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Various imaging procedures, providing dilferent types of information and based on 

different physical properties of the tissues, are characterized by specific complexities, 

degrees of hazard, resolutions and price. Electncal impedmce tomography (EIT) has the 

advantage of a low pnce and simplicity. as well as of not having any known hazards, such 

as ionising radiation, which makes it particularly attractive. However, it has the disadvan- 

tage of a low resolution. The information provided by EIT could be used directly for 

medical diagnosis or in combination with other imaging systems. 

In EIT the electric current is applied to the periphery of the body and the corre- 

sponding voltage is measured in order to find the intemal distribution of conductivity and 

permittivity. 

In this thesis, the EIT performance has been improved in three different aspects: 1 ) 

improving the network approximation method for solving the electrode voltages when the 

distribution of conductivity and permittivity within the object as well as injecting current 

pattern are known, namely, the forward problem; 2) utilizing neural networks in an 

iterative procedure for solving the conductivity distribution when the electrode voltages as 

well as injecting current pattern are known, namely, the inverse problem; and 3) improvis- 

ing a new method for image fusion based on fuzzy set theory to be used in a multifre- 

quency scheme to increase certainty and accuracy. 
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Electricai impedance tomography is defined as a technique which from a 

knowledge of voltage and current on the boundary of a region, determines the spatial dis- 

tribution of conductivity and permittivity within the region. Hence, electrical impedance 

tomography may be considered as a member of imaging techniques (see Table l), in 

which the common goal is to noninvasively determine certain physical characteristics 

within a particular region. Noninvasive imaging techniques are widely used in medicd 

practice. The wide variety of techniques has arisen because of the ability of each to 

provide complementary information to the others. 

The information provided by any of these imaging techniques is different, 

primarily because of the different physical phenornena that are rneasured. The use of 

different mechanisms means that different equiprnent, different data-collection strategies 

and different data-processing algorithms are used for each imaging technique. Therefore, 

although al1 of these techniques have a common objective, and ail produce a similar end 

result, i.e. an image, they have widely different functional characteristics. e.g. cost, speed, 

size, portability, accuracy, resolution, safety, and operator skills. 

Electrical impedance tomography (EIT) is not a new technique. Since about 1930, 

this technique has been used by geophysicists to determine the conductivity of different 

layers (strata) close to the Earth's surface [115]. The identification of these strata and their 
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conductivities, aiong with the known properties of rocks and minerals, is an aid in the 

prospecting for minerais and oil. 

Table 1: Medical imaging techniques; most popular techniques are mentioned h e m  
For each technique the, mecbanism of mesurement and physid characteristic 

which determines the contnist between dinerent tissues, is given 11151. 

Technique 
Mechanism of 
measurement 

Physical characteristic 
measwed 

Ultrasound 

Nuclear magnetic 
resonance imaging 

X-ray cornputer 
tomography 

Reflection and scattering 
of ultrasonic waves 

Positron emission 
tomograp hy 

Changes in acoustic 
impedance 

Transmission of X-ray 

Magnetic and electric 
fields 

Nuclear particle 
emissions 

X-ray absorptivity 

Spin relaxation times, proton 
density 

Density of administrated 
isotope 

EIT has numerous practicd applications, e.g. in quality control and fault detection 

for various materials [36], in multicomponent fluid flow analysis [IOO], geological explo- 

ration [30], and medicai imaging [5].  Recentiy, it seems following the advent of other 

medical imaging techniques, people have senously considered impedance imaging as an 

aid to medical diagnosis [O, 1061. The rationale for its use is based on the knowledge that 

different tissues and fluids within the body possess different values of conductivity and 

pennittivity and dependency on frequency (see Table 2). It therefore follows that the 

ability to image conductivity and pennittivity pennits the visualization of the various 

tissues. There is aiso evidence that the electrical properties of tissue vary according to its 

state of health, which raises the possibility of distinguishing between healthy and 

Electrical impedance 
tomography Electric currents Electric conductivity and 

permittivity 
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abnormai tissue. 

Table 2: Conductivity and relative permittivity of some tissues [6,49,106] 

Conductivity [S/m] 1 Relative pemüttivity 
Tissue 

Cerebrospinal fluid 

Plasma 

Blood 

Liver 

0.4 17 (longitudinal) 
0.148 (transverse) 

0.8 (longitudinal) 
0.0556 (transverse) 

0.428 (average) 
Skeletal muscle 

Cardiac muscle 
0.625 (longitudinal) 
0.236 (transverse) 

0.43 (average) 

Neurai tissue 
-gray matter 
-white matter 
- - 

Lung 
- 

Fat 
- 

Bone 

Spleen 

- . . 

Kidne y 
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2. ELECTRICAL IMPEDANCE TOMOGRAPHY SYSTEM 

Electricai impedance measurements have been used to study biological systems 

since the late 1800s. Very generally, investigations cm be divided into two major catego- 

ries [2]: (1) studies conducted to investigate fundamental electric properties and to 

correlate these properties with tissue structure and (2) measurement of physiologicai 

events. Investigations of the electric properties of tissue have employed measurements of 

both real and reactive components of impedance at a number of frequencies; the earlier 

studies were conducted on various cell suspensions to identify cell membrane properties. 

In contrast, because of instrumentation limitations and safety considerations. studies 

directed toward detection of physiological events have usually been conducted at a single 

frequency above 20kHz and generally only impedance magnitude has k e n  measured. It 

should be mentioned that this study has nothing to do with intemal body electrical sources 

such as those generated by the heart or brain. In an effort to eliminate their consequences, 

the frequencies which are king used in electrical impedance tomography are much larger 

than intemal sources frequencies (i.e. heart or brain) and a high pass filter is used before 

measuring instruments. 

2.1 Biological Effects of Current Flow 

The threshold of sensation for low-frequency currents applied between electrodes 
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placed on the skin generaliy rises with frequency. Three distinct types of sensation occur 

as frequency increases [6]. 

At frequencies below approximately O. 1 Hz individuai cycles can be discemed as a 

periodic stinging sensation; this is thought to arise as a result of electrolysis at the 

electrode-tissue interface. Currents as low as 100 pA can be felt. At frequencies above 10 

Hz electrolysis effect appear to be reversible and die dominant biological effect is that of 

neural stimulation. However, as frequency is further increased the threshold for neural 

stimulation increases and beyond appmxirnately 10 kHz no neurai stimulation takes place 

and ohmic heating of the tissue becomes the dominant biological effect [6]. 

2.2 Electnides 

Before considering how to fom impedance images from a set of voltage and 

current measurements, it is worthwhile considering what measurements should be 

obtained and the problems in doing so. In general measwements of impedance are 

performed by connecting electrodes to a conductive region and driving a current between 

thein. The resulting voltage then may be measured with a suitable voltmeter. Measurement 

of voltage between two electrodes, while current is king passed. clearly produces inade- 

quate information for irnaging. What actually is done, is that an array of electrodes (i.e. 16 

or 32) is connected around the body (e.g. thorax). Then current is applied to some or al1 of 

these electrodes and the developed voltages are measured on them. To achieve the 

maximum amount of information, this is repeated for al1 the independent measurements. 
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OHMMETER 

Fig. 2.1 (a) Two wire ohmmeter method; (b) four wire ohmmeter method. 

2.2.1 'Pwo and Four Electrodes Arrangement 

Ohmmeters usually use a two wire method for measunng resistivity, but it is well 

know that the four wire method is more accurate. The reason for better results for four 

wire methods lies in the exclusion of the resistance of current-carrying wires from the 

measurements (see Fig. 2.1). The ohmmeter performs a division of voltage by applied 

current and in the two wire method, resistivity of wires is included. In contrast, in the four 

wire method, voltage is measured by separate wires and as there is not a significant 

arnount of current in these wires (voltege measurement is done by a very high resistive 

device) their resistivity is excluded in the readings. 

In measuring the resistivity or impedance of hurnan tissue, using the four wire 

method has an additional advantage. in  this case by using a separate pair of electrodes for 

measuring voltage, the resistance of electrode-skin interface and most of the skin 
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curent electrode 
A voltage electrode 

\ equipotential lines \ inside the tissue s (cl 

Fig. 2.2 (a) Four electrode method; (b) configuration of compound electrode; (c) equipotential 
lines inside the tissue which explains, in the four electrode method, what actually is measured, is 
the voltage beneath the skin, so electrode-skin impedance and skin impedance are almost 
excluded. 

impedance will be excluded in measurements (see Fig. 2.2 for details). Equipotential lines 

have been shown in Fig. 2.2. As can be seen the voltage of the voltage-electrode is the 

same as the voltage beneath the skin for current-electrode, so what is measured by the 

voltage-electrode is actually the voltage pro~uced by injected current when electrode 

impedance and electrode-skin impedance are excluded. To achieve this property and to 
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Fig. 2 3  Block diagram of a very simple EIT system which shows main components. 

keep both current and voltage electrodes as close as possible, a compound electrode has 

been introduced [62]. As the voltage electrode is not carrying a significant arnount of 

current, its size is much smaller than the current electrode (see Fig. 2.2) [L LI]. 

2.3 Hamlware 

Like any other imaging device, there is a variety of instruments that make up an 

electrical impedance tomography system. Among them one can name current generators, 

demodulators, voltmeters, interfaces, and computer facilities. 

Basic components of an electrical impedance tomography system are shown in 

Fig. 2.3. It should be noted that in cornparison to otheï imaging systerns, EIT has one of 

the most simple, inexpensive, and small-size hardwares. 
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2.3.1 Current Generators 

To measure an unknown impedaace, one must do one of two things. Either apply a 

known voltage across the object and then measure the current through it, or inject a known 

current into that object and measure the voltage across it. Both of these methods have k e n  

used for various En and similar systerns. The current generator-voltmeter couple has a 

technical advantage over the voltage generator-arnpmeter. The main reason lies in the sim- 

plicity of building a current generator over an arnpmeter. In the next chapter, it will be 

shown that (virtually) there are two different methods in data collection from the current 

generator point of view. In one of them only one pair of electrodes is driven by a current 

generator and this pair will be changed during the sampling time. In this case, one current 

generator and a multiplexer is enough. In the other case, al1 electrodes are simultaneously 

driven with current generators. In this case one needs as many current generators as elec- 

trodes. Obviously the second strategy needs more hardware in retum for better distin- 

guishability [68]. 

It is well known that current generators are actually voltage generators with a large 

internal impedance. Voltage sources are available with an intemal irnpedance which can 

be adjusted automatically or through a voltage signal. Thus the required internal 

impedance cm be adjusted through software which in tum controls a voltage signai. These 

sources are ideal for our purpose. In addition, to having complete synchronization 

between current sources and demodulators, programmable read only mernories (PROM) 

are perfect devices. The wave fonn of a sinusoid cm be stored with very small time steps 

in a PROM, then a timing device produces addresses of this PROM and the stored value in 

turn goes to a digital to analog convertor (D/A). This analog signal can be used as a 
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reference for al1 current sources and demodulators 1241. 

2.3.2 Demodulators 

Al1 signals in En system are sinusoidaiiy modulated. But it is the amplitude of the 

voltages and currents that we are interested in, therefore, demodulators have to be imple- 

mented to determine the required amplitudes. 

Moreover, it was already mentioned that the impedance of tissues is frequency 

dependant. Thus multifrequency scheme has been suggested to increase the acquired 

information from a limited number of electrodes. The interesting point is that these 

different frequencies may be applied at the same time and be decomposed during the 

demodulation. This technique further decreases the sampling time [24,48,1023.t 

2.3.3 Stray Capacitances 

It was indicated that using four electrode method improves measurement accuracy, 

but this technique is not too effective in eiirninating stray capacitances. These are capaci- 

tances between wires and ground as well as between wires and are in parallel with tissue's 

irnpedance. 

One way to decrease the effect of these impedances, is to install current generators 

and demodulators as near as possible to the electrodes. Development of integrated circuits 

for these devices would enable the installation of them in the electrode cornpartment. 

2.3.4 Voltmeters 

The demodulated signal goes to a voltmeter. There are several electrodes around 
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the body (i.e. 16 or 32 or 64). There may be just one voltmeter and a multiplexer which 

selects which electrode is to be comected to the voltmeter (see Fig. 2.3), or there may be 

the same number of voltmeters as electrodes. The former will have lower cost and longer 

sampling time. 

As will be seen in the next chapter, the data collection method has a direct impact 

on the measurement signal to noise ratio (SM). The expected range of voltages for the 

neighboring method, for instance, in a 64 electrode system is 1 to 2800 [14]. Obviously 

without an automatic adjusting scheme for the voltmeter range, the SNR would be very 

low. 

Furthermore to achieve the required precision, high precision voltmeters are 

needed. So far, measurement devices (current source, demodulator, voltmeter and A D  

convertor) with up to 16 bits of precision have been built, but precision up to 24 bits is 

also feasible [24]. 

2.3.5 Interfacing and Cornputer 

Al1 reconstruction methods need a considerable amount of computation to produce 

an image from raw data. Reconstruction of an image in EIT is not an exception and so a 

computer and an interface to convert andog signals to digital ones (A/D) is inevitable. 

AiDs are comrnon devices for interfacing. In previous subsections, it was mentioned that 

some or al1 devices may use digital techniques. In that case, output data is already in the 

correct format to be fed into a computer, othenvise, A/Ds should be used. 

Selection of the computer depends on the reconstruction method as well as availa- 

bility. For example the earliest clinically usehil CI' scanners were based on mini-computer 
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architectures that were minuscule by today's standards. The first such machines used a 16- 

bit processor, with only 64k bytes of memory. With the failing cost of computer power, 

system designers have integrated much faster computea, array processors, multiple 

viewing stations, and other features into medical instruments. This escalation in computer 

power has permitted more accurate and stable reconstruction algorithms, while keeping 

reconstruction times on the same order of magnitude as data acquisition times. 

In contrast, the non-linear nature of the EIT problem results in reconstruction algo- 

rithms that are computationaiiy intensive. As will be seen later, Yorkey implemented and 

reviewed the performance of six reconstructior~ algorithms and found that the most 

accurate, a Newton-Raphson technique, required several hundred CPU seconds per 

iteration for a 16 electrode simulation on an 8 by 8 element resistivity mesh [13 11. 

Simske has impiemented a one step Newton-Raphson technique for a 32 electrode 

system with a 496 element resistivity mesh [118]. This program has been modified to run 

on processors ranging from Sun 3/50 workstation to a Cray WMP-48 supercornputer. 

Results of run time analysis (see Table 3) indicate that implementation of the current 

Table 3: Run time of Newton-Raphson method of a 32 electrodes EIT system [43]. 
- 

Computer 1 Run tirne (seconds) 

Sun 3/60 workstation 
Sun 4/280 

IBM 308 1 -D 
Cray X-MP/48 

- - - - - - - - - - -- - - 

program on small machines is clearly impractical. Since this algorithm runs in 0(n4)), with 

n the number of electrodes, run times for a 64 electrode system would be intolerable on 

any but the largest supercornputers. 
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It is obvious that a high computational burden is not welcomed and is a major 

drawback for such a reconstruction method. It is the aim in this research to develop a 

method with acceptable reconstruction tirne. 

Foiiowing review of EIT systems, data collection methods in EIT are presented 

next[24]. 
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3. DATA COLLECTION METHODS 

Electrical impedance tomography reconstructs the conductivity and permittivity 

within an object based on the conditions of voltage and current on the surface of the 

object. To determine the conditions of the current and voltage on the surface, one can 

inject the current through a set of the electrodes in contact with the surface and measure 

the developed voltages. There are numerous ways in which the curent-injectitg elec- 

trodes, voltage measunng electrodes and current patterns are chosen. This section 

describes various methods by which the current is injected and the voltages are measured. 

Upon completion of these measurements, numerical reconstruction methods to be 

described in the next chapter may be employed to reconstmct the distribution of conduc- 

tivity and permittivity within the object. 

3.1 Neighboring Method 

Brown et al [20] introduced the neighboring method of data collection. In this 

method, the current is applied through two adjacent electrodes and voltages are measured 

from al1 other successive pairs of neighboring electrodes in this four electrode method, 

though compound electrodes have not been used. Data collection for a 16-electrode 

system is shown in Fig. 3.1. Current is injected through electrode pair 1-2 and voltage is 

measured on d l  other pairs, e.g. electrode pair 6-7. The current flows throughout the 
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Fig. 3.1 In the neighboring method, currenu are injected through neighboring electrodes and 
voltages are measured between adjacent pairs of electrodes. 

object, with its intensity maximal at the periphery near the current-injecting electrodes and 

dirninishing rapidly towards the opposite side. Figure 3.1 shows some equipotential lines, 

and the portion between those two lines that terminate on electrodes 6 and 7, represents 

the impedance zone for these electrodes. The voltages are measured between al1 the other 

electrode pairs, i.e., 3-4, 4-5, 5-6, ... , 15-16. These 13 voltage measurements are inde- 

pendent. The current injecting pair changes to electrode pair 2-3 and al1 13 voltages are 

measured on other neighboring electrodes. Each set of these voltage measurements are 

called a projection angle in analogy to a X-ray CT scanner. Repeating this procedure for 

the sixteen electrode pairs, produces 16 x 1 3 = 208 voltage measurements. However, not 

al1 of these measurements are independent, since the reversal of voltage and current 

electrode pairs would give an identical value of the measured impedance (reciprocity 
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Fig. 3.2 Current injecting electrodes in the cross method. 

theorem). Thus, only 104 independent measurements are obtained for the above 16- 

electrode system. 

The neighboring method of data collection has a very nonuniform current distribu- 

tion. Most of the current flows near the current injecting electrodes and hence good sensi- 

tivity is obtained at the periphery. This method does not yield good sewitivity at the center 

because the current density is low there. 

In general when the voltages of current carrying electrodes are used as well, then 

in an n-electrode system, there are n(n-1)/2 independent measurements, i.e. in a 16- 

electrode system, there is 16( 16- 1)/2= 120 independent measurements. Brown et ai iiiive 

not utilized al1 of these because in their reconstruction method, they do not measure 

voltages on the current carrying electrodes. 

3.2 Cross Method 

Compared to the neighboring method, the current in the cross method, proposed by 
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Hua et al [61], is more uniformiy distributed as the current injecting electrodes are 

separated by large dimensions. The data collection system in shown in Fig. 3.2. Electrode 

O is taken as cumnt reference and electrode 1 as voltage reference. The current is then 

applied successively to even electrodes, i.e. 2, 4, ... , 14 and voltage is measured on all 

other electrodes with respect to the voltage reference electrode. The second data set is 

obtained by switching the current reference to electrode 3 and the voltage reference to 

electrode 2 and injecting current through odd electrodes, i.e., 5,7, ... , 15, 1. This means 13 

voltage measurements for seven different current injecting electrodes for each set, which 

yields 2 x 7 x 13 = 182 data points. Thus a 16-electrode system yields a maximum of 

182 data points, out of which only 104 are independent rneasurements. The cross method 

does not have as good a sensitivity in the periphery as the neighboring method, but, has 

better matrix conditioning and sensitivity over the entire region. 

3.3 Opposite Method 

Opposite method was also proposed by Hua et al [61]. In this method, current 

injecting electrodes are diametrically opposed to each other. The voltage reference 

electrode is selected to be the neighbour of current injecting electrode. 

For a 16tlectrode system, there are 8 different current injecting electrode pairs 

and 13 voltages comsponding to each pair of them, therefore, a total of 8 x 13 = 104 

data points cm be obtained. Not al1 of these measurements are independent, but, this 

method has more uniform current density and hence good sensitivity. 
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3.4 Adaptive Method 

Adaptive method or as it is sometimes cdeC the optimal current method was 

proposed by Gisser et al [42] and is based on applying current to al1 electrodes. As such, 

compound electrodes should be used for this data collection method. The amplitude of the 

currents are chosen in an iterative algorithm such that the optimal currents are obtained. 

The optimal current is defined as a current pattern that maximizes the measured electrode 

voltages, for a constraint current amplitude. This method gives the best distinguishability 

[68] and is the most versatile method of data collection. For a homogeneous impedance 

distribution, the amplitude of the current in the electrodes follows a cosine curve (spa- 

tially), to give a perfectly uniform current distribution. in maximizing distinguishability, 

an interactive experimental process must be pursued to approximate a best current i to dis- 

tinguish between two areas with different impedances. The basic idea for this method can 

be shown easily using the following formulation 1641. 

Let R (p) denote the resistance matrix for the original impedance distribution p 

and R ( p )  the estimated resistivity distribution for p .  The voltage difference for a given 

current pattern I is 

V , - V ,  = [ R ( p ) I - R ( P ) I ]  = [ R ( p )  - R ( P ) ] I  = D I  (3-1) 

where D = R (p) - R ( p )  . The current patterns that rnaximize the nom of the voltage 

difference for a unit current, 11 Vo - V,Il/llZlI, are defined as the optimal current patterns. 

The voltage difference is an important term in the updating of impedance estimation, 

whose maximising c m  accelerate the convergence of a reconstruction algorithm and 

minimize the effects of measurement errors. Issacson [68] concluded that the optimal 
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current patterns are the eigenvectors corresponding to the largest eigenvalues of matrix D. 

The followhg algorithm can be used to obtain the best current pattern [42]. 

1) Guess a current density Io ( 0 )  for which (to keep current in desired plane) 

and II0 (8) 1 = 1 . Set k = O. 

2) Measure the voltage V; (8) = R ( p , ) Ik (8) that results from applying Ik ( 0) to 

the body whose irnpedance distribution is pl . 

3) Cornpute the voltage (see Chapter 5 )  < (0) = R ( po) 1, (8) that w o u ~  result 

from applying Ik (0) to a body with impedance po . 

4) Compute the next estimate, Ik + (0) , as the best current to distinguish po from 

1k+1(8) = -V:(~)I (3*3) 

5) If the changes in the Ik (8) are less than the rneasurement precision E , Le., 

IIk + , - Ikl < e stop, otherwise increment k and go to step 2. 

Using the algorithm described above, Gisser et al showed that after five iterations 

(k = 5 )  , best current values converged rapidly toward their theoretically cdculated 

values at k =: m. 

This procedure requires no advaGx knowledge of the impedance distribution and 

is numerically stable. However, it does require repetitive measurements from the real 
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object. 

After finding the dominant eigensystem ho and Io ,  another matrix D' is fomed 

as follows: 

Then using the same algorithm again with D' substituted for D ,  one obtains the 

dominant eigensystem of D' , i.e.. 1, and I l  . Repeat the above procedure to obtain the 

rest of the desired current distributions. 

It should be kept in mind that in vivo applications of this algorithm have two major 

drawbac ks. 

1) The acquisition time is lengthy. in one case for a 32-electrode system it took 7.2 

seconds. Many factors can cause impedance change during this data acquisition 

interval. If one images the human thorax, the heart rate is about one beat/s, and cardio- 

vascular ejection time is about 250 ms. The blood has a lower resistivity than other 

tissues in the chest, and thus ejection will change the impedance distribution during 

the cycle of data collection. The pulrnonary ventilation cycle lasts about 8s. The air 

exchange and morphological changes also result in impedance change. Any of these 

changes during the data-collection period will result in distorted measurements and a 

blurred image. To ail the previous problems, electrode artifacts resulted from subject 

movements, should aiso be added. 

2) The explained procedure has to be repeated after each step of reconstruction algo- 

rithm. The reconstruction time for each step depends upon the reconstruction algo- 

rithm. computational method and computer facility. Therefore, to implement this 
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method, the measurement devices have to remain attached to the patient during the 

reconstmctioii al go rit!^. 'The impedance change during this period aiso introduces 

measurement errors. 

3.5 Independent Current Patterns Method 

First, it wül be shown through Linear algebra that any set of independent measure- 

ments can be used to synthesis optimal current patterns [22]. 

Suppose there are L electrodes and voltages due to an arbitrary current pattern I are 

to be synthesized from voltages that result from L - 1 orthogonal current patterns Z$ k = 1. 

2, ... . L - 1. Let Il denote the current applied to the ph electrode for 1 = 1. 2. ... . L, and I = 

( I I ,  ... . rd? From the conservation of charge 

Let VI denote the voltage on the P electrode with the reference potential chosen so that 

Sirnilarly, V = ( VI. ... , vL)? Denote the inner product of two vectoa A and B by 

(A ,  B)  = AiBi.  

Let fl = (4, $, . .., $) for k = 1, 2. ... . L - I be orthogonal current patterns, i.e., 
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Then if I denotes an arbitrary current pattern 

The voltage V that results €rom applying I is assumed to be 

is an L x L matrix R such that V =  RI. 

linearly related to 1, i.e., there 

In practice voltages are only measured with a finite number of digits or bits so the 

last equation holds only approximately for the real data. If measurements could be made 

with infinite precision then, the voltage due to any current could be synthesized from the 

voltages due to the current fl. For k = 1. 2. ... , L - 1, apply and measure p. Thus 

fl = ~ f l a n d  

When measurements are made with finite precision the measured voltages Y due 

to I will in general differ from the synthesized voltages V given by the above formula. 

The difference between measured voltages f and synthesized ones V could 

unacceptably large, if the independent voltages are poorly selected. For instance, the 

neighboring method can be used to produce an independent set of measurements in a suf- 

ficiently short sarnpling time, and then the method described above is used to deduce 

voltages of optimal currents. But as dready discussed, in the neighboring method, 

voltages measured far away from current injecting electrodes, are small and consequently 

their associated SNR would be too low. To implement this method, one has to use a 

suitable set of current patterns such as the trigonometric functions and Walsh functions 

patterns described in next sections. 
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35.1 Tkigonornetric Cumnt Patterns 

Trigonometric patterns f , k=l .  2. ... . 31 for a 32-electrode system are: 

for k = 1, 2, ..., 16 

I;k = A cos [k12x/32] , 1 = 1,2,3, ..., 32 

for k = 17, 18, ..., 31 
(3.12) ~ = A sin [ (32 - k) 12n/32] , 1 = 1,2,3, . .., 32 

whcre k is current pattern number, A is amplitude (Le. 5 mA) and 1 is electrode number. 

As can be seen there are 3 1 pattems which yield 3 1 x 3 1 voltage measurements. It 

was mentioned that in a 32-electrode system there are at most 31 x 16 independent 

voltages. Although some of these measurements are redundant, there is no simple way to 

elirninate dependent ones. Issacson [68] derived these pattems as adaptive current pattems 

for a simple case when the inhomogeneity is centered in the background. Though obvious, 

it is worth mentioning that ail electrodes will inject currents with the sarne frequency, but 

different amplitudes. 

3.5.2 Walsh Function Current Patterns 

The other set of current pattems mentioned, is known as Walsh function pattems 

[127]. Walsh hinction pattems are a complete orthogonal set of square pulses. For the case 

of a 32electrode system (1 = 32), Fig. 3.3 shows the first 16 out of 32 Walsh functions in 

Walsh order. When the signais in Fig. 3.3 unifonnly sampled, one c m  formulate a matrix 

containing sampled values and the resulting matrix is called the Walsh-Hadamard matrix 

H. The Walsh-Hadamard matrix is symmevic and orthogonal, that is, 



Ph. D. Thesis DATA COLLECTION METHODS 

i t i r  i n r i I l  

Spatial distribution of electrodes 

Fig. 3.3 First 16 Walsh functions 

H H = H H ~ = ~ I = ~ " I  (n = 104 1, n i s  an integer) . 

The Walsh-Hadamard transform of a data sequence x is 
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The inverse Walsh-Hadamard tra~sfonn is 

x = Hxw 

A. Nejatali 

(3.14) 

Even though both trigonometric and Walsh functions were introduced to be used in 

the adaptive current method, both can also be used for measurements without further syn- 

thesis. In this case, Walsh iùnctions have an additional advantage that they require current 

sources with a constant amplitude, in contrast to the trigonomevic functions, which need 

current sources with an adjustable amplitude. Note again, that in both trigonometric and 

Walsh functions, it is the spatial distributi~c of amplitudes that k i n g  described. Le. sinu- 

soidd wave current sources with the same frequency are still used. 
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4. RECONSTRUCTION ALGORITHMS 

In previously reporteci reconstruction methods, usually only the resistive part of 

impedance is considered. This discussion starts with studying the Maxweli equations for 

time varying electromagnetic fields. 

These equations in their point form are: 

V - D  = p (4.3) 

V - B  = O .  (4-4) 

These four equations form the basis of al1 electromagnetic theory. They are partial 

differential equations and relate the electric and magnetic fields to each other and to their 

sources, charge and current density. 

Auxiliary equations which relate D and E, 

D = EE 

relate B and H, 

B = p H  

define conduction current density, 
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J = GE 

and define the convection current density in terms of the volume charge density p , 

J = pv (498) 

are also required to define and relate the quantities appearuig in Maxwell's equations. 

It has been claimed [65,106] that as far as EIT is concemed, for frequencies below 

10 to 30 MHz the magnetic field can be neglected. In that case from (4.2) one has: 

A. Nejatali 

(4.7) 

a After applying the V a  operator (divergence) to this equation and replacing - with jo 
at 

since sinusoidal time variations are king  considered, one gets: 

V. ( J+ joD)  = O .  

Substituting J and D from (4.5) and (4.7) then yields: 

V (GE + ~oEE) = O 

or 

where 

y = o+jo&. (4.13) 

The scalar electric potential 41 and vector magnetic potential A are not directly 

necessary in electromagnetic field theory, but are extremely useful. They are related to the 

electric field and magnetic flux density respectively in the static case as: 

E = -V@ (static) (4.14) 

B = V x A  (dc). (4.15) 
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(4.15) does not change for the time varying case, but (4.14) or the scalar electric potential 

is defined in time varyiag case as: 

In general a vector can not be completely defined when only its curl is known. Additional 

information should also be given for this purpose i.e. its divergence. There is liberty in 

defining the divergence so one selects a simple definition. Two usud selections are: 

V - A  = O (4.17) 

also known as Coulomb's gauge and: 

V - A  = -pe- 
at 

which is suitable for the wave equation. 

When magnetic field is neglected the relation between @ or potential and E or 

electric field can be written simply as: 

E = -V@. 

Then from (4.12) and (4.19) 

VSy(V@) = O. (4.2 1 ) 

In the simplified case when only conductivity is considered, Le., the permittivity is 

neglected, (4.2 1) becomes 

V * a ( V @ )  = 0 (4.22) 

or 
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V q f l ( V @ )  = O. (4.23) 

(4.23) is the goveming equation for our problem when only conductivity is considered. To 

solve an electromagnetic field problem, like any other differential equation, boundary con- 

ditions should be specified to have a unique solution. Here, these boundary conditions are: 

a wherever there is a current injection into the body. in this formula - means the outward 
an 

nomal derivaiive and JO is the injected current. Also 

wherever there is not an injecting current electrode in contact with the body. 

4.1 Forwad versus Inverse Problem 

The definition of the forward problem for the E ï ï  is shown in Fig. 4.1. Given the 

resistivity distribution within the object with boundary current density conditions on the 

conductivity distribution and 

boundary current density condition 1 boundary voltage values 

Fig. 4.1 The forward problem 
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surface of the object. the forward problem is to solve for the developed voltages on the 

surface of the object. Although one is interested only in boundary voltage values, intenal 

voltage distributions are also found when numerical methods are used. 

Figure 4.2 shows the definition of the inverse problem. Given the voltage and 

current density conditions on the boundary, the inverse problem is to solve for conductiv- 

ity distribution within the object. Generally speaking the fonvard problem does not have 

analytical solution but in some trivial cases, nevertheless, it c m  be solved using numerical 

methods and does have a unique solution. On the other hand, the inverse problem does not 

have a unique solution and is solved either by iterative methods which requise the solution 

of the forward problem at each step hence cornputationally extensive, or by non-iterative 

methods which although fast, only produce an approximate solution. Although only con- 

ductivity distribution was mentioned through this section, in general, permittivity distribu- 

tion might also be involved. 

4.2 Numerical Methods for the Forward Problem 

Solving the forward problem, except for trivial cases, can not be managed through 

analytical methods. Using numencal methods in general is inevitable. There are many of 

such techniques to be used for this problem such as finite element method (FEM), finite 

difference method, method of moment, network approximation and transmission line 

matrix to narne a few. Although, each of these techniques has its own advantages and lim- 

itations, some of them are more suitable for specific problems. The selection of a particu- 

lar method, is based not only on the suitability from the strengths and limitations point of 

view, but factors such as software availability and user familiarity, are also very important. 
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voltage and current density 

conditions on the boundary conductivity distribution 

Fig. 4.2 The inverse problem 

So far, FEM and network approximation are the most popular ones arnong 

researchers in EIT. 

4.3 Dynamic versus Static Imaging 

There are two different imaging techniques in EIT. One is dynamic (or difference) 

imaging and the other is static imaging. In dynamic imaging, the îrst bwndary voltage 

data set is measured at time TI as a reference data set and then, at time T2, another 

boundary voltage data set is measured. A dynamic image shows any changes in the resis- 

tivity distribution that occurred during the time between TI and T2. Dynarnic imaging is 

considerably simpler than static imaging since various errors are cancelled out by the sub- 

traction process . 

In static imaging, the absolute values of a cross-sectional resistivity distribution 

are reconstructed. Since current flow is a function of unknown resistivity distribution, the 

static impedance imaging problem is a nonlinear problem. 

Major existing numerical methods for solving the inverse problem are to be con- 

sidered in the rest of this chapter. 



Ph. D. Thesis RECONSTRUCTION ALGORITHMS A. Nejatali 

4.4 Backprojection Between Equipotential Lines 

In this method the potential difference between two equipotential lines on the 

surface is backprojected to the resistivity value in the inside area between these two equi- 

potential lines [43] 

(V,- V.) 
J measured 

5) expecrcd 

The neighboring method which was discussed in Section 3.1 is used for data col- 

lection. For each projection angle a p is deterrnined which is then averaged for al1 projec- 

tion angles. A ramp filter is dso employed to reduce the blumng inherent in 

backprojection. 

4.4.1 Fast Filtered Backprojection Method 

A fast filtered backprojection method has been proposed under the assumption that 

the unknown resistivity distribution is close to a known reference resistivity distribution. 

When this assumption is valid, then there is an approximately linear relationship 

between the perturbation of the measured surface voltage gradients from those of the 

reference distribution and the logarithm of the resistivity perturbation from the reference 

distribution [35]. 

4.4.1.1 Computation of Equipotential Lines 

The equipotential liries cm be calculated by analyticaily solving Laplace's 

equation for circular, hornogeneous, isotropic medium for given boundary conditions 

- 1  2 
(under these assumption, (4.21) simplifies to p V @ = O which is called Laplace's 
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Fig. 4 3  Conformal mapping between a circular region and a semi-infinite region 

equation). However, a different approximate method of finding the equipotential lines in 

developing the bac kprojection reconstruction algorithm has been used by Barber and 

Brown [7]. 

In the neighbonng method the distance between two adjacent driving electrodes 

(2.r) is very small and these injecting current electrodes might be assumed as a current 

dipole. Then following conformai mapping, the z(x,y) plane in Fig. 4.3(a) cari be m s -  

forrned into the r(u,v) plane in Fig. 4.3(b). 
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(4.30) 

Using this transformation, straight Line (v=E) paraiiel to the u-axis in the t-plane is 

the transformation of the circle B in the z-plane. The points at -- and + - of the u-axis 

are transformation of the two end points of the current dipole((0 - T, 0)  and (O + z, 0)). 

Therefore, in the t-plane, two point charges with opposite polarity are placed at -- and 

+ - of the u-mis. The straight lines paraliel to the u-axis become field Iines and are trans- 

formed into circles tangentid to the x-axis at the point O in the z-plane. In the same way, 

equipotential lines which are perpendicular to the u-axis in the t-plane are transformed 

into the circula. lines passing through the point O in the z-plane. If the dipole strength is 

m, then the equipotential lines are the lines passing through points at which 

is constant. This methd results in significant error close to the electrodes when the 

distance between the current injecting electrodes (22) is not sufficiently small. 

4.4.1.2 Backprojection along Equipotential Lines 

Assume Vu (6) is the potential measured at a point Q(@) on the boundary B of a 

homogeneous resistivity (pu ) medium S as shown in Fig. 4.4(a). Sirnilarly assume Vm(Q ) 

= Vu(@) + b V(@) is the potential measured at the sarne point after the resistivity of the 

medium has changed from pu to pu +A pu. The change in the boundary voltage is related 

to the change in the resistivity of the medium. Therefore, 
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Fig. 4.4 Backprojection of boundary voltage measurements. 

Assume that A (4) << Vu (a) , Ap, << pu , and therefore the shape of the 

equipotential lines do not change significantly. Upon taking the natural logarithm of both 

sides the above equation becomes 

Therefore, for the image value of the pixel P which lies on the equipotential line 

ending at the point Q ( @ ) ,  the normalized boundary voltage change is backprojected. 

Assurning g(D) is a vector of normalized boundary vohge change for drive pair D and p 

is the image value of the pixel P, then, 

P = w ( P D )  (4.34) 

where w(PD) = [O, 0, ... . wp 0, ... , O] is the backprojection vector for the pixel P, the drive 
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pair D, and the jth voltage measuring electrode pair. wj is a weighting factor for angular 

unifonnity and will be described in the next subsection. Since Eq. (4.34) holds for al1 

pixels, 

where p(D) is a vector of image values of al1 pixels and W(D) is a matrix whose rows are 

w(PD). 

A pair of current injection electrodes (D) is not actually a dipole due to the 

distance between them not king sufficiently small. To get better results the dipole is 

moved by small angles and new equipotential lines originating from the new dipoles and 

passing through the pixel P are found. Then, different boundary potentials at the ending 

points of the new equipotential lines are backprojected into the pixel. Moreover, since 

more than one equipotential line passes through a pixel due to the finite size of the pixel 

(see Fig. 4.4 (b)), corresponding boundary potentials are also appropriately backprojected 

into the pixel. 

For a 16 electrode system, there are 16 drive pairs and the final imagep is obtained 

using this formula: 

4.4.1.3 Weighting Factors: W j  

Except for the pixel at the center, the equipotential lines are not circularly syrnmet- 

ric. Therefore, the weights should be different for al1 pixels other than the rniddle one. 
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Fig. 4.5 Computation of backprojection weight. 

Based on the confonnal mapping of a central point and an offset point [79], the weights wj 

is computed using: 

where 1 and d are shown in Fig. 4.5. 

4.4.1.4 Filtering 

The spatial resolution is position dependent because it depends on the location of 

an object in the circular medium. In order to minimize the artifacts due to the severe 

position dependence of the spatial resolution of the reconstructed image. Seagar et al 

[ 1 141 developed a restoration fil ter empirically. A nonlinear radial transformation is 

applied to the image to make the filtration problem position independent. Then the image 

is filtered with a position-dependent resolution restoring filter. Finaily, the inverse radial 

transform is applied to the result. The nonlinear radial transform and inverse transforms 
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s = tanh (r) (4.38) 

where r is the radiai distance in the original image and s is the radiai distance in the trans- 

formed image. 

The filtering operation cm be combined with backprojection since the reconstmc- 

tion aigorithm is linear. Let E denote the filtering operation and q be the final recon- 

structed image. Then, 

q = Ep = EWg (4.40) 

which is called the filtered backpropagation method. 

4.4.2 Iterative Equipotential Lines Method 

The equipotential line method is a linear reconstruction method and the results are 

produced in a non iterative scheme after corrections have been made for al1 measurements. 

An iterative method based on the equipotential line method has k e n  proposed by Yorkey 

et al [132]. This method shows better performance over the non iterative one. Since the 

original equipotential lines are no longer valid after a single correction of the resistivity, 

equipotential lines have been iteratively calculated afier each projection angle. 

Iteration is essential in producing static images by the backprojection between 

equipotential lines method. This method has been implemented by Ider et al [66,26] where 

they used the finite element method (FEM) to solve the forward problem and detennined 

the position of electrodes using 16 ultrasonic transducers. For a 16-electrode system and 



Ph. D. Thesis RECONSTRUCTION ALGORITHMS A. Nejatali 

Fig. 4.6 Measuring resistance using a four electrode system for (a) a homogeneous object and (b) 
the same object as before but with a changed resistance in a discretized element 1761. 

12 bit AD, static images with a conductivity contrast better than 20% and about 10% 

spatial resolution have been reconstructed. 

4.4.3 Backprojection Method Using Sensitivity Coefficients 

In Fig. 4.6. assuming the 6p ( x ,  y) is srnail, a sensitivity coefficient is defined as 

where e denotes the integration over the area of the element. 

It has been found that the backprojection between equipotential lines method is 

equivaient to the sensitivity matrix, built based on the Eq. (4.41) when al1 the elernents but 

the diagonal ones are neglected [24]. It, therefore, has been suggested that utilizing other 

matrix elements should improve the backprojection between equipotential lines rnethod, 

because the other elements are not negligible. Thus, a backprojection algorithm has been 
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proposed that uses ail sensitivity coefficients as weights [76]. 

The sensitivity ri2atrix c m  be computed using FEM in the same way as the 

Jacobian matrix is computed in the modified Newton-Raphson method. An an alternative. 

it can be computed from the analytic solution of Laplace's equation for the homogeneous 

resistivity distribution. When the sensitivity matrix is in hand the pixel value P(x,y) can be 

computed by [76] 

in this single-pass reconstruction algorithm. 

Although this algorithm would produce less accurate images compared to an 

iterative nonlinear reconstruction algorithm, proper use of the sensitivity matrix will 

improve the image quality of the backprojection rnethod. 

4.4.4 Dual Frequency Imaging 

As mentioned before the backprojection method is a dynarnic imaging method that 

shows the difference in conductivity of the object between two time frarnes. It has been 

suggested to use the measurement at one frequency as a reference to a measurement at 

another frequency [50,53]. The rationale for this method is that the dielectric constant and 

electricai conductivity of human tissues change depending on the frequency (see Table 2). 

Dual-frequency imaging can also be used with other reconstruction algorithrns. 

4.45 Discussion: Backprojection Method 

The fast filtered backprojection method cm not produce static images. Its other 
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constraints include assuming that the object has a circular boundary with equally spaced 

electrodes, that the object is two dimensionai. and that the resistivity distribution to be 

reconstnicted is close to the reference resistivity distribution. In spite of those constraints, 

this method rapidly produces useful difference images and is k ing  used in various clinical 

applications. 

This method is fairly immune to random electrode placement errors. however, 

sometimes it might be very difficult to keep the same electrode placement between the 

measurements of the two data sets which renders no use for the reconstnicted image [8]. 

Using the iterative backprojection method provides more accurate images 

compared to the noniterative method but at the expense of more computation time. Using 

ail sensitivity values in the sensitivity matrix irnproves the image quality of the backpro- 

jection method. Dual-frequency imaging aiso provides a kind of static image. 

4.5 Perturbation Method 

Unlike other methods, the perturbation method is based on applying voltage and 

measuring current. 

The current change is calculated using FEM when the resistivity of one element is 

slightly aitered. This percent change in current is backprojected using the perturbation 

matrix [7 1,73,132]. 

4.5.1 Formation of Perturbation Matrix 

Each pattern of voltage application is called a projection angle. For each projection 

angle. the currents of the current-measuring electrodes are calculated using FEM for a 
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homogeneous distribution, then, the resistivity of one element is increased by a factor of 

ten and currents are calculated again. This is done for ail projection angles and the amount 

of the change in exit currents is nonnalized with respect to the current-measuring 

electrode for the projection angle. Finaliy the perturbation matrix T(E x C x P ) is calcu- 

lated where E is the number of elements, C is the number of current electrodes, and P is 

the number of projection angles. Other practical considerations include stonng only the 

integer portion of Tiji to reduce the storage requirement and permitting the corrections 

only within the central region by setting the sensitivity value of the outermost elements to 

zero. Othenuise, the reconstruction diverges since the sensitivity values of the peripheral 

elements are at least an order of magnitude larger than those at the center. 

4.5.1.1 Backprojection after Each Projection Angle 

The percent change in exit currents due to the object is backprojected after 

rneasuring exit currents with an object for each projection angle as follows: 

where k is the overrelaxation factor, qjl is the sensitivity of the ith element in the jth 

current electrode at the [th projection angle, and R < ~  is the percent difference between 

the predicted and actual exit current at the jth current electrode for the hh projection angle 

in the nth iteration. 

Yet better convergence can be obtained by correcting the resistivity values after 
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acquiring ail the data from al1 projection angles [52]. 

This is similar to the simultaneous iterative reconstruction technique (SIRT) in the 

X-ray CT reconstruction technique whereas the previous approach is sirni1a.r to the 

alge braic reconstruction technique (ART) [4 1,ll O]. 

4.5.2 Modified Perturbation Method 

It bas been found that the larger the element size, the closer to the current- 

measuring electrode, and the lower the background resistivity, the higher the sensitivity 

value [73]. Based on this fact, the perturbation method has been modified in such a way 

that the resistivity adjustment during the backprojection is based on a linearly decreasing 

hinction of distance from the current-measunng electrode. Columns of elements have 

been defined for each electrode pair and each projection as shown in Fig. 4.7. Backprojec- 

tion dong these colurnns is performed by updating the resistivity, 

where m is the number of elements in the column, i is the element position in the colurnn 

(between O and m), k is the overrelaxation factor, pn is the resistivity of the ith element in 

the nth iteration and Clpd, CZpd are the percent differences between calculated and 
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Fig. 4.7 Cl and C2 are current-measuring electrodes, i is the position number, m is the number 

of elements in the column and pi is the resistivity of element i. 

measured currents at electrodes C l ,  C2. 

Although the perturbation method is based on a homogeneous object with only the 

resistivity of one element different from that of the background, it hss k e n  found that 

updating the perturbation matrix after each iteration does not improve the performance of 

the method [132]. 

4.6 Double Constraint Method 

The double constraint method solves Poisson's equation by the FEM using 

Neumann boundary conditions and Dirichlet boundary conditions successively in each 

iteration. 

Starting from a homogeneous resistivity distribution, the resistivity distribution is 

updated in each iteration by using the compatibility between the two boundary conditions 
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[125]. This method consists of three main steps. 

1) Calculation of voltage, V and current density, J with Neumann boundary condi- 

tions. 

FEM c m  be used to solve the Poisson equation for the voltage values inside the 

region due to the injection currents and to find the voltages at each node. Knowing the 

voltages, electric field density may be calculated using 

E = -VV. (4.46) 

When electric field density is determiwd. the electric current density J in each 

element is given by 

where the a is the conductivity and p is the resistivity of the element. 

Unîil the eiror between the calculated surface voltages and the measured voltages 

satisfies the stopping criterion, the resistivity distribution used in this step would be 

different from the actual resistivity distribution. 

The error between the calculated surface voltages and the measured voltages is 

calculated and if this error is smaller than the stopping criterion, then the final image is 

presented, otherwise the next step is performed. 

2) Calculation of voltage, V and -aVV with both Neumann and Dirichlet boundary 

conditions. 

The Poisson equation is again solved for the voltage values inside the region using 

the measured surface voltage values as the Dirichlet boundary condition while using 

the sarne Neumann boundary condition. The resulting voltage values inside the region 

should be a better estimate because the measured surface voltages used as boundary 
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data, change the voltage values at each node in correct direction. 

3) Calculation of resistivity. 

Considering that the Poisson equation using one boundary condition (Neumann or 

Dirichlet) has unique solution, one can solve the equation for the voltage values using 

one type of boundary data, and then caiculate the other type of boundary data from the 

solution. The boundary conditions should be compatible for a given resistivity distri- 

bution, however, two solutions from previous methods are not identical since the 

actual resistivity distribution is not known. 

Here a new resistivity distribution is calculated from the minimization of the 

squared error between the electric current density of the previous methods. The 

following equation defines the squared residual sum, R, 

R = ÇIII (Ji + oiV V,) . (Ji + oiV V,) dv (4.48) 
i vi 

where vi and dv denote the volume integral over the element i, Ji is the calculated 

electric current density in the element i from the first method and a i V  V, is the electric 

current density in the sarne element from the second method. 

The new resistivity is calculated from the minimization of the squared residual 

sum, assuming homogeneous resistivity within one element, 

and 
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A modified version of double constraint method has been also proposed which is 

more efficient for practical calculation since the mhimization of the relaxed foundation on 

a couse mesh is roughly equivalent to the rninimization of the original one on a much 

finer mesh [XI. 

The effect of the Dirichlet boundary conditions on the voltage values in the first 

step is small and therefore, the method needs many iterations [126]. However it has been 

claimed that this method is not subject to matrix ill-conditioning compared to the method 

where minimization is applied to the boundary voltage error. 

4.7 Newton-Raphson Method 

The Newton-Raphson algorithm is an iterative reconstruction algorithm specifi- 

cally developed for nonlinear problems. 

It is one of the most theoretically sound algorithms used in EIT. This method 

shows good convergence characteristics and reconstmcts aimost perfect images when no 

error is involved in the modelling and measurement. However when modelling error and 

measurement noise are present and when the number of elements (pixels) are large for 

good spatial resolution, the performance of this method detenorates rapidly and produces 

noisy images or may even diverge. Furthemore, when a Iarge number of elements are 

used, the image reconstruction requires an unreasonably long computation time [ l3O,l3 11. 
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4.7.1 The Measure of Error 

The Newton-Raphson rnethod is based on minirnizing an objective function which 

in tum is made of a measure of error. A straightforward way to measure the error would be 

to compare the real resistivity distribution with the reconstructed one, but, the real distri- 

bution is unknown. As an alternative the ciifference between measured voltages and those 

based on the reconstnicted distribution has been taken as the measure of error. If the 

voltage responses of the reconstructed resistivity distribution match those of the real dis- 

tribution, we clairn that the reconstructed distribution is the desired answer. 

Although there are many ways to define the objective function based on this 

measure of error, usualiy it is defined as the equally weighted mean square difference 

between the measured and estimated voltage responses [ L 301, 

where Vo is the measured voltage, f (p) the estimated voltage for a resistivity distribution 

p , and superscript T means transpose. 

However the problem c m  be described in a general sense as follows: 

M i n p a x , ,  (p, c, e )  

where @ ( p, c, e) is the objective function (error signal) which indicates the difference 

between the resistivity distribution of the model and that of the subject, p is the resistivity 

distribution of the model, c is the injection current pattern, and e is the electrode configu- 

ration. An efficient EIT system requires a measurement method including injection current 

patterns, electrode size, position, etc., which maxirnizes the objective function or distin- 

guishability [68]. Given the measurement method, we need an algorithm by which we 
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adjust the resistivity distribution of the mode1 so that the objective function is minirnized. 

4.7.2 Formulath for the Newton-Raphson Method 

To find a p which rninimizes in (4.5 1 ), set its derivative to zero, i.e., 

where 

tenns 

w here 

where 

a !  
Lf(p) I i j  = - , and is called the Jacobian matrix. aPj 

k Take the Taylor series expansion of a' (p) about a point p hld keep the linear 

k k p k + '  = p +Ap . 

The term a'' is caiied the Hessian matrix, expressed as 

w = wjT{re ~ f - v ~ ] )  

63 is the Kronecker matrix product. Since f' is difficult to calculate and relatively 

small omit the second term in the above equation. Therefore, 

Substitute Eqs. (4.56) and (4.52) into Eq. (4.53), and find the updating equation for 

P 
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Make guess at I initial distribution p I 

1 Caiculate error 1 I 

Fig. 4.8 The Newton-Raphson algorithm performs k iterations to minimize the mean-squared 
error a. 

The flow chart of the algorithm is shown in Fig. 4.8. The theoretical voltage 

response for the given current distribution using the finite-element method are calculated 

for an initial distribution. These voltages are subtracted from measured ones to obtain the 

objective function. if less than a criterion error, the initial distribution is taken as the 

desired distribution. If not, the distribution is updated using Eq. (4.57). The above 

procedure is repeated until the stopping cntenon is met. 
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Assuming f to be proportionai to p , Q, would be a quadratic function of p .  Its 

k 
derivative Q>' would be a tinear function. For the assumed distribution p , the error Q, is 

calculated to determine if it is less than stopping cntenon E. If not. the slope of O' is 

found, and then the assumed distribution along the direction opposite to the slope is 

updated. In this linear case, the solution can be found in one step, as p = a ( V / f )  , where 

a is a constant which measures the geometric shape of the medium. 

The vector f (p) denotes a collection of ail voltage data, which should contain 

sufficient information about the resistivity distribution. To solve this problem the number 

of independent data measurements should be equal to or greater than the number of pixels 

of the image. This usually requires one to make several sets of measurements, with each 

set king the voltage response of one current distribution, called a projection. 

The calculation off and f '  requires the use of the FEM or other methods to solve 

the forward problern. A system function is established to describe the relationship arnong 

resistivity distribution, voltage and current, for each current distribution. The system 

function is solved to obtain its voltage response vi, i = 1 to n, where n is the number of pro- 

jections. The voltages from d l  projections are stacked to form 5 i.e., 

Equation (4.57) has a step size of unity. iiowever, the step size depends on the 

application, and is usually chosen less than one to achieve guaranteed convergence. If the 

step size is too big, even though the process may show fast convergence during the first 

few iterations, undesired oscillation occurs in the neighborhood of the solution. 

Although in EIT the voltages are nonlinear functions of the resistivity and 
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therefore the Newton-Raphson procedure may result in a local minimum, the problem c m  

be avoided by making an appropnate initial guess. Ln biomedical applications, there is suf- 

ficient pnor knowledge to provide a good initial guess. 

4.7.3 The Ili-Conditioning Problem 

The n roots of the charactenstic poiynomial of an n by n matrix A are called its 

eigenvalues. 

If the ratio of the maximal and the minimal eigenvalues is very large, then the 

matrix is considered to be ill-conditioned or ill-posed. 

The inversion of the norrnalized Jacobian matrix shown in Eq. (4.57) is a part of 

the updating procedure. Depending upon the resistivity distribution and data collection 

method, the matrix could be very ill-conditioned. If the current is extremely small within 

some region, the resistivity change does not yield much voltage change at the boundary, 

and this results in ili-conditioning. 

Iil-conditioning causes the matrix inversion to be very inaccurate and also the 

updating of Eq. (4.57) to be very sensitive to measurement error which both factors result 

in large reconstruction errors. 

Using the adaptive method in data collection which was discussed in section 3.4 

can considerably improve the situation. 

4.8 Compensation Theorem Method 

The compensation theorem method is essentialiy the Newton-Raphson method 

which uses the compensation theorem to calculate the Jacobian matrix. 
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The following subsections descnbe this method in details. 

4.8.1 Sensitivity Theorem 

The sensitivity theorem proposed by Geselowitz states how the voltage changes as 

a result of resistivity change. The impedance network shown in Fig. 4.9 displays the 

subject of the theorem. Applying a current source ck to port k, results in the voltage V;: at 

port i. The discrete version of the sensitivity theorem [88,90] states that if the conductance 

yi of port j changes to yi + Ayi,  the voltage change at port i is 

Avi = -ckAyizij,zkj (4.58) 

where zijp and zkj are the transfer impedances between the described ports, j' denoting the 

changed port. 

4.8.2 The Compensation Theorem Method 

When using FEM method to solve the fonvard problem, each element is made of L 

resistors with the resistivity value king pjsl,  1 = 1 to L, where pj is the resistivity value 

and sl is the FEM coefficient. A change in conductivity of an element causes changes of L 

resistor values, therefore, the corresponding voltage change at port i is the sumrnation of 

the changes due to individual resistivities is as shown in the following equation: 

After some manipulations one can derive [88,90] 
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port k 

port i 

port j port j' 

Fig. 4.9 When a current source is applied to pon k and an admittance ~y~ to port j, the 
compensation theorem explains how to calculate the resu!ting voltage at port j by removing the 
current source and applying a particulas current source to port j' .  This theorem can be used to 
caiculate the Jacobian matrix more efficiently. 

which yield the entries of the Jacobian matrix in Eq. (4.52). 

4.9 Cornparison of Covered Reconstruction Methods 

Yorkey et al [129) used computer simulations to compare the performance of the 

different nonadaptive algorithm. In their study, data was produced through a computer 

phantom by solving the forward problem and no noise was added to the measurements. By 
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these assumptions a comp~son can be made between these methods, but it should be kept 

in mind that in a real case when noise is present in measurements, the situation could be 

quite different. 

The Newton-Raphson method and compensation theorem algonthrns have the best 

convergence while other methods do not converge in ail cases and actually sometimes 

diverge. 

From the computation time point of view, the standard Newton-Raphson method 

takes a long time for each iteration, approximately four times that of the compensation 

theorem, while both methods require the same number of iterations. The perturbation 

method needs the most time for each iteration, white, the iterative equipotential line 

method, the double constraint method and the equipotentiai line method need much less 

time for each iteration. If neglecting the part of computations that are not repeated in al1 

iterations but the first one then in decreasing order the computation time for each iteration 

is; iterative equipotential line, double constraint method, equipotentiai line method, per- 

turbation method, compensation theorem method and finally the standard Newton- 

Raphson method. 

4.10 Regularization Method 

The matrix [ f 7 T ~ ' ]  that should be inverted in the Newton-Raphson method is an 

ill-conditioned matnx as well as a complicated function of current, voltage. and the 

unknown resistivity distribution. This degrades the performance when the data is contam- 

inated with measurement error. Improving the conditioning of the matrix by choosing a 

measurement method for a resistivity distribution impedance is a very difficult task, since 
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no explicit relationship can be seen. As an alternative, Hua et al [63] used the regulariza- 

tion method to improve its conditioning. 

The objective function to be minimized in the regularization of the Bayesian 

technique [47] is 

The first term is the same as in Eq. (4.5 1). while the second term, J ( p )  takes the 

prior information into account. The smoothing parameter h controls the relative 

weighting given to the prior information. Here J ( P) is taken to be a quadratic function of 

T p , i.e., J (p) = p Zp , where Z is a positive definite matrix. depending on the fonn of 

prier information. Therefore, the objective function c m  be rewritten as 

The extremum of the above objective function c m  be reached by updating the 

resistance distribution as 

where 

Equation (4.66) differs from (4.57) only in the matrix to be inverted. Since Z is a 

positive-definite matrix with h nonnegative, the matrix to be inverted should have a better 

conditioning than that without regularization. In other words, the prior knowledge helps to 

stsbilize the system. 

If the solution is known to be bounded but Buctuating, then the J (p) in the 
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2 second term of Eq. (4.63) cm be taken as ilpll . 

Table 4: Summary of some EIT systems [124] 
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-- -- - - - - - - - - - - - - - - -- 
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Simulation 
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1 In vivo 

V not 
measured on 

1 
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Dy namic 

V not 
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To handle the ill-conditioning, Murai and Kagawa [88] have applied the SVD 

(singdar value decomposition) method while, Akaike [4] implemented the information 

criterion, and Yorkey et al [130] used the Marquardt [83] method as Bard [IO] has shown 

that the Marquardt method is more advantageous than the SVD and other methods. The 

2 
Marquardt method is actualiy a regularization method correspondhg to J ( p) = llpll , 

with the weighting coefficient k adjusted at each iteration by the algorithm. 

4.11 Summary of EIT Systems 

Table 4 shows the main specifications of EIT systems developed by various 

research groups in this field. in this Table, unit time is the time for one voltage rneasure- 

ment and frame time is for al1 possible voltage measurements. 



Ph. D. Thesis CLINICAL APPLICATIONS A. Nejatali 

5. CLINICAL APPLICATIONS 

There are a wide range of clinical applications that the electricd impedance tom- 

ography (EIT) can be used in, at a low cost and without any known hazard [ 1 8,115,1281. 

The fact that biological tissues have a wide range of resistivities (see Table 2) implies that 

good tissue contrast can be obtained in EIT imaging and therefore, it would be very useful 

for clinical assessrnent of patients. 

This chapter is devoted to the various applications of EIT in the medical field. 

Although, some of these have k e n  already demonstrated, some at the present time are 

speculations. Up to now, very few in vivo images have been obtained, which is going to be 

explained. 

5.1 Cerebral Hemodynamics 

The incidence of periventricular intraventicular hemorrhage in low-birthweight 

infants (1500 g), or infants born less than 35 weeks of gestation, is about 40 to 45% [122]. 

This is a major cause of death in these infants. Therefore, early detection of the intraven- 

ticular hemorrhage (IVH) in these infants would be usefùl. 

The most reliable and convenient screening procedure is ultrasound scanning. 

Ultrasonic scanning is usually done only once every 24 hours on a patient. Therefore, it 

becomes difficult to determine the exact time the hemorrhage occurred. If it could be 
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determined, a better insight into the etiology of IVH could be obtained, which is not 

properly understood. Moreover, the infants in the risk group should be monitored closely, 

and kept under constant watch. 

Cerebrospinal fluid (CSF) is about 2-112 tirnes as conduccive as blood (see Table 

2). IVH occurs when the fragile network of capillaries situated below the cerebrd ventri- 

cles rupture, which leads to the oozing out of blood and mixing with the CSF in the ventri- 

cles, thereby increasing the impedance. This leads to the conclusion that impedance 

imaging in this case could be helpful. 

5.2 Cardiac Parameters 

The methods that are used for the measurement of cardiac parameters (Cardiac 

Output, CO; Stroke Volume, SV; and Left Ventricular Ejection Time, LVET) are mostly 

invasive, and require cardiac or arterial catheterization. 

In contrast, EIT can be used to rneasure cardiac parameters noninvasively. 

Eyuboglu et al [35] showed that the thoracic impedance changes can be related to the 

cardiac cycle and hence can be concluded from the EIT images. It has k e n  shown, from 

the ECG-gated dynamic EIT images of the thorax that the change in the thoracic 

irnpedance (related to the cardiac activity) from different organs can be distinguished. 

5.3 Limb Plethysmography 

The measurement of peripherd blood flow is usetu1 for the diagnosis of cardiovas- 

cular diseases, and also for monitoring vascular hemodynamics in the limb segments of 

patients in the ICU and those undergoing operations. The only accurate method available 



Ph. D. Thesis CLlMCAL APPLICATIONS A. Nejataii 

is venous occlusion plethysmography, but it is very cumbersome to apply. As the name 

suggests. the venous blood is prevented from Ieaving the iimb by using a venous occlusion 

cuff. The limb is pressurized to 50 mm Hg. The initial linear, and then exponential nature 

of the curve is due to the artenal inflow, which is defined as the increase in volume of 

blood in the lirnb per unit time. When the cuff is removed, the volume retums back to 

normal. 

Blood is arnong the most coiiductive Auids in the human body. Nyboer et al [101] 

and many others showed that with the tlow of blood into any segment of the limb, the 

volume of blood in that segment fluctuates, and hence, gives rise to an impedance 

decrease. Impedance also decreases with an increase in velocity of blood [79]. This fact 

has k e n  corroborated by a number of researchers who made in vitro measurements of the 

impedance of blood under static and dynamic conditions [L24]. 

5.4 Pulmonary Ventilation 

The level of ventilation in the lungs is measured using radioisotope lung scans, 

which is harmhl, but, covers the entire lung. EIT can be used repeatedly without causing 

any harm to the patient but the EIT image can only give a cross-sectional view of the lung 

in a plane. 

Static imaging would be very useful in detecting apnea. But, even dynamic images 

obtained using EIT could be used to monitor infants who are prone to apneic episodes. 

5.5 Pulmonary Perfusion 

Change in Auid volume within the lung could be deterrnined using EIT, which 
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could be related to the changes in the thoracic impedance. Lung tissue basically has two 

components; air (80%) and fluid (iiquid)(SB). During maximal inspiration, the ratio of air 

to the fluid is maximum, and hence the impedance is maximal; during maximal expiration, 

the amount of air decreases inside the lungs, which implies a decrease in the impedance. 

Therefore, any increase in the proportion of the fluid in the lungs would imply a signifi- 

cant drop in impedance. This relationship has been confirmed by Pomerantz et al [107] 

who carried out experiments on humans. The changes in electrical impedance cm. there- 

fore, be used as a means for detecting impending pulmonary edema. 

5.6 Stomach Emptying 

The rate of stomach emptying can be used to detect congenital hem diseases, gas- 

troesophagal reflux and pyloric stenosis. It cm also be used for studying the influence of 

the component parts of various types of food on gastric emptying, such as the fat propor- 

tion [89]. 

The present methods for measuring stomach ernptying are invasive, and therefore, 

are not ideal for routine clinical use. The methods are: the Marker dilution technique and 

Scintigraphy (Gamma Carnera). EIT can be used to image the profile of gastric emptying. 

It is a noninvasive and inexpensive technique. After a meal is consumed, as the food 

passes through the various stages of the stomach and upper abdomen, the stomach resis- 

tivity changes [ 1241. 

5.7 Bladder Volume 

The measurement of bladder volume is important in the investigation of patients 
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suffering from a disturbance of bladder fuiiness (maturation), which should be avoided 

urgently. The problem of bladder fùliness is very prevalent arnong the elderly, particularly 

elderly women. Also the urinary bladder may be paralysed by spinal-cord injury. Ultra- 

sonic imaging of the bladder is the most commonly used diagnostic procedure. The ultra- 

sonic bladder sensor provides the user an extemal electric signal, which acts as an intemal 

stimulus. The volume of urine is continuously monitored using this device, and when it 

reaches the threshold level, the user is alerted by an alarm. This method requires the 

patient to remain supine and immobile [87]. 

Some experiments by Denniston and Baker [29] have been done using impedance 

changes for monitoring bladder fdlness. They have used a four electrode impedance 

measurement system, which is a primary EIT device. EIT, a noninvasive technique, could 

be used to monitor the urine accumulation in the bladder. 

5.8 Hyperthermia Monitors 

The need to measure the temperature deep within the tissue plays an important role 

in the detection and treatment of cancer using microwave. The present techniques are 

invasive, in which the thermocouples, thermistors or optical fibres are implanted in the 

patient to obtain the temperature profile within the body. There exists a need to develop a 

noninvasive technique. 

EiT responds to temperature changes in the tissues [52]. The temperature coeffi- 

cient of electrical conductivity of tissue is about +2%PC, which is very large compared to 

the X-ray absorption coefficient (in CT), which changes only by 0.04%PC [5 11. A temper- 

ature increase, cm, therefore, be sensed from a change in conductivity occumng during a 



Ph. D. Thesis 

hyperthermia treatment. 
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5.9 Brest  T i i e  Analysis 

The detection of soft tissue lesions is particularly important in breast tissue 

analysis, for the detection of malignancies in the breast, which in the presently available 

methods. they are difficult to detect [30]. EIT seems to be one possibility to tackle such a 

clinical problem. Fricke and Morse [39] showed that the dielecvic constant in the breast 

would change, if a tumour were present. Also, the highly vascularized tissue surrounding 

a tumour will have a low resistivity. which contrasts with the avascular tissue of the 

tumour; this change in resistivity (due to the growth of a tumour) could be sensed by EIT. 

S kidmore et al [ 1 191 have developed an EIT s ystem for this purpose. 

5.10 Monitoring Fracture Healing 

Large changes of electrical charactenstics are associated with limb fractures in the 

plane of the fracture which revert to normal during the healing process. Kuikami et al [77] 

used impedance imaging techniques to measure and image the spatial distribution of 

changes in resistivity during the healing process. There is suddenly a highly conductive 

region in the plane of the fracture subsequent to the occurrence of a diaphyseal fracture. 

Then, dunng the process of healing, the region recovers the normal electrical characteris- 

tics as the fracture hematoma is organized to form a dense mass of bone. 

5.11 Detection of Neural Activity 

The membrane surrounding a neuron has a lower resistivity when the neuron is 
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depolarized than when polarized. It has ken  suggested [85] that the buk changes in 

neural tissue when it is active might be detected using a method of impedance imaging. 

The idea is very attractive as it would enable the area within the brain which becorne 

active following an afTerent stimulus to be seen. Perhaps a visual stimulus could be 

followed from the brain stem to the visual cortex. It might be possible to identifj the focus 

of an epileptic attack and so use this information to guide surgical intervention. However, 

there is yet no experimental evidence to show that evoked resistivity changes cm be seen. 

5.12 Measurement of Lean-Fat Ratios 

The ratios of resistivities of fat and muscle is approximately 5: 1. Ratios of less 

than 1.3: 1 c m  be resolved relatively easily using EIT so fat and muscle are well resolved. 

There is considerable clinical interest in the investigation of nutrition and particularly the 

changes which can occur postoperatively. 
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6. FORWARD PROBLEM 

6.1 Introduction 

In EIT the electric current is applied to the periphery of the body and the corre- 

sponding voltage is measured in order to find the intemal distribution of conductivity and 

permittivity. This inverse problem has no unique solution. On the other hand, the direct or 

fonvard problem, which consists of finding the voltage on the periphery when the intemal 

distributions of conductivity and permittivity, as well as the applied current, are known 

does have a unique solution. The inverse problem can be solved through an iterative 

solution of the forward problem. The algorithm starts with a usually uniform initiai 

estimate of the conductivity and permittivity distribution. Then the forward problem is 

solved for the initial estimate and the resultant voltage is compared with the actual one. In 

the next step, the difference between the computed and the measured voltages is used to 

update the conductivity and permittivity distributions. This process continues until the dif- 

ference between these two reduces to a specified Ievel, assuming the algorithm converges. 

Therefore, a fast and accurate solution to the forward problem is extremely important. 

Except for some trivial conditions, there is no analytical solution for this problem 

and therefore using numerical methods is inevitable. Although the network approximation 

method has been briefly mentioned in some early works in the electrical impedance tom- 

ography [30,106], the finite element method (FEM) has been mostly used for this problem 
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[88]. For the FEM method, most of the software packages are not able to handle the per- 

rnittïvity, mesh generation is a complicated task and simulation of wide area electrodes 

can oniy be performed approximateiy. Here a modified method based on the network 

approximation is proposed that is able to consider the permittivity as well as the conduc- 

tivity without increasing computational burden, simulates wide area electrodes without 

approximation, is computationally fast and easy to implement. 

6.2 Basic Mode1 

Experience shows that at frequencies below 10 MHz, the contribution of the 

electric current induced by the time-varying magnetic field is negligible with respect to the 

conduction current [88]. The electric field intensity c m  be derived from a scalar potential 

$ which satisfies the equation 

8 -  [y(V$)I = 0 (6.1 ) 

where y = a + j o s ,  and a and E are the local conductivity and pennittivity, respectively. 

This is the equation used in EIT since the operating frequencies are rnuch below the above 

mentioned level. In some studies presented in the literature [88] even the displacement 

current, i.e. the pennittivity contribution is neglected. Here it is taken into consideration 

and one of the main advantages of the presented method is that, practically, the considera- 

tion of the permittivity does not increase the computational effort, which is not the case in 

other rnethods. 

Consider a cube of side A1 containing a homogeneous and isotropic medium, 

which can be modelled as shown in Fig. 6.1, by a resistor of conductance a A l  in parallel 

with a capacitor of capacitance &Al corresponding to each spatial direction. In two- 
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(a) (b) (cl 
Fig. 6.1 Modelling a material cube of side A l .  (a) Conductive and permittive cube. (b) One- 
dimensional model. (c) Two-dimensional model with no interaction between the two directions. 

dimensional EIT problerns, two spatial directions are considered and the corresponding 

model is that in Fig. 6.1 (c), if there is no interaction between the two directions. The inter- 

action between the circuit elements corresponding to the two directions is taken into 

account by using the models in Figs. 6.2 and 6.3. 

When assernbled with adjacent cells the syrnrnetricôl model in Fig. 6.3 yields sup- 

plementary nodes, as shown in Fig. 6.4, which increases the size of matrices involved in 

the nodal admittance matrix (NAM) CO be inverted for computing electrode voltages. A 

previously proposed architecture that does not produce extra nodes is represented in Fig. 

6.5 [37]. 

Here an alternative architecture is proposed that decreases further the number of 

nodes and the number of elements as well. It is shown in Fig. 6.6, where the values of the 

circuit elements are 0 A f / 2  and &Af/2.  respectively. The advantage of this model lies in 

the fact that an obvious simplification can be perfonned on its parallel elements. Namely, 
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Fig. 6.2 Mode1 with interaction between two directions. 

A. Nejatali 

Fige 6 3  Improved mode1 with symmetrical topology. 
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L - - - - - , , L  ,,,,,,, J 

Fig. 6.4 Additional nodes resulting from connecting several cells. 

(a) (b) 

Fig. 6.5 Improved mode1 with no extra nodes. (a) A single cell. (b) Connecting several cells. 
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Fig. 6.6 Proposed improved model. (a) A single cell. (b) Connecting sevenl cells. 
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Fig. 6.7 Network approximation for EIT frequencies. 
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conductances and capacitances of neighboring cells can be simply added together to 

produce a simpler network. This is shown in Fig. 6.7, where some element values are indi- 

cated. In order to make the mode1 consistent, one needs to modify the values associated 

with the ce11 sides lying on the boundary of the region to be modelled. To illustrate what 

happens, consider the modelling of a homogeneous square. The assembled cells will 

contain resistors and capacitors which are al1 equal to each other, except for the region 

boundary, where the corresponding values are equal to half of the others. if this mode1 is 

excited with current sources on one side of the square by injecting a certain current into it 

and by having the same current drained from the opposite side, then a uniform voltage dis- 

tribution dong that direction is expected. To achieve this, there should be an equal adrnit- 

tance over al1 the parallel paths in the direction considered. It is obvious that the two 

border paths have higher admittance (twice, in this case), thus producing a nonuniform 

voltage distribution. To correct this nonunifomüty assume that there is one more layer of 

cells connected with those located on the region boundary, which is equivalent to adding 

their corresponding admittances to the last ceil layer. in effect, if in Fig. 6.7 the upper row 

is the last one, then the corrected values of the conductance and the capacitance for the 

ce11 1, for instance, are a, Al  instead of a, A1/2 , and e ,  A l  instead of E ,  A 1 1 2  , respec- 

tivel y. 

6.3 Electrode Modelling 

It has been shown [68] that large area electrodes increase the distinguishability 

[68], and so they are preferred. At the same time, large area electrodes have the advantage 

of allowing for bigger current amplitudes, which is equivalent to a better signal-to-noise 
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ratio. However, modeiiing of large area electrodes is difficult in most methods. For 

instance, in the finite element method it is not allowed to connect such an electrode to 

severai nodes, and one has to use low magnitude resistors in series with each connection. 

The lower the resistance of these resistors the better the mode1 of the respective elec- 

trodes, but correspondingiy the condition of the system matrix is more deteriorated. As a 

consequence, a trade-off has to be adopted. 

In the proposed network approximation method, it is possible to connect an 

electrode to as many nodes as desired by modifying appropriately the nodal admittance 

matrix in terms of these new connections. If one wishes to connect a current source to 

several nodes in the network, this can be done by first connecting that source to one of the 

nodes and then by connecting other nodes to the first one, in other words by short- 

circuiting those nodes together. in order to illustrate the necessary modifications of the 

NAM when short-circuiting two nodes, suppose the nodes i and j are connected to form 

the new node i. The following alterations occur: 

1) The admittance connecting nodes i and j becomes a closed loop eiement, which is 

no longer relevant, i.e. yCew = O. 

2) The admittance between nodes i and k and that between j and k, will be in parallel 

and so are added together, i.e. yikneW = yik + yjk and y k y w  = ykj + yk. k f i, j . 

3) yii and yjj are equal to the sum of al1 admittances connected to nodes i and j respec- 

tively. These include the admittance between nodes i and j as well. After connection, 

yii should be equal to the sum of al1 admittances connected to nodes i and j excluding 

y, This can be done by adding yii and yjj and then subtracting yu twice, as the latter 
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Fig. 6.8 Operations perforrned to connect node j to node i for modifying the nodal admittance 
matrix. 

was considered once in y, and once in y j -  i.e. y r w  = yii + y..  + 2 . ~ .  . . The plus sign for 
JI 1J 

yij is used since yii is actually equal to the negative value of the admittance between i 

and j. 

4) The modified network does not have the node j any more and so its corresponding 

row and column should be removed from the NAM. 

The above procedure 

column j except for those on 

column i. In the sarne manner, 

i, except for those on columns 

is illustrated in Fig. 6.8. In this Figure, the elements on 

rows i and j are added to theù corresponding elements on 

the elements on row j are added to their counterparts on row 

i and j. The value of yü is added to yji plus two times yii The 
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Fig. 6.9 A homogeneous cylinder with a coaxial cylindrical anomaly inside. 

row and the column j are to be deleted from the NAM. 

6.4 Mode1 Evaluation 

Consider a homogeneous circular cylinder with a CO axial incl ision of a circular 

cylinder of a different material, as shown in Fig. 6.9. This test structure adrnits an analyti- 

cal solution. Indeed. the electric potential satisfies Eq. (6.1) [IO61 with the boundary 

condition 

a where j (0) is the injected current density, - denotes the normal derivative outwardly 
an  

oriented, and y = a + j~ . j (0) satisfies the condition 
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The average potentiai on the boundary is assumed to be zero, 

This problem can be solved analytically by using the method of separation of 

variables in polar coordinates. The solution can be find in Appendix A where the final 

answer after many manipulations is 

where R = r , / r o .  

The proposed network approximation has k e n  applied to the sarne structure of 

Fig. 6.9. Figure 6.10 shows the region discretization and the location of the electrodes. 

Figures 6.11 and 6.12 give the voltages determined at the central point of each 

electrode. In these figures the values of permittivity and conductivity as well as dimen- 

sions are el = 5 x 105e0, E* = I O ~ E ~ ,  Q, = LOO ( S / m )  , o2 = 10 ( S / r n )  , 

r ,  = 0.04 (m)  and r2 = 0.12 ( m )  respectively. 

Even though the approximation used as shown in Fig. 6.10 is rather coarse, the 

results obtained by the proposed method compare well with the exact ones from the ana- 

lytical solution. 
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Fig. 6.10 Discretization and electrode positions. Each electrode covers five nodes and there is 
one node interval between consecutive nodes. Inner cylinder is the anomaly. 
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Fig. 6.11 Real part of electrode voltage. 
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Fig. 6.12 Imaginary part of electrode voltage. 
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6.5 Discussion 

A network approximation method has been proposed for the forward problem 

involved in the iterative solution of the electrical impedance tomography inverse problem. 

It can be applied for operating frequencies up to IO MHz, when the contribution of the 

electric current induced by the time-varying magnetic field is negligible with respect to the 

conduction current. This method enjoys an easy implementation and yields accurate 

results, fwzher it has an excellent ability to simulate wide-area electrodes. Results from a 

test exarnple illustrate the applicability of the method presented. 
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7. INVERSE PROBLEM 

In the electricai impedance imaging algorithms developed so far, the inverse 

problems involved are treated by using either iterative methods, which produce more 

accurate results but require large amounts of computation time, or non-iterative rnethods 

that, though faster, produce less accurate results. In this thesis, a new iterative procedure 

for electricai impedance imaging is presented. At each iteration step, the updated conduc- 

tivity distribution is used to solve a forward problem and, then, two-layer backpropagation 

neural networks (BPNNs) with non-linear activation functions for the hidden layer are 

employed for solving an inverse problem. This allows for a smaller computation time with 

respect to other iterative methods and, at the same tirne, y ields accurate results. Compari- 

son with results obtained by applying a Ieading impedance tomography algorithm illus- 

trates the efficiency of the proposed iterative method. 

7.1 Introduction 

Undoubtedly, the solution of the inverse problem, i.e. the computation of the con- 

ductivity distribution when the electrode voltages and the injected currents are known, is 

the most challenging part in an electrical impedance imaging system. This problem cm be 

solved by non-iterative methods, such as those implementing various backprojection tech- 

niques [9.16,114] or employing sensitivity coefficient methods [76], and also iterative 
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methods such as the equipotential Iines method [66], the perturbation method [73], the 

double constraint method [125], the Newton-Raphson method [130] and the compensation 

theorem method [go]. The non-iterative methods are fast methods, less sensitive to noise 

and to electrode displacement, but they produce less accurate and dynamic results. The 

iterative methods produce more accurate and static results, in generd, but are computa- 

tionaily extensive, very sensitive to noise and measurement erroa, as well as to electrode 

displacement. Since 199 1, severd researc b groups have reported impedance imaging 

results obtained by non-iterative methods employing neurd networks. These networks 

perfom weil in a noisy environment when appropnately trained with noisy pattems. One- 

layer BPNNs with Linear activation functions have been proposed in [54,3,99], and also 

one-layer BPNNs with non-linear activation func tions [ 1001 and RAM-based neural 

networks [32,33] have been used for pattern association. From the results obtained by 

applying such non-iterative methods, it has been realized that the neural networks required 

to solve the inverse problem in its general fom and with accurate results would be too big 

to be realistic, from the point of view of the number of units in the input and in the hidden 

layer, as well as from the number of necessary training pattems. On the other hand, 

iterative neurd networks such as recurrent neural networks, have successfully been used 

for pattem recognition [21]. Here, an impedance imaging procedure is proposed that is 

based on employing BPNNs in an iterative scheme that enables the use of relatively smdl 

BPNNs to solve accurately this highly non-linear inverse problem, with several times 

smaller CPU time compared with existent iterative methods. The proposed method also 

enjoys the advantageous features of the neural networks including their performance in 

the presence of noise and the capability of parallel processing, although these issues are 
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not addressed here. 

A review of backpropagation neural networks has been given in Appendix B. 

Readers who are farniliar to the neural networks may proceed to the next section where the 

Author proposes its implementation in the inverse problem. 

7.2 Proposed Methd 

The data collection method has a direct impact on the solution of the inverse 

problem. Accordingly, a suitable data collection method needs to be selected for the 

proposed reconstruction algorithm which is based on the implementation of the neural 

networks. Chapter 3 was devoted to data collection methods and it was explained that 

selecting an appropnate data collection method improves the reconstruction algorithm 

considerably. From that discussion, it is known that the adaptive method has clear superi- 

ority over the other rnethods. However, this data collection method can not be used in the 

approach here because, the current injection pattern is dependent on the conductivity dis- 

tribution. As a result there are different current injections for different conductivity distri- 

butions and one would not be able to make a valid cornparison between electrode voltages 

used for training and those encountered during employing of the neural network namely 

recall episode. In other words, the network should be presented with input vecton that 

have k e n  obtained under the sarne circumstances as training pattems, i.e. the same 

current injection pattems. By eliminating this method from the list, the best other options 

would be the trigonometric and Walsh functions. Either of these methods, enables one to 

compare the electrode voltages of the training set to those which are measured during 

employment of the network. Between these two methods, Walsh functions are better, 
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because in this case only fixed amplitude current generators with adjustable phase (that 

switches only between O and 180 degrees) are needed. 

Therefore, Walsh hinction patterns are employed for the proposed method. These 

patterns exploit the advantage of operating with a constant current amplitude, allowing at 

the same time an easy programming of the current sequences. For a 16-electrode system, 

15 pattems can be implemented (see Chapter 3 and Fig. 3.3). 

A forward problem solving module is used in the proposed procedure. Its opera- 

tion is based on a network approximation numerical method [91] (&O see Chapter 6) 

which is easy to implement and produces fast and sufficiently accurate results. Moreover, 

it allows to simulate accurately wide area electrodes which could be more difficult to 

achieve when using finite element methods [88]. The forward pmblem solving module is 

used twice, first for producing the pattems for training the neural networks and then dur- 

ing the iterative procedure itself. 

The inverse problem is solved iteratively by using a set of two-layer BPNNs 

appropriately trained as descnbed below. Although the proposed method may be used 

while considering both conductivity and permittivity, here, only the reai part of the meas- 

ured voltages and hence the conductivity of the object are considered, to keep the compu- 

tational burden lower and emphasize the method itself. 

7.2.1 Neural Network Architecture 

Consider for illustration a 16-electrode system, where 15 independent voltages can 

be identified for each current pattern. Since 15 pattems of the Walsh functions can be 

exploited, there are 225 measured voltages, which constitute the input vector for the neu- 
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r d  networks. The output vectoa of the neural networks has a number of entries equal to 

the number of cells in which the object is discretized. In the illustration considered, the 

object is discretized in 16 cells (as shown in Fig. 7.3). Linear activation functions are used 

for the units in the output layer and the hyperbolic tangent activation functions for the 

units in the hidden layer. By using a Linear activation hinction in the output layer. the scal- 

ing of the outputs of the neural networks can be avoided and aiso the training episode is 

shortened approximately twenty times at the expense of more units in the hidden layer. 

Instead of using a big, single neural network with 225 units in the input layer. 15 

neural networks have been employed, each one for a Walsh function current pattern and 

with only 15 units in the input layer. This architecture decreases the overall size of the 

neural networks by a factor of about 15. Two different reconstruction problems have been 

solved using the pmposed architecture narnely; 1) the reconstruction of objects with con- 

ductivities of a few cells freely different from known conductivities of the background 

cells, and 2) the reconstruction of objects with conductivities of ail cells different from 

each other, but, within a predefined interval. Reconstruction of conductivities for these 

two problems, diffen from each other in two ways; 1) the number of units in the hidden 

layer and 2) the training patterns. When necessary, these two cases are descnbed sepa- 

rately and from now on, they are called Types A and £3, respectively. 

7.2.1.1 Neural Network Architecture: Type A 

Two-layer BPNN with tangent hyperbolic activation function in the hidden layer 

and units with linear activation function in the output layer is used to solve the inverse 

problem. As rnentioned before, using units with a linear activation function in the output 
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layer increases the needed units in the hidden layer but decreases the training time consid- 

erably. in effect this selection decreases the CPU time at the cost of more memory which 

is preferred. However the BPNN shows the best performance, when the number of units in 

the hidden layer are taken to be as low as possible but still capable of leaning the training 

patterns. Using more units in the hidden layer, decreases the ability of the network to gen- 

eralize the features of the training patterns and instead simply mernorizes the training 

patterns. For an object discretized to 16 cells, 300 units in hidden layer has been found to 

be optimum. Therefore, 15 neural networks are utilized each one of them for each pattern 

of the Waish functions with 15 units in the input layer, 300 units in the hidden layer with a 

tangent hyperbolic activation function and 16 units with linear activation function in the 

output layer. 

7.2.1.2 Neural Network Architecture: Type B 

The reconstruction in this case is considerably more demanding compared to the 

type A. Again 15 neural networks are ernployed one for each current pattem and the same 

number of units in the input layer and output layer and the same kind of activation func- 

tions as in the Type A architecture. The difierence, however, is in the number of units in 

the hidden layer. More units in the hidden layer are needed for Type B than in Type A 

since reconstmction is more difficult. Moreover, experience shows that different Walsh 

Table 5: Number ohnits in the hidden layer for various BPNNs associateci with 
correspond'ig Waish function current pattems for the reconstruction problem of the 

Q P ~  B* 

Walsh function 
current pattern 

Number 
1 2 
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Table 5: Number of units in the hidden layer for various BPNNs associateci with 
corresponding Walsh function current patterns for the reconstruction problem of the 

lSPe B. 

function current patterns require different number of units in the hidden layer of their cor- 

responding BPNNs due to the different relationships between the electrode voltages and 

the ce11 conductivities. Consequently, different number of units in the hidden layer bas 

been chosen for the various neural networks corresponding to the Walsh functions, 

narnely, between 1500 to 2500 (see Table 5). 

7.2.2 Neural Network Training 

Selecting the appropriate patterns for training of these neural networks is a key 

issue in the proposed method. Usually, BPNN is trained with pattems whose input vectors 

are linearly independent. This arrangement is not applicable in here, because, the chosen 

conductivity distributions comprises the output vectors and, the input vectors are the cor- 

responding computed electrode voltages. 

Number of 
units in hidden 

layer 
1 

Walsh func tion 
current pattern 

Number 

Number of 
units in hidden 

layer 
r 

7.2.2.1 Training: mpe A 

In the proposed method, the neural networks have been trained using a set of pat- 

terns for the conductivity distribution. Each distribution has only one ce11 with a conduc- 
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Fig. 7.1 Discretization of the object in a 16 by 16 cells for the solution of the forward problem in 
a 16-electrode system; each electrode covers three nodes. 

tivity different from that of the other ceils. This conductivity was selected to be L/6,3/6,5/ 

6, 7/6, 916 and 1 LI6 of the conductivity of the background, which was set at 6 S/m. It 

should be noted that these patterns are not linearly independent. With 16 cells this yields 

97 different patterns for training, with one pattern having al1 the conductivities equal to 

that of the background. These pattems are employed in the forward problem solving mod- 
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ule [91] to determine the corresponding electrode voltages when the injected currents are 

known. For the forward problem solving module the object is discretized in a finer mesh 

of 16 by 16 cells. Each of the 16 electrodes cover 3 nodes in this mode1 as shown in Fig. 

7.1. The pattern with the conductivity of all the cells equal to the background conductivity 

is chosen as the reference pattern and its ce11 conductivities and electrode voltages are sub- 

tracted from the corresponding values in any other pattern. This arrangement is necessary 

for the iterative procedure that is described in the next section. 

7.2.2.2 'IS-aining: Type B 

For this case, the neural networks have ken  trained using a set of pattems for the 

conductivity distribution within the object that is chosen in such a way that three conduc- 

tivity values, 1, 1.2 and 1.4 S/m, have k e n  selected as background conductivities. Three 

pattems correspond to homogeneous distributions of conductivity within the object, with 

these three conductivity values. In the other pattems, one cell has a conductivity which is 

different from that of the background, with values equal to 1/6,5/6,716 and 1116 of that of 

the background. For a number of cells equal to 16, this produces a total of 3x4~16 pat- 

terns. The input vectors are given by the voltages associated with these pattems and have 

been generated by using the forward problem solving module. The electrode voltages and 

the ce11 conductivities of the second homogeneous pattern have been subtracted, respec- 

tively, from those corresponding to the other patterns. The resulting sets of electrode volt- 

ages and of conductivities constitute, respectively, the input and the output training 

vectors for the input and the output layers of the neural networks. Thus, the neural net- 

works are trained with relative values of electrode voltages and of conductivities. 
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Fig. 7.2 Pnnciple of the iterative reconstruction procediire using neural networks 

7.2.3 Iterative Image Reconstruction 

The trained neural networks are employed iteratively as indicated in Fig. 7.2. The 

procedure consists of the following main steps. 

1) A homogeneous conductivity distribution equal to background conductivity (6 SI 

m for Type A and 1.2 S/m for Type B) is used as initial estimate. 

2) The electrode voltages correspondhg to the respective current patterns are corn- 

puted in the forward problem solving module. 

3) These computed electrode voltages are subtracted from the measured ones and the 
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result is forwarded to the neural networks. 

4) Corresponding outputs of ail the neural networks are added and then multipiied by 

an updating factor in the range from 104 to 0.4 in terms of the rate of convergence. 

5) The resulting conductivity distribution is superposed on the previous one and the 

updated conductivity distribution is again used in the forward problem solving module 

to compute the new electrode voltages. 

6) The error, i.e. the difference between the measured electrode voltages and the com- 

puted ones is examined; if this error is smaller than the specified threshold, then the 

procedure is terminated; if the error has decreased, the updating factor is increased and 

the process is repeated from step 4; if the error has increased, then the electrode volt- 

ages and the conductivity distribution corresponding to the previous updating factor is 

selected and the iteration process continues from step 3. 

Although each network is trained with patterns having only one ce11 with a con- 

ductivity different from that of the background, this iterative procedure allows for the 

Type A neural network, the reconstruction of conductivity distribution for objects with up 

to three cells having conductivities freely different from that of the background, and for 

the Type B network, the reconstruction of conductivity distribution for objects with con- 

ductivities of al1 cells freely different from that of the background and with values 

between 1 and 1.4 S/m. 

7-24 Reconstruction Tests 

A two-dimensional domain has been discretized in 4x4 cells as shown in Fig. 7.3, 

and 16 current injecting electrodes have been placed equidistantly on the perimeter. 
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Several tests are presented to illustrate the proposed procedure for both reconstruction 

Types A and B. 

7.2.4.1 Method Evaluation: Type A 

Three cells in Figs. 7.3 (a) and 7.4 (a), and two cells in Figs. 7.5 (a) and 7.6 (a), have 

conductivities quite different from each other and from that of the background. These con- 

ductivity values have k e n  used in the forward problem solving module, with Walsh func- 

tion current patterns, to obtain the electrode voltages which are assumed to be the 

measured voltages. Sun Ultra 1 workstation and MATLAB-based [84] software were 

employed. The training episode for the networks used took about 15 hours of CPU time 

employing the same software and hardware. The reconstmcted conductivity distributions, 

dong with the required number of iterations and the total CPU time, are shown in Figs. 

7.3 (b) to 7.6 (b), respectively. The error indicated have ken  evaluated as: 

(ce11 conductivity - reconstructed ceil conductivity) * 
error = (1) 

To demonstrate the efficiency of the proposed method, a Newton-Raphson 

technique [133] was also applied on the sarne machine using the same MATLAB environ- 

ment. At least four iterations are needed for the Newton-Raphson method and each 

iteration requires 71.35 seconds of CPU time. The CPU time needed in the method 

presented is about 8 times smaller. 
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7.2.4.2 Method Evaluation: Type B 

Three examples have been chosen to illustrate the operation of the proposed 

method. In Figs. 7.7 (a) and 7.8 (b) two random conductivity distributions, and in Fig. 7.9 

(a) a continuous distribution, with values between 1 and 1.4 S/m, are presented. These 

conductivity values have been used in the forward problem solving module, with Walsh 

function current patterns, to obtain the electmde voltages which then are taken to be the 

measured voltages. These values are used in the cornputer program based on the proposed 

method. The reconstmcted conductivity distributions are shown in Figs. 7.7 (b), 7.8 (b) 

and 7.9 (b), respectively. 

Fig. 7.3 (a) original conductivity distribution; (b) reconstmcted distribution. Darker cells have, 
respectively, 5, 7 and 10 times the conductivity of the background which is set to 6 S/m. The 
error is 16% and a total of 3 1.93 s of CPU tirne is used for 13 iterations. 
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Fig. 7.4 (a) original conductivity distribution; (b) reconstnicted distribution. Darker cells have, 
respectively, 5, 7 and 10 times the conductivity of the background which is set to 6 S/m. The 
error is 14.7% and a total of 17.37 s of CPU time is used for 7 iterations. 

Fig. 7.5 (a) original conductivity distribution; (b) reconstmcted distribution. The bright and dark 
cells have, respectively, 0.1 and 2 times the conductivity of the background which is set to 6 S/m. 
The error is 2.6% and a total of 1 11.4 s of CPU tirne is used for 45 iterations. 
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Fig. 7.6 (a) original conductivity distribution; (b) reconstnicted distribution. Bnghter cells 
have, respectively, 0.1 and 0.3 times the conductivity of the background which is set to 6 S/m. 
The error is 2.2% and a total of 27.9 s of CPU time is used for 11 iterations. 

Fig. 7.7 (a) original conductivity distribution; (b) reconstructed distribution. The error is 2.2 1 % 
and a total of 82.76 s of CPU time is used for 10 iterations. 
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Fig. 7.8 (a) original conductivity distribution; (b) reconstmcted distribution. The error is t .64% 
and a total of 55.02 s of CPU time is used for 6 iterations. 

Fig. 7.9 (a) original conductivity distribution; (b) reconstmcted distribution. The error is 5.22% 
and a total of 113.22 s of CPU time is used for 9 iterations. 

7.3 Discussion 

A new iterative method, utilising neural networks, has been proposed for the elec- 

trical impedance imaging. It is based on employing at each iteration step appropriately 



Ph. D. Thesis INVERSE PROBLEM A. Nejatdi 

trained neural networks for solving the inverse problem involved, dong with a forward 

problem solving module. Once the training episode is completed, the method requires a 

reduced computation time with respect to other iterative methods, such as the Newton- 

Raphson method [ 1321, and yields more accurate results than fast non-iterative methods, 

such as those based on back-projection [9,18,114,76] or on non-iterative neural networks 

[3,54,100]. The presented method can also be applied to solve other inverse problems, 

such as those involved in the inverse scattering of electromagnetic or acoustic waves. 
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8. IMAGE FUSION USING FUZZY SET THEORY 

8.1 Introduction 

hproving the performance of the EIT system is rnainly comected with increasing 

its resolution and accuracy. The multi-frequency scheme as an alternative to increasing the 

number of electrodes has been suggested for this purpose [17,58,108] and enjoys several 

advantages over the latter scheme. Increasing the number of electrodes not only has 

technical problems but also, increases the computation time which in most cases is pro- 

portional to the fourth power of number of electrodes [43]. Even in the neural network 

approach, it increases the network input Iayer dimension as well as the hidden Iayer 

dimension and therefore the overall network dimension. On the other hand in the multi- 

frequency scheme, additional images are obtained with the sarne computation time and 

therefore the increase in CPU time would be proportional to the number of applied fre- 

quencies. An other point is that the sampling time does not necessarily increase in a multi- 

frequency scheme because all frequencies could be applied simultaneously and then 

separated during demodulation. 

In this chapter, a method is introduced to fuse images obtained at different frequen- 

cies in order to lower the errors and distinguish different tissue. This method was mainly 

proposed to be used in multi-frequency ER, nevertheless, it can be implemented in other 

image fusion applications. The method is based on fuzzy set theory and not only distin- 
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guishes different tissues but also, preserves and actually enhances the internal contrast. As 

the inverse problem was solved for a s d l  size problem in Chapter 7, the proposed 

method here is iliustrated using simulated input images. 

A review of fiizzy set theory can be found in Appendix C. Interested readers are 

encouraged to read this appendix before proceeding to its implementation in image fusion 

in the next section. 

8.2 Image Fusion as a Particular Case of Data Fusion 

Optimal processing of the data acquired from multiple sources has recently 

received considerable attention [55,74,80]. Data fusion techniques combine overlapping 

and complementary data obtained by employing different sensors in order to improve the 

overall system characterization or to obtain details that can not be recognized using only 

one source of data. Applications of data fusion are found in a large variety of fields, for 

instance in automated target recognition [56], guidance for mobile robots and vehicles 

[70], remote sensing [25], monitoring of manufacturing processes, condition-based main- 

tenance of complex machinery and robotics [ 11, and medical diagnosis [ 121. A concerted 

effort is under way to define standard teminology, categories, processes and functions for 

this interdisciplinary area [ 14,26,57,12 il, w here concepts are used from digital signal or 

image processing, statistical estimation, control theory, artificial intelligence, classic 

numericd methods and fuzzy set theory [27,112,113]. 

Data c m  be fused at different levels, from the raw data level up to the decision 

making level [57]. Data fusion methodologies are characterized by the level of input and 

output 1261 or by the topology used for the fusion center [12 11. It should be noted that 
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interferences obtained using multisensor fused data may be less accurate than interfer- 

ences based on acceptable data from an individual sensor. This could be the situation 

when an attempt is made to fuse accurate with inaccurate data, especiaiiy if the degree of 

uncertainty of the data is unknown. The performance of various data fusion systems is 

evaluated, in most cases, by numerous simulations and statistical measurements [57]. 

When dealing with images, the internai contrast is not retained in the fused image. Image 

fusion methods that maintain or even emphasize the interna1 contrast are highiy desirable, 

since this rnight carry important information. For instance, in medical imaging, by using 

preserving 
a intemal contrast 

~eattue extraction 

Computing 
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the intemal contrast, one can keep track of minor changes in the tissue which could result 

from a malignant tumour in its early stages. If the imaging system is an EIT, for example, 

the darker pixel values in a certain zone of a tissue could be associated with higher values 

of conductivity, which in tum may be due to a higher vascular integration surroundhg the 

tumour. If another imaging system, for exarnple an X-ray system, is also employed and 

brighter pixel values are associated to the same zone as before, due to less absorption of 

X-ray radiation, then it would be extremely valuable to not only identiw that specific tis- 

sue, but also to retain its intemal contrast in the fused image, which could reveal the 

potential malignant tumour. 

Image fusion is a special case of data hision. Recent attempts to apply fuzzy set 

theory to the image fusion have produced prornising results [13,92,93]. This is due to the 

fact that the relationships between different object classes and the corresponding pixel val- 

ues, as well as the uncertainties within each imaging system, cm be characterized quanti- 

tatively using membership functions. Moreover, the operators and the decision making 

rules in fuzzy set theory provide the necessary means to handle efficiently the image 

fusion process. In this chapter, a new image fûsion method based on fuzzy set theory is 

presented. The strength of this method consists in a clear classification of different image 

components (e.g., different tissues in medical images) and, at the sarne time, in presewing 

the internai contrast for each class. A parallel distributed (decentraiized) fusion architec- 

Nre is used in this method. Each imaging system performs its own processing and pro- 

vides a certain image instead of raw data to the fusion center as shown in Fig. 8.1. In the 

proposed method it is not necessary that the various sets of data be independent from each 

other, no hizzification constraints are needed [112], the input or the output of the fusion 
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Pixel value 

Fig. 8.2 A sample of a membership hinction for an image component. 

center can be in the fûzzy format and not necessarily in crisp labels [113]. If the input data 

are insufficient to produce highly confident. unarnbiguous results, ihis is conveyed to the 

output so that the interpreter will not be given false information. The implementation of 

the method is relatively easy and straightforward and the entire procedure can be applied 

practically in the same way for data with noise. In the following it is assumed that the co- 

registration of image data (if necessary to be done) has already k e n  performed for the 

input images. 

8.3 Proeessing approach 

The contrast between different image classes is due to different relationships 

between these classes and the corresponding pixel values, and represents the differences in 

the measured physical quantities used in the imaging system. Similady, the intemal con- 

trast is due to minor changes in the physical quantity within an individual class. The rela- 

tionship between the measured physical quantity and the respective pixel values can be 
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Fig. 8.3 Membership function for noise with a Gaussian probability density function: p is the 
pixel value, o is the offset, and a the standard deviation. 

represented by membership functions [103], for instance as shown in Fig. 8.2. This figure 

shows a sample membership function in wlUch the observed greyscale value for a pixel 

(the ordinate) is mapped to the value of membership in a class (the abscissa). By employ- 

ing such a membership function, an interval of pixel values is attributed to a specific 

image class and, moreover, the degree to which a pixel value in that interval is associated 

with that class is specified. Measurernent errors can also be represented using membership 

functions. Whenever the deterministic errors, such as an offset, and the stochastic errors 

corresponding to a probability density function of noise are known appropriate member- 

ship functions cm be defined to represent the noise in an imaging system as shown in Fig. 

8.3. By using these membership functions and the corresponding possibility measures, 

which represent the degree of overlap between two membership functions, we not only 

determine the boundaries of various image classes in the fused image, but also preserve 
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the internal contrast within each class. The processing approach consists of two distinct 

parts: in the fint part the input images are fused such that the boundaries of each image 

class are clearly determined; in the second part the internal contrast within each image 

class is restored and emphasized. 

8.3.1 Determinhg the Boundaries of the Image Classes 

First. a completely separate image for each class is produced The procedure for 

identiQing the class i in several input images consists of the following steps: 

1) Definition of membership hnctions that represent the class i in each irnaging 

system j employed; 

2) Construction of membership functions d for uncertainties in each imaging system 

j, according to the identified measurement errors; 

3) Computation of the possibility measures of p{'s with respect to the corresponding 

v"s for al1 the pixels in al1 the input images; 

4) Processing the results in Step 3 for the corresponding coordinates in ail the images 

and producing the final image for the class i. 

Experience has shown that the t-nom defined as the product of the two member- 

ship functions produces better results compared to the usually used t-nom defined as the 

minimum of the two membership functions. This is due to the fact that the multiplicative 

t-nom produces smaller possibility measures wherever the two membership functions are 

overlapping outside their respective full membership intervals, thus decreasing the effect 

of those pixels that could have k e n  wrongly identified as belonging to a given class, for 
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instance as a result of the presence of noise. 

For the step 4 of the above procedure, one has to take into account that in a given 

input image a certain class i might be associated with pixel values which are darker than 

those corresponding to other classes. At the same time, in another input image the class i 

could be associated with brighter pixel values as compared to other classes. Therefore, the 

pixel values cannot be simply averaged to decrease the effect of noise. On the other hand, 

the possibility measures for pixels associated with the class i in ail the input images are 

rnuch greater than those for the pixels corresponding to other classes. These possibility 

measures can be processed in a number of ways. For instance, we can employ a simple 

averaging which is an effective method of decreasing the effect of the random noise [46]. 

A nonlinear mapping (thresholding) in combination with the averaging produces even bet- 

ter results [92]. 

The uncertainty rnembership function 4 in Step 2 of the proposed procedure is 

useful for pixels associated to a class i that have values in the neighborhood of the bound- 

d e s  of the interval of pj. Indeed, when due to noise the pixel value is shifted outside this 

interval, the possibility measure calculated by employing the uncertainty rnembership 

function is different from zero, which allows us to count the respective pixel as a member 

of the class i. 

8.3.2 Preserving Interna1 Contrast 

Once the boundaries of each image class are detennined, one restores and even 

emphasizes the intemal contrast within each class. This is done by defining a new mem- 
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Fig. 8.4 Definition of 4 with respect to 4 for cetaining interna1 contrast. 

bership function to rcpresent the class i in the imaging system j. Figure 8.4 presents a 

suitable example of 1. for the class i when its pixel value interval in the image j is [a,b]. 

By this membership function we attribute full membership to one end of the interval and 

one quarter membership, for instance, to the other end. To produce coherent results one 

should use carefuiiy this definition, as explained in the following example. Assume that a 

vascular integration region generates lighter pixel values in a certain imaging system and 

that in another imaging system this region produces darker pixel values. Therefore, if the 

full membership value of hi is attributed to the brighter pixels in the former rnodality, one 

should attribute full membership value of hj to the darker pixels in the latter modality. 
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One may even define different types of membership functions with the full member- 

ship value somewhere in the middle of the interval, for instance, or even as discontinuous 

functions. 

The procedure for retaining the intemal contrast for the class i consists of the fol- 

lowing steps: 

1) Definition of appropriate rnembership functions hi 's for ail the classes i and a i l  the 

iniaging systems j; 

2) Definition of membership hinctions vi's for every imaging system j, according to 

the existent measurement errors; 

3) Computation of the possibility measures of k;'s with respect to the corresponding 

vi's for al1 the pixels of the class i; 

4) Processing the results in Step 3 for the coordinates corresponding to the class i and 

producing its final image. 

Application of the proposed method yields a much improved reconstructed image 

with respect to the input images, with the boundaries of the classes clearly deterrnined and 

with the internal contrast within the classes well preserved. 

8.4 Illustrative Example 1 

Assume a 20 by 20 two-dimensional grid which is made up of three tissues, say 

bones, blood vesseis and muscles. The geometric positions of these tissues are shown in 

Fig. 8.5. In the proposed method there is no restriction on the relations between tissues 

and pixel values associated with different imaging systems, while it is not the case in [12], 
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muscles bones blood vessels 

Fig. 8.5 Cross section with bones, blood vessels and muscles. 

here, these relations are permitted to be quite different from each other. In the exarnple 

considered, these relations have been selected randomly as shown in Fig. 8.6. Trapezoidal 

membership functions have been used here, for illustration, since it is the cornmon 
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Fig. 8.6 Relation between tissues and pixel values in six different imaging systems. (a) to (O. 

practice in fuzzy set theory, although Gaussian distribution functions are more realistic 
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Fig. 8.7 Simulated outputs of the six imaging systems corresponding to Figs. 8.5 and 8.6. 

and will be used in practical cases as well as the next exarnple.With these membership 

functions and with the geometry in Fig. 8.5, one c m  simulate the resulting image for each 

imaging system, (a) to (0. To simulate the output images of these imaging systems, one 

should produce random numbers with trapezoidal pdf's sirnilar to those which were 

assumed in Fig. 8.6. To do so, here we consider how to produce random numbers with 

trapezoidal pdf from a uniforrnly distributed random generator. 

At this stage we consider each hzzy set as a probability density function (pdf) and 

produce a random number with this pdf for every pixel which belongs to that tissue. A 
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Fig, 8.8 Results by the proposed method: (a), (b) and (c) show bones, blood vessels and 
muscles, respectively, obtained from averaging; (a'), (b') and (c') give the sarne tissues after 
applying a step function mapping to (a), (b) and (c). 

uniform distributed random number generator is usuaily available in rnost softwares. 

Therefore we should figure out how to map this random number to Our trapezoidal pdf. 

This has been shown in Appendix D. 

Using the method presented in Appendix D, Figure 8.1 1 shows the corresponding 

images, where random noise with a triangular probability density function has also been 

considered within f 5 % of the brightness interval [O, 11. The membership function d rep- 

resents the uncertainty of pixel values and, in accordance with the random noise consid- 



Ph- D. Thesis IMAGE FUSION USING FUZZY SET THEORY A. Nejatali 

Fig. 8.9 Boundaries of image classes; the regions in white, gray and black have material 
characteristics of spleen, liver and muscle, respectively. 

ered, has k e n  taken to be triangular, with its upper vertex at the pixel value and its lower 

vertices at 0.05 distance from the pixel value. Systematic measurernent errors, if present, 

can also be considered and compensated by defining suitable membership functions for 

the relations between tissues and pixel values. 

Figure 8.12 shows the results after applying the part 8.3.1 of the proposed method 

to the simulated output of the imaging systems in Fig. 8.1 1. In the case considered a 

simple averaging of the possibility measures and then a non-linear, step function mapping 

have been performed as the fourth step. The step function maps values above 0.35 to 1 and 

values below 0.35 to O. Obviously al1 tissues have been fully recovered. 

8.5 Illustrative Example 2 

Consider a 20 by 20 two-dimensional grid for a region containing three different 
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biological tissues, with material properties corresponding to spleen. Liver and muscle, as 

shown in Fig. 8.13. Assume that an EIT system has been used to produce several images 

for this region using different injected current frequencies. Since the conductivity and the 

permittivity of biological tissues are frequency dependent, applying currents of different 

frequencies produces different images. Four different frequencies have been employed, 

narnely 1 kHz, 10 kHz, 100 kHz and 1 MHz, to produce four different input images. The 

specific resistance and the specific reactance of the tissues considered at these frequencies 

are shown in Tables 6 and 7 [109]. The corresponding simulated images are shown in Fig. 

8.14. They have been produced using the formula 

pixel value = table value (bias + random x noise) . (8.1) 

Table 6: Specific resistance of spleen, liver and muscle at different frequencies [109]. 

Spleen 1 6 2 . 9  1 100 1 169 1 360 

Liver 1 114 1 206 1 297 1 469 

Muscle 1 94.3 1 206 ( 483 1 583 

Table 7: Specific reactance of spleen, liver and muscle at different frequencies [109]. 

Spleen 1 16.7 1 55 1 100 1 108 
. . 

Liver 
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In this formula table value refers to the values in Tables 6 and 7, random is a normal ran- 

dom variable with a zero mean value and a standard deviation equal to one, noise repre- 

sents the noise level in the measwed data and bias is modeiied as, 

bias = 1 + f (x, y) (spread/2)  , (8-2) 

where spread accounts for the spread of the acnial tissue values with respect to the mean 

values given in Tables 6 and 7; the larger the value of the spread, the more overlap exists 

between the membenhip functions corresponding to different tissues. Ajr,y) is a function 

of x and y which associates to each point in the image a number in the interval [-1, 11 , 

used to simulate a continuous intemal cantrst within the tissues. In the example consid- 

ered, both the spleen and the liver have a specific resistance and a specific reactance that 

increase with the distance from the coordinate origin, and the muscle has its specific 

Fig. 8.10 Simulated images using the real part, (a)-(d), and the imaginary part, (e)-(h), of the 
impedances for an EIT system at four different muenc ies ,  1 kHz, 10 kHz, 100 kHz and IMHz, 
respectively; the spretzd is 0.3 and the noise is 0.15. 
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Fig. 8.U The membership functions for the specific tesistances of spleen, liver and muscle 
venus pixel values at 1 kHz, with spread equal to 0.3 and noise equal to 0.15 in Eqs. (8.1 1 )  and 
(8.12). 

resistance and reactance decreasing with this distance (the coordinate origin is chosen at 

the top left corner of the grid). 

Therefore, a normal random variable is assigned to each pixel such that the pixel 

value has a mean value equal to the table value times the bias and a standard deviation a 

equal to the table value times the noise. B y doing so, the membership function for a spec- 

ified tissue would be as shown in Fig. 8.2, with the full membership for values of specific 

resistance and reactance between (table value)( 1 -spread/2) and (table value)( l+spread/2), 

and with a Gaussian function dependence outside this interval, e-(+ (20L) , where p is 

equal to the corresponding value bounding the full membership interval. In Fig. 8.15 

membership functions are defined for the specific resistance of spleen, muscle and liver at 
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Fig. 8.12 Tissue boundaries after applying part 8.3.1 of the proposed method using the input 
images in Fig. 8.11, with a spread of 0.3 and a noise of 0.15 in Eqs. (8.11) and (8.12): (a)+) are 
from images using the real part of impedances; (d)-(f) are from images using the imaginary part 
of impedances ; (g)-(i) are obtained using al1 the images in Fig. 8.14. 

1 kHz with a spread equal to 0.3 and a noise equal to 0.15. Increasing the spread and the 

noise yields an increased overlap between these membership functions. 

The results after applying the part 8.3.1 of the processing approach to simulated 

images in Fig. 8.14 are presented in Fig. 8.16. A simple averaging of the possibility meas- 

ures and a thresholding have been employed to produce these results. Applying averaging 

yields values for pixels associated with a specified class that are nomally greater than 
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those for pixels belonging to other classes. However, the difference between these values 

could be too small to distinguish clearly the boundaries of the class considered. The 

thresholding is applied in order to map the values below a specified level (here 0.75) to 

zero and the values above this level to one By doing this, only the pixels with values equal 

to one are identified to klong to class i. The threshold value is mainly detennined by the 

degree of overlap between membership functions of different classes. It can be adjusted by 

applying the same procedure to a number of images with similar overlaps, whose contents 

are known, until the results generated are satisfactorily accurate. A careful examination of 

Fig. 8.16 (g) to (i) shows that some pixels have not been assigned to any of the three 

classes and some other pixels have been assigned to more than one class. These contradic- 

tory results dlow the interpreter to know that the fusion attempt was not successful for 

those pixels due to insufficient input data. 

Several simulations have been executed with a spread equal to 0.3 and a noise 

equal to 0.15,. The corresponding statistical measures are summarized in Table 8. For 

another round of simulations, with even higher values of spread and noise, statisticai 

measures are given in Table 9. These results show that even under quite severe noise con- 

ditions and large overlap of different tissues, the processing approach produces excellent 

results. 

To restore the intemal contrast within each tissue one cm use either the raw data 

or, to obtain better results, the data from part 8.3.1 of the proposed method. Obviously, the 

intemal contrast can be restored from raw data only when the spread and the noise are suf- 

ficiently small. Figure 8.17 shows the simulated input images with a spread of 0.2 and a 

noise of 0.05, and Fig. 8.18 shows the results when applying only part 8.3.2 to the input 
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images in Fig. 5.17 (Le. to the raw data). The following formula has k e n  employed for 

postprocessing the data in the proposed method: 

where 

It should be noted that due to noise, the possibility measures for some pixels in a 

given imaging system may have unexpected large values even though these pixels do not 

belong to the class considered. By using this formula the effect of such possibility meas- 

ures in the overall pixel value is substantially reduced. 
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Fig. 8.13 Simulated images for the object in Fig. 8.13 to be used in the part 8.3.2 of the 
proposed method, with a spread of 0.2 and a noise of 0.05: (a)-(d) using the real part of 
impedances; (e)-(h) using the imaginary part o f  impedances. 
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Fig. 8.14 Interna1 contrast reconstruction when applying only the part 8.3.2 to simulated input 
images in Fig. 8.17, for a spread of 0.2 and a noise of 0.05: (a)-(c) with the real part of 
impedances; (d)-(O with the imaginary part of impedances. 
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Table 8: Errors for 10 simulations with spreuà of 0.3 and noise of 0.15: arithmetic 
me= (M) and standard deviation (SD) - Part 8.3.1 in the pmposed method. 

Tissue 

Spleen 

Liver 

Muscle 

Input images from 1 M [%] 1 

Figure 8.19 shows another set of simulated input images obtained with high values 

of spread and noise, 0.3 and 0.15, respectively. The intemal contrast is restored by apply- 

ing the procedure in part 8.3.2 to the results from the part 8.3.1 of the proposed method. 

The resulting images are presented in Fig. 8.20. It c m  be seen that not only different tis- 

sues have been clearly classified, but also the intemal contrast within the three tissues has 

been preserved and in fact augmented. 

Resistance 

Reac tance 

Resistance and reactance 

Resistance 

Reac tance 

Resistance and reactance 

Resis tance 

Reactance 

Resistance and reactance 

0.15 

0.9 

0.05 

5.55 

1.55 

0.3 

19.425 

0.975 

1.45 

0.1748 

0.5426 

0.1 054 

0.8882 

0.4048 

0.2297 

2.2362 

0.5062 

0.5503 
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Fig. 8.15 Simulated input images to be used in both parts 8.3.1 and 8.3.2 of the method, with a 
spread of 0.3 and a noise of 0.15: (a)-(d) with the red part of impedances; (e)-(h) with the 
imaginary part of impedances. 
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Fig. 8.16 Fused images obtained by applying part 8.3.2 o f  the proposed method to tissues 
classified in part 8.3.1, with a spread of 0.3 and a noise of 0.15: (a)-(c) using the real part of 
impedances; (d)-(f) using the imaginary part of impedances; (g)-(i) using al1 the input images 
from both the real and the imaginary parts of impedances. 
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Table 9: E m r s  for 10 simulations with spreod of 0.4 and noke of 0.2: arithmetic 
mean (M) and standard deviation (SD) - Part 8.3.2 in the proposed m e t h d  

Tissue 1 Input images from 1 M [%] 1 SD 

1 Resistance 1 2.575 1 0.8901 

spleen 1 Reac tance 1 4.975 1 1.0701 

Resistance and reactance 

Resistance 

Liver 

-- - -- - - - 1 Resistance and reactance 1 6.975 1 1.5962 

0.775 

13.925 

Muscle 

8.6 Conclusion 

A new method for image hision using h u y  set theory has been proposed which 

allows different components of the input images to be ciearly classified and the intemal 

contrast within image classes to be restored and emphasized. The method is easy to imple- 

ment and the resulting images can be readily interpreted and is also applicable to situa- 

tions where the relations between tissues and pixel values for different imaging systems 

lack sirnilarity and thus the fuzzy classification technique [12] is not applicable. The pre- 

sented results have been produced without using any a priori information, i.e., the same 

weights have been assigned to al1 input images, independently of how accurate they are. In 

most practical cases when this information is available, even better results can be 

achieved. 

0.5464 

1.3847 

Reac tance 

Resistance and reactance 

Resistance 

Reactance 

3.175 

2.225 

0.755 1 

0.8203 

26.3 

5.725 

- - 

2.1692 

1 .O766 
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9. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

9.1 Maiin Cmbributiuns In the Thesis 

In this dissertation research the performance of ER systerns has been improved by 

three basic propositions. They are namely, the forward problem, the inverse problem and 

the image processing. Advantages of each of them over existing meihods are summarized 

as follows. 

The network approximation method introduced in Chapter 5 has obvious advan- 

tages on previous models in network approximation by producing a smaller nodal admit- 

tance matrix. It also has the capability to simulate wide area electrodes without any 

approximation and to consider permittivity without increasing the cornputational burden 

over finite element method. It is easy to implement and produces accurate results. 

For the first time neural networks have been utilized in an iterative scheme to solve 

the inverse problem. In the proposed method, a two-layer backpropagation neural 

networks with tangent hyperbolic activation function for the units in the hidden layer and 

linear units in the output layer have k e n  trained appropnately to solve the highly non- 

linear problem of reconstruction of conductivity distribution inside the object based on 

measured electrode voltages and known injecting current patterns. The proposed method 

has the ability to produce accurate static images with computation times that in cornpari- 

son to other existing methods are several times shorter. Moreover, its performance can be 
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increased considerably using other advantages of neural networks which include hardware 

realization that further increases the speed as well as robustness in presence of noise. The 

proposed method cm also be implemented in order to solve other inverse problems 

encountered in the inverse scattering of acoustic or electromagnetic waves. 

Although the multi-frequency scheme in order to increase the accuracy of EIT 

systems is not a new idea, there has not k e n  any method to appropriately address the 

fusion problem. In this thesis, a new method is proposed based on fuzzy set theory that is 

well suited for this problem. The method is quite straightforward and easy to apply and 

not only classifies different classes in the object but also, preserves and enhances the 

interna1 contrast, ail of them in the presence of noise and other measurernent errors. This 

method c m  also be implemented in other image fusion problems, i.e. specially when the 

images are produced using different modalities and classical image fusion methods are not 

applicable. 

9.2 Suggestions for Future Research 

The solution of the forward problem using neural networks produced fruithl and 

prornising results. Nevertheless, the training episode which has to be done only once and 

in advance is an extensive computational burden. In this thesis, in order to concentrate on 

the method rather than becorne involved in the prograrnming aspects of the technique, the 

inverse problem was solved for a small size problem and only the conductivity distribu- 

tion was considered. However, the method can be expanded to practical size problems 

without any major alteration. To do so, more powerfùl machines and optimum softwares, 

have to be employed for the training of the neural networks. Here, to shorten the training 



Ph. D. Thesis CONCLUSIONS AND SUGGESTIONS FOR FTJTUFE RESEARCH A. Nejatdi 

episode and at the expense of more memory, linear units were used in the output layer of 

the network. Another option would be to use smaller networks with non-linear units in the 

both hidden and output layer, provided better software and hardware are utilized. 

The last but not the least step would be to perform practical experiments to 

implement the proposed methods. 
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Analytical Solution 

Consider a homogeneous circular cylinder with a coaxial inclusion of a circular 

c ylinder of a different material, as shown in Fig. A. 1. This test structure admits an analyti- 

cal solution. Indeed, the electric potential satisfies Eq. (6.1) [lM] with the boundary 

condition 

d 
where j (8) is the injected current density, - denotes the normal denvative outwardly 

an 

oriented, and y = a + j e .  j (0) satisfies the condition 

2x  

The average potentiai on the boundary is assumed to be zero, 

This problem can be solved analytically by using the method of separation of 

variables in polar coordinates. At the interface r = r, , continuity of the current density 

and continuity of potential imply 
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Fig. A.l  A homogeneous cylinder with a coaxial cylindrical anomaly inside. 

Ln the circle O < r < rl and annulus r ,  < r < ro,  Eq.  (6.1) in polar coordinates sim- 

plifies to 

* 

a a* + a i  - ( r )  - - 
ar ar ae2 

Let Q = R ( r )  8 ( 8 )  . Then Eq. (AS) can be written as 

Dividing both sides by OR 

In general both k2 and -k2 should be considered but, in this case as the periodic boundary 
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conditions are only present just the plus sign is used. 

Eq. (A.7) constitutes two ordinary differential equations that are separated and can 

be solved individually. The solution of Eq. (AS) would be the multiplication of these two 

equations. The solution of 

e 

is: 

8 = kWcos (kg + k') 

where k, k '  and k" are constants that remain to be found. 

The other differential equation can be rewritten as 

With a new variable narned t defined as 

dt 1 r = ef or t = lnr and - = - 
d r  r 

derivatives with respect to r cm be wntten as 

dR - dRdt 1dR and - - - =  -- 
dr dt dr rdt 

(A. 10) 

(A. 1 1) 

(A. 12) 

(A. 13) 

(A. 14) 

By substituting Eqs. (A. 13) and (A. 14) in Eq. (A. 1 1), one will have 
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which can be simplified to 

The answer to this differential equation is 

By substituting t with ln(r), one cornes to 

For the annulus r ,  < r c ro the full answer is 

@ = (4 + B* (kWcos (kg + k') ) = (5 + k?'rk) (cos (kg + k') ) 
r 

A. NejataIi 

(A. 15) 

(A. 16) 

(A. 17) 

(A. 18) 

(A. 19) 

and for the circle O < r c r ,  as the first term in Eq. (A. 18) produces a singularity and 

should be eliminated, one will have 

9 = B"rkcos (k0 + k') (A.20) 

A', B', k, k' and B" are constants that should be found by applying the boundary condi- 

tions. 

By applying the second boundary condition in Eq. (A.4), one will have 
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~ " r f c o s  ( k g  + k') = - + ~ ' r ~  (COS ( k g  + k') ) 
( r !  1 )  

which simplifies to 

The first part of Eq. (A.4) or 

A. Nejatali 

(A.2 1) 

is the other of our boundary conditions. By applying this to Eq. (A.20) one can write 

(-;'' + BPkr:- l)cor ( k g  + k') yl ~ " k r t -  'cos ( k g  + k') = y, -p (A.23) 

Now one can apply the boundary condition related to injected currents introduced 

in Eq. (A. 1) and get 

The first term in this expression is the trigonometnc series expansion of injected 

current. This expansion is not the usual Fourier series because does not have sine terms 

and has a phase term, q l ,  instead. One can solve this equation separately for each term an 

left hand side, on the other words, for each 1, there are a set of answers for A', B' and B ". 

These answers are found by using Eqs. (A.22), (A.24) and (A.25). 

A manageable case occurs when the injected current density is simply 
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j (0) = cos (8) . (A.26) 

In this case q, = O ,  a, = 1 , k = 1 and ai i  other term of summation are zero. 

Therefore from Eq. (A.25), one gets 

For k = 1 from Eq. (A.24) 

In the same way for Eq. (A.22) 

A' B8'r, = - + B'r, .  
' 1  

One has to solve these equations to find the constants. To do that from Eq. (A.27) 

from Eq. (A.28) 

and from Eq. (A.29) 

Combining Eqs. (A.3 1) and (A.32) and after a lengthy but straightforward manipu- 

lation 
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Inserting this into Eq. (A.3 1) and performing the necessary simplifications 

Finally for B ' 

Using these values in Eq. (A. 19) and for ro of interest. the final answer after many 

manipulations is 

where R = r l / r w  
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APPENDIX B 

B.1 Neural Networks 

Neural networks are known for their parallel and distributed structures with a sig- 

nificant level of learning capability. They operate on an exclusively numerical level 

(usually [O, I] or [- 1,lJ) where their basic computational components (computational 

neurons) are quite simple processing units. The computationai neurons reaiize a weighted 

n 

sum of input signais XI, xz, ... , + in Say wixi + b where wi9s are called weights and b 
i =  l 

denotes the so-called bias term, followed by a nonlinear static transformation. This 

nonlinear transformation usually shows a saturation behaviour (see Fig. A.1). The 

neurons are then arranged into layers where the number of layers as well as their dimen- 

sions, specify the capabilities of the resulting network. Knowledge is accornrnodated in 

the neural networks by distributing it among the connections of the network. Thus the 

resulting structure is fairly difficult to interpret. In other words, one c m  not convert them 

into a series of readable 'if-then' statements or any other type of representation of the 

explicit format. 

There are several kinds of neural networks such as backpropagation, cornpetitive, 

counter-propagation and associative memory networks. The backpropagation network is 

the most popular one and has been used in a lot of applications. In line with its popularity 
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Fig. B.l (a) Sigmoid and (b) tangent hyperbolic activation functions. 

extensive work has k e n  done to improve its performance. There is also a wide variety of 

backpropagation networks according to number of layea, type of activation function for 

neurons and learning d e s .  One layer or two layer networks with nonlinear activation 

functions are an ideal device to simulate nonlinear functions. Furthemore it has been 

claimed that a two layer backpropagation network wiih nonlinear units and suitable 

number of neurons in hidden layer is able to simulate a nonlinear function with any degree 

of complexity whatsoever. 

B.2 Backpropagation Network Operation 

Here a description of the network operation is presented to illustrate how the 

backpropagation neural network (BPNN) c m  be used to solve complex problems. In 

sumrnary the networks learns a predefined set of input-output exarnple pairs by using a 

training cycle. An input pattern is applied as a stimulus to the fiat layer of network units 
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input input layer hidden Iayer output layer output 

Fig. B.2 The general backpropagation network architecture. 

(neurons), then it is propagated through each upper layer until an output is generated. This 

output pattern is then compared to the desired output, and an error is computed for each 

output unit (see Fig. A.2). 

The error is then transmitted backward from the output layer to each node in the 

intennediate layer that directly contributes to the output. Each unit in the intermediate 

layer receives only a portion of the total error value based roughly on the relative contribu- 

tion the unit made to the original output. This process continues, layer by layer, until each 

node in the network receives an error value that describes its relative contribution to the 

total error. Comection weights. based on their unit relative error value, are then updated to 

converge toward a state that in it, al1 the training patterns are encoded. 
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As the result of this training process the neurons of each layer of the neurd 

network organize their weights such that different features of the their input space z e  

Ieamed. Upon completion of the training, when presented with an arbitrary input pattem 

that is noisy or incomplete, the units in the next layer of the network will respond with an 

output that resembles the features they learned to recognize during training and 

meanwhile inhibit their outputs if their input pattem does not contain those features. 

As signais propagate through the subsequent layers in the network, the input 

pattern presented to each upper layer c m  be thought of as a pattern with features that cm 

be recognized by units in that layer. The generated output pattem cm be thought of as a 

feature map that provides an indication of the presence or absence of feature combinations 

at the input. This behaviour provides an effective means for the BPNN to allow a 

cornputer system to examine data patterns that may be incomplete or noisy, and to 

recognize subtle patterns from the partial input. 

It has k e n  shown that during training, BPNN tends to develop interna1 relation- 

ship between nodes so as to organize data into classes of patterns [42]. This tendency has 

resulted in assuming that al1 hidden-layer units in the BPNN are somehow associated with 

specific features of the input pattern as a result of training. Thus, the BPNN classifies these 

previously unseen inputs according to features that share with the training examples. 

B.2.1 The Generalized Delta Rule 

Here the formal mathematical description of BPNN opration is presented. The 

generalized delta rule (GDR), a member of a wider class named gradient descent training, 

is derived in detail for the learning algorithm of the network. Figure A.2 serves as the 
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reference for rnost of the discussion. The BPNN is a layered, feedforward network that is 

fully interco~ected. There are no feedback connections and no connections that bypass 

one layer to go directly to the later layer. Aithough only three-layer BPNN (sometimes 

cailed two-layer network because the input layer is just used to fan out the input vector to 

the next layer) is discussed here, more layers are aiso permissible. 

A neural network is cdled a mapping network if it computes a functionai relation- 

ship between its input and its output. For example, if the input to a network is the value of 

an angle, and the output is the cosine of that angle, the network perfonns the mapping 

0 4 cos0. For such a simple function, neural networks are not needed, however, one 

might want to perform a complicated mapping where the description of the fûnctional 

relationship in not known in advance, but some examples of the correct mapping are 

known. in this situation, the power of a neural network to discover its own algoriihms is 

extremely useful. 

Suppose there are a set of P vector-pairs, (xl, y,), (xz, y*), ... , (x,, y,). which are 

examples of a fÿnctional rnapping y = $ (x)  ; x E R ~ ,  y E R ~ .  A network is going to 

be trained such that it approximates the desired function O = y' = $' (x). A method will 

be explained to do this training which usually works provided that there is a sufficient 

number of the properly chosen training-vector pairs, and there are sufficient l a y e ~  and 

units in the network. Remember that leming in a neural network means finding an appro- 

priate set of weights. This problem is a generalization of the least mean square rule and 

resembles the problem of finding the equation of a Line that best fits a number of known 

points. Uniike the line-fitting problem, the relationship that is going to be mapped using 

BPNN is likely to be noniinear as well as rnultidimensional, thus, a least-square approxi- 
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mation is employed wfiich is an iterative version of the simple least-squares method, 

called gradient descent training. 

To begin, let's review the equation for information processing in the three-layer 

network in figure A.2. An input vector, xp = (x, ,, xP2, . .., x,,) ', is applied to the input 

layer of the network. The input units distribute the values to the hidden-layer units. The 

net input to the jth hidden unit is 

h where W . .  is the weight on the connection from the ith input unit, and bh is the bias term. 
J 1 J 

The "hW superscript refen to quantities on the hidden layer. Then. the output of this node is 

Sirnilarly, the equations for the output nodes are 

where the "O" superscript refers to quantities on the output layer. 

The initial set of weight values represents a first guess as to the proper weights for 

the problem. The basic procedure for training the network is embodied in the following 

description: 

1) Apply an input vector to the network and calculate the corresponding output 

values. 
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2) Compare the cornputed outputs with the correct outputs and determine a measure 

of the error. 

3) De termine in which direction ( + or - ) each weight changes in order to reduce the 

error. 

4) Determine the arnount of change for each weight. 

5) Apply the corrections to the weights. 

6) Repeat items 1 through 5 with al1 the training vectors until the error for al1 vecton 

in the training set is reduced to an acceptable value. 

The next section explains this description in detail. 

B.2.2 Update of Output-Layer Weights 

The error at a single output unit k is defined to be 6 pk ' ( ~ ~ k - $ k )  . where the 

subscript PTT refers to the pth training vector. In this case. ypk is the desired output value. 

and upk is the actual output from the kth unit. The error to be minimized by the GDR is 

defined as the sum of the squares of the errors for all M output units: 

1 
The factor of - in Eq. (7.5) is there for convenience when denvatives later are cal- 

2 

culated. Since an arbitrary constant appears in the final result. the prerence of this factor 

does not invalidate the derivation. 

To determine the direction in which to change the weights, the negative of the 
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gradient of Ep, V E is calculated, with respect to the weights, W ~ Y  Then the values of the 
P 

weights can be adjusted such that the total error is reduced. 

To keep the derivation trackable, consider each cornponent of V E separately. 
P 

From Eq. (7.5) and the definition of 6 
pk' 

and 

where Eq. (7.4) has been used for the output value, opk, and the chah rule for the partial 

denvatives. For the moment, the derivative of is not evaluated, but instead is written 

simply as fk' neto . The last factor in Eq. (7.7) is i P A  

Combining Eqs. (7.7) and (7.8), the negative gradient is 

As far as the magnitude of the weight change is concemed, it is taken to be propor- 

tional to the negative gradient. Thus, the weights on the output layer are updated 

according to 
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where 

APPENDIX B 

wo ( t  + 1 )  = wo ( t )  + A wo ( t )  
kj ki P kj 

A. Nejatali 

(B. 10) 

(B. 11) 

The factor q is called the learning rate and is positive and usually less than 1. 

B.2.3 Update of Hidden-Layer Weights 

It would be favourable if the sarne calculations could be done for the hidden layer 

but, a problem arises when trying to define a measure of the error of the outputs of the 

hidden-layer units. Although the actual output for the last layer is known, there is no way 

of knowing in advance what the correct output for units in hidden layer should be. It is 

known by intuition that the total error, E must somehow be related to the output values 
P 

on the hiddm iayer. This can be verified by going back to Eq. (7.6): 

where ipi depends on the weights on the hidden layer through Eqs. (7.1) and (7.2). This 

fact can be exploited to calculate the gradient of E with respect to the hidden-layer 
P 

weights. 
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where each of the factors in Eq. (7.12) can be calculated explicitly from previous equa- 

tions. The result is 

Hidden-layer weights are updated in proportion to the negative of Eq. (7.13): 

where q is once again the learning rate. 

The definition of 6 O  given in the previous section cm be used to write 
pk 

(B. 14) 

(B. 15) 

Note that evety weight update on the hidden layer depends on al1 the tenns, So 
pk ' 

on the output layer. This formulation shows the philosophy behind the backpropagation 

tem. The known errors on the output layer are propagated back to the hidden layer to 

determine the appropriate changes on that layer. By defining a hidden-layer error term 

(B. 16) 

the weight update equations becomes analogous to those for the output layer: 
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(B. 17) 
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C.1 Elements of Fuzzy Set Theory 

Fuzzy set theory introduction starts with the review of two-valued logic which is 

the foundation of Our mathematical knowledge, where every concept is given a measure of 

correctness of only true or false 11031. Any object no matter how complex it is, is forced to 

be specified within any of two rigid and complementary categories. These categories in 

the real world may be defined for instance as good and bad, positive and negative or tall 

and short. Although, this classification is sometimes enough and satisfactory, in some 

cases it causes serious and obvious dilemmas. For example in the study of nurnbers, two 

categories of positive and negative numbers cm be defined without any problem and the 

boundaries of each category is well defined, but, in so many other tasks such as speed, def- 

inition of the concept of fast and slow are not well defined and do not have clear bounda- 

ries. 

Nevertheless, concepts such as speed, height, error and temperature, have to be 

dealt with in many daily activities where, the two-valued logic shows an obvious short- 

coming. Definitely, no matter what definition is adopted for the border point xo in the 

concept offlx) 
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the problern is not alleviated. 

Assigning an object to either of these cornplementary categories is equivalent to 

deciding on its membership to the related set. For instance, the temperature of the room 

could be assigned to the set of comfortable temperature if it is considered to be comforta- 

ble. In the two-valued logic or set theory, one has to decide on boundary values that 

describe the comfortable temperature, e.g., the interval of 22 to 28 degrees. The dilemma 

that was mentioned, is obvious here. One may ask, if the 22 degrees is a cornfortable tem- 

perature, then does it make sense to cal1 the 2 1.99 degrees as uncomfortable temperature? 

The key issue of hizzy set theory is that it extends the meaning of membenhip to different 

grades of belonging, also calied membership values. This alleviates the previous problem 

by embracing al1 intermediate situations between complete (total) membership and total 

nonmembership. 

Note, that different grades of membership or fuzziness, is quite different from the 

concept of randomness. 

From this introduction it seems that there are sufficient reasons to foflow the main 

idea of fuzziness and construct equivalent tools to those in the set theory e.g. intersection, 

union, etc. for fuzzy set theory. This would enable one to handie fuzziness, a concept that 

seems to be a lost piece in the jigsaw of our mathematical knowledge. Remember, fuzzy 

concepts, e.g. enough, cornfort, good and suitable, al1 are indivisible from our daily life. 

As mentioned before, fuzzy set theory modifies the basic idea of set theory to 

allow for the intennediate grades of membership. If showing the membership of an object 

x to a fuzzy set A as A(x). then the bigger the value of A(x) means the stronger the link 

between x and the fuzzy set A. 
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C.l.1 Example 

An example would be instruc 

A. Nejatali 

tive to show some basic applications of fuzziness in 

engineering and control. Let us assume that the target (goal) of our control algorithm is to 

set the duration of a control light at an intersection. Our aim can be stated in a Linguistic 

phrase as 'heavier troffic, longer green Light'. The first problem in constructing a control 

system arises when we want to compile 'heavy' in tems  of Say 'cars per minute'. One can 

Say that if traffic is less thm fifty cars per minute then it is not heavy and other wise it is 

heavy. But obviously it is not a satisfactory estimate to assign forty nine as light and fifty 

as heavy. The problem is not alleviated by defining a new number as border line. 

Everybody accepts that five cars per minute is a light traffic and alsc one hundred 

per minute is heavy but, for any number in the remaining interval not an explicit attribute 

can be found. The best way to deal with this problem is to assign membership values 

somewhere in the interval [O, 11. Fig. 8.l(b) shows such a membership function for our 

problem. We are not considering the discussion that deals with how to find such a mem- 

heavy heavy 

5 50 cars per minute 5 50 cars per minute 

(a) (b) 

Fig. C.l (a) Boolean membership function of heavy traffic. (b) Fuzzy membership function of 
heavy traffic. 
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bership func lion to be realistic for the moment. 

C.1.2 Operations on Fuzzy Sets 

Accepting such a many valued membership fûnction is the first and most important 

one. FcAlowing that we have to define new rules concerning set theory such as union, 

intersection and complement. Although we are not going to explain al1 mathematical 

background of fuzy sets here but, some elementacy and basic d e s  which specizlly are 

related to the next sections of this chapter worth repeating. The most general definition of 

union and intersection in fuzzy sets theory are expressed under triangular noms tiue. 

They are also cal1 t-nom and s-nom respectively equivaient to intersection and union. 

Unlike set theory, there are not unique definitions for intersection and union in fuzzy set 

theory. Some common types of t -nom ( A ) and s-noms ( v ) are as follows: 

AtB = min (A,  B )  
AtB = AB 

AtB = max(0 ,  ( h +  1 )  ( A + &  1 )  - ; S A B ) , h 2 - 1  

which the last one with h = O is the most usual case. 

AsB = max(A, B )  
AsB = A + B - A B  

AsB = r n i n ( l , A + B + h A B ) , h 2 - 1  

Again usually the h = O is the case. 

Complement is also defined by: 

The possibility measure of fuzzy set A with respect to fuzzy set B is defined as 
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Fig. C.2 Possibility measure of A(x) with respect to B(x) is a measure of overlap between these 
two membership functions; the t-nom is based on minimum here. 

The necessity measure of A with respect to B, N(AIB), sirnilarly is defined as 

q ( A I B )  = N e c ( A , B )  = inf [A(x) vB(x)J . 
X E  X 

To interpret both of these, notice that the possibility measure of A and B reflects the extent 

to which A and B coincide or overlap, while the necessity expresses a grade to which B is 

contained in A. 

C. 1.3 Membership Function Estimation 

The methods for estimation of a fiizzy membership function can be classified in 

two categories: 1) structure free and 2) structure bound algonthms. From these two cate- 

gones the first one applies to our approach. From the first category, one may name hori- 
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zontal, vertical, Saaty and fuuy clustering approaches. Again from this list, horizontal 

approach seems to be the most pertinent one to our case. 

In this approach a List of elements of the universe of discourse xl, xz, ..., x,, are 

selected and referred to a group of experts. This group answers to the question ' c m  xi be 

accepted as a member of hzzy set A?'. An average of positive answen to this question 

forms the membership value of fuzzy set A at point 3; 

positive ( x i )  
A (xi) = 

N 

where N is the number of questions. 
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APPENDIX D 

Random Generator with Tkapezoidal Pmbability Density Function 

Figure 8.7 shows our map. y in trapezoidal pdf will be selected in a way to have 

the trapezoidal area equal to one as it should be, 

There are three different parts in the trapezoidal pdf. Two triangle and one rectangular. 

uniform pdf over [O, 1 ] interval trapezoidal pdf 

Fig. D.1 Mapping from uniform pdf to trapezoidal one. 
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t 

I 

Fig. D.2 Mapping of the first section. 

Each of them will receive a portion of the uniform pdf equivalent to its share of area. 

Therefore the area of each sections is needed and they are calculated as: 

where S I ,  Sî and Sj refer to the areas of those marked with 1, 2 and 3 in Fig. 8.7. respec- 

tively. 

We now split the mapping operation to three parts. The first mapping in shown in 

Fig. 8.8. To have a correct mapping there should be equivalent area sweeping between two 

pdf's. On the other words 6 should be mapped to a in a way that shaded areas be equal. 

In mathematical words: 
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6 SI+S2 I ml 

Fig. D3 Mapping of the second section. 

and afier some manipulation, 

where CT is a random number with objective trapezoidal pdf and rand a uniform distrib- 

uted random number. 

Similarly, the second part is shown in Fig. 8.9. The mapping is very siiiiple in this 

case and a linear one. By the same law of equity of areas, we have: 

And after some mathematical simplification the final result is: 
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Fig. D.4 Mapping of the third section. 

And finally for the third part as shown in Fig. 8.10 we have: 

that after a len 

2 y u  - ni*)  

gthily manipulation cornes to 

( 1 - rand) . (D. 10) 




