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Abstract 

The purpose of this thesis is to contribute to the development of dynamic 

modehg and control of bipedal locomotion. The locomotion aimed to be realized in this 

thesis is waking on a flat horizontal surface in the sagittal plane. Firstly, a plana five- 

link biped robot, which consists of an upper body and two legs, having £ive degrees of 

fieedom is modeled. The equations of motion are then developed which describe the 

motion of the bipedal system. The waking motion includes the single support phase, the 

impact of the fiee end of the swing leg with the wakhg  surface, and the support end 

excbange at the end of each step. Secondly, a systernatic approach is presented to 

d e t e d e  the joint angle profiles fiom a set olconstraint functions for the biped to walk 

on a flat horizontal surface. Five new constraint functions are proposed in terms of the 

physicd coherent parameters, one of which is to keep the total mechanical energy of the 

biped at constant. This coastraint is meant to test the hypothesis that, given only 

potential energy at the beginning of the step, the swing leg c m  be carried over by gravity. 

One important finding in this study is that it is impossible to design a set of joint angle 

profiles to keep the mechanical energy constant during the whole step and, regardless of 

the wakhg speed, a certain amount of extra energy must be provided to the biped at the 

beginning of the step. It was M e r  found that given an appropriate amount of energy at 

the begiming of the step, it is possible to have a set of joint angle profiles such that the 

swing leg is carrïed over without any further energy input. These sets of joint angle 

profiles are of special interest; bipedai models tracking these joint angle profiles are more 

energ-efncient, since the ema energy input at the beguining of the step may be 

provided by the strain energy release of the deformable foot. Lastiy, motion control of 



the bipedal locomotion system with various degrees of parametric uncertainty is studied 

through the application of the sliding mode control technique and the computed torque 

control technique. In this work, an integral term is used in the equation of the sliding 

surface. Through the simulation study, it has been found that this integral term plays an 

important role in improving the tracking performance of the control system. The sliding 

mode control algorithm is further modified to elirninate the well-known chattering 

problem at the discontinuity surface. It was found that the proposed sliding mode control 

is superior to the computed torque control, especially when parametric uncertainties are 

present in the system. 



Acknowledgements 

Foremost, 1 would like to express my heartfelt gratitude to my advisor, Dr. 

Christine Q. Wu, for giving me the opportunity to punue graduate studies. Th& you 

for providing continuous guidance, patient, encouragement, and sincere appreciation 

throughout the course of this thesis. 

Along with Dr. Wu, I would like to thank Dr. Steve Onyshko, Dr. A.B. Thornton- 

Trump, and Dr. Nariman Sepehn for providing me with the fundamental background 

knowledge in the areas of biomechanics, controls and robotics. 1 would also like to thank 

my cornmittee memben, Dr. Steve Onyshko and Dr. A.B. Thomton-Trump, for their 

careful review, comments and suggestions with regard to this thesis. 

1 would like to thank my fellow students in the Nonlinear Systems Research 

Laboratory for making the last two years enjoyable. I would also like to thank my sister 

and my friends for their endless support. My sincere appreciation also goes to Rob 

Rostecki for his careful review and editing of this thesis. 

Last but not least, 1 would like to thank my dad and mom for their infmite love, 

wisdom, encouragement, support and many sacrifices. Thanks for imprinting the 

importance of education in my mind and thanks for your confidence in my ability. 

Without any of these 1 could not have accomplished my goais. 

And to al1 the others whom 1 did not mention here who rnolded me in any way, 

your support did not go unnoticed. 1 wouid like to thank you aU from the very boaorn of 

my heart. 



Table of Contents 

Abstract 

Acknowledgements 

List of Figures 

List of Tables 

1. Introduction 

1 . 1 .  General Introduction 

1 . 1 . 1 .  Motivation 

1.1 2, Mathematical Model 

1 .  3 .  Motion Planning 

1.1.4. Motion Control 

1.2. Literature S w e y  of Dparnic Modeling and Control of Biped 
Robot 

1.3. Objectives of This Thesis 

1.4. ïhesis Organization 

2. Mathematical Model of the Five-Link Biped Robot 

2.1. Introduction 

2.2. Background Information 

2.3. The Kinematic Mode1 of the Five-Link Biped Robot 

2.4. Equations of Motion 

2.4.1. Single Support Phase 

2.4.2. Impact with W a h g  Surface Phase 

2.4.3. Support End Exchange Phase 

S . .  

Vll l  



3. Joint Angle Profiles Planning for the Five-Link Biped Robot 
Walking on a Flat Horizontal Surface 

3.1. Introduction 

3.2. Joint Angle Profiles Planning 

3.2.1. C o r s ~ z h t  Flmctions 

3.72. Approach for Solving the Constraint Functions 

4. Motion Control of the Five-Link Biped Robot 
Walking on a Flat Horizontal Surface 

4.1. introduction 

1.3. Background Information 

4.4. Computed Torque Control 

4.5. Sliding Mode Control 

4.5.1. Stability Analysis of the Sliding Mode1 Control Algorithm 

5. Simulation Results 

5.1. Introduction 

5.2. The Results of the Joint Angle Profiles Planning 

5.2.1. S imdation Study of the Joint Angle Profiles Design 

5.3. Simulation Results of the Motion Control 



6 .  Conclusions 

6.1. Conclusions 

6.2. Future Works 

References 

Appendix 1 

Appendix II 

Appendix III 

Appendix IV 

Appendix V 

Derivation of the Five-Link Biped Dynamic 
Model with Single Leg Support 

Transformation of the Dynamic Model 

Derivation of the Five-Link Biped Dynamic 
Model with Both Legs in the Air 

Derivation of Constant Mechanical Energy of 
the Five-Link Biped Robot 

Derivation of the Time Derivatives of the First Four 
Constra.int Functions 



Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 4.1 

Figure 5.1 

Figure 5.2 

Figure 5.3 

Figure 5.4 

Figure 5.5 

Figure 5.6 

Figure 5.7 

Figure 5.8 

Figure 5.9 

Figure 5.10 

Figure 5.1 1 

Figure 5.12 

Figure 5.1 3 

Figure 5.14a 

Figure 5.14b 

Figure 5.1 5a 

Figure 5 l 5 b  

Figure 5.16a 

Figure 5.16b 

Figure 5.1 7a 

Figure 5.1% 

Figure 5.18a 

Figure 5.18b 

List of Figures 

Five-Link Biped Robot 

Biped with One Support Leg 

Biped with Both Legs in Air 

Block Diagram of the Closed Loop Control System 

Angular Displacements of Joints for Case 1 

Angular Velocities of Joints for Case 1 

Angular Displacements of Joints for Case 2 

Angular Velocities of Joints for Case 2 

Angular Displacements of Joints for Case 3 

Angular Velocities of Joints for Case 3 

Angular Displacements of Joints for Case 4 

Angular Velocities of Joints for Case 4 

Stick Figure of the Walking Motion of the Five-Link Biped 

Mechanical Energy of Case 1 

Mechanical Energy of Case 2 

Mechanical Energy of Case 3 

Mechanical Energy of Case 4 

Angular Displacement (go) of Step 1 to 3 for Case 1 

Angular Displacement (go)  of Step 7 to 10 for Case 1 

hgular Displacement (q l )  of Step 1 to 3 for Case 1 

Angular Displacement (q i )  of Step 7 to 10 for Case 1 

Angular Displacement (qz) of Step 1 to 3 for Case 1 

Angular Displacement (q2) of Step 7 to 10 for Case 1 

Angular Displacement (q3) of Step 1 to 3 for Case 1 

Angular Displacement (9,) of Step 7 to 10 for Case 1 

hgular Displacement (q4) of Step 1 to 3 for Case 1 

Angular Displacement (q4) of Step 7 to 10 for Case 1 

Figure 5.19 Tracking Error of Case 1 

Figure 5.20a Control Torque at qo of Case 1 

viii 



Figure 5.20b Control Torque at qo of Case 1 within One Step 

Figure 5.21a Control Torque at q~ of Case i 

Figure 5.2 1 b Control Torque at qi of Case 1 within One Step 

Figure 5.22a Control Torque at 92 of Case 1 

Figure 5.22b Control Torque at qz of Case 1 within One Step 

Figure 5.23a Control Torque at q3 of Case 1 

Figure 5.23b Control Torque at q3 of Case 1 within One Step 

Figure 5.24a Control Torque at 94 of Case 1 

Figure 5Mb Control Torque at g4 of Case 1 within One Step 

Figure 5.25a Anguiar Displacement ( g o )  of Step 1 to 3 for Case 2 

Figure 5.25b Angular Displacement (go)  of Step 7 to 10 for Case 2 

Figure 5.26a Angular Displacement (9 , )  of Step 1 to 3 for Case 2 

Figure 5.26b Anguiar Displacement (qi) of Step 7 to 10 for Case 2 

Figure 5.27a Angular Displacement (qz) of Step 1 to 3 for Case 2 

Figure 5.27b Anguiar Displacernent (q2) of Step 7 to 10 for Case 2 

Figure 5.28a Angular Displacement (q3) of Step 1 to 3 for Case 2 

Figure 5.28b Angular Displacement (q3) of Step 7 to 10 for Case 2 

Figure 5.29a Angular Displacement (q4) of Step 1 to 3 for Case 2 

Figure 5.29b Angular Displacement (q4) of Step 7 to 10 for Case 2 

Figure 5.30 Tracking Error of Case 2 

Figure 5.3 la Control Torque at qo of Case 2 

Figure 5.3 1 b Contrd Torque at qo of Case 2 within One Step 

Figure 5.32a Control Torque at qi of Case 2 

Figure 5.32b Control Torque at ql of Case 2 within One Step 

Figure 5.33a Control Torque at 92 of Case 2 

Figure 5.33b Control Torque at 92 of Case 2 within One Step 

Figure 5.34a Control Torque at q3 of Case 2 

Figure 5.34b Control Torque at q 3  of Case 2 within One Step 

Figure 5.35a Control Torque at 44 of Case 2 

Figure 5.35b Control Torque at of Case 2 within One Step 

Figure 5.36a h @ a r  Displacement (go) of Step 1 to 3 for Case 3 



Figure 5.36b Anguiar Displacement (qo) of Step 7 to 10 for Case 3 

Figure 5.37a Angular Displacement (9,)  of Step 1 to 3 for Case 3 

Figure 5.37b Angular Displacement (q l )  of Step 7 to 10 for Case 3 

Figure 5.3 8a Angular Displacement (q2) of Step 1 to 3 for Case 3 

Figure 5.38b Angular Displacement (q2) of Step 7 to 10 for Case 3 

Figure 5.39a Angular Displacement (q3) of Step 1 to 3 for Case 3 

Figure 5.39b Angular Displacement (q3) of Step 7 to 10 for Case 3 

Figure 5.40a Anguiar Displacement (q4 )  of Step 1 to 3 for Case 3 

Figure 5.40b Anguiar Displacement ( q ~ )  of Step 7 to 10 for Case 3 

Figure 5.41 Tracking Error of Case 3 

Figure 5.42a Control Torque at qo  of Case 3 

Figure 5.42b Control Torque at q o  of Case 3 within One Step 

Figure 5.43a Control Torque at qi of Case 3 

Figure 5.43b Control Torque at qi of Case 3 within One Step 

Figure 5.44a Control Torque at q 2  of Case 3 

Figure 5.44b Control Torque at qz of Case 3 within One Step 

Figue 5.45a Control Torque at q~ of Case 3 

Figure 5.45b Control Torque at q:, of Case 3 within One Step 

Figure 5.46a Control Torque at q~ of Case 3 

Figure 5.46b Control Torque at q 4  of Case 3 within One S tep 



List of Tables 

T'able 5.1 Parameten of the biped robot 



Chapter 1 

Introduction 

1. I General Introduction 

1.1.1 Motivation 

Biped robot is a class of legged robot that is designed to duplicate human type 

locomotion. For the biped robot there are two kinds of waiking: çtatic and dynamic. 

Static walking is a low speed movement where the system center of gravity is kept within 

the supporting plane of the foot. The dynamic effects in maintainhg the postural stability 

are ignored (Miyazaki and Arimoto 1980). Dynamic walking, on the other hand, is a 

high speed movement. During certain time periods, the center of gravity is outside of the 

supporting plane (Miyazaki and Arimoto 1980). Normal human walking is a kind of 

dynarnic bipedal locomotion. Natural walking is one of the most fundamental motions of 

the human body. It is a process by which a human moves oneself fÏom one position to 

another position. Since waiking is a learned process, it is not surprishg that each 

individual w a k  with certain persona1 characteristics; however, the basic waiking pattern 

is the same. In the process of normal and steady waiking, the erect upper body moves 

forward with one leg supporting the whole body and the other leg swings fonvard. As 



the upper body passes over the suppoa leg, the swing leg has to move ahead of the upper 

body in preparation for landing on the walking surface and becomkig the support leg. 

With the availability of powerful cornputers, dynamic modeling has become a 

useful mathematical tool for engineers and rnathematicians who are interested in 

analyzing bipedal locomotion to design devices of locomotion for the handicapped, 

fmding the control laws of human walking and denving the control algorithms of bipedal 

locomotion machines. In general, dynamic modeling of the bipedal locomotion system 

includes three parts: (1) development of the mathematical model, (2) designing the joint 

angle profiles and (3) developing control algorithms for motion regulation. In the 

following sections, the important aspects of this thesis are bnefly highlighted. 

1.1 2 Mathematical Mode1 

The procedure for the mathematical modeling of the bipedal locomotion system 

includes the development of the structure of the complex kinematic model and the 

development of the dynamic equations of motion. 

Human locomotion systems represent extremely complex dynamic systems both 

fiom the aspect of mechanical-structural complexity and control system complexity 

(Vukobratovic et al. 1990). To study this system and its motion requires certain 

simplifications. A practical bipedal w a l h g  machine or biped robot used to study human 

type locomotion is based on a considerably simplified version of human being. in order 

to construct the kinematic model of the biped for this study, certain simplifications and 

assumptions were made. Since in this study the motion of the biped is constrained in the 

sagittal plane, the biped is considered as a planar model. The sagittal plane is defhed by 



the vertical axis and the direction of locomotion. The plana bipedal model considered 

here is a multi-link mechanism that consists of five ngid links with five degrees of 

rotational fieedom. The upper body of the planar bipedal model, which hcludes die 

head, amis and tnuik, is considered as a massive ngid inverted pendulum. nie swing 

motion of the arms and the motion between the thorax and pelvis are ignored. The upper 

body is comected to the two legs with two rotational joints. Each leg consists of two 

massive rigid links as a thi& and a shank. Al1 links are c o ~ e c t e d  with each other by 

rotational joints. The feet are considered to be massless and therefore, the dynamic 

structures of the feet are neglected. 

Once the simplifications and assumptions of the kinematic model are made, the 

equations of motion for the locomotion system can be developed. The equations of 

motion are used as the basis to describe the motion of the bipedal mode1 and for the 

development of the control algorithm. The single support phase, the effect of impact 

between the end of the swing leg and the w a k g  surface, and the effect of support leg 

exchange are considered in this study when developing the equations of motion. A 

computer program is developed to handle the cornplex numerical analysis of the dynamic 

model. 

1.1.3 Motion Planning 

To design the joint angle profiles that descnbe human-like locomotion of the 

biped is another chailenging problem. A well-stnictured approach of designing the joint 

angle profiles that ties the resulting gait patterns with the physically coherent parameters 

is desired. Humiuzlu (1993a) developed a systematic approach that can be followed to 



formulate objective functions. Such objective functions were cast in terms of step length, 

progression speed, maximum clearance of the swing leg, and the support knee bias that 

could be used to prescribe the gait of a planar five-Iink bipedal robot during the single 

support phase. Hurmwlu's approach is utilized in this study. The objective functions are 

modified by replacing the constraint functions imposed on the swing leg used in 

Hurmmlu's work (1993a) with a constraint function that keeps the mechanical energy as 

a constant. The intention of keeping the mechanical energy as a constant is to test the 

hypothesis that given oniy potential energy at the beginning of the step, the swing leg can 

be carried over by gravity. This question is answered by the investigation of the 

simulation results of the desired joint angle profiles. 

A major challenge of using this systematic approach to obtain the joint angle 

profiles is solving a set of equations combined with differential and algebraic equations, 

which are fiom the constraint fuactions. There is no generai way to solve this 

combination of differential and algebraic equations. Besides, in the process of generating 

the motion, there are two additional conditions imposed on the possible solution that 

make this problem extremely chailenging. The repeatability of movement is a 

fundamental characteristic of bipedal w a h g .  Oniy the joint angle profiles s a t i s w g  

this repeatability condition, i.e., the equality of angles at the beginnllig and at the end of 

each step, are acceptable for bipedal locomotion. Another condition is related to the knee 

of the swing leg. Since there is no locking mechanism imposed on the h e e  of the swing 

leg, it is possible that at a certain penod of tirne, in order to satisfy the constraint 

functions, the knee of the swing leg may bend backward. Wallcing with the knee bent 



backward is not a desirable motion. Therefore, the joint angle profiles obtained must also 

ensure that the knee of the swing leg does not bend backward during the step. 

1.1.4 Motion Control 

To control the waiking motion of the biped, control algorithms are applied. The 

success of the control action in tracking the prescribed motion can be measured by two 

factors: (1) the periodicity of the resulting gait patterns, and (2) the magnitude of the 

residual tracking error. It is important to note that the system response never coincides 

with the prescnbed one throughout the step cycle for any control action. This is due to 

system uncertainties and the disturbance caused by the contact event. A successfil 

controller is one that eluninates the uncertainties and disturbance rapidly d u k g  the early 

stage of each step. 

The sliding mode control system is known to be highiy insensitive to parametric 

uncertainty and disturbance. The basic idea of the sliding mode control is to transfomi 

the original system in one state space into a system in a new state space. A tirne-varying 

surface r(t), which is also referred as a sliding surface, is defied in the new state space 

by equation r = O. This equation represents a set of linear differential equations which 

has a unique solution that the tracking error is equai to zero. Thus, the problem of 

tracking the desired trajectories is reduced to that of keeping r at zero. Once the system 

trajectories lie in the sliding surface, the system trajectories follow the desired one. The 

control law, however, contains a discontinuous terrn. Due to the uuavoidable delay in 

switching between the control laws, chattering occurs at the discootinuity surface. In 

addition, there is a reaching phase problem. In the reaching phase the system trajectories 



are sensitive to parameter variations. It is a challenge to design a sliding mode control 

algorithm that can eliminate all of these problems. A sliding mode control law is derived 

in this study by replacing the discontinuous term with a continuous one to remove the 

chattering. Both the sliding mode control and the classical computed torque control are 

employed for the tracking control action in this study. The tracking performances of 

these two control techniques are investigated and compared as various degrees of 

parametric uncertainty exist in the bipedal locomotion system. 

1.3 Literature Survey of Dynamic Modeling and Control of Biped Robot 

The research conducted in this thesis falls into the area of dynamic rnodeling, 

control, and simulation of human and bipedal locomotion. There has long been an 

interest for engineers, physiologists and mathematicians in understanding bipedal and 

human locomotion. This is not only because of the desire to build biped robots to 

perfonn tasks which are dangerous or degrading to humans, but also to improve devices 

for humans who have either partially or completely lost their lower limb control. Since 

the 197OYs, many investigators have prompted ongoing research efforts on this topic and 

many -dies have been published. 

Dynamic modeiing of bipedal locomotion systems is a challenging problem that 

requires knowledge of multi-link mechanism, nonhear dynamics, control theory, and 

stability analysis. The major problem associated with the modeling and control of 

bipedal locomotion is the large nuinber of degrees of fieedom and the highiy coupled 

nodinear dynamics involved in the Iocomotion system. For a human, there are more than 

300 degrees of Beedom involved in the complete skeletal activity. Just for natural human 



walking, 20 or more degrees of fkeedom may be involved (Golliday and Hemami 1977). 

Such a system involves great dynarnic complexity, even if it is idealized to a system of 

î-igid bodies with simple torque generators acting at each joint. Therefore, to shidy the 

dynarnics of bipedal locomotion systems, it is critical to select mechanicd models having 

few degrees of fieedom to keep the equations of motion at a manageable level, and yet 

having enough degrees of freedorn to adequately describe the motions of interest. 

The simplest model that can represent some bipedal locomotion activities is a 

single massive link modeled as an inverted pendulum. Two situations are concemed: (1) 

the base joint is fixed to the supporting ground, and (2) the base joint moves in space. 

Several studies addressing some aspects of the inverted pendulurn problem for modeling 

bipedal locomotion system have been published by Hemami and his colleagues. Hemami 

and his colleagues used a massive inverted pendulum with the base joint £ixed to the 

supporting ground to study the behavior of a body in standing position when no muscle 

dynamics was involved (Hemami et al. 1973, Golliday and Hemami 1976, Hemami and 

Camana 1976, Hemami and Golliday 1977). Torques applied at the base joint were 

equivalent to the ankle joint in human body and maintained the uprigbt vertical position. 

Chow and Jacobson (1972), on the other han& considered the postural stability of the 

upper body and the control of human locomotion with the use of an inverted pendulum. 

The upper body was modeled as a single link inverted pendulum with the prescribed base 

point moved only in the vertical direction. It was an important step in the development of 

a mathematical model of the human body. Wu et al. (1996, 1998) utilized the general 

single link inverted pendulum problem to model the human upper body during gait. 

Their mathematical model was developed with a base excited inverted pendulum could 



be used to predict major features of the upper body dynamics and to synthesize the 

mechanisms of w a h g .  However, as pointed out in their paper (Wu et al. 1998), the 

single inverted pendulum rnodels are too simple to accurately describe a complete 

locomotion. 

Multi-link planar models, with their great complexity, offer the oppomuiity to 

study bipedal locomotion and the related properties that are impossible to investigate with 

the single inverted pendulum model. Hemami and his colleagues have been the 

pioneering group in studying the postural stability and locomotion related problems of 

humans using multi-link bipedal rnodels. For example, in the paper of Gubina et al. 

(1974) they have investigated a partially placed massive torso supported on two massless 

legs as their bipedal model. The legs were of variable length as a substitute for knee 

function. The approach of modeling legged locomotion with massless legs used for 

simplifying the complicated locomotion systems is questionable for bipeds since typically 

one third of the rnass of a human is contained in the legs (Golliday and Hernami 1977). 

Simple movements such as side stepping in the fiontal plane (Goddard et al. 1983), side 

sway, body sway and sliding foot (Hemami and Wyman 1979a, 1979b, Goddard et al. 

1983, Iqbal et al. 1993) were also studied. The main thmt of Hemami's work had been 

directed toward developing proper methods to represent the equations of motion. 

Particular emphasis was placed on the incorporation of holonomic and nonholonomic 

constraints that arose fiom the intercomection of members and interaction with the 

environment. In Hemami and Wyman's paper (1979a), dynamic systems with constraints 

that were either maintained or deliberately violated were considered. The key step in the 

mode1 was the derivation of the forces of constraint as the functions of the state and the 



input of the system. Linearization of the differential equations of the system waç used to 

simplifi the cornplex models in these early studies. Linear feedback stability and control 

were used. 

In the study of the dynamics of human locomotion, many rnodels have been 

developed. One approach is the direct dynamic problern. Ln the direct dynamic problem, 

the moments applied to the system serve as the system inputs and the solutions found is 

the system kinematics. The study of human locomotion has been investigated by 

Onyshko and Winter (1980) through the direct dynamic problem. In their study, a mode1 

of a seven-link biped was used. Since there were differences between the mathematical 

model and the human body, the rneasured data of joint moments were adjusted before 

being applied to the ünk segment model to produce a desirable waiking cycle. They 

claimed that no constraints regarding the trajectories of any of the segments had been 

assumed. They showed that a normal human waIking cycie can be achieved and, with 

minor modification, typical gait patterns could also be achieved. Pandy and Benne 

(1988) approached the study of human locomotion îÏom the same direction. Ln their 

planar model, a damped spring was placed between the hip joint and the support Ieg ankle 

to simulate the flexion-extension characteristic of the knee. In this study, the joint 

moments applied were chosen on the ba i s  of triai and error, but the initial conditions 

were obtained directly from experimental gait data. Later, Pandy and Benne extended 

their planar mode1 to a three-dimensionai model (1989). The application of torques at the 

mechanical joints is corresponded to the muscle dynamics of human body that enables 

the changing of relative positions of mechanical links (Vukobratovic et al. 1990). In this 

way, gait can be achieved. Another approach used to study human locomotion is the 



inverse dynarnic problem. [n the inverse dynamic problem, the kinematics data is used as 

the system inputs to find the forces and moments applied to the system. The purpose of 

solving the inverse dynamic problem in human locomotion is to obtain information on 

the joint moments and the reaction forces at the joints of human lower extremities 

(Siegler et al. 1982). The kinematics measurement is obtainable fkom gait experiment. 

This problem has been studied by several investigators. Thomton-Trump et al. (1975) 

deter-ed the translational and angular accelerations of the limb segment fiom the gait 

data during normal locomotion. The moments about the joints of the hip and knees and 

the reaction forces from the floor were then calculated. The reaction forces fiorn the 

floor and the knee moments were used in the design of an extemal prosthetic polycentric 

knee joint. The conventional method of utilizing the experimental kinematic data is by 

numerical filtering and differentiating techniques. However, numencal differentiating 

techniques applied to experimentaily obtained data will ma@@ the iaherent 

measurement errors. Chao and R h  (1973) proposed a method based on the 

mathematical theory of optimization to determine the moments applied at the joints in 

human lower extremities without the application of numerical differentiation on the 

rneasured displacement. Using this method, the results showed Iess sensitivity to the 

inherent errors in the rneasurements. Ladin and Wu (1991) estimated the joint forces and 

moments ftom the combination of position and acceleration measurements. The 

estimated joint forces were then compared to the actual joint forces measured by strain 

gauges. 

Many investigators have been interested in studying bipedal robots. Mura and 

Shimoyarna (1984) developed their three-link biped robots piper-3 and Biper4) to waik 



sideways, backward and forward and studied in both the sagittal and fiontal planes. The 

results served as a basis for choosing the appropriate feedback control gains. Furusho 

and Masubuchi (1986, 1987) developed their reduced order model that could well 

approximate the original higher order model in almost al1 w a h g  phases in the saginal 

plane. This mathematical model served as the basis for developing their spatial 

mechanism. They built their fint biped (Kenkyaku-1) with a torso and two-link legs with 

no feet to venfy their numerical results experirnentally. This model had a steel pipe 

attached to the lowest end of each leg in order to maintain the lateral balance. Later, this 

model was irnproved by adding two more links (Kenkyaku-2) to study the kicking action 

in the double-support phase (Furusho and Sano 1990). Furusho and Sano (1990) 

developed a Nne-link biped (BLR-G2) which included the foot structure and was 

equipped with foot pressure and ankle torque sensors to provide information about the 

conditions of contact with the floor. Their work contributed toward the realization of 

smooth three-dimensional walking with the sole firmly gripping the floor. The 

mathematical models given in the above studies served as the basis for building active 

mechanisms for reaiization of artificial locomotion. 

Another issue related to the modehg of bipedal walking that has often been 

ignored is impact. Impact occurs as a result of the contact of the fiee end with the 

environment. In such contact, the velocities of the upper body and the leg segments are 

subject to an instantaneous change. Impact and support end switching play a remarkable 

d e  in the stability and progression of the bipedal locomotion system (Hurmuziu and 

Moskowitz 1987), which has been avoided by some locomotion studies. Vukobratovic et 

al. (1970, 1990) and Park and Kim (1998) imposed a condition that the velocities at the 



beginning and at the end of the step are the same to avoid the effect of impact. Katoh and 

Mori (1984) avoided the impact effect by using dynamic constraint functions that yielded 

srnooth foot landing. Hurmuziu's studies (Hurmuzlu 1993a, 1993b, Hurmuzlu and 

Basdogan 1994) had focused on the dynamics and control of biped gait. Hurmulu and 

Moskowitz (1986) fkst introduced the idea of including impact and support end 

switching in locomotion systems. In Hurmuzlu and Moskowitz's work (1987), they 

demonstrated the effect of impact and support end switching in the locomotion system 

with a very simple model. nie study conducted by Zheng and Hemami (1984) also 

confirmed that impact has a significant effect on the stability of bipedal systems, but their 

treatment of impact was not considered in the same context as HurmUZfu and Moskowitz 

(1987). Tzafestas et al. (1996) developed a 5-link biped robot to study the fonvard 

walking motion in the sagittal plane. Their 5-link bipedal model consisted ofa torso, two 

thighs and two shanks. These links were connected via four rotational joints, which were 

considered to be Wction-free and driven by independent actuators. The advantage of 

their five-link model is that it has sufficiently few degrees of fieedorn to keep the 

equations of motion to a manageable level, while still having enough degrees of fieedom 

to adequately describe the wallcing motion that includes the impact between the nee end 

of the swing leg and the wallcing surface. 

Design of joint angle profiles for bipedal robots to imitate human type locomotion 

is another challenging problem. Most of the previous studies did not consider or d e h e  a 

method to design the joint angle profile. For exarnple, Funisho and Masubuchi (1986, 

1987) verified their numerical results experimentally by using a walking machine that 

demonstrated several w a h g  patterns. However, the method to specQ the joint angle 



profile was never presented. Katoh and Mori (1984) used coupled van der Pol's 

equations to prescribe the motion for their bipedal model with telescopic legs, but there 

was no direct relation established between the parameters in the equations and the 

resulting walking pattems. Bay and Hemami (1987) also used a set of van der Pol 

oscillators in a network which were configured and used to model the central pattern 

generator. With adjustments of the parameters in the couplrd van der Pol oscillators, the 

model could be made to generate various kinematic trajectories in periodic wave patterns 

that were close to those of human waiking gait. Sirnilar to Katoh and Mori (1984), there 

was no direct relation established between the resulting gait pattems and the adjustable 

parameten. In the work of Lee et al. (1988), they divided the single support phase into 

five distinct States with manually selected reference angles at each tirne instant. The 

trajectory was then formulated by polynomial interpolation. Chaonon et al. (1992) also 

formulated their trajectories as a third order polynomial equation, the coefficients of 

which are obtained by numerically minimizing the energy cost function. In Tzafestas et 

al. (1996), the joint angle profiles were manually selected to fit certain constraints. In the 

work of Hemami and Farnsworth (1977), the prescribed trajectories of the ankle, hip and 

knee angles were the time functions obtained fiom a cornputer-television interface 

system. The television system was employed to monitor a person waiking and the 

computer-linked system rneasured the angles and smoothed them by computing the 

Fourier hannonics of each angle. Likewise, Vukobratovic et al. (1980, 1990) used 

measued human waking data as the desired joint angle profile. However, a practical 

walking machine is considerably simpler than a human being. The validity of 

minimizing the dynarnics of a system without a good knowledge of its interna1 structure 



and strategies is questionable. All of the above approaches to the problem of prescxibhg 

the motion of bipedal machines appear to fall short in terms of possessùig a well-defmed 

structure to address the design process. Consequentiy, it is desirable to develop a well- 

struchired parametnc formulation that ties the objective functions to the resulting gait 

patterns. Such objective functions are cast in terms of physically coherent parameters 

such as step length, progression speed, etc. Hurmuzlu (1 993a, 1993b) developed a 

systematic approach that can be followed to fornulate objective hct ions ,  which could 

be used to prescribe the gait of a planar five-link bipedal robot during the single support 

phase. The objective functions for locomotion were fomulated in terms of four basic 

quantities which completely characterized the motion of the biped during the single 

support phase. The four quantities are step length, progression speed, maximum 

clearance of the swing limb and stance knee bias. This method is a more natural approach 

for planning joint angle profiles. Silva and Machado (1998) used a sirnilar method for 

their joint trajectory design. 

Motion control of the bipedal robots is a challenging problem due to the high 

degree of complexity and the efficiency needed to maintain balance. ui most of the early 

studies, the nonlinear bipedal systems were linearized about the upright position. Based 

on the linearized system, linear feedback stability and control were used (Golliday and 

Hemami 1976, Hemami and Famswoah 1977, Hemami and GoUiday 1977, Hemami and 

Wyman 1979a, Hemami et al. 1980, Goddard et al. 1983). In these works, pole 

assignrnent was used to compute the feedback control gain. Since bipedai locomotion 

systems are highly nonlinear, linear controllers are not suitable to handle such systems 

(Slotine and Li 1991). 



Physiological studies have pointed out that the control of human walking has a 

hierarchical structure (Fumho and Masubuchi 1987). Hierarchical control has been used 

in robot control. The control structure most often used with robots consists of four levels. 

The highest level makes decisions on how the task imposed is to be accomplished. n i e  

strategic level divides the imposed operation into elementary movements. The tactical 

level distributes the elementary movement to the motion of each degree of fieedom, and 

the executive level executes the imposed motion of each degree of freedom (Borovac et 

al. 1989). Miyazaki and Arimoto (1980) proposed a useful hierarchical control strategy 

for their low order model. The control algorithm consisted of two parts. In the first part, 

the control torques for slow motion were detemiined by the motion of the center of 

gravity. In the second part, control torques in high speed motion were determined to 

trac k the predefined trajectory. Furusho and Masubuchi (1 986, 1 987) utilized 

hierarchical control in their reduced order model. They adopted a local feedback at each 

joint as the lower level control. Borovac et al. (1989) constructed a hierarchical control 

with two levels. The first level was defmed to control the system to follow the desired 

trajectories in the absence of any perturbation. The second level was de£ked to force the 

actual system state vector to the desired motion whenever a disturbance was present. A 

similar control structure with the use of force-feedback was presented by Vukobratovic 

and Stokic (1 980) for the application of decentralized control. For real-time control of 

the bipedai system in their study, instead of perfomiing the on-line calculations of new 

dynamic States based on solving differential equations representing the mornentary 

equilibrium state of the system, only the deviations of moments where the dynamic 

reactions act in the system to support contact were calculated. The perturbing moments 



were then transformed into control signals to stabilize the locomotion. Shih (1996) 

constr~cted a two-level hierarchical control structure for a bipedal walkin; robot with 

seven degrees of fieedom. The trajectory planning for the walking pattem was executed 

at the upper level and the servo control for the plamed trajectory was executed at the 

lower level. The servo control consisted of the computed gravity plus the proportional 

plus denvative (PD) control was set up to follow the planned trajectory to realize a stable 

wallcing motion. Furusho and Sano (1990) also used a hierarchical conho1 structure in 

the experiment of their nine-link biped (BLR-G2). Theu control was sensor-based. At 

the lower level, it provided feedback control for each DC servomotor. The control mode 

at the lower level could be switched to position, torque or free rotation mode depending 

on the switching signal fiom the higher level. At the higher level, the switching signal 

was generated by using sensor Liformation and control switching algorithms. Their work 

focused on the role of force/torque control of the sole and ankle during dynamic walking. 

Their biped achieved smooth three-dimensional walking based on information obtained 

fiom various sensors. 

Neural network control is another type of controller that is often used for motion 

regulation of bipedal locomotion. Neural network control is based on the mechanism of 

neuronal network. It consists of interconnected processing elements, a mechanism for 

producing the network's response, and a method to encode information (Holzreiter and 

KohIe 1993). A neural network can be trained with cases to produce a specific response 

to an input pattern and can leam to improve its performance. Holzreiter and Kohle 

(1993) presented a way to use neural networks for the classification of gait patterns, 

which was close to a statistical method. Asides fiom classifjkg gait patterns, the neural 



nehvork was used as multi-dimensional nonlinear transformation a l g o r i t .  for the 

design of mathematical models. It was also usehl for analysis of how different w a b g  

speeds and treatrnents affect the shape of a specific gait pattern- Rodrigues et al. (1996) 

tried to develop a self-leamhg controller for the bipedal locomotion system to study the 

possibility of controllhg bipedal locomotion without giving any kind of information 

about the system dynamics and hown  walkkig patterns. A Genetic Algorithm (GA) was 

used as a search method to fmd the necessary torque in each joint to obtain a desired 

trajectory for the biped's upper body center of mass. Rodrigues et al. (1996) suggested 

that the neural network could be trained with a set of patterns of elementary motions 

obtained fiom the GA. In a series of real tirne experimental studies by Miller and his 

colleagues (1994, 1996, 1999), neural network leaming was s h o w  to be effective for 

dynamic control problems in bipedal robots. They developed the hardware of a 

cerebellar model aithmetic computer (CMAC) neural network design to provide 

subrnillisecond response and training times. Miller (1994) presented preliminary real- 

time results of a study on the application of on-line neural network leaming to the 

problem of biped waking with dynamic balance. Low-level on-line learning control 

strategies using the CMAC neural network enabled the biped to balance during changes 

in standing posture and to link short steps without fallhg. Kun and Miller (1996) 

developed an adaptive dynamic balance scheme for a biped robot using neural control 

and teded the scheme on an experimental biped. The CMAC neural network was used 

for the adaptive control of side-to-side and front-to-back balance. Test results showed 

that the biped performance improved with neural network training. This balance scheme 

was proven able to control variable-speed gaits in a later study by Kun and Miller (1999). 



An artificial neural network was u e d  by Srinivasan et ai. (1992) as a new approach to 

modeling rhythmic movement control. They suggested that human locomotion is a 

rhythmic movement and is generated by the nervous system. The central pattern 

generators are a group of neurons that, because of their synaptic connections and inherent 

properties, oscillatory output behavior results. A hierarchical neural network structure 

consisting of four modules with a pattern generator at the top was proposed. The 

artificial neural network was applied to the control of an active extemal orthosis for use 

by paraplegics (Guiraud 1994). This control method was flexible to custornize the 

dynamics according to the patient's own limb. The author suggested that the control 

should be capable of adapting to each combination of patient and orthosis by leaming the 

system's tram fer function. 

Other nonlinear control methods were developed. Katoh and Mori (1984) 

designed a nodinear controller to assure asyrnptotic stability convergence to the stable 

Iimit cycle solutions of coupled van der Pol's equations. The advantage of this control 

method is that the bipedal locomotion can be controlled by adjusting only a few 

parameters in the van der Pol's equations. Cotsaftis and Vibet (1988) developed a direct 

nonlinear decoupling method (DNDM). Based on this method, a control law that gave 

decoupled control of a two-dimensional biped was derived only f?om the lmowledge of 

the Lagrangian of the systern. The use of DNDM in designing a two-dimensional biped 

is simple and efncient because the differential equations of the system are not required in 

the derivation of the control torque for driving the biped mechanism. The differential 

equation of the system, on the other hand, can be derived fiom the control algorithms. 



Computed torque control is a classical nonlinear control based on the feedback 

linearization technique. This control technique requires the parameters in the dynamic 

mode1 of the system to be exactly known for good control performance. Tzafestas et al. 

(1996) employed a pure computed torque control for the robust control of a five-Iink 

biped robot. In their work, the performance of the computed torque control technique 

was satisfactory when no parametric uncertainty existed in the system. They also showed 

that the computed torque control technique was superior to the simple local PD control. 

Chevallereau et al. (1998) used a rnodified computed torque control in which a physical 

constraint was taken into account. The physical constraint was the reaction force that 

prevented the foot from sliding or taking off. This method showed good performance for 

the bipedal w a h g  in theu study. A control method based on the computed torque 

control was presented by Park and Kim (1998). The computed torque controller applied 

on the swing leg was used to track the motion of the joint angle and the controler applied 

on the support Ieg was used to stabilize the error dynamics of the base link position. The 

simulation results of this study also showed that the computed torque controllen work 

very well. In Park and Chung's work (2000), they proposed a new hybrid control 

method, a combination of impedance control and computed torque control, to control 

biped robot locomotion. The impedance control was used for the swing leg and the 

computed torque control was used for the support leg. The simulation results showed 

that the proposed controller was superior to the pure computed torque controuer, 

especially in reducing impact and stabilizing foot placement. They also showed that the 

proposed controller made the biped more robust in regard to parametric uncertainty. 

Another hybrid control was proposed by Vukobratovic and Timcenko (1996). This 



hybrid approach combined the traditional model-based and fuuy logic-based control 

techniques. The model-based decentralized control scheme was extended by fuzzy logic- 

based tumers for rnodi+g parameters of the joint servo controllers. The simulation 

experiments demonstrated the suitability of this hybnd approach for improving the 

performance of the bipedal locomotion robot. 

In physical systems, uncertainties regarding the values of parameters usually 

exist. Adaptive inverse dynamic based control is one of the nonlinear controllers used to 

deal with constant or slowly varying uncertainties. Adaptive control is an approach to 

estimate the uncertain parameters on-line based on the measured signais and to use the 

estimated parameters in the control input computation (Slotine and Li 1991). The 

effectiveness of this control method for bipedal locomotion was investigated using a 

laieeless biped (Yang 1994) and a five-link biped (Yang and Shahabuddin 1994). It was 

suggested that the difficuity of using such control for bipedal locomotion was in dealing 

with different sets of nonlinear dynamic equations for different phases, each of whose 

duration was usually very short. Satisfactory performances were obtained. The 

simulation resdts showed that the tracking errors were improved as compared to the 

initial setting and the performances were robust. 

The sliding mode control technique has received considerable attention in the 

control of bipedal locomotion mainly because sliding mode1 control systems are highly 

insensitive to parameter variations and disturbances (Slotine and Sastry 1983, Slotine 

1984, Bailey and Ampostathis 1987, Paden and Sastry 1987, Slotine 199 1). It is more 

desirable than adaptive control for dealing with disturbances, quickly varying parameters, 

and unmodeled dynamics (Slotine and Li 199 1). A sliding surface must be designed for 



the sliding mode control law. The motion control problem is to get the system 

trajectories to track the desired trajectories, which is equivalent to maintainhg the system 

trajectories on the sliding surface. Ideally, the classical sliding mode control rnediod will 

result in perfect tracking of the desired trajectory. However, there are important 

drawbacks in this method. Due to the unavoidable delay in switching between control 

laws at the discontinuity surface, trajectories' chattering rather than sliding on the surface 

is resulted. Chattering is generally undesirable in practice, since it involves extremely 

high control activity, and may excite high-fiequency unmodeled dynamics (Slotine and 

Sastry 1983). Another drawback is the reaching phase, a phase in which the trajectories 

starting from the given initial condition off the sliding surface tend toward the sliding 

surface. The trajectories in this phase are sensitive to parameter variations. Tzafestas 

and his colleagues (1996) have invedigated the robustness of the biped system through 

sliding mode control. They M e r  demonstrated that sliding mode control is supenor to 

computed torque control and local PD control for bipedal locomotion when parametric 

uncertainty exists in the system. A sliding mode control law with a saturation function 

replacing the discontinuous term was used in Tzafestas et ai. (1 996). The same control 

law had been used in Slotine et al. (1983, 1984, 1991) to smooth out the chattering. This 

control law maintained the system's trajectories close to the sliding surface within a thin 

boundary layer instead of on the surface. Chang and Hurmuzlu (1992, 1993) developed a 

sliding mode control for a five-link bipedal robot without a reaching phase. A sliding 

mode control law with the discontinuous tenn replaced by a saturation function was also 

used. In addition, Chang and Hurmdu modified the vector of tracking error and 

redefked the sliding surface. For arbitrary initial conditions, the modiied tracking errors 



were zero. Thus, the initial state of the system lay on the new sliding domain leading to 

the elirnination of the reaching phase. The simulation results venfied that such a 

controller was capable of achieving steady gait. Lee et al. (1988) developed a control 

scheme for controlling dynamic w&g in the sagittal and the frontal plane 

independently. The Mode1 Fo llowing plus Variable Structure S ystems (sliding mode 

control) technique was developed to control dynamic walking in the sagittal plane, while 

the Nonlinear Feedback plus Modified a-Computed Torque technique was developed to 

control dynamic walking in the fiontal plane. Simulation results showed that the 

proposed algorithms could achieve stable and steady w a k g  and could achieve 

trajectory tracking in the presence of modeling errors. 

1.3 Objectives of This Thesis 

The goal of this thesis is to contribute to the development of the dynamic 

modeling and control of a five-link bipedal locomotion system waiking on a flst 

horizontal surface. The dynamic modeling of such a bipedal locomotion system starts 

with the development of the mathematical mode1 that describes the motion of the bipedal 

locomotion system. A kinematic bipedal model that consists of five rigid links, which are 

connected by fou.  pure rotationai joints, is used in this study. The bipedal locomotion 

system has five degrees of rotational freedom with the motion in the saginal plane. The 

first objective is to develop the mathematical model that descnbes a complete waiking 

motion. Such a model includes the single support phase, the impact with the waiking 

surface phase, and the support end exchange phase. The second objective is to present a 

systematic rnethodology for designing the joint angle profiles which can prescribe the 



motion of w a h g  on a flat horizontal surface for the planar five-link biped. New 

constraint functions are developed kom the kinematic relations of the bipedal model for 

generating the joint angle profiles. The modeling is completed with the application of 

control algorithms to regulate the motion of the biped to follow the prescnbed motion. 

The third objective is to irnprove the traditional sliding mode control algorithm so that the 

chattering problem and the reaching phase problern are eliminated and, at the same tirne, 

good tracking performance cm be obtained. The tracking performance of the sliding 

mode control technique is to be compared to the performance of the computed torque 

control technique in both situations where pararnetric uncertainty is absent or present in 

the systern. The development of a good computer prograrn is a very important part of 

this thesis because al1 the information of the behavior of the bipedal locomotion systern 

and the performance of the control algonthms are provided by the computer simulation 

results. 

1.4 Thesis Organization 

The remaining chapters in this thesis are organized as foilows. Chapter 2 outlines 

the mathematical model development of the five-iink biped robot in the sagittal plane. 

The methodology for developing the equations of motion, which is based on Largangian 

formulation, is presented in detail. Chapter 3 presents the methodology for planning joint 

angle profiles of the five-link biped robot. The joint angle profiles of the five-link biped 

robot are generated to prescribe waiking on a flat horizontal surface. Chapter 1 deals 

with the motion control strategy. The development of sliding mode control and 

computed torque control are presented in detaii. Chapter 5 presents two major simulation 



results. One result is the desired joint angle profiles designed using the methodology 

developed in Chapter 3. Another results are the outputs of the simulation study with the 

siiding mode control and computed toque control applied to the bipedal locomotion 

system to regulate the motion. The robustness of each of  the two control techniques is 

investigated as various degrees of parametric uncertainty exist in the system. The fmai 

conclusion and the future work recomrnendation are presented in Chapter 6. 



Chapter 2 

Mathematical Mode1 of the Five-Link Biped Robot 

2.1 Introduction 

This chapter outlines the methodology employed to develop the equations of 

motion that can describe the walking motion of a five-link biped robot. Brief background 

information about mathematical modeling of a biped robot is given in Section 2.2. The 

kinematic model of a five-link biped robot in the sagittal plane is introduced in Section 

2.3. The five-link biped robot consists of five rigid links that are comected by four 

purely rotational joints with one degree of rotational Eeedom each. The detailed 

procedure for the derivation of the equations of motion is presented. In Section 2.4, the 

equations of motion are developed through the standard procedure of Lagrangian 

formulation. Three phases are included in the mathematical model of the biped robot 

w a h g  on a flat horizontal surface during one waiking step: (1) the "single support" 

phase, (2) the "impact with walking surface" phase, and (3) the "support end exchange" 

phase. In this section, two sets of equations of motion are developed, which fully 

describe the locomotion during the single support phase and the impact with wallcing 

surface phase. The techniques for handling the impact of the fiee end of the swing leg 



with the w a k g  surface at the completion of each step and the support end exchange are 

also presented. 

2.2 Background Information 

Mathematical rnodeling of a bipedal locomotion system has been a challenging 

problem for many researchers. This is mainly duc to the dynarnic complexity of linkage 

systems with many degrees of fiteedom (Gubina et al. 1974). The dynamic behavior of a 

bipedal locomotion system is described in tenns of the tirne rate of change of the linkage 

configuration in relation to the joint torques. This relationship c m  be expressed by a set 

of differential equations, called equations of motion. For a human walking motion, 20 or 

more degrees of fieedom may be involved. This is difficult to handle mathematically. 

Hence, it is critical to select kinernatic models having suficiently few degrees of fieedom 

to keep the equations of motion to a manageable level, and yet having enough degrees of 

fieedorn to adequately describe the motion. It is sufncient for studies of the dpamics of 

posture to employ a mechanical mode1 of inverted pendulurns with no more than three 

degrees of fieedom (torso, thigh, and shank) (Golliday and Hemami 1977). However, 

when Iocomotion is considered, many more degrees of fieedom that arise fkom the 

motion of the two legs and their associated segments are involved. Bipedal locomotion 

generally consists of altemately placing the foot of each leg against the surface so that the 

leg can support and drive the bipedal body fonvard. By observing naturai human 

walking, two main phases comprise one walking cycle. During the support phase, the 

foot is on the w a h g  surface, whereas during the swing phase the foot is no longer in 

contact with the walking surface and is swinghg fornard in preparation for the next 



contact. The support phase can be subdivided into three separate phases: (1) first double 

support, when both feet are in contact with the ground, (2) single leg support, where one 

foot is swinging through space and the other foot is in contact with the ground, and (3) 

second double support, when both feet are again in contact with the ground (Vaughan et 

al. 1992). For normal w a h g  motion, there is a naturd symmetry between the left side 

and the right. Thus the first double support for one leg is the second double suppoa for 

another leg. The five-link bipedal model shidied in this thesis is a sirnplified model that 

is sufncient to describe w a k g  motion in the sagittal plane. Similar five-link bipedal 

rnodels were also studied by Fumho and Masubuchi (1986, 1987). Cotsafüs and Vibet 

(1988), Lee et al. (1988), Chang and Hurmuzlu (1992), Humiuziu (1993a, 1993b), and 

Tzafestas et al. (1996). In this study, the w a h g  motion of the five-link biped robot is in 

the sagittal plane and only includes the single support phase, the impact with waiking 

sudace phase, and the support end exchange phase. To simpliQ the analysis, the double 

support phase is not included in the wakng motion. 

nie  equations of motion describing the dynamics of the bipedal locomotion 

system can be developed by utilizing the Lagrangian formulation or the Newton-Euler 

formulation. The Newton-Euler formulation is derived directly by interpreting the 

Newton's Second Law of Motion, which describes dynamic systems in terrns of force and 

momentum. The equations of motion incorporate al1 the forces and moments acting on 

the individual links, including the coupling forces and moments between links. 

Therefore, additional arithmetic operations are required to eliminate these terms in order 

to obtain explicit relations between the joint torques and the resultant motion in tems of 

joint displacements. Lagrangian formulation descnbes the system's dynamic behavior in 



terms of work and energy using generalized coordinates, which reduces the number of 

equations needed to describe the motion. Lagrangian formulation has the advantage that 

only the kinetic and potential energies of the system are required to be computed and al1 

the workless forces and constraint forces can be automatically eliminated (Murray et al. 

1994). The resultant equations are generally compact and provide a closed-fom 

expression in terms of joint torques and joint displacements. Furthemore, the derivation 

of the Lagrangian formulation is more systematic than the Newton-Euler formulation 

(Asa& and Slotine 1986). The principle of Lagrangian formulation has been employed 

to develop the equations of motion describing the dynamics of the bipedal locomotion 

system since the 19701s, for example, in Gubina et al. (1974), Hemami and Golliday 

(1977), Hemami and Wyman (1979a, 1979b), Miyazaki and Arimoto (1980), Onyshko 

and Winter (198O), F m h o  and Sano (1990), and Tzafestas et al. (1996). The 

Lagrangian fonnulation is employed in this thesis to develop the equations of motion 

describing the dynarnics of the locomotion system. 

2.3 The Kinematic Mode1 of the Five-Link Biped Robot 

The kinematic model of the five-link biped robot is briefly presented in diis 

section. The biped robot studied here is modeled for w a l h g  on a fiat horizontal plane 

surface only. The five-link bipedal model employed to investigate dynamic waiking is 

s h o w  in Figure 2.1. This bipedai model consists of five ngid links, one link for the 

upper body (link 3) and two links for the thighs, (link 2 and link 4), and the two links for 

the shaoks, (link 1 and link 5). These links are comected to one another by four purely 

rotational joints; two joints at the hip and two joints at the knees. These rotational joints 



are considered to be frictioniess and are driven by independent motors. To simpliQ our 

analysis, the following assumptions of the model are made: 

(1) The feet of the bipedal mode1 are massless. 

(2) There is point contact between the tip of the support leg and the w a h g  surface. 

(3) The lefi side and the right side of the bipedal model are symmetric. 

(4) The bipedal model is constrained in the sagittal plane. 

(5) There is sufficient fiction berneen the foot and the w a b g  surface to prevent 

slippage. 

Although we neglected the dynamic of the feet by assuming massless feet and point 

contact between the tip of the lower limb and the walking surface, we still allow the 

biped to apply torque at the d e s  to increase or decrease its speed during walking. 

Figure 2.1 Five-Link Biped Robot 



The parameten that are shown in Figure 2.1 are as follows: 

m, - mass of 1h.k i 

Z, - length of link i 

di - distance between the center of mass and the lower joint of link i 

Ir - moment of inertia of link i with respect to the axis which passes through the center of 

mass of link i and perpendicufar to the sagittal plane. 

0, - angle of link i with respect to the vertical 

(x,, y,) - the position of the tip of the swing leg 

(xb, yb) - the position of the point of support 

O,-Xo-Y, - the fixed coordinate fiame 

According to the kinematic relationship between links s h o w  in Figure 2.1 (note the 

reference directions for al1 angles), the position and the velocity of the fiee end of the 

swing leg can be defined. The position of the fiee end is fonnuiated as 

and the velocity of the fiee end is 

e ,   COS^, e, cose2 - { y : } = (  ) 6 , + ( -  ) ~ ~ + ( ~ ~ ~ ~ ~ ~ ~ ~ ~ + ( l ~ ~ ~ ~ ~ ~ ) é ~  (2.2) v* - -e l  suie, - e, sine, ,e, sine, e ,  sine, 

According to the kinematic relationship between Links, the coordinate of the center of 

mass (cgx, cgy) of the bipedal mode1 and the coordinate of the center of mass (xc,, yc,) of 

each link i can also be presented as the following: 

m, .r~, + m2.rc, + rn3xc, + rn,xc, + m, xc, 
c g  = 

ml +nt, t m ,  +m, +nt, 
m, yc, + m, yc2 + q y c ,  + m, yc, + m,yc5 

cgy = 
ml + m 2  +m3 + m J  +nt5 



and 

The linear velocity of the center of mass of each link is represented as follows: 

2.4 Equations of Motion 

The locomotion of the biped walking on a flat horizontal surface is constrained in 

the sagittal plane. One complete gait cycle of wallcing in the fonvard direction, which is 

considered for rnodeling in this study, includes four stages: (1)  Lefi or right leg is in 

contact with the w a k g  surface supporthg the whole body while the other leg swings in 

the fonvard waikhg direction, (2) the swing Ieg then cornes into sudden contact with the 

walking surface at the completion of the swinghg motion and becomes the support leg, 

(3) the Ieg, which was the swing leg, is now the support leg carrying the weight of the 



whole body and the other leg swings fonvard, and (4) this swing leg then cornes into 

sudden contact with the walking surface and becomes the support leg again. This gait 

cycle repeats to transport the upper body Grom one position to another position. As 

mentioned previously, by assuming the left side and right side of the bipedal model to be 

symmetric, the walking motion can be simplified. One step is considered to be half of a 

gait cycle. The w a k g  motion of one step is divided into three distinct phases: the 

"single support" phase, the "impact with walking surface" phase and the "support end 

exchange" phase. 

2.4.1 Single Support Phase 

The single support phase is a continuous fonvard motion during which the biped 

robot has one leg (the support Ieg) in contact with the wallcing surface carrying al1 the 

weight of the biped's body and one leg (the swing leg) swinghg in the air in the fonvard 

walking direction. The Mction of the ground is assumed to be sufociently large so that 

no slippage at the support end with the walking surface can be ensured. A dynamic 

model with one leg (the support leg) attached to the wallcing surface is employed to 

develop a set of equations of motion during the single support phase. The constraints of 

xb and yb are constant and X, = y, = O are vaiid during this phase. The configuration of 

the dynamic model is s h o w  on Figure 2.2. It has to be noticed that the positive direction 

of angles O], e2 and O3 is defined as clockwise fiom the vertical and the positive direction 

of angles O4 and es is defined as counter-clockwise fiom the vertical. 



Figure 2.2 Biped with One Support Leg 

The denvation of the equations of motion for the open kinematic chah used to 

describe the motion of the biped robot in this single support phase follows the standard 

procedure of Lagrangian formulation (Murray et al. 1994). The Lagrangian formulation 

of the five-link system is @en by the difference between kinetic and potential energies: 

L = K - P  (2-6) 

The potential energy is given by: 

where 

g is the gravitational acceleration (g-9.8 1 d s e c 2 )  

and yc, is determined fiom equation (2.4). 



The kinetic energy is given by: 

5 1 I 
K = ~ K ,  with Kr=-n~,vc,'+-1,9,' 

r = I  2 2 

Substituthg yci fiom equation (2.4) into equation (2.7) and vc, f h m  equation (2.5) into 

equation (2.8), and applying some dynamic manipulation, the kinetic energy and potential 

enetgy for each link are formulated as follows: 

Link 1 

1 
K I  = - ( I l  + m,dl ' )O, '  

2 
Pl = q g d ,  cos 0 ,  

Link 2 

Link 3 

Link 4 

Link 5 



The Lagrangian equation of motion is in the fom as follows: 

The detailed procedure of formulating the Lagrangian equation of motion cm be found in 

Appendix 1. Equation (2.14) can be rearranged into the following standard form: 

where 

Each terni in equation (2.15) is fomulated as follows : 

D(e) =Oij(@ (i, j = I 9 2 ,  ..S) - 

where 



D,, = 1, +m,(!, -d,)' 

S(û, &))$ = col C h, A, 
[[ 1 

h31! = 
h,,. = h,, 
h, = h,, = O 

The equation of motion (2.15) is M e r  modified into equation (2.19) using the relative 

angle for the control purpose. 

where &(q) is the 5x5 symmetric, positive definite inertia matrix, &(q, q)q is the 5x1 



vector of centripetal and Coriolis torques, GJq) is the 5x1 vector representing 

gravitational torques, and Z;, is the 5x I vector of control torque applied at each joint. The 

relative angles (qi) between links are used instead of the absolute angle Oi of each link 

(see Figure 2.2). The relationship between the relative angles (q,) and the absolute angles 

(0,) is as follows: 

The detail modification of the equations of motion (2.19) can be found in Appendix II. 

The same set of equations of motion is used for both the lefl leg support, as well as the 

right leg support. 

2.4.2 Impact with Walking Surface Phase 

At the completion of each step, the swing leg (leading leg in contact) comes into a 

sudden contact (impact) with the waiking surface. The angular velocity of each joint will 

be subjected to jump discontinuities. The support end of the biped is then transferred to 

the tip of the swing leg and the support leg (trailing leg in contact) leaves the w a k g  

surface immediately. That is the moment the biped robot is not suppoaed by either leg. 

The constraints of xb and y& are constant and i, = y, = O ,  which were valid in the single 

support phase, are violated. This implies that neither of the equations of motion (2.15) 

nor (2.19) can be used here. The dynarnic model developed for the single support phase 

cannot apply to this phase. The biped robot is so treated as both legs are in the air and 

another set of equations of motion must be derived. The dynarnic model of the biped 

with both legs in the air is shown in Figure 2.3. To fully descnbe the configuration and 



the position of the biped, in addition to 0, ( F I ,  2..  -5). the coordinates .rb and yb at the end 

of the trailing leg of the bipedal mode1 are also needed. 

Figure 2.3 Biped with Both Legs in Air 

From the configuration of the biped robot in Figure 2.3, the coordinate and the velocity of 

the center of mass of each tink are as follows: 

xc, = xb + dl sin 8, 
yc, = Yb +dl C O S ~ ,  
XC? = X, + e l  sine, + d 2  sin0, 
yc2 =y,  + e l  C O S ~ ,  +dz  COS^? 
XC, =x, + e l  s i d ,  + Q i n € ) ,  +d ,  sine, 
yc3 + e l  CO&, +elcosë, C COS^, 
XC, = X, +!, sin0, +!, sine2 +( ta  -dr)sin8, 
yc, =y, + e l   COS^, +ezcose2 - ( e ,    COS^, 
XC, = x b  ce, sine, +!,sine2 +t,sin0, + ( t ,  -d,)sin8, 
yc, =yb +c,  cos8, +e,cose2 4,  COS^, - ( t ,   COS^, 

and 



vc, = 
Y b  - d, sin 0, 
i elcosel  

VC2 = + 
4, sine, } Y b  

ib{ ) e l c o s e l  
VC3 = + (2.21) 

)yb 
- e l  sine, 

ib{ )  COS^, 
vc, = + 

- P ,  sine, 
:, C O S ~ ,  

- P ,  sine, 

Following the same procedure as for the single suppoa phase, the kinetic energy and the 

potentiai energy equations for each link can be determined as follows: 

Link 2 

Link 3 

1 1 K3 = -[Il + n1,d,')3,~ +-rn3[P,20,2 + tl2é2' + 2,l, cos(8, -€L)6,& 
2 2 .  

+ 24d ,  cos(0, -e3)0,8, + î t , d 3  cos(e2 - 03)0Z01] 
I 

+ - m 3 [ i b 2  +yb' + 2t161(~b C O S ~ ,  -yb ssine,) + 2 ! , é 2 ( ~ ,  C O S ~ :  -9, sin&) 
2 

+2d383(i,  COS^, - y ,  sine,)] 
P, =m,g(y, + e ,   COS^, + e 2   COS^^ +d3  COS^,) (2 .24) 



Link 4 

1 1 
K, =-[II +m,(.t, +-m,[eIZe,' +t2 'è2 '  +2.t,e2cos(8, -e2)é16? 

2 3 
+2Plt, cos(8, +8,)gI8, + 2 t &  -d,)c0s(8~ +8,)8,0,] 

1 
+-m,[.tb2 + j l b Z  +2eI8,(.tb cosQI sin8,)+2t,&(.ib cose, -yb sine,) 

2 - " 

+2(t,  -d,)g,(ib  COS^, +yb  sine,)] 
P, = m,g(y, + l ,   COS^, + t ,   COS^, - ( t a    COS^,) (2.25) 

Link 5 

1 +-m,[.tb2 +jrb2 +2t,9,(.tb cosel sin8,)+2t,&(.tb cosû2 -y, sine,) 
3 

The equations of motion are derived by substituting equations (2.22) to (2.26) into the 

Lagrangian equation of motion (2.27). 

By rearranging the equation (2.27), the equations of motion can be witten into the 

following standard fiom: 

where O,=[ei 0 2  O3 04 Os X& yb], O,, (i=1,2,. . .<5) represents the angle of each link with 

respect to the vertical, and (q, y&) is the position of the point of support. 

Each tenn in equation (2.28) is denved as followvs : 

D, =Di,  ( i , j=1 ,2  ,..., 5) (fkom equation ( 2.16)) 



ha, = c h , , ,  where j * 7 
1'1 

h ,,,, = - [ m , d ,  + ( m 2 + m ,  cm, + m 5 ) 1 1 ] 8 , 2 c o s 0 1  
halx = -[m,d2 + (m, + m, + m,)&]6,' c o s 4  

= -[m3dl]&' COS 9 
h a ,  = [ m , ( t ,  - d , ) + m , t , ] 9 , ' ~ 0 ~ 9 ,  
ha,,, =[m,(t, -d , ) ]&'cosû,  
' a ï ,  = 0 
h (0 8 )& = c o l [ h , J  ( i=1,2?-,7)  
-0 -u 7 - 0  

ha, = h, ( i =  1,2 ,..., 5) (Eom equation (2.17)) 

7 

ha, = h,,, where j # 6 
J= I  

ha6,* = - [m,d ,  + (mz + m, + m, + m , ) &  18,'sin 8, 
= - [ m , d 2  +(m, + r n , + m 5 ) e . ] 0 , ' s i n e 2  - - 

hua, = -[m,d,]A,'sin 8, 
hudu = - [ m , ( C ,  - d , ) + m , C , ] e , ' ~ i n 8 ,  
h ,,,, = -[m& - d J 6 , ' s i n  0,  
h.6, = 0 

Ga* =G, (i=1,2 ..., 5)  (fkom equation (2.18) 
Ga6 = O  
Ga? = (ml + m, + m, c m, + m,)g 



The detailed derivation of the above equations of motion (2.28) can be found in 

Appendix m. The equations of motion (2.28) are used for the calculation of the 

instantaneous changes of joint angular velocities at the moment when the fiee end of the 

swing kg collides with the walhuog swfke. 

During the single support phase, the fiee end of the swing leg is moving in the 

forward direction. It gets ahead of the body and comes into sudden contact with the 

wallcing surface at the moment of the completion of each step. At this instant, the impact 

phase takes place. This is assumed to take place in an Uifinitely small tirne interval and to 

be perfectly plastic. Perfectly plastic is dehed as the situation in which the tip of the 

swing leg does not leave the w a h g  surface after impact with the wallllng surface and 

the velocity bof the tip of the swing leg imrnediately becomes zero. Due to the collision 

with the walking surface, there are sudden changes in the angular velocity of each joint. 

It is therefore necessary to compute the new joint velocities each time just after each 

collision between the free end and the walking surface. It is assumed that there are no 

changes in the angle displacements of the joints. 

The equation representing the impact can be formulated by the following 

procedure. Let h be the position of the fiee end of the swing leg, with respect to the 

fixed coordinate name, which comes into contact with the walking surface. We can 

express it as 

.& = &(e) 

where 8 = [el,. . .,en]' is the vector of generalized coordinates of the system. 



If ~o , , tac t  is the contact point, the impact will occur when 

&(O )=Zcontact (2.34) 

This represents an extemal constraint to the motion, which hplies that a generalized 

constraint force F is introduced into the system (Tzafestas et al. 1996), 

where J ,  is the Jacobian and is a suitable column vector of Lagrange muhipliers. n ie  

equations of motion just before the impact are the same as (2.28) 

and the equations o f  motion just after the impact are 

htegrating the equation (2.36) over the infinitely small time interval during the impact 

[ta, to+Af] (to is the instant of impact). 

and so the equation (2.37) becomes 



walking surface cm be rneasured, it cm be used for the computation of AO . First of ail 

we have to fud the relation between  and A?, . We have 

!, = L e ,  

and so 

If the point with which the biped cornes into contact is not moving ( v ~ ~ ~ , ~ ~ ~ = O ) ,  then we 

have 

Therefore, fiom (2.35), (2.38) and (2.4 l), we can obtain 

Hence 

The equation for calcdating the instantaneous changes in the angular velocities A& of the 

links of the biped robot at the moment of impact between the fiee end and the walking 

surface is formdated fiom the equations of motion (2.28) of the dynarnic mode1 with 

both legs in the air. From the above formulation, the impact formula can be represented 

by the following equation: 

where 



is the 7x7 inertia matrix defmed in the equations of motion (2.28). and J ,  is uie 2x7 

Jacobian matrix of the biped in the air which is given as the following: 

Where x, is the position vector [x,, y,]' of the fiee end 

J,(L.l) = Y ,  cose, 5, (2.1) = 4, sin 8, 
~,(1,2)  = e ,  cos8, 5,(2,2) = - e ,  sine, 

J,(1,3) = 0 5, (2,3) = O 
J J ~ , J )  = e ,  COS 0, J, (2,J) = !!, sin €4 
~ ~ ( 1 . 5 )  = e ,  cos 0, J ,  (2,5) = t , sin 0, 

J,(1,6) = 1 5,(2,6) = O 
JJ1.7) = 0 J,(2,7) = 1 

Since the velocity of the free end becomes zero immediately after the impact with the 

walkhg surface, 

Therefore, equation (2.43) becomes 

where a,,/, and Oder are the velocities of the links just before and jus after the impact. 

It should be remarked here again that the angular displacements of the joints during the 

time interval of the impact do not change. 

2.4.3 Support End Exchange Phase 

Simultaneously, as the free end collides with the walking d a c e .  the end of the 

support leg leaves the walking surface immediately and the support end transfers to the 

end of the swing leg that cornes into contact with the waiking surface. An instantaneous 



exchange of support fiom one end to another end takes place. n i e  duration of this whole 

process is assumed to be the same as the duration of the impact of the fiee end with the 

walking surface. During the instantaneous exchange of support leg, individual angular 

displacements and velocities do not physically change. Since the roles of the swing and 

support leg will be rxchanged, in order to use the same set of equations of motion of the 

single support phase for both legs, the numbering of links has to be reiabeled. Such 

r e n u m b e ~ g  causes discontinuities in the angdar displacements and velocities. The re- 

labeling scheme is as follows: 

Li& 1 w Link 5 Link 2 o Link 4 Link 3 does not change 

These lead to the following changes: 

where 

e(0) and &O) is the initial conditions of next step - 

0(T) is the terminal posture of the completion of each step before switching support leg, and - 

$,, (T) is the angular velocities afler impact at the completion of each nep. 

The following transformation matrix is formed from the above relationships ro describe 

the effect on the angular displacements and the anguiar velocities immediately before and 

after the switching. 



The new angular displacements and angular velocities calculated from the above equation 

are used as the initial conditions for the next step. 

2.5 Summary 

This chapter presented the methodology for the derivation of equations of motion 

to describe the locomotion of a biped robot wakng  on a flat horizontal surface. A five- 

link kinematic model of the biped robot was developed which has sufficiently few 

degrees of fieedom to keep the equations of motion to a manageable level, while having 

enough degrees of freedom to approxirnately descnbe the locomotion. The cornplete 

wdking motion in one step being studied includes duee phases: the "single support" 

phase, the "impact with waiking surface" phase. and the "support end exchange" phase. 

The equations of motion for the single support phase were developed by using the bipedai 

mode1 with one support leg and the equations of motion for the impact phase were 

developed by using the bipedal model with both legs in the air. Instantaneous sharp 

changes in the angular velocities occurred during the impact between the free end of the 

swing leg and the walking surface at the completion of each step. Simultaneously. the 



support end transferred fiom the end of the support leg to the end of the swing leg, which 

came into contact with the walking surface. nie  roles of the two legs were exchanged. 

Techniques for handling the impact with the walking surface and the exchange of support 

end were also presented in this chapter. 



Chapter 3 

Joint Angle Profiles Planning for the Five-Link Biped Robot 
Walking on a Flat Horizontal Surface 

3.1. Introduction 

Joint angle profiles planning for a bipedal locomotion system is the generation of 

a set ofjoint angle movements at each tirne instant that leads to a desired waIking motion. 

In this chapter, the methodology used to design the joint angle profiles as the prescribed 

w a W g  motion of the five-link biped robot is presented. The joint angle profiles planned 

are aimed at realizing the walkhg motion of the five-link bipedal robot on a flat 

horizontal surface in the sagittal plane during the single support phase only and can be 

used for tracking of the control system. Hurrnuziu (1993a) developed a systematic 

approach to formulate constraint fùnctions that can be used to synthesize a five-element 

bipedal automaton. These constraint functions were cast in tems of physicaily coherent 

parameters of human gait and used as objective firactions by a controller. In the 

followiag section, Hunnuzlu's approach is adapted to formulate constraint functions in 

terms of the kinematic relations between links; these constraint functions are then used to 

generate the profiles of joint displacements, velocities and accelerations of the five-link 

biped robot. We improve the constraint functions by replacing the constraints imposed 

on the swing leg used in Humuzlu's work (1993a) with the constlIiint of keeping the total 



mechanical energy of the bipedal robot constant. Five dynamic constraint functions are 

de£ined by overall walking speed, the support knee bias and upright posture of the upper 

body. The last constraint function is defhed to keep the mechanical energy as a constant. 

The purpose of this constraint is to test the hypothesis that given o d y  potential energy at 

the beginning of the step, the swing leg can be carried over by gravity. The bipedal 

walking motion realized by the desired joint angle profiles has certain charactenstics of 

huma. waiking. Since repeatability of movements is a hindamental characteristic of 

bipedal waLking, it is very important that the designed profiles of joint angles ensure the 

realization of the repeatability condition for steady and continuous wallcing. That means 

the equality of the joint angles at the beginning and at the end of each step. Only the set 

of joint angle profiles satiseing this condition is acceptable for bipeds. 

3.2 Joint Angle Profiles Planning 

Generally speaking, the joint angle profiles of the support leg, the upper body and 

the fiee swing leg are not unique. The objective in designing the joint angle profiles is to 

obtain an acceptable walking motion such that the biped robot can transport the whole 

body across the walking surface safely. The constraint functions formulated in the 

following section are for the purpose of generating joint angle profiles of the bipedal 

locomotion across a flat horizontal surface. 

3.2.1 Constraint Functions 

Five dynamic constraint functions are developed in this section. The constraint 

functions, which can be used to prescribe a specific locomotion of the planar five-iink 



biped robot during the single support phase, are formulated as kinematic relations. It 

should be mentioned here that, in order to simplify the mathematical presentation, the 

number of constraint bc t ions  is equal to the number of generalized coordinates of the 

biped robot. The five constraint functions can be described as the following: 

(1) The erect body posture 

One of the basic aspects for bipedal walking is to always maintain the upper body of 

the biped robot at the upright position. That means that the net rotation of the upper body 

is kept zero at al1 the time (03(t) = O). This is valid as long as normal walking motion is 

considered (Winter 199 1). The following equation enforces this condition: 

SI = O ,  = O  

Since we have the relationship that 

93 =go-9, - q 2  

Si can be expressed in terms of the relative angles 

(2) The overall progression speed 

The overail progression speed is defined as the linear velocity of the center of 

mass of the upper body in the f o m d  walking direction (i.e., the positive x-direction). 

The steady progression speed is maintained by 

where Xc, is the velocity of the center of mass of the upper body in the x-direction and Y, 

is the desired progression speed. This selection of progression speed gives us some 

fieedom to control the overall walking speed of the biped robot. We have 



i c 3  = P l  ~cos(q0)-Qo + &  -cos(qo - q l ) . ( q o  - & ) +  
4 c w o  - q, - 9, ). (40 - 4, - 92 

From the above kinematic relations of the 5-link biped robot, the following constraint 

function is obtained 

s2 = e ,   COS(^,)-^, + e ,  .cos(q0 -q,)+j, - q , ) +  
d ,  cos(q0 -q ,  - q , ) . ( &  - 4 ,  -8,)-v,  = 0 

(3) The bias of the knee of the support leg 

For a human knee joint, a locking mechanism is embraced which allows the knee 

to bend in one direction only and lock at certain positions. This mechanism is very 

important for the support leg since it carries the weight of the whole body. Lacking this 

mechanism, the support knee has a tendency to collapse. However, the five-link biped 

robot does not have this locking mechanism included in the mode1 to prevent the knee of 

the suppon leg fiom bending backward and to prevent the links from collapsing. In order 

to obtain a human like gait pattern, the knee of the support leg (91) has to be fixed at a 

certain angular position during the single support phase. This constraint function is given 

(3.3) 

where ais the bias angle. 

(4) The coordination of the support leg and swing leg motion 

For normal continuous walking, the biped robot is moving fonvard in the positive 

x-direction. The fiee swing leg also has to move in the same fonvard walking direction. 

In order to speciQ the walking direction, the following m u t  be set. 



where, with respect to the fixed coordinate fiame, xr is the x-coordinate of the tip of the 

swing leg and .XI is the x-coordinate of the center of mass of the upper body. This 

relation implies that the center of the upper body is always about the center with respect 

to the tips of the two legs. This relation also implies that the tip of the swing leg moves 

at twice the speed of the center of mass of the upper body in the positive x-direction. We 

have 

(5) Constant mechanical energy 

Mechanical energy is defined as the energy state of any link or the whole biped 

robot system at an instant in time. Mechanical energy comprises translational kinetic 

energy, rotational energy, and potential energy (Y=K+P). ïhis constraint function, which 

keeps the mechanical energy of the whole body constant, is formulated by seaing 

v = o  

where v is the time derivative of the mechanical energy and is defined as 

and 



Since, mechanical energy is compnsed of translational kinetic energy, rotational kinetic 

energy and potential energy, 

V1 = K1 + Pi (i=I,,.S) 

The total kinetic energy including the translational and rotational kinetic energy of each 

link is as follows: 

with 

The potential energy of each link is as the following: 

C 

with 

where g-9.8 1 m/sec2 (acceleration of gravity) 

The zero reference for the potential energy is set at the ground level of the wallcing 

surface in the fixed coordinate fiame. The detailed denvation of the kinetic energy and 

the potential energy of each Iink can be found in Section 2.4.1 and the detailed derivation 

of v can be found in Appendix IV. 

The constraint function is represented in the following fonn: 

where 



Therefore, 

By solving equations (3.1) to (3 S), a set of joint angle profiles c m  be found and can be 

used as the desired trajectories for tracking control. 

3.2.2 Approach for Solving the Constraint Functions 

The problem we deal with here is to find the correspondhg joint displacements, 

velocities and accelerations for a desired motion. Once the constraint equations are 

solved, the desired motion can be achieved by moving each joint to the determined 

values. This problem involves solving the above constraint equations. The constraint 

equations, i.e., equations (3.1) to (3 .9 ,  developed in Section 3.2.1 are a combination of 

differential and algebraic equations. Since the set of dserential and algebraic equations 

is very inconvenient to handle in analytical form, the equations are therefore solved in 

numerical form. Solving a set of equations consisting of differential and algebraic 

equations @AE) alone is a very challenging problem. There is no general method to 

solve such a set of differential and algebraic equations. In addition, the solution set of the 

angular displacements, velocities and accelerations of joints obtained from solving the 



DAE problem m u t  also satisfy another two extra conditions. Firstiy, the repeatability 

condition which requires that the configuration of the biped obtained at the end of each 

step m u t  be very close to the configuration at the beginning of each step, and secondly, 

the knee of the swing leg does not bend backward. 

By observing the five constraint functions, in equations (3.1 ), (3.2) and (3.3) only 

the relative angles of the support leg are involved. Therefore, we c m  solve the equations 

(3.1), (3.2) and (3.3) together to obtain the motion of the support leg fist. Equations 

(3.1) and (3.3) are algebraic equations and equation (3.2) is a differential equation. In 

order to solve them together we need to obtain the tirne derivatives of these three 

equations. The detailed derivation of the tirne derivatives of equations (3. l), (3.2) and 

(3.3) can be found in Appendix V. Now we have three unknowns of angular 

displacements, three unknowns of angular velocities and three unknowns of angular 

accelerations involved in equations ( 3 4 ,  (3.2) and (3.3) and their t h e  derivatives, i.e., 

nine equations. Instead of solving S=O, S = 0, and s = O ,  we adapted the following 

procedure (Hurmuzlu 1993 b) to solve the equations numerically. 

The constraint functions Si, S2 and S3, in equations (3. l), (3.2) and (3.3), c m  be written as 

s=[s,,. . .&lT 

Let that 

S=C$+C~S+CJ = O  (3.6) 

where CI, Ct and C3 are 3 x 3 matrices containing the parameters designed as below. If 

Si is a holonomic coIlStraint, the ith row of Ci is set to C, where cl=(l, 0,0, ..., O), c2=(0, 

1,0, . . ., O}, etc. Lfthe constraint is nonholonomic, the ith row of CI is set to O and the ith 

row of Cz is set to ci. The matrices C2 and C1 are diagonal and contain selected 



parameters such that the solution set of S is asymptotically stable about the ongin (i.e., S, 

+ O as t + O) (Humiuzlu 1993b). Since we used equation (3.6), the joint angle profiles 

obtained will only satisQ equation (3.6) instead of the equations (3.1) to (3.5) and their 

time denvatives hdividually. 

The matrices, Ci, C2 and C3, for equation (3.6) are chosen as follows: 

C,=diag{1,0,1} q = d i a g { a , l , a }  C3=diag{P,7c,P} 

where 

. . 
Now the second order differential equation S (3.6) can be solved. The expressions of 

the angular displacements, velocities and accelerations at t>to are obtauied in terms of S,, 

the initial values of the angular displacements, velocities, accelerations and the initial 

Now using equations (3.1), (3 .z), (3.3) and their tirne derivatives, the following 

expressions are obtained: 



where 

Substituthg the numerical solutions of Si, Sz S3 and their time derivatives hto equations 

(3.7) to (3.15), we can obtain the values of the angular displacements, velocities and 

accelerations associated with the support leg. 

In order to obtain the motion of the swing leg, we developed two approaches to do 

so. The b s t  approach is to derive the time denvative of equation (3.4) twice to obtain 

S, = O .  With the solution obtained fiom equations (3.7) to (3.15), 3, = O and Ss= O (i.e., 

equation (3.5)) are solved simdtaneously. The thne derivatives of S4 c m  be found in 

Appendix V. The second approach is to let 

c,s, + c2s, + CJ, = O 

where 

C,=i, C2=a and C3=P 

and simdtaneously solve with &=O (i.e., equation (3 S)). 



Thus the numencal solutions for the angular displacements (q3 and q4), velocities and 

accelerations associated with the swing leg c m  be obtained. The two approaches are 

used to solve this problem nurnerically. Since the joint angle profiles obtained &om the 

second approach are better than the k s t  approach in s a t i s m g  the two extra conditions, 

which are the repeatability condition and the condition that the knee of the swing leg does 

not bend backward, the second approach is chosen for obtaining the desired joint angel 

profiles. 

The methodology used for planning the joint angle profiles as the prescribed 

w a b g  motion of the five-link biped robot during the single support phase in the sagittal 

plane was presented in this chapter. Five constraint functions were formulated as the 

kinernatic relations between links that wouid be used to generate the profiles of joint 

displacements, velocities and accelerations for the bipedai waiking. The difficulty of 

solving the constiaint functions was addressed. The five constraint functions were a 

combination of differential and aigebraic equations. Solving the differential algebraic 

equations together was challenging. In addition, the solutions had to satisfi the 

repeatability condition and the condition that the knee of the swing leg cannot bend 

backward. That made the problem even harder to solve. The approach used for solving 

the differential algebraic equations was presented. The prescribed human-like wallcing 

motion generated through this method should match the motion described by the five 

constraint fuactions, and shodd satisfy the repeatability condition and the condition that 

the knee does not bend backward. 



Chapter 4 

Motion Control of the Five-Link Biped Robot Walking on a 
Flat Horizontal Surface 

4.1 Introduction 

Ln this chapter, the motion control problem is considered. Given the nonlinear 

dynamic systern of the biped and given a set of desired angle profiles for the joints, a 

control technique is applied to the system for choosing the input joint torques such that, 

fiom any initial state, the movement of each joint follows the desired joint angle profiles 

and the tracking errors tend to zero. In Section 4.2, brief background information about 

linear and nonlinear control techniques is given. Uncertainties usually exist in models of 

physical systems. A control technique that can account for uncertainties existing in the 

system is practically useful. In Section 4.3, the problem of parametric uncertainty is 

presented. Physical parameters of the five-Link biped robot, including the link masses, 

the link moments of inertia, the link lengths, and the positions of the centers of mass, are 

the sources of uncertainties considered in this study. Two nonlinear control techniques 

are employed for tracking control of the bipedal locomotion system. In Section 4.3, the 

traditional computed torque control technique is presented and in Section 4.4, the sliding 

mode control technique with a modified control law is presented. 



4.2 Background Idormation 

The control strategy in this study is based on motion tracking during the fonvard 

w a h g  motion of the five-Iink biped robot. The equations of motion (2.19) developed in 

Chapter 2 describe the dynamic motion of the biped during the single support phase. The 

terms h,(oq)P and Q,(q) include centripetal, Coriolis, and gravitational torques, which 

are highly nodinear and their effects increase drastically as the angular velocities of the 

biped increase. One approach to controller synthesis is to design a linear controller based 

on the linear approximation of the nonlinear system. Linear approximation of a bipedal 

locomotion system has been used in some studies (Gubina et al. 1974, Golliday and 

Hemami 1977, Hemami and Wyman 1979a, 1979b, Furusho and Masubuchi 1986 and 

1987). The nonlinear elements are linearized by assumllig that the system is operating 

within a very close neighborhood of some operating points and an approxirnate mode1 is 

denved with a linear relationship between the input and output of the system. A state 

feedback control law is then used to control the linearized system. According to Slotine 

and Li (1991), linear control method is not suitable for controlling nonlinear system, such 

as bipedal locomotion system. The reason behind this is that linear control law neglects 

al1 the nonlinear forces associated with the motion. The nonlinearities in the system 

cannot be compensated properly and, as a resuit, the accuracy of the trajectory tracking is 

reduced (Slotine and Li 1991). This can be demonstrated easily in robot motion control 

problems as the speed of motion increases. Nonlinear dynamic forces are involved, such 

as Coriolis and centripetai forces, and v q  as the square of speed. The linearized control 

system neglects these forces and the controller's accuracy quickiy degrades (Slotine and 

Li 1991). Besides, linear control law is based on the assumption that the system state 



remains in the close neighborhood of some operating point. As a result, biped robots cari 

only walk with a very smdl swing angle. For a larger swing angle, i.e., larger step 

length, biped robots will fa11 before they cm complete one step. Therefore, linear control 

law is not suitable for the bipedal locomotion system considered in this study. Recently, 

researchers are more interested in the development and application of nonlinear control. 

Feedback linearization technique can be used for nonlinear control design. The main idea 

is to algebraically transfomi a nonlinear system dynamics into a partially or hlly linear 

one, so that linear control techniques can be applied (Slotine and Li 1991). This is 

achieved by exact state transformations and feedback that is different fiom linear 

approximations of the dynamics. A conceptuaily simple nonlinear control called 

computed torque control, which is based on the feedback linearization technique, c m  

hiully compensate the nonlinear forces in the nonlinear system and lead to hi& accuracy 

control for a very large range of robot speeds. Computed torque control requires full- 

state feedback and perfect knowledge of the system parameters. Due to the latter 

requirement, this controller becomes practically limited since most physical systems 

contain uncertainties. Uncertainty can be classified into two major sources: pararnetric 

uncertainty and unmodeled dynamics. The only type of uncertainty that is considered in 

this thesis is parametric uncertainty. Sliding mode control is one class of the robust 

control technique that can account for uncertainties. Nonlineaities are intentionally 

introduced into the control law that tolerate the parametric uncertainty to make it robust. 

Sliding mode control has been successfully applied to robot motion control systems 

(Chang and Hurmuziu 1992, Tzafestas et al. 1996). The sliding mode control Iaw 

presented in this chapter is designed based on the sliding mode control technique. 



4.3 Parametric Uncertainty 

Modeling of noniinex systems is usually irnprecise. Two major sources, namely, 

pararnetric uncertainty and unmodeled dynamics, contribute to imprecision in the system. 

Parametric uncertainty stems fiom the uncertainty about the actual system. For example, 

the physical parameters of the system are not known exactly. Unmodeled dynamics 

cornes fiom assumptions incorporated in the system during modeling in order to simpliQ 

the presentation of the system dynamics (Slotine and Li 1991). In this thesis, only 

parametric uncertainty is considered. 

The parametric uncertainties considered are the uncertainties of the physical 

parameters of the biped. These physical parameten include the mass (m), the length (9 

and the moment of inertia ( I )  of each link, and as well as the position of the center of 

m a s  of each link (d) with respect to the end of the link. Although the uncertainties of 

those physical parameters are not known, we assume that the bounds of the values of 

those parameten are known. For example, the masses of the links are known with 

uncertainty e,x 100% (where O<e,<l). Similady, let el, el and ed be the uncertainties in 

the link moment of inertia (4, the link length (4 and the position of center of mass (6) 

with respect to the end of the link, respectively. Due to the presence of pararnetric 

uncertainties, the tems 0, (9) , S, (€40) 0 and 6,(8) in equation (2.15) are estimated as 

f i e  (0) , Se (0,0)0 and Co (9) . The bounds between the actual tems and the estimated - 

terms are defined as follows. These bounds are used to calculate the estimated terms, 

which will be used in designing the control algorithms when facing the above parametric 

uncertainties. 



and 

Incorporating these uncertainties, e,, el, el and ed,  ADe, Ah0 and A b 0  can be computed 

using equations (2.16), (2.17) and (2.18) as follows: 

60, = Uij (i, j = 1,2,. . .,5) 

where 



where 

and 

The terms, e i d ~  and em in the above equations can be defined as 



Since the equations of motion are in tems of the relative angle (qi) between links Uistead 

of the absolute angle Bi of each link, we have to transform the tems Ahe and A E ~  

into A& Ah, and A&. The transformation method we employed in Chapter 2 can be 

used here. AD4, Ah, and A& are in the following form: 

where 

where 

Ah,, =Ah, +Ah, +Ah, -Ah, -Ah, 
Ah,, = -Ah2 - A& + Ahr + Ahs 
Ah,, =-Ah, t A h , + A h h ,  
Ah,, =Ah, +Ah5 
Ah,, = -Ah, 

where 

AG,, = AG, + AGZ + AG, - AG, - AG, 
AG,, = -AG, - AG, + AG, + AG, 
AGq2 = -AG; + AG, + AGs 
AG,, = AG, + AG, 
AG,, = -AGs 



The bounds, 40,. Ilh, and A&, between the actual and the estimated terms are thus 

defmed. These bounds will be used in designing the control algotithm for motion 

tracking as physical parameters such as the link masses, link lengths, link moments of 

inertia and positions of center of mass are uncertain. 

4.4 Computed Torque Control 

Computed torque control is a traditional nonlinear control method based on the 

feedback linearization technique which cancels the nonlinearities of the system dynarnics 

and obtains a simple input-output relation. The computed torque control law for the 

tracking controi purpose has the following structure: 

T, = D, (2)~ + h, (5q)g + Eq (g) (4.4) 

The structure of this control law is similar to the structure of the equations of motion 

(2.16) developed in Chapter 2. Substituting this control law (4.4) into equations of 

motion (2.16), we c m  obtain 

O, (914 = O, cg>u (4.5) 

D,(@ is assurned to be positive definite, and therefore it is invertible. Thus we have 

4 = u  - ( 4-61 

The nonlinear terms involved in the system are elirninated. ï he  equation (4.6) represents 

a set of five decoupled second order differential equations, each of which c m  be 

controlled by a linear control law. The proportional plus denvative (PD) control is a 

suitable control law for use in controlling the decoupled second order differential 

equations (4.6). The PD control law can be represented in the following form: 



g=g, -Kg - g  

where e, =q ,  (t) -q4(t) (j=0,1, ..., 4) 

qa is the desired angle profile of each joint. & and Kp are 5x5 diagonal control gain 

matrices, (Le. &=diag[KDj] and Kp=diag[Kp,]). They are positive definite (Le. &,, > O 

and Kpi > O). Substituting equation (4.7) into equation (4.6)- the closed-Ioop equation of 

the error e(r) c m  be obtained, 

ë + K D  * e + . K p  * ~ = 0  - (4.8) 

This is a linear differentid equation that govems the error between the acniai joint angle 

profiles and the desired joint angle profiles. It shows that the error tends to zero as time 

goes to innnity (i.e. »a). The block diagram of the closed-loop control system is 

s h o w  in Figure 4.1. 

The controi gain matrices & and Kp are the parameters that can be adjusted to aff'ect the 

system response. If h is the natural Frequency of the closed-loop system, the control gain 

matrices can be set as 

K =diag[ZA],K, =diag[k2] -0 (4.9) 

The control gain matrices are chosen to obtain a critically damped closed-loop 

performance. The naturd fiequency fc shodd be chosen as sufficientiy large in order to 

- rc=h(q,4)4 +ad * 

* 

Figure 4.1 Block Diagram of the Closed-Loop Control System 
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get a fast system response, but, at the same tirne, it should not be too large in order to 

avoid excitation of the possibly unmodeied high fiequency characteristics in the system. 

As shown in equation (4.6), the nonlinear terms of the system dynamics are 

completeiy elirninated. This is tme only if the physical parameten of the actual system 

are known exactly. In most of the physical systems, however, degrees of parametric 

uncertainty usually exist. When the parameter uncertainties exist in the biped system, the 

tems, e,(q) h+(q,q) q and bq(q) , are not available exactly but can be estimated from 

equation (1.1) to (4.3). Instead of equation (4.4), one can only use the following control 

law: 

and instead of equation (4.6), the following equation is obtained 

It is obvious that equation (4.1 1) is not a linear equation. The nonlinearities are not 

cancelled exactly between the modeled system dynamics and the actual systern dynamics. 

The control system is actually coupled and nonlinear. Trying to control the system with a 

linear control law will result in poor performance. The fact that no robustness is 

guaranteed in the presence of parameter uncertainty or unmodeled dynamics and is a 

major disadvantage of computed torque control. 

4.5 Sliding Mode Control 

Sliding mode1 control is one class of robust nodinear control that is designed 

based on consideration of both the modeled dynamic system and the presence of 

uncertainties in the model. The typical structure of a sliding mode control consists of a 



nominal part similar to a computed torque control law and an additional part aimed at 

dealing with uncertainties in the model. The tracking control problem is to get the system 

angle profiles of the joint (q, 9 )  to track the desired joint angle profiles (a ,qd ) . This is 

equivaient to keeping the system trajectories remaining on the sliding surface. In order to 

do so, we have to define a time-varying surface r(r). Subsequently, a control law is 

developed to direct the system trajectories toward the sliding surface. Firstly. the vector 

of the tracking error e  is defined as 

A tirne-varying surface r(r) for the second order system (2.19) (Le., n=2) is defined as 

1 

If an integrai term is used, a term [ e l '  becornes the variable of interest instead of e. 
O 

The system is now considered to be third-order (Le., n=3) (Slotine and Li 1991) and the 

time-varying surface r(t) bec ornes 

and 

where is a diagonal matrix of positive gains given by l=diag[ki, k2, ... A.]. 



As the time-varying surface r(t)=O, it becomes the sliding surface. For the traditional 

sliding mode control, the control algorithm is developed as the following to direct the 

system trajectories toward the sliding surface and to account for the presence of modeling 

imprecision. 

This algorithrn is discontinuous across the sliding surface due to the signum function in 

equation (4.14). This control algorithm has been proven to attract those system 

trajectories that start off the sliding surface to move towards the surface and those that 

start on the surface to remain on it (Slotine and Sastry 1983). However. there is a 

shortcoming to this method. Due to the unavoidable small time delay in switching 

behveen control laws at the discontinuity surface, trajectories chatter around the sliding 

surface instead of sliding on it. Since chatteMg invoives high control activity and may 

excite the hi&-frequency unmodelled dynamics in the system, it is undesirable in 

practice and has to be removed. instead of the discontinuous control algorithrn (4.14), we 

have developed a continuous control algonthm which c m  eliminate this chattering. 

The control algorithm has the form 

where 

The equation of motion (2.19) is in the following form 

and the time derivative of the sliding surface r(t) (4.1 3) can be rearranged as follows: 



The best approximation 2, of the control Iaw that will achieve k = O in equation (4.16) is 

fY = hq ( 9 ) ~ ~  - 2~ - A% + 6, (q, - - q) + Gq (9) (4.17) 

Instead of keeping trajectones on the surface r(t)=O, the control algorithm maintains the 

trajectories close to the surface within a thin boundary layer. Once the system 

trajectories move into the boundary layer, they will remain inside the boundary layer. 

The parameter a in equation (4.15) is the inverse of the boundary layer thickness with 

~=l/(ah"'). Now we are not tracking for a "perfect" performance but tracking to within a 

guaranteed precision, le(')112kt~ (Slotine and Li 199 1 ). 

4.5.1 Stability Analysis of the Sliding Model Control Algorithm 

Before we study the stability of the control system. the following assumptions and 

prelirninaries must be made: 

1 .  The inertia matrix w0, i.e., l& is positive definite. 

2. The matrix @, - 2S,) is skew-symmetric (SIotine and Li 1991). Hence, 

x r ( f i ,  -2h, )x=O 

3. Properties of the Euclidean nom 

and 



4. For any x t 0, and any positive a 

and 

where ta&(.) is a function defined as 

tanh(.) is a smooth sigrnoidal function that switches about zero to force the state to 

converge to zero. 

5.  The equation of motion (2.19) deveioped in Chapter 2 has the form of 

We defme a value v which is related to r 

Therefore, equation (2.19) can be rewritten as 

where A is given as 

The attractiveness of the boundary cm be proven using Lyapunov's direct 

method. Consider the Lyapunov function candidate given by 

where Vis positive d e f ~ t e  and V+ a, as Ilrll* a. 



Using the above assumptions and preliminaries, the denvative of V dong the trajectory of 

the solutions of (4.20), is given by 

* 

where pl = ' A f d z q 1 7  o s p l  51 
T l  f 

It is clear that in order to guarantee v c 0, the following condition must be satisfied. 

Thus, v c O for al1 

By hcreasing the value of ai it is possible to find the bo und of B,. Therefore, r is also 

bounded. Similarly to the discussion in Slotine and Li (1 99 l), the parameter Pt indicates 

the thickness of the boundary Iayer within which the control discontinuity is smoothed 

out. From the above analysis, the control algorithm guarantees the attractiveness of the 

boundary layer and discontinuity is eliminated. The initial conditions can be arbitrarily 

chosen so that the system trajectories are started inside the boundary and will stay inside 

the boundary due to its attractiveness. Therefore, no reaching phase problem will occur. 



4.6 Summary 

In this chapter, two nonlinear control techniques were presented. The traditional 

computed torque control technique is a concepiually simple nonlinear control technique. 

Computed torque is developed based on a feedback linearization technique that can fuliy 

compensate the nonlinear forces in the dynarnic system and lead to high accuracy control 

for a very large range of robot speeds. The major disadvantage of this technique is that 

no robustness can be guaranteed in the presence of parametric uncertainty in the system. 

The traditionai sliding mode control technique, on the other hand. is developed based on 

the consideration of pararnetric uncertainty. Nonlinearities are intentionally introduced 

hto the control law that tolerates the parametric uncertainty, making the system robust. 

However, the system is known to chatter. A sliding mode control algorithm with the 

discontinuous term repiaced by a continuous t e m  was presented in this chapter, which 

guatanteed the tracking error to be within a certain precision and eliminated the 

chattering problem and the reaching phase problem. 



Chapter 5 

Simulation Results 

S. 1 Introduction 

In this chapter, the results of a simulation study are presented for the planar five- 

link biped walking on a Bat horizontal surface. The simulation study contains two parts. 

The first part is determination of the desired joint angle profiles based on the systematic 

approach discussed in Chapter 3. 'ïhese joint angle profiles wiii be used as the desired 

joint angle profiles for motion regulation. Some insights into energy input during 

wallcing are also investigated. The second part is motion control using the computed 

toque control technique and the sliding mode convoi technique. 

In Section 5.2, the resuits of the desired angle profile of each joint during walking 

on a flat horizontal surface in the single support phase are presented. The desired joint 

angle profiles are determined by the £ive constraint functions developed in Chapter 3. 

namely, (1) the erect body posture, (2) the overall progression speed, (3) the bias of the 

knee of the support leg, (4) the coordination of the support leg and swing leg motion, and 

( 5 )  constant mechanical energy. Furthemore, a set of acceptable joint angel profiles 

must satis@ the repeatability condition and the condition that the knee of the swing ieg 



does not bend backward. Four different progression speeds with the same bias angies are 

selected to be studied and the resdts are presented. 

in Section 5.3, the simulation study of motion control is presented. The goal of 

motion control is to realize a steady stable gait of the biped wall<ing on a flat horizontal 

surface. A cornparison of the tracking performance of the cornputed torque control and 

the sliding mode control is investigated. This section also demonstrates the capability of 

the two control techniques to control the bipedai locomotion system with the presence of 

pararnetnc uncertainties. The theoretical expectation is that the sliding mode control 

technique is superior to the computed torque control technique, when parametric 

uncertainties exist in the system. The reason for this expectation is that sliding mode 

control is designed based on the consideration of both the modeled dynamic system and 

the presence of uncertainties in the model. Nodinearities are intentionally introduced 

into the control Iaw that tolerate parametnc uncertainty to rnake the system robust. This 

theoretical expectation will be investigated through the study of the simulation results 

presented in Section 5.3. 

5.2 The Results of the Joint Angle Profiles Planning 

By using the methodology for joint angle profiles planning discossed in Chapter 

3> the desired joint angle profiles for the motion of the five-link biped walking on a flat 

horizontal d a c e  can be obtained fiom the five constraint fiuictions. Intensive 

numencal simulations were carried out to generate different sets of joint angle profiles 

with different progression speeds (Y,). M e n  generating the joint angle profiles, the 

repeatability condition, which requires that the posture of the biped robot at the end of the 



step be very close to the initial posture, has to be considered. As mentioned in Chapter 3, 

the constraint functions Si, Sz and S3 (Le., equations (3.1) io (3.3)) are decoupled Born the 

other two constraint functions. Therefore, the joint angle profiles for the supponing leg 

and the upper body can be determined k t .  Subsequentiy, the joint angle profiles of the 

swing leg can be detemined fiom the rernaining constraints, S4 and Ss (i.e., equations 

(3.4) and (3.5)). During the intensive numerical simulations, it was ofien found that 

either the knee of the swing leg would bend backward or the end states would not be 

close enough to the initial states to ensure the start of the next sstep. Waking with the 

knee bent backward is not desirable and such joint angle profiles are not acceptable. As 

well, the condition of repeatability must be satisfied in order to initiate the nest step. 

Therefore, the acceptable joint angle profiles must be those that (1) satisfy th2 constraint 

functions presented in Section 3.2.1, (2) are repeatable and (3) do not cause the knee of 

the swing leg to be bent backward. Such requirements make the detemination of the 

acceptable joint angle profiles highly challenging. In the simulation study, four different 

progression speeds with the same bias angles were used. For each walking speed, a set of 

joint angular displacements and velocities were obtained. Also, from the simulation 

results of the four different progression speeds, the hypothesis of giving o d y  potential 

energy at the beginning of the step so that the swing leg can be canied over without extra 

energy input is investigated. 

5.2.1 Simulation Study of the Joint Angle Profiles Design 

The values of the parameters mi, I , , Z ,  and 4 of the five-link biped robot are listed 

in Table 5.1 and are used for generating joint angle profiles and, later, motion regdation. 



Link 

t,4 

2,s 

Table 5.1 Parameters of the biped robot 

(kg) 

The four cases with their progression speeds are as follows: 

1). Vp = 0.5596 mkec (slow waiking speed) 

2). Vp = 1 .113 O6 rn/sec (moderate wallcing speed 1 ) 

3). Y' = 1.1 1354 m/sec (moderate walking speed 2) 

4). V, = 1.4502 &sec (fast wakng speed) 

The bias angle of the knee of the support leg is set as 0.1 radian for dl cases and the 

initiai posture of the biped with the following angular displacements is used for ail cases. 

qo = -0.1642 radian ql = 0.1 radian qz = -0.2642 radian 

93 = -0.1642 radian q4=0. 1 radian 

The initiai angular velocities at each joint are zero, 

Shank 

Thigh 

3 

This set of initial conditions indicates that al1 energy in the five-link bipedal system is in 

the form of potential energy. The kinetic energy is zero at the beginning of the sep. 

Moment of 
inertia, I, (kg- 
m' ) 

14.79 Upper 
Body 

Following the procedure outlined in Chapter 3, the parameters a, P and y, contained in 

the matrices, Ci, Cz and C3 (defuied in equation (3.6)), for ail shulations of four different 

waiking speeds are chosen such that the solution set of 5; (defmed in equation (3.6)) is 

asymptoticaily stable about the origin. The values of a, P and y, are shown below: 

a = 13.0 p = 52.02 h = -5.99 

2.33 

5.28 

If 
(ml 

3.30% 10'' 

Location of center 
of m w ,  d, 
(ml 

3 .;OX 101' 

3 . 3 0 ~  10" 

0.486 

0.332 

0.302 

0.282 

O. 189 

0.236 



Vp=0.5596 misec 
a=0.1 rad 
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Figure 5.1 Angular displacements of Joints for Case 1. 
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Figure 5.2 Angdar Velocities of Joints for Case 1. 
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Figure 5.3 Angular Displacements of Joints for Case 2. 
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Figure 5.4 Angular Velocities of Joints for Case 2. 
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Figure 5.5 Angular Displacements of Joints for Case 3. 

Figure 5.6 Angular Velocities of Joints for Case 3. 
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Figure 5.7 Angular Displacements of Joints for Case 4. 
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The discussions of the simulation results of the joint angle profiles design are 

presented here in two parts. The first discussion concems the angular displacement 

profiles and the angular velocity profiles of al1 five joints, while the second discussion 

concems the energy profiles corresponding to the four different speeds. Figures 5.1 to 

5.8 show the profiles of the angular displacements and velocities of al1 five joints versus 

tirne for one step obtained for the four cases. It should be mentioned in here that the 

numerical solution obtained from solving the constraint functions is very sensitive to the 

choice of the initial conditions and parametee. The joint angle profiles presented here 

are the best and acceptable results in that they generated the walking motion that is 

prescribed by the al1 five constraint functions shown in equations (3.1) to ( 3 . 9 ,  and they 

also satisfied the repeatability condition and the condition that the knee of the swing leg 

does not bend backward. The angular displacements and velocities of qo, qi and qz show 

the motion of the support leg and those of q3 and q 4  show the motion of the swing leg for 

one step. From Figures 5.1 to 5.8, it can be seen that the joint angle profiles are different 

with different progression speeds but the patterns are similar. 

The simulation results for the fast walking speed is used here as an example for 

m e r  discussion of the desired joint angle profiles. Note that similar observations can 

be made for those with other walking speeds. Figure 5.9 shows the stick figure of the 

five-link biped with the waiking motion obtained fiom the fast walking case, where 

Vp=1.4502 m k c .  From this figure, one can observe the overall motion of the biped 

during the single support phase. The solid Iine represents the support leg and the upper 

body and the dash line represents the swing leg. 
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Figure 5.9 Stick Figure of the Walking Motion of the Five-Link Biped 

The support leg, with its tip as the support, propels the upper body forward in the waiking 

direction. The upper body is maintained at the upright position and moves ionvard with 

the speed gradually increasing f?om zero at the start of the step to the desired progression 

speed. The knee joint (4,) of the support Ieg is kept constant, which is equal to the bias 

angle (o), throughout the single support phase. This guarantees that the knee will not 

collapse or bend backward. The swing leg leaves the walking surface at the beginning of 

the step and swings forward. At the end of the step the swing leg cornes back on the 

wdking surface. It can be seen fiom the stick figure that the knee of the swing leg does 

not bend backward. The stick figure dso shows that the position of the upper body is 

always between the tips of the two legs. 



From the above discussion, it shows that the walking motion resulting from the 

fast walking case (V'=1.4502 rnhec) corresponds to the motion descnbed by the 

constraint hctions and approxhates to natural walking. As can be seen in Figure 5.9, 

the ending posture of the biped is close to the starting posture. The configuration of 

joints of the ending posture (i.e. the starting posture for the next step) are as follows: 

q 0  = -0.1 14 radian 

ql = 0.172 radian 

qz = -0.286 radian 

q3 = -O. 14 1 radian 

q4 = 0.100 radian 

A close initial and end configuration indicates that this set of joint angle profiles aiso 

satisfies the repeatability condition. Therefore, we selected this set of joint angle profiles 

obtained with the fast walking speed (Vp=1.4502 d s e c )  to be used later as the desired 

joint angle profiles for the motion control. 

We next discuss the observations fiom the mechanical energy profiles for the 

wallung being snidied. The question we would like to address is: given only potential 

energy at the initiation of the step, is it possible for the swing leg to be carried through 

the step without extra energy input? This question can be answered by investigating the 

mechanicd energy profiles fiom the numerical simulation results. Figures 5.10 to 5.13 

show the mechanical energy profiles of the biped robot during the single support phase of 

the four cases. These four figures show that, with the other four constraints (i.e., 

equations (3.1) to (3.4)) satisfied, it is not possible to keep the energy constant during the 

whole step. Therefore, extra energy must be inputted to the bipedal system regardless of 



the w a k n g  speed. Figures 5.10 to 5.13 show that regardless of the walking speed, 

energy input is required at the beginning of the step. Such an energy input causes a 

sudden increase in angular velocities at the joints of the swing leg (see Figures 5.2, 5.4, 

5.6 and 5.8 for details). That means that a sudden input of energy is needed for the 

swing leg at the beginning of the step to initialize the step regardless of the walking 

speed. Such an initial energy input may be provided by the actuators or by the naturai 

strain energy release of the deformable feet of the bipedal model. Depending on the 

walking speed, there might be a need for a second energy input. Such energy input 

occurs approximately when the support leg, swing leg and the upper body are around the 

upright position. Figures 5.2. 5.4, 5.6 and 5.8 show that the levels of angular velocities 

increase are lower for the slow walking case than for the fmt walking case. Figures 5.10 

to 5.13 aiso show that the second energy input is necessary for the fast waiking case. 

This extra energy input is needed to move the swing leg ahead of the gravity center of the 

upper body at the mid point of the tip of the two legs (Le., satisfjmg constraint fùnction 

&). For slow walking, such an energy input may not be necessary. Energy input is 

proportional to the w a k n g  speed, i.e., higher walking speed demands higher total energy 

input. 

It is interesting to note that for the slow and moderate walking speeds, it is 

possible to design a set of joint angle profiles such that, with a proper initial energy input, 

the swing leg cm be carried through the step without extra energy input. This h d i n g  is 

important fiom the viewpoint of development of bipedal robots. The biped that follows 

such a set of joint angle profiles is more energy efficient since the initial energy c m  be 

provided by the strain energy release of the deformable foot. 
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5.3 Simulation Results of the Motion ControI 

In this section, the results of the simulation study of the motion control are 

presented for the case where the five-link biped is walking on a flat horizontal surface. 

Computed torque c o n ~ o l  and sliding mode control techniques were applied for motion 

control. The tracking performances of these two techniques were compared for various 

degrees of parametric uncertainty existing in the system. The computed torque control 

technique requires an exact knowledge of the system parameters. When this is not the 

case, it is believed that the computed torque control is expected to be not as robust as the 

sliding mode control. This expectation was investigated by the results shown in this 

section. 

n ie  five-link biped robot studied here is shown in Figure 2.1. The values of the 

parameter m,, 1,, 1, and di are listed in Table 5.1. A set of joint angle profiles obtained 

from Section 5.1 with walking speed of 1.4502 rn/sec was used as the desired joint angle 

profiles. The objective of this simulation study was to investigate the performance of the 

sliding mode control and the performance of the computed torque control as the degree of 

the parametric uncertainties (e,, el, el and ed) (see detailed definition of e,, el, el and ed in 

Section 4.3) increase. Three cases were studied here: 

Case 1. No uncertainty (e, = el = el = ed = 0%) 

Case 2.40% uncertainty (e, = er = 0.4 (40%) and el = ed=0.1 (10%)) 

Case 3.200% uncertainty (e, = el = 2 (200%) and el = ed = 0.1 (10%)) 

For Case 1 (No uncertainty), the physical parameters of the biped, such as link masses, 

moments of inertia, lengths and positions of the centen of masl  are exactly known. For 

Case 2 and Case 3, dominating parametric uncertainties are present in the mass and 



moment of inertia parameters and srnalier uncertainties are present in the geomehic 

parameten. The parametric uncertainties of each link are assumed to be the same. Ail 

the simulation results were carried out with time step Ts=0.002sec and are s h o w  in 

graphical form. 

in Case 1 (No uncertainty), computed torque control and sliding mode control 

techniques were applied. For the computed torque control law, the control gain matrices 

KJ and Kp (shown in equation (4.7)) needed to be adjusted to obtain good tracking 

performance. Since we set G=diag[Zh] and &diag[h2] (shown in equation (4.9)), there 

\vas oniy one parameter (A) to adjust, where A was chosen to be 80 in this case for the 

best tracking performance. For the sliding mode control law, the parameters ?, and a 

(shown in equations (4.15) and (4.17)) needed to be adjusted. The best tracking results 

were obtained with the choice of h = 18 and a = 0.2. Figures 5.14 to 5.18 show the 

angular displacement of each joint (i.e., qo, qi, 42, q3 and q4). The solid line represents 

the result obtained with the sliding mode control law applied. The dashed line represents 

the result obtained with the computed torque control law applied. The doaed line 

represents the desired joint angle profile. Figures 5.14a to 5.18a show the angular 

displacements of the first three steps and Figures 5.14b to 5.18b show the angular 

displacements fÎom the seventh to tenth step. The t h e  period of one step was 

approximately 0.32 sec. The discontinuity appearing at the end of each step is due to the 

renurnbering of Iuiks to incorporate the switching of the roles of support and swing leg. 

It should be noted here that the ending posture and the starting posture of the biped fiom 

the set of desired joint angle profiles were not exactly the same. Even though the control 

law performs a perfect tracking, there will be a large error occurring at the beginning of 



each step. A similar problem h a  been found in other related work (Tzafestas et al. 

1996). Therefore, sirnilarly to other such study, al1 discussions presented here only 

consider the penod of tirne during the step (Le., away fiom the beginning of each step). 

One can observe that the simulated joint angle profiles of the computed torque control 

and the sliding mode control followed the desired joint angle profiles quite closely at the 

beginning. However, after a few steps, the simulated joint angle profiles of the computed 

torque control were deviated from the desired joint angle profiles. The tracking 

performance was evaluated in tems of the total of the absolute values of the error e(r), 

where e(t) is the difference between the simulated angular displacement and the desired 

angular displacement of each joint. The equation of the tracking error can be represented 

by (Tzafestas et al. 1996) 

k(t)l=leo(t)l+lei (t)l+lez(t)lfle3(t)l+leJ(r)l (5.1) 

Figure 5.19 shows the tracking erron of the results obtained through the sliding mode 

control and the computed torque control. The overall tracking error of the sliding mode 

control, which is shown by a solid line in Figure 5.19, was lower than that of the 

cornputed torque control, which is shown by a dashed line. The tracking erron near the 

switching of support and swing leg were neglected due to the reason discussed earlier. 

The average tracking error of the cornputed torque contïol was about 0.0331 radians, 

while the average tracking enor of the sliding mode control was only about 0.018 

radians. The tracking error obtained from the computed torque control was almost twice 

that obtained fiom the sliding mode control. Figures 5.20a to 5.24a show the control 

torque of each joint. Again, in these figures the solid line represents the results of the 

sliding mode control and the dashed line represents the results of the computed torque 



control. Figures 5.20b to 5.24b show the control torques within one step. The control 

torques of both the sliding mode control and the cornputed torque conml were 

comparable and within a reasonable range. This means that the control torques applied to 

the joints of the biped were sirnilar for the sliding mode control and the computed torque 

control. Thus, with the comparable of control torques, the sliding mode control showed 

better tracking performance than the computed torque control in this case. 
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Figure 5.16b Angular Displacement (q2) of Step 7 to 10 for Case 1 

- Sliding Mode Control 
- - - Computed Torque Control 
- Oesired Joint Profile 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time (sec) 

-. - 
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Figure 5.24b Control Torque at q~ of Case 1 within One Step 



In Case 2, as the parametric uncertainties Uicreased to e, = er = 0.4 and el = ed 

=0.1, simulation resuits were obtained through both the sliding mode control and the 

computed torque control. For the computed torque control, the best tracking performance 

results were obtained with the choice of )c = 80. For the sliding mode control, the best 

tracking performance results were obtained with the choice of 1 = 15 and a = 0.2. 

Figures 5.25a to 5.29a show the angular displacement of each joint of the first three steps 

and Figures 5.25b to 5.29b show the angular displacements from the seventh to tenth 

step. The simulation results showed that the simulated joint angle profiles of both the 

sliding mode control and the computed torque control followed the desired joint angle 

profiles closely. The simulated joint angle profiles obtained through the computed torque 

control differed slightly from the desired one, especially the profiles of q3 and q4. The 

tracking errors for both the sliding mode control and computed torque control are s h o w  

in Figure 5.30. Even though both increased, the average tracking error of the computed 

torque control (about 0.0386 radians) was still higher than that of the sliding mode 

control (about 0.0195 radians). Figures 5.3 la to 5.35a show the control torque of each 

joint and Figures 5.3 1b to 5.35b show the control torques within one step. In this case, 

the control torques from the sliding mode control and computed torque control were 

comparable. Nevertheless, the sliding mode control again showed better tracking 

performance than the computed torque control as the control torques applied to the joints 

through such two control techniques were similar. 
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Figure 5.35b Control Torque at 94 of Case 2 within One Step 

For the 1st case (200% uncertahty), the parameâric uncertainties were i~creased 

significantiy (e, = el = 2 and el = zd = 0.1). Since the parameters of mass and moment of 

inertia were the primary sources of uncertainty, we kept the uncertainty in the 

georneûical parameters (e, and ed) the same as in Case 2 (40% uncertainty) and increased 

the uncertainty in e, and el significantiy. A similar arrangement c m  been found in 

Tzafestas et ai. (1996). For the computed torque control, the best results were obtained 

with h = 80. For the sliding mode control, the best results were obtained with h = 15 and 

a = 0.2. The sirnulated joint angle profiles obtained through the sliding mode connol and 

the computed torque control and the desired joint angle profiles are shown in Figures 

536a to 5.40a for the first three steps and in Figures 5.36b to 5.40b for the seventh to 

tenth step. The tracking erros obtained for the two control laws are s h o w  in Figure 



5.41. The control torques are shown in Figures 5.42a to 5.46a and the control torques 

within one step are s h o w  in Figures S.42b to 5.46b. The control torques of the sliding 

mode control and the cornputed torque control were comparable. One can observe that 

by applying the similar control torques to the system, the simulated joint angle profiles 

obtained through the computed torque control had higher tracking error than the sliding 

mode control throughout the step. The average tracking error of the computed torque 

control was about 0.049 radians, while the average tracking enor of the sliding mode 

control was only about 0.037 radians. In this case, the sliding mode control again showed 

better performance than the control torque control. 
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From the results of the three cases presented above, the sliding mode control 

technique showed much better tracking performance than the computed torque control, 

especially when large parametric uncertainties existed in the system. Based on observing 

the plots resuited From the three cases, the computed torque control was not as robust as 

the sliding mode control. This verified the theoretically expected supenority of the 

sliding mode control over the computed torque control in the presence of parametric 

uncertainties. 

5.4 Summary 

In this chapter, two major results were presented. In Section 5.2, the results of the 

joint angle profiles planning were presented. Through the methodology presented in 

Chapter 3, the desired joint angle profiles for the motion of the biped waiking on a Bat 

horizontal surface were obtained from the five constraint functions. The acceptable joint 

angle profiles must be those that ( 1 )  satiso the constraint functions presented in Section 

3.2.1, (2) are repeatable, and (3) do not cause the knee of the swing leg to be bent 

backward. Such requirements made the detemining of the acceptable joint angel profiles 

highly challenging. The simulation results of the four cases with different progression 

speeds were midied. The hypothesis of constant energy was investigated. The results of 

the simulation study on the energy profiles showed that (1) extra energy must be inputted 

to the bipedal system being snidied at the beginning of the step regardless of the walking 

speed, (2) depending on the w W g  speed, there may be a need for a second energy 

input, and (3) energy input is proportional to the walking speed. For the system beinp 

snidied, the second energy input was required for fast walking, while for slow and 



moderate w a h g ,  with the proper initiai energy input. no extra energy was required to 

carry the swing leg through the step. 

in Section 5.3, the simulation study of tracking control was presented. nie  

tracking performances of the sliding mode control and computed torque control were 

investigated as various degrees of pararnetric uncertainty in the system were considered. 

From the results presented in Section 5.3, the tracking performed through the sliding 

mode control technique was much better than that through computed torque control. The 

superiority of the sliding mode control technique over the computed torque control 

technique was strengthened when large parametric uncertainties were present in the 

system. This verified the theoretical expectation that sliding mode control is more 

preferable than computed torque control in the presence of parametric uncertainty. 

During the intensive numerical simulation, we found that, when compared with the 

conventional siiding surfaces used by rnost sliding mode control systems, the trachg 

performance of the sliding mode control was irnproved by designing the sliding surface 

with the integral term (see details in Section 4.4). The simulation results showed that 

replacing the discontinuous term with the continuous tem in the sliding mode control 

algorithm smoothed out the chattering around the sliding surface and, at the same time, 

good tracking performance was obtained. The simulation results also showed that no 

reaching phase problem occurred with the use of this sliding mode control algorithm. 



Chapter 6 

Conclusions 

6.1 Conclusions 

In this thesis, dynamic modeling and control of a planar bipedd waiking system 

were midied. The locomotion goal for the bipedal system to realize in this thesis was 

waking on a flat honzonral surface in the sagittai plane. The dynamic modeling of 

bipedal locomotion consists of the following three parts: (1) development of 

mathematical model which approximates the motion of the locomotion system, (2) design 

of the joint angle profiles for the desired waiking motion that are used for tracking 

control, and (3) application of the control algorithms for regulating the motion. 

Contributions have been made to each part and are detailed below. 

(1) Development of mathematical model: 

A bipedd rnodel of locomotion system is a cornplex linkage system due to the 

dynamic complexity with many degrees of freedom. A planar five-link kinematic mode1 

was used in this study as the biped robot. This bipedd model, consisted of five ngid 

links that were comected to one another by four purely rotational joints, had five degrees 

of freedom. nie mathematical model developed in this study described a complete 

waiking motion which included the single support phase, the effect of the impact between 



the swing leg and the walking surface at the completion of each step, and the effect of the 

support end exchange. The impact effect was incorporated into the model by formulating 

an impact equation to compute the new joint velocities just after each collision between 

the fiee end of the swing leg and the walking surface. At the same instant as the impact 

occurs, the end of the support leg leaves the walking surface and the support end transfers 

to the tip of the swing leg that cornes into contact with the walking surface. The effect of 

this instantaneous exchange of support from one end to another end was incorporated 

through re-labeling the numbering of links. A transformation matrix was formed to 

descnbe the effect on the angular displacements and angular velocities due to this re- 

labeling. 

The advantage of the dynamic model developed in this thesis over other models is 

that it has enough degrees of freedom to approximate the waiking motion in the sagittal 

plane and, at the same t h e ,  has sufficiently few degrees of fieedom to keep the equations 

of motion to a manageable level. Renurnbering of links reduced the derivation process of 

equations of motion by half, since the sarne set of equations of motion for the single 

support phase c m  be used for both the left and right leg supports. Furthemore, the 

impact between the swing leg and the walking surface at the contact instant is also 

included in the proposed model. The impact has been considered important for bipedal 

w&g, yet it has been neglected in most of the bipedal models. 

(2) Joint angle profiles planning 

A systematic approach to determinhg joint angle profiles, developed by 

Hurmuziu (1993a), was adapted in this study. Five new constn.int fûnctions were 

defined from the physically coherent parameters of bipedal walking, which were upright 



posture of the upper body, the overall walking speed, the support knee bias, static 

stability, and keeping the mechanical energy of the whole system as a constant. n i e  Iast 

constraint was used to test the hypothesis that, given ody  potential energy at the 

beginning of the sep,  the swing ieg can be carried over by gravity. The five constraint 

functions led to a set of combined differential and algebraic equations, which had to be 

solved to obtain the joint angle profiles of the biped. In addition, two extra conditions 

mut  be satisfied for the acceptable joint angle profiles. One is the repeatability 

condition, which require that the configuration of the biped obtained at the end of each 

step be very close to the configuration at the beginning of each step. Another condition is 

that the knee of the swing leg could not bend backward. The above constraint equations 

and the MO extra conditions made determining joint angle profiles h i a y  challenging. 

M e r  carrying out intensive numerical simulations, four set of acceptable joint angle 

profiles with four different progression speeds were obtained. 

Through the numerical simulations, the question of giving only potential energy at 

the initiation of the step whether it is possible for the swing leg to be carried through the 

step without extra energy input was explored. It was found that, with the other four 

constraint functions satisfied, it was impossible to keep the energy constant during the 

whole sep. Regardless of the wallcing speed, a certain amount of energy mut be input to 

the biped at the beginning of the step. Depending on the walking speed, a second energy 

input might be needed. The simulation results showed that for fast walking, the second 

energy input was required at the instant when the swing leg, supporthg leg and the upper 

body were close to the vertical. This energy is required to move the swing leg ahead of 

the upper body so that the gravity center of the upper body is located at the mid point 



between the tips of the swing leg and the supporting leg (Constraint 4). For walking with 

slow or moderate speed, the second energy input was not necessary. niese findings are 

important for the development of bipedai robots and prosthesis design. They indicate diat 

a set of joint angle profiles can be designed where, with a proper initial energy input, no 

extra energy is required to carry the swing leg through the step. The biped that follows 

such a set of joint angle profiles is more energy efficient since the initiai energy can be 

provided by the strain energy release of defomable foot. 

(3) Motion control 

Sliding mode control has been designed in this study to regulate the motion of the 

five-link biped robot. An integral term was used in designing the sliding surface. The 

advantage of using the integral terni in the sliding surface is that the system trajectones 

converge to the sliding surface faster. Simulation results showed that the tracking 

performance of the proposed sliding mode control was significantly improved as 

compared to conventional sliding mode1 control without using the integral term in the 

siiding surface. 

The response for the classical sliding mode controi system is known to chatter 

around the sliding surface. In order to overcome the chattering problem, our control 

algorithm was furiher improved by replacing the discontinuous term with a continuous 

one. The chaning problem was eliminated, however this replacement did not corne 

without a price. Instead of keeping trajectories on the sliding surface, the control 

algorithm maintained the trajectories close to the surface within a thin boundary Iayer. 

Through the Lyapunov stability anaiysis, it was proven that the control aigorithm can 



guarantee the attractiveness of the boundary layer and the control algorithm c m  m a i n a  

the trajectories close to the surface within a thin boundary layer. 

In this thesis, the tracking performances of the sliding mode control and the 

computed torque control were compared as various degrees of pararnetric uncertainty 

existed in the system. It was found that the sliding mode control technique was more 

effective than the computed torque control technique when pararnetric uncertainties 

existed in the bipedal system. The supenonty of the sliding mode control over the 

computed torque control was strengthened when large parametnc uncertainties were 

present. This fmding agrees with previous work of Tzafestas et al. (1 996). 

In summary, contributions have been made in the following three areas. (1) A 

dynamic mode1 of a bipedal robot was developed. Such a model has several advantages. 

It has sufficient degrees of fieedom to approximate the bipedai walking, and it is still 

simple enough to keep the equations of motion to a manageable level. Impact is also 

included in the proposed model, which has been neglected by most of the existing 

models. (2) Joint angle profiles are designed based on a set of new constraint functions 

proposed in this thesis. One advantage of the proposed constraint functions is to consider 

energy as one of the factors. This is an important step towards designing joint angle 

profiles that minimize the energy during walking. Such an optimization is highly 

desirable for the development of bipedal robots. (3) A modified sliding mode control law 

was designed in this work. ïhe performance of the proposed sliding mode control and 

classical computed torque control were compared. It was found that the proposed sliding 

mode control was superior to the computed torque control especiaily when there were 

parametric uncertainties present in the systern. 



6.2 Future Works 

The results obtained in this thesis are only a first step in the development of 

dynamic models of bipedai locomotion systems. In the future, work c m  be extended in 

different directions. ï h e  planar five-link biped system c m  be extended to a three- 

dimensional system to include motion in the frontal plane. By including the analysis of 

the motion and balance in the frontal plane, not only normal gait. but also pathological 

gait can be studied. The five-link bipedal mode1 can also be extended to a mode1 with 

seven or more links to include the dynamics of feet. Double support phase can also be 

included in the analysis. Since minimization of energy is a basic characteristic of human 

natural walking (Winter et al. 1 W6), the methodology of joint angle profiles planning c m  

be extended to design the prescribed motion with optimization of energy. Discrete 

mapping technique can be employed to facilitate the joint angle profiles design process. 

In the area of motion control, the performance of different nonlinear control techniques 

can be explored, such as adaptive control and neural network control. 
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Appendix 1 

Derivation of the Five-Link Biped Dynamic Mode1 with Single Leg Support 

The equations of motion for the single support phase are derived by applying the 

Lagrangian formulation. The Lagrangian formulation is given as 

and the Lagranian equation of motion is in the form: 

which can be remanged as 

Each term in this equation is denved as follows: . = [ I l  +m1dlf  + m , t , 2 + m 3 e 1 2  +rn,!,'+rn&]9, 
df de, -i-1 









Appendix II 

Transformation of the Dynamic Mode1 

For the control purpose, the equations of motion has to be formulated in terms of the 

relative angles between links. 

where 

r 
4 = [ % ~ 4 r ~ 4 ~ * 4 i ~ 4 * I  

ql? q?? q ~ ?  and q, are the relative angle displacements of the corresponding joints with the 

following relationships, 

qo = O l  ql =el -0: q2 = O 1  -e3 q3 =e3 +Ol q4 = Br -es 

The following procedure is used to ûiuisform the equations of motion in terms of angles 

of links with respect ?O the vertical into equations in terms of relative angles between 

links. 

Since 

Q: dnving torque of the ankle of the support leg 

q: driving torque of the knee of the support leg 

q: dnving torque of the hip of the support leg 

Q: driving torque of the knee of the swing leg 

TJ: driving torque of the hip of the swing leg 

and uskg the relationship between 8 and q (Tzafestas et al. 1996), 



The following relation is formed: 

The generalized torques Toi (i= L,2,. . . -5 )  that correspond to the relative angle 

displacements are Tqt = t, (i = 42, ..., 5) where t, are the actual driving torques at the 

joints. The angle displacement of each link can be expressed in ternis of q,: 

From the relationship (Tzafestas et ai. 1996) 

The generalized torque T', is obtained 

Using the same relationship, the equations of motion are transferred into the following 

A , , ~ , + A , , ~ , + A ~ , ~ , + A , , ~ , + A , , ~ , + ~ , , + G ~ ~  = O  
where 
AlJ  = 4J '2) D3J 

h,, = h, +h, +h ,  -h,  -h, 
Gqo =GI +G2 +G, -Gr -G5 



A,& +A,& + ~ , 6 ,  +A,& +A,& +h,, +Gq, =r, 
where =-el -D3J + D,l + 
h,, =-h, -h3 +h,  +h ,  
Gqi =-CIi -e3 + G ~  + G ~  

+ A , $ ,  +A,,& +A,$ ,  +A,,& +h, ,  +Gq ,  = r 4  
where 
A,, = -4, 
h,, = -h, 
G,, = 4, 

Again, using the same relations, the equations of motion are fïnally transformed in terms 

of the relative angles, as follows: 

where 

and 
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Appendix III 

Derivation of the Five-Link Biped Dynamic Mode1 with Both Legs in the Air 

The equations of motion for the impact phase are denved by applying the Lagrangia. 

formulation using the dynamic mode1 with both legs in the air. The Lagranian equation 

of motion is in the fonn: 

where 0, = [9, 8, 8, 8, 8, xb Y b ]  

Each term in this equation is derived as follows: 







+(m, +m, +m, +m5)t,9,,cos0, 
-(m, +m, +m, +m,) t ,û  - s ine ,  

'2 + m,d,ë, cosû, -m2d,0, sine, 
+ (m, + m, + m5) t2e2   COS^, 
-(ml +m,  +m,)t,02'sin02 

7 

im,d ,O,  ios0,  -nz,U,B,%nf3, 
+m,(!, -d,)ë,  COS^, -m,(e, -d,)&Lsin94 
+m,t,ë,  COS^, -m,e,0,2 sine, 
+m,(P, -d,)ë, cosû, -na,(!, -dS)0,'sin8, 

. - .  
-m,d,9, sine, - m , d , ~ , ' c 0 s 8 ~  
-(m, +m3 +m, +m,)!,e,:inû, 
-(m, +m3 +m, +m,)C!€j cosBi 
-m,d,& sine, -m,d,02- cosû? 
-(m3 +m, +m,)e,ë, - . -, sine, 
-(m, +m, +m,)t,0,' 
-m,d3ë3 sine, -m3d,B,2  COS^, 
+m, ( t i -d , )0 ,~ in8 ,  +m,(!, -d,)&,Zcose, 
+m,e,B, sine, +m,40,2 cose, 
+m, ( l ,  -d , )0 ,  sin0, +m,(P, -d,)&,' cos8, 

Ur - = [m, ( t ? ,  -d,)]gsine, 
69, 



Appendix IV 

Derivation of Constant Mechanical Energy of the Five-Link Biped Robot 

The mechanical energy (0 of the five-link biped robot comprises translational kinetic 

energy, rotational energy, and potential energy (Y  = K + P). In order to denve a equation 

representing constant mechanical energy at an instant in tirne, we have to set 

where v is the time derivative of the mechanical energy 

Therefore, 

where 

Each term in the above equation is denved as follows: 





where 



Appendix V 

Derivation of the Time Derivatives of the First Four Constraint Functions 

The t h e  derivatives of the first four constraint functions are derived below. They will be 

used to generate the joint angle profiles for the five-link biped robot to walk on a flat 

horizontal surface. 

Si : The erect body posture 

S2: The overall progression speed 

S3: The bias of the knee of the support leg 



S4: The coordination of the support leg and swing Ieg motion 




