aw (69)

norm ‘

52

Using the Lukasiewicz triangular norms, (29) and (30), the new learning rule is simply
bounded addition and subtraction.

In essence what this does is to replace the standard notion of the learning rate as a
network-independent parameter. This idea is replaced by one in which the final learning
rate is partly network-independent and partly network-dependent, in essence:

oL
independent (70)

o(‘modified = AwMax
In this way the level of learning (O(’indep endent) €aN be maintained in a consistent and
meaningful manner, which is separate from the use of the learning rate to compensate for
network dimensionality.

Thus the fuzzy back-propagation algorithm is defined by applying the learning rule
from (68) with the extended generalized delta rule.

5.3 Initial Simulations

After correcting the problems with both the fuzzy controller and the underlying
learning rule for the FNN, the initial simulations were repeated.

These simulations began by verifying the use of negative acknowledgements and
found them capable of a reliable method for bulk transport. Also, an important baseline
condition was observed for use in future simulations.

This was the data rate at which UDP buffer loss! became prevalent. In essence this is
caused by the overhead of the emulation environment (Phat) running over UDP. With no
direct buffer control using the UDP socket interface, this is a fundamental limit in the
remaining simulations. To properly analyze the remaining tests, the upper bound of the
VTP controller (i.e. the allocated bandwidth) was always specified below this limit.

The limit was obtained by progressively increasing the data rate (decreasing the burst
delay) and observing the packet loss. The same 20 MByte test file was transferred 5 times
at each delay setting, varying the delay2 from 50 to 1 msec. The results are summarized in
Table 3. The results are relative to the evaluation size (the number of packets to receive
before evaluating a control decision), which was set to 50. The parameters are maximum
number of packets received (Max) minimum number received (Min), average number of
packets received (Avg), the absolute number of packets lost (Abs. Loss), and the measured
bandwidth (BW).

The measured bandwidth, even before packet loss occurred, is well below the
theoretical bandwidth for each given delay setting. This is because the actual bandwidth is
a function of three delay parameters. First there is the transmission delay of the bits on the
wire (approximately 5 ms per block), second there is the processing delay, and third there
is the explicit block delay. Overall, before packet loss started, the efficiency of the transfer

1. Recall that the test network is an isolated 10 Mbps LAN segment.
2. The delay in the emulation environment is specified as an integer in milliseconds, so the mini-
mum delay available is 1 msec.

53

increased from 25% to 31% of the theoretical maximum data rate (ignoring processing
time) as the delay decreased.

Delay | 5o 140 (30|20 15|10 o | 8 | 7 | 6 | 5| 4 | 3| 2|1
(msec)
Max.
(0-50) || 50|50 |50 5050|5050 | 50| 50| 50| 50|50 50 500 50
(lg’fisr(’)') 5050]50(50|50|50| 50 | 49 | 48 | 47 | 46 | 47 | 46 | 33 | 15
(3_"5%) 50 | 50 {50 {5050 |50 50 |49.97|49.90(49.78149.75|49.60(49.32|48.68 |47.26
Abs. Loss) o | o1 o gl ool ol 6 | 20 48 | 56 | 89 | 149 | 290 | 602
(packets)
(1?:;’3) 222275360 |528|685(992(1050| 1101 | 1112 | 1140 | 996 | 936 | 998 | 1152 | 1496

Table 3: Evaluation of UDP buffer loss for block delays of 50 down to 1 millisecond.

After losses began, the data rate fell and then picked up again as the difference
between the increased data rate and the retransmission favoured the data rate. However the
efficiency fell off noticeably to under 20%.

For comparison, a standard TCP-based FTP client! was tested in the same manner to
transfer the same file in the test environment. The average transfer rate for this file transfer
client was 802.26 Kbps. This was surpassed by VTP as the inter-block delay was
decreased below 15 msec.

It is important to note that the actual data throughput improves even with packet loss
and re-transmission. This helps to validate the basic precept of the control structure; that a
level of acceptable packet loss can be used to improve the effective bandwidth usage.

With these baselines in place, the maximum bandwidth allocated to a connection for
the latter simulations was set to correspond to a 10 msec delay.

5.3.1 Testing Controlled Transfer

After the initial simulations had resulted in the redesign of the fuzzy controller, a test
of the controlled file transfer was repeated. This time the fuzzy controller performed well
on its own, and in the case of achieving and maintaining maximum data rate it excelled.

Over the lifetime of the bulk transfer, the original Phat controller hardly increased its
data rate, despite no, or very little, data loss. Unregulated, the VTP controller consistently
balanced the data rate with a delay between 10 and 6 msec, even when started at 50.
Consequently the VTP controller exhibited greater packet loss, and generated more traffic
via re-transmission requests. This was successful in relation to the basic goals of VTP,

1. The FTP client used is WS_FTP LE v5.08, and the server was the WAR FTPD v1.7.

54

managing to find and stay close to a maximum data rate, within the acceptable parameters
of packet loss. The original Phat controller needed to start much closer to its final value
(within 10 msec) and was more conservative in maintaining it. This was similar to the
result of the original fuzzy rule set described in section 5.1. Even within these limitations,
and reducing the alpha parameter to 90% packet throughput, the original Phat control did
not achieve the same overall throughput.

One possible improvement to the fuzzy controller would be to add additional
membership functions for the controller fuzzy set to increase the resolution, in particular,
about the no change point (ONE).

5.4 Tuning the Controller

With the initial simulations completed a basic functioning FNN-based controller for
VTP was available for further evaluation. The next stage was to try and tune the FNN to
respond to a specific network condition. This condition was a simple congestion-like
packet loss emulated at the server side by dropping randomly selected packets.

To perform supervised training, a target value must be known for a specific set of
inputs. To accomplish this with real time data, a training value had to be calculated after
the result of applying the current control action is known, i.e. by observing the next set of
packet statistics. That is, there is no pre-defined (off-line) training set for training and
testing with this application. It is therefore necessary to actually develop the target value
during training by observing the result of each control operation.

Each time the fuzzy controller is activated, the fuzzy inputs and the corresponding
fuzzy control output are stored in a training pair. After the next control decision is made,
the result of the control action is known, and the new control action is compared to the
previous control action to determine a target value. This then replaces the original control
action in the training pair. After each segment is completed, the accumulated training pairs
are used to train the network.

5.4.1 Results of Tuning the Controller

A 20 MByte file was transferred using the modified Phat (with training enabled) and a
5% random packet drop set on the server, to generate the training data.This data was used
to tune the FNN controller. Figure 5.2 shows the control surface generated by the FNN-
based controller both before and after tuning.

Since the target value is not known, but calculated based on the result, a scheme to
determine the target was first implemented that used the maximal change. The results from
this first scheme were poor, resulting in oscillating of the tuning values, with little or no
actual change between iterations. To correct this, a second scheme which compared the
calculated control value to the result produced by that change was implemented. This
produced a more stable tuning over time.

55

A)

T T ,um*
i e
il il
ummﬂhﬂﬂ;} mh{, i m&y.sum

i
Uy

1'.\55 iy

Control Value

e

mmuawmnﬁ}}‘tﬁsﬂﬁ*““’hlllllm
il ug“‘{“ mm

g

I M
i
zén%mgmf"'" lj lh

zi‘ég[& !

B)

it m[[il
i)

i mnl
| i mill'“ il
I e
i 4..*“"" M‘;gg;“* ‘s“aﬂ}s._ il ‘mﬁsim{g\“ﬁ‘{?ﬁ'ﬁh
munm i e
'“”; "'g:]I'ﬂﬂ?“ﬁiﬁ}"llﬂ%!llu\lm‘sm“““‘fmm*“ i
iy
%

Control Value

I

Figure 5.2 : FNN control surfaces; (a) before tuning and (b) after tuning.

To test the effectiveness of tuning in the controller data transfers were performed both
with varying file size and varying percentage of packet loss. Figure 5.3 shows a
comparison of transferring files of various size ranging from 1 to 100 Mbyte both before
and after tuning the controller, and Figure 5.4 shows a comparison of transferring the same
file both before and after tuning the controller, but with varying percentages of dropped
packets. Both comparisons show a small improvement after tuning (between 2 and 3

percent).

140

120

100

80

60

40

20

0

5 10

20

50

100

Reference
(No Loss)

After Tuning —ll—

Before Tuning —&—

Figure 5.3 : Graph of throughput for varying file sizes with constant error

rate (5%).

140

120 "\
100

80 | \

60 | %‘ﬁ?—ﬂ After Tuning —l—
40 | - Before Tuning —&—
20 |

TSt o s 25

Figure 5.4 : Graph of throughput for transferring the same file (20 Mbyte)
with varying error rates.

57

5.4.2 Discussion

In general this is a promising result, showing a small but steady improvement from a
simple on-line tuning session. However the tuning itself presented a result that was not
expected. The idea was that the tuning would be used to improve the reaction to the
simulated network congestion. In short the tuning was to improve the detecting and re-
acting to congestion of a certain characteristic, and therefore improve throughput. That
characteristic was expressed as packet loss, and was independent of data length. As a
result an improvement was sought over the first case (varying the file size) but was not
expected to as great a degree when varying the percentage of packet dropped.

Re-evaluating this experiment it was found to be fundamentally flawed. That is, the
implementation of network congestion - random packet dropping at the server - does not
in fact describe congested behavior. Because each packet was evaluated independently,
there was no relation between control reaction and future performance with regards to
packet loss.

Instead what the controller tuning seemed to respond to, and where a performance
improvement was found, was in the minimizing of re-transmission losses. When the Phat
server goes into re-transmission mode it does not use the same controlled transmission as
with the original transmission. As a result when large numbers of packets are requested to
be re-transmitted, they are all burst, and buffer losses occur, resulting in repeated re-
transmission requests. Thus the re-transmission mode has the characteristic of a damped
oscillation, with each subsequent re-transmission reducing until reaching zero.

The tuned controller tries to minimize this occurrence through increased reaction
when immediate losses occurs. This seems to improve throughput by reducing short
periods of loss, then quickly recovering, thus having fewer re-transmissions at a time. This
is most evident by the largest improvement corresponding to the largest packet loss (25%
drop rate - Figure 5.4).

In this manner tuning was successful. Even with a low number of trials where the error
is not statistically significant, each transfer showed an improvement and the results in all
cases are repeatable.

5.5 A Simple Global Controller

The control in Phat employs a hierarchical approach with a global control
(FSTPControl.java) that assigns segments of a file to each local connection thread. A
single file transfer is setup in Phat using single connections to multiple (three) servers in
order to emulate multiple simultaneous VTP connections.

This global controller was modified to implement a simple bandwidth broker to re-
allocate bandwidth during the lifetime of the connections. The modifications included
keeping track of the number of segments allocated to each connection (to represent
bandwidth - more segments correspond to higher throughput), specifying initial maximum
bandwidth to each connection and after the 40’th segment was allocated, to re-evaluate the
maximum connection bandwidth and re-allocate if necessary. Once again the bandwidth is
specified by a delay parameter, with a global maximum bandwidth of 10 msec delay.

58

Initially each connection is then allocated 10*(number of segments) msec delay. So for the
three connections, each is initially set with a maximum of 30 msec. Re-allocation is hard
encoded to retain a global 10 msec delay over all of the connections.

To provide different connection statistics, the servers are modified with a pre-set
maximum delay (over-riding the initial setup). This is to emulate a heavily loaded server
or lower bandwidth connection. In this way the servers use the lower of this maximum
delay setting, or the connection delay parameter.

Two tests are run; first with one server set to a high delay value (connection 3), and the
other two set evenly. Then, using the same setup, a priority value is introduced to the first
connection made by the global controller (at the client).

5.5.1 Testing the Global Controller

In the first test the delay parameters were set so that the connection(s) unable to meet
their assigned bandwidth (based on segments) would have the delay increase by 20 msec
increments, with the freed bandwidth shared proportionally among the connections able to
utilize their assigned bandwidth.

As summarized in Table 4, without using a priority, the bandwidth allocated to
connection 3 was reduced from a 30 msec to a 50 msec delay. The freed bandwidth was
then re-allocated evenly to the first two connections (which had requested 17 segments
each) to reduce their delay from 30 to 25 msec.

After 40 After 40

Initial Delay Segments Segments

(No Priority) (Priority)
Connection 1 30 25 22
Connection 2 30 25 30
Connection 3 30 50 50

Table 4: Results of using a global bandwidth broker to re-allocate bandwidth from a
low bandwidth connection (#3) to high bandwidth connections (#1 and #2).

The second test used a priority value assigned to differentiate between the two high
bandwidth connections. The priority rule was set to first re-allocate bandwidth evenly
among connection(s) with highest priority until reaching preset connection maximums (20
msec delays for individual connections in this test). Any remaining bandwidth is then
distributed to connections with the next level of priority, and so on.

As shown in Table 4 (with priority), connection 3 again had its bandwidth reduced (to
a 50 msec delay). This time all of the available bandwidth was re-allocated to the first
connection (which had the highest priority), while the second connection was left
unchanged.

59

VI. Conclusion

6.1 Overview

The work presented in this thesis brings together transport protocols and
computational intelligence to try and improve upon the state of modern data network
communication.

The Transmission Control Protocol (TCP) is the dominant transport layer protocol in
use today, providing a reliable connection oriented service. However the windows based
control applies an artificial limitation on bandwidth utilization. As the distance (measured
in packet latency) increases so does the limitation of TCP on the bandwidth utilization. A
readily available alternative to TCP is UDP, the User Datagram Protocol, which provides
an unreliable connectionless service. UDP can be used by any application to avoid the
overhead of TCP, however as its description implies, it provides no service to applications
which may require some or all or the services of TCP. This is a very inefficient manner in
which to solve the inherent limitations of TCP.

To overcome the limitations of these two protocols a new transport layer protocol was
developed in this thesis called the versatile transport protocol (VTP). It aims to avoid the
bandwidth limitation of TCP through the use of negative acknowledgements and active
rate based control. Furthermore, unlike either TCP or UDP, VTP strives for versatility in
providing a range of services as desired by the application. These services range from a
fully reliable connection-oriented service (similar to TCP with big windows) all the way
down to an unreliable connectionless service even more basic than UDP.

To do this VTP makes use of both session and presentation layers to implement areas
of reliability that are not part of the core transport protocol. This allows for the re-
introduction of security as an element of reliability, providing a standard interface for
encryption or authentication algorithms. It also adds flexibility with a framework for
easily adding standardized algorithms for data manipulation such as compression as well
as having the added benefit of streamlining the processing requirements of the transport
layer.

VTP uses two levels of control, a global controller which acts as a bandwidth broker to
incoming and outgoing connections on the local host and a local (per session) controller,
which independently controls each network connection.

To implement the control in VTP this thesis proposes a fuzzy neural controller with in-
situ learning. This would allow each connection (via its local controller) to adapt its
connection parameters to the perceived network conditions over the lifetime of the
connection.

To implement the fuzzy neural controller, a fuzzy back-propagation algorithm is
developed. In developing this algorithm the basic generalized delta rule (GDR) for back-
propagation in arithmetic neurons was extended to include logic-based neurons. By
extending the GDR, we are able to design and implement arbitrary feed-forward neural

60

structures, without the need for custom implementations. In doing this not only are
arithmetic and logic neurons unified, but also a foundation is laid for a hardware-based
reconfigurable fuzzy processing unit.

Unlike arithmetic neurons the connection strengths for logic neurons must also be
bounded. This led to the first modification of the fuzzy back-propagation algorithm, to
guarantee the correctness of the connection strength parameters during training. This led
to a second modification, requiring a different view of the learning rate, one that
incorporates both a network independent as well as a network sensitive part.

In addition to contributions made to fuzzy neural network control theory, this work
illustrates the viability of fuzzy control as applied to telecommunication applications such
as bandwidth brokering within the confines of an IP network. In addition, the study
illustrates the role that fuzzy control can play in improving end-to-end performance by
adaptation to host and/or network bottlenecks.

6.2 Results

The initial data transfers showed that the emulation environment could achieve greater
than 30% efficiency (relative to the theoretical maximum data rate) before UDP buffer
losses became a factor. After overcoming the overhead due to buffer loss, the bandwidth
usage and the actual data rate still increased to nearly double the measured bandwidth
usage of a TCP-based FTP transfer under the same conditions. Despite the overall gain in
bandwidth usage and effective data rate, the efficiency once packet loss began dropped
significantly (to less than 20%).

This was used to form a baseline for further experiments within the emulation
environment. A minimum delay setting for further experiments was set to restrict packet
loss to the explicit dropped packets (representing network losses). This limit, set into Phat,
was a minimum delay of 10 msec (corresponding to the maximum bandwidth allocation
by the global controller in VTP). It also illustrates the underlying importance of active
buffer control for reliable data transport (i.e. flow control).

The remaining initial transfers showed that the FNN-based fuzzy controller with the
updated rule base outperformed the Phat controller in achieving and maintaining the data
transfer at a maximum data rate (as limited by the acceptable packet loss). To reduce the
oscillation about the maximum data rate (when packet loss occurs) the control fuzzy set
may be extended to increase the control resolution about the ONE (no change) label.

With the basic transfer mechanism and learning algorithms in place on line tuning was
performed. The results showed a 2-3% improvement over transferring various sized files,
and with varying degree of packets loss. However the results also illustrated that the
experiments with tuning were ill designed. Most importantly the method of packet loss did
not properly recreate a form of congestion, instead the loss was unrelated to data rate.
Secondly the Phat control variable (a delay multiplier) is not the actual desired target of
the VTP control scheme. In addition the actual tuning (in-situ supervised training) was not
well adapted to the problem with no known optimal target value.

The actual improvement seems to come from another problem in the actual Phat

61

server, which can result in repeated loss of packets during re-transmission. The tuning
appeared to actually minimize this loss, illustrated by the increased improvements with the
higher packet drop rates.

The last tests were used to illustrate the functioning of the hierarchical VTP control.
The global control was found to perform as desired, first re-allocating bandwidth from a
connection with low bandwidth use to the connections with high bandwidth uses, within
the confines of the maximum available bandwidth. Then using an additional priority
parameter the bandwidth was similarly re-allocated but from low to high with higher
priority being service first. It should be stressed that this was unused bandwidth being re-
allocated. It is also desirous for the global controller to actually re-allocate used
bandwidth (thus reducing the actual bandwidth usage of existing connections) in order not
to choke off new connections when little or no bandwidth is left un-allocated or unused.

6.3 Future Work

There are many areas in which future work could continue what has been started in
this thesis.

The main limitation in this thesis was not having a working transport protocol, but
relying on the Phat application to emulate specific aspects of the protocol. The primary
focus of future work should be to implement VTP as a transport protocol (as opposed to
emulating it with an application over UDP). Once developed this may be used in either a
network simulator or over actual test networks to properly compare VTP with TCP, UDP,
or other transport protocols, as well as to properly evaluate different control architectures.

6.3.1 VTP

Specifically with respect to VTP, the following points highlight key aspects to
continue the work started here:

* Implement VTP as a transport protocol, rather then emulating it over UDP.

* Investigate other error metrics.

* Protocol offload engines.

6.3.2 Computational Intelligence

The first questions that came to mind while performing the test transfers was how and
what can we properly learn in this environment. The reason for using in-situ learning was
to allow individual flows to react to individual network conditions through observed traffic
characteristics. This leads to many potential alternatives:

* Use unsupervised learning to try and classify various network conditions offline,
then try to detect them on-line.

* Use pre-determined responses to different classes, with the weighting reflecting
the degree of belonging to a class.

* Use greater resolution around the neutral control point in the fuzzy control set.

62

VII. References

[1] Postel, J., “Internet Protocol - DARPA Internet Program Protocol Specification”,
STD 5, RFC 791, DARPA, Sept. 1, 1981.

[2] Postel, J., “Transmission Control Protocol - DARPA Internet Program Protocol
Specificationl”, STD 7, RFC 793, USC/Information Sciences Institute, Sept. 1, 1981.

[3] Postel, J., “User Datagram Protocol”, STD 6, RFC 768, USC/Information Sciences
Institute, Aug. 28, 1980.

[4] Tanenbaum, Andrew S., Computer Networks 3’rd Edition, Prentice Hall, 1996.

[5] Stallings, William, Data and Computer Communications 6’th Edition, Prentice
Hall, 2000.

[6] Mockapetris, P. V., “Domain names - implementation and specification”, STD 13,
RFC 1035, Nov. 1, 1987.

[7] Hedrick, C. L., “Routing Information Protocol”, RFC 1058, June 1, 1988.

[8] Droms, R., “Dynamic Host Configuration Protocol”, RFC 2131, March 1997.

[9]1 Sollins, K., “The TFTP Protocol (Revision 2)”, STD 33, RFC 1350, July 1992,

[10] Shepler, S., B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, D.
Noveck, “NFS version 4 Protocol”, RFC 3010, December 2000.

[11] Maximum Security, A Hacker’s Guide to Protecting Your Internet Site and
Network First Edition, Sams.net Publishing, 1997.

[12] Bellovin, S. M., “Security Problems in the TCP/IP Protocol Suite”, Computer
Communication Review, Vol. 19, No. 2, pp. 32-48, April 1989.

URL: http://Www.deter.com/unix/papers/tcpip_problems_bellovin.pdf.

[13] Farrow, R., “Sequence Number Attacks”, Unix World.

URL: http://www.networkcomputing.com/unixworld/security/001.txt.html

[14] Jacobson, V. and Braden, R. T., “TCP Extensions for Long-Delay Paths”, RFC 1072,
Oct. 1, 1988.

[15] Allman, Mark, Hans Kruse, Shawn Ostermann, “A History of the Improvement of
Internet Protocols Over Satellites Using ACTS”, Invited paper for ACTS Conference
2000, May 2000.

[16] Clark, David D., “Window and Acknowledgement Strategy in TCP”, RFC 813, MIT
Laboratory for Computer Science Computer Systems and Communications Group,
July 1, 1982.

[17] Velten, D., Hinden, R.M., and Sax, J., “Reliable Data Protocol”,RFC 908, BBN
Communications Corporation, July 1, 1984.

[18] Partridge, C., Hinden, R. M., “Version 2 of the Reliable Data Protocol (RDP)”,RFC
1151, BBN, April 1, 1990.

[19] Clark, D. D., Lambert, M. L., Zhang, L., “NETBLT: A Bulk Data Transfer Protocol”,
RFC 998, MIT Laboratory for Computer Science, March 1, 1987.

[20] Allman, Mark, Shawn Ostermann, “Multiple Data Connection FTP Extensions”,
Technical Report TR-19971, Ohio University Computer Science, February 1997.

[21] Mears, Jennifer, “Caching vendors take on last mile”, Network World (http://
www.nwfusion.com/), March 4, 2002.

63

[22] The IRCache project - NLANR's Global Caching Hierarchy, The National
Laboratory for Applied Network Research (http://www.nlanr.net/)

[23] Cheriton, D. R., “VMTP: Versatile Message Transaction Protocol: Protocol
Specification”, RFC 1045, Stanford University, Feb. 1, 1988.

[24] Postel, J., “TCP maximum segment size and related topics”, RFC 879, Nov. 1, 1983.

[25] Nagle, John, “Congestion control in IP/TCP Internetworks”, REC 896, Ford
Aerospace and Communications Corporation, Jan. 6, 1984.

[26] Fox, R., “TCP Big Window and NAK Options”, RFC 1106, Tandem, June 1, 1989.

[27] McKenzie, A. M., “Problem with the TCP Big Window Option”, RFC 1110, BBN
STC, Aug. 1, 1989.

[28] O’Malley, S., Peterson, L. L., “TCP Extensions Considered Harmful”, RFC 1263,
University of Arizona, Oct. 1, 1991.

[29] Jacobson, V., Braden, R., Borman, D., “TCP Extensions for High Performance”,
RFC 1323, May 1992.

[30] Connolly, T., Amer, P., Conrad, P.,, “An Extension to TCP : Partial Order Service”,
RFC 1693, University of Delaware, November 1994,

[31] Mathis, M., Mahdavi, J., Floyd, S., Romanow, A., “TCP Selective Acknowledgement
Options”, RFC 2018, October 1996.

[32] Allman, M., Floyd, S., Partridge, C., “Increasing TCP’s Initial Window”, RFC 2414,
September 1998.

[33] Poduri, K., Nichols, K., “Simulation Studies of Increased Initial TCP Window Size”,
RFC 2415, Bay Networks, September 1998.

[34] Floyd, S., Henderson, T., “The New Reno Modification to TCP’s Fast Recovery
Algorithm”, RFC 2582, April 1999.

[35] Shepard, T., Partridge, C., “When TCP Starts Up With Four Packets Into Only Three
Buffers”, RFC 2416, BBN Technologies, September 1998.

[36] Allman, M., Glover, D., Sanchez, L., “Enhancing TCP Over Satellite Channels using
Standard Mechanisms”, RFC 2488, J anuary 1999.

[37] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner, J., Heavens, 1., Lahey, K.,
Semke, J., Volz, B., “Known TCP Implementation Problems”, RFC 2525, March
1999.

[38] Allman, M., Dawkins, S., Glover, D., Griner, J., Tran, D., Henderson, T., Heidemann,
J., Touch, J., Kruse, H., Ostermann, S., Scott, K., Semke, J., “Ongoing TCP Research
Related to Satellites”, RFC 2760, February 2000.

[39] Allman, M., Paxson, V., Stevens, W., “TCP Congestion Control”, RFC 2581, April
1999.

[40] Handley, M., Padhye, J., Floyd, S., “TCP Congestion Window Validation”, RFC
2861, ACIRI, June 2000.

[41] Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M., “An Extension to the Selective
Acknowledgement (SACK) Option for TCP”, REC 2883, July 2000.

[42] Lahey, K., “TCP Problems with Path MTU Discovery”, RFC 2923, dotRocket Inc.,
September 2000.

[43] Paxson, V., Allman, M., “Computing TCP’s Retransmission Timer”, RFC 2088,
November 2000.

[44] Allman, M., Balakrishnan, H., Floyd, S., “Enhancing TCP’s Loss Recovery Using
Limited Transmit”, RFC 3042, J. anuary 2001.

64

[45] Ramakrishnan, K., Floyd, S., Black, D., “The Addition of Explicit Congestion
Notification (ECN) to IP”, RFC 3168, September 2001.

[46] Kent, S., Atkinson, R., “Security Architecture for the Internet Protocol”, RFC 2401,
November, 1998.

[47] Deering, S., Hinden, R., “Internet Protocol, Version 6 (IPv6) Specification”, RFC
2460, December 1998.

[48] Pedrycz, W. and A. V. Vasilakos, “Computational Intelligence: A Development
Environment for Telecommunication Networks”, Computational Intelligence in
Telecommunication Networks, CRC Press, 2000.

[49] Czezowski, Peter J. , “Applications of Computational Intelligence in ATM
Networks”, Candidacy Thesis, University of Manitoba, June 1998.

[50] Pedrycz, W.,“Fuzzy neural networks and neurocomputations,” Fuzzy Sets and
Systems, 56, pp. 1-28, 1993,

[51] Pedrycz, W. and A.F. Rocha, “Fuzzy-set based models of neurons and knowledge-
based networks,” IEEE Trans. on F, uzzy Systems, vol. 1, no. 5, pp. 254-266, 1993.

[52] Zadeh, L. A., “Fuzzy Sets”, Information and Control, vol. 8, pp. 338-353, 1965.

[53] Pedrycz, Witold, Fuzzy Control and Fuzzy Systems second, extended, edition,
John Wiley & Sons Inc., 1993.

[54] Pedrycz, Witold, Fuzzy Sets Engineering, CRC Press, Boca Raton, FL, 1995,

[55] Kosko, Bart, Fuzzy Sets Engineering, Prentice Hall, 1997.

[56] Pedrycz, W., C. H. Poskar and P. J. Czezowski, “A reconfigurable fuzzy neural
network with in-situ learning”, IEEE Micro, vol. 15, no. 4, pp. 19-30, August 1995.

[57] Poskar, C. H., P. J. Czezowski and W. Pedrycz, “Hardware Realization of Fuzzy
Neural Networks”, Fuzzy Hardware: Architectures and Applications, A. Kandel
and G. Langholz (eds.), Kluwer Academic Press, pp. 43-76, 1998.

[58] Poskar, C. H., P. J. Czezowski and R. D. McLeod, “A Computational Intelligence
Based Course-Grained Reconfigurable Element”, ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA 99), Monterey, California,
U.S., 1999,

[59] Rumelhart, David E., McClelland, James L., et al, Parallel Distributed Processing,
Vols 1 and 2, The MIT Press, 1986.

[60] Holland, J.H., “Adaptation in Natural and Artificial Systems”, Ann Arbor: University
of Michigan Press, 1975.

[61] Brown, Andrew D., Selecting Feature Detectors for Artificial Neural Networks
Using Genetic Algorithms , Masters Thesis, University of Manitoba, 1997.

[62] URL: http://www.phatpackets.com

[63] Noghani, B., Kretschmann, S., and McLeod, R.D., Reducing Latency on the Internet
using Component-Based Download and File-Segment Transfer Protocol:
Experimental Results , Spects 2000, The proceedings of the 2000 Symposium on
Performance Evaluation of Computer and Telecommunication Systems, July 2000.

[64] Floyd, S., Mahdavi, J., Mathis, M., Podolsky, M., “An Extension to the Selective
Acknowledgement (SACK) Option for TCP”, RFC 2883, J uly 2000.

[65] Whelan, Eoin and Tom Doris, “The Brain Construction Kit Technical Manual”,
1999. http://www.compapp.dcu.ie/~tdoris/BCK/

[66] Postel, J.,Reynolds, J., “File Transfer Protocol (FTP)”, RFC 959, October 1985.

65

[67] Berenji, H.R. and P. Khedkar, “Learning and tuning fuzzy logic controllers through
reinforcements,” IEEE Trans. on Neural Networks, vol. 3, no. 53, pp. 724-740, 1992.

[68] Eklund, P. and F. Klawonn, “Neural fuzzy logic programming,” IEEE Trans. on
Neural Networks, vol. 3, no. S, pp. 815-818, 1992.

[69] Horikawa, S., T. Furuhashi and Y. Uchikawa, “On fuzzy modeling using fuzzy neural
networks with the back-propagation algorithm,” IEEE Trans. on Neural Networks,
vol. 3, no. 5, pp. 801-806, 1992

[70] Jang, J.R., “Self-learning fuzzy controllers based on temporal back propagation,”
IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 714-723, 1992.

[71] Zhang, Y. and A. Kandel, “Compensatory Neurofuzzy Systems with Fast Learning
Algorithms,” IEEE Trans. on Neural Networks, vol. 9, no. 1, pp. 83-105, 1998.

[72] Gupta, M.M. and J. Qi, “Synaptic and Somatic Learning and Adaptation in Fuzzy
Neural Systems,” IEEE

[73] The Net100 Project, URL: http://www.net100.org

[74] Butnariu, D. and E.P. Klement, Triangular Norm-based Measures and Games with
Fuzzy Coalitions, Klower Academic Publishers, Dordercht, 1993.

[75] Card, H. “Digital VLSI backpropagation networks”, Canadian J. Elect. & Comp.
Eng., vol. 20, no. 1, pp. 15-23, 1995

[76] Clarckson, T.G., C.K. Ng and Y. Guan, “The pRAM: an adaptive VLSI chip,” IEEE
Trans. on Neural Networks, vol. 4, no. 3, pp. 408-411, 1993.

[77] Dickson, J., R. McLeod and H.Card, “Stochastic arithmetic implementations of
artificial neural networks with in-situ learning”, Proc. IEEE Int. Conf. Neural
Networks, (San Francisco, CA), pp. 711-716, 1993.

[78] Hamilton, A. et al, “Integrated pulse stream neural networks: results, issues, and
pointers,” IEEE Trans. on Neural Networks, vol. 3, no. 3, pp. 385-393, 1992.

[79] Lehmann, C., M. Viredaz and F. Blayo, “A generic systolic array building block for
neural networks with on-chip learning,” IEEE Trans. on Neural Networks, vol. 4, no.
3, pp. 400-407, 1993.

[80] Manduit, M. et al, “Lneuro 1.0: a piece of hardware LEGO for building neural
network systems,” IEEE Trans. on Neural Networks, vol. 3, no. 3, pp. 414-421, 1992.

[81] Tomlinson Jr., M.S., D.J. Walker, and A. Sivilotti, “A digital neural network
architecture for VLSI”, Proc. Int. Joint Conf. Neural Networks, (San Diego, CA),
vol. 2, pp. 545-550, 1990.

[82] Watanabe, T. et al, “A single 1.5-V digital chip for a 10° synapse neural network,”
IEEE Trans. on Neural Networks, vol. 4, no. 3, pp. 387-393, 1993.

[83] Wawrzynek, J., K. Asanovic and N. Morgan, “The design of a neuro-
microprocessor,” IEEE Trans. on Neural Networks, vol. 4, no. 3, pp. 394-399, 1993.

[84] Horst, R.W., “Task-flow architecture for WSI parallel processing,” Computer, vol.
25, no. 4, pp. 10-18, 1992.

66

Appendix A: The main Phat classes with modifications
to emulate VTP with Fuzzy Neural Control:

The following sections of this appendix contain the source code for the Phat classes
that were modified to emulate VTP and support Fuzzy Neural Networks. These comprise
the three main classes used by the Phat client:

Appendix A.1 - FSTPController.java

* the main controller class, containing the class MultiConnectionHandler, which
provides the global control over all concurrent Phat connections.

Appendix A.2 - PhatClient.java

* the control class for each client connection - used to implement the FNN for the
local control of each connection.

Appendix A.3 - FSTPClient.java

* the basic client class for receiving and handling incoming packets for each seg-
ment - Phat uses this class to determine when packet loss should be evaluated.

The original Phat code is available from:

http://www.phatpackets.com/

67

A.1 FSTPController.java

package com.phatpackets.fstp.client;

import com.phatpackets.fstp.*;

import com.phatpackets.fstp.client.BitSetPacketTracker;
import com.phatpackets.fstp.util.ScreenOutputStream;
import com.phatpackets.util.Guard;

import java.net.*; //fix

import java.io.*;

import java.util.NoSuchElementException;
import java.util.StringTokenizer;

import java.util.Vector;

/**

* Title:

* Description:

* Copyright: Copyright (c) 2001

* Company:

* @author Greg Jaman, Chris Buzunis

* @version 1.0

* @author modified by C. H. Poskar, May 2002
* @version support for Bandwidth Broker

*/

public class FSTPController implements CommandConstants {

private PhatClient controlm;

private long fileSize;

private long lastSeqId;

public ScreenOutputStream outs =new ScreenOutputStream(System.out) ;

private static int conIDS=0;

public static PacketTracker packetTracker:;
public static int numConnections = 1;
private Vector mServers;

public static int serverIndex = 1;

private Vector connections;
private String host;

private long startTime;
public Vector phatData;
private int adjustSize;

//for the sendm stuff
private long offSet = 0;
‘private long firstBlock = 0;

DataStorage dataStore;
private StatslListener statsListener;

// not sure about these
private long currAdjustSeqEnd; // Inclusive
private int currRcvSize;

// Ignore some transients
private boolean firstTime = true;

public FSTPController (PhatClient control) {
this.controlm = control;
this.host = control.host;

connections = new Vector();
connections.add(new multiConnectionHandler (controlm)) ;

}

public FSTPController (PhatClient control,long fileSize, int numCon, Vector
mServers) {
this.controlm = control;
this.fileSize= fileSize;
this.host = control.host;
this.numConnections=numCon;
this.mServers= mServers;
connections = new Vector():;
connections.add (new multiConnectionHandler (controlm)) ;

}

public synchronized void getFile(String filename) throws IOException{
buildControls();
final String fileName = filename;
//how about set the ports in teh buildcontrols?
if (!setPorts())
return;
if (1setDelay())
return;

//**do the stuff to set up the file

try {
File file = new File(fileName+"M");//added the M for now
dataStore = new RandomAccessStorage (new File(fileName+"M")); //added the M

} catch (FileNotFoundException ex) {
System.out.println("phat: File \'* + filename + "\' cannot be written to.");
return;

}
//end of file set up

phatData = new Vector();//do this somewhere else??

for(int i=0; i<connections.size(); i++){

final int j = i;

final PhatClient control = ((multiConnectionHandler)
connections.elementAt (i)).control;

final FSTPClient client = { (multiConnectionHandler)
connections.elementAt(i)).client;

final multiConnectionHandler conH = (multiConnectionHandler)
connections.elementAt (i) ;

try{

sendSENDMCmd (fileName, conH) ;
control.waitForReply () ;

String rply = control.rplyQ.pop();

if (!'rply.startsWith(FILE_INFO_RPLY)) return;
conH.tok = new StringTokenizer (rply);

conH. tok.nextToken() ;

conH. tok.nextToken(); // FILESIZE
client.setFileSize(Long.parseLong(conH.tok.nextToken()));
conH. tok.nextToken(); // STREAMID
client.setStreamId(Integer.parseInt(conH.tok.nextToken()));
conH. tok.nextToken(); // SERVERPORT
client.connect(control.socket.getInetAddress(), Integer.parseInt(

conH. tok.nextToken () });
if(3==0){

//only need one packettracker!

69

createPacketTracker (client);
}
if (j==connections.size()-1){
outs.clearScreen();
outs.goTo(2,1);
outs.print(" running... "):
}
startTime = System.currentTimeMillis();
new Thread(new Runnable() {
public void run() {
try{
while (sendBoundCmd (fileName, conH)) {
conH.guard.resetGuard() ;
client.receiveDataM(phatData,conH.miniPacketTracker,dataStore,conH.conId);
conH. subBlockCount++;
conH.guard.waitGuard() ;
fireWriteToFile();
}
}catch(IOException e) {}
}
}) .start();

} catch (NoSuchElementException ex) {
System.out.println("phat: Invalid server reply."):;
return;

}

catch (Exception e){

System.out.println("found an error! ");

}
}
try{
wait();
//*this seems like a safe spot to close all the connections
for(int i=0; i<connections.size(); i++){
multiConnectionHandler conH = (multiConnectionHandler)connections.elementAt(i);
conH.client.doneRcv () ;
conH.client.close();
}

}catch(InterruptedException e) {}
}

private boolean connectionsActive() {
for(int i=0; i<connections.size(); i++){
if (! (offSet>=lastSeqId)) return true;
if(((multiConnectionHandler)connections.elementAt(i)).miniPacketTracker!=null){
if(! ((multiConnectionHandler)
connections.elementAt(i)).miniPacketTracker.isComplete())
return true;
}
}

return false;

public synchronized void fireWriteToFile () {
for(int i=0; i<connections.size(); i++){
if (! (offSet>=lastSeqId)) return;
if(((multiConnectionHandler)connections.elementAt(i)).miniPacketTracker!=nu11){
if (! ((multiConnectionHandler)
connections.elementAt(i)).miniPacketTracker.isComplete())
return;

70

}

long time = System.currentTimeMillis() - startTime;
try{

Thread.sleep(1000); //wait a second before we write??
}

catch(Exception e)

{}

try{

OutputStream outf;

outf = new BufferedOutputStream(new FileOutputStream(“"results.txt"));
String toWrite = new String();

toWrite = “Number connections : " + numConnections+" \n "
outf.write(toWrite.getBytes());
toWrite ="phat: DONE -~ " + fileSize + " bytes received in " + time/1000.f + "s ("

+ (float) ((double)fileSize / (double)time / 1.024) + " kB/s) .\n";
outs.goTo (2, numConnections+7) ;
outs.print (toWrite);
outf.write(toWrite.getBytes());
outs.println{*\t\tReporter: ");
multiConnectionHandler tempCH;

for(int j=0; j<connections.size(); F++) {
tempCH = ((multiConnectionHandler)connections.elementAt(j));
toWrite = " ["+tempCH.conId+" "+ tempCH.thisHost+"] - num subBlocks:

+ tempCH.subBlockCount + "\n';
outs.print(toWrite) ;
outf.write(toWrite.getBytes());
}
outf.close();
}catch(IOException e) {}
// this does nothing!!! the writing is done when the packet is processed!
//but later we will want it here!
//write to data was for when we had the idea to write to the file after increment
//of the file instead of at one time.
//this should be placed after we get a subblock?
writeData (phatData) ;
notify();
}

public void writeData(Vector phatData) {
}

//later give this method a array of hosts for the creating of the sockets.
//private void buildControls(Guard guard) throws IOException{
private void buildControls() throws IOException{
for(int i=1; i<numConnections; i++){
connections.add (new multiConnectionHandler ());
}
}

private boolean setPorts() throws IOException{
for(int i=0; i<connections.size(); i++){

PhatClient control = ((multiConnectionHandler)
connections.elementAt (i)).control;
FSTPClient client = ((multiConnectionHandler)connections.elementAt(i)).client;

control.cmdBuf.setLength(0);
control.cmdBuf. append (PORT_CMD) ;
control.cmdBuf.append (' ');
control.cmdBuf.append(client.getLocalPort());

71

}

control.sendMessage (control.cmdBuf. toString());
control.waitForReply() ;
if (!control.rplyQ.pop().startsWith(COMMAND_OKAY RPLY)) return false;

return true;

}

private boolean setDelay() throws IOException{

}

for(int i=0; i<connections.size(); i++)({

PhatClient control = ({multiConnectionHandler)connections.elementAt(i)).control;
control.cmdBuf.setLength(0) ;

control.cmdBuf.append (BLOCK_DELAY_CMD) ;

control.cmdBuf.append (' ');

control.cmdBuf.append (control.blockDelay) ;

control.sendMessage (control.cmdBuf. toString());

control.waitForReply () ;

control.rplyQ.pop(); //put in if to check reply

return true;

}

privateboolean sendSENDMCommand (String filename) throws I0Exception(
long offSet = 0;
long firstBlock = 0;
for(int i=0; i<connections.size(); i++){

}

multiConnectionHandler mh = (multiConnectionHandler)connections.elementAt (i) ;
PhatClient control = mh.control;
control.cmdBuf. setLength(0) ;
control.cmdBuf.append (SENDM_CMD) ;
control.cmdBuf.append(' ');
if (offSet==0)
firstBlock = offSet;
else firstBlock = offSet +1;
control.cmdBuf.append (firstBlock) ;
control.cmdBuf.append(' ');
offSet = firstBlock + (lastSegId/numConnections) ;
if (numConnections ==i) offSet=lastSeqId +1; //??
control.cmdBuf.append(offSet);
control.cmdBuf.append (' ');
control.cmdBuf.append (filename) ;
control.sendMessage(control.cmdBuf.toString());
//set the miniPacketTracker
mh.miniPacketTracker = new BitSetPacketTracker () ;
mh.miniPacketTracker.setExpectedPacketCount((offSet—firstBlock)+l);
mh.miniPacketTracker.setOffset (firstBlock);
control.waitForReply () ;
if (!control.rplyQ.pop().startswith(SENDING_FILE_RPLY)) return false;

return true;

}

private synchronized boolean sendSENDMCmd (String filename,

multiConnectionHandler mh) throws IOException{

PhatClient control = mh.control;
control.cmdBuf.setlLength(0) ;
control.cmdBuf.append (SENDM_CMD) ;
control.cmdBuf.append (' ');
control.cmdBuf.append(filename) ;
control.sendMessage(control.cmdBuf.toString());

72

control .waitForReply () ;

if (!control.rplyQ.pop().startsWith(SENDING_FILE RPLY)) return false;

return true;

}

private synchronized boolean sendBoundCmd (String filename,

}

multiConnectionHandler mh)

PhatClient control = mh.control;
if (offSet>=lastSeqId) return false;
control.cmdBuf.setLength(0);
control.cmdBuf . append (SENDMB_CMD) ;
control.cmdBuf.append (' ');
control.cmdBuf.append (mh.client.getStreamId());
control.cmdBuf.append (' ');
if (offSet==0)
firstBlock = offSet;
else firstBlock = offSet +1;
control.cmdBuf.append(firstBlock) ;
control.cmdBuf.append (' ');
//offSet = firstBlock + (lastSeqId/numConnections);
offSet = firstBlock + controlm.adjustSubBlockSize;
//1if (numConnections ==i) offSet=lastSeqid +1; //??
if(offSet>lastSeqId) offSet=lastSeqId;
control.cmdBuf.append(offSet); //? know more!
control.sendMessage (control.cmdBuf. toString());

//set the miniPacketTracker
mh.miniPacketTracker = new BitSetPacketTracker () ;

throws IOException{

mh.miniPacketTracker.setExpectedPacketCount((offSet—firStBlock)+1);

mh.miniPacketTracker.setOffset (firstBlock) ;

return true;

private void createPacketTracker (FSTPClient theClient) {

}

currAdjustSeqEnd = adjustSize - 1;
firstTime = true;

int streamIdSize = PhatPacket.calcStreamIdSize(theClient.getStreamId());
int seqIdSize = PhatPacket.calcSeqIdSize(theClient.fileSize,

theClient.getPacketSize(), streamIdSize);
int packetDataSize = theClient.getPacketSize() - streamIdSize - seqgldSize;
if (dataStore.isPacketDataSizeRequired()) {

dataStore.setPacketDataSize(packetDataSize);
dataStore.setTotalSize(theClient.fileSize) ;
}

long expPackets = (long)Math.ceil((double)theClient.fileSize /
(double)packetDataSize) ;

packetTracker = new BitSetPacketTracker () ;
packetTracker.setExpectedPacketCount(expPackets);
if (statsListener != null) ({

statsListener.setExpectedPacketCount(expPackets);
}

public interface StatsListener {

}

public void setExpectedPacketCount (long count);
public void packetReceived(long seqId);

public void startResend();

public void receiveTimeout();

private class multiConnectionHandler{

73

PhatClient control;
FSTPClient client;

boolean done=false;

int connectionID;

int tagSize;

String thisHost;

StringTokenizer tok;

final Guard guard = new Guard();

public PacketTracker miniPacketTracker;

public int conld;

public int subBlockCount=0;

public multiConnectionHandler() throws IOException{
if (serverIndex==mServers.size()) serverIndex=0;
thisHost = (String) (mServers.elementAt (serverIndex)) ;
Socket server = new Socket(thisHost, PhatClient.PHAT_ PORT) ;
serverIndex++;
control = new PhatClient(server, true);
buildClient () ;

setConnectionvValues() ;

addClientlListerners();

conId=conIDS++;

System.out.println("Connection: "+conId+ " is to " + thisHost);

//TODO: set the values like alpha, block size - have to obtain these
//from the main connection otherwiseit will use the defaults

}

public multiConnectionHandler (PhatClient con) {
control = con;
thisHost=con.host;
buildClient();
setConnectionvalues () ;
addClientListerners();
int streamIdSize = PhatPacket.calcStreamIdSize (client.getStreamId());
int seqIdSize = PhatPacket.calcSeqIdSize (fileSize, client.getPacketSize(),

streamIdSize) ;
tagSize = streamIdSize + segIdSize;
lastSeqId = (long)Math.ceil((double)filesize/(double)(client.getPacketSize() -
tagSize)) - 1;

conId=conIDS++;

}

private void buildClient(){
try{
client = new FSTPClient (control);
}catch(SocketException e){
System.out.println(" socket exception ");
}
}

private void setConnectionValues () {
//set this all up same as the originals
control.blockbelay = controlm.blockDelay;
client.setAlpha(controlm.alpha);
client.setAdjustSize(controlm.adjustSize) ;
client.setPacketSize(controlm.packetsize);
client.setDynamicBlockSize(controlm.dynBlockSize);
client.setStartBlockSize(controlm.startBlockSize);
client.setDynamicBlockDelay(controlm.dynBlockDelay);

74

}
private void addClientListerners() {

client.addClientListener (new FSTPClient.ClientListener() {
public void receiveComplete(int streamId, long time) {
long subFileSize = (offSet-firstBlock) * (client.getPacketSize()-tagSize);
outs.goTo (2, conId+4) ;
outs.clearLine();
outs.print("["+conId+", "+thisHost+"]; Block Count: "+ subBlockCount+";
false ; Speed of last block: "+(float) ((double)subFileSize /
(double) time / 1.024)+"kB/s; ");
guard.notifyGuard();
}

public void receiveTimeout (int streamId, float percentComplete, long time) {
outs.goTo (2, conId+4) ;
outs.clearLine() ;
outs.print (" ["+conId+", "+thisHost+"]; Block Count: "+ subBlockCount+";
TIMEOUT ; %: "+ client.getPercentComplete());
}

public void clientException(int streamId, Exception ex) {
//System.out.println("phat: EX Error while receiving: " + ex);
outs.goTo (2, conId+4);
outs.clearLine();
outs.print("phat: EX Error while receiving: " + ex);
guard.notifyGuard() ;

}

public void receiveStopped(int streamId, long time) {
outs.goTo (2, (int)conId+4) ;
outs.clearLine();
outs.print("| "+conId+", "+thisHost+"]; Block Count: "+ subBlockCount+";
receiveStopped ; %: "+ client.getPercentComplete());
guard.notifyGuard() ;
}

public void blockSizeAdjusted(int streamId, int newBlockSize) {
}

1y

}

75

A.2 PhatClient.java

package com.phatpackets.fstp.client;

import
import
import

com.phatpackets. fstp. *;
com.phatpackets.util.Guard;
com.phatpackets.util.StringQueue;

import BCK.ANN.BCKFuzzyNeuron;

import

BCK.ANN.BCKFNNBprop;

import BCK.ANN.BCKRecord;

import java.io.¥*;
import java.net.*;

import

java.util.StringTokenizer:;

import java.util.Vector;

import java.util.NoSuchElementException;

/*'k

* Title:

* Description:

* Copyright:Copyright (c) 2001

* Company:

* @author Shawn Silverman, modified by Greg Jaman, Chris Buzunis
* @version 1.0

* @author modified by Greg Jaman, Chris Buzunis

* @version added multi-connection / multi-server

* @author modified by C. H. Poskar, May 2002

* @version added Neural controller / Bandwidth Broker
*/

/**

* Modified May, 2002

* C.
*

H. Poskar

* Added support for VTP Emulation and Fuzzy Neural Controller:

* %

fnn, the fuzzy neural network,

numIONeurons, the number of Inupt and Ouptu neurons,

packetLoss, deltaPacketLoss, and control, membership functions for fuzzy sets
buildFNN(), construct and initialize the fuzzy neural controller,
buildPacketLossMF (), construct the packet loss membership function ,
buildDeltaPacketLossMF (), construct the delta packet loss membership function,
buildControlMF (), construct the control membership function,

fuzzify(), fuzzify a crisp input with the specified membership functions,
defuzzify(), defuzzify a fuzzy output using COG,

fuzzyControl(), determine the control by processing a set of inputs,
fuzzyTrain(), train the FNN with the given training pattern,

getBlockDelay (), which returns the initial block delay setting, and
sendBlockDelay (), sends a new block delay setting to the server.

TODO:
Implement different de-fuzzification schemes.

L T S I T T S OOy
I

/

~
*

* AbstractHandler:
- appears to be a thread that processes commands
* CommandConstants:
- has access to all the same commands and values as the server.

*/

76

public class PhatClient extends AbstractHandler implements CommandConstants {
public static final int PHAT_PORT = 4269;//changed to public

// Some client parameters

float alpha = 0.95f;

int packetSize = 1472;

int adjustSize = 50; //was 100

int blockbelay = 50; //start with this value..
int adjustSubBlockSize = 250;

int startBlockSize = 4;

boolean dynBlockSize = false;

boolean dynBlockDelay = false;

boolean isSilent = false;
boolean logging;
public String host;

// Internal auxiliary storage
/** A storage space for Strings. */
StringBuffer cmdBuf = new StringBuffer();
StringQueue rplyQ new StringQueue();
public Vector mServers = new Vector();

// Fuzzy Neural Controller & I/O Records:

public BCKFNNBprop fnn = null;
public int numIONeurons;
public double[][] packetLoss;

public double[][] deltaPacketLoss;
public double[][] control;

/**
* Regular constructor for a PhatClient object.
*/

public PhatClient(Socket s) throws IOException {
super(s) ;

this.host = s.getInetAddress () .getHostName() ;
mServers.addElement (this.host) ;

//for debuggin ---
//logging=true;

// Start up the server listener and wait for the acceptance reply
new Thread(this).start();

waitForReply () ;

rplyQ.pop () ;

// Do commands
BufferedReader in = new BufferedReader (new InputStreamReader (System.in));
while (true) {

System.out.print("phat> ");

String line = in.readLine().trim();

StringTokenizer tok = new StringTokenizer (line);

if (!tok.hasMoreTokens()) continue;

// Get the command
String cmd = tok.nextToken();

// This block of code should be replaced by a command pattern
try {
if (cmd.equals(SEND_CMD)) {
sendSend (tok) ;
} else if (cmd.equals (BLOCK_SIZE_CMD)) {
sendBlockSize (tok);
} else if (cmd.equals (BLOCK_DELAY CMD)) {

sendBlockDelay (tok) ;

else if (cmd.equals (PACKET_SIZE_CMD)) {
sendPacketSize{tok) ;

else if (cmd.equals(LIST_CMD)) {
sendList (tok) ;

else if (line.equals(QUIT _CMD)) {
sendMessage (line) ;
rplyQ.waitForItem(2000L) ;
System.exit (0);

else if (cmd.equals (CWD_CMD)) {

sendCWD (tok) ;

else if (cmd.equals (CDUP_CMD)) {

sendCDUP (tok) ;

else if (cmd.equals (ADDSERVER_CMD)) {
String mHost = tok.nextToken();
mServers.addElement (mHost) ;
System.out.println("phat: Added host " + mHost + ".");
else if (cmd.equals (SHOWSERVER_CMD)) {
System.out.println("phat: Hosts: ");

for(int j=0; j<mServers.size(); j++)
System.out.println("\t" + (String) (mServers.elementAt(j)));
else if(cmd.equals (MULTISEND_CMD) || cmd.equals('mgetm®)) {

System.out.println(" in multisend ");
buildFNN() ; //FNN

sendMulTiSend (tok) ;
else if (line.equals("KILLSERVER")) {
sendMessage (line) ;
rplyQ.waitForItem(2000L) ;
System.exit (0) ;
// Client-specific commands
else if (cmd.eqguals("ALPHA")) ({
float £ = Float.valueof(tok.nextToken()).floatValue();
if (£ <= 0.0f || £ > 1.0f) {
System.out.println("phat: Alpha must be in (0, 11.%);
} else {
alpha = f;
System.out.println("phat: Alpha set to " + £ + ".");
}
else if (cmd.equals("ADJUSTSIZE")) {
int i = Integer.parselnt (tok.nextToken());
if (i <= 0) {
System.out.println("phat: Adjust size must be > 0.");
} else {
adjustSize = i;
System.out.println("phat: Adjust size set to " + i + ")
}
else if (cmd.equals("ADJUSTSUBSIZE")) {
int i = Integer.parselInt (tok.nextToken());
if (1 <= 0) {
System.out.println("phat: Adjust subBlockSize must be > 0.")
} else {
adjustSubBlockSize = i;

System.out.println("phat: Adjust subBlocksize set to " + i + oy,

}
else if (cmd.equals("LOG")) {
if (tok.hasMoreElements()) {

String state = tok.nextToken();
if ("ON".equalsIgnoreCase(state)) {

I

78

logging = true;

} else if ("OFF".equalsIgnoreCase(state)) {
logging = false;

} else {

System.out.println("phat: LOG can be either ON or OFF.");
}

}
System.out.println("phat: LOG is " + (logging ? "ON." : "OFF.")):
} else if(cmd.equals ("DYNAMICBLOCKSIZE")) {
if {(tok.hasMoreElements()) ({
String state = tok.nextToken();
if ("ON".equalsIgnoreCase(state)) {
dynBlockSize = true;
} else if ("OFF".equalsIgnoreCase (state)) {
dynBlockSize = false;
} else {
System.out.println("phat: Dynamic block size - ON or OFF.");
}
}
System.out.println("phat: Dynamic block size is " + (dynBlockSize ?
"ON." : "OFF."));
} else if(cmd.equals ("DYNAMICBLOCKDELAY") || cmd.equals ("DELAY")) {
if (tok.hasMoreElements()) ({
String state = tok.nextToken();
if ("ON".equalsIgnoreCase(state)) f{
dynBlockDelay = true;
} else if ("OFF".equalsIgnoreCase(state)) {
dynBlockDelay = false;
} else {
System.out.println("phat: Dynamic block delay - ON or OFF.");
}
}
System.out.println("phat: Dynamic block delay is " + (dynBlockDelay
? "ON." : "QFF."));

}

} catch (NumberFormatException ex) {
System.out.println("phat: Invalid number.");

} catch (NoSuchElementException ex) {
System.out.println("phat: Command needs more arguments.");

}

public PhatClient(Socket s,boolean inSilent) throws IOException ({
super(s) ;

buildFNN() ; / /FNN

this.isSilent=inSilent;

// Start up the server listener
new Thread(this).start();

// Wait for the acceptance reply
waitForReply () ;

rplyQ.pop () ;

//i'm connnected weeeeecee!

}

/** Build Fuzzy Neural Network Control Structure.
* Construct and initialize FNN once for each connection.
*/

79

private void buildFNN() {
int numLayers = 3;

int layeril = 10;

int layer2 = 25;

int layer3 = 5;

int numNeurons = layerl+layer2+layer3;
int[] layers = { layerl, layer2, layer3 };

int{][] refTypes = new int[numLayers][];
double[][]{] refs = new double[numLayers][][]:
int[]1[1[] netStruct = new int[numLayers][][];
numIONeurons = layerl+layer3;

for (int layer=0; layer<numLayers; layer++) {
refs[layer] = new double[layers[layer]][];
for (int post=0; post<layers[layer]; post++) {
refTypes[layer] [post] = BCKFuzzyNeuron.NO_REF;
refs[layer] [post] = null;
}
}

for (int layer=1; layer<numLayers; layer++) {
netStruct[layer] = new int[layers[layer]] [layers[layer-1]1;

//Initialize the network to be unconnected
for (int post=0; post<layers[layer]; post++) {
for (int pre=0; pre<layers[layer-1]; pre++) |
netStruct[layer] [post] [pre] = 0;
}
}

//Manually set the connections
if (layer == 1) {
int post = 0;
for (int prel=0; prel<5; prel++) {
for (int pre2=5; pre2<10; pre2++) {
netStruct[layer] [post] [prel] =
netStruct{layer] [post] [pre2] =
post++;

}

1;
1;

}

} else if (layer == 2) {
netStruct[layer] [0][0]
netStruct([layexr] [0][1] =
netStruct[layer] [0][2] =
netStruct[layer] [1][3] =
netStruct{layer] [1][4] =
netStruct|[layer] [1][5] =
netStruct(layer] (1] [6] =
netStruct{layer] [1][7] =
netStruct[layer] [1][8] =
netStruct{layer][1]1[10] =
netStruct[layer] [1][11]
netStruct(layer] [2][9] = 1;
netStruct{layer] [2][12] = 1
netStruct[layer] [2][13] = 1
netStruct{layer] [2][15] = 1;

1
1

~e e o~

e

I
o s

netStruct{layer] [2][16] =
netStruct(layer] [3}[14] =

netStructilayer] [3]([17] = 1;
netStruct[layer] [3][20] = 1;
netStruct[layer] [4]1[18] = 1;
netStructlayer] [4][19] = 1;
netStruct[layer] [4]1[21] = 1;
netStruct[layer] [4][22] = 1;
netStruct([layer] [4])[23] = 1;
netStruct{layer] [4][24] = 1;
}
}
try {
BCKFNNBprop fnn = new BCKFNNBprop(layers, netStruct, refTypes, refs);
} catch (Exception e){
System.err.println("Error" + e);
}
buildPacketLossMF () ;
buildDeltaPacketLossMF () ;
buildControlMF () ;
}
/** Build Membership function for Packet Loss.
* - packetLoss has 5 membership functions.
* - Each Membership function has 4 points representing the x-axis

* co-ordinate of the corners of a trapazoid. The y-axis co-ordinates are
* implied as 0, 1, 1, 0.
*/

private void buildPacketLossMF() {

double x = (1 - alpha) / 2;
double[][] temp = { { 0.0, 0.0, X, (2*x) 1},
{ x, (2*x), (2*x), (3*x) },
{ (2*x), (3*x), (3*x), (4*x) },
{ (3*x), (4*x), (4*x), (5*x) },
{ (4*x), (5*x), 1.0, 1.0 }
}i
packetLoss = temp;
}
/** Build Membership function for Change in Packet Loss.
* - deltaPacketLoss has 5 membership functions.
* -~ Bach Membership function has 4 points representing the x-axis

* co-ordinate of the corners of a trapazoid. The y-axis co-ordinates are

* implied as 0, 1, 1, 0.
*/
private void buildDeltaPacketLossMF() {
double x = (1 - alpha) / 2;
double[]1[] temp = { { -(1), -(1), =-(2*x), -(x) 1},
{ -(2*x), -(x), -(x), 0.0 1,
{ -(x), 0.0, 0.0, x },
{ 0.0, X, X, (2*x) },
{ x, (2*x), (2*x), 1 }
}:
deltaPacketLoss = temp;

}

/** Build Membership function for Control Output.
- deltaPacketlLoss has 5 membership functions.

*

81

* - Each Membership function has 4 points representing the x-axis
* co-ordinate of the corners of a trapazoid. The y-axis co-ordinates are
* implied as 0, 1, 1, 0.
*/
private void buildControlMF() {

double[][] temp = { { alpha, alpha, 0.97, 1.0 },
) { 0.99, 1.0, 1.0, 1.2 1},

{ 1.0, 1.2, 1.2, 1.4 1},

{1.2, 1.4, 1.4, 1.6},

{ 1.6, 1.8, 2.0, 2.0}

};

control = temp;

}

/** Fuzzify an Input
* Fuzzify an input parameter with the given membership function.
* - Returns an array indicating the degree to which the input (x)
* belongs to each of the membership functions (specified in mf).
*/

private double(] fuzzify(double x, double[][] mf)
double[] fuzz = new double[mf.length];

//verify Universe of Discourse:

if ((x < mf[0][0]) || (x > mf[mf.length-1](31)) {
System.err.println("The input: " + x + " exceeded the MF bounds") ;
System.exit (-1);

}

for(int i=0; i<mf.length; i++) {
1f ((x>mf{i][0]) && (x<mf[i][1])) {(
fuzz[i] = (x - mE[i]1[0]) / (mE[i][1) - mEf[i][0]);
} else if ((x>=mf[i][1]) && (x<=mf[i]1[2])) {
fuzz[i] = 1;
} else if ((x>mf{il[2]) && (x<mf[i][3])) (

fuzz[i] (x - mE[i][2]) / (mE[i]1[2] - mf[i1[3]);
} else {
fuzz[i] = (double)O;
}
}
return fuzz;

}

/** De-Fuzzify an Output
* De~-fuzzify the fuzzy output with the given membership function.
* - Returns a crisp value representing the output of the fuzzy controller.
* - Simplified Center of Gravity, (COG).
*/
private double defuzzify(doublel] vy, double{][] mf) {
double suml = 0;
double sum2 = 0;

for(int i=0; i<y.length; i++) {
if (y[i] > 0) {
suml += y[i] * (mE[1])[2] + (mE{i1[3] - mf[i][2])/2);
sum2 += y[i];
}
}

return (suml/sum2);

}

/** Fuzzy Control Decision

* Use the Fuzzy Neural Network to make a control decision.

* - first fuzzify the inputs,

- then setup the input vector,

* - apply the input vector to the FNN and perform a forward pass.
- get the output and de-fuzzify.

*

*

*/
public double fuzzyControl(double pl, double delta) {
doublel] fuzzyPL = fuzzify(pl, packetLoss);

double[] fuzzyDelta = fuzzify(delta, deltaPacketLoss) ;
double[] input = new double[fuzzyPL.length + fuzzyDelta.length];
for (int i=0; i < fuzzyPL.length; i++) {
input[i] = fuzzyPL[i];
}
for (int i=0; i < fuzzyDelta.length; i++) {

input[fuzzyPL.length + i] = fuzzyDeltal[i];
}

fnn.setInput (input);

fnn. forwardPass () ;

double[] output = fnn.getOutputs();
return defuzzify(output, control);

}

/** Train Fuzzy Neural Network - specified number of epochs.*/
public double fuzzyTrain(double[] pl,doublel] delta,double[] target,int numEpochs) {
BCKRecord[] records = new BCKRecord[pl.lengthl;

for (int i=0; i < records.length; i++) {
double{] fuzzyPL fuzzify(pl[i], packetLoss);
double[] fuzzyDelta fuzzify(deltal[i], deltaPacketLoss);
double[] fuzzyTarget fuzzify(target[i], control);

doublel] io = new double[fuzzyPL.1ength+fuzzyDe1ta.length+fuzzyTarget.length];

if (numIONeurons != (io.length)) {
System.err.println("The I/0O size does not match the network. ") ;
System.exit(~1);

}

int offset = 0;

System.arraycopy (fuzzyPL, 0, io, offset, fuzzyPL. length) ;

offset += fuzzyPL.length;

System.arraycopy (fuzzyDelta, 0, io, offset, fuzzyDelta.length);
offset += fuzzyDelta.length;

System.arraycopy (fuzzyTarget, 0, io, offset, fuzzyTarget.length) ;

records[i] = new BCKRecord(io);

}

double correct = -1;

try {
fon.setTrainingFile (records) ;
fnn.setTestingFile(records);

fnn.train (numEpochs) ;

correct = fnn.test();
} catch (Exception e){
System.err.println("Error" + e);

83

}

return correct;

}

/** Train Fuzzy Neural Network - defaults to one training epoch.*/

public double fuzzyTrain(double[] pl, double[] delta, double[] target) {
return fuzzyTrain(pl, delta, target, 1);

}

public int getBlockDelay() {
return blockDelay;
}

protected void processIOError (IO0Exception ex) {
System.out.printin("phat: There was a connection problem.");
System.out.println("phat: Error message: " + ex);
System.exit (0);

}

/**
* Start Execution of the phat client.
* Requires one argument - the server hostname
*/
public static void main(String[] args) throws IOException{
if (args.length != 1) {
System.out.println("Usage: PhatClient <host>") ;
System.exit (0);

}
Socket server = new Socket(args[0], PHAT_PORT) ;

PhatClient client = new PhatClient (server);
}

/**

* Processes a response from the server. The response will be in the
* same format as the FTP protocol.

*/
protected void processMsg(String msg) {
if (msg.startsWith(PING_CMD + " ")) {
try {
sendMessage (PING_REPLY_CMD+" "+msg.substring(PING_CMD.length()+l));
} catch (IOException ex) {
}
} else {
rplyQ.push(msg) ;
// First make sure it is not an unsolicited command
// Hmm.. are there any of these?
// Yes: PING
System.out.println(msg);
}
}

public void waitForReply() {
rplyQ.waitForItem(20000L) ;
if (rplyQ.isEmpty()) {
System.out.println("phat: No reply from server for 20s.");
System.out.println("phat: Exiting...");
// TODO Print some stats
System.exit (0);

}

// Commands

/**

* Sends the SEND command.

*/

private void sendSend(StringTokenizer tok) throws I0Exception {

String cmd = tok.nextToken("");

String filename;

// Get the filename first

int quotIdx = cmd.indexOf('\"');

if (quotIdx >= 0) {
// Quoted?
int nextQuotIdx = cmd.indexOf('\"', quotIdx + 1);:
if (nextQuotIdx < 0) {

System.out.println("phat: Missing final quote character.");
return;
}
filename = cmd.substring(quotIdx + 1, nextQuotIdx);
} else {

// Not quoted
StringTokenizer st = new StringTokenizer (cmd);
filename = st.nextToken();

}

if (filename.length() == 0} {
System.out.println("phat: Missing filename.");
return;

}

// Make sure we can create the connection first

final FSTPClient client;
try {
client = new FSTPClient (this);
} catch (SocketException ex) {
System.out.println("phat: Error opening connection.");
return;
}
// Set some client properties here so that there is
// one less thing to do when time is important later
client.setAlpha(this.alpha);
client.setAdjustSize (adjustSize);
client.setPacketSize (packetSize);
client.setDynamicBlockSize (dynBlockSize) ;
client.setDynamicBlockDelay(dynBlockDelay);
client.setStartBlockSize(startBlockSize) ;
// Add a listener
final Guard guard = new Guard(); // For waiting
client.addClientListener (new FSTPClient.ClientListener() {
public void receiveComplete (int streamId, long time) {
System.out.print("phat: * + client.getFileSize() +
" bytes received in " + time/1000.f + "s (");
System.out.print((float)((double)client.getFileSize() /
(double) time / 1.024));
System.out.println(" kB/s).");
guard.notifyGuard() ;
}
public void receiveTimeout (int streamId, float percentComplete,
long time) {

System.out.println("phat: " +percentComplete + "% complete in "
+ time/1000.0f + "s");

}

public void clientException(int streamId, Exception ex) {
System.out.println("phat: Error while receiving: " + ex);
guard.notifyGuard() ;

}

public void receiveStopped(int streamId, long time) {
System.out.printin("phat: " + client.getPercentComplete() +

"% complete in " + time/1000.0f + "s");

guard.notifyGuard() ;
}

public void blockSizeAdjusted(int streamId, int newBlockSize) {
}
IOl
// Set the receive port
cmdBuf.setLength(0) ;
cmdBuf . append (PORT_CMD) ;
cmdBuf.append (' ');
cmdBuf.append(client.getLocalPort());
sendMessage (cmdBuf. toString()) ;
waitForReply () ;
if (!rplyQ.pop().startsWith (COMMAND_OKAY RPLY)) return;
// Send the command
cmdBuf. setLength(0) ;
cmdBuf . append (SEND_CMD) ;
cmdBuf.append (' ');
cmdBuf . append (£ilename) ;
sendMessage (cmdBuf. toString ()) ;
waitForReply () ;
if ('rplyQ.pop{().startsWith(SENDING_FILE_RPLY)) return;
// Organize the file storage
DataStorage dataStore;
try {
File file = new File(filename);
dataStore = new RandomAccessStorage (new File(filename));
} catch (FileNotFoundException ex) {
System.out.println("phat: File \'" + filename +
"\' cannot be written to.");
return;

}
// If we are logging, make this file, too

FileStatsListener statsListener = null;
if (logging) {
try {
statsListener=new FileStatsListener (new File(filename+".log"));
} catch (FileNotFoundException ex) {
System.out.println("phat: File \'" + filename +
"\' cannot be written to.");
return;
}
try {
client.addStatsListener (statsListener);
} catch (java.util.TooManyListenersException ex) {
// Shouldn't happen
}

86

}

waitForReply () ;
String rply = rplyQ.pop();
if (!rply.startsWith(FILE_INFO_RPLY)) return;

// The file is being sent, so get the file information

tok = new StringTokenizer (rply);
tok.nextToken () ;

try {
tok.nextToken(); // FILESIZE
client.setFileSize(Long.parseLong (tok.nextToken())) ;
tok.nextToken(); // STREAMID
client.setStreamId(Integer.parseInt(tok.nextToken()));
tok.nextToken(); // SERVERPORT
client.connect(socket.getInetAddress(), Integer.parselnt (

tok.nextToken()));
client.receiveData (dataStore);
// Now we can do some work!
guard.waitGuard();
if (statsListener != null) statsListener.close();
} catch (NoSuchElementException ex) {
System.out.println("phat: Invalid server reply.");
return;

}

/**
* Sends the SENDM command - for multiple connections :)
*/
private void sendSendM(StringTokenizer tok) throws IOException {
String cmd = tok.nextToken("");
String filename;

// Get the filename first

int quotIdx = cmd.indexOf ('\"');
if (quotIdx >= 0) {
// Quoted?

int nextQuotIdx = cmd.indexOf('\"", quotIdx + 1);

if (nextQuotIdx < 0) ¢
System.out.println("phat: Missing final quote character.");
return;

}

filename = cmd.substring(quotIdx + 1, nextQuotIdx);

} else {
// Not quoted

StringTokenizer st = new StringTokenizer (cmd) ;
filename = st.nextToken();

}

if (filename.length() == 0) {
System.out.println("phat: Missing filename.");
return;

}

// Make sure we can create the connection first
FSTPController FSTPcon = new FSTPController (this);
FSTPcon.getFile(filename);

//removed
}
/**

* Sends the MULTISEND command - for multiple connections :)
*/

private void sendMulTiSend(StringTokenizer tok) throws I0Exception {

int numCon = Integer.parseInt (tok.nextToken()});
// System.out.println("num connections is : "+numCon);
String cmd = tok.nextToken("");

String filename;
long fileSize;
// Get the filename first

int quotIdx = cmd.indexOf('\"');
if (quotIdx >= 0) {
// Quoted?

int nextQuotIdx = cmd.indexOf('\"', quotIdx + 1);

1f (nextQuotIdx < 0) {
System.out.println("phat: Missing final quote character.");
return;

}

filename = cmd.substring(quotIdx + 1, nextQuotIdx) ;

} else {
// Not quoted

StringTokenizer st = new StringTokenizer (cmd);
filename = st.nextToken();

}

if (filename.length() == 0) {
System.out.println("phat: Missing filename.");
return;

}

cmdBuf. setLength(0) ;

cmdBuf . append (MULTISEND_CMD) ;
cmdBuf.append (' ');
cmdBuf. append (filename) ;
sendMessage (cmdBuf. toString()) ;

waitForReply () ;
String rply = rplyQ.pop();
if (lrply.startsWith(COMMAND OKAY_RPLY)) {
//this.startBlockSize = blockSize;
/*rply = rplyQ.pop();
if (lrply.startsWith(FILE_INFO_RPLY)) {
System.out.println(

return;

}

*/

System.out.println("didn't get the okay command - " + rply)

return;
}
// System.out.println('we did get the command - " + rply);
waitForReply () ;

rply = rplyQ.pop();
if (!rply.startsWith(MFILE_INFO_RPLY)) {
System.out.println("not a mfile reply!- "+rply.toString());

‘

88

}

return;

}
// The file is being sent, so get the file information

//System.out.println{"got the mfile info reply!");
tok = new StringTokenizer (rply):;
tok.nextToken ()} ;
try {
tok.nextToken(); // FILESIZE
// client.setFileSize (Long.parseLong (tok.nextToken()));
fileSize=Long.parseLong (tok.nextToken()) ;
// System.out.println("file size is - "+fileSize);

} catch (NoSuchElementException ex) ({
System.out.println("phat: Invalid server reply.");
return;

}

FSTPController FSTPcon=new FSTPController(this, fileSize,numCon,mServers) ;
FSTPcon.getFile (filename) ;

/**

* Sends the desired block delay in milliseconds.
*/

private void sendBlockDelay(StringTokenizer tok) throws IOException {

}

cmdBuf. setLength(0) ;

cmdBuf. append (BLOCK_DELAY_CMD) ;

cmdBuf. append (' ');

blockDelay = Integer.parselnt (tok.nextToken()):
cmdBuf. append(blockDelay) ;
sendMessage (cmdBuf. toString()) ;

waitForReply () ;
rplyQ.pop () ;

/**

* Sends the desired block delay in milliseconds.
*/

public void sendBlockDelay (int newDelay) throws IOException {

}

cmdBuf. setLength(0);

cmdBuf. append (BLOCK_DELAY_CMD) ;
cmdBuf.append (' ');

cmdBuf . append (newDelay) ;
sendMessage (cmdBuf. toString());

waitForReply () ;
rplyQ.pop () ;

/**

* Sends the desired block size in packets.
*/

private void sendBlockSize (StringTokenizer tok) throws IOException {

cmdBuf. setLength(0) ;

cndBuf . append (BLOCK_SIZE_CMD) ;

cmdBuf.append (' ');

int blockSize = Integer.parseInt (tok.nextToken()) ;
cmdBuf.append (blockSize);
sendMessage (cmdBuf. toString());

waitForReply () ;

89

if (rplyQ.pop{().startsWith(COMMAND_OKAY_ RPLY)) {
this.startBlockSize = blockSize;
}
}

/**
* Sets the Current Working Directory
*/
private void sendCWD(StringTokenizer tok) throws IOException {
//System.out.println("We are in the change dir part ");
cmdBuf.setLength(0) ;
cmdBuf . append (CWD_CMD) ;
cmdBuf.append (' ');
String str = tok.nextToken():;
cmdBuf . append (str) ;
sendMessage (cmdBuf. toString()) ;
//System.out.println("/t "+cmdBuf.toString());

waitForReply () ;
//System.out.println("reply == " +rplyQ.pop());
if(rplyQ.pop() .startsWith (COMMAND_OKAY RPLY)) {
//null; //just cheching reply??
}
}

private void sendCDUP(StringTokenizer tok) throws IOException {
//System.out.println("We are in the change dir part ");
cmdBuf.setLength(0) ;
cmdBuf . append (CDUP_CMD) ;
sendMessage (cmdBuf. toString()) ;
//System.out.println("/t "+cmdBuf.toString());

waitForReply () ;
//System.out.println("reply == " +rplyQ.pop());
if(rplyQ .pop () .startsWith (COMMAND_OKAY_RPLY)) {
// mnull; //just cheching reply??
}
}
/* *
* Sends the list command
*/
private void sendList (StringTokenizer tok) throws IOException {
cmdBuf. setLength(0) ;
cmdBuf. append (LIST_CMD) ;
try {
cmdBuf.append (" " + tok.nextToken("")) ;
} catch (NoSuchElementException ex) {
}
sendMessage (cmdBuf. toString());

waitForReply () ;
if (lrplyQ.pop().startswith (SENDING_DIR_RPLY)) return;

waitForReply () ;

rplyQ.pop () ;
}

/**
* Sends the desired packet size in bytes.
*/
private void sendPacketSize(StringTokenizer tok) throws IOException ({

90

}

cmdBuf. setLength(0);

cmdBuf. append (PACKET _SIZE_CMD) ;

cmdBuf.append (' ');

int packetSize = Integer.parselnt (tok.nextToken()):
cmdBuf.append (packetSize) ;
sendMessage (cmdBuf. toString());

waitForReply () ;

if (rplyQ.pop().startsWith (COMMAND_OKAY RPLY)) {
this.packetSize = packetSize;

}

} //PhatClient

91

A.3 FSTPClient.java

package com.phatpackets. fstp;
import com.phatpackets.fstp.client.BitSetPacketTracker;
import BCK.ANN.BCKRecord:;

import java.io.InterruptedIOException;
import java.io.IOException;

import java.net.*;

import java.util.Vector;

import java.util.TooManyListenersException;
import java.io.*;

/*'k

* Title:

* Description:

* Copyright:Copyright (c) 2001

* Company:

* @author Shawn Silverman, modified by Greg Jaman, Chris Buzunis

* @version 1.0

*/

/**

* Modified May, 2002

* C. H. Poskar

*

* Added support for VTP Emulation and Fuzzy Neural Controller:

* In DataHandler:

* - lastPacketLoss, used to calculate the change in packet loss,

* - minDelay, used to model Max. allocated bandwidth in terms of an
* adjusted block delay (set to 90% of initial delay),

* - trackDelay, a local variable to track the changes in block delay.
* Separated control implementation out of processData(), and into:

* - rateControllerl(), the original control for modifying delay/block size,
* - rateController2(), for interacting with the FNN controller,

* - rateController3(), can over-ride existing block delay, or call FNN.
*

* TODO:

* Recording additional statistice, block loss, pack delay, etc...
*/

public class FSTPClient extends FSTPPeer implements CommandConstants {
// Listeners States that this client could be in when stopped

// - for firing events after this is stopped, but a new listener is added

private static final int NOT_STOPPED_STATE = 0;

private static final int COMPLETE_STOPPED STATE = 1;

public static final int STOPPED_STOPPED_STATE = 2; //for now not private
private static final int EXCEPTION_STOPPED_STATE = 3;

//public for now - used to notify after stopped

public int stoppedState = NOT_STOPPED_STATE;

private Vector listeners;

private StatsListener statsListener;

private Exception stoppedStateEx;

public AbstractHandler control;
private DataHandler dataHandler;

92

public
public
private

float alpha;

int adjustSize;
int desiredAdjustSize;

// For dynamic block size

boolean dynBlockSize;

boolean dynBlockDelay = true;
boolean blockSizeCanGoLower;

private
public
private

private
private
public

private

public
private

private
private
private
private
private
private

private
private

// Two states:

private

int startBlockSize;
int upperBlockSize;
int currBlockSize;
int lowerBlockSize;

long fileSize;

long startTime;

StringBuffer
StringBuffer
StringBuffer
static final
static final
static final

static final
static final

adjusting

//G changed from private!

adjbDelayBuf;

adjBlockSizeBuf;

rsndBuf;

int ADJ_DELAY_LEN = ADJUST DELAY_CMD.length{() + 1;
int ADJ_BLOCK_SIZE_LEN =ADJUST_BLOCK_SIZE_CMD.length()+1;
int RSND_LEN = RESEND_PACKETS_CMD. length{()} + 1;
int ADJUST_BLOCK_SIZE_STATE = 0;

int ADJUST_DELAY_ STATE = 1;

int state = ADJUST_BLOCK_SIZE_STATE;

private boolean singleServer = true; //g

/**

the block size, and adjusting the delay

* A listener interface for listening to events from this server.

*

* @author Shawn Silverman

*/

public interface ClientListener {
public void receiveComplete(int streamld, long time);

public void receiveTimeout (int streamId, float percentComplete, long time);

public void clientException(int streamId, Exception ex);

/*'k

* Indicates that the receive was stopped externally.

*/

public void receiveStopped(int streamId, long time);

/-k*

* Indicates that the block size was adjusted.
* during the dynamic block sizing mode.

*/

This event only occurs

public void blockSizeAdjusted(int streamId, int newBlockSize);

/**

* An interface for listening to packets received, for statistics
* purposes.

*

* @author Shawn Silverman

*/

public interface StatsListener {

public void setExpectedPacketCount (long count) ;

93

}

/

L R S TR I)

public void packetReceived(long seqlId);
public void startResend();

public void receiveTimeout();

%

Creates a new client that listens for UDP packets on an assigned system
default port.

packetSize = 1472 bytes

streamId = 0</1li>

alpha = 0.95</1li>

adjustSize = 50 packets

dynamicBlockSize = true

startBlockSize = 4 packets

~

public FSTPClient (AbstractHandler control) throws SocketException {

}

~

L A I I O .

this(-1, control);

*
Creates a new client that listens for UDP packets on the specified
port. If the port is less than zero, then a system default port will
be assigned.
<p>
The default values for the properties are:

packetSize = 1472 bytes
streamId = 0</1li>
alpha = 0.95</1i>
adjustSize = 50 packets
dynamicBlockSize = true
startBlockSize = 4 packets

</p>
/

public FSTPClient (int port, AbstractHandler control) throws SocketException {

super (port) ;

//Default properties
packetSize = 1472;

streamId = 0;

alpha = 0.95f;
desiredAdjustSize = adjustSize = 50;
dynBlockSize = true;

startBlockSize = 4;
this.control = control;

// Some storage space for send commands
adjDelayBuf = new StringBuffer();
adjDelayBuf.append (ADJUST _DELAY_ CMD) ;
adjDelayBuf.append(' ');

adjBlockSizeBuf = new StringBuffer();
aijlockSizeBuf.append(ADJUST_BLOCK_SIZE_CMD);
adjBlockSizeBuf.append(' ');

rsndBuf = new StringBuffer();
rsndBuf. append (RESEND_PACKETS_CMD) ;

94

rsndBuf.append (' ');

}
/*
* Listeners.
*/
/*
* FIX 11-Sep-2001 (Understood on 07-Sep-2001)
* Found by Sheng Huang
* Fix by Shawn Silverman
*
* This addresses the issue of a file completing before the listener has a
* chance to get the appropriate stopped event.
*
* Synchronized all the methods in this section of code because it was
* possible to add/remove listeners just, say, as a file was finishing up,
* thus producing ‘fire' events (for example).
*
* In addition, if a ClientListener is added after some important events,
* then the events will be fired to this listener. The reason for this is
* that in the time it takes to start the file send and to initialize
* client code, the server is already sending packets, and we want to miss
* as few as possible.
*

/
public synchronized void addClientListener (ClientListener 1) {
if (1 !'= null) {
// Fire an event if this client is stopped
// I'm beginning to think here that event objects would be a
// cleaner approach

if (NOT__STOPPED_STATE != stoppedState) {
int id = getStreamId();
long time = System.currentTimeMillis() - startTime;

switch (stoppedState) {

case COMPLETE_STOPPED_STATE:
l.receiveComplete(id, time);
break;

case STOPPED_STOPPED_STATE:
l.receiveStopped(id, time);
break;

case EXCEPTION_STOPPED_STATE:
l.clientException(id, stoppedStateEx);
break;

}

if (listeners == null) listeners = new Vectox () ;
listeners.addElement (1) ;
}
}

public synchronized void removeClientListener (ClientListener 1) {
if (1 != null && listeners != null) {
listeners.removeElement (1) ;

}

/**
* Adds a StatsListener. This can only have one of these. This should be
* added before we start to receive.

95

*
* @throws TooManyListenersException if there is already a stats listener
* that has been registered.
*/
public synchronized void addStatsListener(StatsListener 1)
throws TooManyListenersException {
if (dataHandler != null) ({
throw new RuntimeException("Already receiving data.");

}
if {1 != null) {
if (statsListener != null) {
throw new TooManylListenersException();
}
statsListener = 1;
}

}

public synchronized void removeStatsListener() {
statsListener = null;

}

/**
* Fires the ReceiveTimeout event.
*/
private synchronized void fireReceiveTimecut (float percentComplete, long time) {
if (listeners == null) return;
for (int i = listeners.size(); --1i >= 0;) {
((ClientListener)1isteners.elementAt(i)).receiveTimeout(getStreamId(),
percentComplete, time);

}

/**
* Fires the ReceiveComplete event. The receive is stopped at this point.
*/

private synchronized void fireReceiveComplete (long time) {
stoppedState = COMPLETE_STOPPED_STATE;

if (listeners == null) return;
for (int i = listeners.size(); --i >= 0;) {
((ClientListener)listeners.elementAt(i)).receiveComplete(getStreamId(), time) ;
}
}
/**

* Fires the ClientException event. The receive is stopped at this point.
*/
private synchronized void fireClientException (Exception ex) {
stoppedState = EXCEPTION_STOPPED_STATE;
stoppedStateEx = ex;

if (listeners == null) return;
for (int i = listeners.size(); ~--i >= 0;) {
((ClientListener)listeners.elementAt(i)).clientException(getStreamId(), ex) ;
}
}
/**

* Fires the ReceiveStopped event. The receive is stopped at this point.
*/

private synchronized void fireReceiveStopped(long time) ¢
stoppedState = STOPPED_STOPPED_STATE;

96

if (listeners == null) return;

for (int i = listeners.size(); --i >= 0;) {
((ClientListener)listeners.elementAt (i)).receiveStopped(getStreamId(), time);
}
}
/**
* Fires the BlockSizeAdjusted event.
x/

private synchronized void fireBlockSizeAdjusted{int newBlockSize) {
if (listeners == null) return;
for (int i = listeners.size(); --i >= 0;) {
((ClientListener)listeners.elementAt(i)).blockSizeAdjusted (getStreamId(),
newBlockSize) ;

}

private synchronized void fireStatsPacketReceived(long seqId) {
if (statsListener != null) {
statsListener.packetReceived (seqId);
}
}

private synchronized void fireStatsStartResend() {
if (statsListener != null) {
statsListener.startResend();
}
}

private synchronized void fireStatsReceiveTimeout () {
if (statsListener != null) {
statsListener.receiveTimeout () ;
}
}

/*
* Accessors.
*/

/**

* Sets the file size.
*

* @throws IllegalArgumentException if fileSize < 0.
*/
public void setFileSize(long fileSize) {
if (fileSize < 0) {
throw new IllegalArgumentException("fileSize < 0");
}
this.fileSize = fileSize;
}

/**
* Gets the file size.
*/

public long getFileSize() {
return fileSize;

}

/**

97

* Gets the time elapsed.

*/
public long getTimeElapsed() {

return System.currentTimeMillis() - startTime;
}
/**

* Sets the alpha value.
*
* @throws IllegalArgumentException if alpha is not in (0, 1].
*/
public void setAlpha(float alpha) ¢
if (alpha <= 0.0f || alpha > 1.0f) {
throw new IllegalArgumentException("alpha not in (0, 11");
}
this.alpha = alpha;
}

/**
* Gets the alpha value.
*/

public float getAlpha() {
return alpha;

}

/**
* Gets the number of packets for which to analyse and send the delay
* adjustment. Note that if dynamic block sizing is on, then this might
* return a different value than when set.
*/
public int getAdjustSize() {
return this.adjustSize;

}

*

/
Sets the number of packets for which to analyse and send the delay
adjustment. This should be set to a multiple of the block size.

<p>

If the <code>dynamicBlockSize</code> property is set to
<code>true</code>, then the resulting adjust size will be the closest
multiple of the block size, or the block size itself, depending if the
block size is bigger than the desired adjust size.

</p>

@throws IllegalArgumentException if adjustSize < 1.

[T A . T T R A

~

public void setAdjustSize(int adjustSize) {
if (adjustSize < 1) ¢
throw new IllegalArgumentException("adjustSize < 1");
}
this.adjustSize = adjustSize;
desiredAdjustSize = adjustSize;

/**

* Special code here for calculating the adjust size for the dynamic
* block size mode.

* At a block size of one, we want the adjust size.

98

* At a block size of the adjust size or greater, we want the adjust size
* to be equal to the block size.
*/
private void calcDynAdjustSize(int blockSize) {
if (blockSize >= desiredAdjustSize) {
adjustSize = blockSize;
} else if (blockSize == 1) {
adjustSize = desiredAdjustSize;
} else {
adjustSize = (int)Math.ceil((float)adjustSize / (float)blockSize) * blockSize;

}

/**
* Sets that we shold adjust the block size when we start receiving.
*/

public void setDynamicBlockSize(boolean flag) {
dynBlockSize = flag;

}

public void setDynamicBlockDelay (boolean flag) {
dynBlockDelay = flag;
}

/**
* Checks if this should adjust the block size when we start receiving.
*/

public boolean isDynamicBlockSize() {
return dynBlockSize;

}
/**
* Sets the starting block size for the dynamic block size mode. This
* value will be set to the next highest power of two if it is not already
* a power of two.
*
* @throws IllegalArgumentException if the starting block size < 1.
*

/
public void setStartBlockSize(int startBlockSize) {
if (startBlockSize < 1) {
throw new IllegalArgumentException("startBlockSize < 1),

}
this.startBlockSize = (int)Math.pow (2.0, Math.ceil (Math.log(startBlockSize)/
Math.log(2.0)));
}
/**

* Gets the percent complete. This returns -1.0f if this is closed.
* TODO - fix this to check for multiServer

*/
public float getPercentComplete() {
if (isClosed()) { // TODO Fix this mess
if (dataHandler !'= null && dataHandler.packetTracker != null) {
return dataHandler.packetTracker.getPercentComplete();
} else {
return -1.0f;
}
}
if (dataHandler == null || dataHandler.packetTracker == null) {

99

return 0.0f;
} else {
return dataHandler.packetTracker.getPercentComplete();

}

/*
* Methods.
*/

/**
* Recelves data into the specified data store. This does nothing if we
* are already receiving data, or if the client is closed.

*/

public void receiveData(DataStorage dataStore) {
if (isClosed()) return;
if (dataHandler == null) {

// Set to one of two states, or receiving modes

if (dynBlockSize) {
state = ADJUST_BLOCK_SIZE_STATE;
// Note that startBlockSize will be a power of two
upperBlockSize = lowerBlockSize = currBlockSize = startBlockSize;
if (startBlockSize > 1) {
blockSizeCanGoLower = true;

}

calcDynAdjustSize (currBlockSize);
} else {

state = ADJUST_DELAY_STATE;
}

dataHandler = new DataHandler (dataStore);
startTime = System.currentTimeMillis();
new Thread{dataHandler) .start();

//Added by g - Note that startBlockSize will be a power of two
public void receiveDataM(Vector phatData, PacketTracker pt) {
if (isClosed()) return;

if (dataHandler == null) {
// Set to one of two states, or receiving modes

if (dynBlockSize) {
state = ADJUST_BLOCK_SIZE_STATE:;

upperBlockSize = startBlockSize;
lowerBlockSize = startBlockSize;
currBlockSize = startBlockSize;

if (startBlockSize > 1) {
blockSizeCanGoLower = true;

}

calcDynAdjustSize (currBlockSize) ;
} else {

state = ADJUST_DELAY STATE;
}

dataHandler = new DataHandler (phatData,pt) ; //changed! G

100

startTime = System.currentTimeMillis();
new Thread(dataHandler) .start(); //change me!!!
}
}

//Added by B - Note that startBlockSize will be a power of two
public void receiveDataM(Vector phatData, PacketTracker pt, DataStorage
dataStore, int conID) {

if (isClosed()) return;

if (dataHandler == null) {
// Set to one of two states, or receiving modes
if (dynBlockSize) {
state = ADJUST_BLOCK_SIZE_STATE;

upperBlockSize = startBlockSize;
lowerBlockSize = startBlockSize;
currBlockSize = startBlockSize:

if (startBlockSize > 1) {
blockSizeCanGoLower = true;

}

calcDynAdjustSize (currBlockSize);
} else {
state = ADJUST_DELAY STATE;

}

dataHandler = new DataHandler (phatData,pt,dataStore, conID); //changed! G
startTime = System.currentTimeMillis();
new Thread(dataHandler).start(); //change me!!!

} else {
dataHandler.packetTracker=pt;
dataHandler.dataStore=dataStore;

startTime = System.currentTimeMillis();

new Thread(dataHandler).start(); //change me!!!
}
}
public boolean isReceiving() {
//return dataHandler != null;
return dataHandler != null ? !dataHandler.stopped : false;

}

public void close() {

if (dataHandler != null) {
dataHandler.stop() ;
dataHandler = null;

}

if (singleServer) super.close():

}

public void doneRcv () {
try{
control.sendMessage (DONE_RECEIVING_CMD + " " + getStreamId());
}
catch (IOException e) {}
}

101

/**
* Sends the amount by which to adjust the delay.
*/
private void sendAdjustDelay(int streamId, float factor) throws IOException {
adjDelayBuf.setLength (ADJ_DELAY LEN) ;
adjDelayBuf.append (streamid) ;
adjDelayBuf.append(' ');
adjDelayBuf.append(factor) ;

control.sendMessage (adjDelayBuf.toString()); //TODO Make more efficient
}
/**

* Sends the amount to set the block size.

*/

private void sendAdjustBlockSize(int streamId, int size) throws I0Exception {
adjBlockSizeBuf.setLength(ADJ_BLOCK_SIZE_LEN) ;
adjBlockSizeBuf.append(streamId);
adjBlockSizeBuf.append(* ');
adjBlockSizeBuf.append(size);
control.sendMessage (adjBlockSizeBuf.toString()); //TODO Make more efficient

*

Sends the RESENDPACKETS command. The last element should contain the
earliest seq ID.

@param seqIds a long array containing the packet sequence ID's to resend
@param off the offset into the array
@param len the length, starting from <code>off</code>

EE I T T

~

private void sendResendPackets (long[] seqlIds,int off,int len) throws JOException {
rsndBuf.setLength (RSND_LEN) ;
rsndBuf . append(getStreamId()) ;

for (int 1 = off + len; --i >= off;) {
rsndBuf.append (' ');
rsndBuf . append (seqIds[i]);
}
control.sendMessage (rsndBuf. toString());
}

/**
* Handles incoming UDP data.
*
* @author Shawn Silverman
*/

private class DataHandler implements Runnable {
volatile boolean stopped;
//public boolean stopped = false;
private RetransmitRequester req;
private Thread reqThread;
PacketTracker packetTracker;
private DataStorage dataStore;

private long currAdjustSeqgEnd; // Inclusive

private int currRcvSize;

private boolean firstTime = true; // Ignore some transients
private boolean retransmitting;

private int conID;

102

Vector phatData; //this is the pointer to the data?? sure.. why no.

/ /FNN

private double lastPacketLoss 0;

private double trackDelay (double) control.getBlockDelay () ;
private double minDelay = (0.9 * trackDelay);

i}

i

/**
* Creates a new data handler that listens to UDP packets.
*/

DataHandler (DataStorage dataStore) {
this.dataStore = dataStore;

}

//G added
//hmm.. pass a pointer to the controler thread??
DataHandler (Vector data) {

singleServer=false;

this.phatData=data;

stopped=false;

}
//we need to remove this later - G
//hmm.. pass a pointer to the controler thread??
DataHandler (Vector data, PacketTracker packetTracker) {
singleServer=false;
this.packetTracker=packetTracker;
this.phatData=data;
stopped=false;
}
//hmm.. pass a pointer to the controler thread??
DataHandler (Vector data, PacketTracker packetTracker,DataStorage dataStore,
int conID) {
singleServer=false;
this.packetTracker:packetTracker;
this.phatData=data;
this.dataStore = dataStore;
this.conID=conID;
stopped=£false;
}
/**

* Stops this receiver.
*/
void stop() {
//System.out.println("calling stopped from stop");
stopped = true;
|

if (req != null) {
reqg.stop();
}
}
/**

* Creates the packet tracker.
*/

private void createPacketTracker () {
currAdjustSeqgEnd = adjustSize - 1;
firstTime = true;

103

// Calculate the # of packets

int streamIdSize = PhatPacket.calcStreamIdSize (getStreamId()):;

int seqgIdSize = PhatPacket.calcSeqIdSize(fileSize, getPacketSize(),
streamIdSize) ;

int packetDataSize = getPacketSize() - streamIdSize - seqIdSize;

if (dataStore.isPacketDataSizeRequired()) {

dataStore.setPacketDataSize (packetDataSize) ;
dataStore.setTotalSize(fileSize);
}

long expPackets = (long)Math.ceil((double)fileSize/ (double)packetDataSize) ;

packetTracker = new BitSetPacketTracker();
packetTracker.setExpectedPacketCount (expPackets) ;

if (statsListener != null) ({
statsListener.setExpectedPacketCount (expPackets) ;
}
}

public synchronized void continueRun() {
notify();
}

public void run() {
1f (stopped) ({
System.out.println("the server is stopped??");
return;

}
retransmitting = false;

try {
DatagramSocket dataPort = udpSocket;
dataPort.setSoTimeout (2000) ;
DatagramPacket udpPacket=new DatagramPacket (new byte[packetSize],packetSize);
PhatPacket phatPacket = new PhatPacket (udpPacket) ;

if(singleServer) {
createPacketTracker () ;

} else {
currAdjustSeqEnd = adjustSize - 1; //done in the create packetTracker!
currAdjustSeqEnd = packetTracker.getOffset() + adjustSize -1;

firstTime = true;

}

while (!stopped && !packetTracker.isComplete()) {

try {
// FIX cuz the length sticks at the last length received
udpPacket.setLength(packetSize) ;
dataPort.receive (udpPacket) ;
phatPacket.update() ;
processData (phatPacket) ;

} catch (InterruptedIOException ex) {
if (!stopped) {

fireReceiveTimeout(packetTracker.getPercentComplete(),
System.currentTimeMillis () - startTime);

fireStatsReceiveTimeout () ;

retransmitting = true;
fireStatsStartResend() ;
// Start more retransmit requests if not yet done

104

if (!packetTracker.isComplete()) {
if (reqThread == null || !regThread.isAlive()) {
reqg = new RetransmitRequester (packetTracker) ;
reqThread = new Thread(req);
reqgThread.start () ;
}
} else {
System.out.printin("no need for resend!!");
}
}
} //catch
} //while

// Send the DONE_RECEIVING regardless - don't close!!! please!!
if (singleServer) {
control.sendMessage (DONE_RECEIVING_CMD + " * + getStreamId());
} else {
control.sendMessage (DONE_RECEIVINGBLOCK_CMD + " "+ getStreamId());
}

long time = System.currentTimeMillis() - startTime;

if (packetTracker.isComplete()) {
fireReceiveComplete(time) ;

} else if (stopped) {
fireReceiveStopped (time);

}

} catch (IOException ex) {
if (!stopped) { // To avoid some SocketExceptions
fireClientException (ex) ;
} else {
try{
if (singleSexrver)
control.sendMessage (DONE_RECEIVING_CMD + " " + getStreamId());
else control.sendMessage(DONE_RECEIVINGBLOCK_CMD + " " + getStreamId());
}
catch (IOException ex2) {}
}

} catch (FSTPException ex) {
fireClientException (ex) ;
} finally {
if (singleServer) {
System.out.println("calling stopped!");
stopped = true;
}
try {
if(singleServer) dataStore.close();

}
catch (IOException ex) {

}

if (singleServer) close();

}

/**
* Processes a packet of newly received data.
*/
private void processData{PhatPacket packet) throws IOException {

105

long segId = packet.getSeqId();
fireStatsPacketReceived(seqId) ;

// Track the packet
if (packetTracker.isPacketReceived(seqId)) return;

packetTracker.packetReceived{seqId);

// Send it to the storage
try {
if (singleServer) {
dataStore.pushData (packet) ;
} else {
dataStore.pushbhata (packet) ;
}

} catch (IOException ex) {
} catch (FSTPException ex) {
ex.printStackTrace() ;
if (ex instanceof PacketSizeException) { } // TODO Do something

3

// We need to adjust differently, depending if we are retransmitting.
if (lretransmitting) {
// If we have started receiving the next block then adjust the
// alpha or the block size
if (seqId > currAdjustSeqgEnd) {
if (!firstTime) {

rateControllerl();
} else {
firstTime = false;

}

// Readjust the seq monitoring, regardless of the state.
currRcvSize = 1;
currAdjustSeqEnd += adjustSize;
} else {
this.currRcvSize++;

}

} else {
// TODO Adjust while retransmitting, too
}
}

private void rateControllerl() throws IOException {
// Do adjustments here, depending on the state
if (state == ADJUST BLOCK_SIZE_STATE) {
if ((float)currRecvSize / (float)adjustSize < alpha) {
// Block size is too big
upperBlockSize = currBlockSize - 1;
if (lowerBlockSize <= upperBlockSize) {

currBlockSize = (lowerBlockSize + upperBlockSize)/2;
if (currBlockSize == lowerBlockSize) {
if (blockSizeCanGoLower && lowerBlockSize I= 1) {

lowerBlockSize /= 2;
currBlockSize = lowerBlockSize;
if (lowerBlockSize == 1) {
blockSizeCanGoLower = false;
}
} else {
state = ADJUST_DELAY_ STATE;

106

}

} else {
if (upperBlockSize > 0) {

currBlockSize = upperBlockSize;

}
state = ADJUST_DELAY_ STATE;

}

} else {

if (blockSizeCanGoLower) {

blockSizeCanGoLower = false;

}
// All is well, so increase the block size
if (currBlockSize != upperBlockSize) {

lowerBlockSize = currBlockSize + 1:
if (lowerBlockSize <= upperBlockSize) {
currBlockSize = (lowerBlockSize + upperBlockSize)/2;
if (currBlockSize == upperBlockSize) {
state = ADJUST_DELAY_ STATE;
}

} else {
state = ADJUST_ DELAY_STATE;
}
} else {
lowerBlockSize = upperBlockSize;
currBlockSize = (upperBlockSize *= 2);

}
// currBlockSize now contains the latest test block size

sendAdjustBlockSize (streamId, currBlockSize);
fireBlockSizeAdjusted (currBlockSize) ;
calcDynAdjustSize (currBlockSize);

} else {
// The ADJUST DELAY state

float adj;
if (currRcvSize != 0) {

adj = (float)adjustSize/(float)currRcvSize * alpha;
} else {

// Increase the delay if no packets are received
adj = 1.0f / alpha;
}

// Don't send 1.0 since it's redundant

// Don't send >= 2.0 since that's probably pre-emption or something
// In this case, send a factor that we can undo by receiving 100% in
// the next round

if (adj >= 2.0f) adj = 1.0f / alpha;

if (adj != 1.0f) {
if (dynBlockDelay) {
sendAdjustDelay (streamId, adj);
}

}
} //rateControllerl ()

private void rateController2() throws IOException {
double adj;

107

if (currRecvSize != 0) {
double pl = 1 ~ ((float)currRecvSize/ (float)adjustSize);
double deltaPL = pl - lastPacketLoss;

adj = control.fuzzyControl(pl, deltaPL);

lastPacketLoss = pl;

} else {
// Increase the delay if no packets are received
adj = (double) (1.0 / alpha);

}

//Don't send if adj=1, no change
//Don't send if achieving Max. allocated bandwidth, specified
//in terms of a minimum delay.
if ((adj != 1.0f) && trackDelay > minDelay) {
sendAdjustDelay (streamId, (float)adj);
trackDelay *= adj;
}

} //rateControl2()

private void rateController3(int newDelay) throws IOException {

if ((newDelay > 0) && (trackDelay != newDelay)) {
control.sendBlockDelay (newDelay) ;
minDelay = trackDelay = (double)newDelay;

} else {
rateController2();

}

} //rateControl3 ()

}//DataHandler

/**
* Handles retransmission requests, after the whole file has been sent.
* This sends out a request for all blocks of packets and then terminates.
* @Qauthor Shawn Silverman
*/
private class RetransmitRequester implements Runnable {
private StringBuffer cmdBuf = new StringBuffer():
//private volatile boolean stopped;
private boolean stopped;
private PacketTracker packetTracker;

RetransmitRequester (PacketTracker packetTracker) {
super () ;
this.packetTracker = packetTracker;

}

void stop() {
stopped = true;
}

public void run() {
// Go through the packet tracker and request retransmissions in
// blocks of the adjust size.

// The array has the earliest sequence ID as the last element
//System.out.println("\n\n!!!IN RETRANSMITT!!! for" + getStreamId());
long{] seqgIds = new longladjustSize];

108

int index = adjustSize;
synchronized (packetTracker) {

try {
while (!stopped && !packetTracker.isComplete()) {
packetTracker.startIterateMissing();
long seqId;
while (-1L != (seqId = packetTracker.nextMissing())) {
seqIds{--index] = seqld;
if (index == 0) {
sendResendPackets (seqIds, 0, adjustSize);
index = adjustSize;
}
}

// Send any extra

if (index < adjustSize) {
sendResendPackets (seqlds, index, adjustSize - index);
index = adjustSize;

}

try {
Thread.sleep(500);
} catch (InterruptedException ex) {

}

}
} catch (IOException ex) {
stopped = true;
close();
fireClientException(ex);
// TODO This might possibly result in a double exception

}
} //RetransmitRequester

}//FSTPClient

109

Appendix B: Extension Classes to the BCK for
Implementing Fuzzy Neural Networks:

The following sections of this appendix contain the source code for the classes added
to the BCK to support Fuzzy Neural Networks. In addition the last class is provided as it
required major revisions, for implementing the fuzzy back-propagation learning rule.
Changes made to the remaining classes were merely to provide support (via placeholder
methods) and do not contain added functionality. The code is presented in the following
order

Appendix B.1 - BCKFuzzyNeuron.java

* anextension to the BCKNeuron class to provide support for the two general

classes of fuzzy neurons: OR and AND.

Appendix B.2 - BCKFuzzyORNeuron.java

* anextension of BCKFuzzyNeuron to implement a general OR type fuzzy neuron,

including methods required to support learning.

Appendix B.3 - BCKFuzzyANDNeuron.java

* anextension of BCKFuzzyNeuron to implement a general AND type fuzzy neu-

ron, including methods required to support learning.

Appendix B.4 - BCKFNN java

* anextension of the BCKNeuralNetwork class to create and manage a fuzzy neural
network.

Appendix B.5 - BCKFNNBprop.java

* anextension of the BCKFNN class to implement network training and calculation
of the numerical weight changes.

Appendix B.6 - BCKSynapse.java

* A class to model the connections between neurons, and also manages the learning
rule (weight update) methods.

The original BCK code is available from:

http://www.compapp.dcu.ie/~tdoris/BCK/

110

B.1 BCKFuzzyNeuron.java

package BCK.ANN;

import BCK.ANN.BCKFNN;
import java.util.*;
import java.io.*;

/** BCKFuzzyNeuron

* The Fuzzy Neuron class extends
needed to form the basis for a
functions are provided through
norms) and a fuzzy implication
This is the base class for the
(OR type) and Conjunctive (AND

@author C. H. Poskar, May 2002
@version 1.0

TODO
Change Synapse to model paramet

L R S S T T T S R Y

~

the neuron class, adding the functionality
general Referential Fuzzy Neuron. The basic
triangular norm logic functions (t and s
function.

two classes of Fuzzy Neurons, Disjunctive

type) .

ers rather than weights, and add references

to synapse - maybe, extra parameter per synapse.

public class BCKFuzzyNeuron extends BCKNeuron implements Serializable({

/* Constants */
public final static int CONJUNCT
public final static int DISJUNCT

public final static int NO_REF
public final static int MATCHING

public final static int DIFFERENCE
public final static int INCLUSION
public final static int DOMINANCE =

public final static int NUM_WEIGHTS

public BCKFuzzyNeuron({) {
super () ;
type ="Fuzzy";
refType = NO_REF;

}

/* Lukasiewicz OR operation:
* X sy = min[l, x+y]
*/

IVE
IVE =

I nn 1
B W o ko

BCKFNN.NUM_WEIGHTS;

public double s_norm (double x, double y) {

double temp = x + y;

if (temp > 1) {
return (double)l;

}
return temp;
}
/* Lukasiewicz AND operation:
* X t y =max[0, x+y-1]
*/

111

public double t_norm (double x, double y) {
double temp = x + y - 1;

if (temp < 0) ¢

}

return (double)O;

return temp;

}

/* Godel Implication:

*
*

*/

Xx->y =y, if x>y
1, otherwise

public double impl(double x, double y) {
if (x> v) {

}

return y;

return (double)l;

}

/* Generic Reference Function:

*
*
* o

*

*/

accepts two reference arguments and a reference type.

executes the correct reference operation and returns the result [O.

if noreference operation is selected, return the first argument,
if reference type is invalid, returns -1.

protected double ref(double x, double y, int type) {

if (type == NO_REF) {

}

}

return x;

else if (type == MATCHING) {
return match(x,y);

else if (type == DIFFERENCE) {
return diff(x,vy);

else if (type == INCLUSION) {
return inc(x,y);

else if (type == DOMINANCE) {
return dom(x,vy);

return (double)-1;

}

/* Matching Function:

*

*/

Match(x, y) = 1/2[(x->y) ~ (y->X) + (~xX=->~y) ~ (~y->~X)]

protected double match(double x, double y) {
double templ = t_norm(impl(x,y),impl(y,x));
double temp2 = t_norm(impl ((1-x), (1-y)),impl ((1-y), (1-x)));

return ((0.5) * s_norm(templ, temp2));

}

/* Difference Function:

*

*/

Diff(x, y) = 1 - Match(x, y)

protected double diff (double x, double y) {
return (1 - match(x,y));

}

L1,

112

/* Inclusion Function:
* Inc(x, y) = x -> Yy
*/
protected double inc(double x, double y) {
return (impl(x,y)):

}
/* Dominance Function:

* Dom(x, y) =y -> x
*/

protected double dom(double x, double y) {
return (impl{(y,x));

}

/* randomParameters ()
* - return an array (of size arraSize) of random parameters.
*/

private double[] randomParameters(int arraySize) {
double[] params = new doublelarraySizel;

for(int i=0; i<arraySize; i++){
params[i] = 3*(0.5-Math.random());
}

return params;

}

/* setReferences|()
* - set the reference array from a given reference array.
*/

public void setReferences(double[] refs){
references = new double[refs.length];
System.arraycopy(refs, 0, references, 0, refs.length);

}

/* setReferences|()
* - set the reference array to a new random parameters.
*/

public void setReferences{int size) {
references = randomParameters(size);

}

/* setRefType()
* - set the reference operation.
*/

public void setRefType{int ref){
refType = ref;

}

/* getReferences ()
* - return the reference array.
*/

public double[] getReferences() {
return references;

}

/* getRefType()
* - return the Reference Type.
*/

public int getRefType() {

113

S

return refType;

}

//Array of reference values

protected double[] references = null;
protected int refType; //Type of reference operation
protected int aggType; //Type of aggregative neuron

} // BCKFuzzyNeuron

114

B.2 BCKFuzzyORNeuron.java

package BCK.ANN;

import java.util.*;

import java.io.*;

/** BCKFuzzyORNeuron - A Generalized Disjunctive Referential Fuzzy Neuron
* - performs an OR type aggregation.

* - has two optional parameters, a reference type, and an array of

* reference values.

* - if no reference type is specified, or a reference type without a
* corresponding reference array, it is assumed the reference operation
* is No Reference - i.e. an Aggregative Neuron.

*

* @author C. H. Poskar, May 2002

* @version 1.0

*

* Valid Reference types are:

* 0 - No reference

* 1 - Matching

* 2 - Difference

* 3 - Inclusion

* 4 - Dominance

*/

public class BCKFuzzyORNeuron extends BCKFuzzyNeuron implements Serializable({

public BCKFuzzyORNeuron () {
super () ;
aggType = DISJUNCTIVE;

}

public BCKFuzzyORNeuron(int rType) {
super () ;
aggType = DISJUNCTIVE;

}

public BCKFuzzyORNeuron (int rType, double{] refs)({
super () ;
aggType = DISJUNCTIVE;
if (refType != NO_REF) {
setRefType(rType) ;
setReferences (refs);

}

public BCKFuzzyORNeuron({int rType, int size){
super () ;
aggType = DISJUNCTIVE;
if (refType !'= NO_REF) {
setRefType (rType) ;
setReferences (size) ;

}

// s_norm(0,X) = X
protected double calcActivation() throws Exception{
this.activation=0;

115

BCKSynapse syn;
double temp;

for(int i=0; i<inputs.size(); i++) {
syn = (BCKSynapse)inputs.elementAt (i);
double input = syn.output.getState(syn.delay);

double inputC = 1 - input;
double[] weights = syn.getWeights();

//check output of functions for -1 - invalid refType??
if (refType != NO_REF) {
input = ref(input, references[i], refType);:
inputC = ref(inputC, references([i], refType);
}

temp = s_norm(t_norm(input, weights[0]}), t_norm(inputC, weights[1])):

this.activation = s_norm(this.activation, temp);

}

return this.activation;

}

//using the current activation, calculate the neuron's new output
protected double transfer(){
timeAdvance() ;

StateHistory[tick] = this.activation;

return StateHistory[tick];
}

//return the derivative of the transfer function at the current activation:
public double[] netprimes(int i){

double A = 0; // s_norm(0,X) = X

double a = 0;

double inputl 0;
double{] weightsI = null;

H

for(int j=0; j<inputs.size(); j++) {
BCKSynapse syn = (BCKSynapse) inputs.elementAt (j) ;

double input = syn.output.getState(syn.delay);
double[] weights = syn.getWeights();
if (i == 3) {
inputI = input;
weightsI = new double[weights.length];
System.arraycopy{weights, 0, weightsI, 0, weights.length);
} else {
double temp = s_norm{t_norm(input, weights[0]),
t_norm(l-input, weights([1]));
A = s_norm(A, temp);

}

double[] netprimes = new double[weightsI.length];
da = new double[weightsI.length];
for (int j=0; j<netprimes.length; j++) {

if (3 == 0) {
A = s _norm(A, t_norm(l-inputI, weightsI{1]));
a = t_norm(inputI, weightsI[0]);

116

dalj] = impl(weightsI{0], l1-inputI);

} else {
A = s_norm(A, t_norm{inputI, weightsI[0])):
a = t_norm(l-inputl, weightsI[1]);
da(j]l = impl(weightsI[1l, inputI);
}
netprimes[j] = impl(l-a,’);
}
return netprimes;

}

public double[] getLastDerivative() {
return da;

}
doublel[] da = null; // Fuzzified derivative of 'a’

} //BCKFuzzyORNeuron

117

B.3 BCKFuzzyANDNeuron.java

package BCK.ANN;

import java.util.*;
import java.io.*;

/** BCKFuzzyANDNeuron - A Generalized Conjunctive Referential Fuzzy Neuron
- performs an AND type aggregation.

- has two optional parameters, a reference type, and an array of
reference values.

- if no reference type is specified, or a reference type without a
corresponding reference array, it is assumed the reference operation

is No Reference - i.e. an Aggregative Neuron.

@author C. H. Poskar, May 2002
@version 1.0

Valid Reference types are:
0 - No reference
1 - Matching

- Difference

- Inclusion

- Dominance

&> W N

* %k k% ¥ % % X ¥ % ok F F %

/

public class BCKFuzzyANDNeuron extends BCKFuzzyNeuron implements Serializable{

public BCKFuzzyANDNeuron () {
super () ;
aggType = CONJUNCTIVE;

}

public BCKFuzzyANDNeuron(int rType) {
super () ;
aggType = CONJUNCTIVE;

}

public BCKFuzzyANDNeuron(int rType, doublel] refs) {
super() ;
aggType = CONJUNCTIVE;
if (refType != NO_REF) {
setRefType (rType) ;
setReferences (refs);

}

public BCKFuzzyANDNeuron(int rType, int size){
super () ;
aggType = CONJUNCTIVE;
if (refType != NO_REF) {
setRefType (xrType) ;
setReferences (size);

}

// t_norm(l,X) = X
protected double calcActivation() throws Exception{
this.activation=1;

118

BCKSynapse syn;

double temp;

for(int i=0; i<inputs.size(); i++) {
syn = (BCKSynapse)inputs.elementAt(i);

double input syn.output.getState(syn.delay);
double inputC 1 - input;
double[] weights = syn.getWeights{();

1]

//check output of functions for -1 - invalid refType??
if (refType != NO_REF) {
input ref (input, references[i], refType);
inputC = ref (inputC, references{i], refType);

}
temp = t_norm(s_norm(input, weights[0]), s_norm(inputC, weights{11});

this.activation = t_norm(this.activation, temp);

}

return this.activation;

}

//using the current activation, calculate the neuron's new output
protected double transfer () {
timeAdvance() ;

StateHistoryl[tick] = this.activation;

return StateHistory[tick];
}

//return the derivative of the transfer function at the current activation:
public double{] netprimes(int i) {

double B = 1; // t_norm(1l,X) = X

double b = 0;

double inputI = 0;
double[] weightsI = null;
for(int j=0; j<inputs.size(); j++) {

BCKSynapse syn = (BCKSynapse)inputs.elementAt(j);

double input = syn.output.getState(syn.delay);
double[] weights = syn.getWeights();
if (1 == 3§) {
inputI = input;
weightsI = new double[weights.length];
System.arraycopy (weights, 0, weightsI, 0, weights.length);
} else {
double temp = t_norm(s_norm{input, weights[0]),
s_norm(l-input, weights[1]));
B = t_norm(B, temp);

}

double[] netprimes = new double[weightsI.length];
db = new double[weightsI.length];
for (int j=0; j<netprimes.length; j++) {
if (3 == 0) {
B = t_norm(B, s_norm(l-inputI, weightsI[1]));
b = s_norm{(inputl, weightsI[0]);
db[j] = impl{(l-inputI, weightsI[0]);

119

} else {
B = t_norm(B, s_norm(inputI, weightsI[0]));
b = s_norm(l-inputI, weightsI[1]);
db{j] = impl (inputI, weightsI[1]);
}
netprimes{j] = impl(B,1-b);
}
return netprimes;

}

public double[] getLastDerivative() {
return db;

}
double[] db = null; // Fuzzified derivative of 'b!

} //BCKFuzzyANDNeuron

120

B.4 BCKFNN.java

package BCK.ANN;

import java.util.*;
import java.io.*;

/'k

*

* BCKFNN

* This class extends BCKNeuralNetwork to implement a Fuzzy Neural Network

L S . A R T T

It uses multi-weight synapses to provide seperate weights for the input

and the complement of the input.

@author C. H. Poskar, May 2002

@version 1.0

‘TODO:

lastWeightChange?? is it necessary?

/

public class BCKFNN extends BCKNeuralNetwork implements Serializable({

public final static int NUM_WEIGHTS = 2; //# of weights/synapse
protected int numNeurons; // Neurons in network
protected transient double globalError; // The squared error
protected transient doublel[][]1[] lastWeightChange; // Remembers last change
protected int[] numNeuronsInLayer; // Neurons in each layer
protected BCKNeuron biasAND; // A bias (dummy) neuron
protected BCKNeuron biasOR; /7

/* Default Constructor
* - privatised to prevent use.
*/

protected BCKFNN() {

}

/* Parameterised Constructor - fully connected
* - numNeuronsPerLayer: contains an entry describing the number of
* neurons in each layer, the network is constructed fully connected:
*/
public BCKFNN(int[] numNeuronsPerLayer, int[] agg, int[] ref, double[][]
references) {
super (0, "fuzzy");
numNeurons=0;
BCKNeuron{] inputArray;

numQutputs = numNeuronsPerLayer [numNeuronsPerLayer.length-1];
numInputs = numNeuronsPerLayer[0];

numNeuronsInlLayer = new int[numNeuronsPerLayer.length];

for(int i=0;i < numNeuronsPerLayer.length; i++){
numNeuronsInLayer [i]=numNeuronsPerLayer[i];
numNeurons+=numNeuronsPerLayer[i];

}

lastWeightChange = new double [numNeurons] [numNeurons] [NUM_WEIGHTS] ;
for(int i=0; i<lastWeightChange.length; i++){
for(int j=0; j<lastWeightChange[i].length; j++){
for(int k=0; k<NUM_WEIGHTS; k++) {

121

lastWeightChange[i]l[]j][k]=0;
}

}
double[] weights = new double[NUM_WEIGHTS];
int preStart = 0;

int postStart = numInputs;

//create the required neurons
for(int i = 0; i < numNeurons; i++) {

}

//create a dummy neuron whose output is always 1 in order to model
//bilas - note that this requires 2 bias neurons, one for AND (0)

if (aggli] == BCKFuzzyNeuron.DISJUNCTIVE) {

addNeuron (new BCKFuzzyORNeuron(ref[i], references[il]));

} else if (aggl{i] == BCKFuzzyNeuron.CONJUNCTIVE) {

addNeuron (new BCKFuzzyANDNeuron(ref[i], references[i]));

} else {

System.out.println("Error in the BCKFNN constructor "
+ "- invalid neuron type");

//and one for OR (1):
biasAND = new BCKNeuron();
biasaAND.id=-1;

biasAND. setOutput (0.0);
biasOR = new BCKNeuron();
biasOR.id=-2;
biasOR.setOutput (0.0);

double[] biasWeights = new double[NUM_WEIGHTS] ;
for (int 1i=0; i<NUM_WEIGHTS; i++) {

}

//connect each neuron in a layer to all neurons in previous layer:

biasWeights[i] = 0.5;

//for each layer
for (int layer=1; layer < numNeuronsInLayer.length; layer++) {

//for each postsynaptic neuron...
for (int post=0; post < numNeuronsInLayer{layer]; post++) {

int postIndex = postStart+post;//Create index for post

//connect to the bias neuron
try{
if (layer == 1) {
connectExternal (biasAND, postIndex, biasWeights, 0);
} else {
connectExternal (biasOR, postIndex, biasWeights, 0);
}
}
catch(Exception e){
System.out.println("Exror connecting to bias neuron®
+ e.toString());
}

//for each presynaptic neuron...

for (int pre=0; pre < numNeuronsInLayer[layer-1]; pre++){
int preIndex = preStart+pre;
//with random weight and no (zero) signal delay:

for (int i=0; i<NUM_WEIGHTS; i++) {

122

weights[i] = (Math.random() + 0.5) / 2;
}
try {
connectInternal (preIndex, postIndex, weights, 0);
}
catch (Exception e){
System.out.println("Error in BCKFNN constructor while "
+ "connecting neurons: " + e.toString());

}
preStart +=numNeuronsInLayer{layer-1];
postStart +=numNeuronsInLayer[layer];

}

}

/* Parameterised Constructor - AND/OR network specified
* - numNeuronsPerLayer: contains an entry describing the number of
* neurons in each layer.
* - netStructure: provides the structure for the connection to layers
* 2 (AND plane) and layer 3 (OR plane).
*/
public BCKFNN(int[] numNeuronsPerLayer, int[][][] netStructure, int[][] ref,
double[][]1[] references) {
super (0, "fuzzy");
numNeurons=0;
BCKNeuron[] inputArray;

numOutputs = nunNeuronsPerLayer [numNeuronsPerLayer.length-1];
numInputs = numNeuronsPerLayer([0];

numNeuronsInbayer = new int[numNeuronsPerLayer.length];
System.arraycopy (numNeuronsPerLayer, 0, numNeuronsInLayer, 0,
numNeuronsInLayer.length) ;

double[] weights = new double[NUM_WEIGHTS];
int preStart 0;
int postStart = numInputs;

//create the required neurons
for(int layer=0; layer<numNeuronsInlLayer.length; layer++) {
numNeurons+=numNeuronsInlLayer{layer];
for (int post=0; post<numNeuronsInLayer[layer]; post++) {
if (layer == 0) { //input layer
addNeuron (new BCKNeuron()) ;
} else if (layer == 1) { //hidden layer (AND plane)
addNeuron (new BCKFuzzyANDNeuron (ref [layer] [post],
references(layer] [postl));
} else if (layer == 2) { //output layer (OR plane)
addNeuron (new BCKFuzzyORNeuron (ref[layer] [post],
references[layer] {post]));
} else {
System.out.println("Error in the BCKFNN constructor "
+ "- invalid neuron type");

}

lastWeightChange = new double [numNeurons] [numNeurons] [NUM_WEIGHTS] ;
for(int i=0; i<lastWeightChange.length; i++){
for(int j=0; j<lastWeightChange{i].length; 3J++){

123

}

//create a dummy neuron whose output is always 1 in order to model
//bias - note that this requires 2 bias neurons, one for AND (0)

for(int k=0; k<NUM_WEIGHTS; k++){
lastWeightChange[il[j][k]=0;
}

//and one for OR (1):
biasAND = new BCKNeuron();
biasAND.id=-1;
biasAND.setOutput(0.0);
biasOR = new BCKNeuron();
biasOR.id=-2;
biasOR.setOutput(0.0);

double[] biasWeights = new double[NUM_WEIGHTS];
for (int i=0; i<NUM_WEIGHTS; i++) {

}

//connect each neuron in a layer to all neurons in previous layer:

biasWeights({i] = 0.5;

//for each layer
for (int layer=1; layer < numNeuronsInLayer.length; layer++) {

//for each postsynaptic neuron...
for(int post=0; post < numNeuronsInlLayer [layer]; post++) {

int postIndex = postStart+post;//Create index for post

//connect to the bias neuron
try{
if (layer == 1) {
connectExternal (biasAND, postIndex, biasWeights, 0);
} else {
connectExternal (biasOR, postIndex, biasWeights, 0);
}
}
catch(Exception e){
System.out.println("Error connecting to bias neuron”
+ e.toString());
}

//for each presynaptic neuron...
for(int pre=0; pre < numNeuronsInLayer[layer-1]; pre++) {
//if no connection from pre to post, skip to next pre
if (netStructure[layer] [post](pre] == 0) {
continue;

}

int preIndex = preStart+pre;
//with random weight and no (zero) signal delay:

for (int i=0; i<NUM_WEIGHTS; i++) {

weights{i] = (Math.random() + 0.5) / 2;
}
try {

connectInternal (preIndex, postIndex, weights, 0);
}

catch (Exception e){
System.out.println("Error in BCKFNN constructor while "
+ "connecting neurons: " + e.toString());

124

}
preStart +=numNeuronsInlLayer[layer-1];
postStart +=numNeuronsInLayer[layer];

}

//**************** Processor Methods hhkhkhkkhkkhkhkhkhhhhhhdhhhirkhi

/* forwardPass ()
* - execute a forward pass through the network.
*/
public void forwardPass() {
try{
for (int i=numInputs; i < getNumberOfNeurons(); i++){
calcState(1i);
}
}
catch (Exception e) {
System.out.println(e.toString());
}

/* setInput ()
* - TODO -~ check inputVector length.
*/
public void setInput(double[] inputVector) ({
for(int i=0;i< inputVector.length; i++) {
setOutput (i, inputVector([i]):
}

//************* Accessor Methods ***%dkdkdkxrhhhhkhhhhbhdhhx

/* getBias()
* - returns null, since there is no single bias neuron.
*/

public BCKNeuron getBias () {
return null;

}

/* getOutputs ()
* - returns the current output of output neurons.
*/

public double[] getOutputs() {
double[] outs = new double[numOutputs];

int j=0;

for (int i=numNeurons - numOutputs; j < numOutputs; j++) {
outs[j] = getState(i+j);

}

return outs;

/* getGlobalError ()
* -~ returns the current global error.
*/

public double getGlobalError () {
return globalError;

}

/* randomiseWeights ()

125

* - reset all weights in the network to random values.
*/
public void randomiseWeights() {
BCKSynapsel] synarray;
for(int i=0; i<neurons.size(); i++){
BCKNeuron node = (BCKNeuron)neurons.elementAt (i);
synarray = node.getSynapselArray();
for(int s=0; s<synarray.length; s++){
double[] weights = new double[NUM_WEIGHTS]:
for (int j=0; Jj<NUM_WEIGHTS; j++) {
weights[i] = (Math.random() + 0.5) / 2;
}
synarray[s].setWeights (weights) ;

}

//must reset lastWeightChange to 0
for(int i=0; i<lastWeightChange.length; i++){
for (int j=0; j<lastWeightChangeli].length; j++){
for(int k=0; k<NUM_WEIGHTS; k++){
lastWeightChange[1][j][k]=0;
}

}

/* getNumberOfLayers ()
* - returns the number of layers in the network.
*/

public int getNumberOfLayers () {
return numNeuronsInLayer.length;

}

/* getNumberOfNeuronsInLayer ()

* - returns the number of neurons in the specified layer.

*/
public int getNumberOfNeuronsInLayer (int 1) {
return numNeuronsInLayer[i];

}

126

B.5S BCKFNNBprop.java

package BCK.ANN;

import java.util.*;
import java.io.*;

/** BCKFNNBprop
*
* This class extends BCKFNN to implement Back Propagation Learning for
* a Puzzy Neural Network.
*
* @Qauthor C. H. Poskar, May 2002
* @version 1.0
*/
public class BCKFNNBprop extends BCKFNN implements Serializablef
private double LearningRate;
private double Momentum;

//must not allow construction of uninitialised network
protected BCKFNNBprop () {

LearningRate = .1;

Momentum = .7;

}

public BCKFNNBprop (int{] numNeuronsPerLayer, int[] agg, int[] ref, double[][]
references) {
super (numNeuronsPerLayer, agg, ref, references);
LearningRate = .1;
Momentum = ,7;

}

public BCKFNNBprop (int[] numNeuronsPerLayer, int[][][] netStruct, int{][] ref,

double[][][] references) {
super (numNeuronsPerLayer, netStruct, ref, references);
LearningRate = .1;
Momentum = ,7;

3

public void setLearningRate (double 1r){
this.LearningRate=lr;

}

public void setMomentum({double mom) {
this.Momentum=mom;

}

//the standard backprop requires that we add a momentum term, which
//in turn requires that we 'remember' the weights as they were in the
//last training iteration

public void train(int numEpochs) throws Exception{

int maxDW = 1;

double o] = 0.0;

double[] rec = new double[numOutputs+numInputs]; //a record
double[] inputVector = new double[numInputs]; //current input vector
doublel] error = new double[numNeurons]; //error at each neuron
double[] desiredOutput = new double[numOutputs}; //desired output vector
double[][][] gradient = new double[numNeurons] [numNeurons] [NUM_WEIGHTS] ;

127

double[][][] sumTerm2 = new double [numNeurons] [numNeurons] [NUM_WEIGHTS] ;
BCKNeuron[] inputArray;

if(trainData==null) {
throw new Exception("You must specify a training file before "
+ "attempting to train the network.");

}

// Calculate the normalization parameter.
for (int layer=2; layer<numNeuronsInLayer.length; layer++) {
maxDW *= numNeuronsInLayer[layer];

}

int NumberOfRecords = trainData.getNumberOfRecords();
for{int epochnumber=0; epochnumber<numEpochs; epochnumber++) {

globalError=0.0;

for(int recordNumber=0; recordNumber<NumberOfRecords ; recordNumber++) {
//get the next record
rec = trainData.getNextRecord();

//extract inputs
for(int i=0;i<numInputs;i++) {
inputVector([i] = recl[i]:;

}

//extract desired outputs
for(int 1=0; i<numOutputs; i++)
desiredOutput[i] = rec[i+numInputs];

}

//feed input vector into network
setInput (inputVector) ;

//evaluate network's reaction to input

forwardPass () ;

/**
* Calculate the error measure and gradients on each neuron and
* change the weights from each layer as appropriate:
*/

for (int post=numNeurons-1; post>numInputs-1; post--) {
o=getState(post);//current neuron's output

/* If the neuron is in the output layer, calculate the

* error for the specified output and update the global
* error.

* If the neuron is in a hidden layer, backpropagate and
* sum the related error gradients from the next layer.

*/
double err = 0;
boolean isOutput = ((numNeurons - post) <= numQutputs) ;
if (isOQutput) {
int index=(numNeurons-post-1); //going backwards
err = desiredOutput[index] - o;
globalError += (err*err);
error [post] = err;
} else {

for(int postpost=numNeurons-1; postpost>post; postpost--) {
for (int i=0; i<2; i++) {
//Fuzzify the sum to ensure [-1,1]
err += (gradient[postpost][post][i] *
sumTerm?2 [postpost] [post] [i]);

128

}
}
if (Math.abs(err) > 1) {
System.out.println("Bad: |summation| > 1");
}
}

inputArray = getInputArray(post);

/* Update the weight of each neuron that feeds into post.
*
* Using the extended generalized delta rule is:
* deltaw = learning rate * gradient * last derivative
*
* Where the last derivative is fuzzified using an
* implication.
*/
for(int pre=0; pre<inputArray.length; pre++) {
int preNum = getNeuronNumber (inputArray([prel);

if (inputArrayipre].id < 0) {
continue;

}

/* The error gradient using the extended generalized
* delta rule is:
* err * fprime * netprime
* For linear activation function, fprime = 1.
*/
double[] netprimes = getPrimes (post, pre);
double[] lastImpl = getLastImpl (post);

double[] dw = new double[netprimes.length];
for (int i=0; i<dw.length; i++) {

double grad = err*netprimes[i];

//Calculate change in weight
dw([i] = LearningRate * grad * lastImpl[i];

//save the weight change and gradient[post][prel:

sumTerm2 [post] [preNum] [1] = lastImpl[i];
lastWeightChange[post] [preNum] [i] = dw([i];
gradient[post] [preNum] [1i] = grad;

}

//change the weight:

try{

System.out.println("Neuron " + post + " from " + preNum + "\t");
deltaWeight (inputArray[pre], post, 0, dw, maxDW);
}
catch (Exception e) {
System.out.println("Error while updating weights °
+ e.toString());

}

} //end of record iteration
} //end of epoch iteration

System.out.println("finished training run update, Global Error is now : "

129

+ globalError) ;
}

// return the derivative of the transfer function of neuron n
public double[] getPrimes(int n, int i){
return ((BCKNeuron)neurons.elementAt(n)).netprimes(i);

3

// return the last part of the derivative
public double[] getLastImpl(int n){
return ((BCKNeuron)neurons.elementAt(n)).getLastDerivative();

}
} // BCKFNNBprop

130

B.6 BCKSynapse.java

package BCK.ANN;

import java.util.*;
import java.io.*;

/**

* Model a connection from one the input of one

* neuron to the output of another neuron

*/
/**

* Modified May, 2002

* C. H. Poskar

*

* Added support for multi-weight synapses:

* - weights[], PRIVATE storage for an array of weights.
* - constructors, added paramerised constructor & modified others accordingly.
* - deltaWeights(), a function to update weights[].

* - deltaWeights(), update weights[] using normalized delta and norms.

* - getWeights(), a function that returns weights[].

* - setWeights(), a function to set weights]
*

*

*

*

*

TODO:
Need to keep weight, because it was made public, and may be referenced
somewhere. Otherwise, can change it to an array of 1.
/
public class BCKSynapse implements Serializablef

public BCKNeuron output; //a reference to the pre-neuron

public int delay; //the time delay
public double weight; //the weight of the connection
private double[] weights; //the weight of the connection

//default constructor

public BCKSynapse () {
this.output = null;
this.weight = 0.0;
this.weights = null;
this.delay 0;

}

//parameterised constructor - single weight:
public BCKSynapse (BCKNeuron output, double weight, int delay) {
this.output = output;
this.weight = weight;
this.weights = null;
this.delay = delay;
}

//parameterised constructor - weight[]:

public BCKSynapse (BCKNeuron output, double[] weights, int delay) {
this.output = output;
this.weight = 0;
this.weights = new double[weights.length];
System.arraycopy (weights, 0, this.weights, 0, weights.length);
this.delay = delay;

131

}

//copy constructer:

public BCKSynapse (BCKSynapse s) {
this.output = s.output;
this.weight = s.weight;

if (s.weights == null) {
this.weights = null;
} else {

this.weights = new double[weights.length];
System.arraycopy(s.weights, 0, this.weights, 0, s.weights.length);
}

this.delay = s.delay;
}

//accessor functions
public void deltaWeight (double dw) {
weight += dw;

}

public void deltaWeights(double[] dw) {
for (int 1i=0; i<dw.length; i++) {
weights([i] += dw[i];
}
}

/* Method to calculate multi-weight update using normalized delta weight
* and triangular norms rather then arithmetic add/sub.
*/

public void deltaWeights(double[] dw, int maxDW) {
BCKFuzzyNeuron fn = new BCKFuzzyNeuron();

for (int i=0; i<dw.length; i++) {
double wNorm = Math.abs (dw[i]/maxDW) ;

if (dw(i] > 0) {
weights[i] = fn.s_norm(weights[i],wNoxrm);
} else if (aw([i] < 0) {
weights[i] = fn.t_norm(weights([i], (1-wNorm)) ;

}

if ((weights[i] < 0) || (weights([i] > 1)) {
System.exit (-1);
}

}

public void setWeights({double[] newWeights) {

this.weights = new double[newWeights.length] ;

System.arraycopy (newWeights, 0, this.weights, 0, newWeights.length);
}

public double getWeight () {
return weight;

}

public double[] getWeights () {
return weights;

}

//getActivation returns this synapse's contribution

132

//to the activation of postsynaptic neurons

// - Only applicable to single weight conditions

public double getActivation() throws Exception{
return output.getState(delay) *weight;

}

//return reference to presynaptic neuron:
public BCKNeuron getNeuron({) {
return output;

}

//return the delay implemented:
public int getDelay({) {
return delay;

}

}//BCKSynapse

133

Appendix C: Hardware Implementation of a Fuzzy
Neuron

This appendix explains the original hardware design for a reconfigurable fuzzy neural
processing element. This was originally published in [57].

C.1 RFN - General Design

The design of the reconfigurable fuzzy neuron (RFN) encompasses three distinct
components, as illustrated in Figure C.1. The main computational unit is the
reconfigurable fuzzy processor (RFP). It processes the inputs and produce the outputs
during both regular operation and during learning. The memory unit (MU) stores the
parametric values (weights and references), as well as any intermediate values such as the
input values over each iteration that are necessary for learning. The Learning Unit (LU)
determines parametric updates during the training of the network.

4 I

inputs x output y

N J

Figure C.1 : Schematic representation of the main parts of a fuzzy neuron; the
reconfigurable fuzzy processor (RFP), learning unit (LU) and memory unit (MU).

C.1.1 The Reconfigurable Fuzzy Processor

The specifications of a problem will directly induce the structure of the fuzzy neural
network. This occurs at two distinct levels embracing structural and parametric
modifications by the processors. First, the qualitative specifications call for the
reconfigurability of the processor. The detailed quantitative specifications require
modifications to the connections of the neurons. In other words, reconfigurability is
associated with structural learning while the changes of the connections deal with
parametric learning. The structure proposed in Figure C.2 is aimed at assuring flexibility
at these two levels. Additionally, the parametric learning effectively performs structural
pruning by adjusting the interconnect strengths to the point where an input may have no
affect on the neuron output.

134

In examining Figure C.2, the structural reconfigurability is emphasized, while the
parametric generality is inferred. Four control (configuration) signals provide the
structural flexibility, by allowing one RFP to be configured (by means of two switching
blocks) to any of the previously discussed aggregative or referential neurons. A single
signal (Ref/Agg) is used to configure the neuron as Referential, or Aggregative. Both
modes allow for parametric learning of interconnect strength (or weights). In addition the
referential mode incorporates parametric learning of the reference values. The second
signal (OR/AND) configures the neuron to perform either a disjunctive or conjunctive
aggregation. The remaining two signals serve to select the referential computation to be
performed, and will be discussed directly.

~ =
(BRI
» & a
= 4 &
2 9,8
. . ; o | £T .
inputs x . 5 . F:?: “;: output y
[] L=} o U._Q‘
= @
g %
[-
» § I3 =
t-norm s-norm
T T T s-nérm t-nérm
h 4
I { V
Select Referential Ref/Agg OR/AND
Computation

Figure C.2 : The reconfigurable fuzzy processor - general architecture.

The Referential Computation Unit

The referential computation unit is used to implement each of the four referential
types, and then to select the desired referential operation.

Consider a single input (x;) to a referential neuron. Figure C.3 shows the referential
computation component for this input. The MATCH of the input and the reference point (r;)
is then computed as in (12), using a fuzzy implication operator over the four combinations
of {x,x;} and {r;7;}, two logical ANDs, and a sum of inputs weighted by 1/2. As
expressed in the previous section this referential calculation contains the DOM and INCL
operations. Furthermore, the DIFF operation is simply the complement of the MATCH.

The desired referential output (ref(x;;7;)) as well as the original input (x;) are both
passed to a switch. This switch makes a selection based on whether the neuron is
configured as a Referential or Aggregative neuron. In fact, we can (and as was the case
with deriving the learning rules for the weight parameter do) consider the aggregative
neuron to be a referential neuron whose function is simply to pass the original value. That
is, ref(x;r;) = x;. The result, u;, is then passed to the next stage, for aggregation. In this
manner a single aggregative unit can be designed independently as it only sees an arbitrary
input, u;.

135

ry
0
X
X E”Z
1 —» >y
4x1 ref(x,-;ri) % >
p »
MUX z
2 s
DIFF
:I:l\]C]'_;> 3
S1S0
O Complement (negation) Select Lines Ref/Agg

Figure C.3 : Multiplexing basic functions of referential computation - equality or
matching, difference, dominance, and inclusion.

It is worth noting that the implication operation is not commutative, and as such all
four implication operations are necessary.

Each neuron requires at least one referential computation unit for each input that is to
be processed in parallel. This issue will be discussed more in the section on the
interconnect network.

The Aggregative Unit

The aggregative unit performs the aggregation or combination of the multiple input
contributions to from the output for the network.

The RFP in Figure C.2 can be configured as either a disjunctive or a conjunctive
referential neuron. A conjunctive (AND) configuration is obtained by ordering the
triangular norms as first t then s, while reversing the connectivity creates a disjunctive
(OR) configuration. In this manner, the aggregative unit can be made up of a generalized
unit similar to that illustrated in Figure C.4.

When the control signal is high, the neuron is configured to perform disjunctive
aggregation. The input, u;, and the weight element, w;, are passed the triangular t-norm
operation. The result of this operation is then provided to the triangular s-norm operation
which ‘sums’ it with the previous result, to generate the cumulative OR, as in (4), which
then becomes the neuron output. Similarly, when the control signal is low, the order of the
operations are reversed, creating a cumulative ‘product’ as in (6).

For each input to be processed in parallel this unit requires one full set of triangular
norms (s-norm, t-norm and feedback signals). In the case of a disjunctive aggregation the
switch is configured so that each of the parallel t-norms are passed one of the inputs along

136

with its corresponding weight parameter. The output of each of these are then passed to
one of the inputs of each of the parallel s-norms. The remaining input for each of these s-
norms is connected to the output of the preceding s-norm, with the first s-norm connected
to a logical ‘0’ signal. This forms a cascading accumulation. Note however that only one
output switch is necessary; connecting only the last of the parallel triangular norms to
provide the output from the cascade.

L

E
&£,
=
=
w from Ref / Agg 8
! switc wns
E, (i S norm _} 0 E
@) »
Wi ————p 7§ —» 1 X yi
=
=
<8
t norm
+
OR/AND L

Figure C.4 : Generalized aggregative unit. Configurable as conjunctive or
disjunctive.

An alternative configuration is to add a second triangular norm layer with a dedicated
parallel t and s-norm circuit, to perform the accumulation for either a parallel conjunctive
or disjunctive aggregation.

Ordinal Sum

An interesting generalization of t-norms emerges in the form of a ordinal sum as referred
to [74]. This construct is developed as a combination of a countable number of t-norms
where each of them is defined in some region of the unit square, see Figure C.5. More
formally, the ordinal sum of t; with respect to {(aj, bj)} jel is defined as

[4y y—a; J if (x,y) belongs to

t
bj -a. b.-a some (aj, bj) X (aj, bj)

a,+(b.-a)))
J Jo

J J 7

x t y=

min(x, y) . otherwise

Let us assume that the number of the t-norms in the above construct is fixed. Similarly
these t-norms are specified in advance. Then we generalize the OR neuron by admitting
the ordinal sum of the t-norms at the level of synaptic computation. In addition to the
connections (w) encountered in the previous neuron, its generalization comes equipped
with an auxiliary vector 2J - dimensional summarizing the domains of the contributing t-
norms, say [a b] where

a
b

[al a2 PO aJ]
[b; by ... byl

137

We may express the processing carried out by the neuron in the form:
v = OR(x; w, a,b)

by making a clear distinction between the inputs and the parameters of the neuron.

A

1.0

th

1.0

Figure C.5 : Construction of the ordinal sum.

The generalization of the AND neuron can be proposed in the same way; obviously an
s-norm associated with the ordinal sum of t-norms is obtained via the De Morgan rule.

Implementing such a summation would require the implementation of not just a single
pair of triangular norms but one or more families of them (in addition to the default pair).
A comparator would then select which one of these norms would actually be used. Figure
C.6 illustrates this manner of aggregative implementation.

: g
L
. 3
d i))
° b w
. ' =] Yi
o
. =
L]

AN
N

u from Ref / Agg
t switc

W ————p

Comparator

Figure C.6 : Ordinal sum of disjunctive (OR) neuron.

Since the ordinal sum occurs at the point of aggregation, it may be necessary to
implement ‘n’ full sets of the triangular norms. One alternative is to use a configurable

138

family of norms, where the comparator is used to choose a parameter with which the
particular family member is specified. A second alternative (as with the regular parallel
aggregation) is to add a second triangular norm layer with a series of dedicated parallel t
and s-norm circuits.

C.1.2 The Learning Unit

The Learning Unit for the RFN is used to perform parametric learning which consists
of updating weight and/or reference parameters. The LU can be subdivided into four
general components for either form of parametric learning. The following discussion will
highlight each of these components from the point of view of weight updates, pointing out
which section(s) require augmentation for referential learning.

The four components of the LU are illustrated in Figure C.7, and correspond to (23)
and (26). Notice that there are actually two similar configurations. The reason for this is
due to the difference in computation of the backpropagation algorithm for neurons at the
output layer and neurons at a hidden layer.

During training the error between the target value and the computed output can be
calculated for neurons in the output layer. This error value can be directly utilized to alter
the weighted connections to this layer. However the neurons in the hidden layer have no
specific target value for comparison. It is therefore necessary to determine the error
contribution of each hidden neuron to the output neuron. This is performed through the
backpropagation of the partial error derivatives from the output layer successively back
through each hidden layer.

®
Error Computation
Output - Target
Product —» Parameter Update

Summation of
the Chain Derivative

(i)
Summation of Backpropagated
Partial ErrorDerivatives

Product — Parameter Update

Summation of
the Chain Derivative

Figure C.7 : The components of the learning unit for (i) a neuron in the output
layer, and (ii) a neuron in a hidden layer.

The first component represents the first part of the derivative of the error metric given
by (26) (for an output neuron). The idea is the same, although the circuit is different for
this component in a hidden neuron. The hidden neuron will need to perform a summation
with contributions from each neuron in the next layer.

The next component performs the accumulation of the chain derivative, the
multiplicand of (26). This must be computed for each interconnect weight to be modified.

139

It is this component where weight and referential learning differ. The structures for
this component is illustrated in Figure C.14 for the weight and reference parameters.

The third component produces the error derivative with respect to each weight, as
specified by (26). This is then used to perform weight update as specified by the learning
rule, (24).

At this point learning can be performed off-line, as an algorithm running on a serial
microprocessor. Alternatively it can be implemented in whole or in part in hardware. In
part the hardware is already present in the RFP, which performs all of the intermediate
summations with the addition of simple control logic and a few registers for intermediate
values, with the product and parametric update performed off-line. This is most useful for
highly parallel systems where the MU is also off chip, in standard memory (thereby
allowing considerably more area to be allocated to the RFPs).

C.1.3 The Memory Unit

The Memory Unit is the simplest unit, consisting of a standard RAM. The MU can
often be the limiting factor in network design if implemented on-chip. That is due to both
the data size, and potentially the layer size being preset by the MU.

For each input to be processed (in series or in parallel), a neuron requires storage for a
weight parameter, a reference parameter, and with in-situ learning an input value. The MU
can be saved and reloaded to add storage, but this is at a cost of time. Also with additional
hardware the MU can be flexible in a trade-off between data size and the number of inputs
it can handle.

When implementing a neuron with both excitatory and inhibitory components, as
discussed in [57], it is not necessary to fully replicate the MU. Thus, each input value for
the neuron needs to be stored only once to accommodate both structures.

140

C.2 The Network Design

A generic network consists of three components; (i) Logic Units - consisting of
general or dedicated processing unit(s) and/or memory elements, (ii) Interconnection
Network - providing communication between Logic Units, and to any external I/O as
required, (iii) Interconnection Interface or Controller - providing the connection between
the Interconnection Network and the Logic Units.

C.2.1 The Logic Unit

Many designs already exist for a wide variety of Artificial Neural Networks (ANN’s).
These designs incorporate a variety a learning methodologies, either on or off line,
utilizing analog, stochastic, or digital circuitry [751[76][771[78][79][801[811[82][83].
While the analog circuits offer advantages in the areas of speed and size, their design
process is typically far more complex, generally requiring full custom designs. Digital
circuits tend to promote reusability and ease of design, but can be severely limited by high
precision computational overhead. Stochastic designs offer a middle ground reducing
computational overhead and offering scalable precision.

A fuzzy processor is an approximate reasoning element. It is therefore acceptable to
utilize low precision operations on fuzzy sets, which are more readily implemented in a
digital environment, than a traditional ANN. Furthermore, being a logic processor, the
operations needed to perform fuzzy computations are easily and economically
implemented without the need for custom analog parts. Therefore the design of the RFP
will utilize digital circuits. This offers the additional advantage of being able to re-use
existing “off the shelf technology”, to implement the circuit.

This still leaves us with the choice of using standard digital or stochastic circuitry.
Both offer ease of implementation utilizing digital components, and lend themselves to the
basic logic operations being performed by the REN. Stochastic processing offers two
major advantages, data precision scalability and parallelism. Each stochastic signal
regardless of precision requires only a single line, and basic logic components for both
logical and arithmetic product and sum, allowing for large parallel structures to be
implemented. Digital implementation requires multiple parallel lines to carry each data
and the precision must be set to construct the computational units.

However, stochastic circuitry have other overheads, including the need for pulse
generators to create the stochastic streams. When implemented on-chip, the feasibility of
large parallelism is reduced. Furthermore, as already stated, fuzzy processing is
implemented in low precision computations and fixing the precision to a small size (say 8
bits) is quite reasonable!.

The RFN will therefore be implemented in digital hardware. However we feel the
potential of stochastic processing should not be abandoned completely, and will be more
fully investigated in the future.

L. In fact most fuzzy inference controllers are implemented in 8-bit microprocessors such as the
MC68HCL11.

141

C.2.2 The Interconnection Network

Many network architectures have been proposed to perform interconnection between
processing units in a network. These range from the fully connected [82], to linear systolic
arrays [84]. While the fully connected network would seem to be the natural choice in
theory, in practice they are not feasible for a generic scalable architecture. Moreover, the
linear systolic array has extreme communication latency. This is particularly true for a
layered network implementation of the backpropagation algorithm that passes information
bidirectionally.

The FNN being considered is a multi-layered feed-forward network. A typical feed-
forward neural network is shown in Figure C.8. The network consists of layers of
processing units and weighted interconnections between these layers. This architecture
lends itself directly to a multi-bus based connection, allowing broadcast between layers.
That is, a two bus system for each layer, the first an input bus for layer i and the second an
output bus for layer i.

Layer Layer Layer
n

®
v v
OUTPUTS

v

Figure C.8 : A feed-forward neural network.

It is clear from the figure that the input bus for layer i is also the output bus from layer
i-1 under regular feed-forward mode. Less obvious is that during backpropagation it is
connected to the output bus from layer i+/. Similarly the output bus for layer i is also the
input bus for layer i+ (in regular mode), and the input bus to layer i-1 (in learning mode).
As this implies, the data and address lines of every second bus are connected, with
independent control lines for each bus, to determine which layer is the recipient of the
transmitted information. '

The buses are connected by individual bus controllers. These controllers provide local
bus control signals (to transfer temporary control of the data and address portion of the bus
to individual neurons) and to provide global control signals determining the modes of
operation, which include;

* Initialization - to activate and configure the neurons in a layer, and pre-load weight
values,

* regular - feed-forward neural processing of inputs, and

* learning - backpropagation of errors and weight updates.

142

These controllers are then connected in series forming a linear array of buses (or
layers), and acting as a finite state machine in either linear fashion (regular fuzzy
processing), or bidirectional (training mode).

The content of the buses fall into three categories of signals; data, address, and control.
Figure C.9 illustrates these signals, specifying the control signals in the two major modes
of operation; initialization and processing.

Figure C.9a and Figure C.9b show that there are seven shared control lines, providing
seven control signals in each mode, five of which are standard across both modes. These
are:

* Mode_S1, used to toggle between the initialization and processing modes,

* Bus_Input, which enables a particular layer to access shared bus information,

* Data Ready, a handshaking signal, automatically reset after each clock,

* Token In and Token Out, used to form a serial line connecting all neurons in one layer,
for the purpose of transferring control of each layers’ output bus.

In addition to these common signals are two signals utilized during initialization

(Mode_S1 high),

* Use/Load, which enables an unused neuron (Use), or can signal pre-load of the
weight and reference memory (Load), and

* Data Select, toggles access between weight and reference storage,

* and two signals used for the processing mode (Mode_S1 low),

* Sign bit, which indicates the sign of the backpropagated error signal, and

* Mode_S0, which toggles between the regular processing and learning modes.

7a. Network 7b. Processing
initialization.

/ DATA \ / DATA \
ADDRESS ADDRESS
Use / Load Sign bit
Mode S1 Mode_ ST
Data Select Mode_SO
Bus_Input Bus_Input
Data Ready Data Ready
Token In Token In
Token Out Token Out

Figure C.9 : The network signals for (a) initialization, and (b) regular processing.

143

C.2.3 The Interface

The interface unit, shown in Figure C.10, consists of a general control unit and four
registers. The registers are used to buffer the data and addresses from the input and output

buses.

In this implementation only a single data bus is used between layers, therefore only a
single input can be processed at one time. Thus, the purpose of the network interface is to:

- receive the input data, address, and control signals from the network,
- generate the internal signals for the individual neural processor,
- regulate communication of the data to and from the neural processor, and

- prepare and co-ordinate transmission of the output data packet.

RFP Neuron
e :
CRs 55
p's 2 CEl .,
s 3 g8
A A
E 8.
= b L oy »
g8 58
ke
< <
La Control Unit

Figure C.10 : Schematic of the network interface.

The control unit contains the local address (with respect to the bus layer), a simple
counter to generate addresses during learning, and the control logic of the neuron. Based
on the mode, bus input control signals and the input address, the control logic determines
whether the data is for ‘it’ or not. In regular mode the input address is the ‘from’ address,
and is always valid. For the initialization mode, the input address is the ‘to’ address, and
must be checked. During learning mode the input address is first treated as ‘to’ (for
backpropagation from higher layer), and then generated (using the counter) to perform
local weight updates. Similarly, in regular mode the output address is the local neuron
address, while in learning modes it is the counter address.

144

C.3 Hardware Implementation

The hardware implementation will focus on the RFN (illustrated in Figure C.11) with
in-situ learning. The particular design of the RFP and LU are presented in the following
sections.

Data . Yi
I 7 Xi RFP P
Data 5 Wi X; < » Data
select AA DA A + 4 ¥ QOut
]
> :
i sign sign » sign
sign . 8. : »
bitgin - bitin bit out bit out
' P 1
Address > o Yi
P Wi w
/1* - 2 i 4 » i < Ack
r/w » % ¢ P x error » Ready
+ y y
Memory Mode Next Data
select select In

Figure C.11 : Complete RFN design flow.

C.3.1 Referential Computation Unit

The reference neuron is implemented using the Godel implication (operator) defined
by (28). The four implication operations indicated in Figure C.3 are performed by analysis
of a single comparison of the operands (shown in Table 5). The MATCH function may be
directly implemented following the computational flow of Figure C.3. However an
analysis of the operations that take place reveal that the two AND functions will always
combine one datum with a logical ‘1°. This results in the original datum from each AND
being summed and weighted (multiplied) by 1/2. Rather then duplicating effort, the
operators are combined through the use of two multiplexers which choose the appropriate
set of inputs to be summed. This is illustrated with the circuit in Figure C.12. Thus if r; >
x; then x; is summed with r;, otherwise x; is summed with ;. The weighting is
accomplished here with a simple hardwired shift of the m-1 MSB’s (assuming m bit
precision), one position to the right (becoming the m-1 LSB’s), and the carry out from the
adder becomes the m’th bit. The DIFF computation is then simply the inversion of the
MATCH operator.

a>b A + a<b A +
a—>b b b b+a 1 a a+b
b—a 1 a
a—b 1 a b b
b—a a 1

Table 5. Evaluation of the implication operator and MATCH function,

145

E |

X{ > T
L :‘é Xi|—4
c &
g 5
O \ U
LA
E
=]
Xi ““>) qé
configuration register control 5
r_sell % g,
.| r_sel0 §
"|Ref/Agg =
OR/AND, »
t —
v 4
5 use x; mode
selects

Figure C.12 : The Referential Computation Unit

While this simplifies the MATCH operation, the DOM and INCL do not emerge as
easily. These two operators perform a single implication operation as described above.
Again the result will be either a datum (if the implication is true), or a logical ‘1’ (if false).
By utilizing an OR operations of the appropriate datum and control signal (as illustrated in
Table 6), we may easily generate the correct referential computation for either DOM or
INCL.

a>b asbh
a—b c=1 c=0
a—>b=b|a>b=1
a—b b+c

Table 6. The INC or DOM function.

The Godel implication was chosen simply because the ‘datum’ referred to above is
simple and required no additional operators. Other implications may similarly reduce,
such as the Lukasiewicz implication (27), or reduce in other ways or even not at all,
requiring the full circuit described in Figure C.3.

The result from the desired operation, u;, is then selected and passed to the Ref/Agg
switch, along with the original input. The input value is stored in the MU to be used again
if learning is performed. The reference unit has control of the lines connecting itself to the
MU (and the LU) only during regular processing mode. During learning the input value
may come from either the MU or the LU.

The configuration of the neuron occurs during initialization. The configuration bits are

146

loaded into the configuration register at the same time that the interface is set in use, and
loads its neuron address. In addition to specifying the type of neuron being implemented
the configuration bits are used to indicate the learning mode. That is, whether to perform
learning on the weights, the references, both, or neither if learning were to occur.

C.3.2 Aggregative Neuron Design

The aggregative neuron implements two basic operators; a t-norm and an s-norm.
These triangular norms are implemented using the Lukasiewicz norms, equations (29) and
(30). Specific triangular norms were chosen over less complex alternatives because they
accommodate interaction between their arguments [54].

Figure C.13 shows the aggregative neuron with its two triangular norm operators. Both
use the carry signal as a control of the respective result. The s-norm is an upper limited
sum, meaning that it cannot exceed a maximal value of 1 (represented by all bits high). If
a carry occurs, the result must be changed to 1. This is accomplished by using an OR
operation over each of the sum bits with the carry bit. Similarly, the t-norm is a lower
limited sum, (a+b-1), with a minimum value of 0. In this case, the carry must be set in
order for the sum to be non-zero. This is accomplished by using an AND operator to
combine the sum and the carry bit. Additionally, the t-norm operator has an initial carry
in value of ‘1’. This is needed to ensure the property of:

lta=a
S-norm
carry
£y z i
%’ 3
= W __> 2 T
g ! |
i Mode control
] 1 carry in Select 0
OR/AND t-norm
vab VA/B

Figure C.13 : The aggregative computation unit.

The switch used to configure the neuron as either conjunctive or disjunctive consists of
the five highlighted multiplexers (an additional multiplexer is used for learning). The first
four are used to select the input to the t- and s-norm operators, and the fifth chooses
which operator’s output is summed. During regular processing, the output is stored in the
output register, which acts as a cache for the partial sum. After summing all n inputs, the
result waits to be passed to the output bus. Once a layer has completed passing its results
to the next layer, the Mode_S0 line is strobed to reset the output registers (By the identity
transform an OR neuron is initialized to 0, and an AND neuron to 1). In the learning mode,

147

two registers from the learning unit are used for holding the partial sum (A/B) and the i’th
term (a/b) specified by equations (33) and (39).

C.3.3 Implementing the Learning Unit

A dedicated hardware learning circuit for this architecture was proposed in [56] for the
weight parameter. Sections 3 and 4 illustrate the symmetry between learning of the
interconnect strength for both aggregative and referential types of neurons. Furthermore,
the detailed calculations for referential learning uncovered that they differ (between each
reference type as well as from the weight parameter updates) only by the final evaluation
of the chain derivative. That is, the evaluation of the derivative of the reference function,
for the disjunctive and conjunctive forms respectively. The computation of these chain
derivatives can be quickly and easily summarized as a conjunction of two or three
inclusions, as illustrated in Figure C.14. The INCL and DOM neurons add an additional
inclusion during referential learning, while the MATCH and DIFF neurons add a sign
function (x1). The sign function is incorporated separately by the LU configuration
controller (Figure C.15), along with the global sign bit indicating an increase or decrease
to the referential parameter.

The LU, as illustrated in Figure C.15, conforms to the four design components of
Figure C.7. The first component depends on which layer the neuron belongs to (hidden or
output). In order to design a single general purpose neuron it was necessary to add a
configuration bit to the LU to indicate the current layer. This is then used to configure the
full adder to first load register 1 (with the target value) and then subtract that value from
the output of the neuron. Alternatively, it can give control to the sign bit signal to perform
the summation of the backpropagated error derivatives. The resulting multiplier is then
stored in register 1. This value is then used for each of the parametric updates performed at
that neuron.

The second component is calculated for each of the updates to be performed. For
update to the ’th parameter (either weight or reference) we begin by cycling through each
input (stored in the MU) and calculating A/B and a/b. Then the reference function is
computed for the i’th input and reference parameter and stored in the u register. The
configuration controller then reconfigures the RFP to be a conjunctive INCL neuron to
perform the aggregation of these registered values and the i’th values stored in the MU to
compute the chain derivative (see Figure C.14). This value is then stored in register 2.

The controller also determines the sign function, using the comparator on the RFP, and
the reference function type (implemented in a simple lookup table structure). When
completed, the controller restores the RFPs original configuration.

The next component is the multiplier. It is used to multiply together the values in the
two registers. This calculates the partial derivative of the error due to the i’th parameter,
and is ready to be used for both weight update and backpropagation to the previous layer.
Due to the low precision, the multiplication is performed using a simple shift-add
multiplier. Since the values represent fractions between 0 and 1, it is actually performing
division (right shift instead of left shift).

The last component performs the parametric update. The error derivative is multiplied

148

by either a constant (hardwired) or a programmable bit shift (shift register). A similar
hardwired shift can be used with the output data to actually equal the error derivative. This
value is then used to increment or decrement the parameter being updated. The new

parameter value is then stored in the update register, until it can be written to the MU.

There is an additional register in the LU to indicate for which parameter learning is to
occur (if it is to occur). Any neuron can still feedback contributions to previous layers
partial error derivatives, even if the parameters of that neuron are fixed (i.e. no learning is

(1) Disjunctive: A

Wi a n
INCL AND a___ [T(xkj’ r]) £ w]]
T(in’ri) / P; j=1
B —-»9 NCL
r .
p; is the parameter
(ii) Conjunctive: to be learned, i.e. the
' weight (w;)or reference
B NCL
f(xkl.’ rl) n
INCL AND . O
ap .S [T(xkj, rj) tw;l

/ 1=

The third INCL is used only for reference parameter
learning of the inclusion and dominance neurons as follows:

INCL Bzxki Fzrl-

DoM B=r, T =x,

Figure C.14 : Multi-valued representation for the chain derivative during

parametric learning for (i) a disjunctive neuron., and (ii) a conjunctive neuron.

149

. .. =
sign bit in =
P =

l—l . TN g’ sign bit out
o0 fo] »
i
w
layer bit ;—I sgn fen -
P =]
[_> o0 b g—»>
) Q 3
Ral = S
= =
from [| g]
RFP 5 B
> reg A/B | 2 > hill
» reg a/b |— o0 <
> regu = —
X output reg
w

~ Data Out >

dd next

- RFP/LU ¢ Ack

— Configuration > Mux /Re
Controller controlRména]s mlode
selects
sgn fcn
> w
3 - H—
AN carry out Learning
& Configuration
8 -] - 20, Bits
] Bl
o hif reference
2, shiit
=] T_ weight
sign bit out

Figure C.15 : The learning unit (LU).

performed). Alternatively, either of the two parameter types can be chosen for individual
learning.

Last, is the learning of both parameters together. In this case, Figure C.14 again
illustrates the similarity between the two types of learning. The only salient point is to
indicate that for networks with hidden layers, the sign bit registers and register 1 must be
constructed to contain two values; one for each of the parameters. This is because even
though the two parameters begin with the same error, they may of course diverge with
each layer that they are fed back. Register 2 needs only to hold one value at a time, reusing
the same calculated values for both parameters to determine the chain derivative (although
the result may differ).

150

