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Abstract

The purpose of this thesis is to contribute to the development of dynamic
modeling and contro! of bipedal locomotion. The locomotion aimed to be realized in this
thesis is walking on a flat horizontal surface in the sagittal plane. Firstly, a planar five-
link biped robot, which consists of an upper body and two legs, having five degrees of
freedom is modeled. The equations of motion are then developed which describe the
motion of the bipedal system. The walking motion includes the single support phase, the
impact of the free end of the swing leg with the walking surface, and the support end
exchange at the end of each step. Secondly, a systematic approach is presented to
determine the joint angle profiles from a set of constraint functions for the biped to walk
on a flat horizontal surface. Five new constraint functions are proposed in terms of the
physical coherent parameters, one of which is to keep the total mechanical energy of the
biped at constant. This constraint is meant to test the hypothesis that, given only
potential energy at the beginning of the step, the swing leg can be carried over by gravity.
One important finding in this study is that it is impossible to design a set of joint angle
profiles to keep the mechanical energy constant during the whole step and, regardless of
the walking speed, a certain amount of extra energy must be provided to the biped at the
beginning of the step. It was further found that given an appropriate amount of energy at
the beginning of the step, it is possible to have a set of joint angle profiles such that the
swing leg is carried over without any further energy input. These sets of joint angle
profiles are of special interest; bipedal models tracking these joint angle profiles are more
energy-efficient, since the extra energy input at the beginning of the step may be

provided by the strain energy release of the deformable foot. Lastly, motion control of



the bipedal locomotion system with various degrees of parametric uncertainty is studied
through the application of the sliding mode control technique and the computed torque
control technique. In this work, an integral term is used in the equation of the sliding
surface. Through the simulation study, it has been found that this integral term plays an
important role in improving the tracking performance of the control system. The sliding
mode control algorithm is further modified to eliminate the well-known chattering
problem at the discontinuity surface. It was found that the proposed sliding mode control
is superior to the computed torque control, especially when parametric uncertainties are

present in the system.
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Chapter 1

Introduction

1.1  General Introduction

1.1.1 Motivation

Biped robot is a class of legged robot that is designed to duplicate human type
locomotion. For the biped robot there are two kinds of walking: static and dynamic.
Static walking is a low speed movement where the system center of gravity is kept within
the supporting plane of the foot. The dynamic effects in maintaining the postural stability
are ignored (Miyazaki and Arimoto 1980). Dynamic walking, on the other hand, is a
high speed movement. During certain time periods, the center of gravity is outside of the
supporting plane (Miyazaki and Arimoto 1980). Normal human walking is a kind of
dynamic bipedal locomotion. Natural walking is one of the most fundamental motions of
the human body. It is a process by which a human moves oneself from one position to
another position. Since walking is a learned process, it is not surprising that each
individual walks with certain personal characteristics; however, the basic walking pattern
is the same. In the process of normal and steady walking, the erect upper body moves

forward with one leg supporting the whole body and the other leg swings forward. As



the upper body passes over the support leg, the swing leg has to move ahead of the upper
body in preparation for landing on the walking surface and becoming the support leg.
With the availability of powerful computers, dynamic modeling has become a
useful mathematical tool for engineers and mathematicians who are interested in
analyzing bipedal locomotion to design devices of locomotion for the handicapped,
finding the control laws of human walking and deriving the control algorithms of bipedal
locomotion machines. In general, dynamic modeling of the bipedal locomotion system
includes three parts: (1) development of the mathematical model, (2) designing the joint
angle profiles and (3) developing control algorithms for motion regulation. In the

following sections, the important aspects of this thesis are briefly highlighted.

1.1.2 Mathematical Model

The procedure for the mathematical modeling of the bipedal locomotion system
includes the development of the structure of the complex kinematic model and the
development of the dynamic equations of motion.

Human locomotion systems represent extremely complex dynamic systems both
from the aspect of mechanical-structural complexity and control system complexity
(Vukobratovic et al. 1990). To study this system and its motion requires certain
simplifications. A practical bipedal walking machine or biped robot used to study human
type locomotion is based on a considerably simplified version of human being. In order
to construct the kinematic model of the biped for this study, certain simplifications and
assumptions were made. Since in this study the motion of the biped is constrained in the

sagittal plane, the biped is considered as a planar model. The sagittal plane is defined by

(8]



the vertical axis and the direction of locomotion. The planar bipedal model considered
here is a multi-link mechanism that consists of five rigid links with five degrees of
rotational freedom. The upper body of the planar bipedal model, which includes the
head, arms and trunk, is considered as a massive rigid inverted pendulum. The swing
motion of the arms and the motion between the thorax and pelvis are ignored. The upper
body is connected to the two legs with two rotational joints. Each leg consists of two
massive rigid links as a thigh and a shank. All links are connected with each other by
rotational joints. The feet are considered to be massless and therefore, the dynamic
structures of the feet are neglected.

Once the simplifications and assumptions of the kinematic model are made, the
equations of motion for the locomotion system can be developed. The equations of
motion are used as the basis to describe the motion of the bipedal model and for the
development of the control algorithm. The single support phase, the effect of impact
between the end of the swing leg and the walking surface, and the effect of support leg
exchange are considered in this study when developing the equations of motion. A
computer program is developed to handle the complex numerical analysis of the dynamic

model.

1.1.3 Motion Planning

To design the joint angle profiles that describe human-like locomotion of the
biped is another challenging problem. A well-structured approach of designing the joint
angle profiles that ties the resulting gait patterns with the physically coherent parameters

is desired. Hurmuzlu (1993a) developed a systematic approach that can be followed to

W



formulate objective functions. Such objective functions were cast in terms of step length,
progression speed, maximum clearance of the swing leg, and the support knee bias that
could be used to prescribe the gait of a planar five-link bipedal robot during the single
support phase. Hurmuzlu's approach is utilized in this study. The objective functions are
modified by replacing the constraint functions imposed on the swing leg used in
Hurmuzlu's work (1993a) with a constraint function that keeps the mechanical energy as
a constant. The intention of keeping the mechanical energy as a constant is to test the
hypothesis that given only potential energy at the beginning of the step, the swing leg can
be carried over by gravity. This question is answered by the investigation of the
simulation results of the desired joint angle profiles.

A major challenge of using this systematic approach to obtain the joint angle
profiles is solving a set of equations combined with differential and algebraic equations,
which are from the constraint functions. There is no general way to solve this
combination of differential and algebraic equations. Besides, in the process of generating
the motion, there are two additional conditions imposed on the possible solution that
make this problem extremely challenging. The repeatability of movement is a
fundamental characteristic of bipedal walking. Only the joint angle profiles satisfying
this repeatability condition, i.e., the equality of angles at the beginning and at the end of
each step, are acceptable for bipedal locomotion. Another condition is related to the knee
of the swing leg. Since there is no locking mechanism imposed on the knee of the swing
leg, it is possible that at a certain period of time, in order to satisfy the constraint

functions, the knee of the swing leg may bend backward. Walking with the knee bent



backward is not a desirable motion. Therefore, the joint angle profiles obtained must also

ensure that the knee of the swing leg does not bend backward during the step.

1.1.4 Motion Control

To control the walking motion of the biped, control algorithms are applied. The
success of the control action in tracking the prescribed motion can be measured by two
factors: (1) the periodicity of the resulting gait patterns, and (2) the magnitude of the
residual tracking error. It is important to note that the system response never coincides
with the prescribed one throughout the step cycle for any control action. This is due to
system uncertainties and the disturbance caused by the contact event. A successful
controller is one that eliminates the uncertainties and disturbance rapidly during the early
stage of each step.

The sliding mode control system is known to be highly insensitive to parametric
uncertainty and disturbance. The basic idea of the sliding mode control is to transform
the original system in one state space into a system in a new state space. A time-varying
surface r(t), which is also referred as a sliding surface, is defined in the new state space
by equation r = 0. This equation represents a set of linear differential equations which
has a unique solution that the tracking error is equal to zero. Thus, the problem of
tracking the desired trajectories is reduced to that of keeping r at zero. Once the system
trajectories lie in the sliding surface, the system trajectories follow the desired one. The
control law, however, contains a discontinuous term. Due to the unavoidable delay in
switching between the control laws, chattering occurs at the discontinuity surface. In

addition, there is a reaching phase problem. In the reaching phase the system trajectories

w



are sensitive to parameter variations. It is a challenge to design a sliding mode control
algorithm that can eliminate all of these problems. A sliding mode control law is derived
in this study by replacing the discontinuous term with a continuous one to remove the
chattering. Both the sliding mode control and the classical computed torque control are
employed for the tracking control action in this study. The tracking performances of
these two control techniques are investigated and compared as various degrees of

parametric uncertainty exist in the bipedal locomotion system.

1.2 Literature Survey of Dynamic Modeling and Control of Biped Robot

The research conducted in this thesis falls into the area of dynamic modeling,
control, and simulation of human and bipedal locomotion. There has long been an
interest for engineers, physiologists and mathematicians in understanding bipedal and
human locomotion. This is not only because of the desire to build biped robots to
perform tasks which are dangerous or degrading to humans, but also to improve devices
for humans who have either partially or completely lost their lower limb control. Since
the 1970’s, many investigators have prompted ongoing research efforts on this topic and
many studies have been published.

Dynamic modeling of bipedal locomotion systems is a challenging problem that
requires knowledge of multi-link mechanism, nonlinear dynamics, control theory, and
stability analysis. The major problem associated with the modeling and control of
bipedal locomotion is the large number of degrees of freedom and the highly coupled
nonlinear dynamics involved in the locomotion system. For a human, there are more than

300 degrees of freedom involved in the complete skeletal activity. Just for natural human



walking, 20 or more degrees of freedom may be involved (Goiliday and Hemami 1977).
Such a system involves great dynamic complexity, even if it is idealized to a system of
rigid bodies with simple torque generators acting at each joint. Therefore, to study the
dynamics of bipedal locomotion systems, it is critical to select mechanical models having
few degrees of freedom to keep the equations of motion at a manageable level, and yet
having enough degrees of freedom to adequately describe the motions of interest.

The simplest model that can represent some bipedal locomotion activities is a
single massive link modeled as an inverted pendulum. Two situations are concemned: (1)
the base joint is fixed to the supporting ground, and (2) the base joint moves in space.
Several studies addressing some aspects of the inverted pendulum problem for modeling
bipedal locomotion system have been published by Hemami and his colleagues. Hemami
and his colleagues used a massive inverted pendulum with the base joint fixed to the
supporting ground to study the behavior of a body in standing position when no muscle
dynamics was involved (Hemami et al. 1973, Golliday and Hemami 1976, Hemami and
Camana 1976, Hemami and Golliday 1977). Torques applied at the base joint were
equivalent to the ankle joint in human body and maintained the upright vertical position.
Chow and Jacobson (1972), on the other hand, considered the postural stability of the
upper body and the control of human locomotion with the use of an inverted pendulum.
The upper body was modeled as a single link inverted pendulum with the prescribed base
point moved only in the vertical direction. It was an important step in the development of
a mathematical model of the human body. Wu et al. (1996, 1998) utilized the general
single link inverted pendulum problem to model the human upper body during gait.

Their mathematical model was developed with a base excited inverted pendulum could



be used to predict major features of the upper body dynamics and to synthesize the
mechanisms of walking. However, as pointed out in their paper (Wu et al. 1998), the
single inverted pendulum models are too simple to accurately describe a complete
locomotion.

Multi-link planar models, with their great complexity, offer the opportunity to
study bipedal locomotion and the related properties that are impossible to investigate with
the single inverted pendulum model. Hemami and his colleagues have been the
pioneering group in studying the postural stability and locomotion related problems of
humans using multi-link bipedal models. For example, in the paper of Gubina et al.
(1974) they have investigated a partially placed massive torso supported on two massless
legs as their bipedal model. The legs were of variable length as a substitute for knee
function. The approach of modeling legged locomotion with massless legs used for
simplifying the complicated locomotion systems is questionable for bipeds since typically
one third of the mass of a human is contained in the legs (Golliday and Hemami 1977).
Simple movements such as side stepping in the frontal plane (Goddard et al. 1983), side
sway, body sway and sliding foot (Hemami and Wyman 1979a, 1979b, Goddard et al.
1983, Igbal et al. 1993) were also studied. The main thrust of Hemami’s work had been
directed toward developing proper methods to represent the equations of motion.
Particular emphasis was placed on the incorporation of holonomic and nonholonomic
constraints that arose from the interconnection of members and interaction with the
environment. In Hemami and Wyman's paper (1979a), dynamic systems with constraints
that were either maintained or deliberately violated were considered. The key step in the

model was the derivation of the forces of constraint as the functions of the state and the



input of the system. Linearization of the differential equations of the system was used to
simplify the complex models in these early studies. Linear feedback stability and control
were used.

In the study of the dynamics of human locomotion, many models have been
developed. One approach is the direct dynamic problem. In the direct dynamic problem,
the moments applied to the system serve as the system inputs and the solutions found is
the system kinematics. The study of human locomotion has been investigated by
Onyshko and Winter (1980) through the direct dynamic problem. In their study, a model
of a seven-link biped was used. Since there were differences between the mathematical
model and the human body, the measured data of joint moments were adjusted before
being applied to the link segment model to produce a desirable walking cycle. They
claimed that no constraints regarding the trajectories of any of the segments had been
assumed. They showed that a normal human walking cycle can be achieved and, with
minor modification, typical gait patterns could also be achieved. Pandy and Berme
(1988) approached the study of human locomotion from the same direction. In their
planar model, a damped spring was placed between the hip joint and the support leg ankle
to simulate the flexion-extension characteristic of the knee. In this study, the joint
moments applied were chosen on the basis of trial and error, but the initial conditions
were obtained directly from experimental gait data. Later, Pandy and Berme extended
their planar model to a three-dimensional model (1989). The application of torques at the
mechanical joints is corresponded to the muscle dynamics of human body that enables
the changing of relative positions of mechanical links (Vukobratovic et al. 1990). In this

way, gait can be achieved. Another approach used to study human locomotion is the



inverse dynamic problem. In the inverse dynamic problem, the kinematics data is used as
the system inputs to find the forces and moments applied to the system. The purpose of
solving the inverse dynamic problem in human locomotion is to obtain information on
the joint moments and the reaction forces at the joints of human lower extremities
(Siegler et al. 1982). The kinematics measurement is obtainable from gait experiment.
This problem has been studied by several investigators. Thornton-Trump et al. (1975)
determined the translational and angular accelerations of the limb segment from the gait
data during normal locomotion. The moments about the joints of the hip and knees and
the reaction forces from the floor were then calculated. The reaction forces from the
floor and the knee moments were used in the design of an external prosthetic polycentric
knee joint. The conventional method of utilizing the experimental kinematic data is by
numerical filtering and differentiating techniques. However, numerical differentiating
techniques applied to experimentally obtained data will magnify the inherent
measurement errors. Chao and Rim (1973) proposed a method based on the
mathematical theory of optimization to determine the moments applied at the joints in
human lower extremities without the application of numerical differentiation on the
measured displacement. Using this method, the results showed less sensitivity to the
inherent errors in the measurements. Ladin and Wu (1991) estimated the joint forces and
moments from the combination of position and acceleration measurements. The
estimated joint forces were then compared to the actual joint forces measured by strain
gauges.

Many investigators have been interested in studying bipedal robots. Miura and

Shimoyama (1984) developed their three-link biped robots (Biper-3 and Biper-4) to walk

10



sideways, backward and forward and studied in both the sagittal and frontal planes. The
results served as a basis for choosing the appropriate feedback control gains. Furusho
and Masubuchi (1986, 1987) developed their reduced order model that could well
approximate the original higher order model in almost all walking phases in the sagittal
plane. This mathematical model served as the basis for developing their spatial
mechanism. They built their first biped (Kenkyaku-1) with a torso and two-link legs with
no feet to verify their numerical results experimentally. This model had a steel pipe
attached to the lowest end of each leg in order to maintain the lateral balance. Later, this
model was improved by adding two more links (Kenkyaku-2) to study the kicking action
in the double-support phase (Furusho and Sano 1990). Furusho and Sano (1990)
developed a nine-link biped (BLR-G2) which included the foot structure and was
equipped with foot pressure and ankle torque sensors to provide information about the
conditions of contact with the floor. Their work contributed toward the realization of
smooth three-dimensional walking with the sole firmly gripping the floor. The
mathematical models given in the above studies served as the basis for building active
mechanisms for realization of artificial locomotion.

Another issue related to the modeling of bipedal walking that has often been
ignored is impact. Impact occurs as a result of the contact of the free end with the
environment. In such contact, the velocities of the upper body and the leg segments are
subject to an instantaneous change. Impact and support end switching play a remarkable
role in the stability and progression of the bipedal locomotion system (Hurmuzlu and
Moskowitz 1987), which has been avoided by some locomotion studies. Vukobratovic et

al. (1970, 1990) and Park and Kim (1998) imposed a condition that the velocities at the
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beginning and at the end of the step are the same to avoid the effect of impact. Katoh and
Mori (1984) avoided the impact effect by using dynamic constraint functions that yielded
smooth foot landing. Hurmuziu’s studies (Hurmuzlu 1993a, 1993b, Hurmuzlu and
Basdogan 1994) had focused on the dynamics and control of biped gait. Hurmuzlu and
Moskowitz (1986) first introduced the idea of including impact and support end
switching in locomotion systems. In Hurmuzlu and Moskowitz's work (1987), they
demonstrated the effect of impact and support end switching in the locomotion system
with a very simple model. The study conducted by Zheng and Hemami (1984) also
confirmed that impact has a significant effect on the stability of bipedal systems, but their
treatment of impact was not considered in the same context as Hurmuzlu and Moskowitz
(1987). Tzafestas et al. (1996) developed a 5-link biped robot to study the forward
walking motion in the sagittal plane. Their 5-link bipedal model consisted of a torso, two
thighs and two shanks. These links were connected via four rotational joints, which were
considered to be friction-free and driven by independent actuators. The advantage of
their five-link model is that it has sufficiently few degrees of freedom to keep the
equations of motion to a manageable level, while still having enough degrees of freedom
to adequately describe the walking motion that includes the impact between the free end
of the swing leg and the walking surface.

Design of joint angle profiles for bipedal robots to imitate human type locomotion
is another challenging problem. Most of the previous studies did not consider or define a
method to design the joint angle profile. For example, Furusho and Masubuchi (1986,
1987) verified their numerical results experimentally by using a walking machine that

demonstrated several walking patterns. However, the method to specify the joint angle



profile was never presented. Katoh and Mori (1984) used coupled van der Pol's
equations to prescribe the motion for their bipedal model with telescopic legs, but there
was no direct relation established between the parameters in the equations and the
resulting walking patterns. Bay and Hemami (1987) also used a set of van der Pol
oscillators in a network which were configured and used to model the central pattern
generator. With adjustments of the parameters in the coupled van der Pol oscillators, the
model could be made to generate various kinematic trajectories in periodic wave patterns
that were close to those of human walking gait. Similar to Katoh and Mori (1984), there
was no direct relation established between the resulting gait patterns and the adjustable
parameters. In the work of Lee et al. (1988), they divided the single support phase into
five distinct states with manually selected reference angles at each time instant. The
trajectory was then formulated by polynomial interpolation. Channon et al. (1992) also
formulated their trajectories as a third order polynomial equation, the coefficients of
which are obtained by numerically minimizing the energy cost function. In Tzafestas et
al. (1996), the joint angle profiles were manually selected to fit certain constraints. In the
work of Hemami and Famsworth (1977), the prescribed trajectories of the ankle, hip and
knee angles were the time functions obtained from a computer-television interface
system. The television system was employed to monitor a person walking and the
computer-linked system measured the angles and smoothed them by computing the
Fourier harmonics of each angle. Likewise, Vukobratovic et al. (1980, 1990) used
measured human walking data as the desired joint angle profile. However, a practical
walking machine is considerably simpler than a human being. The validity of

minimizing the dynamics of a system without a good knowledge of its internal structure
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and strategies is questionable. All of the above approaches to the problem of prescribing
the motion of bipedal machines appear to fall short in terms of possessing a well-defined
structure to address the design process. Consequently, it is desirable to develop a well-
structured parametric formulation that ties the objective functions to the resulting gait
patterns. Such objective functions are cast in terms of physically coherent parameters
such as step length, progression speed, etc. Hurmuzlu (1993a, 1993b) developed a
systematic approach that can be followed to formulate objective functions, which could
be used to prescribe the gait of a planar five-link bipedal robot during the single support
phase. The objective functions for locomotion were formulated in terms of four basic
quantities which completely characterized the motion of the biped during the single
support phase. The four quantities are step length, progression speed, maximum
clearance of the swing limb and stance knee bias. This method is a more natural approach
for planning joint angle profiles. Silva and Machado (1998) used a similar method for
their joint trajectory design.

Motion control of the bipedal robots is a challenging problem due to the high
degree of complexity and the efficiency needed to maintain balance. In most of the early
studies, the nonlinear bipedal systems were linearized about the upright position. Based
on the linearized system, linear feedback stability and control were used (Golliday and
Hemami 1976, Hemami and Farnsworth 1977, Hemami and Golliday 1977, Hemami and
Wyman 1979a, Hemami et al. 1980, Goddard et al. 1983). In these works, pole
assignment was used to compute the feedback control gain. Since bipedal locomotion
systems are highly nonlinear, linear controllers are not suitable to handle such systems

(Slotine and Li 1991).
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Physiological studies have pointed out that the control of human walking has a
hierarchical structure (Furusho and Masubuchi 1987). Hierarchical control has been used
in robot control. The control structure most often used with robots consists of four levels.
The highest level makes decisions on how the task imposed is to be accomplished. The
strategic level divides the imposed operation into elementary movements. The tactical
level distributes the elementary movement to the motion of each degree of freedom, and
the executive level executes the imposed motion of each degree of freedom (Borovac et
al. 1989). Miyazaki and Arimoto (1980) proposed a useful hierarchical control strategy
for their low order model. The control algorithm consisted of two parts. In the first part,
the control torques for slow motion were determined by the motion of the center of
gravity. In the second part, control torques in high speed motion were determined to
track the predefined trajectory. Furusho and Masubuchi (1986, 1987) utilized
hierarchical control in their reduced order model. They adopted a local feedback at each
joint as the lower level control. Borovac et al. (1989) constructed a hierarchical control
with two levels. The first level was defined to control the system to follow the desired
trajectories in the absence of any perturbation. The second level was defined to force the
actual system state vector to the desired motion whenever a disturbance was present. A
similar control structure with the use of force-feedback was presented by Vukobratovic
and Stokic (1980) for the application of decentralized control. For real-time control of
the bipedal system in their study, instead of performing the on-line calculations of new
dynamic states based on solving differential equations representing the momentary
equilibrium state of the system, only the deviations of moments where the dynamic

reactions act in the system to support contact were calculated. The perturbing moments



were then transformed into control signals to stabilize the locomotion. Shih (1996)
constructed a two-level hierarchical control structure for a bipedal walking robot with
seven degrees of freedom. The trajectory planning for the walking pattern was executed
at the upper level and the servo control for the planned trajectory was executed at the
lower level. The servo control consisted of the computed gravity plus the proportional
plus derivative (PD) control was set up to follow the planned trajectory to realize a stable
walking motion. Furusho and Sano (1990) also used a hierarchical control structure in
the experiment of their nine-link biped (BLR-G2). Their control was sensor-based. At
the lower level, it provided feedback control for each DC servomotor. The control mode
at the lower level could be switched to position, torque or free rotation mode depending
on the switching signal from the higher level. At the higher level, the switching signal
was generated by using sensor information and control switching algorithms. Their work
focused on the role of force/torque control of the sole and ankle during dynamic walking.
Their biped achieved smooth three-dimensional walking based on information obtained
from various sensors.

Neural network control is another type of controller that is often used for motion
regulation of bipedal locomotion. Neural network control is based on the mechanism of
neuronal network. It consists of interconnected processing elements, a mechanism for
producing the network's response, and a method to encode information (Holzreiter and
Kéhle 1993). A neural network can be trained with cases to produce a specific response
to an input pattern and can learn to improve its performance. Holzreiter and Kéhle
(1993) presented a way to use neural networks for the classification of gait patterns,

which was close to a statistical method. Asides from classifying gait patterns, the neural
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network was used as multi-dimensional nonlinear transformation algorithms for the
design of mathematical models. It was also useful for analysis of how different walking
speeds and treatments affect the shape of a specific gait pattem. Rodrigues et al. (1996)
tried to develop a self-leamning controller for the bipedal locomotion system to study the
possibility of controlling bipedal locomotion without giving any kind of information
about the system dynamics and known walking patterns. A Genetic Algorithm (GA) was
used as a search method to find the necessary torque in each joint to obtain a desired
trajectory for the biped's upper body center of mass. Rodrigues et al. (1996) suggested
that the neural network could be trained with a set of patterns of elementary motions
obtained from the GA. In a series of real time experimental studies by Miller and his
colleagues (1994, 1996, 1999), neural network learning was shown to be effective for
dynamic control problems in bipedal robots. They developed the hardware of a
cerebellar model arithmetic computer (CMAC) neural network design to provide
submillisecond response and training times. Miller (1994) presented preliminary real-
time results of a study on the application of on-line neural network learning to the
problem of biped walking with dynamic balance. Low-level on-line learning control
strategies using the CMAC neural network enabled the biped to balance during changes
in standing posture and to link short steps without falling. Kun and Miller (1996)
developed an adaptive dynamic balance scheme for a biped robot using neural control
and tested the scheme on an experimental biped. The CMAC neural network was used
for the adaptive control of side-to-side and front-to-back balance. Test results showed
that the biped performance improved with neural network training. This balance scheme

was proven able to control variable-speed gaits in a later study by Kun and Miller (1999).
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An artificial neural network was used by Srinivasan et al. (1992) as a new approach to
modeling rhythmic movement control. They suggested that human locomotion is a
rhythmic movement and is generated by the nervous system. The central pattern
generators are a group of neurons that, because of their synaptic connections and inherent
properties, oscillatory output behavior results. A hierarchical neural network structure
consisting of four modules with a pattern generator at the top was proposed. The
artificial neural network was applied to the control of an active external orthosis for use
by paraplegics (Guiraud 1994). This control method was flexible to customize the
dynamics according to the patient's own limb. The author suggested that the control
should be capable of adapting to each combination of patient and orthosis by leaming the
system's transfer function.

Other nonlinear control methods were developed. Katoh and Mori (1984)
designed a nonlinear controller to assure asymptotic stability convergence to the stable
limit cycle solutions of coupled van der Pol’s equations. The advantage of this control
method is that the bipedal locomotion can be controlled by adjusting only a few
parameters in the van der Pol's equations. Cotsaftis and Vibet (1988) developed a direct
nonlinear decoupling method (DNDM). Based on this method, a control law that gave
decoupled control of a two-dimensional biped was derived only from the knowledge of
the Lagrangian of the system. The use of DNDM in designing a two-dimensional biped
is simple and efficient because the differential equations of the system are not required in
the derivation of the control torque for driving the biped mechanism. The differential

equation of the system, on the other hand, can be derived from the control algorithms.
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Computed torque control is a classical nonlinear control based on the feedback
linearization technique. This control technique requires the parameters in the dynamic
model of the system to be exactly known for good control performance. Tzafestas et al.
(1996) employed a pure computed torque control for the robust control of a five-link
biped robot. In their work, the performance of the computed torque control technique
was satisfactory when no parametric uncertainty existed in the system. They also showed
that the computed torque control technique was superior to the simple local PD control.
Chevallereau et al. (1998) used a modified computed torque control in which a physical
constraint was taken into account. The physical constraint was the reaction force that
prevented the foot from sliding or taking off. This method showed good performance for
the bipedal walking in their study. A control method based on the computed torque
control was presented by Park and Kim (1998). The computed torque controller applied
on the swing leg was used to track the motion of the joint angle and the controller applied
on the support leg was used to stabilize the error dynamics of the base link position. The
simulation results of this study also showed that the computed torque controllers work
very well. In Park and Chung's work (2000), they proposed a new hybrid control
method, a combination of impedance control and computed torque control, to control
biped robot locomotion. The impedance control was used for the swing leg and the
computed torque control was used for the support leg. The simulation results showed
that the proposed controller was superior to the pure computed torque controller,
especially in reducing impact and stabilizing foot placement. They also showed that the
proposed controller made the biped more robust in regard to parametric uncertainty.

Another hybrid control was proposed by Vukobratovic and Timcenko (1996). This
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hybrid approach combined the traditional model-based and fuzzy logic-based control
techniques. The model-based decentralized control scheme was extended by fuzzy logic-
based tumers for modifying parameters of the joint servo controllers. The simulation
experiments demonstrated the suitability of this hybrid approach for improving the
performance of the bipedal locomotion robot.

In physical systems, uncertainties regarding the values of parameters usually
exist. Adaptive inverse dynamic based control is one of the nonlinear controllers used to
deal with constant or slowly varying uncertainties. Adaptive control is an approach to
estimate the uncertain parameters on-line based on the measured signals and to use the
estimated parameters in the control input computation (Slotine and Li 1991). The
effectiveness of this control method for bipedal locomotion was investigated using a
kneeless biped (Yang 1994) and a five-link biped (Yang and Shahabuddin 1994). It was
suggested that the difficulty of using such control for bipedal locomotion was in dealing
with different sets of nonlinear dynamic equations for different phases, each of whose
duration was usually very short. Satisfactory performances were obtained. The
simulation results showed that the tracking errors were improved as compared to the
initial setting and the performances were robust.

The sliding mode control technique has received considerable attention in the
control of bipedal locomotion mainly because sliding model control systems are highly
insensitive to parameter variations and disturbances (Slotine and Sastry 1983, Slotine
1984, Bailey and Arapostathis 1987, Paden and Sastry 1987, Slotinel991). It is more
desirable than adaptive control for dealing with disturbances, quickly varying parameters,

and unmodeled dynamics (Slotine and Li 1991). A sliding surface must be designed for
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the sliding mode control law. The motion control problem is to get the system
trajectories to track the desired trajectories, which is equivalent to maintaining the system
trajectories on the sliding surface. Ideally, the classical sliding mode control method will
result in perfect tracking of the desired trajectory. However, there are important
drawbacks in this method. Due to the unavoidable delay in switching between control
laws at the discontinuity surface, trajectories’ chattering rather than sliding on the surface
is resulted. Chattering is generally undesirable in practice, since it involves extremely
high control activity, and may excite high-frequency unmodeled dynamics (Slotine and
Sastry 1983). Another drawback is the reaching phase, a phase in which the trajectories
starting from the given initial condition off the sliding surface tend toward the sliding
surface. The trajectories in this phase are sensitive to parameter variations. Tzafestas
and his colleagues (1996) have investigated the robustness of the biped system through
sliding mode control. They further demonstrated that sliding mode control is superior to
computed torque control and local PD control for bipedal locomotion when parametric
uncertainty exists in the system. A sliding mode control law with a saturation function
replacing the discontinuous term was used in Tzafestas et al. (1996). The same control
law had been used in Slotine et al. (1983, 1984, 1991) to smooth out the chattering. This
control law maintained the system's trajectories close to the sliding surface within a thin
boundary layer instead of on the surface. Chang and Hurmuzlu (1992, 1993) developed a
sliding mode control for a five-link bipedal robot without a reaching phase. A sliding
mode control law with the discontinuous term replaced by a saturation function was also
used. In addition, Chang and Hurmuzlu modified the vector of tracking error and

redefined the sliding surface. For arbitrary initial conditions, the modified tracking errors
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were zero. Thus, the initial state of the system lay on the new sliding domain leading to
the elimination of the reaching phase. The simulation results verified that such a
controller was capable of achieving steady gait. Lee et al. (1988) developed a control
scheme for controlling dynamic walking in the sagittal and the frontal plane
independently. The Model Following plus Variable Structure Systems (sliding mode
control) technique was developed to control dynamic walking in the sagittal plane, while
the Nonlinear Feedback plus Modified a-Computed Torque technique was developed to
control dynamic walking in the frontal plane. Simulation results showed that the
proposed algorithms could achieve stable and steady walking and could achieve

trajectory tracking in the presence of modeling errors.

1.3 Objectives of This Thesis

The goal of this thesis is to contribute to the development of the dynamic
modeling and control of a five-link bipedal locomotion system walking on a flat
horizontal surface. The dynamic modeling of such a bipedal locomotion system starts
with the development of the mathematical model that describes the motion of the bipedal
locomotion system. A kinematic bipedal model that consists of five rigid links, which are
connected by four pure rotational joints, is used in this study. The bipedal locomotion
system has five degrees of rotational freedom with the motion in the sagittal plane. The
first objective is to develop the mathematical model that describes a complete walking
motion. Such a model includes the single support phase, the impact with the walking
surface phase, and the support end exchange phase. The second objective is to present a

systematic methodology for designing the joint angle profiles which can prescribe the



motion of walking on a flat horizontal surface for the planar five-link biped. New
constraint functions are developed from the kinematic relations of the bipedal model for
generating the joint angle profiles. The modeling is completed with the application of
control algorithms to regulate the motion of the biped to follow the prescribed motion.
The third objective is to improve the traditional sliding mode control algorithm so that the
chattering problem and the reaching phase problem are eliminated and, at the same time,
good tracking performance can be obtained. The tracking performance of the sliding
mode control technique is to be compared to the performance of the computed torque
control technique in both situations where parametric uncertainty is absent or present in
the system. The development of a good computer program is a very important part of
this thesis because all the information of the behavior of the bipedal locomotion system
and the performance of the control algorithms are provided by the computer simulation

results.

1.4 Thesis Organization

The remaining chapters in this thesis are organized as follows. Chapter 2 outlines
the mathematical model development of the five-link biped robot in the sagittal plane.
The methodology for developing the equations of motion, which is based on Largrangian
formulation, is presented in detail. Chapter 3 presents the methodology for planning joint
angle profiles of the five-link biped robot. The joint angle profiles of the five-link biped
robot are generated to prescribe walking on a flat horizontal surface. Chapter 4 deals
with the motion control strategy. The development of sliding mode control and

computed torque control are presented in detail. Chapter 5 presents two major simulation



results. One result is the desired joint angle profiles designed using the methodology
developed in Chapter 3. Another results are the outputs of the simulation study with the
sliding mode control and computed torque control applied to the bipedal locomotion
system to regulate the motion. The robustness of each of the two control techniques is
investigated as various degrees of parametric uncertainty exist in the system. The final

conclusion and the future work recommendation are presented in Chapter 6.



Chapter 2

Mathematical Model of the Five-Link Biped Robot

2.1 Introduction

This chapter outlines the methodology employed to develop the equations of
motion that can describe the walking motion of a five-link biped robot. Brief background
information about mathematical modeling of a biped robot is given in Section 2.2. The
kinematic model of a five-link biped robot in the sagittal plane is introduced in Section
2.3. The five-link biped robot consists of five rigid links that are connected by four
purely rotational joints with one degree of rotational freedom each. The detailed
procedure for the derivation of the equations of motion is presented. In Section 2.4, the
equations of motion are developed through the standard procedure of Lagrangian
formulation. Three phases are included in the mathematical model of the biped robot
walking on a flat horizontal surface during one walking step: (1) the "single support”
phase, (2) the "impact with walking surface" phase, and (3) the "support end exchange"
phase. In this section, two sets of equations of motion are developed, which fully
describe the locomotion during the single support phase and the impact with walking

surface phase. The techniques for handling the impact of the free end of the swing leg
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with the walking surface at the completion of each step and the support end exchange are

also presented.

2.2 Background Information

Mathematical modeling of a bipedal locomotion system has been a challenging
problem for many researchers. This is mainly due to the dynamic complexity of linkage
systems with many degrees of freedom (Gubina et al. 1974). The dynamic behavior of a
bipedal locomotion system is described in terms of the time rate of change of the linkage
configuration in relation to the joint torques. This relationship can be expressed by a set
of differential equations, called equations of motion. For a human walking motion, 20 or
more degrees of freedom may be involved. This is difficult to handle mathematically.
Hence, it is critical to select kinematic models having sufficiently few degrees of freedom
to keep the equations of motion to a manageable level, and yet having enough degrees of
freedom to adequately describe the motion. It is sufficient for studies of the dynamics of
posture to employ a mechanical model of inverted pendulums with no more than three
degrees of freedom (torso, thigh, and shank) (Golliday and Hemami 1977). However,
when locomotion is considered, many more degrees of freedom that arise from the
motion of the two legs and their associated segments are involved. Bipedal locomotion
generally consists of alternately placing the foot of each leg against the surface so that the
leg can support and drive the bipedal body forward. By observing natural human
walking, two main phases comprise one walking cycle. During the support phase, the
foot is on the walking surface, whereas during the swing phase the foot is no longer in

contact with the walking surface and is swinging forward in preparation for the next
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contact. The support phase can be subdivided into three separate phases: (1) first double
support, when both feet are in contact with the ground, (2) single leg support, where one
foot is swinging through space and the other foot is in contact with the ground, and (3)
second double support, when both feet are again in contact with the ground (Vaughan et
al. 1992). For normal walking motion, there is a natural symmetry between the left side
and the right. Thus the first double support for one leg is the second double support for
another leg. The five-link bipedal model studied in this thesis is a simplified model that
is sufficient to describe walking motion in the sagittal plane. Similar five-link bipedal
models were also studied by Furusho and Masubuchi (1986, 1987), Cotsaftis and Vibet
(1988), Lee et al. (1988), Chang and Hurmuzlu (1992), Hurmuzlu (1993a, 1993b), and
Tzafestas et al. (1996). In this study, the walking motion of the five-link biped robot is in
the sagittal plane and only includes the single support phase, the impact with walking
surface phase, and the support end exchange phase. To simplify the analysis, the double
support phase is not included in the walking motion.

The equations of motion describing the dynamics of the bipedal locomotion
system can be developed by utilizing the Lagrangian formulation or the Newton-Euler
formulation. The Newton-Euler formulation is derived directly by interpreting the
Newton's Second Law of Motion, which describes dynamic systems in terms of force and
momentum. The equations of motion incorporate all the forces and moments acting on
the individual links, including the coupling forces and moments between links.
Therefore, additional arithmetic operations are required to eliminate these terms in order
to obtain explicit relations between the joint torques and the resultant motion in terms of

joint displacements. Lagrangian formulation describes the system's dynamic behavior in



terms of work and energy using generalized coordinates, which reduces the number of
equations needed to describe the motion. Lagrangian formulation has the advantage that
only the kinetic and potential energies of the system are required to be computed and all
the workless forces and constraint forces can be automatically eliminated (Murray et al.
1994). The resultant equations are generally compact and provide a closed-form
expression in terms of joint torques and joint displacements. Furthermore, the derivation
of the Lagrangian formulation is more systematic than the Newton-Euler formulation
(Asada and Slotine 1986). The principle of Lagrangian formulation has been employed
to develop the equations of motion describing the dynamics of the bipedal locomotion
system since the 1970's, for example, in Gubina et al. (1974), Hemami and Golliday
(1977), Hemami and Wyman (1979a, 1979b), Miyazaki and Arimoto (1980), Onyshko
and Winter (1980), Furusho and Sano (1990), and Tzafestas et al. (1996). The
Lagrangian formulation is employed in this thesis to develop the equations of motion

describing the dynamics of the locomotion system.

2.3 The Kinematic Model of the Five-Link Biped Robot

The kinematic model of the five-link biped robot is briefly presented in this
section. The biped robot studied here is modeled for walking on a flat horizontal plane
surface only. The five-link bipedal model employed to investigate dynamic walking is
shown in Figure 2.1. This bipedal model consists of five rigid links, one link for the
upper body (link 3) and two links for the thighs, (link 2 and link 4), and the two links for
the shanks, (link | and link §5). These links are connected to one another by four purely

rotational joints; two joints at the hip and two joints at the knees. These rotational joints
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are considered to be frictionless and are driven by independent motors. To simplify our

analysis, the following assumptions of the model are made:

(1) The feet of the bipedal model are massless.

(2) There is point contact between the tip of the support leg and the walking surface.

(3) The left side and the right side of the bipedal model are symmetric.

(4) The bipedal model is constrained in the sagittal plane.

(5) There is sufficient friction between the foot and the walking surface to prevent
slippage.

Although we neglected the dynamic of the feet by assuming massless feet and point

contact between the tip of the lower limb and the walking surface, we still allow the

biped to apply torque at the ankles to increase or decrease its speed during walking.
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Figure 2.1 Five-Link Biped Robot



The parameters that are shown in Figure 2.1 are as follows:

m, - mass of link i

[, -length of link {

d; - distance between the center of mass and the lower joint of link /

I, - moment of inertia of link / with respect to the axis which passes through the center of
mass of link / and perpendicular to the sagittal plane.

B, - angle of link / with respect to the vertical

(xe, ye) - the position of the tip of the swing leg

(xv, yb) - the position of the point of support

0,-X,-Y, - the fixed coordinate frame

According to the kinematic relationship between links shown in Figure 2.1 (note the

reference directions for all angles), the position and the velocity of the free end of the

swing leg can be defined. The position of the free end is formulated as

X, =x, +¢,sin6, +¢€,sin0, +¢,sin6, + {,sin6;
Y, =Y, +¢ cosb +¢,cos0, +¢,cos0, +£,cos6; (2.1

and the velocity of the free end is

. = .x::, _ elco.sel 6, + 1.’2co.s92 éd_(hc?se4 o, + Esc?sﬂs 6, 22
V. —-¢,sinb, —-€,sin@, ) ° \£,sinf, £,sin 0,

According to the kinematic relationship between links, the coordinate of the center of
mass (cgx, cgy) of the bipedal model and the coordinate of the center of mass (xc,, yc,) of
each link / can also be presented as the following:

_ myxe, +myXc, +myXe, + mxc, +msxc,

m, +m, +m; +m, +m

_ mye +myyc, + myyc, + m,yc, +msycs (2.3)

m, +my, +my +m, +m;



and

xc, = d,;sinb,

ye, = d, cosb,

xc, = ¢,sinf, +d,sinb,

ye, = t'.’ cos(—) +d,cos8,

xc; = ¢, sm6 '+ ¢,5in0, +d,sin®,

e, —E cose +¢,cos6, +d cose (2.4)
xc, —E sin6, +€ ,sin@, +(€ -d )sme

ye, —E cosB +¢,cos6, -(¢, d )cose

xe; = ¢, sme +€ sin@, + ¢, smO +(€ —d,)sinB;

yeg=§€ cost:l +¢,cos8, —¢ cosr:4 (€5 —d;)cosby

The linear velocity of the center of mass of each link is represented as follows:

d, cosB,
ve, =
| ;dlsmeel ( d,cos®
¢,cos0, ). ,C0s8,
2 = B, + C 6,
2= _¢,sing, )" |~d sino, )
¢, cosb, . ¢, cos0, 8. + d;cosB; ). 2.5
Ve, = 5 -
P \~¢sing, ) >—€zsin62 * \—d,sing,
>E cos9, 6 + ¢,cos6, ). (¢,-d;)cosO,
ve, = | . 2 .
¢,sin8, -¢,sinb, (¢,—-d,)sin8,
>E cos6, " >chose, . £,cos0,). (4s~ds)cos8, ).
ves = . 1+ N . 8, + . e
\—¢,sin0, | \—¢,sinb, 2,sinf, (€. -d;)sin8;

2.4 Equations of Motion

The locomotion of the biped walking on a flat horizontal surface is constrained in
the sagittal plane. One complete gait cycle of walking in the forward direction, which is
considered for modeling in this study, includes four stages: (1) left or right leg is in
contact with the walking surface supporting the whole body while the other leg swings in
the forward walking direction, (2) the swing leg then comes into sudden contact with the
walking surface at the completion of the swinging motion and becomes the support leg,

(3) the leg, which was the swing leg, is now the support leg carrying the weight of the
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whole body and the other leg swings forward, and (4) this swing leg then comes into
sudden contact with the walking surface and becomes the support leg again. This gait
cycle repeats to transport the upper body from one position to another position. As
mentioned previously, by assuming the left side and right side of the bipedal model to be
symmetric, the walking motion can be simplified. One step is considered to be half of a
gait cycle. The walking motion of one step is divided into three distinct phases: the
"single support” phase, the "impact with walking surface" phase and the "support end

exchange" phase.

2.4.1 Single Support Phase

The single support phase is a continuous forward motion during which the biped
robot has one leg (the support leg) in contact with the walking surface carrying all the
weight of the biped's body and one leg (the swing leg) swinging in the air in the forward
walking direction. The friction of the ground is assumed to be sufficiently large so that
no slippage at the support end with the walking surface can be ensured. A dynamic
model with one leg (the support leg) attached to the walking surface is employed to
develop a set of equations of motion during the single support phase. The constraints of

xp and y, are constant and x, = y, =0 are valid during this phase. The configuration of

the dynamic model is shown on Figure 2.2. It has to be noticed that the positive direction
of angles 8;, 8> and 0; is defined as clockwise from the vertical and the positive direction

of angles 8, and 6; is defined as counter-clockwise from the vertical.
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Figure 2.2 Biped with One Support Leg

The derivation of the equations of motion for the open kinematic chain used to
describe the motion of the biped robot in this single support phase follows the standard
procedure of Lagrangian formulation (Murray et al. 1994). The Lagrangian formulation
of the five-link system is given by the difference between kinetic and potential energies:
L=K-P (2.6)

The potential energy is given by:

5
P=) R with fF=m- gy 2.7
=1

where
g is the gravitational acceleration (g=9.81 m/sec?)

and yc, is determined from equation (2.4).
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The kinetic energy is given by:

K=K  with K,=—;-m,.vc,2+%l,é,z (2.8)

5
=1
Substituting yc; from equation (2.4) into equation (2.7) and vc, from equation (2.5) into
equation (2.8), and applying some dynamic manipulation, the kinetic energy and potential
energy for each link are formulated as follows:

Link 1

1 204 2
K, =?(-’x +md,")8,
P, =m,gd, cos 6, (2.9)
Link 2

1 22 |l 24 2 X
K, =={l, + myd,* P, #5mat87 4 m d; cos(@, -8,)0,6.
P, =m,g(¢, cos®, +d,cosh,) (2.10)
Link 3

1 aly2, 1 23 2 25 2 A A
K3=5[13+m3d, b, #omle 8 44,787 20,0 cos(, -0, )06,

+24,d, cos(8, -0,)8,0, +2¢.,d, cos(8, —9,)8,8,]
P, =m,g(# cosO, +£,cos0, +d; cosB;) (2.11)
Link 4

1 v2 1 132, 52502 A G
Ky==[I, +m (€, -d )P, +omall78 +2,70,7 +26,0, cos(8, -0,)8,6,

+2¢,(4, —d,)cos(B, +0,)0,8, +2¢,(¢, —d,)cos(9, +6,)8.0,]
P, =m,g(l,cos0, +/,cos6, -(¢, —d,)cosb,) (2.12)

[\

Link 5

1 512 2 1 2203 L. LS L.
K, =5[[5 +mg(€s ‘ds)'bs- +;m5[€['9,' +4,70,7 +€,78,7 +2£,£, cos(6, -8,)8,0,

+2£,0,cos(8, +6,)8,8, +2¢,(¢; —d;)cos(B, +0,)8,8, +2£,¢, cos(, +8,)6,0,
2£,(f5 —d,)cos(0, +6,)0,0, +2£,(¢, —d;)cos(8, —6,)6.8;]
P, =mg(¢, cos9, +{,cos0, -¢,cos0, —(¢; ~d;)cosB,) (2.13)
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The Lagrangian equation of motion is in the form as follows:

djeLl oL g (2.14)
dr aq, aq,

The detailed procedure of formulating the Lagrangian equation of motion can be found in

Appendix I. Equation (2.14) can be rearranged into the following standard form:

DO)+h(8,0)0+G(0) =T, (2.15)

where
8= [91,92,93,94,95]r

Ty= [7;‘,?;3,7;3,1;,4,7'95]7'

Each term in equation (2.15) is formulated as follows :

where

D, =1, +md’ +(m, +my +m, +m)¢’

D,, =[m,€ d, +(my+m,+ms)t ¢, ]cos(e -0,)
D,, =[m,€ d ,Jcos(8, - 6,)

D, =[m, l(Z -d )+m £,¢,]cos(8, +86,)
Dy =[ml (€ —ds)]cos(el +8;)

Dy =D,

D, =1, +m,d,’ +(my +m, +m)¢,’

D,, =(m,¢.,d ,Jcos(8, -8,)

D,, =[m¢, (L’ -d,)+m, E ,€,]cos(6,+6,)
D, =[m, (¢, —-d )]cos(e +9 s)

Dy, =Dy,

Dy, =Dy s

Dy, =1, +myd;,”

Dy, =D, =0

D, =D,

D, =D,

D, =D, . .
Dy=I,+my(l,—-d,) +m,

Dy =[msl (£5—ds)]cos(0, —8y)

W
i



Dy, = Dy

D;, = D,

D53 = D,

Dy, = D4s s

Dy =1, +mg(€, -ds)”

h(6,8)8 = col[z 49, } (2.17)
[ (g=1)

m —[m,e a, +(m; +m, +m5)l' £, jsm(e )
s =[my¢, d ]Sm(e -8;) )

hm —[m, E (e d )-4-.m5€‘€4]sm(9l +0,)
hss = —[m5€ ¢ ds)]sm(el +85)

&L

= m,l d,]sin(8, -0,)
“ =—{m,¢, (( -d, )+.m ¢,¢,]sin(6, +0,)
hys = ~[mg€, (€ a's)]sm(92+6,)

ll

S
[

hyy = =hys

Ry = o

Py = hyss =0

hyy = My

Ry = oy,

hyy =0

hys =[msl (€5 -d,)]sin(6, —0;)

oy = Myss

Ny = Pass

hgy3 =0

gy = =hyss

G, =-[md, +m¢, +my€, +m,l, +m,€ ]gsin®, (2.18)
G, =-{myd, +myl,+m,l, +m,)gsin0,
G, =-[m,d,]gsin6,

G, =[m,(¢,-d )+m5€ JgsinB,

G, =[ms(€5s—d )]gsmG

The equation of motion (2.15) is further modified into equation (2.19) using the relative

angle for the control purpose.
D,(@g+h,(q9q+G, () =T, (2.19)

where Dy(q) is the 5x5 symmetric, positive definite inertia matrix, _(q,¢)q is the 5x1
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vector of centripetal and Coriolis torques, G, (g) is the 5x1 vector representing
gravitational torques, and T, is the 5x1 vector of control torque applied at each joint. The
relative angles (g;) between links are used instead of the absolute angle 8; of each link
(see Figure 2.2). The relationship between the relative angles (¢} and the absolute angles
(0,) is as follows:

g, =9 q, =6,-8, q,.=6,-8,
g; =0, +8, q,=06,-6;

The detail modification of the equations of motion (2.19) can be found in Appendix II.
The same set of equations of motion is used for both the left leg support, as well as the

right leg support.

2.4.2 Impact with Walking Surface Phase

At the completion of each step, the swing leg (leading leg in contact) comes into a
sudden contact (impact) with the walking surface. The angular velocity of each joint will
be subjected to jump discontinuities. The support end of the biped is then transferred to
the tip of the swing leg and the support leg (trailing leg in contact) leaves the walking
surface immediately. That is the moment the biped robot is not supported by either leg.

The constraints of x; and y; are constant and x, = y, =0, which were valid in the single

support phase, are violated. This implies that neither of the equations of motion (2.15)
nor (2.19) can be used here. The dynamic model developed for the single support phase
cannot apply to this phase. The biped robot is so treated as both legs are in the air and
another set of equations of motion must be derived. The dynamic model of the biped

with both legs in the air is shown in Figure 2.3. To fully describe the configuration and



the position of the biped, in addition to 6; (i=1, 2...5), the coordinates x; and y; at the end

of the trailing leg of the bipedal model are also needed.

Y,
va

0 x, 7777777777 77777 777777
Figure 2.3 Biped with Both Legs in Air

From the configuration of the biped robot in Figure 2.3, the coordinate and the velocity of
the center of mass of each link are as follows:

xc, = x, +d,sin6,

ye, =y, +d, cos8,

xe, =x, +¢,sin6, +d,sinb,

ye, =y, +¢,c0s0, +d,cosb,

xc; =x, +£,sin0, +¢,sin0, +d;sin6,

ye, =y, +£,c0s0, +¢,cos0, +d, cosb, (2.20)
xc, =x, +¢,sin@, +¢,sin0, +(¢, —d,)sin6,

yc, =y, +£,c0s0, +¢,cos8, — (¢, —d,)cos0,

xcg =x, +£,sin0, +£,sin0, +¢,sin0, + (¢, —d;)sin b,

ye, =y, +£,c0s6, +¢,cos8, -£,cos8, — (£ —d;)cosb;

and
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o = X, N d, cosé, \é
[ f’a —d, sin 8, l

(%,) ( ¢, cosb, 9, (d,cos8, ).

ve, = + ¢,5in, 6, + ‘} ) e‘
Vs sin —4a,Sinu,
> < >€ cos0, ). ¢,cos6, ( d;cosH,

ve, = + / 5 8, + ¢ sin®. e, + 4, sin6, 9, (2.21H)
Vs ) \—¢,sinb, sin sin

e, = ib<+ ¢, cos8, <9 +>€ cos@, <é +>(£ -d )cose

">y,< \- -, sme< ' >—€zsm92< ? >(€4-d4)sm64

b3 2, cos9, . ?,c0s8, £,c080,). (& -d)cos, ).

SR Bl I Bl S Do) B il e
\Js) (—¢;sinf, \—¢,sin6, ) \ £,sin@, (45 —d,)sinB,

Following the same procedure as for the single support phase, the kinetic energy and the
potential energy equations for each link can be determined as follows:

Link 1

K, (1 +m,d *)8,’ +;I)-m [%,> +p,° +2d,0,(%, cos 8, — y, sin 0,)]

)
P =m,g(y,+d, cos8) (2.22)
Link 2
l[ 2]y 2, | 24 2 A e A
K, =511 +m,d, B, +-E-m2(£l 8,” +2£,8,(x,cos0, —y,sin0,)
+2d,8,(%, cos8, -y, sin®, ) + 2¢,d, cos(8, —62)9192)+%m:(.\%&2 +3,)
P, =m,g(y, +¢,cosO, +d, cosB,) B (2.23)
Link 3
1 g2, 1 /2, 24 2 X
K, =21, +myd;? B, #8767 +0,70, +2,8, cos(®, ~0,)0,0;
+2¢,d,cos(9, —0,)6,8, +2¢,d, cos(6, —6,)8,6,]
+-é-m,[:&f +7,% +24,0,(%, cos8, — y, sinB,) +2¢,0,(x, cos8, — 3, sin6,)
+2d,0,(%, cos 8, — y, sin9,)]
P, =myg(y, +£,cosB, +{,cos6, +d,cosf;) (2.24)
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Link 4

1 TR | - e ..
Ko=2[l em, =d) B +m,[68 +2,%0, +20,¢, cos(d, -6,)8,6,
+24,€, cos(®, +6,)8,6, +2¢,(¢, —d,)cos(®, +6,)8,8,]
+;m4[.tf +y,° +2¢,8,(, cos8, -y, sinB,) +24,6,(, cosB, — y, sind,)

+?-.-(€4 ~d,)0, (%, cos8, + ¥, sind,)]
P, =m,g(y, +¢,cos0, +¢,cos0, —(¢, —-d,)cosd,) (2.

9
"~
W
A

Link 5

1 14 2 152 12402 250 A A
K, =;[[5 +mg(€ —ds)“bs’ +%m5[£,'91‘ +¢,70," +£,70,” +2¢£,¢, cos(6, -90,)6,6,
¢

+20,¢, cos(8, +8,)8,8, +2¢ (¢, —d;)cos(®, +6,)8,8, +2¢£,¢, cos(8, +6,)8,8,
2¢,(¢, —d;)cos(0, +6,)0,6, +2¢,(£, —d;)cos(B, —6,)6,0,]

+;m,[.ef +9,% +2£,8,(%, cosb, - y,sin6,) + 2,0, (%, cosb, - y, sinb,)
) +2¢,0,(x%, cosO, + y,sin@,)+2(¢, —d,)0,(%, cosO, + y, sin6,)]
P, =m;g(y, +¢, cosO, +¢,cos6, -¢,cosO, — (¢, —d;)cosB,) (2.26)

The equations of motion are derived by substituting equations (2.22) to (2.26) into the

Lagrangian equation of motion (2.27).

o0

a

d { aK} oK , oP 227)

it =T,
dt e, o,

By rearranging the equation (2.27), the equations of motion can be written into the

following standard from:
D,(0,)8, +4.(8,.8,)8, +G,(8,)=T, (2.28)
where 6,=[6 82 85 84 05 x; ys], 0, (=1,2,....5) represents the angle of each link with

respect to the vertical, and (x, y3) is the position of the point of support.

Each term in equation (2.28) is derived as follows:

D,=D; (i,j=12,...5) (from equation ( 2.16))
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D,s =[md, +(m, + my +m, +m)f ]cosB,
D, =-[md, +(m, +m; + m, +my)¢ ]sin,
Dalé =[m2d3 +(m3 +m, +m5)ZZ]C0592

D,y =-[m,d, +(m; + m, +mg)¢,]sin@,
D, =[myd,]cos8,

D,3; =-[myd;]sin8; (2.29)
D, =[m, (¢, —d,)+ml ]cosB,

D,y =[m,(¢, —d,)+msl,]sinb,

D, =[ms(€s—d; )]cos6;

D, =[ms(¢5 -d,)]sin8,

Dyt =D,s D,3=Dyg D,ey =D,y
Dyoy =D,i5  Dogs = Dys4

Dys =(m +m, +my + m, +my)

Dy, =0

Dyy=D,; D;n=D,; D,y=D,,
D = D Da‘IS = Da57

D =0

D =(ml +my +my +m, +m,)

7
hy = h,, where j#7

=l

By ==[md, +(m, +m; +m, +m)?,10,’ cos6,
Pyr = —~[mydy +(my +m, +mg)e,18," cos®,
By =-[m,d, 10, ? cos 0,
Ay =[my(¢, -d )+m,£ 16,% cos®,
hyyss =[ms (€5 ~d )]9 COSO
Pares =
h,(8,.8,)8, =collh,] (i=12,..,7) (2.30)
h,=h (i=12,...5) (from equation (2.17))
7
h,e = Zhao” where j#6
j=l
Bogy =—[md, +(m,+m,+m, +m;)¢,10,”sin 9,
Ry = ~[m,d, +(m; +m, + ms)ez]éj sin 6,
Poess = '[m3d3]e315m 9, .,
Pogas = =-[m (€, —d-t)-*:’?se-l]e4- sin @,
hagss = —[ms (€5 —ds)]0, sin B,
h e =
G,=G (=12..5) (from equation (2.18)
G, =0 (2.31)
G, =(m +my+m; +m, +m;)g
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T,

a

T =

T, (=L12...5) (2.32)
T.,=

The detailed derivation of the above equations of motion (2.28) can be found in
Appendix II. The equations of motion (2.28) are used for the calculation of the
instantaneous changes of joint angular velocities at the moment when the free end of the
swing leg collides with the walking surface.

During the single support phase, the free end of the swing leg is moving in the
forward direction. It gets ahead of the body and comes into sudden contact with the
walking surface at the moment of the completion of each step. At this instant, the impact
phase takes place. This is assumed to take place in an infinitely small time interval and to
be perfectly plastic. Perfectly plastic is defined as the situation in which the tip of the
swing leg does not leave the walking surface after impact with the walking surface and
the velocity v, of the tip of the swing leg immediately becomes zero. Due to the collision
with the walking surface, there are sudden changes in the angular velocity of each joint.
It is therefore necessary to compute the new joint velocities each time just after each
collision between the free end and the walking surface. It is assumed that there are no
changes in the angle displacements of the joints.

The equation representing the impact can be formulated by the following
procedure. Let x, be the position of the free end of the swing leg, with respect to the
fixed coordinate frame, which comes into contact with the walking surface. We can
express it as
x.= x:(0) (2.33)

where 6 = [0,,. ..,Gn]ris the vector of generalized coordinates of the system.



If X omace 1 the contact point, the impact will occur when
X(0)=Xcontact (2.34)
This represents an external constraint to the motion, which implies that a generalized

constraint force F is introduced into the system (Tzafestas et al. 1996),

A PN
L8, |

.~
8]
10
ih

~

where J, is the Jacobian and A is a suitable column vector of Lagrange multipliers. The
equations of motion just before the impact are the same as (2.28)

D,©.)8, +h,(©,,8.8, +G.@,) =T,
and the equations of motion just after the impact are
D,@.8, +k.@®..8.8, +G.@.)=L, +F, (236)
Integrating the equation (2.36) over the infinitely small time interval during the impact

(40, ta+AL] (£o is the instant of impact).

g+ g+ to+AL

lim rfg‘,@a)@adw lim ‘fwa@‘,,_e_»ga +G,@,)-T,Jd = lim ,I.Ea at (237)
asAt -0

fo+&2
L% :I[ba@ﬂ’_e_a)ga +Qd@a)_Zg]dt —)0

9

and so the equation (2.37) becomes
. [PV fq+d
D,©,)A= [Fydet=J, [rar (2.38)

fe

Since the relative velocity Ay, =v, (¢, +At)-v,(t,) between the free end and the
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walking surface can be measured, it can be used for the computation of A§. First of all

we have to find the relation between A@and Av,. We have

v,=J,8, (2.39)
and so
Ve = Voot = L8 = Voomaur (2.40)

If the point with which the biped comes into contact is not moving (Veonae=0), then we
have
(0,0t +A0 =8, ()] = vt + A = v, (1) = J,AB = Ay, (2.41)

Therefore, from (2.35), (2.38) and (2.41), we can obtain
. [R5
J,A8= 4{2;‘ ©.)-L, j&dr} = Ay, (242)
L)

Hence

=00

a

The equation for calculating the instantaneous changes in the angular velocities A8, of the

links of the biped robot at the moment of impact between the free end and the walking
surface is formulated from the equations of motion (2.28) of the dynamic model with
both legs in the air. From the above formulation, the impact formula can be represented
by the following equation:

a0=D,"J, (LD, L) (Av,) (2.43)
where

88 =0 1y ~Bsein

AZ: = Beqfrer —!ebejbre



D, is the 7x7 inertia matrix defined in the equations of motion (2.28), and J, is the 2x7
Jacobian matrix of the biped in the air which is given as the following:

ox
J = =< 7 L
S (2.44)

-

Where x, is the position vector [x., y.]” of the free end

J,(L1)=¢,cosB, J,(2.1) =—¢,sinf,
J,(1,2) = ¢, cosb, J,(2,2)=-¢,sin0,
J,(13)=0 J,(2,3)=0
J,(1,4)=¢,cosH, J,(2,4)=¢,sin8,
J,(1,5) = £5cos8; J,(2,5) =¢,sinB,
J,(1,6)=1 J,(2,6)=0
J,1N=0 J,2,7) =1

Since the velocity v, of the free end becomes zero immediately after the impact with the
walking surface,

AV, ==Y, sepore (2.45)
Therefore, equation (2.43) becomes

;]

X after

=0uore + 0. L (LD L) (Yign) (2.46)
where 6 pefore A0 8 o are the velocities of the links just before and just after the impact.

It should be remarked here again that the angular displacements of the joints during the

time interval of the impact do not change.

2.4.3 Support End Exchange Phase

Simultaneously, as the free end collides with the walking surface. the end of the
support leg leaves the walking surface immediately and the support end transfers to the

end of the swing leg that comes into contact with the walking surface. An instantaneous



exchange of support from one end to another end takes place. The duration of this whole
process is assumed to be the same as the duration of the impact of the free end with the
walking surface. During the instantaneous exchange of support leg, individual angular
displacements and velocities do not physically change. Since the roles of the swing and
support leg will be exchanged, in order to use the same set of equations of motion of the
single support phase for both legs, the numbering of links has to be relabeled. Such
renumbering causes discontinuities in the angular displacements and velocities. The re-
labeling scheme is as follows:
Link | < Link 5 Link 2 < Link 4 Link 3 does not change

These lead to the following changes:

0,(0)=-8,(T), 6,(0)=-6,(T), 8,(0)=06,(T)

0,(0)=-6,(T), 6,(0)=-6,(T)

6,(0)=-6,..5(T), 6,(0)=-8,.,(T), 8,(0)=8,,,,(T)
0,(0)=-6,,,,(T), 6,(0)=-8,,,(T)
where

0(0) and Q(O) is the initial conditions of next step
6(T) is the terminal posture of the completion of each step before switching support leg, and

8 - (T) is the angular velocities after impact at the completion of each step.

The following transformation matrix is formed from the above relationships to describe
the effect on the angular displacements and the angular velocities immediately before and

after the switching.
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(g, ] [1 -1 -1 =1 1.0 0 0 0 0] [q]

q, 00 0 0 1 0 0 0 0 0f {q

4, 00 0 -1 00 0 0 0 0f |q

q; 00 -1 0 00 0 0 0 0 |q

q, 0L 0 0 00 0 0 0 0 |q,

: = , (2.47)
4, 00 0 0 01 -1 -1 -1 1| |4q,

q, 0 0 0 0 00 0 0 0 1{|q

g, 0 0 0 0 06 0 0 -t 0 4,

d, 00 0 0 00 O -1 0 0f |qg,

95 Jyjeromeing L0 O 0 0 0 0 L 0 0 0f [dsyimmnm

The new angular displacements and angular velocities calculated from the above equation

are used as the initial conditions for the next step.

2.5 Summary

This chapter presented the methodology for the derivation of equations of motion
to describe the locomotion of a biped robot walking on a flat horizontal surface. A five-
link kinematic model of the biped robot was developed which has sufficiently few
degrees of freedom to keep the equations of motion to a manageable level, while having
enough degrees of freedom to approximately describe the locomotion. The complete
walking motion in one step being studied includes three phases: the "single support”
phase, the "impact with walking surface" phase, and the "support end exchange" phase.
The equations of motion for the single support phase were developed by using the bipedal
model with one support leg and the equations of motion for the impact phase were
developed by using the bipedal model with both legs in the air. Instantaneous sharp
changes in the angular velocities occurred during the impact between the free end of the

swing leg and the walking surface at the completion of each step. Simultaneously. the
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support end transferred from the end of the support leg to the end of the swing leg, which
came into contact with the walking surface. The roles of the two legs were exchanged.
Techniques for handling the impact with the walking surface and the exchange of support

end were also presented in this chapter.
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Chapter 3

Joint Angle Profiles Planning for the Five-Link Biped Robot
Walking on a Flat Horizontal Surface

3.1. Introduction

Joint angle profiles planning for a bipedal locomotion system is the generation of
a set of joint angle movements at each time instant that leads to a desired walking motion.
In this chapter, the methodology used to design the joint angle profiles as the prescribed
walking motion of the five-link biped robot is presented. The joint angle profiles planned
are aimed at realizing the walking motion of the five-link bipedal robot on a flat
horizontal surface in the sagittal plane during the single support phase only and can be
used for tracking of the control system. Hurmuzlu (1993a) developed a systematic
approach to formulate constraint functions that can be used to synthesize a five-element
bipedal automaton. These constraint functions were cast in terms of physically coherent
parameters of human gait and used as objective functions by a controller. In the
following section, Hurmuzlu's approach is adapted to formulate constraint functions in
terms of the kinematic relations between links; these constraint functions are then used to
generate the profiles of joint displacements, velocities and accelerations of the five-link
biped robot. We improve the constraint functions by replacing the constraints imposed

on the swing leg used in Hurmuzlu's work (1993a) with the constraint of keeping the total
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mechanical energy of the bipedal robot constant. Five dynamic constraint functions are
defined by overall walking speed, the support knee bias and upright posture of the upper
body. The last constraint function is defined to keep the mechanical energy as a constant.
The purpose of this constraint is to test the hypothesis that given only potential energy at
the beginning of the step, the swing leg can be carried over by gravity. The bipedal
walking motion realized by the desired joint angle profiles has certain characteristics of
human walking. Since repeatability of movements is a fundamental characteristic of
bipedal walking, it is very important that the designed profiles of joint angles ensure the
realization of the repeatability condition for steady and continuous walking. That means
the equality of the joint angles at the beginning and at the end of each step. Only the set

of joint angle profiles satisfying this condition is acceptable for bipeds.

3.2 Joint Angle Profiles Planning

Generally speaking, the joint angle profiles of the support leg, the upper body and
the free swing leg are not unique. The objective in designing the joint angle profiles is to
obtain an acceptable walking motion such that the biped robot can transport the whole
body across the walking surface safely. The constraint functions formulated in the
following section are for the purpose of generating joint angle profiles of the bipedal

locomotion across a flat horizontal surface.

3.2.1 Constraint Functions

Five dynamic constraint functions are developed in this section. The constraint

functions, which can be used to prescribe a specific locomotion of the planar five-link
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biped robot during the single support phase, are formulated as kinematic relations. It
should be mentioned here that, in order to simplify the mathematical presentation, the
number of constraint functions is equal to the number of generalized coordinates of the
biped robot.  The five constraint functions can be described as the following:
(1) The erect body posture

One of the basic aspects for bipedal walking is to always maintain the upper body of
the biped robot at the upright position. That means that the net rotation of the upper body
is kept zero at all the time (85(¢) = 0). This is valid as long as normal walking motion is

considered (Winter 1991). The following equation enforces this condition:

Since we have the relationship that
0; =4,-¢: -4,

S| can be expressed in terms of the relative angles
S1=9=4, —9, =0 (3.1)
(2) The overall progression speed

The overall progression speed is defined as the linear velocity of the center of
mass of the upper body in the forward walking direction (i.e., the positive x-direction).
The steady progression speed is maintained by

xc, =V,

where Xc, is the velocity of the center of mass of the upper body in the x-direction and 7,
is the desired progression speed. This selection of progression speed gives us some

freedom to control the overall walking speed of the biped robot. We have
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Xcy =12, -c0s(qe) gy + ¢, -cOS(go —4)-(do —41) +
dycos(q, — 4, —4,) (4o — 91 — 4)

From the above kinematic relations of the 5-link biped robot, the following constraint

function is obtained

S, =¢,-cos(qy) 4, +¢, 'CPS(QQ "q!)‘(‘?o -q,)+
dycos(qo =9, —9:) (o -4 —4) -V, =0 (3.2)

(3) The bias of the knee of the support leg

For a human knee joint, a locking mechanism is embraced which allows the knee
to bend in one direction only and lock at certain positions. This mechanism is very
important for the support leg since it carries the weight of the whole body. Lacking this
mechanism, the support knee has a tendency to collapse. However, the five-link biped
robot does not have this locking mechanism included in the model to prevent the knee of
the support leg from bending backward and to prevent the links from collapsing. In order
to obtain a human like gait pattern, the knee of the support leg (q1) has to be fixed at a
certain angular position during the single support phase. This constraint function is given
by
S,=¢,-0=0 (3.3)
where o is the bias angle.
(4) The coordination of the support leg and swing leg motion

For normal continuous walking, the biped robot is moving forward in the positive
x-direction. The free swing leg also has to move in the same forward walking direction.
In order to specify the walking direction, the following must be set.

x; =2xc,
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where, with respect to the fixed coordinate frame, xr is the x-coordinate of the tip of the
swing leg and xc3 is the x-coordinate of the center of mass of the upper body. This
relation implies that the center of the upper body is always about the center with respect
to the tips of the two legs. This relation also implies that the tip of the swing leg moves
at twice the speed of the center of mass of the upper body in the positive x-direction. We
have
x, = ¢,sin(g,) + €,sin(g, - q,) + € sin(—q, + q, + g, + q;) + €5 sin(~q, + ¢, + g, + g, = q,)
and
xcy = ¢, sin(qy) + £, sin(g, — 4,) + d;sin(q, = 4, = 4,)

From the above kinematic relation, the constraint function is obtained as

S, = ’-’ISinﬁqo) +¢,sin(q, — q,) + 2d, sin(g, —q, — q,) — £, sin(—q, + g, + ¢, +q;)
—{sin(-gp + ¢, + 4, +4;—q,) =0 3.4)

(5) Constant mechanical energy
Mechanical energy is defined as the energy state of any link or the whole biped
robot system at an instant in time. Mechanical energy comprises translational kinetic
energy, rotational energy, and potential energy (¥=K+P). This constraint function, which
keeps the mechanical energy of the whole body constant, is formulated by setting
V=0
where ¥ is the time derivative of the mechanical energy and is defined as

p=

Cdr ek,

and

X; =[qo"Yt:qz"thJ»40:41,‘?'1,‘?3:44]

53



Since, mechanical energy is comprised of translational kinetic energy, rotational kinetic
energy and potential energy,

Vi=K,+ P, (i=1,...5)
The total kinetic energy including the translational and rotational kinetic energy of each

link is as follows:

-tk

t=1

with
K = im,vc,.z -|»ll,9,2
2 2
The potential energy of each link is as the following:

b
P=)P
r=1
with
F=mgyc
where g=9.81 m/sec’ (acceleration of gravity)
The zero reference for the potential energy is set at the ground level of the walking

surface in the fixed coordinate frame. The detailed derivation of the kinetic energy and

the potential energy of each link can be found in Section 2.4.1 and the detailed derivation

of ¥ can be found in Appendix IV.
The constraint function is represented in the following form:

5,=2% =0
ox,

i
where

X, ={44.9,,92:93.94590:9:92.95.9: } and X, =1{44.4,,4::93.94:90:9.4+ 9394}
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Therefore,

do
q
q:
ds
S=[6V oV oV v v ¥ v v v 6V]' g
* o, &q &, 0q, o, 34, o4 94, 3G, 8q,] |dq
4
9
q;
9,

=0 (3.5)

By solving equations (3.1) to (3.5), a set of joint angle profiles can be found and can be

used as the desired trajectories for tracking control.

3.2.2 Approach for Solving the Constraint Functions

The problem we deal with here is to find the corresponding joint displacements,
velocities and accelerations for a desired motion. Once the constraint equations are
solved, the desired motion can be achieved by moving each joint to the determined
values. This problem involves solving the above constraint equations. The constraint
equations, i.e., equations (3.1) to (3.5), developed in Section 3.2.1 are a combination of
differential and algebraic equations. Since the set of differential and algebraic equations
is very inconvenient to handle in analytical form, the equations are therefore solved in
numerical form. Solving a set of equations consisting of differential and algebraic
equations (DAE) alone is a very challenging problem. There is no general method to
solve such a set of differential and algebraic equations. In addition, the solution set of the

angular displacements, velocities and accelerations of joints obtained from solving the
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DAE problem must also satisfy another two extra conditions. Firstly, the repeatability
condition which requires that the configuration of the biped obtained at the end of each
step must be very close to the configuration at the beginning of each step, and secondly,
the knee of the swing leg does not bend backward.

By observing the five constraint functions, in equations (3.1), (3.2) and (3.3) only
the relative angles of the support leg are involved. Therefore, we can solve the equations
(3.1), (3.2) and (3.3) together to obtain the motion of the support leg first. Equations
(3.1) and (3.3) are algebraic equations and equation (3.2) is a differential equation. In
order to solve them together we need to obtain the time derivatives of these three
equations. The detailed derivation of the time derivatives of equations (3.1), (3.2) and
(3.3) can be found in Appendix V. Now we have three unknowns of angular
displacements, three unknowns of angular velocities and three unknowns of angular

accelerations involved in equations (3.1), (3.2) and (3.3) and their time derivatives, i.e.,
nine equations. Instead of solving $=0, $ =0, and § =0, we adapted the following
procedure (Hurmuziu 1993b) to solve the equations numerically.

The constraint functions Sy, S; and S3, in equations (3.1), (3.2) and (3.3), can be written as

S=(Sy,...83]"

Let that

S=C8§+C,8+C,S=0 (3.6)
where Cy, C; and Cj; are 3 x 3 matrices containing the parameters designed as below. If
S; is a holonomic constraint, the ith row of C; is set to ¢, where ¢,={1, 0, 0, ..., 0}, c:={0,
1,0, ..., 0}, etc. Ifthe constraint is nonholonomic, the ith row of C| is set to 0 and the ith

row of C; is set to ¢;. The matrices C; and C; are diagonal and contain selected
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parameters such that the solution set of S is asymptotically stable about the origin (i.e., S,
— 0 as t - 0) (Hurmuziu 1993b). Since we used equation (3.6), the joint angle profiles
obtained will only satisfy equation (3.6) instead of the equations (3.1) to (3.5) and their
time derivatives individually.
The matrices, C,, C, and C3, for equation (3.6) are chosen as follows:

C, =diag{ 1,0,1} C, =diag{ o,l,a } G, =diag{ B,A.B }

where

A, =—%i %i—aﬁ B > 4a > 0)

4
-

Now the second order differential equation § (3.6) can be solved. The expressions of
the angular displacements, velocities and accelerations at t>tq are obtained in terms of S,,
the initial values of the angular displacements, velocities, accelerations and the initial
time tg.

Now using equations (3.1), (3.2), (3.3) and their time derivatives, the following

expressions are obtained:

q=5+0 (3.7)
J.Sz dr—n,(1)

G = arctan(M] +arcsin = = (3.8)
¢, +£,cos(q,) Jle, + €, cos(g)F +[£,sin(g,)T
g, =9, —q, =S, 3.9

where

N, (6) = -Vp(t —ty) =€, sin(qq(£)) = £, sin(qq (¢o) — 4, () — dy sin(S, (1, ) + d; sin(S,)



g =S, (3.10)

.S, +Vp—-d,cos(S,)S, +¢,cos(q, —4,)4;

q 3.11
° ¢, cos(q,) + £, cos(g, —q,) )
Gy =dy—4 -5, (3.12)
G =3, (3.13)
. Lt

g, = n{6) 3 (3.14)

(¢, cos(q,) +¢,cos(q, —q,))

Gy =40~ - S, (3.15)
where

1, () =8 ,~d, cos(S,)S, +d, sin(S,)S,* + ¢, cos(q, —q,)d, + ¢, sin(q, —q,Xdo — 4,)d; +
[11 sin(q,)q, +1» Sin(qo -, Xq0 — 4 )]*[S: +Vp—d3 COS(SI)SI +11 cos(g, —4,)4,]

Substituting the numerical solutions of S S, 53 and their time derivatives into equations
(3.7) to (3.15), we can obtain the values of the angular displacements, velocities and
accelerations associated with the support leg.

In order to obtain the motion of the swing leg, we developed two approaches to do

so. The first approach is to derive the time derivative of equation (3.4) twice to obtain
§, =0. With the solution obtained from equations (3.7) to (3.15), S, =0 and Ss=0 (i.e.,
equation (3.5)) are solved simultaneously. The time derivatives of S4 can be found in
Appendix V. The second approach is to let

CS,+C,S,+C;S, =0 (3.16)
where

C=1, C»=a. and C3=f

and simultaneously solve with Ss=0 (i.e., equation (3.5)).
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Thus the numerical solutions for the angular displacements (g; and g4), velocities and
accelerations associated with the swing leg can be obtained. The two approaches are
used to solve this problem numerically. Since the joint angle profiles obtained from the
second approach are better than the first approach in satisfying the two extra conditions,
which are the repeatability condition and the condition that the knee of the swing leg does
not bend backward, the second approach is chosen for obtaining the desired joint angel

profiles.

3.3 Summary

The methodology used for planning the joint angle profiles as the prescribed
walking motion of the five-link biped robot during the single support phase in the sagittal
plane was presented in this chapter. Five constraint functions were formulated as the
kinematic relations between links that would be used to generate the profiles of joint
displacements, velocities and accelerations for the bipedal walking. The difficulty of
solving the constraint functions was addressed. The five constraint functions were a
combination of differential and algebraic equations. Solving the differential algebraic
equations together was challenging. In addition, the solutions had to satisfy the
repeatability condition and the condition that the knee of the swing leg cannot bend
backward. That made the problem even harder to solve. The approach used for solving
the differential algebraic equations was presented. The prescribed human-like walking
motion generated through this method should match the motion described by the five
constraint functions, and should satisfy the repeatability condition and the condition that

the knee does not bend backward.
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Chapter 4

Motion Control of the Five-Link Biped Robot Walking on a
Flat Horizontal Surface

4.1 Introduction

In this chapter, the motion control problem is considered. Given the nonlinear
dynamic system of the biped and given a set of desired angle profiles for the joints, a
control technique is applied to the system for choosing the input joint torques such that,
from any initial state, the movement of each joint follows the desired joint angle profiles
and the tracking errors tend to zero. In Section 4.2, brief background information about
linear and nonlinear control techniques is given. Uncertainties usually exist in models of
physical systems. A control technique that can account for uncertainties existing in the
system is practically useful. In Section 4.3, the problem of parametric uncertainty is
presented. Physical parameters of the five-link biped robot, including the link masses,
the link moments of inertia, the link lengths, and the positions of the centers of mass, are
the sources of uncertainties considered in this study. Two nonlinear control techniques
are employed for tracking control of the bipedal locomotion system. In Section 4.3, the
traditional computed torque control technique is presented and in Section 4.4, the sliding

mode control technique with a modified control law is presented.
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4.2 Background Information

The control strategy in this study is based on motion tracking during the forward
walking motion of the five-link biped robot. The equations of motion (2.19) developed in

Chapter 2 describe the dynamic motion of the biped during the single support phase. The

terms h (4,.4)4 and G,(g) include centripetal, Coriolis, and gravitational torques, which

are highly nonlinear and their effects increase drastically as the angular velocities of the
biped increase. One approach to controller synthesis is to design a linear controller based
on the linear approximation of the nonlinear system. Linear approximation of a bipedal
locomotion system has been used in some studies (Gubina et al. 1974, Golliday and
Hemami 1977, Hemami and Wyman 1979a, 1979b, Furusho and Masubuchi 1986 and
1987). The nonlinear elements are linearized by assuming that the system is operating
within a very close neighborhood of some operating points and an approximate model is
derived with a linear relationship between the input and output of the system. A state
feedback control law is then used to control the linearized system. According to Slotine
and Li (1991), linear control method is not suitable for controlling nonlinear system, such
as bipedal locomotion system. The reason behind this is that linear control law neglects
all the nonlinear forces associated with the motion. The nonlinearities in the system
cannot be compensated properly and, as a result, the accuracy of the trajectory tracking is
reduced (Slotine and Li 1991). This can be demonstrated easily in robot motion control
problems as the speed of motion increases. Nonlinear dynamic forces are involved, such
as Coriolis and centripetal forces, and vary as the square of speed. The linearized control
system neglects these forces and the controller's accuracy quickly degrades (Slotine and

Li 1991). Besides, linear control law is based on the assumption that the system state
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remains in the close neighborhood of some operating point. As a result, biped robots can
only walk with a very small swing angle. For a larger swing angle, i.e., larger step
length, biped robots will fall before they can complete one step. Therefore, linear control
law is not suitable for the bipedal locomotion system considered in this study. Recently,
researchers are more interested in the development and application of nonlinear control.
Feedback linearization technique can be used for nonlinear control design. The main idea
is to algebraically transform a nonlinear system dynamics into a partially or fully linear
one, so that linear control techniques can be applied (Slotine and Li 1991). This is
achieved by exact state transformations and feedback that is different from linear
approximations of the dynamics. A conceptually simple nonlinear control called
computed torque control, which is based on the feedback linearization technique, can
fully compensate the nonlinear forces in the nonlinear system and lead to high accuracy
control for a very large range of robot speeds. Computed torque control requires full-
state feedback and perfect knowledge of the system parameters. Due to the latter
requirement, this controller becomes practically limited since most physical systems
contain uncertainties. Uncertainty can be classified into two major sources: parametric
uncertainty and unmodeled dynamics. The only type of uncertainty that is considered in
this thesis is parametric uncertainty. Sliding mode control is one class of the robust
control technique that can account for uncertainties. Nonlinearities are intentionally
introduced into the control law that tolerate the parametric uncertainty to make it robust.
Sliding mode control has been successfully applied to robot motion control systems
(Chang and Hurmuzlu 1992, Tzafestas et al. 1996). The sliding mode control law

presented in this chapter is designed based on the sliding mode control technique.



4.3 Parametric Uncertainty

Modeling of nonlinear systems is usually imprecise. Two major sources, namely,
parametric uncertainty and unmodeled dynamics, contribute to imprecision in the system.
Parametric uncertainty stems from the uncertainty about the actual system. For example,
the physical parameters of the system are not known exactly. Unmodeled dynamics
comes from assumptions incorporated in the system during modeling in order to simplify
the presentation of the system dynamics (Slotine and Li 1991). In this thesis, only
parametric uncertainty is considered.

The parametric uncertainties considered are the uncertainties of the physical
parameters of the biped. These physical parameters include the mass (m), the length (/)
and the moment of inertia (/) of each link, and as well as the position of the center of
mass of each link (d) with respect to the end of the link. Although the uncertainties of
those physical parameters are not known, we assume that the bounds of the values of
those parameters are known. For example, the masses of the links are known with
uncertainty e,x100% (where 0<e,<l). Similarly, let e;, ¢; and e; be the uncertainties in
the link moment of inertia (J), the link length (/) and the position of center of mass (d)

with respect to the end of the link, respectively. Due to the presence of parametric
uncertainties, the terms D,(6), A, (6,8)6 and G,(B) in equation (2.15) are estimated as
Dy(8) , hy(6,6)0 and G,(6). The bounds between the actual terms and the estimated

terms are defined as follows. These bounds are used to calculate the estimated terms,
which will be used in designing the control algorithms when facing the above parametric

uncertainties.
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Incorporating these uncertainties, en, €;, €; and ez, ADg Ahg and AGp can be computed
using equations (2.16), (2.17) and (2.18) as follows:

AD, = AD,

Y

(i, =12,...,5)
where

AD, =e, I, +md [(1+e, )1 +e,) —1]+(my +m, +m, +m)e  [(1+e,)(l+e)* —1]
AD,, ={m,¢ d,[(1+e,)1+¢)1+e,)-1]
+(my+m, +m)¢,[(1+e,)(1+e)* —1]}cos(®, -0,)
AD,, = {m,f,d;[(1+e, )1 +e)(1+e,)~1]}cos(d, —8;)
AD,, ={m¢,(¢, -d,)[(I +e, )1 +e)(1+e,,)-1]
+mgl €, [(1+e,)1+e)" —1]}cos(d, +8,)
AD\; ={m € ,(¢; —d;)(1+e,)1+e)(1+ey,s)—1]}cos(8, +86,)

A-D"l A-Dl‘,
AD,., =e, [, +m,d, [(1+e Yl+e, )'—1]+(m3+m4+m,)€ [(1+e Y1+e) —1]
—{m3€ d [(1+e )(l+e,)(1+ed) 1}}cos(8,
AD,, ={m¢, (f —d,)(1+e,)1+e)(1+e,)~ 1]
+mgl, ZJ[(1+e Y1+¢,)* -1]}cos(0, +8,)
AD,; ={my¢, (E -d){(1+e, )(1+e,)(l+e,d5)—l]}cos(9 +85)

AD, =AD,;,

ADy, =AD,, . .

ADy; =e [y +mydy"[(1+e, X1+¢e,)" —1]

AD, = AD;; =0

AD, =AD,

AD,, =AD24

A‘D43 = ADS‘ i b 2 b
AD, =e I, +myl,-d,) [(1+e,)1+e,) —1]+ml [(l+e,)1+e) —1]
ADy, = {mgt (€, —d,)(1+e, X1 ¢,)(1 + eg5) ~ L]} cos(d, -6,

ADy, =AD;

AD;, = AD,,

ADg = AD;

AD,, =AD,

ADy =e, I, +my(¢; —-d ) [A+e, )(l+e,ds) -1



Ah(8,8)8 = col[z " ,]

E(s=e)

where

Ay ={ml,d,[(1+e, )1+ )(l+e,)—1]
+(my +m, +m) &,[(1+e,)1+e)* -1]}sin(®, -6,)
Ay, ={m,¢ d,[(1+e, )1 +¢e)(1+e,)—1]}sin(, —6,)
Ay =—{m (£, -d)[(1+e,)(1+e)1+e,)-1]
Fmgl 0, [(Lre, (1) =1})sin(0, +0,)
Ahyg, =={myl ({5 -d)[(1+e, )1 +e )l +e,s)—~1]}sin(6, +6;)

M"u ==
Ah.;, —{ihf.} d;[(1+e,)(1+¢)(1+e,)—1]}sin(6, - 8,)
Ak, =-{m,¢, (E -d)l+e, )(1+e,)(1+e,d4) 1]
+mgl,¢ [(l+e, X1 +¢)* —1]}sin(®, +6,)
Ahyg = {m,é (¢s-d;)(1+e, )(l+e,)(l+e,ds) 1]}sin(6, +6;)

Ahyy, = ‘Ahm
Ah;-n = Ah‘!
= Ak, =0
Ahm =Ah,,,
422 = By

A’y = {my€ (£ —dg)[(1+ e, )1+, )1 +e,5) 1]} sin(B, - 6,)

Ahsn = Ahlss
Ahgy, = Ahygs
Ahsss =

Ahm = ‘Ahm
and

AG, =-{md [(1+e,)1+e;)—1}1+(m, + my + m, +m. )¢ ,[(1+e,)1+¢)—1]}gsinb,
AG, =~{m,d, [(I+e Y +e,) =1+ (m; + m, + m,)e, [(1+e Xl+e)-1]}gsinb,
AG, = ~{md,[(1+e, )1+e,)—1]}gsin@,

AG, = {m,(¢, —d (1 +e, )1 +ey) -1+ myt [(L+e, X1 +e,)~1]}gsin®,

AG, = {my(€, —d;)[(1 + e, )1+ ey5) -]} g sin b,

The terms, e;zs and ej45 in the above equations can be defined as

le, —de,

$

(i=4,5)



Since the equations of motion are in terms of the relative angle (g,) between links instead
of the absolute angle 6; of each link, we have to transform the terms ADy Ahg and AGs
into AD, Ah, and AG,. The transformation method we employed in Chapter 2 can be
used here. AD, Ah,and AG, are in the following form:

AD,(g9)=AD,(,))  (i,j=12...5) (4.0

ADq (£1) = Ad, +Ad;, + Ad; — A4, — A4,
ADq (1»2) = —Mxl - A'AJJ + AAM + MIS
AD,(i3) = —Ad; + Ad,, + A4,

A‘Dq (£4) = Ad,, + Adg

ADq (i5) = —-AA4,
where
A4, AD” +AD3]. +AD,I. —AD” —ADSJ

2 =—AD,, —AD, +AD, +AD;,
5, =—AD;, +AD, +AD;,
A, =AD,; +AD;,

non il

A4, = -AD;,
Ahq = [Ahqo ’ Ahql ’ Ahqz ’ Ahq3 4 q4 ]T (42)
where

Ah , = Al + Ah, + Ahy — Ah, - Ak
Ahql = —Ahz —Ahj +Ah_‘ +Ah5
qu =—Ah3 +Ah_‘ +Ah5

Ahy = Ahg + Ahg

Ahq-% ="Ah5

AG, =[AG,4,AG,,AG,,AG 5,AG,, ] 4.3)

qi?

where

AG,, =AG, +AG, +AG, - AG, - AG;
AG, =-AG, -AG, +AG, +AG;
AG,; = AG, +AG;

AG,, =-AG;
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The bounds, AD, Ah, and AG,, between the actual and the estimated terms are thus
defined. These bounds will be used in designing the control algorithm for motion
tracking as physical parameters such as the link masses, link lengths, link moments of

inertia and positions of center of mass are uncertain.

4.4 Computed Torque Control

Computed torque control is a traditional nonlinear control method based on the
feedback linearization technique which cancels the nonlinearities of the system dynamics
and obtains a simple input-output relation. The computed torque control law for the

tracking control purpose has the following structure:

T,=D,(qu+h,(99)4+G,(q) (4.4)
The structure of this control law is similar to the structure of the equations of motion
(2.16) developed in Chapter 2. Substituting this control law (4.4) into equations of
motion (2.16), we can obtain
D (9)§=D,(qu (4.5)
D,(g) is assumed to be positive definite, and therefore it is invertible. Thus we have
j=u (4.6)
The nonlinear terms involved in the system are eliminated. The equation (4.6) represents
a set of five decoupled second order differential equations, each of which can be
controlled by a linear control law. The proportional plus derivative (PD) control is a
suitable control law for use in controlling the decoupled second order differential

equations (4.6). The PD control law can be represented in the following form:
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u=g4 —K,-é-K;-e

4.7)
where e, =¢q,()-q,() (=0,L...,4)

q4 1s the desired angle profile of each joint. Kp and Kp are 5x5 diagonal control gain
matrices, (i.e. Kp=diag[Kp] and Kr=diag[Kp]). They are positive definite (i.e. Kp,> 0
and Kp; > 0). Substituting equation (4.7) into equation (4.6), the closed-loop equation of
the error e(r) can be obtained,

€+Kp-é+K,-e=0 (4.8)

This is a linear differential equation that governs the error between the actual joint angle
profiles and the desired joint angle profiles. It shows that the error tends to zero as time
goes to infinity (i.e. +—). The block diagram of the closed-loop control system is

shown in Figure 4.1.

=h, (qv q)q *Glq) -
u + l )
»| PD Control Dq(q) Dynamic

Law + T Eauation .
qd 1 q9.9

Y
Y

Figure 4.1 Block Diagram of the Closed-Loop Control System

The control gain matrices Kp and Kp are the parameters that can be adjusted to affect the
system response. If A is the natural frequency of the closed-loop system, the control gain
matrices can be set as

K, =diag[2A], K , = diag[\*] (4.9)
The control gain matrices are chosen to obtain a critically damped closed-loop

performance. The natural frequency A should be chosen as sufficiently large in order to
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get a fast system response, but, at the same time, it should not be too large in order to
avoid excitation of the possibly unmodeled high frequency characteristics in the system.
As shown in equation (4.6), the nonlinear terms of the system dynamics are
completely eliminated. This is true only if the physical parameters of the actual system
are known exactly. I[n most of the physical systems, however, degrees of parametric
uncertainty usually exist. When the parameter uncertainties exist in the biped system, the

terms, D, (q) h,(q.9)¢ and G (q), are not available exactly but can be estimated from

equation (4.1) to (4.3). Instead of equation (4.4), one can only use the following control

law:

I,=D,(qu+h,(ad)q+G,(q) (4.10)
and instead of equation (4.6), the following equation is obtained

=0, Dyu+D, " (h,4+G,~-h,4-G,) (4.11)
[t is obvious that equation (4.11) is not a linear equation. The nonlinearities are not
cancelled exactly between the modeled system dynamics and the actual system dynamics.
The control system is actually coupled and nonlinear. Trying to control the system with a
linear control law will result in poor performance. The fact that no robustness is

guaranteed in the presence of parameter uncertainty or unmodeled dynamics and is a

major disadvantage of computed torque control.

4.5 Sliding Mode Control

Sliding model control is one class of robust nonlinear control that is designed
based on consideration of both the modeled dynamic system and the presence of

uncertainties in the model. The typical structure of a sliding mode control consists of a
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nominal part similar to a computed torque control law and an additional part aimed at
dealing with uncertainties in the model. The tracking control problem is to get the system
angle profiles of the joint (¢,¢) to track the desired joint angle profiles (q,,¢,). This is
equivalent to keeping the system trajectories remaining on the sliding surface. In order to
do so, we have to define a time-varying surface r(r). Subsequently, a control law is
developed to direct the system trajectories toward the sliding surface. Firstly, the vector

of the tracking error e is defined as

I

[EST N

d

Q. [Q

J
A time-varying surface r(r) for the second order system (2.19) (i.e., n=2) is defined as
d n-i
H=—+A| e
)=+
=é+Ae

r

If an integral term is used, a term Ie dt’ becomes the variable of interest instead of e.
]

The system is now considered to be third-order (i.e., n=3) (Slotine and Li 1991) and the

time-varying surface r(¢) becomes
d Y[
=|—+A || le(t)Hdl
(54 (oo
=é+2he+ A je(:')dt' (4.12)
0

and

F=E+20é+Ne (4.13)

where A is a diagonal matrix of positive gains given by A=diag[Ai, A2, ...Aq].

70



As the time-varying surface r(#)=0, it becomes the sliding surface. For the traditional
sliding mode control, the control algorithm is developed as the following to direct the
system trajectories toward the sliding surface and to account for the presence of modeling
imprecision.

I, = iq - nsgn(r) (4.14)
This algorithm is discontinuous across the sliding surface due to the signum function in
equation (4.14). This control algorithm has been proven to attract those system
trajectories that start off the sliding surface to move towards the surface and those that
start on the surface to remain on it (Slotine and Sastry 1983). However, there is a
shortcoming to this method. Due to the unavoidable small time delay in switching
between control laws at the discontinuity surface, trajectories chatter around the sliding
surface instead of sliding on it. Since chattering involves high control activity and may
excite the high-frequency unmodelled dynamics in the system, it is undesirable in
practice and has to be removed. Instead of the discontinuous control algorithm (4.14), we

have developed a continuous control algorithm which can eliminate this chattering.

The control algorithm has the form
T, =T, —-ntanh(ar) (4.15)
where

n=[n ..t
The equation of motion (2.19) is in the following form
D, (9)g+h,(g9)q+C, (@)=L,

and the time derivative of the sliding surface #(f) (4.13) can be rearranged as follows:
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F=é+2hé+Ne
=G-§, +2hé+MNe
-1 oy s - . . 2
=-D," (h,(a4)§+ G, (@) +D,"'T, -4, +2Aé+ e (4.16)

The best approximation iq of the control law that will achieve 7 = 0 in equation (4.16) is

T,=D,(q)§,-2ré-Ne)+h,(q.9)+G,(9) (4.17)
Instead of keeping trajectories on the surface r(s)=0, the control algorithm maintains the
trajectories close to the surface within a thin boundary layer. Once the system
trajectories move into the boundary layer, they will remain inside the boundary layer.
The parameter a in equation (4.15) is the inverse of the boundary layer thickness with
e=1/(aA™"). Now we are not tracking for a "perfect" performance but tracking to within a

guaranteed precision, [e”’|<2A'e (Slotine and Li 1991).

4.5.1 Stability Analysis of the Sliding Model Control Algorithm

Before we study the stability of the control system. the following assumptions and
preliminaries must be made:
1. The inertia matrix D>0, i.e., D, is positive definite.

2. The matrix (D, —24,) is skew-symmetric (Slotine and Li 1991). Hence,

x"(D,-2h,)x=0

L)

Properties of the Euclidean norm

[ <

1=|

and

< A<l



4. Forany x # 0, and any positive o

x,[tanh(cx, )] > 0

and

x,(tanh(ocx, )] < x, | [tanh(a | x, )]

where tanh(.) is a function defined as

X -

e —e

tanh(x) = ——
e +e

tanh(.) is a smooth sigmoidal function that switches about zero to force the state to
converge to zero.

5. The equation of motion (2.19) developed in Chapter 2 has the form of
D (9)§+h,(q.9)4+G,(9)=T,

We define a value v which is related to r

4

v=g-r=4,-2ke-A fe(r)ar (4.18)

[
[

=g F

0
g, -2ré-2e (4.19)

I}
[N}

Therefore, equation (2.19) can be rewritten as

Qq(cl)f'+ﬁqr =T, -A (4.20)
where A is given as

A=Dyv+hv+G, (4.21)

The attractiveness of the boundary can be proven using Lyapunov's direct

method. Consider the Lyapunov function candidate given by

caate

1
V= Eerqr (4.22)

where V is positive definite and V= o as |r||~> «.
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Using the above assumptions and preliminaries, the derivative of ¥ along the trajectory of

the solutions of (4.20), is given by

V:%rrgqr +r' D¢
1 . -
=;rT(Qq _2ﬂq)"+rr(zq —'A)

= —inn, tanh(w:)+ir.(iq -4,
=l

<= |r,|n,tanh(a|r, D+ |r 1A, T, | (4.23)

=l =i

s-[iv, |, (tanh(a| l)-u,)]

=]

|A, -Tq|
n,

0<p, <1

where p, =

It is clear that in order to guarantee ¥ < 0, the following condition must be satisfied.
tanh(a, |7, [)-p, 20,i=1,2,...,n

Thus, ¥ <0 forall

By increasing the value of o it is possible to find the bound of B;. Therefore, r is also
bounded. Similarly to the discussion in Slotine and Li (1991), the parameter §, indicates
the thickness of the boundary layer within which the control discontinuity is smoothed
out. From the above analysis, the control algorithm guarantees the attractiveness of the
boundary layer and discontinuity is eliminated. The initial conditions can be arbitrarily
chosen so that the system trajectories are started inside the boundary and will stay inside

the boundary due to its attractiveness. Therefore, no reaching phase problem will occur.
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4.6 Summary

In this chapter, two nonlinear control techniques were presented. The traditional
computed torque control technique is a conceptually simple nonlinear control technique.
Computed torque is developed based on a feedback linearization technique that can fully
compensate the nonlinear forces in the dynamic system and lead to high accuracy control
for a very large range of robot speeds. The major disadvantage of this technique is that
no robustness can be guaranteed in the presence of parametric uncertainty in the system.
The traditional sliding mode control technique, on the other hand, is developed based on
the consideration of parametric uncertainty. Nonlinearities are intentionally introduced
into the control law that tolerates the parametric uncertainty, making the system robust.
However, the system is known to chatter. A sliding mode control algorithm with the
discontinuous term replaced by a continuous term was presented in this chapter, which
guaranteed the tracking error to be within a certain precision and eliminated the

chattering problem and the reaching phase problem.
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Chapter 5

Simulation Results

5.1 Introduction

In this chapter, the results of a simulation study are presented for the planar five-
link biped walking on a flat horizontal surface. The simulation study contains two parts.
The first part is determination of the desired joint angle profiles based on the systematic
approach discussed in Chapter 3. These joint angle profiles will be used as the desired
joint angle profiles for motion regulation. Some insights into energy input during
walking are also investigated. The second part is motion control using the computed
torque contro! technique and the sliding mode control technique.

In Section 5.2, the results of the desired angle profile of each joint during walking
on a flat horizontal surface in the single support phase are presented. The desired joint
angle profiles are determined by the five constraint functions developed in Chapter 3.
namely, (1) the erect body posture, (2) the overall progression speed, (3) the bias of the
knee of the support leg, (4) the coordination of the support leg and swing leg motion, and
(5) constant mechanical energy. Furthermore, a set of acceptable joint angel profiles

must satisfy the repeatability condition and the condition that the knee of the swing leg

76



does not bend backward. Four different progression speeds with the same bias angles are
selected to be studied and the resuits are presented.

[n Section 5.3, the simulation study of motion control is presented. The goal of
motion control is to realize a steady stable gait of the biped walking on a flat horizontal
surface. A comparison of the tracking performance of the computed torque control and
the sliding mode control is investigated. This section also demonstrates the capability of
the two control techniques to control the bipedal locomotion system with the presence of
parametric uncertainties. The theoretical expectation is that the sliding mode control
technique is superior to the computed torque control technique, when parametric
uncertainties exist in the system. The reason for this expectation is that sliding mode
control is designed based on the consideration of both the modeled dynamic system and
the presence of uncertainties in the model. Nonlinearities are intentionally introduced
into the control law that tolerate parametric uncertainty to make the system robust. This
theoretical expectation will be investigated through the study of the simulation resuits

presented in Section 5.3.

5.2 The Results of the Joint Angle Profiles Planning

By using the methodology for joint angle profiles planning discussed in Chapter
3, the desired joint angle profiles for the motion of the five-link biped walking on a flat
horizontal surface can be obtained from the five constraint functions. Intensive
numerical simulations were carried out to generate different sets of joint angle profiles
with different progression speeds (¥,). When generating the joint angle profiles, the

repeatability condition, which requires that the posture of the biped robot at the end of the
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step be very close to the initial posture, has to be considered. As mentioned in Chapter 3,
the constraint functions S\, S» and S; (i.e., equations (3.1) to (3.3)) are decoupled from the
other two constraint functions. Therefore, the joint angle profiles for the supporting leg
and the upper body can be determined first. Subsequently, the joint angle profiles of the
swing leg can be determined from the remaining constraints, S; and Ss (i.e., equations
(3.4) and (3.5)). During the intensive numerical simulations, it was often found that
either the knee of the swing leg would bend backward or the end states would not be
close enough to the initial states to ensure the start of the next step. Walking with the
knee bent backward is not desirable and such joint angle profiles are not acceptable. As
well, the condition of repeatability must be satisfied in order to initiate the next step.
Therefore, the acceptable joint angle profiles must be those that (1) satisfy the constraint
functions presented in Section 3.2.1, (2) are repeatable and (3) do not cause the knee of
the swing leg to be bent backward. Such requirements make the determination of the
acceptable joint angle profiles highly challenging. In the simulation study, four different
progression speeds with the same bias angles were used. For each walking speed, a set of
joint angular displacements and velocities were obtained. Also, from the simulation
results of the four different progression speeds, the hypothesis of giving only potential
energy at the beginning of the step so that the swing leg can be carried over without extra

energy input is investigated.

5.2.1 Simulation Study of the Joint Angle Profiles Design

The values of the parameters m;,, [, /; and d; of the five-link biped robot are listed

in Table 5.1 and are used for generating joint angle profiles and, later, motion regulation.
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Moment of Location of center
Link g(‘;s ™ | inertia, I, (kg- :'n‘:‘)‘g‘h' b ) ofmass, 4,
m) (m)
1.4 Shank 2.23 3.30x107 0.332 0.189
25 Thigh 5.28 3.30x10% 0.302 0.236
Upper 2
3 Body 14.79 3.30x10 0.486 0.282

Table 5.1 Parameters of the biped robot

The four cases with their progression speeds are as follows:
1). ¥, =0.5596 m/sec (slow walking speed)

2). ¥, = 1.11306 m/sec (moderate walking speed 1)

3). ¥, = 1.11354 m/sec (moderate walking speed 2)

4). ¥, = 1.4502 m/sec (fast walking speed)

The bias angle of the knee of the support leg is set as 0.1 radian for all cases and the
initial posture of the biped with the following angular displacements is used for all cases.
go =-0.1642 radian g;=0.1radian g2 =-0.2642 radian
q3=-0.1642 radian ¢4=0.1 radian

The initial angular velocities at each joint are zero,

ie, 4, =4, =4, =4, =4, =0radian/sec

This set of initial conditions indicates that all energy in the five-link bipedal system is in
the form of potential energy. The kinetic energy is zero at the beginning of the step.
Following the procedure outlined in Chapter 3, the parameters o, B and y, contained in
the matrices, C|, C> and C; (defined in equation (3.6)), for all simulations of four different
walking speeds are chosen such that the solution set of S; (defined in equation (3.6)) is
asymptotically stable about the origin. The values of a, B and y, are shown below:
A=-599

a=13.0 B =52.02
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The discussions of the simulation results of the joint angle profiles design are
presented here in two parts. The first discussion concerns the angular displacement
profiles and the angular velocity profiles of all five joints, while the second discussion
concerns the energy profiles corresponding to the four different speeds. Figures 5.1 to
5.8 show the profiles of the angular displacements and velocities of all five joints versus
time for one step obtained for the four cases. It should be mentioned in here that the
numerical solution obtained from solving the constraint functions is very sensitive to the
choice of the initial conditions and parameters. The joint angle profiles presented here
are the best and acceptable results in that they generated the walking motion that is
prescribed by the all five constraint functions shown in equations (3.1) to (3.5), and they
also satisfied the repeatability condition and the condition that the knee of the swing leg
does not bend backward. The angular displacements and velocities of ¢, ¢, and g, show
the motion of the support leg and those of ¢3 and g4 show the motion of the swing leg for
one step. From Figures 5.1 to 5.8, it can be seen that the joint angle profiles are different
with different progression speeds but the patterns are similar.

The simulation resulits for the fast walking speed is used here as an example for
further discussion of the desired joint angle profiles. Note that similar observations can
be made for those with other walking speeds. Figure 5.9 shows the stick figure of the
five-link biped with the walking motion obtained from the fast walking case, where
V,=1.4502 m/sec. From this figure, one can observe the overall motion of the biped
during the single support phase. The solid line represents the support leg and the upper

body and the dash line represents the swing leg.
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Figure 5.9 Stick Figure of the Walking Motion of the Five-Link Biped

The support leg, with its tip as the support, propels the upper body forward in the walking
direction. The upper body is maintained at the upright position and moves forward with
the speed gradually increasing from zero at the start of the step to the desired progression
speed. The knee joint (g,) of the support leg is kept constant, which is equal to the bias
angle (o), throughout the single support phase. This guarantees that the knee will not
collapse or bend backward. The swing leg leaves the walking surface at the beginning of
the step and swings forward. At the end of the step the swing leg comes back on the
walking surface. It can be seen from the stick figure that the knee of the swing leg does

not bend backward. The stick figure also shows that the position of the upper body is

always between the tips of the two legs.
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From the above discussion, it shows that the walking motion resulting from the
fast walking case (V,=1.4502 m/sec) corresponds to the motion described by the
constraint functions and approximates to natural walking. As can be seen in Figure 5.9,
the ending posture of the biped is close to the starting posture. The configuration of
joints of the ending posture (i.e. the starting posture for the next step) are as follows:

qo = -0.114 radian

g1 =0.172 radian

q> = -0.286 radian

q3 = -0.141 radian

q+ = 0.100 radian
A close initial and end configuration indicates that this set of joint angle profiles also
satisfies the repeatability condition. Therefore, we selected this set of joint angle profiles
obtained with the fast walking speed (¥,=1.4502 m/sec) to be used later as the desired
joint angle profiles for the motion control.

We next discuss the observations from the mechanical energy profiles for the
walking being studied. The question we would like to address is: given only potential
energy at the initiation of the step, is it possible for the swing leg to be carried through
the step without extra energy input? This question can be answered by investigating the
mechanical energy profiles from the numerical simulation results. Figures 5.10 to 5.13
show the mechanical energy profiles of the biped robot during the single support phase of
the four cases. These four figures show that, with the other four constraints (i.e.,
equations (3.1) to (3.4)) satisfied, it is not possible to keep the energy constant during the

whole step. Therefore, extra energy must be inputted to the bipedal system regardless of
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the walking speed. Figures 5.10 to 5.13 show that regardless of the walking speed,
energy input is required at the beginning of the step. Such an energy input causes a
sudden increase in angular velocities at the joints of the swing leg (see Figures 5.2, 5.4,
5.6 and 5.8 for details). That means that a sudden input of energy is needed for the
swing leg at the beginning of the step to initialize the step regardless of the walking
speed. Such an initial energy input may be provided by the actuators or by the natural
strain energy release of the deformable feet of the bipedal model. Depending on the
walking speed, there might be a need for a second energy input. Such energy input
occurs approximately when the support leg, swing leg and the upper body are around the
upright position. Figures 5.2, 5.4, 5.6 and 5.8 show that the levels of angular velocities
increase are lower for the slow walking case than for the fast walking case. Figures 5.10
to 5.13 also show that the second energy input is necessary for the fast walking case.
This extra energy input is needed to move the swing leg ahead of the gravity center of the
upper body at the mid point of the tip of the two legs (i.e., satisfying constraint function
Ss). For slow walking, such an energy input may not be necessary. Energy input is
proportional to the walking speed, i.e., higher walking speed demands higher total energy
input.

It is interesting to note that for the slow and moderate walking speeds, it is
possible to design a set of joint angle profiles such that, with a proper initial energy input,
the swing leg can be carried through the step without extra energy input. This finding is
important from the viewpoint of development of bipedal robots. The biped that follows
such a set of joint angle profiles is more energy efficient since the initial energy can be

provided by the strain energy release of the deformable foot.
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5.3 Simulation Results of the Motion Control

In this section, the results of the simulation study of the motion control are
presented for the case where the five-link biped is walking on a flat horizontal surface.
Computed torque control and sliding mode control techniques were applied for motion
control. The tracking performances of these two techniques were compared for various
degrees of parametric uncertainty existing in the system. The computed torque control
technique requires an exact knowledge of the system parameters. When this is not the
case, it is believed that the computed torque control is expected to be not as robust as the
sliding mode control. This expectation was investigated by the results shown in this
section.

The five-link biped robot studied here is shown in Figure 2.1. The values of the
parameter m,, [;, [; and d; are listed in Table 5.1. A set of joint angle profiles obtained
from Section 5.1 with walking speed of 1.4502 m/sec was used as the desired joint angle
profiles. The objective of this simulation study was to investigate the performance of the
sliding mode control and the performance of the computed torque control as the degree of
the parametric uncertainties (en, ey, e; and ey) (see detailed definition of e, ¢/, ¢; and e4 in
Section 4.3) increase. Three cases were studied here:

Case 1. No uncertainty (e, =e; = ¢;= ez = 0%)

Case 2. 40% uncertainty (e, = e;= 0.4 (40%) and e¢; = ¢4 =0.1 (10%))

Case 3. 200% uncertainty (e, = ¢;=2 (200%) and e; = ¢4 = 0.1 (10%))

For Case 1 (No uncertainty), the physical parameters of the biped, such as link masses,
moments of inertia, lengths and positions of the centers of mass, are exactly known. For

Case 2 and Case 3, dominating parametric uncertainties are present in the mass and
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moment of inertia parameters and smaller uncertainties are present in the geometric
parameters. The parametric uncertainties of each link are assumed to be the same. All
the simulation results were carried out with time step 7,=0.002sec and are shown in
graphical form.

In Case 1 (No uncertainty), computed torque control and sliding mode control
techniques were applied. For the computed torque control law, the control gain matrices
Kp and Kp (shown in equation (4.7)) needed to be adjusted to obtain good tracking
performance. Since we set Kp=diag[2A] and Kr=diag[\*] (shown in equation (4.9)), there

was only one parameter (A) to adjust, where A was chosen to be 80 in this case for the

best tracking performance. For the sliding mode control law, the parameters A and o
(shown in equations (4.15) and (4.17)) needed to be adjusted. The best tracking results
were obtained with the choice of A = 18 and a = 0.2. Figures 5.14 to 5.18 show the
angular displacement of each joint (i.e., o, 41, 42, g3 and g4). The solid line represents
the result obtained with the sliding mode control law applied. The dashed line represents
the result obtained with the computed torque control law applied. The dotted line
represents the desired joint angle profile. Figures 5.14a to 5.18a show the angular
displacements of the first three steps and Figures 5.14b to 5.18b show the angular
displacements from the seventh to tenth step. The time period of one step was
approximately 0.32 sec. The discontinuity appearing at the end of each step is due to the
renumbering of links to incorporate the switching of the roles of support and swing leg.
It should be noted here that the ending posture and the starting posture of the biped from
the set of desired joint angle profiles were not exactly the same. Even though the control

law performs a perfect tracking, there will be a large error occurring at the beginning of
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each step. A similar problem has been found in other related work (Tzafestas et al.
1996). Therefore, similarly to other such study, all discussions presented here only
consider the period of time during the step (i.e., away from the beginning of each step).
One can observe that the simulated joint angle profiles of the computed torque control
and the sliding mode control followed the desired joint angle profiles quite closely at the
beginning. However, after a few steps, the simulated joint angle profiles of the computed
torque control were deviated from the desired joint angle profiles. The tracking
performance was evaluated in terms of the total of the absolute values of the error e(),
where e(¢f) is the difference between the simulated angular displacement and the desired
angular displacement of each joint. The equation of the tracking error can be represented
by (Tzafestas et al. 1996)

le()I=lea(O)l*ler(n)iHe2N)Hes(O)Hes(D) (5.1)
Figure 5.19 shows the tracking errors of the results obtained through the sliding mode
control and the computed torque control. The overall tracking error of the sliding mode
control, which is shown by a solid line in Figure 5.19, was lower than that of the
computed torque control, which is shown by a dashed line. The tracking errors near the
switching of support and swing leg were neglected due to the reason discussed earlier.
The average tracking error of the computed torque control was about 0.0331 radians,
while the average tracking error of the sliding mode control was only about 0.018
radians. The tracking error obtained from the computed torque control was almost twice
that obtained from the sliding mode control. Figures 5.20a to 5.24a show the control
torque of each joint. Again, in these figures the solid line represents the results of the

sliding mode control and the dashed line represents the results of the computed torque



control. Figures 5.20b to 5.24b show the control torques within one step. The control
torques of both the sliding mode control and the computed torque control were
comparable and within a reasonable range. This means that the control torques applied to
the joints of the biped were similar for the sliding mode control and the computed torque
control. Thus, with the comparable of control torques, the sliding mode control showed

better tracking performance than the computed torque control in this case.
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In Case 2, as the parametric uncertainties increased to e, = ¢; = 0.4 and ¢; = ¢4
=0.1, simulation results were obtained through both the sliding mode control and the
computed torque control. For the computed torque control, the best tracking performance
results were obtained with the choice of A = 80. For the sliding mode control, the best
tracking performance results were obtained with the choice of A = 15 and « = 0.2.
Figures 5.25a to 5.29a show the angular displacement of each joint of the first three steps
and Figures 5.25b to 5.29b show the angular displacements from the seventh to tenth
step. The simulation results showed that the simulated joint angle profiles of both the
sliding mode control and the computed torque control followed the desired joint angle
profiles closely. The simulated joint angle profiles obtained through the computed torque
control differed slightly from the desired one, especially the profiles of g; and q4. The
tracking errors for both the sliding mode control and computed torque control are shown
in Figure 5.30. Even though both increased, the average tracking error of the computed
torque control (about 0.0386 radians) was still higher than that of the sliding mode
control (about 0.0195 radians). Figures 5.31a to 5.35a show the control torque of each
joint and Figures 5.31b to 5.35b show the control torques within one step. In this case,
the control torques from the sliding mode control and computed torque control were
comparable. Nevertheless, the sliding mode control again showed better tracking
performance than the computed torque control as the control torques applied to the joints

through such two control techniques were similar.
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For the last case (200% uncertainty), the parametric uncertainties were increased
significantly (e, =e; =2 and ¢; = 2, =0.1). Since the parameters of mass and moment of
inertia were the primary sources of uncertainty, we kept the uncertainty in the
geometrical parameters (e; and e4) the same as in Case 2 (40% uncertainty) and increased
the uncertainty in e, and e; significantly. A similar arrangement can been found in
Tzafestas et al. (1996). For the computed torque control, the best results were obtained
with A = 80. For the sliding mode control, the best results were obtained with A = 15 and
o = 0.2. The simulated joint angle profiles obtained through the sliding mode control and
the computed torque control and the desired joint angle profiles are shown in Figures
5.36a to 5.40a for the first three steps and in Figures 5.36b to 5.40b for the seventh to

tenth step. The tracking errors obtained for the two control laws are shown in Figure



5.41. The control torques are shown in Figures 5.42a to 5.46a and the control torques
within one step are shown in Figures 5.42b to 5.46b. The control torques of the sliding
mode control and the computed torque control were comparable. One can observe that
by applying the similar control torques to the system, the simulated joint angle profiles
obtained through the computed torque control had higher tracking error than the sliding
mode control throughout the step. The average tracking error of the computed torque
control was about 0.049 radians, while the average tracking error of the sliding mode
control was only about 0.037 radians. In this case, the sliding mode control again showed

better performance than the control torque control.
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From the results of the three cases presented above, the sliding mode control
technique showed much better tracking performance than the computed torque control,
especially when large parametric uncertainties existed in the system. Based on observing
the plots resulted from the three cases, the computed torque control was not as robust as
the sliding mode control. This verified the theoretically expected superiority of the
sliding mode control over the computed torque control in the presence of parametric

uncertainties.

5.4 Summary

In this chapter, two major results were presented. In Section 5.2, the results of the
joint angle profiles planning were presented. Through the methodology presented in
Chapter 3, the desired joint angle profiles for the motion of the biped walking on a flat
horizontal surface were obtained from the five constraint functions. The acceptable joint
angle profiles must be those that (1) satisfy the constraint functions presented in Section
3.2.1, (2) are repeatable, and (3) do not cause the knee of the swing leg to be bent
backward. Such requirements made the determining of the acceptable joint angel profiles
highly challenging. The simulation results of the four cases with different progression
speeds were studied. The hypothesis of constant energy was investigated. The results of
the simulation study on the energy profiles showed that (1) extra energy must be inputted
to the bipedal system being studied at the beginning of the step regardless of the walking
speed, (2) depending on the walking speed, there may be a need for a second energy
input, and (3) energy input is proportional to the walking speed. For the system being

studied, the second energy input was required for fast walking, while for slow and
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moderate walking, with the proper initial energy input, no extra energy was required to
carry the swing leg through the step.

In Section 5.3, the simulation study of tracking control was presented. The
tracking performances of the sliding mode control and computed torque control were
investigated as various degrees of parametric uncertainty in the system were considered.
From the results presented in Section 5.3, the tracking performed through the sliding
mode control technique was much better than that through computed torque control. The
superiority of the sliding mode control technique over the computed torque control
technique was strengthened when large parametric uncertainties were present in the
system. This verified the theoretical expectation that sliding mode control is more
preferable than computed torque control in the presence of parametric uncertainty.
During the intensive numerical simulation, we found that, when compared with the
conventional sliding surfaces used by most sliding mode control systems, the tracking
performance of the sliding mode control was improved by designing the sliding surface
with the integral term (see details in Section 4.4). The simulation results showed that
replacing the discontinuous term with the continuous term in the sliding mode control
algorithm smoothed out the chattering around the sliding surface and, at the same time,
good tracking performance was obtained. The simulation results also showed that no

reaching phase problem occurred with the use of this sliding mode control algorithm.



Chapter 6

Conclusions

6.1 Conclusions

In this thesis, dynamic modeling and control of a planar bipedal walking system
were studied. The locomotion goal for the bipedal system to realize in this thesis was
walking on a flat horizontal surface in the sagittal plane. The dynamic modeling of
bipedal locomotion consists of the following three parts: (1) development of
mathematical model which approximates the motion of the locomotion system, (2) design
of the joint angle profiles for the desired walking motion that are used for tracking
control, and (3) application of the control algorithms for regulating the motion.
Contributions have been made to each part and are detailed below.

(1) Development of mathematical model:

A bipedal model of locomotion system is a complex linkage system due to the
dynamic complexity with many degrees of freedom. A planar five-link kinematic model
was used in this study as the biped robot. This bipedal model, consisted of five rigid
links that were connected to one another by four purely rotational joints, had five degrees
of freedom. The mathematical model developed in this study described a complete

walking motion which included the single support phase, the effect of the impact between



the swing leg and the walking surface at the completion of each step, and the effect of the
support end exchange. The impact effect was incorporated into the model by formulating
an impact equation to compute the new joint velocities just after each collision between
the free end of the swing leg and the walking surface. At the same instant as the impact
occurs, the end of the support leg leaves the walking surface and the support end transfers
to the tip of the swing leg that comes into contact with the walking surface. The effect of
this instantaneous exchange of support from one end to another end was incorporated
through re-labeling the numbering of links. A transformation matrix was formed to
describe the effect on the angular displacements and angular velocities due to this re-
labeling.

The advantage of the dynamic model developed in this thesis over other models is
that it has enough degrees of freedom to approximate the walking motion in the sagittal
plane and, at the same time, has sufficiently few degrees of freedom to keep the equations
of motion to a manageable level. Renumbering of links reduced the derivation process of
equations of motion by half, since the same set of equations of motion for the single
support phase can be used for both the left and right leg supports. Furthermore, the
impact between the swing leg and the walking surface at the contact instant is also
included in the proposed model. The impact has been considered important for bipedal
walking, yet it has been neglected in most of the bipedal models.

(2) Joint angle profiles planning

A systematic approach to determining joint angle profiles, developed by

Hurmuzlu (1993a), was adapted in this study. Five new constraint functions were

defined from the physically coherent parameters of bipedal walking, which were upright
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posture of the upper body, the overall walking speed, the support knee bias, static
stability, and keeping the mechanical energy of the whole system as a constant. The last
constraint was used to test the hypothesis that, given only potential energy at the
beginning of the step, the swing leg can be carried over by gravity. The five constraint
functions led to a set of combined differential and algebraic equations, which had to be
solved to obtain the joint angle profiles of the biped. In addition, two extra conditions
must be satisfied for the acceptable joint angle profiles. One is the repeatability
condition, which require that the configuration of the biped obtained at the end of each
step be very close to the configuration at the beginning of each step. Another condition is
that the knee of the swing leg could not bend backward. The above constraint equations
and the two extra conditions made determining joint angle profiles highly challenging.
After carrying out intensive numerical simulations, four set of acceptable joint angle
profiles with four different progression speeds were obtained.

Through the numerical simulations, the question of giving only potential energy at
the initiation of the step whether it is possible for the swing leg to be carried through the
step without extra energy input was explored. It was found that, with the other four
constraint functions satisfied, it was impossible to keep the energy constant during the
whole step. Regardless of the walking speed, a certain amount of energy must be input to
the biped at the beginning of the step. Depending on the walking speed, a second energy
input might be needed. The simulation results showed that for fast walking, the second
energy input was required at the instant when the swing leg, supporting leg and the upper
body were close to the vertical. This energy is required to move the swing leg ahead of

the upper body so that the gravity center of the upper body is located at the mid point
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between the tips of the swing leg and the supporting leg (Constraint 4). For walking with
slow or moderate speed, the second energy input was not necessary. These findings are
important for the development of bipedal robots and prosthesis design. They indicate that
a set of joint angle profiles can be designed where, with a proper initial energy input, no
extra energy is required to carry the swing leg through the step. The biped that follows
such a set of joint angle profiles is more energy efficient since the initial energy can be
provided by the strain energy release of deformable foot.

(3) Motion control

Sliding mode control has been designed in this study to regulate the motion of the
five-link biped robot. An integral term was used in designing the sliding surface. The
advantage of using the integral term in the sliding surface is that the system trajectories
converge to the sliding surface faster. Simulation results showed that the tracking
performance of the proposed sliding mode control was significantly improved as
compared to conventional sliding model control without using the integral term in the
sliding surface.

The response for the classical sliding mode control system is known to chatter
around the sliding surface. In order to overcome the chattering problem, our control
algorithm was further improved by replacing the discontinuous term with a continuous
one. The chatting problem was eliminated, however this replacement did not come
without a price. Instead of keeping trajectories on the sliding surface, the control
algorithm maintained the trajectories close to the surface within a thin boundary layer.

Through the Lyapunov stability analysis, it was proven that the control algorithm can
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guarantee the attractiveness of the boundary layer and the control algorithm can maintain
the trajectories close to the surface within a thin boundary layer.

In this thesis, the tracking performances of the sliding mode control and the
computed torque control were compared as various degrees of parametric uncertainty
existed in the system. It was found that the sliding mode control technique was more
effective than the computed torque control technique when parametric uncertainties
existed in the bipedal system. The superiority of the sliding mode control over the
computed torque control was strengthened when large parametric uncertainties were
present. This finding agrees with previous work of Tzafestas et al. (1996).

In summary, contributions have been made in the following three areas. (1) A
dynamic model of a bipedal robot was developed. Such a model has several advantages.
It has sufficient degrees of freedom to approximate the bipedal walking, and it is still
simple enough to keep the equations of motion to a manageable level. Impact is also
included in the proposed model, which has been neglected by most of the existing
models. (2) Joint angle profiles are designed based on a set of new constraint functions
proposed in this thesis. One advantage of the proposed constraint functions is to consider
energy as one of the factors. This is an important step towards designing joint angle
profiles that minimize the energy during walking. Such an optimization is highly
desirable for the development of bipedal robots. (3) A modified sliding mode control law
was designed in this work. The performance of the proposed sliding mode control and
classical computed torque control were compared. It was found that the proposed sliding
mode control was superior to the computed torque control especially when there were

parametric uncertainties present in the system.
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6.2 Future Works

The results obtained in this thesis are only a first step in the development of
dynamic models of bipedal locomotion systems. In the future, work can be extended in
different directions. The planar five-link biped system can be extended to a three-
dimensional system to include motion in the frontal plane. By including the analysis of
the motion and balance in the frontal plane, not only normal gait, but also pathological
gait can be studied. The five-link bipedal model can also be extended to a model with
seven or more links to include the dynamics of feet. Double support phase can also be
included in the analysis. Since minimization of energy is a basic characteristic of human
natural walking (Winter et al. 1976), the methodology of joint angle profiles planning can
be extended to design the prescribed motion with optimization of energy. Discrete
mapping technique can be employed to facilitate the joint angle profiles design process.
In the area of motion control, the performance of different nonlinear control techniques

can be explored, such as adaptive control and neural network control.
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Appendix I

Derivation of the Five-Link Biped Dynamic Model with Single Leg Support

The equations of motion for the single support phase are derived by applying the
Lagrangian formulation. The Lagrangian formulation is given as

L=K-P

and the Lagranian equation of motion is in the form:

d oK aK+aP
d:ae

Each term in this equation is derived as follows:

d (oK : : 2 emt emat 116
Z(-a—é;-J=[[l+mldl +myl" +myl" +ml” +mgt," 18,

+[myl,dy +my€, 0, +m €, +ml !, ]cos(®, - 6,)8,

+[m,¢, d Jcos(8, - -0 18,

+[m¢, (E -d, )+m,£ €,]cos(8, +6 )8,

+[m€, (€5 —d;)]cos(8, +9 )9

—[m,¢,d, +m3Z &, +m, E +mg{ {,]sin(6, -8, )66

+[m,¢, d +myl &, +ml, €, +ml ¢,]sin(6, -8, ,)8,°
~[m,¢, a’ ,]sin(8, 9 306, 6

+[m,¢,d;]sin(8, -0 )9

—[m,¢, (l -d )+m5€ £,]sin(8, +8, )99

—[m,, (¢, -d,)+ms€ €,]sin(6, +0 )9

—[my€, (€5 —d;)]sin(0, +6 )96

—[ms€ (£s -d,)]sin(6, +9 )9 ?
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d oK
a’r a8,

) (7, +myd,? +m e, +m,e,’ + me,’ 18,
+[my8,dy +myl 8, +ml ¢, + m,¢,]cos(®, -8,)8,
+[m,¢,d,]cos(8, -6,)6, .
+[m,€,(8, —d,) +msl, £, Jcos(8, +86,)8,
+[mg€,(2, —d,)]cos(B, +86,)8,
+[myl,d, +m,{, +ml ¢, + my¢ ¢,]sin(B, -0, )6 92
—-[m,¢, d +mll,+mi l, +m, £2]sm(6 -0,)9,’
—[m,¢, d Isin(6, -6,)6, 9
+[m,€,d,]sin(8, G,JUJ o
—[m.€,(¢, -d,)+m¢,¢,]sin(0, +6,)0,0,
~[m0,(8, ~d,) +my€,¢,]sin(8, +6,)8,*
—[mge,(¢; -d;)]sin(@, +6 )6 9
—[ms€,(¢, -d,)]sin(8, +8,)0,’

i(ﬁ]:u rm,d ],

dr\ €9,
+[m, £ dy]cos(8, -8,)8,
+[my€,d,]cos(0, —-6 )9
+[m,¢,d,]sin(6, -6 )9 6
—-[m,¢,d,]sin(8, -0 )9 :
+({m,¢, d s ]sin(6, 9 )6 8,

~[m,¢,d,]sin(6, -6 )9_’

d [ oK ) -
Z(—GE]=[[4 +m4(£4—d4)‘+m5£4 ]94

+[m, 8, (€, -d,)+ms 8, ]cos(8, +6,)8,
+[m€,(¢, —d,)+ml,¢ Jcos(®, +6,)8,
+[msl (€5 —d,)]cos(B, -6 )8
~[m,e, (¢, -d,)+mt ¢ ]sm(e +0 )99
—[mt, (¢, ~d,)+my €, ]sin(0, +6 )6
—[m€,(¢, d ) +mgd, e 4+1sin(6, +9 )6 6
—[myt,(¢,-d,)+mst ¢ ]sin(6, +6 )6
=[msl,(¢; —d;)]sin(0, 9 )8 9

+[mgl (¢ —d 5)}sin(6, -6 )9
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%[%Ks) =[1, +my(¢, - d;)' 18,
+[my¢,(¢; - d,)]cos(8, +86,)86,
+[myé,(¢; —d;)]cos(B, + 8 )6,
+[mg€ (€, -d,)]cos(6, - 6,)8,
—[m2,(¢; - d;)]sin(®, + 95)91,95
—[ms€,(¢5 - d,)]sin(B, +6,)8,"
—[mg€,(¢; —d;)]sin(B, +6,)6,8,
— [my2,(¢; - d,)]sin(®, +6,)8,’
+[mg€ (£, = d)]sin(G, ~ 65)9495
—[m2,(¢; —d;)]sin(B, - 6,)8,"

%:-—[mzlldz +myl, 6, +m€.8, +myt ¢,]sin®, -9,)0,8,
1 . -
~[m;£,d,]sin(8, ---.6),)9,93 —[m,¢, (¢, -d)+ms ¢ ]sin(B, +6,)0,6,
—-[ms¢, (¢ —d,)]sin(B, +6,)6,06,

%‘f— =~{m,¢,d, +m¢ £, +m,¢,¢, +m {,]sin(6, -6,)8,6,
" —[my2,d,]sin(8, —0,)8,8; —[m,£,(¢, -d,)+m,l,¢,]sin(0, +9,)8,8
3t2 Lg% 4 st2 2 4929,
~[mgl, (¢, -d,)]sin(8, +96,)6,8,

oK A . . . ..
—59 =~[m,¢,d,]sin(8, -8,)6,0, +[m,¢,d,]sin(6, - 6,)6,6,
3
oK . . .
5— =—{m,¢,(¢,-d,)+mil ¢, ]sin(6, +6,)6,0,
3

-[my&,(¢, —d)+myl,¢,]sin(8, +0,)8,8,
-[ms€,(€s —d;)]sin(0, —6,)0,8,

— =—{m£, (¢, -d,)]sin(0, +6,)8,6,

—[mg€, (€5 —d)]sin(8, +6,)8,8;
+[mgl (€5 —d;)]sin(8, - 0,)6,0,



P o Imd, +myt, +myt, +m €, +mye,|gsind,

1
%:—[mzd: +ml, +mi,+m,]gsin0,
Eéz)—]=—[m3d;‘]gsi1193

%:[m(f‘ -d,)+mgt, ]gsin6,

;}Z =[m;(€5 —d)]gsinb;
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Appendix I1
Transformation of the Dynamic Model
For the control purpose, the equations of motion has to be formulated in terms of the

relative angles between links.

D,(9)§ +h,(q.9)§+G, @) =T,

where

9 =190:9,,9:195. 4.1

q1, 92, 3, and g are the relative angle displacements of the corresponding joints with the
following relationships,

g, =6, g, =6, -6, g, =6, -9, q,=6;+0, q,=6,-96,

The following procedure is used to transform the equations of motion in terms of angles
of links with respect to the vertical into equations in terms of relative angles between
links.

Since

To: driving torque of the ankle of the support leg

1;: driving torque of the knee of the support leg

T, driving torque of the hip of the support leg

13: driving torque of the knee of the swing leg

T4: driving torque of the hip of the swing leg

and using the relationship between 6 and g (Tzafestas et al. 1996),

4 aq
T, =Yt —
]} ; ]%‘
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The following relation is formed:

- - -

1 0 0 O0fr,

-1 1 0 0}r
Te=[0 -1 1 O0fr,
0 0 -1 1=

0 0 0 -ift,]

The generalized torques Ty (i=1l,2,...,5) that correspond to the relative angle

displacements are T, =1, (i=12,...,5) where 1, are the actual driving torques at the

joints. The angle displacement of each link can be expressed in terms of g;:

9o

90 — 9
90 —9 — 92

=90 ¥4, +9, +q;
—qe 9, t49,+9; —4,

W

4

DD DODD

wounoanH

w

From the relationship (Tzafestas et al. 1996)

b
=Y, q, (i=0L...5)

J=l
The generalized torque T, is obtained

Tyo =Ty +Tgy + T4 - Ty -Tys
Ty =-Tgy - Ty + Ty +Tis

Ty =Ty +Toy + Ty
Tpy =Toy + T

T ,=-Ty

q4
Using the same relationship, the equations of motion are transferred into the following

forms:

A8, + 4,8, + 4,8, + 4,8, + 4,6, +hy+Gq
where

4,=D,+D,, +D, -D, -Ds,

by =k thy + b —hy by

Gy =G, +G, +G, -G, -G,
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A0, + 40, + A0, + 4,8, + 4,8, +h, +G,, =1
where

A,, =-D,, = D;, + Dy, + Dy,

h, =—hy, = hy +h +hg

G, =-G, -G, +G, +Gq

A6, + 4,0, + 4,8, + 4,6, + 4,0, +h, +G,, =1,
where

4;, =-D;, +D,, + D,

hyy =—hy +hy + kg

G,» =-G; +G, +G;

A“él +A42é1 +A4363 +A44éJ +A4sé5 +hq3 +qu =T

where

A4, = Dy, + Dy,

hy = hy +h,

G,; =G, +G;

AB, + A8, + 4,0, + A8, + 4,8, +h, +G =1,
where

A, = =D,

hq4 = —h,

Gq-‘ = _GS

Again, using the same relations, the equations of motion are finally transformed in terms
of the relative angles, as follows:

D,(9)§+h,(99)§+G,(D=T,

where

D, (i)=A,+A4,+A;-A4,~As
D., (i2)==A,~A;+A,+A;

D, (i3)=-d;+ A4+ 45 (i=1...5)
D,(i4)=4,+4,

Dq @(#5)=-A;

.}.l.qg. = [hqﬂ ’hql ’ hq?.’ hq:’l ’hq4 ]r r

-Q‘? = [GQO’qu’GqZ’GqJ’Gq-t]

and

T =["Ostl’tz’tzvf4]r

—q
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The D,(i,j) terms are formulated as follows:

D, (L) =[/, +§_&~u +(m, +my +m, +Sm§_uu+m_”3um~&~ +(my+m, +m)¢,£,]cos(q,)
+2[my\d;]cos(q, +4,) = 2m, 8 (£, ~d,)+msl 8, ]cos(q, +q, +q;)
-2[msl (€5 —d;s)]cos(q, +q, +qs —q,) +[[, +mydy” +(my +m, +m;)e,7]
+2[m,¢,d;]cos(q,)—2[m2,(¢, —d;)+ms€,€ ]cos(q, +q;)

—2ml, (€, —d)]cos(q, +q, —q,) + (s + myd, 1+ [1, +m, (¢, —d,)* +m€ ’]
+2[myl (£5 —ds)]cos(q,)+{I; + mg(€; I&uvu_

D,(1,2) = -{m,¢ d, +(m; +m, +m) €,]cos(q,) =1, + myd,’ +(my +m, +mg)e,"]
IMHSuNNRLGOmAQNV+M_HS“NNAN._ IQL+§MN~NL00mAQN +qu
+N_“§um~ﬁmual d;)]cos(q, +q; —q,)—[m,;¢ d;]cos(q, +4,)
=[L; +mydy" J+[m, € (¢, l%»v+5um_mﬂ_n0ms_ +q, +4;)
-, +m (¢, -d,)? +mgl "] +[{msl, (&5 —d;)]cos(q, +4, +9; —4,)
-2[myl, (€, —d;)]cos(q,) -[1; + ms(€ I&uv..._

D,(1,3) =-[m,¢,d,]cos(q, +4g,) —[m;€,d,]cos(q,) - [/, +Su&uJ
+[my€,(¢, |&L+5um_mLm83_ +q,+q,)+[ml,({,—-d,)+ml,l,]cos(q, +q;)
-, +m (¢, I&&vu +msl "1-2ml (¢, —d,)]cos(q,)
+[{ms€ (€5 —d;)]cos(q, +q, +q; —q,) +[ms€,(€s —d;)]cos(q, +q; —q,)
|:u+§uﬁmulkuv~u

D (14)=[my{,(¢,—d)+mst ¢ ]cos(q, +q, +q5)
+[m,,(¢, |&L+SRRL¢8A§ +q,)
I, +m,(€,~d,)? +msl,]-2[msl (¢, —d,)]cos(q,)
+[m,(¢; Ikmzommﬁ&_ +q,+q;—q,)+[msl, (¢ —d;)]cos(q, +q;—4,)
-y +my(ls—dg)]

D,(1,5) = —[mg€,(€5 —ds)]cos(q, +q, +4g; IQ.LI??PQM -d,)Jcos(q, +4; ~q,)
+[my€, (¢, —ds)cos(g,) + I + mg(€s ~ds)7]

D,(2D=D,(1,2)

D,(2,2) =[I, + myd,’ +(my +m, +mg)e,* |+ 2(m,¢,d;]cos(q,)
-2[m,t,(¢, -d,)+m€,¢,]cos(q, +q,)—2ml, (¢, —d;)]cos(q, +9; —q,)
+[; +myd 1+, +my (€, —d,) +m,*]
+2[ms€ (€5 —ds)]cos(q,) + [ +mg (€ Im.mvu“_

D,(2,3) =[m,¢,d;]cos(q,) +[1, +Eu&uuul_w=“mwﬁm“ -d,)+mt,,]cos(q, +4;)

+[L, +m, (8, —d) +mst, 1+ 2mL, (£, ~d)]cos(q,)
—[m€,(€s —d;)]cos(q, +q; —q,) + [ +ms(€5—-d;)7]
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D,24)=-{m,t,(¢,-4d,) +ms£ze,4]C°5(Qz +4;)
+[I, +my(2, —d4)2 +mgl, 1+ 2[m,8, (¢, -d,)]cos(q’,)
—[ms€,(&5 —d;)]cos(q, +q, —q,)+[I; + ms (€5 -d;)°]

D,(2,5) =[mst,(¢s —d;)]cos(q, +q; —q,)—[ms€ ({5 —d;)]cos(q,)
- +my(€; - d))

D,31)=D,(13)

D,32)=D,(23) : . i

Dq(3'3) =HI; +myd;" ) +[[, + m (¢, -d,) +m,€4']’
+2[mgl (€5 —d;)]cos(q,) +[{s + ms(€s ~d,))

D,34)=D,(3.3)

D,(3,5) =—{my, (¢, —d;)]cos(q,) —[/s + my(€5 —d,)*]

D,(41)=D,(1,4)
D,(4,2)= D,(2,4)
D,(4.3)=D,(4,4) = D,(3,4)
D,(4,5)=D,(3.5)

D,(51)=D,(1,5)
D,(52)=D,(2,5)
D,(53)=D,(54)=D,(3,5)
D,(55)=[1s + ms(¢ -d,)*]
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Appendix III

Derivation of the Five-Link Biped Dynamic Model with Both Legs in the Air
The equations of motion for the impact phase are derived by applying the Lagrangian
formulation using the dynamic model with both legs in the air. The Lagranian equation

of motion is in the form:

+o=T,
%, %,

dr |6

ar

d{aK}_ oK P

where 6,=[6,0,0,80, 6 x, y,]

Each term in this equation is derived as follows:

j(:g} U, +md’ +myt’ +m3£l +m’ +my ' 19,
t

+[myl d, +mye &, +m, €. ¢, + myf ¢,]cos(8, -8, ,)8,
+[m,¢, d Jcos(8, -9 )9

+[m,¢, (£ ~d, )+m,2£ Jcos(6, +6 )8,

+[mgl, (€5 —d,)]cos(8, +6,)0,

—[m,¢,d, +m,£ 2, +myt Z , +mf £,]sin(8, -6 )96
+[m,¢, d +myé, Z +m4£ £, +mg¢ ¢,]sin(6, -0, )9 :
-[m,¢,d, ]sm(e -0 )6 9

+[m,¢,d,]sin(8, - © )9 :

—[m,¢, (Z -d, )+m £,¢,]sin(B, +6 )99
—-[m,€,(€,-d,)+mt £ ]sin(B, +O )9 :
—[mye,(€5—d,)]sin(B, +9 )9 9

~[{mgt, (€5 —d,)]sin(8, + 0 )9

+md, (%, cosB - y,sin@, - %, sin6,0, - y, cos8,8,)
+(my, +my+m, +mg)e, (xb cos@, -, smG - X, sme 8, -y, cos9,6,)
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gt{%K_] =[L+myd,’ +myl,! +m )} +mit 218,

+[myt\d, +ml &, +m €, +ml ¢,]cos(B, -8, 1)6,
+[m;¢, d y]cos(8, -0 )6

+[m483(£ -d )+m,€ €,]cos(8, +6 )8,

+[mse, (€5 —d;)]cos(0, +9 )6

+[m,¢ d, +m3£ ¢, +m4£,£2 +mgf,¢,]sin(8, -9,)8,0,
—[myl,d, +my€, 8, +m£, ¢, +m ¢,]sin(®, -0,)8,
~{m,?,d,]sin(8, -8,)8,8,
+[m,¢,d,]sin(0, -8,)8,’
-[m,€,(¢,-4d )+m52 ¢,]sin(8, +6
=[m€,(¢, —d,)+myl,€ ]sin(, +0
-[mg€,(¢ —d,)]sin(6, +9 )9 8
—-[mg€.(¢s ~-d;)]sin(6, +65)9
+m,d, (%, cose - J,sind@, - %, sin0,8, - y, cos®, 9,)
+(m,+m4+m,)f_(r,cose- y,sin@, —x, sin6, : , =V, c0s8,8,)

)6
e,

d .
dt(sg]_[lj +myd,*16,
+[my£,d,]cos(8, -9,)'6:J
+[m,€,d;]cos(8, -6,)0,
+[m,¢,d,]sin(6, -0, )9,8,
~[m,¢, d ;]sin(B, -6 )9 2’
+[m,¢, d ;1sin(8, - 6 )9 9
~[m,¢,d,]sin(8, - 96,)8,* ‘ _
+myd, (%, cos8; - y, sin@; — x, sin8;0, — y, cos6,H,

%[%)=[14 +m4(e4‘d4)z+msg¢z]94
+[m €, (€, —d,)+mst £ Jcos(d, +6,)0,
+[m€,(L, —d)+msl,¢, ]cos(®, +0,)0,
+[ml, (€5 —d;)]cos(0, -6 )9
-[m,¢,(¢,-d )+m5£|€4]sm(9 +6 )99
-[m ¢, (¢,~-d,)+mt ¢ ]sin(0, +6 )6 ?
—-[m,2¢,(¢, d )+msl, €, ]sin(8, +9 )6 9
-[m,(€, —d,)+msL,2,]sin(B, +0 )6 :
—[msl ({5 —d,)]sin(0, -6 )Q 9
+mt, (8, ~d)]sin(, ~0,)8," . ,
+m (¢, —d,)(%,cos6, +j,sin8, —x,sin6,0, + y, cos0,0,)
+m;é (X, cosB, + j,sin0, —x,sin0,0, + y, cosb,0,)
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d( oK -
z[g;] =[15 +m,(£, -d,)']Bs

+[mg€,(€s —dg)]cos(B, +95)Q,

+[my€,(€s —d)]cos(B, +6 )0,

+[mg€, (€5 —ds)]cos(8, —6,)6,

—{ms€,(¢5 —d;)]sin(8, +6,)0,8;

~{mg€,(£5 —d)]sin(0, +6,)8,*

—{mg¢,(¢5 —d,)]sin(8, +6,)8,6,

~[mgé, (€5 - d)]sin(8, +8,)8,’

+[m €, (€, —d;)]sin(B, —95)94?5

—[ms€, (€ —-d)]sin(B, —9,)6,” ) )
+mg(€; —d;)(%, cosO; + y,sin6; ~x,sinB,08, + y, cos6,0,)

:—e‘E:-[m:E,dI +myl 8, +myl £, +mgl,¢,]sin(6, -8,)8,8,
| . , ..
—[m,¢,d,]sin(6, —6,)8,0; —[m,¢,(¢, -d,)+ms¢ ¢ ]sin(6, +6,)0,6,
-[ms€,(¢s ~d,)]sin(8, +84)08,0, + md\0,(-%, sin 6, — y, cos8,)
+(my, + my +m, +m)¢ 0,(—%,sinb, -y, cos6,)

gg = [y dy +myl 0, +m, €2, +myl,€,]sin(0, —6,)0,8,
" ~[m,,d,]sin(8, —6,)8,8, —[m,€,(¢, -d,)+m,£ ¢ Isin(, +6,)8,6,
-[{m¢,(€5 —d;)]sin(6, +6,)0,8, + m,d,0,(-%, sin@, - y, cosH,)
+(my; +m, +my)¢,0,(-x,sin0, - y, cosH,)

— =—{m,¢,d,]sin(8, -9,)8,8, +[m,¢,d,;]sin(0, -8,)8,,

+m,d,0,(~%,sin@, - y, cos6,)

—=-[m¢,(¢,-d,)+m £, ]sin(6, + 94)élé4

~[m.2, (¢, ~d,)+ms2,0,]sin(8, +8,)8,8,
—[mt (€5 - d,)]sin(®, -9,)8,8;

+m, (¢, -d,)8,(-%,sin8, + y, cosh,)
+mgl 0,(-x,sind, +y, cosb,)

oK ) ..
é‘?=—[m,£,(£5 —d,)]sin(8, +9,)0,0,

s .
-[mslz(fs -d; )]Sin(ez +es)ezes
+[ms€ (€5 —d;)]sin(0, —0,)0,6;
+mg(£, —d;)05(—x%,sinB, + y, cosb,)
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i 95- =(m +m, +m, + m; +my)x
dt 6‘.!'.',, 1 2 3 3 §/%h
+m,d,B, cos, —md,6,’ sin6,
+(m, +my +m, + m;)¢ 0, cosO,
—(m, +my +m, +m, )1.’,.(5)&2 sin®,
+m,d,0, cos6, ~m,d,0," sin@,
+(m, + m, + my)¢,0, cosB,
=(my +m, +mg)t, 9,’sm9
+myd 0, cos0, m,u,e,’;me
+my (¢, -d, )e cos8, ~m, (¢, -d,)8,’sin®,
+mgl B, cos, -m,€,8,’sinb,
+mg (€, d)e cosO, —mg (£, -d)e sme

d( ok .
z[-éy—é):(m,+m2+m3+m4+ms)y,,
-md,8,sin8, -md,8,’ cos,
—(my, +my +m, +ms)€ 0, sinf,
=(my +my+m, +ms)¢, 9 2cos@
—m,d,8,sin®, - m,d, G.. cos9,
—(m; +m, +mg)¢, 9, sme
—(my +m, +mg)e, 8, c056
—m,d,8, sin6, m,de cosG
+m,(¢,-d, )8, sin®, +m4(£ d)e cose
+m,l 0, sin6, +mL,0, cosO,
+mg(L, —d)e sin@, +m, (¢, d)e cose

- = == =0
0x, Y,
opP
—--[mld +ml, +ml +ml, +myf ]gsin0
P _ {myd, +myl, +ml, +mgl,]gsind,
:TP-—{rmd ]gsinB,
ap _
=[m,(¢, -d,)+m ]gsin8,

apP .
g—[ms(f -d,)]gsin®,

3
2 _o
axb
oP
Ey—=(m1 +m, +m;+m, +m;)g

b
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Appendix IV

Derivation of Constant Mechanical Energy of the Five-Link Biped Robot

The mechanical energy (V) of the five-link biped robot comprises translational kinetic
energy, rotational energy, and potential energy (V=K + P). In order to derive a equation
representing constant mechanical energy at an instant in time, we have to set

V=0

where  is the time derivative of the mechanical energy

Therefore,
gtV

d ok,
where

X, = [%41"]2»%44@0»‘?1aqz’qs"h]

Each term in the above equation is derived as follows:

v : , :
2, =~ i0(d0) ~a; sinlgy —q,) - a3 sin(g, -4, ~4,)
0

—-a,sin(—q, +q, +q, +q;) - assin(-q, + 4, +q, +q4, —q,)

14 ) ) .
6’—=a1 sin(q, —q,) +a, sin(q, —q, —q,) +a, sin(~q, + g9, +q, +4q;)
1

+ag sin(—q, +4 +4q,+4;-4,)

-b Sm(‘h)(QO -444,) - b sin(q, +q2)(qo =404 ~404>)
-b,sin(q, +q, +¢;)(- ‘Io +‘Iqq| +409; +9443) o
~b,sin(q, +q, +q5 —q,)(~45" +qod; + 9092 +909; —G09s)

oV ) X ]
E‘;:as sin(q, ~ ¢, —q,)+a,sin(-q, +¢q, +9, +q;) +a;sin(—q, +¢, +q, +q; - q,)
2

~b,sin(g, +4,)(do" ~Gods —dod2) — b5 SIn(g,)(do” —240ds ~ Godz + 41’ +d1d>)
—b,sin(g, +4; +45)(~do" *+4ods +doda +duds)

"b 6 SI0(G, +q5)(—4, +Z%ql+qoq1 +4oq; Ql ~419: ~4,93)

—b,sin(q, +q, +q; ~q,)(- ‘h2 +4oq, +40d, +40q; — qo‘I4)

-b,sin(q, +q; -4, )(‘qo2 +240q, +909: + 9095 — 4045 - qx -419; — 4,95 +4,94s)
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—— =a,sin(-q, +q, +q, +q;) +assin(-q, +q, +q, +q; -q,)
3

—bysin(q, +q, +q3)(-qo * 9041 + 9092 +90ds) |
—bgsin(q, +q; (=4, +24,44, +qoq1 +404s =4 ~ 4,9, —4,9;)
—b,sin(q, +¢, +4; = ¢, )(~ds” +dod, +§odz +dods - 90d.)
‘b7 sin(q, +9; —q,)(—4s” +2449, + 404> +Gods —4od, — ‘h -49, — 4,95 +4,4,)

v :
~— =—a;SIn(—q, +q, +4, +4; ~4,)
g,

+b,sin(q, +q, +q; - ‘h)( QO +404, + 494, + §o4; — ‘qu4)

+b, sm(q"“‘h ‘14)("% +2444, + 404, + 445 - qo‘h ‘Il -49.9, —9.49; +4,4,)
~ by sm(qd(qo =24041 —2409> —24¢qs +4ods + 4, +24\4, + 24145 — 4,4,

+4y" +24,4; — 4,9, + 4" —d:4,)

ﬁzcl%‘*‘cz(%"‘h)"‘c:(%“41*"1:)‘54(-%"'q:"'qz""h)_cs("%‘*'ql"'Qz"“h"%)
0
+Cofo +C1(go —q1) ~Cs(~9o + ¢, +4: +4;)
+ b, cos(g, W24, - q,)+b cos(q, +4,)(29, =4, ~q,) +bscos(q, )24, — 24, ~ q,)
+b cos(g, +q, +q;)(- qo+q.+q»+q:)+b cos(q~+qs)(-2qo+’ql+qa +‘13)
+b cos(q, +9,+q; =9, )02, + 4, + 4, + 45 — 4,) )
+b, c0s(q, +q; —4.)(=2G, +24, + 4, +§; - q,) + by cos(q, )24, — 24, — 24, —24; +4,)

ov ) ... L .
a-"cw(% g1)=c3(Go =G —q2) e (~Go +§, + 42 +4;) +5(—4o + 4, + 4, + 45— 4,)
1
~¢;(qo —q;) +cs(=qo +4, + 4. +4;)
—b, cos(q,)(g,) + b, cos(q, +¢q,)(q,) +bs cos(q, )(-’qo +24, +4,)
+b cos(q, +4, +93)(do) + b cos(ﬁ"t"‘?))(-%" 91 —4,—43) o
+b cos(q, +q,+q; — q;)(qo)+ by cos(g, +q;5 - 4,024, ~24, - . - 45 +4.)
+b cos(q)(—2q, +2q, +2q, +2¢4; - q,)
14 ... .. .
a’='c3(qo"ql"%)""Q(‘%+qi+92+‘h)+cs("qn+ql+qz+qs-q4)

i +cg(—4o +4, +4, +q5)
~b, cos(q, +9,)(q,) —b; cos(qz)(qu)+b3 cos(q, +42+QJ)(40)+6 cos(q, +45)(g, —
+b4C05(q1+qz+‘h %)(%)“‘ b, cos(q, +q5 —q,)(§, -

+ by cos(q,)(-24, +24, +24, +24, -q,)
OV
‘é‘t‘j‘:ﬁ(“%‘*‘%""Iz"'q_‘»)‘*‘cs("%“‘qx*‘h+Q3‘q4)+cs(“10+%+qv+q3)

3 . .
+b, cos(q, +q, +95)(q,) + b cos(q, +45)g, —4,)+b, cos(q, +q, +q; —q,)Xq,)
+b, cos(q, +q; —q4,)g, —4,) + bs cos(q, ) (—24, + 24, + 24, + 24, - 4,)

4 )
=-c;(—q, +4, +4, +4; —q,)
EA

~b, cos(q, +9, + 95 —q,)(4,) — b; cos(q, +q; —q, g, —4,) +bs cos(q, g, —4; — 4
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where

a, =gimd, +myl, + m¢, +myl, +ml )

a, =g(myd, +ml, +m, +myl,)
ay = g(myd;)
a, zg(m-t(e-t _d4)+m5£4)

as=gmy(€, —d;)

by=mtd,+ml,l,+ml ¢, +md ¢,
b, =m¢ d,

by =mst,(¢s —d,)

by =m,¢,d,

bg=ml,(¢, -d)+m,¢,
b, =myl,(¢s —d;)

by =msl (€5 —d;)

¢, =1 +md’

2
cs=I;+ms(€s—d;) .
Cs=(my+my+m, +m)¢°

2

c; =(my+m, +mg)t,"
2
Cy =myl,
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Appendix V

Derivation of the Time Derivatives of the First Four Constraint Functions

The time derivatives of the first four constraint functions are derived below. They will be
used to generate the joint angle profiles for the five-link biped robot to walk on a flat
horizontal surface.

S1: The erect body posture

S, =9,-9, — 4,
Sx =4y -4, -4,
§l =£io -4, ‘ﬁz

Sz: The overall progression speed

§, = ¢,¢08(q4)q, +e2c°5_(40 “:ql)("?o -9,
+d;cos(q, =9, =9, )4 -4, —42) -V,

J.Szdt =¢,sin(q,) - ¢, sin(q, (4, ) + £, sin(q, —q,) — ¢, sin(qe (4,) — q, ()
+d,sin(q, —q, -q,) —d;sin(qq (%) —q;(f,) =9 (8)) =V, (t = 15)

Sz = £, c0s(q,)g, — ¢, Sin(‘]o)‘?oz +€,c08(9, = q,) (4o —4,) ~ ¢, Sf'n(qo _?l)(qo -4)’
+d;cos(qy =4, —9:)(Go —4) —G,) —d;¢08(¢, — 4, ~9:)(Go =4, —42)"

S3: The bias of the knee of the support leg

S;=q,~0
$3=‘?|
‘§3=qt
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Ss: The coordination of the support leg and swing leg motion

Ss =1¢,sin(g,) + ¢, sin(q, — q,) + 2d; sin(q, —q, —q,) - €, sin(—q, + ¢, +4, +4;)
={ssin(—q, +4,+q, +45-q,) =

Ss =, ¢c0s(q,)q, + ¢, cos(q, - QI)(% ‘Il)+2d cos(qy =, =4, )(qGo — 4, — 4>)
s + cos(—q,q +ql +qy+q;) (4o +4, +4 +45)
-, 5CoS(—qy +q, +q, +qy —q, N(—q, +4, + G, +4; —q,)

S4=ZIC°S(%)‘?0—elsin(%)‘joz"‘g cos(qy — 4, (g — ql) ezsin(qo"%)(‘ig—qx)z
+2d;cos(qy —q, —9,)d, — 4, —§,)—2d;sin(qy —q, —q,)(qs =4, —4.)"
-, cos(- qo+q,+qa+qz)( qo+q[+q~+q;)
+€ sin(~q, + 4, +q, +4;)(~4o +4, + 4, +§;)°
—{l5c05(~qy + 9, +9, + 93 =4, )(~Go +§) + 4, +§5 = 4,)
+£55in(‘%+%'*“qz"“h"h)(“?o'*'ql+‘?z+‘13 q4)'
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